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 Abstract 
 With  CO  2  levels  on  the  rise  in  the  earth,  air,  and  water,  reducing  emissions  to  combat 

 global  warming  is  more  important  than  ever.  Solvent  carbon  capture  is  an  effective  method  for 

 removing  CO  2  from  industrial  flue  gas  streams,  but  traditional  solvents  pose  issues  for  the 

 sustainability  of  the  process.  New  solvents  that  are  environmentally  friendly  and  more  efficient 

 are  in  demand.  Biomolecules,  specifically  amino  acids,  may  be  able  to  fill  this  demand. 

 Atomistic  modeling  (density  functional  theory)  was  employed  to  model  the  interactions  of  nine 

 amino  acids  with  CO  2  in  an  aqueous  setting.  The  goals  of  the  project  were  to  determine  which 

 density  functional  theory  methods  were  most  effective  for  modeling  the  binding  interactions 

 between  CO  2  molecules  and  amino  acids,  and  to  quantify  the  binding  energies  of  amino  acid-CO  2 

 complexes.  Analysis  with  t-tests  revealed  significant  effects  when  solvation  modeling  was 

 removed,  or  the  basis  set  was  altered.  Conversely,  excluding  dispersion  corrections  showed  no 

 significant  impact.  Switching  the  exchange-correlation  functional  from  M06-2X  to  B3LYP  did 

 not  significantly  alter  the  internal  energies  or  reaction  geometries,  except  for  in  the  geometries  of 

 the  amino  acid-CO  2  zwitterions.  However,  changing  the  base  which  deprotonates  the  zwitterion 

 in  the  reaction  notably  affected  the  internal  energy  change.  DFT  calculations  performed  at  a 

 6-311++G**  level  with  the  M06-2X  functional,  solvation  modeling  with  COSMO,  and  without 

 dispersion  correction  are  recommended  as  the  most  effective  method,  among  those  explored,  for 

 modeling  the  interactions  of  amino  acids  with  CO  2  .  The  binding  energies  for  the  complexes  of 

 nine  amino  acids  with  CO  2  were  calculated  and  data  supports  that  the  binding  energies  of  these 

 complexes are independent of the amino acid. 
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 1. Introduction 

 1.1 The Role of CO  2  in Global Warming 

 Climate  change  casts  an  ever-darkening  shadow  over  our  planet,  with  carbon  dioxide 

 (CO  2  )  at  the  forefront  as  a  potent  force  driving  global  warming.  As  one  of  the  most  prevalent 

 greenhouse  gasses  emitted  by  human  activities,  CO  2  plays  a  pivotal  role  in  trapping  heat  within 

 the  Earth's  atmosphere,  exacerbating  the  alarming  trends  of  rising  temperatures  and 

 environmental  instability  (Smith  et  al.,  2016).  The  burning  of  fossil  fuels,  industrial  processes, 

 and  deforestation  have  been  primary  contributors  to  the  unprecedented  increase  in  atmospheric 

 CO  2  levels  in  recent  decades,  surpassing  400  parts  per  million  (ppm)  for  the  first  time  in  recorded 

 history (IPCC, 2005). 

 The  need  to  address  CO  2  emissions  has  never  been  more  urgent,  as  the  consequences  of 

 unchecked  climate  change  manifest  themselves  in  increasingly  severe  weather  patterns,  rising 

 sea  levels,  and  unprecedented  ecological  disruptions.  Moreover,  the  ramifications  of  heightened 

 CO  2  levels  extend  across  the  earth,  as  heightened  CO  2  levels  are  observed  in  the  land,  the  oceans, 

 and  the  atmosphere  (Rochelle,  2009).  Elevated  temperatures  caused  by  CO  2  -induced  warming 

 exacerbate  the  frequency  and  intensity  of  extreme  weather  phenomena,  including  heatwaves, 

 storms,  and  extreme  precipitation.  Concurrently,  seawater's  thermal  expansion  and  the  melting  of 

 polar  ice  contribute  to  rising  sea  levels,  posing  imminent  threats  to  coastal  populations  and 

 ecosystems  (Church  &  Clark,  2013).  In  light  of  these  urgent  challenges,  concerted  global  action 

 to  mitigate  CO  2  emissions  is  imperative  to  safeguarding  our  planet's  future  well-being  and 

 ensuring the resilience of human societies and natural ecosystems alike. 

 1.2 Advancing Solvent Carbon Capture 

 Carbon  capture,  a  pivotal  strategy  in  combating  climate  change,  involves  the  extraction  of 

 CO  2  produced  by  various  human  activities  before  their  release  into  the  atmosphere.  By 

 intercepting  CO  2  at  its  source,  carbon  capture  technologies  offer  a  crucial  means  to  significantly 

 curtail emissions and transition towards a more sustainable future (IPCC, 2022). 

 Solvent  carbon  capture  stands  out  among  the  various  methods  for  capturing  carbon, 

 proving  to  be  an  efficient  approach  for  capturing  CO  2  emissions.  This  method  relies  on  chemical 
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 solvents  to  absorb  CO  2  from  industrial  flue  gasses,  trapping  it  for  subsequent  storage  or 

 utilization.  Solvent  carbon  capture  systems  can  be  seamlessly  integrated  into  existing  industrial 

 processes,  making  them  an  attractive  option  for  reducing  emissions  across  diverse  sectors, 

 including  power  generation,  manufacturing,  and  refining  (Haszeldine,  2009).  Moreover,  captured 

 CO  2  can  be  stored  underground  or  utilized  in  various  applications  such  as  enhanced  oil  recovery 

 or  the  production  of  synthetic  fuels,  thus  reducing  emissions  and  increasing  economic  viability 

 (IPCC, 2005). 

 Despite  recent  advancements  in  solvent  carbon  capture  technology,  challenges  persist  in 

 optimizing  efficiency,  reducing  costs,  and  minimizing  environmental  impacts.  Innovations  are 

 needed  to  enhance  solvent  performance,  increase  capture  rates,  and  decrease  the  energy 

 requirements  associated  with  the  separation  and  storage  of  CO  2  .  Efforts  are  underway  to  develop 

 novel  solvents  with  improved  selectivity,  stability,  and  regeneration  capabilities  to  further 

 enhance  the  overall  efficiency  of  carbon  capture  systems  (Lu  et  al.,  2023).  Continued  investment 

 in  research,  development,  and  deployment  efforts  is  essential  to  overcoming  existing  barriers  and 

 unlocking  the  full  potential  of  carbon  capture  as  a  cornerstone  of  global  climate  change 

 mitigation efforts. 

 1.3 Amino Acids in Solvent Carbon Capture 

 Biomolecules  encompass  a  diverse  array  of  organic  compounds  essential  for  various 

 biological  processes.  These  molecules,  from  carbohydrates  and  lipids  to  nucleic  acids  and 

 proteins,  play  pivotal  roles  in  sustaining  life  and  driving  cellular  functions.  Beyond  their 

 biological  significance,  biomolecules  have  applications  in  diverse  industrial  sectors  owing  to 

 their  unique  properties  and  versatility.  Notably,  amino  acids  have  garnered  attention  for  their 

 potential in solvent carbon capture due to their ability to interact with CO  2  . 

 In  solvent  carbon  capture,  amino  acids  facilitate  the  chemical  absorption  of  CO  2  from 

 flue  gases  emitted  by  industrial  processes.  When  exposed  to  CO  2  -rich  gas  streams,  amino  acid 

 solvents  react  to  absorb  the  CO  2  molecules.  This  process  removes  CO  2  from  the  gas  stream, 

 enabling  the  purification  of  industrial  emissions  and  subsequent  sequestration  or  utilization  of 

 captured  CO  2  (Lu  et  al.,  2023).  Amino  acids  possess  distinct  characteristics  that  make  them 

 promising  options  for  solvent-based  CO  2  capture  systems.  These  properties  include  reduced 
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 vapor  pressures,  heightened  resilience  to  oxygen  degradation,  and  diminished  toxicity  compared 

 to  conventional  amine  solvents.  Their  versatility  arises  from  the  presence  of  functional  groups 

 which  can  participate  in  chemical  reactions  with  CO  2  molecules.  Additionally,  the  side  chains  of 

 amino  acids  contribute  to  their  diverse  properties,  enabling  tailored  designs  of  solvent  systems 

 optimized  for  specific  capture  applications.  The  structural  diversity  of  amino  acids  can  allow  for 

 the  modulation  of  solvent  properties,  such  as  selectivity,  capacity,  and  regeneration  efficiency,  to 

 optimize  the  performance  of  solvent  carbon  capture  systems.  Furthermore,  the  tunability  of 

 amino  acid-based  solvents  enables  the  design  of  tailored  capture  solutions  for  specific  industrial 

 applications and operating conditions (Guo et al., 2013). 

 1.4 Exploring Molecular Interactions with Density Functional Theory 

 Density  Functional  Theory  (DFT)  is  a  computational  chemistry  method  used  for  studying 

 molecular  interactions  and  properties.  DFT  provides  a  theoretical  framework  for  accurately 

 predicting  the  electronic  structure  and  energies  of  atoms  and  molecules.  Its  widespread  adoption 

 in  research  and  industry  stems  from  its  ability  to  balance  computational  efficiency  and  accuracy, 

 making it applicable to various chemical systems and phenomena (Jones, 2015). 

 To  accurately  simulate  CO  2  binding  in  solvents,  it  is  essential  to  factor  in  dispersion 

 forces  and  solvation  effects  when  modeling  these  molecular  interactions.  Dispersion  interactions, 

 also  known  as  Van  der  Waals  forces,  emerge  from  the  temporary  fluctuations  in  electron  density 

 within  molecules  and  play  a  critical  role  in  the  interaction  between  CO  2  and  solvent  molecules. 

 While  often  subtle,  these  forces  contribute  significantly  to  the  overall  binding  energy  and  must 

 be  accurately  accounted  for  in  computational  models  (Tkatchenko  &  Scheffler,  2009). 

 Additionally,  solvation  effects,  which  are  the  interactions  between  solute  molecules  like  CO  2  and 

 surrounding  solvent  molecules,  influence  the  behavior  and  stability  of  CO  2  in  solution.  Solvent 

 molecules  can  modulate  the  energetics  of  CO  2  binding,  alter  its  structural  conformation,  and 

 impact  its  transport  properties  in  the  environment.  Therefore,  incorporating  solvation  effects  into 

 computational  models  is  necessary  for  obtaining  realistic  insights  into  the  behavior  of  CO  2  in 

 solution (Jalan et al., 2010). 

