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Abstract

With CO, levels on the rise in the earth, air, and water, reducing emissions to combat
global warming is more important than ever. Solvent carbon capture is an effective method for
removing CO, from industrial flue gas streams, but traditional solvents pose issues for the
sustainability of the process. New solvents that are environmentally friendly and more efficient
are in demand. Biomolecules, specifically amino acids, may be able to fill this demand.
Atomistic modeling (density functional theory) was employed to model the interactions of nine
amino acids with CO, in an aqueous setting. The goals of the project were to determine which
density functional theory methods were most effective for modeling the binding interactions
between CO, molecules and amino acids, and to quantify the binding energies of amino acid-CO,
complexes. Analysis with t-tests revealed significant effects when solvation modeling was
removed, or the basis set was altered. Conversely, excluding dispersion corrections showed no
significant impact. Switching the exchange-correlation functional from M06-2X to B3LYP did
not significantly alter the internal energies or reaction geometries, except for in the geometries of
the amino acid-CO, zwitterions. However, changing the base which deprotonates the zwitterion
in the reaction notably affected the internal energy change. DFT calculations performed at a
6-311++G** level with the M06-2X functional, solvation modeling with COSMO, and without
dispersion correction are recommended as the most effective method, among those explored, for
modeling the interactions of amino acids with CO,. The binding energies for the complexes of
nine amino acids with CO, were calculated and data supports that the binding energies of these

complexes are independent of the amino acid.
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1. Introduction

1.1 The Role of CO, in Global Warming

Climate change casts an ever-darkening shadow over our planet, with carbon dioxide
(CO,) at the forefront as a potent force driving global warming. As one of the most prevalent
greenhouse gasses emitted by human activities, CO, plays a pivotal role in trapping heat within
the Earth's atmosphere, exacerbating the alarming trends of rising temperatures and
environmental instability (Smith et al., 2016). The burning of fossil fuels, industrial processes,
and deforestation have been primary contributors to the unprecedented increase in atmospheric
CO, levels in recent decades, surpassing 400 parts per million (ppm) for the first time in recorded
history (IPCC, 2005).

The need to address CO, emissions has never been more urgent, as the consequences of
unchecked climate change manifest themselves in increasingly severe weather patterns, rising
sea levels, and unprecedented ecological disruptions. Moreover, the ramifications of heightened
CO, levels extend across the earth, as heightened CO, levels are observed in the land, the oceans,
and the atmosphere (Rochelle, 2009). Elevated temperatures caused by CO,-induced warming
exacerbate the frequency and intensity of extreme weather phenomena, including heatwaves,
storms, and extreme precipitation. Concurrently, seawater's thermal expansion and the melting of
polar ice contribute to rising sea levels, posing imminent threats to coastal populations and
ecosystems (Church & Clark, 2013). In light of these urgent challenges, concerted global action
to mitigate CO, emissions is imperative to safeguarding our planet's future well-being and

ensuring the resilience of human societies and natural ecosystems alike.

1.2 Advancing Solvent Carbon Capture

Carbon capture, a pivotal strategy in combating climate change, involves the extraction of
CO, produced by various human activities before their release into the atmosphere. By
intercepting CO, at its source, carbon capture technologies offer a crucial means to significantly
curtail emissions and transition towards a more sustainable future (IPCC, 2022).

Solvent carbon capture stands out among the various methods for capturing carbon,

proving to be an efficient approach for capturing CO, emissions. This method relies on chemical



solvents to absorb CO, from industrial flue gasses, trapping it for subsequent storage or
utilization. Solvent carbon capture systems can be seamlessly integrated into existing industrial
processes, making them an attractive option for reducing emissions across diverse sectors,
including power generation, manufacturing, and refining (Haszeldine, 2009). Moreover, captured
CO, can be stored underground or utilized in various applications such as enhanced oil recovery
or the production of synthetic fuels, thus reducing emissions and increasing economic viability
(IPCC, 2005).

Despite recent advancements in solvent carbon capture technology, challenges persist in
optimizing efficiency, reducing costs, and minimizing environmental impacts. Innovations are
needed to enhance solvent performance, increase capture rates, and decrease the energy
requirements associated with the separation and storage of CO,. Efforts are underway to develop
novel solvents with improved selectivity, stability, and regeneration capabilities to further
enhance the overall efficiency of carbon capture systems (Lu et al., 2023). Continued investment
in research, development, and deployment efforts is essential to overcoming existing barriers and
unlocking the full potential of carbon capture as a cornerstone of global climate change

mitigation efforts.

1.3 Amino Acids in Solvent Carbon Capture

Biomolecules encompass a diverse array of organic compounds essential for various
biological processes. These molecules, from carbohydrates and lipids to nucleic acids and
proteins, play pivotal roles in sustaining life and driving cellular functions. Beyond their
biological significance, biomolecules have applications in diverse industrial sectors owing to
their unique properties and versatility. Notably, amino acids have garnered attention for their
potential in solvent carbon capture due to their ability to interact with CO,.

In solvent carbon capture, amino acids facilitate the chemical absorption of CO, from
flue gases emitted by industrial processes. When exposed to CO,-rich gas streams, amino acid
solvents react to absorb the CO, molecules. This process removes CO, from the gas stream,
enabling the purification of industrial emissions and subsequent sequestration or utilization of
captured CO, (Lu et al., 2023). Amino acids possess distinct characteristics that make them

promising options for solvent-based CO, capture systems. These properties include reduced



vapor pressures, heightened resilience to oxygen degradation, and diminished toxicity compared
to conventional amine solvents. Their versatility arises from the presence of functional groups
which can participate in chemical reactions with CO, molecules. Additionally, the side chains of
amino acids contribute to their diverse properties, enabling tailored designs of solvent systems
optimized for specific capture applications. The structural diversity of amino acids can allow for
the modulation of solvent properties, such as selectivity, capacity, and regeneration efficiency, to
optimize the performance of solvent carbon capture systems. Furthermore, the tunability of
amino acid-based solvents enables the design of tailored capture solutions for specific industrial

applications and operating conditions (Guo et al., 2013).

1.4 Exploring Molecular Interactions with Density Functional Theory

Density Functional Theory (DFT) is a computational chemistry method used for studying
molecular interactions and properties. DFT provides a theoretical framework for accurately
predicting the electronic structure and energies of atoms and molecules. Its widespread adoption
in research and industry stems from its ability to balance computational efficiency and accuracy,
making it applicable to various chemical systems and phenomena (Jones, 2015).

