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Abstract

Total valuation adjustment (XVA) is a new technique which takes multiple material financial
factors into consideration when pricing derivatives. This paper explores how funding costs and
counterparty credit risk affect pricing the American option based on no-arbitrage analysis. We
review previous studies of European option pricing with different funding costs. The conclusions
help to compute the no-arbitrage price of the American option in the model with different bor-
rowing and lending rates. Another model with counterparty credit risk is set up, and this pricing
approach is referred to as credit valuation adjustment (CVA). A defaultable bond issued by the
counterparty is used to hedge the loss from the option’s default. We incorporate these two models
to assess the XVA of an American option. The collateral, which protects the option investors from
default, is considered in our benchmark model. To illustrate our results, numerical experiments are
designed to demonstrate the relationship between XVA and parameters, which include the funding
rates, bond’s rate of return, and number of periods.
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Chapter 1

Introduction

In the past, the traditional approaches which were adopted to price options involve several as-
sumptions. These assumptions deny the difference between the borrowing and lending rates, or
any default in the counterparty. Here, the new approach, which relaxes those assumptions when
pricing options, is known as ‘XVA’. It is short for value adjustment for some risk elements, which
is denoted as ‘X’.

The difference between borrowing and lending rates is referred to as funding spread. In this
paper, we emphasize the aspects of funding spread and default of the counterparty. By comparing
XVA with the traditional approaches, this new approach is more practical and realistic.

Both XVA and traditional approaches are pricing the American option under the assumption
that no arbitrage opportunity exists in the market. In discrete time settings, these two methods
adopt the backward induction approach in the multi-period binomial tree model [4]. The pricing
process begins at the maturity date, and goes backward to the initial date by calculating the price
step by step.

The paper is organized as follows. In the first Chapter, we introduce some backgrounds of
the project information and provide the definition of each important term. We review and analyze
some conclusions of the European option price from previous studies in Chapter 2. Some of the
findings are adopted to explore the American option pricing in Chapter 3. The result reveals that
different market conditions will determine the utilization of a hedging portfolio or a super-hedging
portfolio at each time.

Chapters 3 - 5 discuss the no-arbitrage price of an American option. The model without funding
spread and default is introduced at first. A funding spread will be added to the model next. Starting
with the one-period model, we extend this to a multi-period model using the backward induction
method. The second step focuses on the counterparty credit risk. Defaultable bond is introduced to
replicate the payoff in this situation. After considering funding spread and credit risk separately, we
incorporate these two models to compute the XVA. We divide the time interval into two different
kinds of periods. Funding spread and counterparty credit risk are considered separately in these two
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periods. The first period allows the stock and MMA to be traded in the market. Only the defaultable
bond is traded in market at the second period. To improve the applicability of the model, we add
the collateral in the model we just constructed. The no-arbitrage price of an American option can
be derived by the value of the portfolio consisting of option and collateral. In Chapter 6, numerical
analyses are offered to demonstrate the relationship between XVA and parameters, which include
the funding rates, bond’s rate of return, and number of periods.

1.1 Important Terms and Concepts
• European option: European options are widely traded on exchanges. It can only be exer-

cised on the maturity or expiration date T . On that day, the call option holder can buy, and
the put option holder can sell the underlying asset at a specific price - the exercise price or
strike price.

Bonner and Campanelli compute the no-arbitrage European option price by considering the
existence of funding spread and counterparty credit risk in discrete time settings [3]. In
continuous time settings, Davis, Panas, and Zariphopoulou use the Black-Scholes model
to price the European option [5]. This method considers that there is a transaction cost
when selling and purchasing stocks. Bichuch, Capponi, and Sturm develop the framework
to compute XVA accounting for funding spread, collateralization, and counterparty credit
risk [2]. Generally, European option’s price is easier to derive than an American option, but
some conclusions from European options can also be applied to price American options.

• American option: Most of the options traded in the market are American options. Different
from the European option, an America option may be exercised before or at the expiration
date. The option buyer needs to optimally choose the time to exercise the option. On the
other hand, the seller has the obligation to deliver the exercise payoff to the buyer when the
option is exercised.

Multiple approaches have been adopted to value American options. Amin and Bodurtha
develop a discrete time model focusing on risks from currency, domestic term structure, and
foreign term structure [1]. Rogers uses the Monte-Carlo simulation to price the American
option with simulating the paths of the option payoff [11]. These approaches fail to consider
the risk of default from counterparty and funding spread.

• Hedging: Hedging is a strategy used to reduce a particular risk faced by the investor. A
perfect hedge is the one that completely eliminates the risk [8]. For example, using future
contracts is an effective way to hedge the risk from the fluctuation of a product’s price. Since
a perfect hedge can mitigate all of the risks, in this circumstance, the price of the derivatives
can be calculated by evaluating the price of the hedging portfolio.

The hedging portfolio will generate the same payoff as the derivative. The value of the
hedging portfolio is referred to as the hedging price. We use the stock and the money market
account (MMA) to construct the hedging portfolios. When we consider the default risk
from the counterparty, defaultable bonds are also involved in the hedging portfolio. Given
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different borrowing and lending rates, the hedging portfolio’s value may not represent the
derivative’s value properly, therefore the super-hedging portfolio would be considered as an
alternative.

• Super-hedging: When the market completeness breaks down, which means that the risk
cannot be completely eliminated, super-hedging becomes a good way to measure the value
of derivatives. This is a strategy that can at least hedge the risk of the derivative with the
lowest cost. The portfolio which is constructed by the strategy of super-hedging is called
the super-hedging portfolio. It can produce no less than the payoff as the derivative with the
lowest price. The value of the super-hedging portfolio is referred to as the super-hedging
price.

The super-hedging portfolio is built with the same components as the hedging portfolio.
Even though the super-hedging portfolio will have a better payoff at the maturity, it may
not be as expensive as the hedging portfolio. Their relationship depends on different market
conditions. A comparison of hedging portfolios and super-hedging portfolios will be made
in Section 2.3.

• Collateral: “In lending agreements, collateral is a possession pledged as security for repay-
ment of a loan to a lender, to be forfeited in the event of a default” [7]. This means that if
the borrower fails to pay the principal and interest based on the lending agreements, the item
acting as collateral can be forfeited to offset the loan.

In Chapter 4, we introduce a pricing model with collateral. To eliminate parts of the risk from
the counterparty’s default, the hedger requires the counterparty to post cash as collateral with
a collateralization rate γ . This means if the value of the derivative is C, then the amount of
the cash collateral is γC. If default do not occur, the collateral receiver will give the collateral
provider rcγC in each period before the maturity date as an interest. rc is called the collateral
rate. At the maturity date or the time when the option is exercised, the collateral provider
will receive the full amount of γC. Once the counterparty defaults on the option, this process
will be terminated. The receiver will keep the cash collateral to eliminate the loss from the
default.

• Arbitrage: An arbitrage is an investment strategy that yields with positive probability a
positive profit and is not exposed to any downside risk [6]. For a portfolio X with initial
value 0, Φ(Xt) is the portfolio value at time t. It is an arbitrage strategy if it satisfies the
following conditions at a time t up to the maturity date T :

1. P(Φ(Xt)≥ 0) = 1.

2. P(Φ(Xt)> 0)> 0.

To compute the XVA of a derivative, we assume that the funding rates are unique to each
hedger. Usually, personal interest is influenced by various factors, such as credit score and
economic performance [10]. It indicates that the cost of constructing a portfolio is different.
Thus, unlike classical option pricing, arbitrage strategies are no longer universal but specific
to a hedger. In that way, the XVA of a derivative we derive is unique to each hedger in the
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market.

When we discuss the price of the American option in Chapter 3, the price will be affected
by the buyer’s exercising strategy. In Section 3.2, we modify the explanation of arbitrage on
the basis of the definition we have mentioned above. More details will be provided.
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Chapter 2

European Option

Many conclusions from European option pricing will be useful to understand no-arbitrage pricing
for American options. In this chapter, we will introduce some important theorems on European
options pricing from previous research. We will make a comparison between the hedging price and
the super-hedging price given by different market conditions at Section 2.2. On the basis, we will
compute the XVA for a European option with funding spread in a one-period model. In Section
2.4, a new model with a collateral account is generated to price European options by considering
funding spread.

2.1 Important theorems of European option
This project is based on the no-arbitrage analysis in the binomial tree model. When the market
consists of only the stock and the MMA, the no-arbitrage condition can be derived [3]. This can be
seen in Theorem 1 below. We have an underlying asset (stock), the price of which at time t is St ,
t = 0,1,2 . . .T . Time zero is the initial time, and time T is the maturity date. We assume that there
is no dividend paid in this model. Any shares of stock and MMA are allowed in the transaction.
Also, there is no transaction cost. Then at time t +1, the stock price has two movements, ‘H’and
‘T’, the values of which are uSt or dSt respectively. We call u and d the annualized up and down
factors of the stock price with u > d. Receptively, rl and rb are the annualized lending rate and
borrowing rate.

Theorem 1 No-Arbitrage Condition: In a market with stocks and MMAs, under the one-
period binomial model with the length of h, there is no arbitrage in the market if and only if
u > d, d < 1+ rb, rl < rb, and 1+ rl < u.

Adapted from: Bonner and Campanelli [3]

Since the borrowing rates and the lending rates are not the same for each individual in the

5



market, the no-arbitrage condition is also unique for hedgers. This coincides with what we have
mentioned in the definition of ‘Arbitrage’.

In a discrete time setting, the no-arbitrage price of a European option in one period model,
Et , can be derived as the following Theorem 2. As noted in Section 1.1, the price of European
options are related to the values of the hedging and super-hedging portfolios. Both the hedging
and super-hedging portfolio consist of the underlying asset and MMA. They are constructed given
by the payoffs of the European option. The difference is that hedging portfolio replicates exactly
the same payoff, and the super-hedging portfolio produces at least the same payoff.

We denote the portfolio at time t as Xt . Both of these two portfolios have the length of one
year. It replicates the cash flows of the option from the time period (t, t + 1). The superscript ‘*’
is used to distinguish whether the portfolio is super-replicating or not. Both the hedging portfolio
and super-hedging portfolio are constructed by stocks and MMAs. The subscript ‘−’ means the
portfolio ‘X’ is used in the short position.

Theorem 2 Under the assumption of non-zero funding spread, in the one-period binomial tree
model, the no-arbitrage price of the European option at time t satisfies the following condition.
More than that, any prices out of this interval can construct arbitrages.

max{−Φ(X∗−t),−Φ(X−t)} ≤ Et ≤ min{Φ(X∗t ),Φ(Xt)}

Notes: If max{−Φ(X∗−t),−Φ(X−t)} = −Φ(X∗−t), then the interval is open on the left:
Et > −Φ(X∗−t). If min{Φ(X∗t ),Φ(Xt)} = Φ(X∗t ), then the interval is open on the right side:
Et < Φ(X∗t ).

Adapted from: Bonner and Campanelli [3]

2.2 A comparison between super-hedging price and hedging
price

Under the no-arbitrage conditions in Theorem 1, we get the price of the European option in The-
orem 2. We noticed that both sides of the inequality are decided by comparing the super-hedging
price and the hedging price. So in this part, we use the no-arbitrage conditions to compare them.

For each node at time t, we build a one-period binomial tree model with time length h. Then
the maturity date T = t+h. Since the pricing process is backward in a one-period model, we know
the option value at time t + h. We can build the hedging and super-hedging portfolio based on
future cash flows.
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For the replication portfolio, it involves ∆ shares of stock and M shares of MMA. If M > 0,
then the investor lends money to others, then r takes the value rl . On the other hand, if M < 0, the
investor borrows money, then r takes the value rb. Thus we can write r as:

r = rl1M>0 + rb1M<0.

In the following theorems, the proof of those in the short position shares the same approach as
the long position. So we only provide the proof for the latter. For simplification, ∆ is short for ∆t ,
and M is short for Mt .

Theorem 3 In the one-period model with length h at time t, If d < 1+rl < 1+rb < u, Φ(X∗t )≥
Φ(Xt) and Φ(X∗−t) ≥ Φ(X−t). This means the super-hedging price is larger than or equal to
the hedging price at any time t.

Proof: Firstly, we will compute the hedging price and the super-hedging price separately.
Without loss of generality, we assume the time length of the one-period model is h = 1.

The functions used to compute hedging price are as follows:
Φ(Xt) = ∆St +M,

Vt+1(H) = ∆uSt +M(1+ r),
Vt+1(T ) = ∆dSt +M(1+ r).

The functions used to compute super-hedging price are as follows:
Φ(X∗t ) = ∆∗St +M∗,
Vt+1(H)≤ ∆∗uSt +M∗(1+ r∗),
Vt+1(T )≤ ∆∗dSt +M∗(1+ r∗).

Four sub-situations can be derived based on whether the hedger is borrowing or lending money
in this two portfolios.

1. M > 0 and M∗ > 0
In this case, hedger will lend money in the hedging portfolio and super-hedging portfolio.
Then r and r∗ take the lending rate, r = r∗ = rl . Thus, we rewrite the previous functions.

Hedging functions: 
Φ(Xt) = ∆St +M
Vt+1(H) = ∆uSt +M(1+ rl)

Vt+1(T ) = ∆dSt +M(1+ rl)
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Super-hedging functions:
Φ(X∗t ) = ∆∗St +M∗

Vt+1(H)≤ ∆∗uSt +M∗(1+ rl)

Vt+1(T )≤ ∆∗dSt +M∗(1+ rl)

In the hedging functions, we can plug Φ(Xt) into the right hand side of Vt+1(H) and Vt+1(T ).{
Vt+1(H) = uΦ(Xt)+(1+ rl−u)M
Vt+1(T ) = dΦ(Xt)+(1+ rl−d)M

In the same way, we rewrite the super-hedging functions. By comparing those functions, we
derive two inequalities as follows:{

u(Φ(Xt)−Φ(X∗t ))≤ (1+ rl−u)(M∗−M),

d(Φ(Xt)−Φ(X∗t ))≤ (1+ rl−d)(M∗−M).
(2.1)

We first suppose M∗ > M in the above inequalities. For the first inequality, since u > 1+ rl ,
we have (1+ rl−u)(M∗−M)≤ 0, thus Φ(Xt)≤Φ(X∗t ). On the other direction, we assume
M∗ < M. For the second inequality, since d < 1+rl , we have (1+rl−u)(M∗−M)≤ 0, thus
Φ(Xt)< Φ(X∗t ). In either cases, we can get the conclusion that the hedging price is less than
or equal to the super-hedging price.

2. M∗ > 0 and M < 0
In this case, the hedging portfolio has a negative position in MMAs, and the super-hedging
portfolio has a non-negative position in MMAs. So, we have r = rb, and r∗ = rl . We rewrite
the functions as follows.