 DFT-based  simulations  enable  the  exploration  of  various  factors  influencing  CO  2 

 solvation,  such  as  solvent  effects  and  Van  der  Waals  forces,  thereby  providing  valuable  insights 
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 into  CO  2  capture,  transport,  and  storage  processes.  DFT  facilitates  an  understanding  of  CO  2 

 behavior  in  aqueous  solutions,  thereby  catalyzing  innovations  in  CO  2  capture  and  storage 

 technologies.  DFT  is  a  pivotal  tool  for  exploring  the  behavior  of  CO  2  molecules  in  aqueous 

 solutions.  By  integrating  dispersion  and  solvation  effects  into  DFT  calculations,  accurate 

 predictions  can  be  made  to  describe  the  thermodynamics  and  kinetics  of  CO  2  interactions  with 

 water molecules and other solvents. 

 1.5 Project Goals 

 This  project  had  two  main  goals.  First,  it  aimed  to  determine  which  DFT  methods  were 

 most  effective  for  modeling  the  binding  interactions  between  CO  2  molecules  and  amino  acids. 

 Second,  it  aimed  to  quantify  the  binding  energies  of  amino  acid-CO  2  complexes  to  provide 

 insight  into  the  strength  and  nature  of  these  interactions,  which  are  pivotal  for  designing  effective 

 CO  2  capture systems. 

 This  research  plays  a  significant  role  in  addressing  CO  2  emissions  and  combating  global 

 warming.  By  exploring  the  capabilities  of  DFT  and  investigating  the  properties  of  amino  acids, 

 the  project  aimed  to  contribute  to  advancing  carbon  capture  technologies.  Through  these  efforts, 

 this  study  sought  to  offer  insights  that  could  lead  to  the  development  of  more  sustainable  and 

 efficient methods for capturing CO  2  , thereby helping  to mitigate climate change. 
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 2. Literature Review 

 2.1 Overview 

 The  aim  of  this  review  is  to  identify  and  analyze  existing  molecular  modeling  techniques 

 employed  to  study  similar  complexes,  evaluating  their  advantages  and  limitations.  Additionally, 

 it  aims  to  evaluate  the  rationale  behind  selecting  Density  Functional  Theory  (DFT)  over 

 alternative  methods  like  MP2  and  DLPNO-CCSD(T),  exploring  the  strengths  and  weaknesses  of 

 each  approach.  The  review  endeavors  to  compile  a  list  of  amino  acids  studied  in  the  context  of 

 solvent-based  carbon  capture,  providing  insights  into  their  individual  characteristics  and 

 effectiveness  in  CO  2  capture.  A  subset  of  amino  acids  will  be  selected  for  in-depth  investigation 

 based  on  their  structural  and  chemical  properties,  and  potential  for  CO  2  capture.  A  brief 

 overview of the computational models used in this study will also be provided. 

 2.2 A Comparison of Molecular Modeling Methods 

 Previous  studies  investigating  similar  reactions  have  utilized  various  molecular  modeling 

 methods  to  simulate  CO  2  binding  to  amino  acids.  Among  these  methods  are  MP2  (Møller-Plesset 

 perturbation  theory),  and  DLPNO-CCSD(T)  (Domain-based  Local  Pair  Natural  Orbital  Coupled 

 Cluster  with  Single,  Double,  and  Perturbative  Triple  excitations).  Additionally,  Density 

 Functional  Theory  (DFT)  has  been  widely  used  due  to  its  computational  efficiency  and 

 versatility in describing molecular interactions. 

 MP2  is  one  of  the  more  simple  and  accurate  expansions  of  Hartree-Fock.  It  provides 

 accurate  electronic  structure  calculations  by  including  electron  correlation  effects  beyond  the 

 Hartree-Fock  approximation.  It  has  been  utilized  in  studies  investigating  CO  2  binding  to  amino 

 acids  due  to  its  ability  to  capture  dispersion  interactions,  which  are  crucial  for  describing  weak 

 interactions  such  as  those  involved  in  CO  2  solvation  (Cremer,  2011).  However,  MP2  calculations 

 can  be  computationally  demanding,  particularly  for  large  systems,  limiting  its  applicability  to 

 relatively small molecular complexes. 

 DLPNO-CCSD(T)  is  a  highly  accurate  method  that  accounts  for  electron  correlation 

 effects  through  coupled  cluster  theory.  It  offers  a  compromise  between  accuracy  and 

 computational  cost  by  employing  truncation  schemes,  such  as  the  domain-based  approach,  to 
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 reduce  the  computational  expense  associated  with  conventional  CCSD(T)  calculations. 

 DLPNO-CCSD(T)  has  been  used  in  studies  of  CO  2  interactions  with  biomolecules  due  to  its  high 

 accuracy  in  describing  non-covalent  interactions.  However,  DLPNO-CCSD(T)  can  be  complex, 

 and its computational cost remains significant, especially for large systems (Sandler et al., 2021). 

 DFT,  on  the  other  hand,  offers  a  computationally  efficient  approach  to  modeling 

 molecular  interactions  by  approximating  the  electron  density  of  a  system.  It  has  been  widely 

 applied  in  studies  of  CO  2  binding  to  amino  acids  due  to  its  balance  of  accuracy  and 

 computational  feasibility.  DFT  methods  vary  in  exchange-correlation  (XC)  functionals,  each 

 offering  advantages  and  limitations  in  describing  different  types  of  interactions.  The 

 consideration  of  methods  like  MP2  and  DLPNO-CCSD(T)  for  this  research  is  motivated  by  the 

 need  for  accurate  descriptions  of  CO  2  binding  to  amino  acids.  While  DFT  provides  a 

 computationally  feasible  approach,  MP2  and  DLPNO-CCSD(T)  offer  higher  accuracy  in 

 capturing  dispersion  and  non-covalent  interactions,  which  are  crucial  for  understanding  the 

 binding energetics of amino acid-CO  2  complexes. 

 DFT  stands  out  due  to  its  balance  between  accuracy  and  computational  cost.  While  MP2 

 and  DLPNO-CCSD(T)  offer  higher  accuracy  in  describing  molecular  interactions,  they  have 

 significantly  higher  computational  demands.  DFT  provides  a  more  feasible  approach  and 

 moreover,  it  can  be  configured  to  incorporate  solvation  and  dispersion.  While  MP2  and 

 DLPNO-CCSD(T)  can  be  extended  to  include  solvation  models,  the  computational  cost  increases 

 substantially.  This  limitation  hinders  the  practicality  of  using  these  methods  for  simulations 

 involving  the  solvent  environments  relevant  to  CO  2  capture  processes  (Tomasi  et  al.,  2005).  DFT 

 offers  various  solvation  models  that  can  be  readily  integrated  into  simulations,  allowing  for  more 

 accurate  descriptions  of  CO  2  binding  in  solution.  The  time  efficiency  of  DFT  compared  to  MP2 

 and  DLPNO-CCSD(T)  further  justifies  its  selection  as  a  computational  method  for  this  study. 

 While  MP2  and  DLPNO-CCSD(T)  calculations  can  be  prohibitively  expensive,  DFT 

 calculations  scale  more  favorably  with  system  size,  allowing  for  the  examination  of  larger 

 molecules or groups within a feasible computational budget (Matta, 2010). 

 Exchange-correlation  functionals  in  DFT  approximate  the  exchange  and  correlation 

 effects  between  electrons  in  a  many-electron  system.  These  functionals  provide  a  framework  to 

 describe  these  complex  electron-electron  interactions  within  the  system  accurately.  In  this  study, 

 the  XC  functionals  M06-2X  and  B3LYP  will  be  used.  The  selection  of  the  M06-2X  and  B3LYP 

 6 



 functionals  for  modeling  the  absorption  of  CO  2  in  an  aqueous  solution  is  rationalized  by  their 

 complementary  strengths  in  capturing  different  aspects  of  the  system.  M06-2X  is  renowned  for 

 its  accuracy  in  describing  noncovalent  interactions  and  dispersion  forces,  which  are  crucial  for 

 describing  the  solvation  behavior  of  CO  2  in  water.  Its  incorporation  of  a  significant  fraction  of 

 Hartree-Fock  exchange  allows  for  a  balanced  treatment  of  dynamic  and  static  correlation  effects, 

 enhancing  accuracy  in  predicting  energetics  and  geometries  (Zhao  &  Truhlar,  2008).  On  the 

 other  hand,  B3LYP,  another  widely  used  hybrid  functional,  excels  in  describing  the  electronic 

 structure and transition properties. 

 2.3 A Review of Amino Acids for Solvent Carbon Capture 

 Numerous  in-vitro  and  in-silico  studies  have  been  conducted  to  analyze  the  efficacy  of 

 various  amino  acids  for  carbon-capture  applications.  Park  et  al.  tested  twelve  different  amino 

 acids  as  rate  promoters  for  CO  2  absorption  in  a  potassium  carbonate  solution.  Six  primary  and 

 six  secondary  amino  acid  salts  were  used;  the  secondary  amino  acids  generally  increased  the 

 absorption  rates  of  CO  2  by  the  K  2  CO  3  solution  much  more.  Sarcosine  and  pipecolic  acid  were 

 found  to  be  the  most  effective  rate  promoters  (Park  et  al.,  2014).  Hu  et  al.  also  studied  the 

 efficacies  of  amino  acid  salts  as  rate  promoters  for  CO  2  absorption  in  a  K  2  CO  3  solution.  Similarly 

 to  Park  et  al,  they  found  the  effect  of  the  amino  acid  salts  to  be  sensitive  to  the  pH  of  the 

 solution.  Sarcosine  and  proline  were  found  to  be  the  most  effective  rate  promoters.  Both  of  these 

 amino  acids  were  shown  to  be  more  effective  absorption  rate  boosters  at  high  pHs  than 

 monoethanolamine  (MEA),  a  commercially  used  solvent  for  CO  2  capture.  This  is  due  to  the 

 higher  reaction  order  between  CO  2  and  sarcosine/proline  than  between  CO  2  and  MEA  (Song  et 

 al., 2012). 