To accurately simulate CO, binding in solvents, it is essential to factor in dispersion
forces and solvation effects when modeling these molecular interactions. Dispersion interactions,
also known as Van der Waals forces, emerge from the temporary fluctuations in electron density
within molecules and play a critical role in the interaction between CO, and solvent molecules.
While often subtle, these forces contribute significantly to the overall binding energy and must
be accurately accounted for in computational models (Tkatchenko & Scheffler, 2009).
Additionally, solvation effects, which are the interactions between solute molecules like CO, and
surrounding solvent molecules, influence the behavior and stability of CO, in solution. Solvent
molecules can modulate the energetics of CO, binding, alter its structural conformation, and
impact its transport properties in the environment. Therefore, incorporating solvation effects into
computational models is necessary for obtaining realistic insights into the behavior of CO, in
solution (Jalan et al., 2010).

DFT-based simulations enable the exploration of various factors influencing CO,

solvation, such as solvent effects and Van der Waals forces, thereby providing valuable insights



into CO, capture, transport, and storage processes. DFT facilitates an understanding of CO,
behavior in aqueous solutions, thereby catalyzing innovations in CO, capture and storage
technologies. DFT is a pivotal tool for exploring the behavior of CO, molecules in aqueous
solutions. By integrating dispersion and solvation effects into DFT calculations, accurate
predictions can be made to describe the thermodynamics and kinetics of CO, interactions with

water molecules and other solvents.

1.5 Project Goals

This project had two main goals. First, it aimed to determine which DFT methods were
most effective for modeling the binding interactions between CO, molecules and amino acids.
Second, it aimed to quantify the binding energies of amino acid-CO, complexes to provide
insight into the strength and nature of these interactions, which are pivotal for designing effective
CO, capture systems.

This research plays a significant role in addressing CO, emissions and combating global
warming. By exploring the capabilities of DFT and investigating the properties of amino acids,
the project aimed to contribute to advancing carbon capture technologies. Through these efforts,
this study sought to offer insights that could lead to the development of more sustainable and

efficient methods for capturing CO,, thereby helping to mitigate climate change.



2. Literature Review

2.1 Overview

The aim of this review is to identify and analyze existing molecular modeling techniques
employed to study similar complexes, evaluating their advantages and limitations. Additionally,
it aims to evaluate the rationale behind selecting Density Functional Theory (DFT) over
alternative methods like MP2 and DLPNO-CCSD(T), exploring the strengths and weaknesses of
each approach. The review endeavors to compile a list of amino acids studied in the context of
solvent-based carbon capture, providing insights into their individual characteristics and
effectiveness in CO, capture. A subset of amino acids will be selected for in-depth investigation
based on their structural and chemical properties, and potential for CO, capture. A brief

overview of the computational models used in this study will also be provided.

2.2 A Comparison of Molecular Modeling Methods

Previous studies investigating similar reactions have utilized various molecular modeling
methods to simulate CO, binding to amino acids. Among these methods are MP2 (Mgller-Plesset
perturbation theory), and DLPNO-CCSD(T) (Domain-based Local Pair Natural Orbital Coupled
Cluster with Single, Double, and Perturbative Triple excitations). Additionally, Density
Functional Theory (DFT) has been widely used due to its computational efficiency and
versatility in describing molecular interactions.

MP2 is one of the more simple and accurate expansions of Hartree-Fock. It provides
accurate electronic structure calculations by including electron correlation effects beyond the
Hartree-Fock approximation. It has been utilized in studies investigating CO, binding to amino
acids due to its ability to capture dispersion interactions, which are crucial for describing weak
interactions such as those involved in CO, solvation (Cremer, 2011). However, MP2 calculations
can be computationally demanding, particularly for large systems, limiting its applicability to
relatively small molecular complexes.

DLPNO-CCSD(T) is a highly accurate method that accounts for electron correlation
effects through coupled cluster theory. It offers a compromise between accuracy and

computational cost by employing truncation schemes, such as the domain-based approach, to



reduce the computational expense associated with conventional CCSD(T) calculations.
DLPNO-CCSD(T) has been used in studies of CO, interactions with biomolecules due to its high
accuracy in describing non-covalent interactions. However, DLPNO-CCSD(T) can be complex,
and its computational cost remains significant, especially for large systems (Sandler et al., 2021).

DFT, on the other hand, offers a computationally efficient approach to modeling
molecular interactions by approximating the electron density of a system. It has been widely
applied in studies of CO, binding to amino acids due to its balance of accuracy and
computational feasibility. DFT methods vary in exchange-correlation (XC) functionals, each
offering advantages and limitations in describing different types of interactions. The
consideration of methods like MP2 and DLPNO-CCSD(T) for this research is motivated by the
need for accurate descriptions of CO, binding to amino acids. While DFT provides a
computationally feasible approach, MP2 and DLPNO-CCSD(T) offer higher accuracy in
capturing dispersion and non-covalent interactions, which are crucial for understanding the
binding energetics of amino acid-CO, complexes.

DFT stands out due to its balance between accuracy and computational cost. While MP2
and DLPNO-CCSD(T) offer higher accuracy in describing molecular interactions, they have
significantly higher computational demands. DFT provides a more feasible approach and
moreover, it can be configured to incorporate solvation and dispersion. While MP2 and
DLPNO-CCSD(T) can be extended to include solvation models, the computational cost increases
substantially. This limitation hinders the practicality of using these methods for simulations
involving the solvent environments relevant to CO, capture processes (Tomasi et al., 2005). DFT
offers various solvation models that can be readily integrated into simulations, allowing for more
accurate descriptions of CO, binding in solution. The time efficiency of DFT compared to MP2
and DLPNO-CCSD(T) further justifies its selection as a computational method for this study.
While MP2 and DLPNO-CCSD(T) calculations can be prohibitively expensive, DFT
calculations scale more favorably with system size, allowing for the examination of larger
molecules or groups within a feasible computational budget (Matta, 2010).

Exchange-correlation functionals in DFT approximate the exchange and correlation
effects between electrons in a many-electron system. These functionals provide a framework to
describe these complex electron-electron interactions within the system accurately. In this study,

the XC functionals M06-2X and B3LYP will be used. The selection of the M06-2X and B3LYP



functionals for modeling the absorption of CO, in an aqueous solution is rationalized by their
complementary strengths in capturing different aspects of the system. M06-2X is renowned for
its accuracy in describing noncovalent interactions and dispersion forces, which are crucial for
describing the solvation behavior of CO, in water. Its incorporation of a significant fraction of
Hartree-Fock exchange allows for a balanced treatment of dynamic and static correlation effects,
enhancing accuracy in predicting energetics and geometries (Zhao & Truhlar, 2008). On the
other hand, B3LYP, another widely used hybrid functional, excels in describing the electronic

structure and transition properties.