Hedging functions: 
Φ(Xt) = ∆St +M
Vt+1(H) = ∆uSt +M(1+ rb)

Vt+1(T ) = ∆dSt +M(1+ rb)

Super-hedging functions:
Φ(X∗t ) = ∆∗St +M∗

Vt+1(H)< ∆∗uSt +M∗(1+ rl)

Vt+1(T )< ∆∗dSt +M∗(1+ rl)

In the hedging functions, we plug Φ(Xt) into the right hand side of Vt+1(H) and Vt+1(T ).{
Vt+1(H) = uΦ(Xt)+(1+ rb−u)M
Vt+1(T ) = dΦ(Xt)+(1+ rb−d)M

8



In the same way, we rewrite the super-hedging functions. Next, we derive the formula as
follows: {

u(Φ(Xt)−Φ(X∗t ))< (1+ rl−u)M∗− (1+ rb−u)M,

d(Φ(Xt)−Φ(X∗t ))< (1+ rl−d)M∗− (1+ rb−d)M.
(2.2)

Since rl < rb, the inequalities (2.2) can be transformed to (2.1). Since M∗ > 0 > M, we have
Φ(Xt)< Φ(X∗t ), i.e., the hedging price is less than the super-hedging price.

3. M > 0 and M∗ < 0
Following the process in the case M∗ > 0 and M < 0, we can draw the same conclusion.

4. M < 0 and M∗ < 0
Following the process in the case M > 0 and M∗ > 0, we can draw the same conclusion.

In conclusion, under the assumption of d < 1+ rl < 1+ rb < u, the super-hedging price is
larger than the hedging price in a long position. This is also true for a short position.

Definition 2.2.1 We say a portfolio is optimal if we cannot rebalance it with a better payoff at any
time after that. A portfolio is not optimal if we can rebalance it with a better payoff at any time
after that.

A nonoptimal portfolio cannot be used as a super-hedging portfolio. A super-hedging portfolio
is a portfolio which can produce at least the same payoff as the derivative does with the lowest
cost. Since a nonoptimal portfolio can be rebalanced with a better payoff, we can build another
portfolio which has the same payoff but less expensive. This can be a fraction of the rebalanced
portfolio. Then a nonoptimal portfolio is not a super-hedging portfolio. On the other hand, either
in a long position or a short position, if a hedging portfolio is nonoptimal, it is more expensive than
the super-hedging portfolio.

Theorem 4 If u < 1+ rb, portfolios consisted of a negative position in MMA are not optimal.

Proof: Suppose there are two portfolios. For portfolio A, it has ∆ shares of stock and M shares
of MMA, where M < 0. For portfolio B, it only has ∆+ M

St
shares of stock. Thus the initial values

of A and B are the same.

For portfolio A, we have M < 0, so the funding rate takes the borrowing rate. We can draw a
table to show the payoffs of the portfolios in different situations.
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A B
up ∆uSt +M(1+ rb) ∆uSt +Mu

down ∆dSt +M(1+ rb) ∆dSt +Md

In either case, as d < u < 1+ rb, the payoff of portfolio B is better than portfolio A. Thus when
u < 1+ rb, portfolios consisted of a negative position in MMA are not optimal.

Under the condition of u < 1+ rb, it is not optimal to borrow money. When borrowing money,
it means to use the money borrowed to invest in the stock. But the maximum return of the stock
is less than the borrowing rate, which means that it will make a loss when borrowing money. So
it is better to invest less in the stock market without borrowing money. The same conclusion goes
for the case when 1+ rl < d. In this situation, lending money is not optimal. Since the lending
rate will be less than the minimum return of the stock. So using this money to invest in the stock
market is a better choice. We will prove it in a mathematical way.

Theorem 5 If 1+ rl < d, portfolios consisted of a positive position in MMA are not optimal.

Proof: Suppose there are two portfolios. For portfolio A, it has ∆ shares of stock and M shares
of MMA, where M > 0. For portfolio B, it only has ∆+ M

St
shares of stock. Thus the initial values

of A and B are the same.

For portfolio A, since M > 0, it means r = rl . We can draw a table to show the payoff of the
portfolio at different situations.

A B
up ∆uSt +M(1+ rl) ∆uSt +Mu

down ∆dSt +M(1+ rl) ∆dSt +Md

In either case, as 1+ rl < d < u, the payoff of the portfolio B is better than the portfolio A.
Thus when 1+ rl < d, portfolios consisted of a positive position in MMA are not optimal.

Combining the conditions of 1+ rl < d, u < 1+ rb, and d < u, we can get 1+ rl < d < u <
1+ rb. At this situation, either borrowing and lending money is not optimal. So, we can draw the
conclusion of the following theorem.

Theorem 6 If 1+ rl < d < u < 1+ rb, portfolios consisted of MMA are not optimal.

10



When holding MMA is not optimal, and a nonoptimal portfolio is not a super-hedging portfolio,
we conclude that the super-hedging portfolio will only consist of stocks. Based on that, we can
make a comparison between the hedging price and the super-hedging price when 1+ rl < d < u <
1+ rb.

Theorem 7 If 1+ rl < d < u < 1+ rb, Φ(X∗t ) ≤ Φ(Xt) and Φ(X∗−t) ≤ Φ(X−t), which means
the super-hedging price is less than or equal to the hedging price at any time.

Proof: In the condition of 1+ rl < d < u < 1+ rb, super-hedging portfolio will not consist of
MMAs. Thus M∗ = 0 in the super-hedging portfolio.

For the hedging portfolio of a long position, we can generate the following functions.
Φ(Xt) = ∆St +M
Vt+1(H) = ∆uSt +M(1+ r) = uΦ(Xt)+(1+ r−u)M
Vt+1(T ) = ∆dSt +M(1+ r) = dΦ(Xt)+(1+ r−d)M

By solving those functions, the hedging price is computed as follows:
Φ(Xt) = ∆St +M,

∆ = Vt+1(H)−Vt+1(T )
St(u−d) ,

M = uVt+1(T )−dVt+1(H)
(u−d)(1+r) .

For the super-hedging portfolio of the long position, we can draw the following functions.
Φ(X∗t ) = ∆∗St

Vt+1(H)≤ ∆∗uSt

Vt+1(T )≤ ∆∗dSt

According to the definition of super-hedging portfolio, Φ(X∗t ) = max{Vt+1(H)
u , Vt+1(T )

d }.

Next, we make the comparison between the hedging price and the super-hedging price.

1. uVt+1(T )−dVt+1(H)> 0
In this case, the hedging portfolio takes a positive position in MMA, thus r takes the lending
rate. For the super-hedging portfolio, since Vt+1(H)

u < Vt+1(T )
d , we have Φ(X∗t ) =

Vt+1(T )
d . The

value of the hedging portfolio is as follows:

Φ(Xt) =
Vt+1(H)−Vt+1(T )

u−d
+

uVt+1(T )−dVt+1(H)

(u−d)(1+ rl)
,
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Φ(Xt)−Φ(X∗t ) =
(1+ rl−d)[dVt+1(H)−uVt+1(T )]

d(1+ rl)(u−d)
> 0.

Then, we have Φ(Xt)> Φ(X∗t ), i.e, the super-hedging price is less than the hedging price.

2. uVt+1(T )−dVt+1(H)< 0
In this case, the hedging portfolio takes a negative position in MMAs, thus r takes the bor-
rowing rate. For the super-hedging portfolio, since Vt+1(H)

u > Vt+1(T )
d , we have Φ(X∗t ) =

Vt+1(H)
u . The value of the hedging portfolio is as follows:

Φ(Xt) =
Vt+1(H)−Vt+1(T )

u−d
+

uVt+1(T )−dVt+1(H)

(u−d)(1+ rb)
,

Φ(Xt)−Φ(X∗t ) =
(1+ rb−u)[dVt+1(H)−uVt+1(T )]

u(1+ rb)(u−d)
> 0.

Then, we have Φ(Xt)> Φ(X∗t ), i.e, the super-hedging price is less than the hedging price.

3. uVt+1(T )−dVt+1(H) = 0
In this case, the hedging portfolio has M = 0. Both of the super-hedging portfolio and the
hedging portfolio do not have MMA. They share the same value.

Thus, taking a long position in the derivative, the super-hedging price is less than or equal to
the hedging price. This is also true for the short position.

2.3 XVA of European options with funding spread in a one-
period model

As is shown in Theorem 2, under the no-arbitrage condition, we have found that the XVA of a
European option with funding spread is:

max{−Φ(X∗−t),−Φ(X−t)} ≤ Et ≤min{Φ(X∗t ),Φ(Xt)}.

While, on the left hand side, when it takes the value of the super-hedging price, it is open on the
left hand side. When it takes the value of the super-hedging price in the right hand side, it is open
on the right hand side.

The no-arbitrage condition in the market with the stock and the MMA is d < 1+rb, and 1+rl <
u. It can generate four sub-situations, which is d < 1+ rl < 1+ rb < u, 1+ rl < d < u < 1+ rb,
d < 1+ rl < u < 1+ rb, and 1+ rl < d < 1+ rb < u. Under each of these situations, the option
price can be simplified as follows:

1. d < 1+ rl < 1+ rb < u
Based on Theorem 3, the hedging price is less than the super-hedging price for any position
in the European option. Thus, the no-arbitrage price of the European option now follows:

−Φ(X−t)≤ Et ≤Φ(Xt).
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2. 1+ rl < d < u < 1+ rb
Based on Theorem 6, the super-hedging price is less than the hedging price for any position
in the European option. Thus, the no-arbitrage price of the European option now follows:

−Φ(X∗−t)< Et < Φ(X∗t ).

3. d < 1+ rl < u < 1+ rb
In this situation, we have concluded that borrowing money is not optimal. So we will check
whether the hedging portfolio in the long or short positions take a negative position in MMA
or not.

Mt =
uVt+1(T )−dVt+1(H)

(u−d)(1+ rv)

M−t =
−uVt+1(T )+dVt+1(H)

(u−d)(1+ r−v)

This means that whether the hedging portfolios are optimal or not depends on the value of
uVt+1(T )−dVt+1(H).

(a) uVt+1(T )−dVt+1(H)> 0
In this case, we have Mt > 0, and M−t < 0. Thus, the hedging portfolio in the short
position is not optimal. The hedging price is less than the super-hedging price in a short
position. Taking a long position in the option, the super-hedging portfolio has M∗t > 0.
We can prove that the super-hedging price is larger than the hedging price. The reason
is the same as the proof of the first part in Theorem 3. In this condition, the no-arbitrage
price of the option follows:

−Φ(X∗−t)< Et ≤Φ(Xt).

(b) uVt+1(T )−dVt+1(H)< 0
Following the same process before, the no-arbitrage price of the option follows:

−Φ(X−t)≤ Et < Φ(X∗t ).

(c) uVt+1(T )−dVt+1(H) = 0
In this case, both of the hedging portfolios for the long position and the short position
do not have MMA. But for the super-hedging portfolio, it may have MMA. We need
to compare the super-hedging price and the hedging price. Following the same process
in the first part of Theorem 3, the hedging portfolio is less expensive than the super-
hedging portfolio. Thus we have:

−Φ(X−t)≤ Et ≤Φ(Xt).

4. 1+ rl < d < 1+ rb < u
Following the same process as above, we get the no-arbitrage price interval of the option
based on the value of uVt+1(T )−dVt+1(H).
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(a) uVt+1(T )−dVt+1(H)> 0
−Φ(X−t)≤ Et < Φ(X∗t )

(b) uVt+1(T )−dVt+1(H)< 0
−Φ(X∗−t)< Et ≤Φ(Xt)

(c) uVt+1(T )−dVt+1(H) = 0
−Φ(X−t)≤ Et ≤Φ(Xt)

2.4 XVA of European options with collateral in a one-period
model

We notice that an option is a contract between two counterparties. In some cases, the option will
require the seller to pay a large amount of money when the buyer chooses to exercise the option.
The default will occur in situations like this. To prevent great loss from default occurring, the op-
tion buyer will require the seller to post a cash collateral. If the collateral provider defaults on the
option, the taker will keep the collateral to mitigate the loss from the default. If no default occurs,
the taker needs to return the collateral to the provider with an extra interest.

We hedge the European option with three accounts: stock, MMA, and collateral. rl and rb are
the returns of the lending and borrowing accounts. rc is the return of the collateral account. We
have 0 < d < 1+ rl < 1+ rb < u, where u and d are the up-factor and down-factor of the stock
as we have defined before. According to Theorem 3, the hedging price is smaller than the super-
hedging price, and the no-arbitrage condition holds.

We build a model to price European options in a one-period binomial tree model with time
length h. The initial and maturity dates are 0 and h respectively. For the hedging portfolio in the
long position, Vh(H) is the payoff of the derivative when the stock price goes up, and Vh(T ) is the
payoff of the derivative on the other side. γ is the collateral rate, where γ ∈ [0,1]. In the short
position, the hedging portfolio takes negative values of the payoffs above in either case.

In this model, we are pricing the European option under the assumption that the collateral is
decided by the option value of the hedger, no matter if the hedger is the collateral taker or provider.
Therefore, the no-arbitrage price of a European option is unique for each investor in this model.

2.4.1 Long position
In the long position, the buyer owns the option and receives the collateral from the counterparty.
The collateral is related to the option value at the initial time with a collateral rate rc. To hedge
the payoff of the option, we construct the portfolio by holding ∆ shares of stock and M shares of
MMA. The option value at a long position is defined as E0.
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At the initial time, this hedging portfolio shares the same value as the combination of option
and collateral.

E0 + γE0 = ∆0S0 +M0 (2.3)

At the maturity, the buyer needs to pay the collateral, γE0, back with an extra interest, rcγE0.

Vh(H)+ γE0(1+ rc) = ∆0uS0 +M0(1+ r0) (2.4)

Vh(T )+ γE0(1+ rc) = ∆0dS0 +M0(1+ r0) (2.5)

r0 is the funding rate which takes the borrowing or lending rate given by the position in MMA
in the long position hedging portfolio.

r0 = rl1M0>0 + rb1M0<0 (2.6)

From equation (2.4) and (2.5), we can get the shares of the stock.

∆0 =
Vh(H)−Vh(T )

(u−d)S0

By solving the rest of the functions, we can get the equations for E0 and M0.{
E0 =

Vh(H)(1+γ)(1+r0−d)−Vh(T )(1+γ)(1+ro−u)
(u−d)[(1+r0)(1+γ)+γ(1+rc)]

M0 =
−Vh(H)[γ(1+rc)+d(1+γ)]+Vh(T )[γ(1+rc)+u(1+γ)]

(u−d)[(1+r0)(1+γ)+γ(1+rc)]

Our target is to solve the value of E0. The unknown parameter in this equation is r0 where
the r0 is given by a function of M0. So our priority is to determine whether M0 is positive or not.
Taking a closer look at the value of M0 with u > d, we can find that the denominator part is positive
and the numerator part is only related to the payoff of the derivative. By the value of payoffs, the
investor can determine if the money is borrowed or lent in the hedging portfolio. Then the value of
r0 is calculated.