 Holst  et  al.  studied  CO  2  absorption  in  an  aqueous  solution  with  amino  acid  salts.  They 

 found  that  the  amino  acid's  pK  a  affects  the  CO  2  absorption  rate,  with  a  lower  pK  a  corresponding 

 to  a  greater  absorption  rate.  The  potassium  salts  of  sarcosine  and  proline  were  again  found  to  be 

 the  most  effective  at  CO  2  absorption,  the  authors  attribute  this  to  higher  rate  constants  and  low 

 pK  a  s  for  these  two  amino  acids.  A  difference  between  the  lithium  and  potassium  salts  of  proline 

 was  noted,  with  the  potassium  salts  showing  an  experimentally  higher  rate  constant. 

 Interestingly,  the  absorption  rate  of  CO  2  seemed  to  be  independent  of  the  counter-ion  for 
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 sarcosine  salts.  This  discussion  of  counter-ions  is  also  brought  up  in  a  review  conducted  by  Hu  et 

 al.  with  their  conclusion  being  that  potassium  salts  are  generally  the  most  effective.  Hu  et  al. 

 reviewed  recent  experimental  data  using  amino  acid  salts  for  CO  2  absorption.  Their  review 

 provides  estimated  reaction  orders  and  corrected  reaction  constants  of  various  amino  acids  at 

 298K.  The  greatest  amount  of  data  was  collected  for  glycine,  sarcosine,  and  proline,  but 

 experimental  data  for  more  than  a  dozen  other  amino  acids  was  also  analyzed.  They  conclude 

 that  lysine,  proline,  and  sarcosine  have  been  reported  to  have  the  largest  reaction  constants  with 

 CO  2  . 

 Based  on  this  research,  sarcosine  and  proline  have  emerged  as  the  most  promising  amino 

 acids  for  study.  Their  efficacies  are  supported  by  experimental  data,  and  their  properties,  namely 

 low  pK  a  s  and  high  rate  constants  with  CO  2  ,  make  them  ideal  candidates  for  further  study. 

 Moreover,  they  have  a  relatively  low  number  of  atoms  compared  to  other  amino  acids.  Molecular 

 size  is  important  for  this  study  as  the  complexity  of  DFT  calculations  increases  greatly  for  larger 

 molecules.  In  addition  to  sarcosine  and  proline,  alanine,  glycine,  valine,  leucine,  serine, 

 phenylalanine, and threonine will be included in the calculations to provide a larger sample set. 

 2.4 Modeling the Reaction 

 To  accurately  model  the  reaction  of  an  amino  acid  with  CO  2  ,  knowledge  of  the 

 appropriate  reaction  mechanism  is  necessary.  Three  potential  mechanisms  can  be  employed  to 

 model  the  reactions  of  amines;  these  are  the  zwitterion,  termolecular,  and  base-catalyzed 

 hydration  mechanisms  (Vaidya  &  Kenig,  2007).  Of  these,  further  investigation  is  warranted  into 

 the  zwitterion  and  termolecular  mechanisms.  The  base-catalyzed  hydration  mechanism  describes 

 the  reaction  of  tertiary  amines,  which  does  not  pertain  to  this  project.  Additionally,  Yu  et  al. 

 suggest that a zwitterion-type mechanism may also describe the base catalysis reaction. 

 Firstly,  the  zwitterion  mechanism  is  a  two-step  mechanism.  It  suggests  that  the  reaction 

 between the amino acid and CO  2  proceeds by forming  a zwitterion intermediate. 

 (1)  𝑅𝑁  𝐻 
 2 

+  𝐶  𝑂 
 2 

⇔  𝑅𝑁  𝐻 
 2 
+ 𝐶𝑂  𝑂 −

 A base then deprotonates the zwitterion intermediate to form the product. 
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 (2)  𝑅𝑁  𝐻 
 2 
+ 𝐶𝑂  𝑂 − +  𝐵 − ⇒  𝑅𝑁𝐻𝐶𝑂  𝑂 − +  𝐵𝐻 

 Vaidya  et  al.  evaluated  the  kinetics  and  overall  rate  of  this  reaction.  They  found  that  the  reaction 

 order  would  be  fractional  between  1  and  2,  dependent  on  the  concentration  of  salt  in  the  solution. 

 This  evaluation  agrees  with  the  data  provided  in  the  2018  review  by  Hu  et  al.  They  found  the 

 experimental  reaction  order  of  eight  different  amino  acids  with  CO  2  to  fall  between  1  and  1.81, 

 dependent on the reaction apparatus, salt concentration, and temperature. 

 The  termolecular  mechanism  is  a  one-step  mechanism  that  assumes  an  amino  acid  reacts 

 with  a  CO  2  molecule  and  a  base  molecule  simultaneously  through  an  encounter  complex.  Most 

 occurrences  of  this  encounter  complex  dissociate  again  to  form  the  reactants,  but  a  small  amount 

 react with an additional amino acid salt or a water molecule to form the products. 

 (3)  𝑅𝑁  𝐻 
 2 

+  𝐶  𝑂 
 2 

+  𝐵 ⇔ { 𝐸𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟     𝐶𝑜𝑚𝑝𝑙𝑒𝑥 }   ⇒  𝑅𝑁𝐻𝐶𝑂  𝑂 − +  𝐵  𝐻 +

 Vaidya  et  al.'s  kinetics  evaluation  of  this  mechanism  suggests  that  this  reaction  is  first-order  with 

 respect  to  the  amino  acid  salt  when  water  is  the  dominant  base  in  the  solution  and  second-order 

 when  RNH  2  is  the  dominant  base.  This  is  another  possible  explanation  for  the  fractional  reaction 

 orders observed by Hu et al. 

 In  their  study  of  the  kinetics  of  the  reaction  of  aqueous  salts  of  taurine  and  glycine, 

 Kumar  et  al.  concluded  that  either  the  zwitterion  or  termolecular  mechanism  could  be  used  to 

 describe  the  experimental  kinetic  data.  Additionally,  they  found  that  more  data  would  be  required 

 for  the  reaction  of  various  aqueous  amino  acid  salts  with  CO  2  to  come  to  a  more  certain 

 conclusion  on  which  mechanism  best  describes  the  reaction.  For  the  purposes  of  this  study,  the 

 zwitterion  mechanism  will  be  used  to  describe  the  reaction.  The  primary  reason  for  this  is  that  it 

 allows  for  the  intermediate  step  of  the  reaction  to  be  modeled  more  easily  and  accurately.  In  the 

 termolecular  mechanism,  the  exact  geometry  of  the  encounter  complex  intermediate  is  unknown 

 and  may  be  difficult  to  elucidate,  given  that  the  complex  is  composed  of  three  molecules.  The 

 geometry  of  the  zwitterion  intermediate  is  known  and  therefore  makes  it  a  more  compelling 

 choice of mechanism for this study. 
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 2.5. A Brief Overview of DFT, Dispersion, and Solvation Models 

 DFT  offers  a  practical  approach  to  studying  the  electronic  structure  of  matter.  Proposed 

 by  Walter  Kohn  and  Pierre  Hohenberg  in  1964,  DFT  simplifies  the  many-body  problem  of 

 interacting  electrons  by  focusing  on  the  electron  density  rather  than  the  wave  function.  This 

 reduction  enables  the  calculation  of  various  properties  of  atoms,  molecules,  and  solids.  Central  to 

 DFT  are  the  Kohn-Sham  equations,  introduced  by  Walter  Kohn  and  Lu  Sham  in  1965.  These 

 equations  transform  the  many-electron  problem  into  a  set  of  single-electron  equations,  where 

 each  electron  moves  in  an  effective  potential  determined  by  the  electron  density  and  the 

 exchange-correlation functional (Jones & Gunnarsson, 1989). 

 DFT  calculations  rely  on  accurately  approximating  the  XC  functional,  which  captures  the 

 effects  of  electron  exchange  and  correlation.  While  various  approximations  exist,  none  are  exact, 

 and  developing  more  accurate  functionals  remains  an  active  area  of  research.  Despite  its 

 approximations,  DFT  is  an  indispensable  tool  in  many  subjects,  providing  insights  into  the 

 properties  of  diverse  systems.  Due  to  its  efficiency  and  versatility,  it  is  used  widely  in  both 

 academic and industrial research. 

 In  DFT,  standard  functionals  often  fail  to  accurately  account  for  Van  der  Waals  forces, 

 which  are  crucial  molecular  interactions.  To  account  for  this,  dispersion  correction  (DFT-D3)  is 

 included  in  calculations.  DFT-D3  addresses  this  limitation  by  introducing  an  empirical  correction 

 to  the  total  energy  of  a  system,  specifically  targeting  dispersion  interactions.  This  correction  term 

 is  added  to  the  standard  DFT  energy  and  is  based  on  the  pairwise  summation  of  atom-atom 

 dispersion  contributions.  The  DFT-D3  method  incorporates  parameters  derived  from  reference 

 data  sets;  it  adjusts  the  dispersion  interaction  energy  based  on  the  distance  between  atoms  and 

 their  chemical  environment.  By  including  these  corrections,  DFT-D3  improves  a  description  of 

 Van  der  Waals  forces  in  DFT  calculations,  leading  to  more  accurate  predictions  of  molecular 

 structures, energetics, and properties (Grimme et al., 2010). 