2.3 A Review of Amino Acids for Solvent Carbon Capture

Numerous in-vitro and in-silico studies have been conducted to analyze the efficacy of
various amino acids for carbon-capture applications. Park et al. tested twelve different amino
acids as rate promoters for CO, absorption in a potassium carbonate solution. Six primary and
six secondary amino acid salts were used; the secondary amino acids generally increased the
absorption rates of CO, by the K,COj; solution much more. Sarcosine and pipecolic acid were
found to be the most effective rate promoters (Park et al., 2014). Hu et al. also studied the
efficacies of amino acid salts as rate promoters for CO, absorption in a K,CO; solution. Similarly
to Park et al, they found the effect of the amino acid salts to be sensitive to the pH of the
solution. Sarcosine and proline were found to be the most effective rate promoters. Both of these
amino acids were shown to be more effective absorption rate boosters at high pHs than
monoethanolamine (MEA), a commercially used solvent for CO, capture. This is due to the
higher reaction order between CO, and sarcosine/proline than between CO, and MEA (Song et
al., 2012).

Holst et al. studied CO, absorption in an aqueous solution with amino acid salts. They
found that the amino acid's pK, affects the CO, absorption rate, with a lower pK, corresponding
to a greater absorption rate. The potassium salts of sarcosine and proline were again found to be
the most effective at CO, absorption, the authors attribute this to higher rate constants and low
pK,s for these two amino acids. A difference between the lithium and potassium salts of proline
was noted, with the potassium salts showing an experimentally higher rate constant.

Interestingly, the absorption rate of CO, seemed to be independent of the counter-ion for



sarcosine salts. This discussion of counter-ions is also brought up in a review conducted by Hu et
al. with their conclusion being that potassium salts are generally the most effective. Hu et al.
reviewed recent experimental data using amino acid salts for CO, absorption. Their review
provides estimated reaction orders and corrected reaction constants of various amino acids at
298K. The greatest amount of data was collected for glycine, sarcosine, and proline, but
experimental data for more than a dozen other amino acids was also analyzed. They conclude
that lysine, proline, and sarcosine have been reported to have the largest reaction constants with
CO.,.

Based on this research, sarcosine and proline have emerged as the most promising amino
acids for study. Their efficacies are supported by experimental data, and their properties, namely
low pK,s and high rate constants with CO,, make them ideal candidates for further study.
Moreover, they have a relatively low number of atoms compared to other amino acids. Molecular
size is important for this study as the complexity of DFT calculations increases greatly for larger
molecules. In addition to sarcosine and proline, alanine, glycine, valine, leucine, serine,

phenylalanine, and threonine will be included in the calculations to provide a larger sample set.
2.4 Modeling the Reaction

To accurately model the reaction of an amino acid with CO,, knowledge of the
appropriate reaction mechanism is necessary. Three potential mechanisms can be employed to
model the reactions of amines; these are the zwitterion, termolecular, and base-catalyzed
hydration mechanisms (Vaidya & Kenig, 2007). Of these, further investigation is warranted into
the zwitterion and termolecular mechanisms. The base-catalyzed hydration mechanism describes
the reaction of tertiary amines, which does not pertain to this project. Additionally, Yu et al.
suggest that a zwitterion-type mechanism may also describe the base catalysis reaction.

Firstly, the zwitterion mechanism is a two-step mechanism. It suggests that the reaction

between the amino acid and CO, proceeds by forming a zwitterion intermediate.

RNH, + CO, & RNH,C00~ (1)

A base then deprotonates the zwitterion intermediate to form the product.



RNH,COO™ + B~ = RNHCOO + BH )

Vaidya et al. evaluated the kinetics and overall rate of this reaction. They found that the reaction
order would be fractional between 1 and 2, dependent on the concentration of salt in the solution.
This evaluation agrees with the data provided in the 2018 review by Hu et al. They found the
experimental reaction order of eight different amino acids with CO, to fall between 1 and 1.81,
dependent on the reaction apparatus, salt concentration, and temperature.

The termolecular mechanism is a one-step mechanism that assumes an amino acid reacts
with a CO, molecule and a base molecule simultaneously through an encounter complex. Most
occurrences of this encounter complex dissociate again to form the reactants, but a small amount

react with an additional amino acid salt or a water molecule to form the products.
RNH2 + CO2 + B & {Encounter Complex} = RNHCOO + BH' 3)

Vaidya et al.'s kinetics evaluation of this mechanism suggests that this reaction is first-order with
respect to the amino acid salt when water is the dominant base in the solution and second-order
when RNH, is the dominant base. This is another possible explanation for the fractional reaction
orders observed by Hu et al.

In their study of the kinetics of the reaction of aqueous salts of taurine and glycine,
Kumar et al. concluded that either the zwitterion or termolecular mechanism could be used to
describe the experimental kinetic data. Additionally, they found that more data would be required
for the reaction of various aqueous amino acid salts with CO, to come to a more certain
conclusion on which mechanism best describes the reaction. For the purposes of this study, the
zwitterion mechanism will be used to describe the reaction. The primary reason for this is that it
allows for the intermediate step of the reaction to be modeled more easily and accurately. In the
termolecular mechanism, the exact geometry of the encounter complex intermediate is unknown
and may be difficult to elucidate, given that the complex is composed of three molecules. The
geometry of the zwitterion intermediate is known and therefore makes it a more compelling

choice of mechanism for this study.



2.5. A Brief Overview of DF'T, Dispersion, and Solvation Models

DFT offers a practical approach to studying the electronic structure of matter. Proposed
by Walter Kohn and Pierre Hohenberg in 1964, DFT simplifies the many-body problem of
interacting electrons by focusing on the electron density rather than the wave function. This
reduction enables the calculation of various properties of atoms, molecules, and solids. Central to
DFT are the Kohn-Sham equations, introduced by Walter Kohn and Lu Sham in 1965. These
equations transform the many-electron problem into a set of single-electron equations, where
each electron moves in an effective potential determined by the electron density and the
exchange-correlation functional (Jones & Gunnarsson, 1989).

DFT calculations rely on accurately approximating the XC functional, which captures the
effects of electron exchange and correlation. While various approximations exist, none are exact,
and developing more accurate functionals remains an active area of research. Despite its
approximations, DFT is an indispensable tool in many subjects, providing insights into the
properties of diverse systems. Due to its efficiency and versatility, it is used widely in both
academic and industrial research.