Once r0 is determined, we can plug it into the equation of E0. Thus, we have the value of the
option in a long position. Using the same approach, we can get the value of the option in a short
position, which is denoted as E−0.

2.4.2 Short position
Taking a short position in the option, the hedger needs to post the cash collateral to the buyer.
Therefore, at the initial time, the hedger needs to pay the amount −γE0 of cash as a collateral. To
replicate a combination of collateral and option, we construct the hedging portfolio by holding ∆−0
shares of stock and M−0 shares of MMA.
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At the initial time, this hedging portfolio shares the same value as the combination of the option
and collateral.

E−0 + γE−0 = ∆−0S0 +M−0 (2.7)

At the maturity, the buyer will receive the collateral, −γE−0, back with an extra interest,
−γE−0rc. Thus, in a short position, we can generate the following functions:

−Vh(H)+ γE−0(1+ rc) = ∆−0uS0 +M−0(1+ r−0), (2.8)

−Vh(T )+ γE−0(1+ rc) = ∆−vdS0 +M−0(1+ r−0). (2.9)

r−0 is the funding rate which takes the borrowing or lending rate given by the position in MMA
in the short position hedging portfolio.

r−0 = rl1M−0>0 + rb1M−0<0 (2.10)

From Equation (2.8) and (2.9), we can get the shares of the stock.

∆−0 =−
Vh(H)−Vh(T )

(u−d)S0

By solving the rest of the equations, we can get the value E−0 and M−0.{
E−0 =

Vh(H)(1−γ)(d−1−r−0)−Vh(T )(1−γ)(u−1−r−0)
(u−d)[(1+r−0)(1−γ)−γ(1+rc)]

M−0 =
Vh(H)[−γ(1+rc)+d(1−γ)]−Vh(T )[−γ(1+rc)+u(1−γ)]

(u−d)[(1+r−0)(1−γ)−γ(1+rc)]

As the long position, the only unknown parameter for E−0 and M−0 is the value of r−0. But
unlike the calculation in the long position, we need to compute the numerator part first. After that,
we assume the position in MMA is negative, then we replace r−0 by the borrowing rate. With a
given r−0, we can compute the value of M−0, and verify our hypothesis. This approach can help
us to find the value of r−0. Based on this value, we have the value of the option in a short position,
E−0.

The buyer takes the price of E0, and the sellers takes the price of E−0. Then the no-arbitrage
price interval of the European option is [−E−0,E0].

This is the no-arbitrage interval of the European option at the initial time. In the multi-period
binomial tree model at time t, using the backward induction approach, replacing the payoff as the
value of the option at time t + 1, we can compute the no-arbitrage price of the option at any time
between the initial time and maturity.
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Chapter 3

XVA of American Options with Funding
Spread

In this chapter, we will begin the analysis of American option pricing. We will introduce a base
model without funding spread and default in Section 3.1. After that, a one-period model with
funding spread will be constructed in Section 3.2. Lastly. we will extend this one-period model to
a multi-period model in Section 3.4.

3.1 Base model of American option pricing
Comparing with European options, the only difference for American options is that the holder can
choose any time prior to maturity to exercise the option. Because of that, an American option can
never be worth less than the payoff associated with immediate exercise [12]. In that way, at each
node, the option buyer will make an optimal choice between exercising or holding the option to
maximize the payoff.

We apply the same approach as pricing the European option in the binomial tree model. This is
by working backward from the maturity to the initial date. At each node, if the investor exercises
the option, then he will receive the payoff of the early exercise. On the other hand, if he chooses
to hold the option, the value is given by the European option now.

In the binomial tree model, if there is no existence of funding spread, default and collateral, we
define this model as the base model. The following is an example of the application of the base
model.

Example 3.1.1 In the two-period binomial tree model with a risk-free interest rate of 1
4 . The stock

price at the initial time is 4. The up-factor, u, is 2 and the down-factor, d, is 1
2 . p is the possibility

that the stock price goes up. We use the base model to price the American put option at initial time
with maturity date T = 2, strike price K = 5.
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Initial H T HH HT/TH TT
Stock Price 4 8 2 16 4 1

Exercise Payoff 1 0 3 0 1 4

Table 3.1: Payoff table of the option

V2(HH) = 0

V1(H) = 0.4; Hold

V0 = 1.36; Hold V2(HT ) = 1

V1(T ) = 3; Exercise

V2(T T ) = 4

p̃

(1− p̃)

p̃2

(1− p̃)p̃

(1− p̃)p̃

(1− p̃)2

Figure 3.1: The American option pricing process in the base model.

The first step is to get the risk-neutral measure of p.

p̃ =
1+ r−d

u−d
=

1+1/4−1/2
2−1/2

=
1
2

In Table 3.1.1, the second row shows the stock price at each node, and the third row shows the
payoff of the option if the buyer chooses to exercise the option at this node.

Next step is to find the investor’s choice at each node.

At the maturity date, the investor makes a choice to exercise the option or not. Then the option
value is max{5−ST}.

At time t = 1, the investor need to choose to exercise or hold the option. In this situation, the
stock price can go up or down. Suppose the stock price now is uS0, when the investor chooses to
hold the option, the value of the option, 0.4, is the expected payoff at maturity:

p̃V (HH)+(1− p̃)V (HT )
1+ r

=
1/2∗1+1/2∗0

1+1/4
= 0.4.

The value of the option at any time is the maximum payoff. Since holding the option has a
better payoff exercising early, the value of the option is 0.4.

If the stock price goes down at t = 1, we can also compute the holding payoff of the option,
which is 2. But the early exercise will get the payoff of 3. This means that the buyer will exercise
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the option when the stock price goes down at t = 1. Thus, the value of the option at this situation
is 3.

At time t = 0. When the investor holds the option, the option value now is the current value
of the expected payoff at time t = 1. Then the holding value is 1/2∗0.4+1/2∗3

1+1/4 = 1.36. While if the
investor chooses to exercise the option, the payoff is 1, which is less than the holding value. Thus,
at the initial time, the option value is 1.36.

The pricing process is shown in the Figure 3.1. The optimal time to exercise the option before
maturity is when the stock price goes down at time t = 1. Otherwise, the option buyer will hold the
option until the maturity date.

3.2 One-period model with funding spread
Options in the market have two prices for a specific investor, the buyer’s price and the seller’s price,
given by different positions in an option. We define the buyer’s price as the maximum amount of
money the buyer wants to pay for the derivative, and the seller’s price as the minimum amount
of money the seller wants to get for selling the derivative. Same for the European option, those
two prices are not the same due to the existence of a funding spread. This is because we use the
hedging or super-hedging portfolio to price the option. But the portfolios’ position in the MMA is
not the same on the two sides. To price the American option, we need to find those prices first.

At first, we will price the American option in a one-period binomial tree model. This model
has only two time-points, the initial time and the maturity time. At the initial time, the option buyer
needs to make a decision between holding or exercising the option. If the option is exercised, the
buyer will receive the payoff given by the payoff function. While, if the buyer chooses to hold the
option, the option will be turned to a European option.

We define an American option and a European option to have the same parameters if they
share the same payoff function, initial date, maturity, and underlying asset. In a long position, if
the buyer chooses to exercise the option, the payoff is Vt(·). If the buyer chooses to hold the option,
the value of the option now is min{Φ(Xt),Φ(X∗t )}. This is equal to the long position value of the
European option with the same parameters. The buyer will make the choice to maximize the value
of the option. So the long position value of the option is:

Buyer’s Price = max{Vt(·),min{Φ(Xt),Φ(X∗t )}}.

In a short position, the initial value depends on the decision of the buyer at the initial time.
When the buyer chooses to exercise the option, the payoff is −Vt(·). On the other hand, the value
of the option if the buyer holds the option is min{Φ(X−t),Φ(X∗−t)}. This is based on the short
position value of the same parameters European option. The seller needs to consider the worst
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case of all situations, then the option value at a short position is:

Seller’s Price =−min
{
−Vt(·),min{Φ(X−t),Φ(X∗−t)}

}
=−min{−Vt(·),Φ(X−t),Φ(X∗−t)}
= max{Vt(·),−Φ(X−t),−Φ(X∗−t)}.

Theorem 8 Under the assumption of non-zero funding spread, in the one-period binomial
tree model with a time length h, the no-arbitrage price of an American option at initial time t
satisfies the following condition. Any prices out of that interval will result in arbitrage.

max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤ At ≤ max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}

Notes: If max{Vt(·),−Φ(X∗−t),−Φ(X−t)}=−Φ(X∗−t), then the interval is open on the left side,
which means At >−Φ(X∗−t). If max{Vt(·),min{Φ(Xt),Φ(X∗t )}}= Φ(X∗t ), then the interval is
open on the right side, which means At < Φ(X∗t ).

Proof: Without loss of generality, we assume h = 1. The proof will be split into three parts.
The first step is to show that the buyer’s price is larger than the seller’s price. The second step is
to prove that any price out of that interval will result in an arbitrage opportunity. Finally, we prove
that there is no arbitrage opportunity when the option price is in that interval.

Part I: We prove that the buyer’s price is larger than the seller’s price:

max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}
.

As the analysis in Section 2.3, we discuss the above inequality under different market conditions.

(a) d < 1+ rl < 1+ rb < u
In this situation, according to Theorem 3, the hedging portfolio is cheaper than the super-
hedging portfolio for either position in the American option. Thus, we need to prove that
max{Vt(·),−Φ(X−t)} ≤ max{Vt(·),Φ(Xt)}. At first, we will compare the value of Φ(Xt) and
−Φ(X−t). In Theorem 7, we have computed the hedging price in the long position, which is
expressed as follows: 

Φ(Xt) =
V (H)−V (T )

(u−d) + uV (T )−dV (H)
(u−d)(1+rt)

,

∆t =
V (H)−V (T )

St(u−d) ,

M−t =
uV (T )−dV (H)
(u−d)(1+rt)

.

V (H) and V (T ) are denoted as the payoff of the option at time t +h. Note that the time t +h
is removed from the subscript, and rt is the funding rates given by the position in MMA in the
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long position hedging portfolio.

The hedging portfolio, X−t , in the short position is constructed by ∆−t shares of stock and M−t
shares of MMA. r−t is the funding rate given by the value of M−t . Likewise, the short position
hedging price is calculated as follows:

Φ(X−t) =
−V (H)+V (T )

(u−d) + −uV (T )+dV (H)
(u−d)(1+r−t)

,

∆−t =
−V (H)+V (T )

St(u−d) ,

M−t =
−uV (T )+dV (H)
(u−d)(1+r−t)

.

Analyzing the positions in stock and MMA in the hedging portfolios by the equations above,
we draw the conclusion that ∆t = −∆−t and MtM−t ≤ 0. A comparison between the hedging
value in the long and short positions are constructed as below:

Φ(Xt)+Φ(X−t) =
−uV (T )+dV (H)

(u−d)(1+ r−t)
+

uV (T )−dV (H)

(u−d)(1+ rt)
=

(uV (T )−dV (H))(r−t− rt)

(u−d)(1+ r−t)(1+ rt)
.

(3.1)

Whether the equation above is positive or not is given by the value of uV (T )−dV (H). When
uV (T )− dV (H) > 0, the shares of MMA in the hedging portfolios hold the conditions that
Mt > 0 and M−t < 0, which indicates rt = rl and r−t = rb. Given that rb > rl , the equa-
tion above is non-negative. Likewise, if we assume uV (T )− dV (H) ≤ 0, we also find that
Φ(Xt)+Φ(X−t)≥ 0.

The discussion above indicates that Φ(Xt)>−Φ(X−t), which means that the hedging price of
the option in a long position is always larger than a short position. If Φ(Xt) ≥ Vt(·), then the
right side is Φ(Xt). Neither −Φ(X−t) nor Vt(·) is larger than Φ(Xt). This is also true when
Φ(Xt)<Vt(·). Thus, we have max{Vt(·),−Φ(X−t)} ≤max{Vt(·),Φ(Xt)}.

(b) 1+ rl < d < u < 1+ rb
In this situation, according to Theorem 7, the super-hedging portfolio is less expensive than
the hedging portfolio for either position in the American option. Thus, we need to prove
that max{Vt(·),−Φ(X∗−t)} ≤ max{Vt(·),Φ(X∗t )}. We have computed the long position super-
hedging price in Theorem 7, which is Φ(X∗t ) = max{V (H)

u , V (T )
d }.

In a short position, there is no MMA in the super-hedging portfolio in this condition. The short
position super-hedging price is computed as follows:

Φ(X∗−t) = ∆∗−tuSt ,

∆∗−tuS0 ≥−V (H),

∆∗−tdS0 ≥−V (T ).
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Given by the definition of super-hedging price, −Φ(X∗−t) = min{V (H)
u , V (T )

d }. Therefore, we
need to prove the following inequality:

max
{

Vt(·),min{V (H)

u
,
V (T )

d
}
}
≤max

{
Vt(·),max{V (H)

u
,
V (T )

d
}
}
.

This is trivial, because max{V (H)
u , V (T )

d } ≥min{V (H)
u , V (T )

d }.

(c) d < 1+ rl < u < 1+ rb

(i) uVh(T )−dVh(H)> 0
In Section 2.3, we have computed the no-arbitrage price interval of a European option in
this condition. The buyer takes the hedging price of the option in a long position, while
the seller takes the super-hedging price in a short position. Therefore, the inequality we
need to prove in Theorem 8 can be transformed to:

max{Vt(·),−Φ(X∗−t)} ≤max{Vt(·),Φ(Xt)}.

This can be further simplified to proving Φ(Xt) > −Φ(X∗−t). The reason is that if the
right hand side takes the value of Vt(·), which leads to Vt(·) ≥ Φ(Xt) > −Φ(X∗−t), the
inequality becomes true. Likewise, if the right hand side takes the value of Φ(Xt), which
leads to Φ(Xt)≥Vt(·) and Φ(Xt)>−Φ(X∗−t), the inequality also becomes true.

The above proof: Φ(Xt)>−Φ(X∗−t), is demonstrated as follows.

Given by the condition that d < 1+ rl < u < 1+ rb, the long position hedging portfolio
and the short position super-hedging portfolio have non-negative shares of MMA. There-
fore, rt = r−t = rl .

The hedging price in the long position can be computed as follows:
Φ(Xt) = ∆tSt +Mt ,

V (H) = ∆tuSt +Mt(1+ rl),

V (T ) = ∆tdSt +Mt1+ rl).