 Another  factor  that  standard  DFT  calculations  do  not  account  for  is  solvation.  COSMO 

 (Conductor-Like  Screening  Model)  is  a  continuum  solvation  model  designed  to  simulate  the 

 behavior  of  solute  molecules  in  a  solvent  environment.  In  the  COSMO  model,  the  solvent  is 

 treated  as  a  continuous  dielectric  medium  with  a  permittivity  similar  to  water's.  The  solute 

 molecules  are  represented  as  charged  surfaces  surrounded  by  a  layer  of  discrete  point  charges, 
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 which  mimic  the  polarizability  and  charge  distribution  of  the  real  molecules.  These  point  charges 

 interact  with  the  solvent  molecules,  and  the  resulting  electrostatic  interactions  are  calculated 

 using  continuum  electrostatic  theory,  incorporating  the  solvent  dielectric  constant  and  the  surface 

 charges  of  the  solute  (Klamt,  1995).  COSMO  has  been  successfully  applied  in  various  areas  of 

 computational  chemistry,  including  studies  of  solvation  effects  on  reaction  kinetics, 

 thermodynamics, and spectroscopy. 
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 3. Methodology 

 3.1 Modeling a Reaction with DFT 

 The  calculations  for  this  study  were  conducted  using  WebMO  for  a  graphical  interface, 

 and  the  Northwest  Computational  Chemistry  Package  (NWChem)  7.0.2  for  execution  of  the 

 calculations.  WebMO  is  a  web-based  interface  that  facilitates  the  setup,  visualization,  and 

 analysis  of  computational  chemistry  calculations.  It  provides  a  platform  that  enables  users  to 

 construct  molecular  models,  define  computational  parameters,  and  submit  jobs  to  various 

 computational  chemistry  software  packages,  including  NWChem.  NWChem  is  a 

 high-performance  computational  chemistry  software  suite  that  offers  a  wide  range  of  quantum 

 chemistry  and  molecular  dynamics  capabilities.  Solvation  modeling  was  performed  with 

 COSMO  (Klamt,  1995),  and  dispersion  correction  calculations  were  performed  with  DFT-D3 

 (Grimme  et  al.,  2010).  The  exchange-correlation  functions  M06-2X  (Zhao  &  Truhlar,  2008),  and 

 B3LYP (Becke, 1988) (Lee et al., 1988) were used. 

 When  modeling  a  reaction  using  DFT,  the  first  step  involves  optimizing  the  molecular 

 structures  of  the  reactants,  intermediates,  and  products  individually.  This  optimization  process 

 aims  to  find  the  most  energetically  favorable  configurations  by  adjusting  the  positions  of  atoms 

 within  the  molecules  until  the  forces  on  each  atom  approach  zero.  Through  this  process,  DFT 

 calculates  the  total  energy  of  each  molecule  based  on  the  positions  of  its  constituent  atoms;  it 

 employs  the  exchange-correlation  functional  to  provide  a  correction  to  the  electron-electron 

 interactions  within  the  system.  Once  the  optimized  structures  of  the  individual  molecules  are 

 obtained,  the  next  step  is  to  compute  the  overall  reaction  energetics,  represented  by  the  change  in 

 internal  energy  (ΔE).  ΔE  is  calculated  as  the  difference  in  the  total  energies  of  the  products  and 

 the reactants, as shown below. 

 Δ  𝐸 = ∑  𝐸 
 𝐷𝐹𝑇 

( 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 ) − ∑  𝐸 
 𝐷𝐹𝑇 

( 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 )

 The ΔE values for Reactions 1 and 2 (re-stated below) will be calculated for nine amino acids. 

 (1)  𝑅𝑁  𝐻 
 2 

+  𝐶  𝑂 
 2 

⇔  𝑅𝑁  𝐻 
 2 
+ 𝐶𝑂  𝑂 −

 (2)  𝑅𝑁  𝐻 
 2 
+ 𝐶𝑂  𝑂 − +  𝐵 − ⇒  𝑅𝑁𝐻𝐶𝑂  𝑂 − +  𝐵𝐻 
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 3.2 Optimizing Molecular Structures using DFT in WebMO 

 1.  To  begin,  create  a  new  job  and,  using  the  build  tool,  draw  a  skeleton  structure  of  the 

 molecule you wish to model. Include charges on any atoms that require them. 

 Figure 1: A skeleton structure of a sarcosine molecule created in WebMO. Grey spheres represent carbon, 
 red spheres represent oxygen, and blue spheres represent nitrogen. 

 2.  Use  the  Cleanup  →  Comprehensive  Mechanics  tool  to  add  hydrogens  and  perform  rough 

 corrections for bond angles and lengths. 

 Figure 2: A corrected geometry for sarcosine generated with WebMO. This image uses a similar color 
 scheme to Figure 1. White spheres represent hydrogen. 

 3.  Before  proceeding,  ensure  that  the  molecule's  geometry  does  not  present  any  issues  that 

 may  prevent  calculations  from  proceeding.  Examples  of  this  may  be  bond  distances  that 

 are too short or long, unreasonable bond angles, or atoms that are too close together. 

 4.  Proceed using the ‘Continue’ arrow in the lower right corner of the interface. 

 5.  Select the correct computational engine and queue. Proceed using the ‘Continue’ arrow. 

 6.  Name  the  job  and  select  ‘Geometry  Optimization’  from  the  calculation  drop-down.  Select 

 ‘DFT’ from the theory drop-down and ensure the molecule's charge is correct. 
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 7.  Proceed to the ‘Advanced’ tab and provide the desired calculation parameters. 

 8.  The  input  script  must  be  modified  to  include  dispersion  and  solvation.  To  do  this,  proceed 

 to the ‘Preview’ tab and click ‘Generate’ to generate an input script that can be edited. 

 9.  Within  the  DFT  input  block,  include  the  keywords  ‘disp  vdw  3’  to  include  DFT-D3 

 dispersion corrections. 

 10.  Next,  add  a  DRIVER  input  block  to  increase  the  maximum  number  of  geometry  steps  for 

 the calculation. An example DRIVER block is shown here. 

 driver 
 maxiter # 

 end 

 11.  Add  a  COSMO  input  block  to  include  solvation  modeling  with  COSMO.  The  COSMO 

 input  block  requires  the  dielectric  constant  of  the  solvent  and  the  Van  der  Waals  radii  of 

 each  atom  in  the  molecule.  Van  der  Waals  radii  must  be  listed  in  the  same  order  as  their 

 corresponding  atoms  are  listed  in  the  geometry  input.  Below  is  an  example  COSMO 

 input block for sarcosine. 

 cosmo 
 dielec 78.0 
 radius 1.7 
 1.55 
 1.7 
 1.7 
 1.52 
 1.52 
 1.2 
 1.2 
 1.2 
 1.2 
 1.2 
 1.2 
 lineq  0 

 end 
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 12.  Specify  the  amount  of  memory  allocated  for  the  calculation.  Include  the  following  input 

 line  and  change  the  memory  amounts  as  desired.  The  sum  of  stack,  heap,  and  global 

 memories must equal the total. 

 memory total 1024 mb stack 256 mb  heap 256 mb global 512 mb 

 13.  Submit  the  calculation  using  the  ‘Continue’  arrow.  The  Appendix  contains  example  input 

 scripts  for  H  2  O,  OH,  CO  2  ,  sarcosine,  the  sarcosine-CO  2  zwitterion,  and  the  sarcosine-CO  2 

 product. 

 3.3 Variables 

 Several  variables  must  be  considered  when  modeling  the  reactions  of  amino  acids  with 

 CO2.  The  variables  that  will  be  controlled  for  this  experiment  are  amino  acid  type,  basis  set, 

 functional,  inclusion  of  dispersion  corrections,  type  of  solvation,  and  the  base  in  Reaction  2.  The 

 values of each variable are shown in Table 1 below. 

 Table 1: The values of controlled variables used for modeling the reactions of amino acids and CO  2  . 

 Amino Acid  Basis Set  Functional  Dispersion  Solvation  Base 
 (Reaction 2) 

 Sarcosine 

 Glycine 

 Alanine 

 Proline 

 Valine 

 Leucine 

 Serine 

 Phenylalanine 

 Threonine 

 Routine 
 (6-31G*) 

 Accurate 
 (6-311++G**) 

 M06-2X 

 B3LYP 

 Dispersion 

 No 
 Dispersion 

 COSMO 

 No COSMO 

 OH  - 

 RNHCOO  - 

 The  base  case  set  of  variables  used  for  calculations  will  be  the  following:  Routine,  M06-2X, 

 Dispersion,  COSMO,  and  OH  -  .  Reactions  1  and  2  will  be  modeled  with  this  set  of  variables  for  a 
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 base  calculation  set.  A  6-31G*  basis  set  was  chosen  for  the  base  case  due  to  its  compromise 

 between  efficiency  and  accuracy.  M06-2X  was  chosen  as  it  is  able  to  describe  Van  der  Waals 

 interactions  and  medium-range  electron  correlations  much  better  than  B3LYP  (Zhao  &  Truhlar, 

 2008).  Dispersion  and  solvation  corrections  were  included  in  the  base  case  to  increase  the 

 accuracy  of  the  calculations.  OH  -  was  chosen  as  a  base  due  to  its  relative  abundance  in  solution 

 compared  to  RNHCOO  -  .  The  total  charge  of  these  molecules  (OH  -  and  RNHCOO  -  )  was  -1  when 

 modeling them. 

 Table 2: Different combinations of modeling variables (different calculation sets) used to model Reactions 1 and 2. 
 The variables for each modeling set are specified. 

 Name of 
 Calculation Set 

 Basis Set  Functional  Dispersion  Solvation  Base 
 (Reaction 2) 

 Base 

 Accurate 

 B3LYP 

 No Disp 

 No COSMO 

 Change of Base 

 Routine 

 Accurate 

 Routine 

 Routine 

 Routine 

 Routine 

 M06-2X 

 M06-2X 

 B3LYP 

 M06-2X 

 M06-2X 

 M06-2X 

 Dispersion 

 Dispersion 

 Dispersion 

 No Dispersion 

 Dispersion 

 Dispersion 

 COSMO 

 COSMO 

 COSMO 

 COSMO 

 No COSMO 

 COSMO 

 OH  - 

 OH  - 

 OH  - 

 OH  - 

 OH  - 

 RNHCOO  - 

 The  effects  of  each  variable  are  isolated  by  only  changing  one  variable  from  its  base 

 value  in  each  calculation  set.  The  number  of  calculations  required  for  the  base  calculation  set  is 

 30.  The  Accurate,  B3LYP,  No  Disp,  and  No  COSMO  calculation  sets  each  require  an  additional 

 30  calculations.  Only  9  calculations  are  needed  to  model  the  change  of  base.  Additionally, 

 vibrational  frequency  analysis  will  be  conducted  on  the  base  geometries  for  the  reactions  of 

 Sarcosine,  Glycine,  Alanine,  and  Proline  to  perform  a  thermodynamic  analysis.  The 

 thermodynamic  analysis  will  be  used  to  support  the  presence  of  Reactions  1  and  2.  In  total,  174 

 calculations will be performed. 
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 3.4 ‘Change of Base’ Reaction 

 For Reaction 2, the change of base from OH  -  to RNHCOO  -  is considered. The base case 

 for Reaction 2 of threonine, an example, is shown below. 