In DFT, standard functionals often fail to accurately account for Van der Waals forces,
which are crucial molecular interactions. To account for this, dispersion correction (DFT-D3) is
included in calculations. DFT-D3 addresses this limitation by introducing an empirical correction
to the total energy of a system, specifically targeting dispersion interactions. This correction term
is added to the standard DFT energy and is based on the pairwise summation of atom-atom
dispersion contributions. The DFT-D3 method incorporates parameters derived from reference
data sets; it adjusts the dispersion interaction energy based on the distance between atoms and
their chemical environment. By including these corrections, DFT-D3 improves a description of
Van der Waals forces in DFT calculations, leading to more accurate predictions of molecular
structures, energetics, and properties (Grimme et al., 2010).

Another factor that standard DFT calculations do not account for is solvation. COSMO
(Conductor-Like Screening Model) is a continuum solvation model designed to simulate the
behavior of solute molecules in a solvent environment. In the COSMO model, the solvent is
treated as a continuous dielectric medium with a permittivity similar to water's. The solute

molecules are represented as charged surfaces surrounded by a layer of discrete point charges,

10



which mimic the polarizability and charge distribution of the real molecules. These point charges
interact with the solvent molecules, and the resulting electrostatic interactions are calculated
using continuum electrostatic theory, incorporating the solvent dielectric constant and the surface
charges of the solute (Klamt, 1995). COSMO has been successfully applied in various areas of

computational chemistry, including studies of solvation effects on reaction Kkinetics,

thermodynamics, and spectroscopy.
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3. Methodology
3.1 Modeling a Reaction with DFT

The calculations for this study were conducted using WebMO for a graphical interface,
and the Northwest Computational Chemistry Package (NWChem) 7.0.2 for execution of the
calculations. WebMO is a web-based interface that facilitates the setup, visualization, and
analysis of computational chemistry calculations. It provides a platform that enables users to
construct molecular models, define computational parameters, and submit jobs to various
computational chemistry software packages, including NWChem. NWChem 1is a
high-performance computational chemistry software suite that offers a wide range of quantum
chemistry and molecular dynamics capabilities. Solvation modeling was performed with
COSMO (Klamt, 1995), and dispersion correction calculations were performed with DFT-D3
(Grimme et al., 2010). The exchange-correlation functions M06-2X (Zhao & Truhlar, 2008), and
B3LYP (Becke, 1988) (Lee et al., 1988) were used.

When modeling a reaction using DFT, the first step involves optimizing the molecular
structures of the reactants, intermediates, and products individually. This optimization process
aims to find the most energetically favorable configurations by adjusting the positions of atoms
within the molecules until the forces on each atom approach zero. Through this process, DFT
calculates the total energy of each molecule based on the positions of its constituent atoms; it
employs the exchange-correlation functional to provide a correction to the electron-electron
interactions within the system. Once the optimized structures of the individual molecules are
obtained, the next step is to compute the overall reaction energetics, represented by the change in
internal energy (AE). AE is calculated as the difference in the total energies of the products and
the reactants, as shown below.

AE =Y E

(Products) — Y E___(Reactants)

DFT DFT
The AE values for Reactions 1 and 2 (re-stated below) will be calculated for nine amino acids.

RNH, + CO, & RNH,C00~ (1)

RNH,COO™ + B~ = RNHCOO + BH )

12



3.2 Optimizing Molecular Structures using DFT in WebMO

1. To begin, create a new job and, using the build tool, draw a skeleton structure of the

molecule you wish to model. Include charges on any atoms that require them.

Figure 1: A skeleton structure of a sarcosine molecule created in WebMO. Grey spheres represent carbon,
red spheres represent oxygen, and blue spheres represent nitrogen.

2. Use the Cleanup — Comprehensive Mechanics tool to add hydrogens and perform rough

corrections for bond angles and lengths.

Figure 2: A corrected geometry for sarcosine generated with WebMO. This image uses a similar color
scheme to Figure 1. White spheres represent hydrogen.

3. Before proceeding, ensure that the molecule's geometry does not present any issues that
may prevent calculations from proceeding. Examples of this may be bond distances that
are too short or long, unreasonable bond angles, or atoms that are too close together.

4. Proceed using the ‘Continue’ arrow in the lower right corner of the interface.

5. Select the correct computational engine and queue. Proceed using the ‘Continue’ arrow.

6. Name the job and select ‘Geometry Optimization’ from the calculation drop-down. Select

‘DFT’ from the theory drop-down and ensure the molecule's charge is correct.
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7. Proceed to the ‘Advanced’ tab and provide the desired calculation parameters.

8. The input script must be modified to include dispersion and solvation. To do this, proceed
to the ‘Preview’ tab and click ‘Generate’ to generate an input script that can be edited.

9. Within the DFT input block, include the keywords ‘disp vdw 3’ to include DFT-D3
dispersion corrections.

10. Next, add a DRIVER input block to increase the maximum number of geometry steps for
the calculation. An example DRIVER block is shown here.

driver
maxiter #
end

11. Add a COSMO input block to include solvation modeling with COSMO. The COSMO
input block requires the dielectric constant of the solvent and the Van der Waals radii of
each atom in the molecule. Van der Waals radii must be listed in the same order as their
corresponding atoms are listed in the geometry input. Below is an example COSMO

input block for sarcosine.

COSMo
dielec 78.0
radius 1.7
1.55
1.7
1.7
1.52
1.52
1.2
1.2
1.2
1.2
1.2
1.2
lineq 0

end

14



12. Specify the amount of memory allocated for the calculation. Include the following input
line and change the memory amounts as desired. The sum of stack, heap, and global

memories must equal the total.

memory total 1024 mb stack 256 mb heap 256 mb global 512 mb

13. Submit the calculation using the ‘Continue’ arrow. The Appendix contains example input
scripts for H,O, OH, CO,, sarcosine, the sarcosine-CO, zwitterion, and the sarcosine-CO,

product.

3.3 Variables

Several variables must be considered when modeling the reactions of amino acids with
CO2. The variables that will be controlled for this experiment are amino acid type, basis set,
functional, inclusion of dispersion corrections, type of solvation, and the base in Reaction 2. The

values of each variable are shown in Table 1 below.

Table 1: The values of controlled variables used for modeling the reactions of amino acids and CO,.

Amino Acid Basis Set Functional Dispersion Solvation Base
(Reaction 2)
Sarcosine Routine M06-2X Dispersion COSMO OH
Glycine (6-31G¥)
y B3LYP No No COSMO | RNHCOO
Alanine Accurate Dispersion
_ %%
Proline (6-311++G**)
Valine
Leucine
Serine
Phenylalanine
Threonine

The base case set of variables used for calculations will be the following: Routine, M06-2X,

Dispersion, COSMO, and OH". Reactions 1 and 2 will be modeled with this set of variables for a

15



base calculation set. A 6-31G* basis set was chosen for the base case due to its compromise
between efficiency and accuracy. M06-2X was chosen as it is able to describe Van der Waals
interactions and medium-range electron correlations much better than B3LYP (Zhao & Truhlar,
2008). Dispersion and solvation corrections were included in the base case to increase the
accuracy of the calculations. OH™ was chosen as a base due to its relative abundance in solution
compared to RNHCOO'. The total charge of these molecules (OH  and RNHCOO") was -1 when
modeling them.