The super-hedging price in the short position can be computed as follows.
Φ(X∗−t) = ∆∗−tSt +M∗−t ,

−V (H)< ∆∗−tuSt +M∗−t(1+ rl),

−V (T )< ∆∗−tdSt +M∗−t(1+ rl).

Combining the equations and inequalities above, we can derive that:{
u(Φ(Xt)+Φ(X∗−t)>−(1+ rl−u)(Mt +M∗−t),

d(Φ(Xt)+Φ(X∗−t)>−(1+ rl−d)(Mt +M∗−t).
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Given that both M0 and M∗−0 are positive and 1+ rl < u, we have Φ(Xt)+Φ(X∗−t) > 0.
Furthermore, Φ(Xt)>−Φ(X∗−t).

(ii) uVh(T )−dVh(H)< 0 Same as (i).

(iii) uVh(T )−dVh(H) = 0 Same as (i).

(d) 1+ rl < d < 1+ rb < u
The proof can follow the process of (c): d < 1+ rl < u < 1+ rb.

Part II: We need to prove that any option price out of that interval will result in an arbitrage
opportunity.

(a) At ≤ max{Vt(·),min{Φ(Xt),Φ(X∗t )}}

We prove it by contradiction. We assume that there is no arbitrage opportunity when the op-
tion price is larger than max

{
Vt(·),min{Φ(Xt),Φ(X∗t )}

}
. We prove this under one of the

sub-situations, Φ(Xt) < Φ(X∗t ). Other situation, Φ(Xt) ≥ Φ(X∗t ), can be proved by the same
approach. It indicates that At >Vt(·) and At > Φ(Xt).

We can construct a portfolio, Yt , by shorting one share of the option, longing one share of the
hedging portfolio, and investing Mt shares of MMA, where Mt = At−Φ(Xt)> 0.

The portfolio value at initial time is:

Φ(Yt) =−At +Φ(Xt)+Mt =−At +Φ(Xt)+At−Φ(Xt) = 0.

In the following equations, ‘E’ and ‘W’ refer to the buyer exercising the option and holding
the option respectively at time t. If the buyer chooses to exercise the option immediately, the
portfolio value is:

Φ(Y E
t ) = At−Vt(·)> 0.

If the buyer chooses to hold the option to the maturity date, the option payoff is as follows.
The interest rate r can either take the lending or the borrowing rates.

Φ(YW
t+1(H)) =−V (H)+V (H)+Mt(1+ r)> 0

Φ(YW
t+1(T )) =−V (T )+V (T )+Mt(1+ r)> 0

Thus, if At > max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}

, it will result in an arbitrage opportunity. This
is a contradiction. Therefore, we have At ≤max{Vt(·),min{Φ(Xt),Φ(X∗t )}}.
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(b) At ≥ max{Vt(·),−Φ(X−t),−Φ(X∗−t)}

Likewise, we prove the above inequality by contradiction. Here we assume that there is a
no-arbitrage opportunity if the option price is lower than max{Vt(·),−Φ(X−t),−Φ(X∗−t)}. We
prove this under one of the cases, At < Vt(·) < max{−Φ(X−t),−Φ(X∗−t)}. The other case,
At < max{−Φ(X−t),−Φ(X∗−t)} ≤Vt(·), can be proved by the same approach.

We can construct a portfolio at time t, Yt , by longing one share of the option, longing one share
of X−t . and investing Mt shares of the MMA, where Mt =−At−Φ(X−t).

The portfolio value at initial time is:

Φ(Yt) = At +Φ(X−t)−At−Φ(X−t) = 0.

If the buyer chooses to exercise the option now, the portfolio value is as follows:

Φ(Y E
t ) =Vt(·)+Φ(X−t)−At−Φ(X−t) =Vt(·)−At > 0.

On the other hand, if the buyer chooses to hold the option to the maturity date, the portfolio
value is as follows:

Φ(YW
t+1(H)) =V (H)−V (H)+Mt(1+ r)> 0,

Φ(YW
t+1(T )) =V (T )−V (T )+Mt(1+ r)> 0.

The portfolio, Yt , as seen in the above examples will always result in an arbitrage opportunity,
and this is a contradiction. Thus, we have At ≥max{Vt(·),−Φ(X−t),−Φ(X∗−t)}.

Part III: We need to show that there is no arbitrage strategy if At satisfies:

max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤ At ≤max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}
.

Let’s assume that this hypothesis is true, which means any arbitrage portfolio will result in an op-
tion price out of the above interval. If we can build an arbitrage portfolio with a positive position in
a derivative, this portfolio is referred to as a buying arbitrage of the derivative. On the other hand,
an arbitrage portfolio, which has a negative position in a derivative, is called the selling arbitrage.
For a price of the derivative, if we cannot construct a buying or a selling arbitrage portfolio, then
this is one of the no-arbitrage prices of the derivative.

We assume that there exists a buying arbitrage strategy, Yt . The portfolio is constructed at time
t by longing one share of the American option, holding −∆t shares of stocks and −Mt shares of
MMA, and setting the portfolio’s initial value to 0.

Φ(Yt) = At−∆tSt−Mt = 0
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The portfolio’s value at the maturity date depends on the decision of the buyer.

If the buyer chooses to hold the option, the investor will still keep the portfolio. But if the
option is exercised at time t, then the buyer will rebalance the portfolio with ∆̃t shares of stock and
M̃t shares of MMA.

Vt(·)−∆tSt−Mt = ∆̃tSt + M̃t

Thus, at maturity date, the portfolio’s payoffs for the conditions {E,H} and {E,T} are:

{E, H}: ∆̃tuSt + M̃t(1+ r∗1),

{E, T}: ∆̃tdSt + M̃t(1+ r∗1),

r∗1 = rl1M̃t≥0 + rb1M̃t<0.

However, if there is no exercise occurs at time t, the portfolio’s payoff for the conditions {W,H}
and {W,T} are:

{W, H}: Vt+1(H)−∆tuSt−Mt(1+ r∗2),

{W, T}: Vt+1(T )−∆tdSt−Mt(1+ r∗2),

r∗2 = rl1Mt>0 + rb1Mt<0.

According to the no-arbitrage condition, the payoff of the maturity date is at least zero. The
cases {E,H} and {E,T} will result in the conclusion of ∆̃tSt +M̃t ≥ 0. The reason is that we cannot
construct an arbitrage portfolio with only the stock and MMA. So the rebalanced portfolio (∆̃t ,
M̃t)’s initial value is non-negative. Then we have Vt(·)−∆tSt −Mt ≥ 0, which concludes that the
American option price, At , is as follows:

At = ∆tSt +Mt ≤Vt(·).

Considering the payoffs of the cases {W,H} and {W,T}, we have:

−∆tuSt−Mt(1+ r∗2)≥−Vt+1(H),

−∆tdSt−Mt(1+ r∗2)≥−Vt+1(T ).

We can conclude from the above inequalities that −∆tSt −Mt ≥ Φ(X∗−t), which means At ≤
−Φ(X∗−t). Given that At ≤ −Φ(X∗−t) and At ≤ Vt(·), if the portfolio Yt is a buying arbitrage strat-
egy, we can at least draw the conclusion that At ≤min{−Φ(X∗−t),Vt(·)}.

We have the fact that max{Vt(·),−Φ(X−t),−Φ(X∗−t)}≤At . If the left side is equal to−Φ(X∗−t),
the equal symbol is invalid. Based on the fact that max{Vt(·),−Φ(X−t),−Φ(X∗−t)} is larger than
min{−Φ(X∗−t),Vt(·)}, a contradiction exists. Therefore, there is no buying arbitrage if the option
price follows: max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤ At ≤max{Vt(·),min{Φ(Xt),Φ(X∗t )}}.

We assume that there exists a selling arbitrage strategy which consists of ∆t shares of stock, Mt
shares of MMA, and negative one share of the American option.
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As the seller of the American option, the portfolio’s value at the maturity date is based on the
price movements of the stock and the buyer’s exercising strategy. p1 is denoted as the probability
that the stock price goes up, and p2 is denoted as the probability that the buyer exercises the option.

(p1, p2) ∈ (0,1)× [0,1]

Given that the payoff of the American option is not based on the market conditions only, we
modify the definition of ‘Arbitrage’ at the basis what we provided in Section 1.1. We call a port-
folio to be an arbitrage when its initial value is zero, and it has a positive possibility of making
profits without the risk of losing money whatever the counterparties’ exercising strategies are. The
mathematical expression of the arbitrage is given below. P is the distribution of the portfolio’s
payoff at the maturity.

Φ(Yt) = 0

inf
(p1,p2)∈(0,1)×[0,1]

P(Φ(YT )≥ 0) = 1

inf
(p1,p2)∈(0,1)×[0,1]

P(Φ(YT )> 0)> 0

At the initial time, the portfolio value is 0.

Φ(Yt) =−At +∆tSt +Mt = 0

The payoff at different situations is based on the choice of the buyer and the stock price’s
movements. If the buyer chooses to exercise the option, the seller will rebalance the portfolio with
∆̃t shares of stock and M̃t shares of MMA, which follows the condition:

−Vt(·)+∆tSt +Mt = ∆̃tSt + M̃t .

However, if the buyer chooses to hold the option, the seller will keep the portfolio without
any change. The payoffs of the portfolio with different market conditions and buyer’s exercise
strategies at the maturity date is:

{E, H}: ∆̃tuSt + M̃t(1+ r∗1),

{E, T}: ∆̃tdSt + M̃t(1+ r∗1),

r∗1 = rl1M̃t≥0 + rb1M̃t<0;

{W, H}: −Vt+1(H)+∆tuSt +Mt(1+ r∗2),

{W, T}: −Vt+1(T )+∆tdSt +Mt(1+ r∗2),

r∗2 = rl1Mt>0 + rb1Mt<0.

According to the no-arbitrage condition we mentioned above, there exists an arbitrage opportu-
nity no matter what the buyer’s strategy is. When p2 = 1, it means that the buyer always exercises
the option at the initial time. Without loss of generality, we assume:

∆̃tuSt + M̃t(1+ r∗1)≥ 0,
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∆̃tdSt + M̃t(1+ r∗1)> 0.

From the above inequality, we can conclude that ∆̃tSt +M̃t > 0. Therefore, the American option
price, At , follows:

At = ∆tSt +Mt >Vt(·).
Likewise, when p1 = 0, it means that the option buyer will always hold the option at the initial

time. Without loss of generality, we assume:

−Vt+1(H)+∆tuSt +Mt(1+ r∗2)≥ 0,

−Vt+1(T )+∆tdSt +Mt(1+ r∗2)> 0.

From that, we can conclude: ∆tSt +Mt ≥Φ(X∗t ). Thus, we have a comparison between At and
Φ(X∗t ).

At = ∆tSt +Mt ≥Φ(X∗t )

Combining the cases of p2 = 0 and p2 = 1, we can find that At > max{Vt(·),Φ(X∗t )}.

When 0 < p2 < 1, if At > max{Vt(·),Φ(X∗t )}, we can guarantee that the payoffs of the four
cases above are non-negative, and at least one of them is positive. Thus, an arbitrage exists.

Hence, for the portfolio, Yt , if it is an arbitrage, we must have At > max{Vt(·),Φ(X∗t )}. This
is a contradiction. So there is no selling arbitrage if max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤ At ≤
max{Vt(·),min{Φ(Xt),Φ(X∗t )}}. This is true as long as p2 ∈ [0,1].

Given that, when max{Vt(·),−Φ(X−t),−Φ(X∗−t)}≤At ≤max{Vt(·),min{Φ(Xt),Φ(X∗t )}}, there
is no selling or buying arbitrage, i.e, there is no-arbitrage. Combining the results of the three steps
above, we can draw the conclusion that the price interval is the no-arbitrage price of the American
option.

For any particular case, when we need to compute the no-arbitrage price interval of an Ameri-
can option, we compare the hedging price, super-hedging price and the payoff of exercising in the
long or short positions. As we have discussed in Section 2.3, instead of comparing the hedging
price and the super-hedging price, we only need to check the value of some market conditions. For
example, when d < 1+ rl < u < 1+ rb and uV (T )−dV (H)> 0, we know that the hedging price
is larger than the super-hedging price in the short position, and less than the super-hedging price
in the long position. In this way, the calculation process will be much simplified.

The following is an example of computing the no-arbitrage price of the American option in a
one-period binomial tree model.

Example 3.2.1 In a one-period binomial tree model, let the lending rate rl be−0.09, and the bor-
rowing rate rb be 0.2 1. The up-factor u = 1.5, and the down-factor d = 0.8. The initial stock price

1Negative interest rate does exist in the real market [9].
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is 8. What is the no-arbitrage price of a American call option with strike price K = 7 and maturity
date T = 1?

The parameters in this problem follow the relationship that d < 1+rl < 1+rb < u. In Theorem
3, we have proved that the hedging portfolio is cheaper than the super-hedging portfolio in either
position. So we only need to compute the hedging price of the American option when the buyer
chooses to hold the option.

At the maturity date, the payoff value of the option will be V (H) = 5, V (T ) = 0.

At the initial time, when the buyer chooses to exercise the option, the payoff will be V (0) =
(8−7)+ = 1. Nevertheless, if the buyer chooses to hold the option, the value of the option will be
calculated by following the process in the proof of Theorem 3. The first step is to find the shares of
MMA in the hedging portfolio.

∆0 =
V (H)−V (T )
(u−d)S0

=
5

0.7∗8
= 0.89

M0 =
uV (T )−dV (H)

(u−d)(1+ rb)
=

−4
0.7∗1.2

= 4.76

Therefore, if the buyer chooses to hold the option, the value will be ∆0So+M0 = 2.3. This is larger
than the exercise payoff, therefore, the buyer will choose to hold the option.

Likewise, on the seller’s side, if the buyer chooses to exercise the option, the payoff is−V (0) =
−1. While, if the buyer chooses to hold the option, the value of the option for the seller can be
computed as follows:

∆−0 =
−V (H)+V (T )

(u−d)S0
=− 5

0.7∗8
=−0.89,

M−0 =
−uV (T )+dV (H)

(u−d)(1+ rl)
=

4
0.7∗0.91

= 6.28.

Thus, the short position value will be ∆−0S0 +M−0 = −0.84. This is less than −1, which means
the worst case for the seller is happening when the buyer exercises the option.

In conclusion, Φ(X0) = 2.3, Φ(X−0) =−0.84, and V0(·) = 1, so the no-arbitrage price interval
of the American option is:

1≤ A0 ≤ 2.3.

As we have noticed in the example, at the initial time, the buyer side chooses to hold the op-
tion, and exercising the option will cause a worse payoff for the seller. The seller side needs to
consider all possible exercising decisions from the buyer because each hedger in the market has
unique borrowing and lending rates. For a given option, two hedgers in a short position may make
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an opposite decision between exercising or holding the option.