 When instead the Reaction 2 product, RNHCOO  -  , acts  as the base in the reaction, the reaction 

 changes to the following: 

 However, the Reaction 2 product is present on both sides of this reaction, and it simplifies to: 

 This simplified reaction, shown for threonine in Figure 10, is applicable to study the change in 

 internal energy of the system. However, it does not accurately represent the reaction kinetics and 

 therefore cannot be applied to the reaction mechanism or to study transition states. 

 17 



 3.5 Statistical Analysis 

 A  t-test  comparison  was  chosen  to  analyze  and  compare  sample  sets  comprising  data 

 from  nine  amino  acids.  The  t-test  is  particularly  well-suited  for  small  sample  sizes,  making  it 

 appropriate  for  scenarios  where  the  number  of  observations  is  limited,  as  in  this  case.  By 

 calculating  the  t-value,  which  measures  the  difference  between  the  means  of  the  two  sample  sets 

 relative  to  the  variability  within  the  samples,  the  t-test  determines  whether  the  observed 

 differences  are  statistically  significant  or  simply  due  to  random  variation.  This  statistical  test 

 provides  a  reliable  means  to  infer  whether  the  observed  distinctions  between  the  sample  sets  are 

 likely  to  reflect  genuine  differences  in  the  population  means  or  are  merely  artifacts  of  sampling 

 variability.  Therefore,  employing  a  t-test  facilitates  robust  and  reliable  comparisons  between 

 small  sample  sets,  enabling  meaningful  interpretations  of  the  data.  A  t-value  below  0.05  indicates 

 that  the  observed  difference  between  the  means  of  two  sample  sets  is  statistically  significant  at 

 the  95%  confidence  level.  Therefore,  a  t-value  below  0.05  suggests  that  the  observed  difference 

 is  unlikely  to  be  a  result  of  chance  variation  and  is  more  likely  to  reflect  a  genuine  distinction 

 between the populations being compared. Excel was used to perform the t-tests for this study. 

 18 



 4. Results 

 4.1 Modeling Reaction 1 
 Calculations  were  performed  to  model  Reaction  1  for  nine  amino  acids  with  five  different 

 calculation  sets.  Figure  3  depicts  the  final  geometries  for  valine  and  the  valine-CO  2  zwitterion,  a 

 representative  reactant  and  product.  Calculated  ΔE  values  for  Reaction  1  are  organized  in  Table 

 3, and a visual representation is provided in Figure 4. 

 Figure 3: Final geometries for (1) Valine and the (2) Valine-CO  2  zwitterion. An example of a reactant  and product. 

 Table 3: Calculated ΔE values for Reaction 1 by calculation set and amino acid. 

 Reaction 1 ΔE (kcal/mol) 

 Sarcosine  -14.57  -19.94  -12.28  -13.44  -12.03 

 Glycine  -14.51  -17.47  -10.47  -14.41  -12.01 

 Alanine  -14.89  -18.19  -12.15  -14.74  -11.78 

 Proline  -13.91  -19.90  -11.33  -13.37  -11.25 

 Valine  -13.98  -17.28  -12.28  -13.76  -12.52 

 Leucine  -13.88  -18.77  -13.35  -13.63  -13.38 

 Serine  -11.42  -13.98  -8.21  -10.02  -10.29 

 Phenylalanine  -13.09  -15.31  -9.77  -12.83  -11.52 

 Threonine  -7.88  -10.08  -7.66  -8.08  -7.16 

 Average Value*  -13.13*  -16.77*  -10.83*  -12.70*  -11.33* 

 Calculation Set  Base  No COSMO  Accurate  No Disp  B3LYP 
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 Figure 4: Calculated ΔE values for Reaction 1 for nine amino acids and five calculation sets. 

 An  analysis  using  t-tests  was  performed  to  determine  if  there  was  a  significant  difference 

 between  the  groups  of  ΔE  values  found  using  each  of  the  different  calculation  sets.  Table  4 

 shows the t-values for comparing the base calculation set to the other four calculation sets. 

 Table 4: t-values for comparing groups of Reaction 1 ΔE values. The t-values shown compare ΔE values from the 
 base calculation set to the other individual calculation sets. 

 Reaction 1: t-values 

 Base/No COSMO  Base/Accurate  Base/No Disp  Base/B3LYP 

 0.014  0.034  0.686  0.077 
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 4.2 Modeling Reaction 2 
 Reaction  2  was  modeled  for  nine  amino  acids  with  six  calculation  sets.  Figure  5  depicts 

 an  example  group  of  products  and  reactants  for  the  reaction  of  phenylalanine.  Calculated  ΔE 

 values for Reaction 2 are organized in Table 5, Figure 6 presents and a visual representation. 

 Figure 5: Final phenylalanine geometries for the Reaction 2 (1) Reactants and (2) Products. 

 Table 5: Calculated ΔE values for Reaction 2 by calculation set and amino acid. 

 Reaction 2 ΔE (kcal/mol) 

 Sarcosine  -36.43  11.78  -20.58  -37.46  -34.42  -1.36 

 Glycine  -33.90  9.38  -19.88  -33.88  -32.04  0.36 

 Alanine  -34.71  8.91  -19.66  -34.69  -33.74  0.55 

 Proline  -37.57  13.48  -22.68  -37.92  -35.35  -2.63 

 Valine  -35.21  4.53  -20.17  -35.21  -32.74  0.29 

 Leucine  -33.27  20.51  -16.01  -33.89  -30.20  2.09 

 Serine  -40.55  -7.00  -23.69  -40.54  -38.19  -1.88 

 Phenylalanine  -37.71  -0.88  -22.48  -37.67  -34.64  0.73 

 Threonine  -41.08  -4.75  -21.37  -40.67  -37.84  -3.65 

 Average Value*  -36.71*  6.22*  -20.72*  -36.88*  -34.35*  -0.61* 

 Calculation Set  Base  No 
 COSMO 

 Accurate  No Disp  B3LYP  Change of 
 Base 
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 Figure 6: Calculated ΔE values for Reaction 2 for nine amino acids and six calculation sets. 

 Again,  t-tests  were  used  to  determine  if  there  was  a  significant  difference  between  the  groups  of 

 ΔE  values.  The  base  calculation  set  was  compared  to  the  other  five  calculation  sets,  t-values  are 

 shown in Table 6. 

 Table 6: t-values for comparing groups of Reaction 2 ΔE values. The t-values shown compare ΔE values from the 
 base calculation set to the other individual calculation sets. 

 Reaction 2: t-values 

 Base/No COSMO  Base/Accurate  Base/No Disp  Base/B3LYP  Base/Change of Base 

 1.51E-07  6.81E-10  0.899  0.080  1.46E-14 
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 4.3 Other Computational Results 
 Vibrational  frequency  calculations  were  performed  for  the  reactions  between  four  amino 

 acids  and  CO  2  .  Calculations  were  performed  at  298K  with  the  base  case  method.  Table  7 

 includes  the  calculated  standard  enthalpy,  entropy,  and  Gibbs  free  energy  values  for  sarcosine, 

 glycine, alanine, and proline in Reactions 1 and 2. 

 Table 7: Calculated ΔH  o  , ΔS  o  , and ΔG  o  values of Reactions  1 and 2 for four amino acids. 

 Reaction 1  Reaction 2 

 Amino 
 Acid 

 ΔH  o 

 (kcal/mol) 
 ΔS  o 

 (cal/mol-K) 
 ΔG  o 

 (kcal/mol) 
 ΔH  o 

 (kcal/mol) 
 ΔS  o 

 (cal/mol-K) 
 ΔG  o 

 (kcal/mol) 

 Sarcosine  2.82  -30.85  12.02  -1.34  -1.92  -0.77 

 Glycine  3.14  -36.15  13.92  -0.03  8.91  -2.69 

 Alanine  2.23  -33.68  12.27  -0.26  -1.92  0.31 

 Proline  1.18  -42.76  13.92  -0.38  4.24  -1.65 

 An  analysis  of  the  C9-N2  bond  length  was  performed.  The  C9-N2  bond,  shown  below  in 

 Figure  7,  is  generalized  as  the  bond  between  the  carbon  of  the  CO  2  molecule  and  the 

 participating  nitrogen  of  the  amino  acid.  Bond  lengths  were  analyzed  for  the  base  case  and  four 

 additional calculation sets. 

 Figure 7: A numbered geometry of the sarcosine-CO  2  Reaction 2 product. 

 23 



 Table 8: C9-N2 bond length by calculation set, amino acid, and molecule. 

 Calculation 
 Set 

 Molecule  C9-N2 Bond Length (Å) 

 Base 
 Zwitterion  1.582  1.566  1.570  1.564  1.573  1.562  1.559  1.555  1.574 

 Product  1.411  1.405  1.399  1.398  1.400  1.402  1.394  1.413  1.405 

 No 
 COSMO 

 Zwitterion  1.658  1.648  1.647  1.646  1.641  1.627  1.616  1.656  1.692 

 Product  1.450  1.434  1.427  1.461  1.443  1.446  1.418  1.442  1.446 

 No Disp 
 Zwitterion  1.579  1.565  1.569  1.563  1.573  1.562  1.558  1.555  1.574 

 Product  1.408  1.405  1.399  1.398  1.400  1.402  1.394  1.413  1.405 

 Accurate 
 Zwitterion  1.555  1.556  1.557  1.552  1.561  1.546  1.555  1.546  1.566 

 Product  1.393  1.376  1.385  1.373  1.393  1.382  1.384  1.392  1.384 

 B3LYP 
 Zwitterion  1.615  1.590  1.579  1.588  1.596  1.588  1.582  1.572  1.603 

 Product  1.417  1.411  1.404  1.391  1.405  1.410  1.398  1.413  1.411 

 Amino Acid 

 To compare the base case to the four other calculation sets, t-tests were used. The bond lengths in 

 the zwitterion and product molecules are compared separately. 

 Table 9: t-values for the comparison of C9-N2 bond lengths. The t-values compare bond lengths from the base 
 calculation set to the other individual calculation sets. 

