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Abstract

β-amyloid plaques and tau neurofibrillary tangles (NFTs) are hallmark
pathologies in Alzheimers disease . The amount of tau (also referred to
as the tau burden) is an important metric used to determine stages of
Alzheimers disease. Recent work by Signaevsky, et. al. [1] has shown
that convolutional neural networks can be used to determine large scale
accumulation of tangles in immunohistochemically stained tissue. The
goal of this project is to compare the performance of several networks
for the segmentation, quantification and classification of tau tangles and
-amyloid plaques. The networks to be compared include U-Net, FCNet,
SegNet and Mask-RCNN. The goal of this open-ended research is to eval-
uate the effectiveness of deep convolutional networks in performing unsu-
pervised classification on noisily labeled data.
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1 Executive Summary

Doctors would like to diagnose tau-opathies from images. There are multiple
tau-opathies, of which Alzheimer’s disease is a significant one.
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Tau protein in a normal brain is bound to axonal microtubules. There are
many theories as to how Alzheimers truly works, one of them is the tau theory.
In Alzheimer’s disease a proportion of tau protein becomes abnormally phos-
phorylated and is no longer associated with axonal microtubules, but instead
accumulates in filaments throughout affected nerve cells [5]. This leads to a dis-
integration of the microtubules destroying the structure of the cells cytoskeleton
which collapses the neurons transport system. Eventually the collapse results
in the death of the cell. [7] hypothesizes that the cell death caused by tau is the
primary cause of the disease .

Through the use of Deep Learning images can be pre-processed for doctors to
increase understanding, and reduce the time required to analyse an image. We
focus on systematically finding the best model for segmentation by trying Seg-
Net [2], UNet [15] and Fully Connected Network [12]. Training, validation and
testing will be used to determine the best network. Segmentation of the nuclei,
and tau clustering can generate quantitative data for clinicopathological correla-
tions as well as additional studies. We introduce two novel improvements, a new
model training methodand an analysis of current state of the art segmentation
algorithms to determine which works the best for WSI.

Through the use of AI and DL, segmentation can be developed to recognize,
classify, and quantify diagnostic elements of tau-opathies. A strategy has been
developed and tested using a fully convolutional network (FCN) and showed
promising results [16].Testing other advanced neural networks such as SegNet,
FCN, and other segmentation networks could lead to better results.

The project used anonymized data supplied by Mass General Hospital. All
names and any connection to an individual has been removed. Each position
within a WSI is labeled with 3 classes: background, tau, and nuclei. The data
was sparsely labeled. In table 1 a large majority of the tau nuclei is not labeled.

The data was sparsely labeled, which upon normal evaluation produced a
large amount of false positives. To generate accurate analysis on only the labeled
elements, the predictions need to be cropped around the ground truth. To crop
the ground truth was expanded on all sides by 20 pixels, then used to crop the
prediction. The network prediction was then compared to the ground truth to
calculate the various metrics.

Figure 1 shows the best results using Segnet. The top is noticably more red,
and the bottom is more blue. This shows the expansion of the disease through
the brain. Quantification of the amounts of tau versus nuclei will produce
valuable data.
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Figure 1: Segnet Red and Blue: Red is tau. Blue is Nuclei.

2 Introduction

Doctors would liketo diagnose tau-opathies from images. There are multiple
tau-opathies, of which Alzheimer’s disease is a significant one.

Tau protein in a normal brain is bound to axonal microtubules. There are
many theories as to how Alzheimers truly works, one of them is the tau the-
ory. In Alzheimer’s disease a proportion of tau protein becomes abnormally
phosphorylated and is no longer associated with axonal microtubules but in-
stead accumulates in filaments throughout affected nerve cells [5]. This leads
to a disintegration of the microtubules destroying the structure of the cells
cytoskeleton which collapses the neurons transport system. Eventually the col-
lapse results in the death of the cell. [7] hypothesize that the cell death caused
by tau is the primary cause of the disease. The complexity and overlapping
nature of many neurological degenerative diseases make diagnosing a very chal-
lenging job, demanding high expertise. The only way to confirm diagnosis of
tau-opathies is through microscopic analysis of stained postmortem sections.
The time and analysis required for such a diagnosis is significant, as depends
upon the observer [16]. The current method, the Braak staging system, uses a
mainly qualitative approach. The three tiers are, no tau, some tau, and a lot of
tau. An accurate quantitative approach is demanded by the evolving research
and healthcare standards [1].