In the next section, we will analyze the situation when the investors in the market are rational
and share the same borrowing and lending rates. Under this assumption, it has no influence on the
buyer, since the buyer always chooses the decision which makes the best payoff. But for the seller,
the value of the option depends on the buyer’s exercising strategy. If the buyer will definitely hold
the option, then there is no need for the seller to prepare the situation where the buyer exercises the
option. The only unknown case is when the buyer has no difference between exercising or holding
the option. This problem will be discussed in the next section.

3.3 American option with funding spread in rational case
The Example 3.2.1 have given rise to a problem about the buyer’s exercising strategy and the
seller’s worst case. In this section, we will assume that investors in the market are rational and
share the same borrowing and lending rates. Under this assumption, we analyze the value of the
option in two positions: long position and short position. We will discuss the base model first. In
the base model, there is no funding spread. In the next part, we will discuss the buyer’s exercise
choice and its impact on the seller if funding spread exists in the market. When the buyer has no
difference between exercising or holding the option, do the two choices have any difference for the
seller?

In the base model we introduced in Section 3.1, there is no funding spread in the market. Given
that, the seller’s price and the buyer’s price is the same in the market. Therefore, when the buyer
has no difference between exercising or holding the option, the buyer’s decision does not affect the
payoff for the seller.

Based on the analysis in Section 2.3 about the European option pricing with funding spread,
we will discuss the influence of the buyer’s choice to the seller in different situations. The model
we built is a one-period binomial tree from time t to t +h. Without loss of generality, we assume
that h = 1. The conclusion is based on the following assumptions:

1. There is no arbitrage in the market with MMA and stock.

2. Funding spread exists.

3. Lending and borrowing rates in the market are the same for hedgers in the market.

4. Hedgers in the market are rational.

From the no-arbitrage condition, we have d < 1+ rb and 1+ rl < u. Similarly, we divide this
into 4 different sub-situations, d < 1+ rl < 1+ rb < u, 1+ rl < d < u < 1+ rb, d < 1+ rl < u <
1+ rb, and 1+ rl < d < 1+ rb < u. Under the assumption 3 and 4, we only need to check the
circumstances when the buyer has no difference between exercising and holding, since the seller
knows the buyer’s choice well in other situations.
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(a) d < 1+ rl < 1+ rb < u
Based on the condition of d < 1+ rl < 1+ rb < u, the hedging price is less than the super-
hedging price for either a long or a short position in the option. At the initial time, the buyer
compares the payoff from the early exercise and the long position hedging price. The buyer’s
price takes the maximum of those two values.

Buyer’s price = max{Vt(·),Φ(Xt)}

On the seller side, he knows the buyer’s choice well in all situations except that the buyer has
no difference between exercising or holding the option.

When the buyer has no difference between exercising or holding the option, it indicates that
Vt(·) = Φ(Xt). Given by the analysis of Equation 3.1, we have Φ(Xt)≥−Φ(X−t). Therefore,
−Vt(·)≤Φ(X−t). It means that exercising the option will cause a worse payoff for the option
seller. We can compute the seller’s price as follows:

Seller’s price =Vt(·)1{Φ(Xt)≤Vt(·)}+Φ(X−t)1{Φ(Xt)>Vt(·)}.

(b) 1+ rl < d < u < 1+ rb
Under the condition of 1+ rl < d < u < 1+ rb, hedging price is larger than the super-hedging
price for either position in the option. When the buyer has no difference between exercising or
holding the option, it indicates that:

Vt(·) = Φ(X∗t ).

On the seller side, if the option is exercised at the initial date, the payoff is −Vt(·). While the
current value of the expected payoff by holding the option is Φ(X∗−t). In Section 3.2, we have
computed the super-hedging price in the long and short positions.

Φ(X∗t ) = max{V (H)

u
,
V (T )

d
}

Φ(X∗−t) =−min{V (H)

u
,
V (T )

d
}

Given that Vt(·) = Φ(X∗t ) and Φ(X∗t )≥−Φ(X∗−t), we have −Vt(·)≤Φ(X∗−t). This means that
when the buyer has no difference between exercising or holding the option, the worst case for
the seller is when the buyer chooses to exercise the option. Thus the option price for the buyer
and the seller is:{

Buyer’s price = max{Φ(X∗t ),Vt(·)},
Seller’s price =Vt(·)1{Φ(X∗t )≤Vt(·)}+Φ(X∗−t)1{Φ(X∗t )>Vt(·)}.

(c) d < 1+ rl < u < 1+ rb
Given by Theorem 4, in this condition, a portfolio with negative shares of MMA is not optimal.
Whether the hedging and super-hedging portfolios of the option is borrowing or lending money
depends on the value of uV (T )− dV (H). Therefore, we analyze the payoff of the option for
the buyer and seller based on different values of uV (T )−dV (H).
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(i) uV (T )−dV (H)> 0
In this situation, the hedging portfolio in the long position has positive shares of MMA.
This indicates that the long position hedging price is the value of the option when the
buyer chooses to hold the option. If holding the option makes no difference for the
buyer, then we have the following conclusion:

Vt(·) = Φ(Xt).

On the seller side, the exercising payoff for the option is −Vt(·). However, when the
buyer holds the option to the maturity, the American option value for the seller is the
short position price of the same parameter European option. Therefore, the seller takes
the value of Φ(X∗−t). The part (ii) in the proof of Theorem 3.2 have shown that Φ(Xt)>
−Φ(X∗−t). Therefore, −Vt(·)≤Φ(X∗−t). This means the worse case for the seller is when
the buyer chooses to exercise the option.

(ii) uV (T )−dV (H)< 0
The process is the same as the case uV (T )− dV (H) > 0. Likewise, we can get the
same conclusion that when the buyer has no difference between exercising or holding the
option, the worst situation for the seller is when the buyer exercises the option.

(iii) uV (T )−dV (H) = 0
The process is the same as the case uV (T )− dV (H) > 0. Likewise, we can get the
same conclusion that when the buyer has no difference between exercising or holding the
option, the worst situation for the seller is when the buyer exercises the option.

Under the condition of d < 1+ rl < u < 1+ rb, no matter what the value of uV (T )− dV (H)
is, we can draw the conclusion that when the buyer has no difference between exercising or
holding the option, the seller has a worse payoff when the buyer exercises the option.

(d) 1+ rl < d < 1+ rb < u
Follow the same process as the situation d < 1+ rl < u < 1+ rb, we can get the same conclu-
sion as before.

With taking all the sub-situations of the no-arbitrage condition into consideration, we draw the
following conclusion.

Theorem 9 Under the no arbitrage condition, with funding spread, the lending and borrowing
rate in the market is the same for buyer and seller, both of them are rational, when the buyer
has no difference between exercising and holding the option, the worst case for the seller is
always when the buyer chooses to exercise the option.
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3.4 Multi-period model with funding spread
We know how to compute the no-arbitrage price interval of an American option under the one-
period binomial tree model. While in the multi-period model, the pricing process becomes more
complicated. The reason is that the value of the option at each time is an interval now. But we do
not know how to construct the hedging or super-hedging portfolio based on interval values.

The multi-period binomial tree model is constructed by many one-period models. Taking a
one-period model from tn to tn+1 as an example, suppose the option value can be represented as
Atn(ω1ω2 · · ·ωn), where ωi is the price movement state of the stock at time ti, and ωi ∈ {H,T}.
We assume that tn+1 6= T , where T is the maturity. In this way, the option value at tn+1 will be
an interval, and the exercise value of the option is Vtn(ω1ω2 · · ·ωn). Since most variables share the
same element ω1ω2 · · ·ωn, we will not write this afterwards for simplification. The process from
tn to tn+1 is given in Figure 3.2.

Vtn

Atn Atn+1(H) ∈ [AL
tn+1

(H),AU
tn+1

(H)]

Wtn

Atn+1(T ) ∈ [AL
tn+1

(T ),AU
tn+1

(T )]

Hold

Wait
H

T

Figure 3.2: One-period American option pricing process with funding spread from tn to tn+1 inside
the multi-period model with funding spread.

If the price of the option at tn+1 is known, our target now is to compute the value of Atn(ω1ω2 ·
ωn). We have the option’s no-arbitrage price interval at tn+1 as follows:

Atn+1(H) ∈ [AL
tn+1

(H),AU
tn+1

(H)],

Atn+1(T ) ∈ [AL
tn+1

(T ),AU
tn+1

(T )].

We assume that Atn ∈ [AL
tn,A

U
tn ]. If we take any value A∗tn+1

(H) ∈ [AL
tn+1

(H),AU
tn+1

(H)] and
A∗tn+1

(T ) ∈ [AL
tn+1

(T ),AU
tn+1

(T )] as the value of the option at time tn+1, the option’s no-arbitrage
value at tn can be calculated by Theorem 8. We denote the price interval as [AL∗

tn ,A
U∗
tn ].

We assume another option values Ã∗tn+1
(H) and Ã∗tn+1

(T ) at time tn+1 as follows:

AU
tn+1

(H)≥ Ã∗tn+1
(H)≥ A∗tn+1

(H),
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AU
tn+1

(T )≥ Ã∗tn+1
(T )≥ A∗tn+1

(T ).

We can compute another no-arbitrage price interval of the option given by the payoff value
Ã∗tn+1

(H) and Ã∗tn+1
(T ).

[ÃL∗
tn , Ã

U∗
tn ]

Given by the conclusion in Theorem 8, the upper bound value AU∗
tn and ÃU∗

tn is represented as
follows:

AU∗
tn = max{Vtn,min{Φ(Xtn),Φ(X∗tn)}},

ÃU∗
tn = max{Vtn,min{Φ(X̃tn),Φ(X̃∗tn)}}.

Based on the fact that Ã∗tn+1
(H) ≥ A∗tn+1

(H) and Ã∗tn+1
(T ) ≥ A∗tn+1

(T ), we can draw the conclu-
sion that min{Φ(Xtn),Φ(X∗tn)} ≥min{Φ(X̃tn),Φ(X̃∗tn)}. Thus, we have:

ÃU∗
tn ≥ AU∗

tn .

In this way, the value of AU∗
tn is strictly increasing if the values of option at time tn+1 increases.

Likewise, we computed the lower bounds given by Theorem 8. The value AL∗
tn and ÃL∗

tn is
represented as follows:

AL∗
tn = max{Vtn,−Φ(X−tn),−Φ(X∗−tn)},

ÃL∗
tn = max{Vtn ,−Φ(X̃−tn)),−Φ(X̃∗−tn)}.

Based on the fact that Ã∗tn+1
(H) ≥ A∗tn+1

(H) and Ã∗tn+1
(T ) ≥ A∗tn+1

(T ), we have −Ã∗tn+1
(H) ≤

−A∗tn+1
(H) and −Ã∗tn+1

(T ) ≤ −A∗tn+1
(T ). These will be the payoffs needed to be hedged or super-

hedged in a short position. Then the values of the hedging or the super-hedging portfolios follow:

−Φ(X−tn)≥−Φ(X̃−tn),

−Φ(X∗−tn)≥−Φ(X̃∗−tn).

Thus, we have the following conclusion:

ÃL∗
tn ≤ AL∗

tn .

In this way, the value of AL∗
tn is strictly decreasing if the value of the option at time tn+1 in-

creases.

Right now, we have an assumption of the lower and the upper bounds of the no-arbitrage
American option price at time t. The upper bound is generated by the buyer’s price as the payoff
to construct the hedging or super-hedging portfolios. The lower bound takes the seller’s price as
the payoff. If we define each upper bound as the upper price, and each lower bound as the lower
price, we can compute the no-arbitrage price only based on those two prices.
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From the maturity date to the initial time, we need to compute each upper price. The upper
prices are computed in many one-period binomial tree model. The hedging and super-hedging
portfolios are constructed with the payoffs equal to the upper prices.

Upper Price = max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}

Similarly, we can also get the lower price.

Lower Price = max{Vt(·),−Φ(X−t),−Φ(X∗−t)}

Theorem 10 Under the assumption of non-zero funding spread, in a one-period binomial tree
model from tn to tn+1 inside the multi-period model, the no-arbitrage price of an American
option at time tn satisfies the following condition. Any prices out of this interval will result in
arbitrages.

max{Vtn ,−Φ(X−tn),−Φ(X∗−tn)} ≤ Atn ≤ max
{

Vtn,min{Φ(Xtn),Φ(X∗tn)}
}

Notes:

1. Xtn and X∗tn are the hedging and super-hedging portfolios based on the payoff of AU
tn+1

(H)

and AU
tn+1

(T ) in the long position; X−tn and X∗−tn are the hedging and super-hedging
portfolios based on the payoff of AL

tn+1
(H) and AL

tn+1
(T ) in the short position.

2. If max{Vt(·),−Φ(X∗−t),−Φ(X−t)}=−Φ(X∗−t), then the interval is open on the left side,

which means At > −Φ(X∗−t). If max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}
= Φ(X∗t ), then the in-

terval is open on the right side, which means At < Φ(X∗t ).

Proof: Following the same process as in Theorem 8, the first thing we need to prove is:

max{Vtn,−Φ(X−tn),−Φ(X∗−tn)} ≤max{Vtn ,min{Φ(Xtn),Φ(X∗tn)}}.

This is trivial if we can prove:

max{−Φ(X−tn),−Φ(X∗−tn)} ≤min{Φ(Xtn),Φ(X∗tn)}.

According to the definitions of X−tn and X∗−tn , these are the hedging and super-hedging port-
folios in the short position with payoff AL

tn+1
(H) and AL

tn+1
(T ). Based on Theorem 2, the left side

is the short position value of the European option in the one-period binomial tree model, which is
less than the long position value of it. Nevertheless, min{Φ(Xtn),Φ(X∗tn)} is the long position value
of the European option with better payoff. A better payoff will result in a larger value of the long
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position value. Then min{Φ(Xtn),Φ(X∗tn)} is even larger than max{−Φ(X−tn),−Φ(X∗−tn)}.

In the next step, we will prove that any price out of this no-arbitrage price interval will result
in an arbitrage opportunity.

If max{Vtn,−Φ(X−tn),−Φ(X∗−tn)}>Atn , we first assume that Vtn ≤max{−Φ(X−tn),−Φ(X∗−tn)}.
Using the same approach in Section (b) of the proof in Theorem 8, we can construct a portfolio
Y with longing one share option, one share of X−tn , and M−tn shares of MMA, where M−tn =
−A−tn−Φ(X−tn). We will find that this portfolio will always make a positive profit no matter what
the buyer’s exercise strategies are. This is also true when Vtn > max{−Φ(X−tn),−Φ(X∗−tn)}. We
can conclude that arbitrage strategies exist when the price is less than the lower bound of the price
interval.