Table 2: Different combinations of modeling variables (different calculation sets) used to model Reactions 1 and 2.
The variables for each modeling set are specified.

Name of Basis Set Functional Dispersion Solvation Base
Calculation Set (Reaction 2)

Base Routine M06-2X Dispersion COSMO OH

Accurate Accurate M06-2X Dispersion COSMO OH

B3LYP Routine B3LYP Dispersion COSMO OH

No Disp Routine M06-2X No Dispersion COSMO OH

No COSMO Routine M06-2X Dispersion | No COSMO OH

Change of Base Routine M06-2X Dispersion COSMO RNHCOO

The effects of each variable are isolated by only changing one variable from its base
value in each calculation set. The number of calculations required for the base calculation set is
30. The Accurate, B3LYP, No Disp, and No COSMO calculation sets each require an additional
30 calculations. Only 9 calculations are needed to model the change of base. Additionally,
vibrational frequency analysis will be conducted on the base geometries for the reactions of
Sarcosine, Glycine, Alanine, and Proline to perform a thermodynamic analysis. The
thermodynamic analysis will be used to support the presence of Reactions 1 and 2. In total, 174

calculations will be performed.
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3.4 ‘Change of Base’ Reaction

For Reaction 2, the change of base from OH" to RNHCOO" is considered. The base case

for Reaction 2 of threonine, an example, is shown below.

Oe Oe
}\@ )\
0 NH, o) NH
POt A— H20
HO o HO 0
(@] O
] [S]
Zwitterion Reaction 2 Product

When instead the Reaction 2 product, RNHCOO, acts as the base in the reaction, the reaction

changes to the following:
)
A
0 NH,

o) OH
O)\NH o)\ NH
t —» +
HO e} HO [e) HO 0 HO 0
o] 0 0
S] ©

o]
S} ©

Zwitterion Reaction 2 Product Reaction 2 Product Reaction 2 Protonated Product

© o

However, the Reaction 2 product is present on both sides of this reaction, and it simplifies to:

©

o
)\®
o NH,

OH
O)\NH
HO o) 3 HOYJ\(O
o)
€]

o]
©

Zwitterion Reaction 2 Protonated Product

This simplified reaction, shown for threonine in Figure 10, is applicable to study the change in
internal energy of the system. However, it does not accurately represent the reaction kinetics and

therefore cannot be applied to the reaction mechanism or to study transition states.
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3.5 Statistical Analysis

A t-test comparison was chosen to analyze and compare sample sets comprising data
from nine amino acids. The t-test is particularly well-suited for small sample sizes, making it
appropriate for scenarios where the number of observations is limited, as in this case. By
calculating the t-value, which measures the difference between the means of the two sample sets
relative to the wvariability within the samples, the t-test determines whether the observed
differences are statistically significant or simply due to random variation. This statistical test
provides a reliable means to infer whether the observed distinctions between the sample sets are
likely to reflect genuine differences in the population means or are merely artifacts of sampling
variability. Therefore, employing a t-test facilitates robust and reliable comparisons between
small sample sets, enabling meaningful interpretations of the data. A t-value below 0.05 indicates
that the observed difference between the means of two sample sets is statistically significant at
the 95% confidence level. Therefore, a t-value below 0.05 suggests that the observed difference
is unlikely to be a result of chance variation and is more likely to reflect a genuine distinction

between the populations being compared. Excel was used to perform the t-tests for this study.
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4. Results

4.1 Modeling Reaction 1

Calculations were performed to model Reaction 1 for nine amino acids with five different

calculation sets. Figure 3 depicts the final geometries for valine and the valine-CO, zwitterion, a

representative reactant and product. Calculated AE values for Reaction 1 are organized in Table

3, and a visual representation is provided in Figure 4.

Figure 3: Final geometries for (1) Valine and the (2) Valine-CO, zwitterion. An example of a reactant and product.

Table 3: Calculated AE values for Reaction 1 by calculation set and amino acid.

Reaction 1 AE (kcal/mol)

Sarcosine -14.57 -19.94 -12.28 -13.44 -12.03
Glycine -14.51 -17.47 -10.47 -14.41 -12.01
Alanine -14.89 -18.19 -12.15 -14.74 -11.78
Proline -13.91 -19.90 -11.33 -13.37 -11.25
'é Valine -13.98 -17.28 -12.28 -13.76 -12.52
.E Leucine -13.88 -18.77 -13.35 -13.63 -13.38
< Serine -11.42 -13.98 -8.21 -10.02 -10.29
Phenylalanine -13.09 -15.31 -9.77 -12.83 -11.52
Threonine -7.88 -10.08 -7.66 -8.08 -7.16
Average Value* -13.13%* -16.77* -10.83* -12.70%* -11.33*
Calculation Set Base No COSMO Accurate No Disp B3LYP
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Reaction 1 - Calculated AE values by Calculation Set
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Figure 4: Calculated AE values for Reaction 1 for nine amino acids and five calculation sets.

An analysis using t-tests was performed to determine if there was a significant difference
between the groups of AE values found using each of the different calculation sets. Table 4

shows the t-values for comparing the base calculation set to the other four calculation sets.

Table 4: t-values for comparing groups of Reaction 1 AE values. The t-values shown compare AE values from the
base calculation set to the other individual calculation sets.

Reaction 1: t-values

Base/No COSMO Base/Accurate Base/No Disp Base/B3LYP

0.014 0.034 0.686 0.077
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4.2 Modeling Reaction 2

Reaction 2 was modeled for nine amino acids with six calculation sets. Figure 5 depicts

an example group of products and reactants for the reaction of phenylalanine. Calculated AE

values for Reaction 2 are organized in Table 5, Figure 6 presents and a visual representation.

(1) 2)

Figure 5: Final phenylalanine geometries for the Reaction 2 (1) Reactants and (2) Products.

Table 5: Calculated AE values for Reaction 2 by calculation set and amino acid.