 C9-N2 Bond Length: t-values 

 Base/No COSMO  Base/No Disp  Base/Accurate  Base/B3LYP 

 Zwitterion  Product  Zwitterion  Product  Zwitterion  Product  Zwitterion  Product 

 6.63E-07  4.99E-06  0.842  0.907  0.003  2.89E-05  5.37E-04  0.297 
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 Figure 8: C9-N2 bond lengths in the amino acid-CO  2  zwitterion  for nine amino acids and five calculation sets. 

 Figure 9: C9-N2 bond lengths in the amino acid-CO  2  product  for nine amino acids and five calculation  sets. 
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 5. Discussion 

 The  ΔE  of  Reaction  1  was  calculated  for  nine  different  amino  acids  with  five  different 

 sets  of  calculation  variables.  From  Figure  4,  it  is  clear  that  the  variable  change  that  had  the 

 largest  effect  on  the  calculated  ΔE  values  was  the  removal  of  COSMO.  This  caused  an  average 

 shift  in  the  calculated  ΔE  values  of  -3.64  kcal/mol.  Removing  dispersion  correction  appears  to 

 have  had  the  smallest  effect,  with  the  ‘Base’  and  ‘No  Disp’  calculation  sets  appearing  very 

 similar  in  Figure  4.  Both  the  ‘Accurate’  and  ‘B3LYP’  calculation  sets  appear  to  have  differences 

 from  the  base,  but  it  is  unclear  from  Figure  4  whether  the  differences  are  significant.  A  t-value  of 

 0.014  for  comparing  the  ‘Base/No  COSMO’  data  sets  confirms  that  the  two  differ  significantly. 

 This  is  also  the  lowest  t-value  for  Reaction  1,  confirming  that  the  removal  of  COSMO  caused  the 

 largest  statistical  difference.  The  removal  of  dispersion  correction  did  not  have  a  significant 

 effect  on  the  calculated  internal  energy  values,  with  a  t-value  of  0.686  when  compared  to  the 

 base  case.  Changing  the  basis  set  from  6-31G*  to  6-311++G**  had  a  significant  effect  on  the 

 internal  energies  (t-value  0.034).  With  a  t-value  of  0.077,  changing  the  XC  functional  from 

 M06-2X  to  B3LYP  did  not  cause  a  statistically  significant  difference  in  the  ΔE  values.  However, 

 it  is  clear  that  the  XC  functional  has  a  discernible  effect  on  the  calculations,  as  this  t-value  is 

 close to 0.05. 

 ΔE  values  for  Reaction  2  were  calculated  for  nine  amino  acids  with  six  sets  of 

 calculation  variables.  The  magnitude  of  the  observed  difference  in  ΔE  values  between 

 calculation  sets  was  much  larger  for  Reaction  2  than  for  Reaction  1.  For  Reaction  1,  the  removal 

 of  COSMO  had  the  largest  average  effect  of  -3.64  kcal/mol.  For  Reaction  2,  calculation  sets 

 ‘Accurate,’  ‘Change  of  Base,’  and  ‘No  COSMO’  had  average  effects  of  +16.0,  +36.1,  and  +42.9 

 kcal/mol,  respectively.  The  t-values  for  comparing  those  three  calculation  sets  to  the  base  case 

 are  6.81*10  -10  ,  1.46*10  -14  ,  and  1.51*10  -7  ,  respectively.  The  t-value  for  the  comparison  of  the  ‘No 

 COSMO’  data  set  is  higher  than  the  other  two,  despite  having  a  larger  average  change,  due  to  the 

 data  set  having  a  comparatively  large  standard  deviation  (See  Figure  6).  Similar  to  Reaction  1, 

 the  removal  of  dispersion  corrections  did  not  have  a  significant  effect  on  the  reaction  ΔE;  the 

 t-value  for  the  comparison  of  this  data  set  to  the  base  case  was  calculated  to  be  0.899.  Another 

 similarity  to  Reaction  1  was  observed  with  the  change  of  the  XC  functional.  The  comparison  of 

 the  ‘B3LYP’  data  set  to  the  base  case  resulted  in  a  t-value  of  0.080,  a  value  extremely  close  to 

 that of the same comparison for Reaction 1. 
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 A  similar  pattern  that  was  observed  for  the  t-test  comparisons  of  the  ΔE  values  was  seen 

 in  the  t-tests  comparisons  of  the  C9-N2  bond  length.  For  both  the  zwitterion  and  product 

 geometries,  the  removal  of  COSMO  and  the  change  in  the  basis  set  significantly  impacted  the 

 C9-N2  bond  length.  T-values  for  comparing  these  bond  length  data  sets  to  the  base  case  are 

 shown  in  Table  9.  The  removal  of  dispersion  correction  did  not  have  a  significant  impact  on  the 

 C9-N2  bond  length  for  either  the  zwitterion  or  product  geometries.  T-values  for  comparing  these 

 ‘No  Disp’  geometries  to  the  base  case  are  0.842  and  0.907,  respectively.  Interestingly,  while  the 

 change  of  the  XC  functional  did  have  a  significant  effect  on  the  zwitterion  geometries,  the  effect 

 was  not  significant  for  the  product  geometries.  This  is  due  to  a  larger  average  change  in  the 

 C9-N2  bond  length  in  the  zwitterion  when  the  XC  functional  is  changed;  the  average  change  in 

 the  C9-N2  bond  length  in  the  zwitterion  for  the  ‘B3LYP’  data  set  is  +0.023Å,  whereas  for  the 

 product the average change is only +0.004Å. 

 T-values  for  the  comparisons  of  both  the  Reaction  1  and  2  ΔE  values  and  the  C9-N2  bond 

 length  in  the  zwitterion  and  product  geometries  indicate  that  the  removal  of  COSMO  and  the 

 change  in  the  basis  set  from  ‘Routine’  to  ‘Accurate’  both  had  statistically  significant  impacts  on 

 the  calculated  ΔE  values  and  molecule  geometries.  The  removal  of  dispersion  corrections  were 

 not  statistically  significant  to  either  the  calculated  ΔE  values  or  the  molecule  geometries.  The 

 change  of  XC  functional  had  a  clear  impact  on  both  the  calculated  ΔE  values  and  molecule 

 geometries, though the change was not significant in all cases. 

 For  both  reactions,  the  removal  of  COSMO  and  the  change  of  basis  set  from  6-31G*  to 

 6-311++G**  had  statistically  significant  effects  on  the  calculated  ΔE  values  and  molecule 

 geometries.  The  removal  of  COSMO  represents  a  fundamental  change  to  the  reaction  system. 

 Without  COSMO,  the  solvent-solute  interactions  are  not  accounted  for  in  calculations;  removing 

 these  interactions  is  why  the  geometries  and  internal  energies  differ  significantly  from  the  base 

 case.  Several  differences  exist  between  the  6-31G*  and  6-311++G**  basis  sets.  Most  notably,  the 

 latter  includes  polarization  functions  for  heavy  elements  and  diffuse  functions  for  all  elements 

 included  in  the  basis  set,  neither  of  which  are  present  in  6-31G*.  Likely,  the  addition  of  diffuse 

 functions  in  the  6-311++G**  set  is  largely  responsible  for  the  statistical  difference  of  these 

 calculations  from  the  base  case.  Diffuse  functions  are  particularly  important  for  modeling  anions, 

 which  are  present  in  the  reactants  and  products  of  both  Reactions  1  and  2.  The  removal  of 

 dispersion  corrections  did  not  significantly  impact  the  internal  energies  of  either  reaction;  this  is 
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 likely  because  the  M06-2X  functional  is  parameterized  for  dispersion.  Had  B3LYP  been  used  for 

 the  base  case,  dispersion  corrections  likely  would  have  had  a  more  significant  impact  on 

 calculations.  The  change  of  the  XC  functional  had  an  apparent  but  not  statistically  significant 

 effect  on  the  internal  energies  and  geometries  of  both  reactions.  This  difference  may  be  due  to 

 the  ability  of  M06-2X  to  describe  dispersion  interactions  better  than  B3LYP,  or  it  may  be 

 because  M06-2X  includes  a  higher  percent  of  the  Hartree-Fock  exact  exchange  than  B3LYP 

 (54%  vs  20%).  In  Reaction  2,  the  change  of  the  base  from  OH  -  to  RNHCOO  -  had  a  significant 

 impact  on  the  reaction  ΔE  values.  This  is  expected  as  the  change  of  base  in  the  reaction 

 represents  a  change  to  the  reaction  mechanism.  This  highlights  the  importance  of  the  chosen  base 

 when modeling the reaction. The change of base reaction for threonine is shown below. 

 Figure 10: Final reactant and product geometries for the ‘Change of Base’ Reaction 2 of threonine. 

 The  calculated  ΔG  values  shown  in  Table  7  indicate  that  Reaction  1  is  not  spontaneous  at 

 298K  for  the  four  amino  acids  analyzed.  An  additional  driving  force  for  the  reaction,  such  as  a 

 catalyst  or  a  change  in  pH,  is  be  necessary  for  the  reaction  to  proceed.  Strongly  negative  ΔS 

 values  for  Reaction  1  show  that  the  reaction  will  become  less  favorable  with  increasing 

 temperature  for  all  four  amino  acids.  Reaction  2  is  spontaneous  at  298K  for  the  four  amino  acids, 

 with  the  exception  of  alanine.  It  remains  spontaneous  at  higher  temperatures  for  glycine  and 

 proline  but  becomes  less  favorable  for  sarcosine  and  alanine.  This  analysis  supports  the 

 formation  of  the  Reaction  2  amino  acid-CO  2  product  for  some  amino  acids;  others  may  exist  in 

 solution  as  a  zwitterion  if  Reaction  1  proceeds.  Like  Reaction  1,  an  additional  driving  force  may 

 be  necessary  to  shift  Reaction  2  toward  the  products.  The  decrease  in  length  of  the  C9-N2  bond 

 from  the  amino  acid-CO  2  zwitterion  to  the  product  across  all  calculation  sets  belies  increased 

 stability and supports the formation of the Reaction 2 product. 
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 6. Conclusions 
 The  t-test  comparisons  of  five  data  sets  for  Reaction  1  and  six  data  sets  for  Reaction  2 

 show  that  removing  solvation  modeling  (COSMO)  and,  separately,  changing  the  basis  set  from 