If Atn > max
{

Vtn,min{Φ(Xtn),Φ(X∗tn)}
}

, we can also construct an arbitrage strategy using the
same method in Section (a) of the proof in Theorem 8. So, we can also conclude that any price
larger than the upper bound of the price interval will result in an arbitrage.

The last step is to prove that any price in that interval is the no-arbitrage price. As we
have mentioned above, for any option price at time tn+1, if Atn+1(H) ∈ [AL

tn+1
(H),AU

tn+1
(H)] and

Atn+1(T ) ∈ [AL
tn+1

(T ),AU
tn+1

(T )], we can construct one price interval belonging to the no-arbitrage
price interval. Then the only thing we need to prove is that the no-arbitrage price fills the whole
interval:

[max{Vtn,−Φ(X−tn),−Φ(X∗−tn)},max
{

Vtn,min{Φ(Xtn),Φ(X∗tn)}
}
].

We have shown that using the two no-arbitrage values in time tn+1 can generate two intervals,
[AL∗

tn ,A
U∗
tn ] and [ÃL∗

tn , Ã
U∗
tn ]. Any other price interval can be generated with the liner combination of

these two intervals. Then there is no arbitrage opportunity if the option price is in that interval.

In conclusion, max{Vtn,−Φ(X−tn),−Φ(X∗−tn)} ≤ Atn ≤ max
{

Vtn ,min{Φ(Xtn),Φ(X∗tn)}
}

is the
no-arbitrage price as long as it is open on either sides when it reaches the super-hedging price.
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Chapter 4

XVA of American Options with Funding
spread and Counterparty Credit Risk

In this chapter, we will compute the total valuation adjustment of the American option. This is
done by incorporating funding spread and the counterparty credit risk at one model. The first part
of this chapter will focus on the counterparty credit risk only. The pricing approach, which adjusts
the derivative’s price by credit risk, is often referred to as the credit valuation adjustment (CVA).
After that, we will combine the result in the first section and the conclusion in Chapter 3 to get the
XVA of American options by considering funding spread and counterparty credit risk.

4.1 Credit valuation adjustment for American options
In this section, we assume that there is a possibility that the counterparty may default on the option,
and funding spread does not exist. We use the same notation as we have mentioned before. T is
the maturity of the option. We divide the time interval from the initial date to maturity into N +1
‘default periods’, and N ‘trading periods’. These two types of periods follow the conditions below:

1. For each default period, the time length is h.
2. For each trading period, the time length is g.
3. In the default period, the counterparty may default on the option with a probability of q.

Once the option is defaulted, the investor will receive part of the option’s exercise payoff
at that time with a recovery rate α , α ∈ [0,1], and the transaction will be terminated. For
instance, if the buyer chooses to exercise the option at time t, the payoff is Vt . But when
default occurs on the option, the investor will only receive an amount of αVt . On the other
hand, if no default happens, it will be followed by a trading period. Stocks and MMA are
not allowed to be traded during default periods.

4. At the beginning of the trading period, the option buyer must decide to exercise the option
or wait. The stock and MMA will be traded in the trading period. The risk free rate interest
rate in the market is r. The stock price goes up and down with the factors u and d as we
defined before.

36



5. Because the option buyer can buy and exercise the option immediately, the investor will
face the risk of default at the initial time. Given that, the investment begins with the default
period. Right before the maturity date, the counterparty may default without paying the full
payoff of the option. Thus, the last period for the transaction is a default period. If there are
N trading periods, then the maturity date can be expressed as: T = (N +1)h+Ng.

To replicate the situation when the counterparty defaults on the option, the bond market is in-
troduced in this model. This bond is issued by the counterparty with a face value of Bt at time t.
The bond’s rate of return is rm, which is different from the risk free interest rate. The bond buyer
will face the same risk when the counterparty defaults on the option, which means that the bond
and the option are defaulted at the same time. In this situation, the bondholder will receive part of
the bond’s face value, which is αBt .

We will price the American option by hedging or super-hedging it. In the trading period, the
portfolio will consist of stock and MMA. But in the default period, the investor will rebalance the
portfolio with stock, MMA, and bonds. Only the bond is traded in the market in the default period,
which means the value of the stocks and MMA will remain the same.

The payoff of the option is described as V(n+1)h+ng(ω1ω2 · · ·ωn), 0 ≤ n ≤ N, where ωi de-
notes the stock price’s movement in each trading period. At the end of the default period, if the
counterparty does not default on the option, the option’s value is C(n+1)h+ng(ω1ω2 · · ·ωn). How-
ever, if default occurs, the buyer will receive is αV(n+1)h+ng(ω1ω2 · · ·ωn). At the maturity date,
T = (N +1)h+Ng, the value of the option is the payoff, which means:

C(N+1)h+Ng(ω1ω2 · · ·ωN) =V(N+1)h+Ng(ω1ω2 · · ·ωN).

At the end of a trading period, the option value, Cnh+ng(ω1ω2 · · ·ωn), depends on the buyer’s
exercising decision and the stock price’s movement. Wnh+ng(ω1ω2 · · ·ωN) is the value of the option
when the buyer chooses to wait, which is the current value of the expected payoff in the the next
time period. The option buyer chooses the exercising strategy, which will maximize the payoff.

C(n+1)h+ng(ω1ω2 · · ·ωn) = max{V(n+1)h+ng(ω1ω2 · · ·ωn),W(n+1)h+ng(ω1ω2 · · ·ωn)}

The discount rate is 1 here, since the buyer makes the decision immediately after the default
period.

Theorem 11 The risk neutral measure of counterparty default is q̃ = (1+rm)
h−1

(1+rm)h−α
.

Proof: Suppose in the default period beginning at the time nh + ng, the hedging portfolio
consists of ∆nh+ng shares of stock, Mnh+ng shares of MMA, and Bnh+ng shares of bond. Based on
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the two situations, default or not default, the value of the portfolio at the end of default period is
followed by:

∆nh+ngS+Mnh+ng +αBnh+ng = αV(n+1)h+ng(ω1ω2 · · ·ωn),

∆nh+ngS+Mnh+ng +Bnh+ng(1+ rm)
h =C(n+1)h+ng(ω1ω2 · · ·ωn).

The initial value of the hedging portfolio is:

(4.1)
∆nh+ngS + Mnh+ng + Bnh+ng =

(1 + rm)
h − 1

(1 + rm)h − α
αV(n+1)h+ng(ω1ω2 · · ·ωn)

+
1− α

(1 + rm)h − α
C(n+1)h+ng(ω1ω2 · · ·ωn).

Thus, q̃ = (1+rm)
h−1

(1+rm)h−α
is the risk neutral measure of q. It only depends on the bond’s rate of

return and the recovery rate.

Then the option value at time the beginning of the default period can be expressed as follows:

Cnh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)C(n+1)h+ng(ω1ω2 · · ·ωn). (4.2)

The risk neutral measure for p in the market in the trading period can be calculated by:

p̃ =
(1+ r)g−d

u−d
.

In this way, the option’s value when the buyer chooses to hold the option is:

Wnh+(n−1)g(ω1ω2 · · ·ωn−1) =
1

(1+ r)g [p̃Cnh+ng(ω1ω2 · · ·H)+(1− p̃)Cnh+ng(ω1ω2 · · ·T )].

Based on C(n+1)h+ng(ω1ω2 · · ·ωn) = max{V(n+1)h+ng(ω1ω2 · · ·ωn),W(n+1)h+ng(ω1ω2 · · ·ωn)},
for n > 1,we can draw the following conclusion:

(4.3)Cnh+(n−1)g(ω1ω2 · · ·ωn−1) = max{ 1
(1 + r)g [p̃Cnh+ng(ω1ω2 · · ·H)

+ (1− p̃)Cnh+ng(ω1ω2 · · ·T )],Vnh+(n−1)g(ω1ω2 · · ·ωn−1)}.

By plugging in the value of Cnh+ng(ω1ω2 · · ·H) and Cnh+ng(ω1ω2 · · ·T ) from the Equation 4.4
to the Equation 4.5, we can get the relationship between the value of Cnh+(n−1)g(ω1ω2 · · ·ωn−1)
and C(n+1)h+ng(ω1ω2 · · ·ωn).

Given that the option value at the maturity date is known, we can compute any values of the
option at time nh+(n−1)g, Cnh+(n−1)g(ω1ω2 · · ·ωn−1), for 1 < n < N. When n = 1, according to
the conclusion in the Equation 4.4, we can calculate the price of the option at the initial time:

A0 = q̃αVh(·)+(1− q̃)Ch(·).

In conclusion, to price the American option with consideration of the counterparty default risk,
we have the following theorem:
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Theorem 12 Under the assumption of funding spread existed in the market, in discrete time
settings, the no-arbitrage price of an American option can be expressed as A0. A0 can be
calculated by backward induction method as follows.

Cnh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)C(n+1)h+ng(ω1ω2 · · ·ωn) (4.4)

Cnh+(n−1)g(ω1ω2 · · ·ωn−1) = max{ 1
(1 + r)g [p̃Cnh+ng(ω1ω2 · · ·H)

+ (1− p̃)Cnh+ng(ω1ω2 · · ·T )],Vnh+(n−1)g(ω1ω2 · · ·ωn−1)}
(4.5)

When n = 1, we compute the option price as follows:

A0 = q̃αVh(·)+(1− q̃)Ch(·)

The implementation of this theorem can be gone as follows.

Step 1: Compute the payoff of the option at any time.

Step 2: Based on the iteration function in Equation 4.4 and 4.5, compute the value of Cnh+(n−1)g
from maturity date to the first trading period.

Step 3: Use the function A0 = q̃αVh(·)+ (1− q̃)Ch(·) to calculate the option price at the initial
time.

Example 4.1.1 Taking N = 1, and following the steps we have mentioned, we calculate the price
of the American option. The transaction process is given in Figure 4.1.

In the first step, we can get the payoffs of the option at different times, these values are Vh(·),
V2h+g(H), and V2h+g(T ).

In the second step, we compute the value of Ch+g(ω1) based on the Equation 4.4. The value is:

Ch+g(H) = q̃αV2h+g(H)+(1− q̃)V2h+g(H),

Ch+g(T ) = q̃αV2h+g(T )+(1− q̃)V2h+g(T ).
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Figure 4.1: The American option pricing process in the model with counterparty credit risk when
N = 1.

According to the Equation 4.5, we can get the value of Ch(·):

Ch(·) = max{ 1
1+ r

[p̃Ch+g(H)+(1− p̃)Ch+g(T )],Vh(·)}.

At the last step, we can compute the option price directly by:

A0 = q̃αVh(·)+(1− q̃)Ch(·).
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4.2 Multi-period XVA of American options
In Section 3.2, we have computed that the no-arbitrage price of American options with funding
spread in one-period time setting. The conclusion is that the no-arbitrage price interval of an
American option at initial time t is:

max{Vt(·),−Φ(X−t),−Φ(X∗−t)} ≤ At ≤max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}
.

The construction of the hedging portfolio and the super-hedging portfolio is based on the payoff of
the option at the maturity.

We define max
{

Vt(·),min{Φ(Xt),Φ(X∗t )}
}

as the upper bound of the option, Ut , and max{Vt(·),
−Φ(X−t),−Φ(X∗−t)} as the lower bound of the option, Lt . Thus, the American option’s value with
funding spread can be rewritten as:

Lt ≤ At ≤Ut .

The lower bound of the option price is related to the short position value of the option, while
the upper bound of the option price is related to the long position value of the option. In the multi-
period binomial tree model, we can compute the lower bound and the upper bound separately. And
the American option value at the initial time is represented as an interval between them.

Here we incorporate two models, which are introduced in Section 3.4 and Section 4.1. The first
model is pricing the American option with consideration of funding spread, and the second model
is the CVA approach. The assumptions in Section 4.1 still hold. We deal with the funding spread
in each trading period, and the counterparty credit risk in each default period.

In a trading period, only the stock and MMA are traded in the market with a non-zero funding
spread. This is exactly the same model as the one-period binomial tree model in Section 3.2. It
takes the payoffs from the next default period. If the payoff is an interval, we use the Theorem 10
to compute the no-arbitrage price interval of the American option at the beginning of the trading
period. U(n+1)h+ng(ω1ω2 · · ·ωn) and L(n+1)h+ng(ω1ω2 · · ·ωn) are denoted as the upper and lower
bound of the no-arbitrage price interval at the beginning of a trading period.

In a default period beginning at time nh+ng, the option value when default occurs is αV(n+1)h+ng
(ω1ω2 · · ·ωn). On the other hand, if the counterparty does not default on the option, the option
value is the no-arbitrage price interval at time (n+ 1)h+ ng, which is [L(n+1)h+ng(ω1ω2 · · ·ωn),
U(n+1)h+ng(ω1ω2 · · ·ωn)].

Notes: Time nh+ng denotes the beginning of a default period, and time (n+1)h+ng denotes
the beginning of a trading period.

The no-arbitrage price interval of the American option at the beginning of the default period
is denoted as [Lnh+ng(ω1ω2 · · ·ωn),Unh+ng(ω1ω2 · · ·ωn)]. The upper and the lower bound of the
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no-arbitrage price interval can be calculated, respectively, by:

(4.6)Unh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn) + (1− q̃)U(n+1)h+ng(ω1ω2 · · ·ωn),

(4.7)Lnh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn) + (1− q̃)L(n+1)h+ng(ω1ω2 · · ·ωn).

Note that the discount factor in the default period is 1. The reason is that MMA is not traded
in the market at this period. At the maturity, the option value without default is equal to the payoff
of the option. Therefore, when default does not occur, the upper bound and the lower bound of the
no-arbitrage price at time (N +1)h+Ng are equal to the option payoff.

U(N+1)h+Ng(ω1ω2 · · ·ωN) = L(N+1)h+Ng(ω1ω2 · · ·ωN) =V(N+1)h+Ng(ω1ω2 · · ·ωN)

With the payoff at the end of each trading period, we can calculated the no-arbitrage price
interval at time nh+ (n− 1)g, n = 1,2, · · ·N. According to the conclusion of Theorem 10, the
upper and lower bound of the no-arbitrage price interval without default are as follows:

(4.8)Unh+(n−1)g = max
{

Vnh+(n−1)g,min{Φ(Xnh+(n−1)g),Φ(X∗nh+(n−1)g)}
}
,

(4.9)Lnh+(n−1)g = max{Vnh+(n−1)g,−Φ(X−(nh+(n−1)g)),−Φ(X∗−(nh+(n−1)g))}.

At time nh+(n− 1)g, for the upper bound, the hedging and super-hedging portfolio are con-
structed using the payoffs of Unh+ng(ω1ω2 · · ·ωn−1H) and Unh+ng(ω1ω2 · · ·ωn−1T ). Respectively,
for the lower bound, the hedging and super-hedging portfolio are constructed using the payoffs of
Lnh+ng(ω1ω2 · · ·ωn−1H) and Unh+ng(ω1ω2 · · ·ωn−1T ).