Reaction 2 AE (kcal/mol)
Sarcosine -36.43 11.78 -20.58 -37.46 -34.42 -1.36
Glycine -33.90 9.38 -19.88 -33.88 -32.04 0.36
Alanine -34.71 8.91 -19.66 -34.69 -33.74 0.55
Proline -37.57 13.48 -22.68 -37.92 -35.35 -2.63
=
% Valine -35.21 4.53 -20.17 -35.21 -32.74 0.29
g Leucine -33.27 20.51 -16.01 -33.89 -30.20 2.09
Serine -40.55 -7.00 -23.69 -40.54 -38.19 -1.88
Phenylalanine -37.71 -0.88 -22.48 -37.67 -34.64 0.73
Threonine -41.08 -4.75 -21.37 -40.67 -37.84 -3.65
Average Value* | -36.71% 6.22% -20.72%* -36.88%* -34.35% -0.61*
Calculation Set Base COJZ‘(])\/[O Accurate | No Disp B3LYP ChZZfS of
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Figure 6: Calculated AE values for Reaction 2 for nine amino acids and six calculation sets.

Again, t-tests were used to determine if there was a significant difference between the groups of
AE values. The base calculation set was compared to the other five calculation sets, t-values are

shown in Table 6.

Table 6: t-values for comparing groups of Reaction 2 AE values. The t-values shown compare AE values from the
base calculation set to the other individual calculation sets.

Reaction 2: t-values

Base/No COSMO |  Base/Accurate Base/No Disp Base/B3LYP Base/Change of Base

1.51E-07 6.81E-10 0.899 0.080 1.46E-14
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4.3 Other Computational Results

Vibrational frequency calculations were performed for the reactions between four amino

acids and CO,. Calculations were performed at 298K with the base case method. Table 7

includes the calculated standard enthalpy, entropy, and Gibbs free energy values for sarcosine,

glycine, alanine, and proline in Reactions 1 and 2.

Table 7: Calculated AH®, AS°, and AG® values of Reactions 1 and 2 for four amino acids.

Reaction 1 Reaction 2
Amino AH® AS° AG® AH® AS° AG®
Acid (kcal/mol) | (cal/mol-K) | (kcal/mol) | (kcal/mol) | (cal/mol-K) | (kcal/mol)
Sarcosine 2.82 -30.85 12.02 -1.34 -1.92 -0.77
Glycine 3.14 -36.15 13.92 -0.03 8.91 -2.69
Alanine 2.23 -33.68 12.27 -0.26 -1.92 0.31
Proline 1.18 -42.76 13.92 -0.38 4.24 -1.65

An analysis of the C9-N2 bond length was performed. The C9-N2 bond, shown below in

Figure 7, is generalized as the bond between the carbon of the CO, molecule and the

participating nitrogen of the amino acid. Bond lengths were analyzed for the base case and four

additional calculation sets.

Figure 7: A numbered geometry of the sarcosine-CO, Reaction 2 product.
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Table 8: C9-N2 bond length by calculation set, amino acid, and molecule.

Calculation | Molecule C9-N2 Bond Length (A)
Set
Zwitterion | 1.582 | 1.566 | 1.570 | 1.564 | 1.573 | 1.562 | 1.559 | 1.555 | 1.574
Base
Product | 1411 | 1.405 | 1.399 | 1.398 | 1.400 | 1.402 | 1.394 | 1.413 | 1.405
No Zwitterion | 1.658 | 1.648 | 1.647 | 1.646 | 1.641 | 1.627 | 1.616 | 1.656 | 1.692
COSMO
Product | 1.450 | 1.434 | 1.427 | 1.461 | 1.443 | 1.446 | 1.418 | 1.442 | 1.446
Zwitterion | 1.579 | 1.565 | 1.569 | 1.563 | 1.573 | 1.562 | 1.558 | 1.555 | 1.574
No Disp
Product | 1.408 | 1.405 | 1.399 | 1.398 | 1.400 | 1.402 | 1.394 | 1.413 | 1.405
Zwitterion | 1.555 | 1.556 | 1.557 | 1.552 | 1.561 | 1.546 | 1.555 | 1.546 | 1.566
Accurate
Product | 1393 | 1.376 | 1.385 | 1.373 | 1.393 | 1.382 | 1.384 | 1.392 | 1.384
Zwitterion | 1.615 | 1.590 | 1.579 | 1.588 | 1.596 | 1.588 | 1.582 | 1.572 | 1.603
B3LYP
Product | 1417 | 1.411 | 1.404 | 1.391 | 1.405 | 1.410 | 1.398 | 1.413 | 1.411
S S| §| & | B S 5 S S
o -~ ~ %) vE S
Amino Acid S © < " 3 S 2
A = &
)
=
A

To compare the base case to the four other calculation sets, t-tests were used. The bond lengths in

the zwitterion and product molecules are compared separately.

Table 9: t-values for the comparison of C9-N2 bond lengths. The t-values compare bond lengths from the base
calculation set to the other individual calculation sets.

C9-N2 Bond Length: t-values

Base/No COSMO Base/No Disp Base/Accurate Base/B3LYP
Zwitterion | Product | Zwitterion | Product | Zwitterion | Product | Zwitterion | Product
6.63E-07 | 4.99E-06 0.842 0.907 0.003 2.89E-05 | 5.37E-04 0.297
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C9-N2 Bond Length in the Amino Acid-CO2 Zwitterion by Calculation Set
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Figure 8: C9-N2 bond lengths in the amino acid-CO, zwitterion for nine amino acids and five calculation sets.

C9-N2 Bond Length in the Amino Acid-CO2 Product by Calculation Set
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Figure 9: C9-N2 bond lengths in the amino acid-CO, product for nine amino acids and five calculation sets.
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5. Discussion

The AE of Reaction 1 was calculated for nine different amino acids with five different
sets of calculation variables. From Figure 4, it is clear that the variable change that had the
largest effect on the calculated AE values was the removal of COSMO. This caused an average
shift in the calculated AE values of -3.64 kcal/mol. Removing dispersion correction appears to
have had the smallest effect, with the ‘Base’ and ‘No Disp’ calculation sets appearing very
similar in Figure 4. Both the ‘Accurate’ and ‘B3LYP’ calculation sets appear to have differences
from the base, but it is unclear from Figure 4 whether the differences are significant. A t-value of
0.014 for comparing the ‘Base/No COSMO’ data sets confirms that the two differ significantly.
This is also the lowest t-value for Reaction 1, confirming that the removal of COSMO caused the
largest statistical difference. The removal of dispersion correction did not have a significant
effect on the calculated internal energy values, with a t-value of 0.686 when compared to the
base case. Changing the basis set from 6-31G* to 6-311++G** had a significant effect on the
internal energies (t-value 0.034). With a t-value of 0.077, changing the XC functional from
MO06-2X to B3LYP did not cause a statistically significant difference in the AE values. However,
it is clear that the XC functional has a discernible effect on the calculations, as this t-value is
close to 0.05.