 6-31G*  to  6-311++G**  both  significantly  affected  the  calculated  reaction  internal  energies  and 

 geometries.  The  removal  of  dispersion  correction  did  not  significantly  affect  either,  though  this  is 

 likely  because  M06-2X  is  capable  of  accurately  describing  dispersion  effects  without  the 

 correction  of  DFT-D3.  The  change  of  XC  functional  from  M06-2X  to  B3LYP  did  not  have  a 

 significant  effect  on  the  calculated  internal  energies  or  geometries  of  Reactions  1  and  2;  except 

 for  in  the  geometries  of  the  amino  acid-CO  2  zwitterions,  where  B3LYP  calculated  the  C9-N2 

 bond  length  to  be  an  average  of  0.023Å  longer  than  M06-2X.  The  change  of  base  in  Reaction  2 

 presented  a  significant  change  to  the  ΔE  of  the  reaction.  Based  on  these  results  and  information 

 from  the  literature  review,  DFT  calculations  performed  at  a  6-311++G**  level  with  the  M06-2X 

 functional,  solvation  modeling  with  COSMO,  and  without  dispersion  correction  are 

 recommended  as  the  most  effective  method,  among  those  explored,  for  modeling  the  interactions 

 of  amino  acids  with  CO  2  .  A  6-31G*  basis  set  may  be  used  to  increase  the  speed  of  calculations  at 

 the  expense  of  accuracy.  The  binding  energies  of  the  nine  amino  acid-CO  2  complexes  were 

 calculated  as  the  sum  of  the  ΔE  values  for  Reactions  1  and  2.  They  were  calculated  as  follows: 

 sarcosine  (-32.86  kcal/mol),  glycine  (-30.35  kcal/mol),  alanine  (-31.81  kcal/mol),  proline  (-34.02 

 kcal/mol),  valine  (-32.46  kcal/mol),  leucine  (-29.36  kcal/mol),  serine  (-31.90  kcal/mol), 

 phenylalanine  (-32.25  kcal/mol),  and  threonine  (-29.03  kcal/mol).  These  values  represent  binding 

 energies  calculated  using  DFT  with  COSMO,  M06-2X,  a  6-311++G**  basis  set,  and  DFT-D3 

 dispersion  correction.  These  calculated  binding  energies  are  very  similar,  with  a  standard 

 deviation  of  1.65  kcal/mol.  This  suggests  that  the  binding  energies  of  amino  acid-CO  2  complexes 

 are independent of the amino acid. 

 29 



 References 

 Becke, A. D. (1988). Density-functional exchange-energy approximation with correct 
 asymptotic behavior.  Physical Review A  ,  38  (6), 3098–3100. 
 https://doi.org/10.1103/PhysRevA.38.3098 

 Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., 
 Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., 
 Stammer, D., & Unnikrishnan, A. S. (2013).  Sea level  change  [Technical Report]. 
 P.M.Cambridge University Press.  https://drs.nio.res.in/drs/handle/2264/4605 

 Cremer, D. (2011). Møller–Plesset perturbation theory: From small molecule methods to 
 methods for thousands of atoms.  WIREs Computational  Molecular Science  ,  1  (4), 
 509–530.  https://doi.org/10.1002/wcms.58 

 Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio 
 parametrization of density functional dispersion correction (DFT-D) for the 94 elements 
 H-Pu.  The Journal of Chemical Physics  ,  132  (15), 154104. 
 https://doi.org/10.1063/1.3382344 

 Guo, D., Thee, H., Tan, C. Y., Chen, J., Fei, W., Kentish, S., Stevens, G. W., & da Silva, G. 
 (2013). Amino Acids as Carbon Capture Solvents: Chemical Kinetics and Mechanism 
 of the Glycine + CO2 Reaction.  Energy & Fuels  ,  27  (7),  3898–3904. 
 https://doi.org/10.1021/ef400413r 

 Haszeldine, R. S. (2009). Carbon Capture and Storage: How Green Can Black Be?  Science  , 
 325  (5948), 1647–1652.  https://doi.org/10.1126/science.1172246 

 Holst, J. van, Versteeg, G. F., Brilman, D. W. F., & Hogendoorn, J. A. (2009). Kinetic study 
 of CO2 with various amino acid salts in aqueous solution.  Chemical Engineering 
 Science  ,  64  (1), 59–68.  https://doi.org/10.1016/j.ces.2008.09.015 

 Hu, G., Smith, K. H., Wu, Y., Kentish, S. E., & Stevens, G. W. (2017). Screening Amino 
 Acid Salts as Rate Promoters in Potassium Carbonate Solvent for Carbon Dioxide 
 Absorption.  Energy & Fuels  ,  31  (4), 4280–4286. 
 https://doi.org/10.1021/acs.energyfuels.7b00157 

 Hu, G., Smith, K. H., Wu, Y., Mumford, K. A., Kentish, S. E., & Stevens, G. W. (2018). 
 Carbon dioxide capture by solvent absorption using amino acids: A review.  Chinese 

 30 

https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
https://drs.nio.res.in/drs/handle/2264/4605
https://doi.org/10.1002/wcms.58
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1021/ef400413r
https://doi.org/10.1021/ef400413r
https://doi.org/10.1126/science.1172246
https://doi.org/10.1016/j.ces.2008.09.015
https://doi.org/10.1021/acs.energyfuels.7b00157
https://doi.org/10.1021/acs.energyfuels.7b00157


 Journal of Chemical Engineering  ,  26  (11), 2229–2237. 
 https://doi.org/10.1016/j.cjche.2018.08.003 

 IPCC. (2005).  IPCC special report on carbon dioxide  capture and storage  . Cambridge 
 University Press. 

 IPCC. (2022).  Global Warming of 1.5°C: IPCC Special  Report on Impacts of Global 
 Warming of 1.5°C above Pre-industrial Levels in Context of Strengthening Response to 
 Climate Change, Sustainable Development, and Efforts to Eradicate Poverty  (1st ed.). 
 Cambridge University Press.  https://doi.org/10.1017/9781009157940 

 Jalan, A., W. Ashcraft, R., H. West, R., & H. Green, W. (2010). Predicting solvation energies 
 for kinetic modeling.  Annual Reports Section “C” (Physical  Chemistry)  ,  106  (0), 
 211–258.  https://doi.org/10.1039/B811056P 

 Jones, R. O. (2015). Density functional theory: Its origins, rise to prominence, and future. 
 Reviews of Modern Physics  ,  87  (3), 897–923. 
 https://doi.org/10.1103/RevModPhys.87.897 

 Jones, R. O., & Gunnarsson, O. (1989). The density functional formalism, its applications 
 and prospects.  Reviews of Modern Physics  ,  61  (3), 689–746. 
 https://doi.org/10.1103/RevModPhys.61.689 

 Klamt, A. (1995). Conductor-like Screening Model for Real Solvents: A New Approach to 
 the Quantitative Calculation of Solvation Phenomena.  The Journal of Physical 
 Chemistry  ,  99  (7), 2224–2235.  https://doi.org/10.1021/j100007a062 

 Kumar, P. S., Hogendoorn, J. A., Versteeg, G. F., & Feron, P. H. M. (2003). Kinetics of the 
 reaction of CO2 with aqueous potassium salt of taurine and glycine.  AIChE Journal  , 
 49  (1), 203–213.  https://doi.org/10.1002/aic.690490118 

 Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti 
 correlation-energy formula into a functional of the electron density.  Physical Review B  , 
 37  (2), 785–789.  https://doi.org/10.1103/PhysRevB.37.785 

 Lu, G., Wang, Z., Bhatti, H., Fan, X., Umair, H., & Bhatti. (2023). Recent progress in carbon 
 dioxide capture technologies: A review.  Clean Energy  Science and Technology  ,  1  . 
 https://doi.org/10.18686/cest.v1i1.32 

 31 

https://doi.org/10.1016/j.cjche.2018.08.003
https://doi.org/10.1016/j.cjche.2018.08.003
https://doi.org/10.1017/9781009157940
https://doi.org/10.1039/B811056P
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1103/RevModPhys.87.897
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1103/RevModPhys.61.689
https://doi.org/10.1021/j100007a062
https://doi.org/10.1002/aic.690490118
https://doi.org/10.1103/PhysRevB.37.785
https://doi.org/10.18686/cest.v1i1.32
https://doi.org/10.18686/cest.v1i1.32


 Matta, C. F. (2010). How dependent are molecular and atomic properties on the electronic 
 structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically 
 relevant set of molecules.  Journal of Computational  Chemistry  ,  31  (6), 1297–1311. 
 https://doi.org/10.1002/jcc.21417 

 Park, S., Song, H.-J., Lee, M.-G., & Park, J. (2014). Screening test for aqueous solvents 
 used in CO2 capture: K2CO3 used with twelve different rate promoters.  Korean 
 Journal of Chemical Engineering  ,  31  (1), 125–131. 
 https://doi.org/10.1007/s11814-013-0200-y 

 Rochelle, G. T. (2009). Amine Scrubbing for CO2 Capture.  Science  ,  325  (5948), 1652–1654. 
 https://doi.org/10.1126/science.1176731 

 Sandler, I., Chen, J., Taylor, M., Sharma, S., & Ho, J. (2021). Accuracy of 
 DLPNO-CCSD(T): Effect of Basis Set and System Size.  The Journal of Physical 
 Chemistry A  ,  125  (7), 1553–1563.  https://doi.org/10.1021/acs.jpca.0c11270 

 Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., Kato, E., Jackson, R. B., 
 Cowie, A., Kriegler, E., van Vuuren, D. P., Rogelj, J., Ciais, P., Milne, J., Canadell, J. 
 G., McCollum, D., Peters, G., Andrew, R., Krey, V., … Yongsung, C. (2016). 
 Biophysical and economic limits to negative CO2 emissions.  Nature Climate Change  , 
 6  (1), 42–50.  https://doi.org/10.1038/nclimate2870 

 Song, H.-J., Park, S., Kim, H., Gaur, A., Park, J.-W., & Lee, S.-J. (2012). Carbon dioxide 
 absorption characteristics of aqueous amino acid salt solutions.  International Journal of 
 Greenhouse Gas Control  ,  11  , 64–72.  https://doi.org/10.1016/j.ijggc.2012.07.019 

 Tkatchenko, A., & Scheffler, M. (2009). Accurate Molecular Van Der Waals Interactions 
 from Ground-State Electron Density and Free-Atom Reference Data.  Physical Review 
 Letters  ,  102  (7), 073005.  https://doi.org/10.1103/PhysRevLett.102.073005 

 Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum Mechanical Continuum Solvation 
 Models.  Chemical Reviews  ,  105  (8), 2999–3094.  https://doi.org/10.1021/cr9904009 

 Vaidya, P. D., & Kenig, E. Y. (2007). CO2-Alkanolamine Reaction Kinetics: A Review of 
 Recent Studies.  Chemical Engineering & Technology  ,  30  (11), 1467–1474. 
 https://doi.org/10.1002/ceat.200700268 

 32 

https://doi.org/10.1002/jcc.21417
https://doi.org/10.1002/jcc.21417
https://doi.org/10.1007/s11814-013-0200-y
https://doi.org/10.1007/s11814-013-0200-y
https://doi.org/10.1126/science.1176731
https://doi.org/10.1126/science.1176731
https://doi.org/10.1021/acs.jpca.0c11270
https://doi.org/10.1038/nclimate2870
https://doi.org/10.1016/j.ijggc.2012.07.019
https://doi.org/10.1103/PhysRevLett.102.073005
https://doi.org/10.1021/cr9904009
https://doi.org/10.1002/ceat.200700268
https://doi.org/10.1002/ceat.200700268


 Vaidya, P. D., Konduru, P., Vaidyanathan, M., & Kenig, E. Y. (2010). Kinetics of Carbon 
 Dioxide Removal by Aqueous Alkaline Amino Acid Salts.  Industrial & Engineering 
 Chemistry Research  ,  49  (21), 11067–11072.  https://doi.org/10.1021/ie100224f 

 Yu, W.-C., Astarita, G., & Savage, D. W. (1985). Kinetics of carbon dioxide absorption in 
 solutions of methyldiethanolamine.  Chemical Engineering  Science  ,  40  (8), 1585–1590. 
 https://doi.org/10.1016/0009-2509(85)80101-9 

 Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group 
 thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and 
 transition elements: Two new functionals and systematic testing of four M06-class 
 functionals and 12 other functionals.  Theoretical  Chemistry Accounts  ,  120  (1), 215–241. 
 https://doi.org/10.1007/s00214-007-0310-x 

 33 

https://doi.org/10.1021/ie100224f
https://doi.org/10.1016/0009-2509(85)80101-9
https://doi.org/10.1016/0009-2509(85)80101-9
https://doi.org/10.1007/s00214-007-0310-x
https://doi.org/10.1007/s00214-007-0310-x


 Appendix 

 Example Input Files 

 H  2  O: 
 title "Water Base" 

 echo 

 charge 0 

 geometry 
 zmatrix 
 O 
 H 1 B1 
 H 1 B2 2 A1 
 variables 
 B1 0.941999857 
 B2 0.941999857 
 A1 105.4833155 
 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
 maxiter 2000 
 XC M06-2X 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
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 dielec 78.0 
 radius 1.52 
 1.2 
 1.2 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 

 property 
 dipole 
 mulliken 

 end 

 task dft property 

 OH-: 
 title "Hydroxide Base" 

 echo 

 charge -1 

 geometry 
 zmatrix 
 O 
 H 1 B1 
 variables 
 B1 1.049999654 
 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
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 maxiter 2000 
 XC m06-2x 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
 dielec 78.0 
 radius 1.52 
 1.2 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 

 property 
 dipole 
 mulliken 

 end 

 task dft property 

 CO  2  : 
 title "CO2 Base" 

 echo 

 charge 0 

 geometry 
 zmatrix 
 C 
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 O 1 B1 
 O 1 B2 2 A1 
 variables 
 B1 1.313000464 
 B2 1.313000464 
 A1 180.0000000 
 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
 maxiter 2000 
 XC m06-2x 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
 dielec 78.0 
 radius 1.70 
 1.52 
 1.52 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 

 property 
 dipole 
 mulliken 

 end 
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 task dft property 

 Sarcosine: 
 title "Sarcosine Base" 

 echo 

 charge -1 

 geometry 
 zmatrix 
 C 
 N 1 B1 
 C 2 B2 1 A1 
 C 3 B3 2 A2 1 D1 
 O 4 B4 3 A3 2 D2 
 O 4 B5 3 A4 2 D3 
 H 3 B6 2 A5 1 D4 
 H 3 B7 2 A6 1 D5 
 H 2 B8 1 A7 3 D6 
 H 1 B9 2 A8 3 D7 
 H 1 B10 2 A9 3 D8 
 H 1 B11 2 A10 3 D9 
 variables 
 B1 1.446476535 
 B2 1.447303093 
 A1 112.7145102 
 B3 1.514368149 
 A2 110.6604817 
 D1 -177.4008638 
 B4 1.343861571 
 A3 112.3166218 
 D2 73.42412516 
 B5 1.206508232 
 A4 126.9266639 
 D3 -105.8452025 
 B6 1.115714586 
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 A5 110.7125113 
 D4 -56.47505029 
 B7 1.114987097 
 A6 109.4687711 
 D5 62.93047230 
 B8 1.020643866 
 A7 108.9531340 
 D6 121.5644570 
 B9 1.114152908 
 A8 110.4989873 
 D7 -61.06340265 
 B10 1.114623688 
 A9 110.9640262 
 D8 60.84530363 
 B11 1.113950467 
 A10 109.0578528 
 D9 -179.8708414 
 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
 maxiter 2000 
 XC m06-2x 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
 dielec 78.0 
 radius 1.7 
 1.55 
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 1.7 
 1.7 
 1.52 
 1.52 
 1.2 
 1.2 
 1.2 
 1.2 
 1.2 
 1.2 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 

 property 
 dipole 
 mulliken 

 end 

 task dft property 

 Sarcosine-CO  2  Zwitterion: 
 title "Sarcosine Zwitter Base" 

 echo 

 charge -1 

 geometry 
 zmatrix 
 C 
 N 1 B1 
 C 2 B2 1 A1 
 C 3 B3 2 A2 1 D1 
 O 4 B4 3 A3 2 D2 
 O 4 B5 3 A4 2 D3 
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 H 3 B6 2 A5 1 D4 
 H 3 B7 2 A6 1 D5 
 C 2 B8 1 A7 3 D6 
 O 9 B9 2 A8 1 D7 
 O 9 B10 2 A9 1 D8 
 H 2 B11 1 A10 3 D9 
 H 1 B12 2 A11 3 D10 
 H 1 B13 2 A12 3 D11 
 H 1 B14 2 A13 3 D12 
 variables 
 B1 1.513722544 
 B2 1.527953130 
 A1 110.6729213 
 B3 1.519732722 
 A2 112.7070854 
 D1 -177.1058585 
 B4 1.314154027 
 A3 112.0359251 
 D2 -139.3327318 
 B5 1.203378978 
 A4 121.1326955 
 D3 38.37696964 
 B6 1.114508426 
 A5 109.6102233 
 D4 -58.60497930 
 B7 1.112258772 
 A6 109.9618022 
 D5 59.30882469 
 B8 1.595135769 
 A7 107.8400528 
 D6 120.3461733 
 B9 1.316181932 
 A8 122.7310752 
 D7 -107.1186891 
 B10 1.210184221 
 A9 114.6304501 
 D8 62.74404876 
 B11 1.121424919 
 A10 109.4251024 
 D9 -122.6943878 
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 B12 1.112290058 
 A11 110.6779770 
 D10 58.98121469 
 B13 1.115289781 
 A12 111.3728063 
 D11 179.3206006 
 B14 1.114036558 
 A13 110.4078086 
 D12 -60.59211050 
 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
 maxiter 2000 
 XC m06-2x 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
 dielec 78.0 
 radius 1.7 
 1.55 
 1.7 
 1.7 
 1.52 
 1.52 
 1.2 
 1.2 
 1.7 
 1.52 
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 1.52 
 1.2 
 1.2 
 1.2 
 1.2 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 

 property 
 dipole 
 mulliken 

 end 

 task dft property 

 Sarcosine-CO  2  Product: 
 title "Sarcosine Product Base" 

 echo 

 charge -2 

 geometry 
 zmatrix 
 C 
 N 1 B1 
 C 2 B2 1 A1 
 C 3 B3 2 A2 1 D1 
 O 4 B4 3 A3 2 D2 
 O 4 B5 3 A4 2 D3 
 H 3 B6 2 A5 1 D4 
 H 3 B7 2 A6 1 D5 
 C 2 B8 1 A7 3 D6 
 O 9 B9 2 A8 1 D7 
 O 9 B10 2 A9 1 D8 
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 H 1 B11 2 A10 3 D9 
 H 1 B12 2 A11 3 D10 
 H 1 B13 2 A12 3 D11 
 variables 
 B1 1.454327715 
 B2 1.460969975 
 A1 122.6786761 
 B3 1.523833456 
 A2 112.1299509 
 D1 -63.44073493 
 B4 1.205728147 
 A3 127.6009580 
 D2 -4.045073190 
 B5 1.316868397 
 A4 108.9774773 
 D3 172.4681585 
 B6 1.114961319 
 A5 107.3904348 
 D4 56.21812419 
 B7 1.114203394 
 A6 112.6268697 
 D5 173.8411159 
 B8 1.394452691 
 A7 117.4352065 
 D6 -178.4677010 
 B9 1.205636731 
 A8 122.6818482 
 D7 177.9283594 
 B10 1.326234036 
 A9 118.4723546 
 D8 -4.416948220 
 B11 1.113612139 
 A10 110.6105407 
 D9 -2.241620385 
 B12 1.114223118 
 A11 110.4928891 
 D10 117.2103527 
 B13 1.114053556 
 A12 110.4771907 
 D11 -121.1042505 
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 end 
 end 

 basis noprint 
 * library 6-31G* 
 end 

 dft 
 maxiter 2000 
 XC m06-2x 
 mult 1 
 disp vdw 3 
 end 
 set grid:eaf_size_in_dbl 9999999 

 driver 
 maxiter 2000 
 end 

 cosmo 
 dielec 78.0 
 radius 1.7 
 1.55 
 1.7 
 1.7 
 1.52 
 1.52 
 1.2 
 1.2 
 1.7 
 1.52 
 1.52 
 1.2 
 1.2 
 1.2 
 lineq  0 
 end 

 task dft optimize 
 task dft energy 
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 property 
 dipole 
 mulliken 

 end 

 task dft property 
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