Given by the iteration functions in trading periods and the default periods, we can get the
no-arbitrage price interval of the American option with consideration of funding spread and coun-
terparty credit risk at any time between the initial time and maturity.

Lnh+ng ≤ Anh+ng ≤Unh+ng;n ∈ [0.N]

Notes: For any n, if Lnh+(n−1)g =−Φ(X∗−(nh+(n−1)g)), then the interval is open on the left side;
if Unh+(n−1)g = Φ(X∗nh+(n−1)g), then the interval is open on the right side.
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Given by the analysis above, we can draw the following conclusion.

Theorem 13 With the existence of funding spread and counterparty credit risk, in discrete
time settings, the no-arbitrage price interval of an American option at the beginning of default
periods or trading periods are as follows. Any price out of this interval will result in arbitrage.

Lt ≤ At ≤Ut

The upper bound Ut is calculated by the backward induction method as follows:

Unh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)U(n+1)h+ng(ω1ω2 · · ·ωn),

Unh+(n−1)g = max
{

Vnh+(n−1)g,min{Φ(Xnh+(n−1)g),Φ(X∗nh+(n−1)g)}
}
.

The lower bound Lt is calculated by the backward induction method as follows:

Lnh+ng(ω1ω2 · · ·ωn) = q̃αV(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)L(n+1)h+ng(ω1ω2 · · ·ωn),

Lnh+(n−1)g = max{Vnh+(n−1)g,−Φ(X−(nh+(n−1)g)),−Φ(X∗−(nh+(n−1)g))}.

Note that the inequality is open on the right side when Unh+(n−1)g = Φ(X∗nh+(n−1)g) for any n.
The inequality is open on the left side when Lnh+(n−1)g =−Φ(X∗−(nh+(n−1)g)) for any n.

The application of this theorem can be concluded as follows:

Step 1: Compute the payoff of the option at any time, V(n+1)h+ng(ω1ω2 · · ·ωn).

Step 2: In a default period, follow the Equation 4.6 and 4.7 to compute the upper and lower
bounds of the no-arbitrage price interval at the beginning of this period.

Step 3: In a trading period, follow the Equation 4.8 and 4.9 to compute the upper and lower
bounds of the no-arbitrage price interval at the beginning of this period.

Step 4: Repeat the Step 2 and the Step 3 until reaching the initial time.
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Chapter 5

XVA of American Options with Collateral

Collateral is widely used in the market to eliminate the loss from default. In the new model, to
mitigate the loss, the option buyer will require the seller to post some cash, C, as collateral. At each
time period before the maturity, if no default occurs, the collateral taker needs to pay the collateral
provider with some interest based on C with an interest rate, rc. So the payment amount is Crc. At
the maturity date or the date when the option buyer exercises it, the collateral will be returned to
the provider. But if a default occurs, the transaction will be terminated. The collateral will not be
returned to the provider, and it will be used to pay the loss to the investor from the default.

The collateral provides a protection for the option buyer when default occurs. If the option
buyer posts the collateral, the payoff of the option consists of two parts. The first part, C, is cov-
ered by the collateral. The rest part is uncovered, which is affected by the default.

For a long position in the option, the hedger will receive the collateral at the initial time. At
time t, the option can be exercised with a payoff Vt . Once the seller defaults on the option, the
covered part C is protected by the collateral. The hedger will receive the uncovered part (Vt−C)+

with a recovery rate of α . Therefore, the total that the hedger receives when default occurs is
expressed as follows:

C+α(Vt−C)+.

On the other hand, for a short position in the option, the hedger will give the collateral, C, to
the buyer at the initial time. When the buyer exercises the option at time t, the hedger will pay the
option payoff, Vt , to the buyer. Once the buyer defaults on the option, the hedger can not receive
the collateral back. The hedger only needs to pay the part of the payoff which beyond the collateral
with the same recovery rate α above. Therefore, the total that the hedger needs to pay when default
occurs is expressed as follows:

C+α(Vt−C)+.

This is the same amount of money that the hedger will receive when default occurs for a long
position in the option.
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We include a collateral account in the model, which is constructed in Section 4.2. At the initial
time, the option seller will post the cash collateral with collateral rate γ , γ ∈ [0,1]. As the model
we introduced in Section 2.4, the size of the collateral depends on the option value for the hedger.
Likewise, the no-arbitrage price interval of the American option in this model is unique for each
hedger in the market. If the option value for the hedger is A0, which is inside the no-arbitrage price
interval of this American option, the size of the posted collateral C is:

C = γA0.

Using the same assumptions in Section 4.2, we divide the time interval [0,T ] to N +1 default
periods and N trading periods. The difference is that the buyer will receive the collateral at the
initial time. Collateral interest needs to be paid to the collateral provider at the end of each default
period if no default occurs. If we combine the option and the collateral as a portfolio, the no-
arbitrage price of this portfolio at time t is denoted as Pt .

Pt = At +C = At + γA0

We apply the same notations from the last chapter. The time interval [nh+ ng,(n+ 1)h+ ng]
denotes the default period, and the time interval [(n+ 1)h+ ng,(n+ 1)h+(n+ 1)g] denotes the
trading period. The option is allowed to be exercised at the beginning of trading periods. The
exercising payoff of the option is V(n+1)h+ng(ω1ω2 · · ·ωn).

For a long position in the portfolio, if the counterparty defaults on the option, the hedger will
keep the collateral and get the option payoff, then portfolio value when default occurs is 2C +
α(V(n+1)h+ng(ω1ω2 · · ·ωn)−C)+. On the contrary, for a short position in the portfolio, if the coun-
terparty defaults on the option, the portfolio value in this position is:−(2C+α(V(n+1)h+ng(ω1ω2 · · ·
ωn−C)+). Combining these two values, we can conclude that the portfolio value is 2C+α(V(n+1)h+ng
(ω1ω2 · · ·ωn)−C)+ when default occurring at time (n+1)h+ng .

The analysis above is analyzing the case when default occurs in the transaction. On the other
hand, if the seller does not default on the option, except the last default period, the portfolio value
is P(n+1)h+ng(ω1ω2 · · ·ωn)+Crc . The first part is the option value and the principal of collateral,
and the second part is the interest of the collateral. In the last default period, there is no interest
paid. Therefore, the portfolio value is V(N+1)h+Ng(ω1ω2 · · ·ωn)+C

In each default period, the risk neutral measure of default possibility is q̃, this value remains the
same as the value in the CVA model. The reason is that the risk neutral measure does not depend
on what derivatives the market has, it is only related to the interest rate and the recovery rate in the
market.

q̃ =
(1+ rm)

h−1
(1+ rm)h−α

From the time tnh+ng to t(n+1)h+ng, this is a default period in the market. The value of the
combination of the option and collateral is Pnh+ng at the beginning of default period. If we know
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the payoff of the option at the end of this default period, given by the risk neutral measure q̃, we
can compute the no-arbitrage price of the American option at time tnh+ng.

PNh+Ng = q̃[2C+α(V(N+1)h+Ng−C)+]+ (1− q̃)[V(N+1)h+Ng +C]

= (1+ q̃)C+ q̃α(V(N+1)h+Ng−C)++(1− q̃)V(N+1)h+Ng
(5.1)

Pnh+ng = q̃[2C+α(V(n+1)h+ng−C)+]+ (1− q̃)[P(n+1)h+ng +Crc]

= 2q̃C+(1− q̃)Crc + q̃α(V(n+1)h+ng−C)++(1− q̃)P(n+1)h+ng;n < N
(5.2)

In a trading period, if we know the option value at the end of this period, the no-arbitrage price
of the portfolio at the beginning of this period can be calculated by Theorem 10. Since the price of
a portfolio at the beginning of the trading period is also the portfolio at the end of the last trading
period, we can calculate the no-arbitrage price of the American option during this trading period.

Taking N = 1 for an example, the transaction process of this model is expressed in Figure 5.1.

2C+α(Vh(·)−C)+

Vh(·)+C

P0 2C+α(V2h+g(H)−C)+

Ph(·)+Crc Ph+g(H)

V2h+g(H)+C

Wh(·)

2C+α(V2h+g(T )−C)+

Ph+g(T )

V2h+g(T )+C

Default

Non-default

Exercise

Wait
H

T

Default

Non-default

Default

Non-default

Default period Default periodTrading period

Figure 5.1: The American option transaction process with considering counter-party credit risk
and funding spread. This model is incorporated with a collateral account with N = 1.

As in the model without collateral in the last chapter, the no-arbitrage price of the option at the
initial time is belonging to an interval. The same goes for the portfolio combining the option and
collateral. Whether the interval is open or closed depends on the comparison between the hedging
price and the super-hedging price at each step. The no-arbitrage price interval of the portfolio
combining the option and collateral is as follows:

Pt ∈ [Lt ,Ut ].
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Suppose P∗0 is a no-arbitrage price of the portfolio at the initial time. Given that P0 = A0 +C =
(1+ 1

γ
)C, we compute the size of the collateral C. Once C is given in the whole model, we can find

one no-arbitrage price interval at the initial time. This no-arbitrage price interval at the initial time
is denoted as [L∗0,U

∗
0 ]. Then the union of them is equal to the no-arbitrage price at the initial time.

Note that there will not have a gap in
⋃

P∗0∈[L0,U0]
[L∗0,U

∗
0 ]. The reason is that any point in the interval

[L0,U0] can be filled with a linear combination of two no-arbitrage intervals given by different P∗0 .
Thus, we have: ⋃

P∗0∈[L0,U0]

[L∗0,U
∗
0 ] = [L0,U0].

Theorem 14 A larger size of collateral corresponds to higher upper and lower bounds.

Proof: In the last default period, we have the Equation 5.1:

PNh+Ng = (1+ q̃)C+ q̃α(V(N+1)h+Ng−C)++(1− q̃)V(N+1)h+Ng,

since 1+ q̃− q̃α > 0, PNh+Ng is strictly increasing when C increases. Given by Theorem 10, a
higher payoff will correspond to a higher value of the no-arbitrage price at the beginning of this
trading period. This means PNh+(N−1)g is also strictly increasing when C increases.

In any other default periods, we have the Equation 5.2:

Pnh+ng = 2q̃C+(1− q̃)Crc + q̃α(V(n+1)h+ng−C)++(1− q̃)P(n+1)h+ng;n < N,

we can find that 2q̃− q̃α +(1− q̃)rc > 0. If n = N−1, with a rising C, the first part [2q̃C+(1−
q̃)Crc + q̃α(VNh+(N−1)g−C)+] will increase at the same time. Since PNh+(N−1)g has a positive
correlation with C, when C increases, the value of P(N−1)h+(N−1)g will also increase. Furthermore,
a higher valued of C and P(N−1)h+(N−1)g will lead to a larger P(N−1)h+(N−2)g. Keeping the anal-
ysis above, we can conclude that P(n+1)h+ng and Pnh+ng increases monotonously with increasing
C. Then we can conclude that a larger size of collateral corresponds to higher upper and lower
bounds.

With a no-arbitrage price P∗0 of the portfolio at the initial time, we can get one no-arbitrage
price interval [L∗0,U

∗
0 ]. Given by our analysis above, L∗0 and U∗0 increase monotonously with in-

creasing P∗0 . The reason is that P∗0 has a positive correlation with C. Thus, when P∗0 =U0, we have
U∗0 =U0. Likewise, when P∗0 = L0, we have L∗0 = L0.

In a trading period, the upper bound is related to the long position in the portfolio, and the lower
bound is related to the short position. In a default period, a higher value at the end corresponds to
a higher value at the initial. Therefore, L∗0 and U∗0 correspond to the short and the long position of
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the portfolio respectively.

For a long position in the portfolio combining option and collateral, we denote the value is Ut .
The derivatives we need to hedge involves the option itself and the collateral. At the initial time,
the portfolio value is U0. The collateral value can be calculated by:

C =
U0

1+ 1
γ

.

At the end of each default period, the value of the derivatives are different because the coun-
terparty may default on the option. The payoff of the portfolio when default occurs is denoted as
D(n+1)h+ng(ω1ω2 · · ·ωn), and this value is as follows:

D(n+1)h+ng(ω1ω2 · · ·ωn) = 2C+α(V(n+1)h+ng(ω1ω2 · · ·ωn)−C)+.

While, if there is no default occurs, the hedger pays the interest of the collateral, Crc, to the
provider at the end of each default period.

Taking N = 1 for an example, the transaction process in a long position is given in Figure 5.2.

2C+α(Vh(·)−C)+

Vh(·)+C

U0 2C+α(V2h+g(H)−C)+

Uh(·)+Crc Uh+g(H)

V2h+g(H)+C

Wh(·)

2C+α(V2h+g(T )−C)+

Uh+g(T )

V2h+g(T )+C

Default

Non-default

Exercise

Wait
H

T

Default

Non-default

Default

Non-default

Default period Default periodTrading period

Figure 5.2: The American option transaction process with considering counter-party credit risk
and funding spread. This model is incorporated with a collateral account in a long position.

If the counterparty does not default on the option, the value of the portfolio is U(n+1)h+ng(ω1ω2
· · ·ωn)+Crc except the last default period. If default occurs, the payoff of the portfolio is D(n+1)h+ng
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(ω1ω2 · · ·ωn), which is given above. Then the value of the option at the beginning of a default pe-
riod can be expressed as follows.

Unh+ng(ω1ω2 ·ωn)=


q̃D(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)[U(n+1)h+ng(ω1ω2 · · ·ωn)+Crc]

n ∈ [1,n−1]
q̃D(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)[U(n+1)h+ng(ω1ω2 · · ·ωn)+C],n = N.

(5.3)
In each trading period, we have the payoff at the end of this period. In this way, we can

construct the hedging and the super-hedging portfolios. By comparing the hedging and the super-
hedging price in a long position, we get the value of the portfolio if holding the option at this
period. When exercising the option, the portfolio value is V(n+1)h+ng +C. Then the portfolio value
in a long position is the maximum of the two values above.

(5.4)U(n+1)h+ng = max
{

V(n+1)h+ng +C,min{Φ(X(n+1)h+ng),Φ(X∗(n+1)h+ng)}
}

In the first default period, we can compute the value of the portfolio at the initial time as
follows:

U0 = q̃[2C+α(C−Vh(·))+]+ (1− q̃)[Uh(·)+Crc].

Given that C = U0
1+ 1

γ

, the only unknown parameter in this equation is U0. By solving this equa-

tion, we compute the upper bound of no-arbitrage price interval of the portfolio consisting of the
option and collateral.