AE values for Reaction 2 were calculated for nine amino acids with six sets of
calculation variables. The magnitude of the observed difference in AE values between
calculation sets was much larger for Reaction 2 than for Reaction 1. For Reaction 1, the removal
of COSMO had the largest average effect of -3.64 kcal/mol. For Reaction 2, calculation sets
‘Accurate,” ‘Change of Base,” and ‘No COSMO’ had average effects of +16.0, +36.1, and +42.9
kcal/mol, respectively. The t-values for comparing those three calculation sets to the base case
are 6.81*107"°, 1.46*10"*, and 1.51*107, respectively. The t-value for the comparison of the ‘No
COSMO’ data set is higher than the other two, despite having a larger average change, due to the
data set having a comparatively large standard deviation (See Figure 6). Similar to Reaction 1,
the removal of dispersion corrections did not have a significant effect on the reaction AE; the
t-value for the comparison of this data set to the base case was calculated to be 0.899. Another
similarity to Reaction 1 was observed with the change of the XC functional. The comparison of
the ‘B3LYP’ data set to the base case resulted in a t-value of 0.080, a value extremely close to

that of the same comparison for Reaction 1.
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A similar pattern that was observed for the t-test comparisons of the AE values was seen
in the t-tests comparisons of the C9-N2 bond length. For both the zwitterion and product
geometries, the removal of COSMO and the change in the basis set significantly impacted the
C9-N2 bond length. T-values for comparing these bond length data sets to the base case are
shown in Table 9. The removal of dispersion correction did not have a significant impact on the
C9-N2 bond length for either the zwitterion or product geometries. T-values for comparing these
‘No Disp’ geometries to the base case are 0.842 and 0.907, respectively. Interestingly, while the
change of the XC functional did have a significant effect on the zwitterion geometries, the effect
was not significant for the product geometries. This is due to a larger average change in the
C9-N2 bond length in the zwitterion when the XC functional is changed; the average change in
the C9-N2 bond length in the zwitterion for the ‘B3LYP’ data set is +0.023A, whereas for the
product the average change is only +0.004A.

T-values for the comparisons of both the Reaction 1 and 2 AE values and the C9-N2 bond
length in the zwitterion and product geometries indicate that the removal of COSMO and the
change in the basis set from ‘Routine’ to ‘Accurate’ both had statistically significant impacts on
the calculated AE values and molecule geometries. The removal of dispersion corrections were
not statistically significant to either the calculated AE values or the molecule geometries. The
change of XC functional had a clear impact on both the calculated AE values and molecule
geometries, though the change was not significant in all cases.

For both reactions, the removal of COSMO and the change of basis set from 6-31G* to
6-311++G** had statistically significant effects on the calculated AE values and molecule
geometries. The removal of COSMO represents a fundamental change to the reaction system.
Without COSMO, the solvent-solute interactions are not accounted for in calculations; removing
these interactions is why the geometries and internal energies differ significantly from the base
case. Several differences exist between the 6-31G* and 6-311++G** basis sets. Most notably, the
latter includes polarization functions for heavy elements and diffuse functions for all elements
included in the basis set, neither of which are present in 6-31G*. Likely, the addition of diffuse
functions in the 6-311++G** set is largely responsible for the statistical difference of these
calculations from the base case. Diffuse functions are particularly important for modeling anions,
which are present in the reactants and products of both Reactions 1 and 2. The removal of

dispersion corrections did not significantly impact the internal energies of either reaction; this is
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likely because the M06-2X functional is parameterized for dispersion. Had B3LYP been used for
the base case, dispersion corrections likely would have had a more significant impact on
calculations. The change of the XC functional had an apparent but not statistically significant
effect on the internal energies and geometries of both reactions. This difference may be due to
the ability of M06-2X to describe dispersion interactions better than B3LYP, or it may be
because M06-2X includes a higher percent of the Hartree-Fock exact exchange than B3LYP
(54% vs 20%). In Reaction 2, the change of the base from OH to RNHCOO" had a significant
impact on the reaction AE values. This is expected as the change of base in the reaction
represents a change to the reaction mechanism. This highlights the importance of the chosen base

when modeling the reaction. The change of base reaction for threonine is shown below.

Figure 10: Final reactant and product geometries for the ‘Change of Base’ Reaction 2 of threonine.

The calculated AG values shown in Table 7 indicate that Reaction 1 is not spontaneous at
298K for the four amino acids analyzed. An additional driving force for the reaction, such as a
catalyst or a change in pH, is be necessary for the reaction to proceed. Strongly negative AS
values for Reaction 1 show that the reaction will become less favorable with increasing
temperature for all four amino acids. Reaction 2 is spontaneous at 298K for the four amino acids,
with the exception of alanine. It remains spontaneous at higher temperatures for glycine and
proline but becomes less favorable for sarcosine and alanine. This analysis supports the
formation of the Reaction 2 amino acid-CO, product for some amino acids; others may exist in
solution as a zwitterion if Reaction 1 proceeds. Like Reaction 1, an additional driving force may
be necessary to shift Reaction 2 toward the products. The decrease in length of the C9-N2 bond
from the amino acid-CO, zwitterion to the product across all calculation sets belies increased

stability and supports the formation of the Reaction 2 product.
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6. Conclusions

The t-test comparisons of five data sets for Reaction 1 and six data sets for Reaction 2
show that removing solvation modeling (COSMO) and, separately, changing the basis set from
6-31G* to 6-311++G** both significantly affected the calculated reaction internal energies and
geometries. The removal of dispersion correction did not significantly affect either, though this is
likely because M06-2X is capable of accurately describing dispersion effects without the
correction of DFT-D3. The change of XC functional from M06-2X to B3LYP did not have a
significant effect on the calculated internal energies or geometries of Reactions 1 and 2; except
for in the geometries of the amino acid-CO, zwitterions, where B3LYP calculated the C9-N2
bond length to be an average of 0.023A longer than M06-2X. The change of base in Reaction 2
presented a significant change to the AE of the reaction. Based on these results and information
from the literature review, DFT calculations performed at a 6-311++G** level with the M06-2X
functional, solvation modeling with COSMO, and without dispersion correction are
recommended as the most effective method, among those explored, for modeling the interactions
of amino acids with CO,. A 6-31G* basis set may be used to increase the speed of calculations at
the expense of accuracy. The binding energies of the nine amino acid-CO, complexes were
calculated as the sum of the AE values for Reactions 1 and 2. They were calculated as follows:
sarcosine (-32.86 kcal/mol), glycine (-30.35 kcal/mol), alanine (-31.81 kcal/mol), proline (-34.02
kcal/mol), valine (-32.46 kcal/mol), leucine (-29.36 kcal/mol), serine (-31.90 kcal/mol),
phenylalanine (-32.25 kcal/mol), and threonine (-29.03 kcal/mol). These values represent binding
energies calculated using DFT with COSMO, M06-2X, a 6-311++G** basis set, and DFT-D3
dispersion correction. These calculated binding energies are very similar, with a standard
deviation of 1.65 kcal/mol. This suggests that the binding energies of amino acid-CO, complexes

are independent of the amino acid.
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Appendix
Example Input Files

H,0:
title "Water Base"

echo
charge 0

geometry
zmatrix

0

H 1 BI
H1B22Al
variables

B1 0.941999857
B2 0.941999857
A1l 105.4833155
end

end

basis noprint
* library 6-31G*
end

dft

maxiter 2000

XC M06-2X

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000

end

cosmo
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dielec 78.0
radius 1.52
1.2

1.2

lineq 0
end

task dft optimize
task dft energy

property
dipole
mulliken
end

task dft property

OH-:
title "Hydroxide Base"

echo
charge -1

geometry
zmatrix

O

H 1 BI
variables

B1 1.049999654
end

end

basis noprint
* library 6-31G*
end

dft
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maxiter 2000

XC m06-2x

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000
end

COSmMo
dielec 78.0
radius 1.52
1.2

lineq 0
end

task dft optimize
task dft energy

property
dipole
mulliken
end

task dft property

C_O;i
title "CO2 Base"

echo
charge 0
geometry

zmatrix
C
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O 1BI
O1B22Al
variables

B1 1.313000464
B2 1.313000464
A1 180.0000000
end

end

basis noprint
* library 6-31G*
end

dft

maxiter 2000

XC m06-2x

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000
end

COSmMo
dielec 78.0
radius 1.70
1.52

1.52

lineq 0
end

task dft optimize
task dft energy

property
dipole
mulliken
end
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task dft property

Sarcosine:
title "Sarcosine Base"

echo
charge -1

geometry

zmatrix

C

N 1Bl
C2B21Al
C3B32A21Dl1
04B43A32D2
04B53A42D3
H3B62A51D4
H3B72A61D5
H2B81A73D6
H1B92A83 D7
H1B102 A9 3 D8
H1B112A103 D9
variables

B1 1.446476535
B2 1.447303093
Al 112.7145102
B3 1.514368149
A2 110.6604817
D1 -177.4008638
B4 1.343861571
A3 112.3166218
D2 73.42412516
B5 1.206508232
A4 126.9266639
D3 -105.8452025
B6 1.115714586
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A5 110.7125113
D4 -56.47505029
B7 1.114987097
A6 109.4687711
D5 62.93047230
B8 1.020643866
A7 108.9531340
D6 121.5644570
B9 1.114152908
A8 110.4989873
D7 -61.06340265
B10 1.114623688
A9 110.9640262
D8 60.84530363
B11 1.113950467
A10 109.0578528
D9 -179.8708414
end

end

basis noprint
* library 6-31G*
end

dft

maxiter 2000

XC m06-2x

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000
end

cOSmMo
dielec 78.0
radius 1.7
1.55
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1.7
1.7
1.52
1.52
1.2
1.2
1.2
1.2
1.2
1.2
lineq 0
end

task dft optimize
task dft energy

property
dipole
mulliken
end

task dft property

Sarcosine-CO, Zwitterion:

title "Sarcosine Zwitter Base'
echo
charge -1

geometry

zmatrix

C

N 1Bl
C2B21Al1
C3B32A21Dl1
04B43A32D2
04B53A42D3
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H3B62A51D4
H3B72A61D5
C2B81A73D6
O9B92A81D7
09B102 A91D8
H2B111A103 D9
H1B122 A113DI10
H1B132A123Dll1
H1B142A133DI12
variables

B1 1.513722544
B2 1.527953130

A1 110.6729213

B3 1.519732722
A2 112.7070854

D1 -177.1058585
B4 1.314154027

A3 112.0359251

D2 -139.3327318
B5 1.203378978

A4 121.1326955

D3 38.37696964

B6 1.114508426
A5109.6102233
D4 -58.60497930
B7 1.112258772

A6 109.9618022
D5 59.30882469

B8 1.595135769
A7 107.8400528
D6 120.3461733

B9 1.316181932

A8 122.7310752
D7 -107.1186891
B101.210184221
A9 114.6304501

D8 62.74404876
B11 1.121424919
A10109.4251024
D9 -122.6943878
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B12 1.112290058

Al11110.6779770

D10 58.98121469
B13 1.115289781

Al12 111.3728063

D11 179.3206006
B14 1.114036558

A13 110.4078086

D12 -60.59211050
end

end

basis noprint
* library 6-31G*
end

dft

maxiter 2000

XC m06-2x

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000
end

COSmMo
dielec 78.0
radius 1.7
1.55

1.7

1.7

1.52

1.52

1.2

1.2

1.7

1.52
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1.52

1.2

1.2

1.2

1.2
lineq 0
end

task dft optimize
task dft energy

property
dipole
mulliken
end

task dft property

Sarcosine-CO, Product:
title "Sarcosine Product Base"

echo
charge -2

geometry

zmatrix

C

N 1Bl
C2B21Al1
C3B32A21DlI
04B43A32D2
04B53A42D3
H3B62A51D4
H3B72A61DS5
C2B81A73D6
O9B92A81D7
O9BI102A91D8
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H1BI112A103 D9
H1B122 Al13DI0
H1B132A123DI1
variables

B1 1.454327715
B2 1.460969975
Al 122.6786761
B3 1.523833456
A2 112.1299509
D1 -63.44073493
B4 1.205728147
A3 127.6009580
D2 -4.045073190
B5 1.316868397
A4 108.9774773
D3 172.4681585
B61.114961319
A5 107.3904348
D4 56.21812419
B71.114203394
A6 112.6268697
D5 173.8411159
B8 1.394452691
A7 117.4352065
D6 -178.4677010
B9 1.205636731
A8 122.6818482
D7 177.9283594
B10 1.326234036
A9 118.4723546
D8 -4.416948220
B111.113612139
A10 110.6105407
D9 -2.241620385
B12 1.114223118
Al1 110.4928891
D10 117.2103527
B13 1.114053556
Al12110.4771907
D11 -121.1042505



end
end

basis noprint
* library 6-31G*
end

dft

maxiter 2000

XC m06-2x

mult 1

disp vdw 3

end

set grid:eaf size in_dbl 9999999

driver
maxiter 2000
end

COSmMo
dielec 78.0
radius 1.7
1.55

1.7

1.7

1.52

1.52

1.2

1.2

1.7

1.52

1.52

1.2

1.2

1.2

lineq 0
end

task dft optimize
task dft energy
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property
dipole
mulliken
end

task dft property
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