For a short position in the portfolio consisting of the option and collateral, we denote the
portfolio value as −Lt . Then Lt is a positive value here. The hedger shorts one share of the option
and posts the collateral. The size of the posted collateral is calculated as follows:

C =
L0

1+ 1
γ

.

At the end of each trading period, the counterparty may default on the option. In that case,
the option buyer does not return the collateral to the hedger. The hedger is required to pay the
uncovered part of the payoff with a recovery rate of α . Thus, the amount that the hedger needs to
pay to the buyer is given below:

D(n+1)h+ng(ω1ω2 · · ·ωn) = 2C+α(V(n+1)h+ng(ω1ω2 · · ·ωn)−C)+.

While, if there is no default, the value of the portfolio in a short position is the negative value of
L(n+1)h+ng(ω1ω2 · · ·ωn)+Crc. It involves the value of the option in a short position, the principal
of the collateral, and the interest of the collateral.
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In each default period, we can compute the lower bound of the portfolio value at the beginning
of this period with the risk neutral measure q̃.

Lnh+ng(ω1ω2 ·ωn) =


q̃D(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)[L(n+1)h+ng(ω1ω2 · · ·ωn)+Crc]

n ∈ [1,n−1]
q̃D(n+1)h+ng(ω1ω2 · · ·ωn)+(1− q̃)[L(n+1)h+ng(ω1ω2 · · ·ωn)+C],n = N

(5.5)
At a short position of the portfolio in a trading period, the lower bound of the portfolio value is

calculated by Theorem 10.

L(n+1)h+ng(ω1ω2 ·ωn) = max
{

V(n+1)h+ng +C,max{−Φ(X−(n+1)h−ng),−Φ(X∗−(n+1)h−ng)}
}

= max{V(n+1)h+ng +C,−Φ(X−(n+1)h−ng),−Φ(X∗−(n+1)h−ng)}
(5.6)

Note that X−(n+1)h−ng and X∗−(n+1)h−ng are the hedging and super-hedging portfolio in a short
position constructed with the payoffs L(n+1)h+(n+1)g(ω1ω2 ·ωnH) and L(n+1)h+(n+1)g(ω1ω2 ·ωnT ).

As for the long position, when n = 0, we get the option’s short position value at the initial time.

L0 = q̃[2C+α(Vh(·)−C)+]+ (1− q̃)[Lh(·))+Crc]

Given that C = L0
1+ 1

γ

, the only unknown parameter in this equation is L0. By solving this equa-

tion, we can compute the lower bound of no-arbitrage price interval of the portfolio consisting of
the option and collateral.

Right now, we have computed the lower bound and the upper bound of the portfolio consisting
of the option and collateral.

P0 ∈ [L0,U0]

As P0 = A0 + γA0, the no-arbitrage price interval of the American option at initial time is as
follows:

L0

γ +1
≤ A0 ≤

U0

1+ γ
.

Note that interval is open on the right side when Equation 5.4 takes the super-hedging portfo-
lio’s value for any n ∈ [0,N− 1], and is open on the left side when Equation 5.6 takes the super-
hedging portfolio’s value for any n ∈ [0,N−1].

Given by the analysis above, we can draw the conclusion as follows.
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Theorem 15 With the existence of funding spread and counterparty credit risk in discrete time
settings, in the model with collateral, the no-arbitrage price interval of an American option at
initial time 0 is as follows. Any price out of that interval will result in arbitrage.

L0 ≤ A0 ≤U0

The upper bound Ut is calculated by the backward method as follows:

Unh+ng(ω1ω2 ·ωn) =


q̃D(n+1)h+ng(ω1ω2 · · ·ωn)

...+(1− q̃)[U(n+1)h+ng(ω1ω2 · · ·ωn)+Crc]; n ∈ [1,n−1]
q̃D(n+1)h+ng(ω1ω2 · · ·ωn)

...+(1− q̃)[U(n+1)h+ng(ω1ω2 · · ·ωn)+C]; n = N,

(5.7)

(5.8)U(n+1)h+ng = max
{

V(n+1)h+ng +C,min{Φ(X(n+1)h+ng),Φ(X∗(n+1)h+ng)}
}
.

Given by U0 =C(1+ 1
γ
), we solve the upper bound value U0.

The upper bound Ut is calculated by the backward method as follows:

Lnh+ng(ω1ω2 ·ωn) =


q̃D(n+1)h+ng(ω1ω2 · · ·ωn)

...+(1− q̃)[L(n+1)h+ng(ω1ω2 · · ·ωn)+Crc]; n ∈ [1,n−1]
q̃D(n+1)h+ng(ω1ω2 · · ·ωn)

...+(1− q̃)[L(n+1)h+ng(ω1ω2 · · ·ωn)+C]; n = N,

(5.9)

L(n+1)h+ng(ω1ω2 ·ωn) = max{V(n+1)h+ng +C,−Φ(X−(n+1)h−ng),−Φ(X∗−(n+1)h−ng)} (5.10)

Given by L0 =C(1+ 1
γ
), we solve the upper bound value L0.

Note that the inequality is open on the right side when Unh+(n−1)g = Φ(X∗nh+(n−1)g) for any n.
The inequality is open on the left side when Lnh+(n−1)g =−Φ(X∗−(nh+(n−1)g)) for any n

The implementation of this theorem can be gone as follows.

Step 1: Compute the payoff of the option at any time, V(n+1)h+ng(ω1ω2 · · ·ωn).

Step 2: The upper bound and the lower bound of the portfolio consisting of the option and col-
lateral are U∗0 and L∗0.

51



Step 3: For the upper bound, given by U∗0 , the size of the posted collateral is C = γU∗0 .

(a) Default period: follow the Equation 5.3 to compute the upper bound Unh+ng.

(b) Trading period: follow the Equation 5.4 to compute the upper bound Uh+(n−1)g.

Repeat the iterations above until reaching the initial time, the upper bound value at initial
time U0 is a function of C. Given that U0 =U∗0 , calculating the value U∗0 .

Step 4: For the lower bound, given by L∗0, the size of the posted collateral is C = γL∗0.

(a) Default period: follow the Equation 5.5 to compute the lower bound Unh+ng.

(b) Trading period: follow the Equation 5.6 to compute the lower bound Uh+(n−1)g.

Repeat the iterations above until reaching the initial time, the lower bound value at initial
time L0 is a function of C. Given that L0 = L∗0, calculating the value L∗0.

Step 5: The no-arbitrage price interval of the American option is [L∗0,U
∗
0 ].
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Chapter 6

Numerical Analysis

Right now, we have two models to get the no-arbitrage price intervals of American options. The
first model uses stocks, MMAs, and bonds to hedge or super-hedge the option’s payoff. Apart
from that, the second model adds a cash collateral. The latter model is more practical and makes it
closer to the real financial market. In this chapter, we will use Matlab to perform some numerical
analyses of these two models.

6.1 XVA of American options without collateral
In this model, we analyze the relationship between American put option’s no-arbitrage price and
factors, such as lending and borrowing rates, the defaultable bond’s rate of return, and the number
of periods. The rest of the factors are defined as follows. The stock price movement factors are
u = 1.2, and d = 0.8. The initial stock price is 100. The recovery rate of the option and the bond
is 0.5. The length of defaults and trading periods in a one-period model are both 1. Then the ma-
turity T = 2h+g = 1. One-period model means there is one trading period. When escalating to a
n-period model, it has n trading periods, and the time length for each trading and default period is 1

n .

In Figure 6.1, under a 5-period binomial tree model, the lending rate ranges from 0 to 0.2, and
the borrowing rate ranges from 0.2 to 0.4. We can find the relationship between the no-arbitrage
price interval of an American option and the funding rates which includes the borrowing and lend-
ing rate. There exist some turning points in the surfaces of the upper bound and the lower bound.
The reason is that the choice of hedging and super-hedging portfolio are changing with respect
to the movement of the borrowing and lending rate. At the same time, the option price is going
down when the borrowing rate increases. While, when lending rate increases, the option price will
decrease. The planes of the upper bound and the lower bound intersect at a point at which the
lending rate equals to the borrowing rate.

We noticed that the upper bound is not affected by the borrowing rates and the lower bound is
not affected by the lending rate. This results from our choice of parameters. Our hedging portfolios
in the long position are either longing or shorting the MMA, and the same goes for the hedging
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Figure 6.1: XVA of the American put option when varying the borrowing and lending rates in a
5-period binomial tree model. Other constant parameters are u = 1.2, d = 0.8, S0 = 100, K = 100,
α = 0.5, rm = 0.25, and h = g = 1/5.

portfolios in the short position. More importantly, the hedging portfolios in a long position and a
short position have different status of borrowing or lending MMA. Therefore, the upper bound and
lower bound are affected by different funding rates.
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Figure 6.2: XVA of the American put option when varying the number of periods and bond’s rate
of return. The constant parameters in this two model are u = 1.2, d = 0.8, S0 = 100, K = 100,
α = 0.5, rl = 0.1, rb = 0.2, and h = g = 1/5. In the left figure, bond’s rate of return is rm = 0.25,
and the number of periods range from 1 to 10. The right figure is under a 5-period binomial tree
model with the bond’s rate of return ranging from 0.1 to 0.4.

In Figure 6.2, the left graph shows the relationship between the option price and the number
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of periods. When the value N increases, the lower bound and the upper bound of the no-arbitrage
intervals increase at the same time. This is as a result of the risk neutral measure q̃ which is equal to
(1+rm)

h−1
(1+rm)h−α

. With increasing the number of periods, the time length of the default period decreases
monotonously. Then q̃ is getting close to 0. It indicates that the option is less possible to be de-
faulted by the counterparty. Therefore, the option value will be more expensive.

The value of the rate of return for the bond can be used to measure the risk of a default in the
counterparty. A larger bond’s rate of return reflects that a higher default risk will result from the
counterparty. Therefore, the option is less expensive. The right graph in Figure 6.2 shows this
property. In our model, a higher bond’s rate of return corresponds to a larger risk neutral measure
q̃. Therefore, in each default period, the weight of the payoff when the option is defaulted becomes
larger. Thus, the upper bound and the lower bound decrease.

6.2 XVA of American options with collateral
In the model with collateral, we still change the same parameters to find the common properties
and differences between these two models. The unique parameters we set in this model is the col-
lateralization rate γ = 0.6, and the collateral rate rc = 0.05.
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Figure 6.3: XVA of the American put option when varying the borrowing and lending rates in
a 5-period binomial tree model with collateral. Other constant parameters are u = 1.2, d = 0.8,
S0 = 100, K = 100, α = 0.5, h = g = 1/5, γ = 0.6, and rc = 0.05.

At first, we check the relationship between the no-arbitrage price interval and the funding rates
which include the borrowing and lending rates. The lending rate is varying from 0 to 0.2, and
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the borrowing rate is varying from 0.2 to 0.4. We observe the same laws as the model without
collateral. The lower bound decreases when increasing the borrowing rate, and it is not affected by
the lending rate. The upper bound increases when increasing the lending rate, and it is not affected
by the borrowing rate.

Even though these two models share all the other parameters except the collateral rate and
the collateralization rate, which are unique in the model with collateral, the no-arbitrage prices in
these two models are very different from each other. The upper bound and the lower bound for the
no-arbitrage price interval in the model with collateral is relatively larger. The reason is that the
collateralized option gives the buyer the right to use the collateral to hedge the loss from default.
On the other hand, the uncollateralized option is fully exposed to the risk from the counterparty
credit risk.

As we noticed in the model without collateral, when we increase the number of periods, the
upper bound and the lower bound will become larger. But it is not necessary in the model with
collateral. A higher value of N still drives the risk neutral measure close to 1. But the payoff when
default happens is not necessarily worse, since a part of the payoff is protected by the collateral.
Therefore, increasing the number of periods does not lead to a larger upper bound or lower bound.
This is shown in the left graph of Figure 6.4.

1 2 3 4 5 6 7 8 9 10

Number of periods

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
p

ti
o

n
 P

ri
c
e

Lower Bound

Upper Bound

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Bond's rate of return

3

3.5

4

4.5

5

5.5

6

6.5

O
p

ti
o

n
 P

ri
c
e

Lower Bound

Upper Bound

Figure 6.4: XVA of the American put option in the model with collateral when varying the number
of periods and the bond’s rate of return. The constant parameters in this two model are u = 1.2,
d = 0.8, S0 = 100, K = 100, α = 0.5, rl = 0.1, rb = 0.2, h = g = 1/5, γ = 0.6, and rc = 0.05. In the
left figure, bond’s rate of return is rm = 0.25, and the number of periods range from 1 to 10. The
right figure is under a 5-period binomial tree model with the bond’s rate of return ranging from 0.1
to 0.4.

Bond’s rate of return, collateral rate, collateralization rate all reflect the default risk of the op-
tion. So we pick up the factor bond’s rate of return to find the relationship between the possibility
of default and option’s price. The interrelation between the bond’s rate of return and the option’s
no-arbitrage price interval is given in the right graph of Figure 6.4. Unlike the model without col-

56



lateral, the option’s price is stable when the bond’s rate of return increases. It indicates that the
collateral has a good protection of the option from default.
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Figure 6.5: XVA of the American put option in a 5-period model with collateral when varying
the collateralization rate from 0.3 to 0.9. Other constant factors are u = 1.2, d = 0.8, S0 = 100,
K = 100, α = 0.5, rl = 0.1, rb = 0.2, h = g = 1/5, rm = 0.25, and rc = 0.05.

A larger collateralization rate can offer the option a better protection against the default. Figure
6.5 demonstrates the relationship between the no-arbitrage price and the collateralization rate in
this model. A larger collateralization rate leads to a higher upper bound and lower bound.
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Chapter 7

Conclusion

Our research has succeeded in extending the XVA from European options to American options in
the discrete time settings. Unlike the base model, this new approach takes the funding spread and
counterparty credit risk into consideration. In addition to the stocks and MMAs in the base model,
we cover the collateral and bond to hedge or super-hedge the American option’s payoff.

Before researching the American option pricing, we have thoroughly analyzed and discussed
the no-arbitrage price of the European option with funding spread. We have made a comparison
between hedging and super-hedging portfolios given by different market conditions and funding
costs. We then started to explore the pricing model for American options.

During the research, we first built the one-period binomial tree model including the funding
spread. Then, we extended it to the multi-period model. Moreover, counterparty credit risk is
considered in the next step separately. This model uses the bond issued by the counterparty to
hedge the risk of default. Each of these two factors was examined individually in the discussion
above. Based on the results of the research, we divide the periods into trading periods and default
periods in order to integrate funding spread and default into one model. Additionally, instead
of calculating the option price directly, we computed the price of the portfolio consisting of the
option and collateral in the last model. According to the relationship between collateral and the
option value, we came up with the no-arbitrage price of the American option. These findings add
substantially to our understanding of American option pricing.
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