Recent advances in technology have shown success in classifying and grading
the progression of breast and prostate cancer [11]. Microscopic analysis of post-
mortem whole slide image (WSI) brain samples remains the only way to confirm
diagnosis of tauopathies. Specifically, an understanding of the quantities of
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various cells, and tau configurations. The previous method, Braak Staging,
requires a highly trained doctor to find and count neurofibrillary tangles (NFT)
[3]. However due to the significant amount of time required, they could not
fully label a WSI. Recently automatic segmentation of neurofibrillary tangles
(NFT) has been shown possible with artificial intelligence [16]. AI Segmentation
can scan an entire WSI with high accuracy in as little as 30 minutes. A more
comprehensive segmentation is desirable. We aim to develop deep learning
network that segments all tau, and cell nuclei. By segmenting more elements,
more data is available for post processing and aiding in diagnosing.

Through the use of Deep Learning images can be pre-processed for doctors to
increase understanding, and reduce the time required to analyse an image. We
focus on systematically finding the best model for segmentation by trying Seg-
Net [2], UNet [15] and Fully Connected Network [12]. Training, validation and
testing will be used to determine the best network. Segmentation of the nuclei,
and tau clustering can generate quantitative data for clinicopathological correla-
tions as well as additional studies. We introduce two novel improvements, a new
model training methodand an analysis of current state of the art segmentation
algorithms to determine which works the best for WSI.

3 Background

3.1 Alzheimer’s Disease

Alzheimers disease (AD) is a type of Dementia caused by a disease of the
brain. It is normally characterized by a chronic and continuing degrade in higher
brain functions such as memory, thinking, learning capacity and judgement.
Dementia affects mainly people over 65, with only 2% of cases starting before 65.
Every five years after 65 the prevalence doubles. Cortical amyloid plaques and
neurofibrillary tangles are present in the most common manifestations. These
appear in one half to three quarters of all cases. Alzhemer’s and other forms of
dementia are not race, or culture specific [13].

For diagnosis, doctors and other clinicians use impariment of cognitive func-
tion, including loss of independent living. As the disease progresses, behavioral
and psychological symptoms of dementia (BPSD) are the most relevant. BDSD
can consist of agitation, aggression, calling out repeatedly, sleep disturbance,
wandering and apathy. All of these provide significant strain on caretakers. For
tau-caused Alzheimers there is currently no treatment. Other causes such as
oxygen deprivation if caught early can be treated, but this rarely happens. Once
diagnosed a person can expect to live 5-7 more years in a developed country [13].
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3.2 Image Segmentation

Image segmentation is the process of labeling sections or pixels in an image,
to make the image more meaningful and easier to for additional analysis. There
are many methods for segmentation, and it is considered an unsolved problem.
Uses for segmentation include self-driving cars to process the image input by
the cameras [9]. An example of segmentation for cars is shown in Figure 2. In
biology segmentation is commonly used for extracting the locations of tumors,
or other data from medical data.

Figure 2:

Some simple methods use a threshold approach to remove light items on a
dark background. More complex methods utilize edge detection. Both methods
are effective in the correct use cases [4]. The state of the art methods using
convolutional neural networks significantly improve results due to their ability
to find patterns in very high dimensional data.

3.3 Image Segmentation and Deep Learning

Through the use of AI and DL, segmentation can be developed to recognize,
classify, and quantify diagnostic elements of tau-opathies. A strategy has been
developed and tested using a fully convolutional network (FCN) and showed
promising results [16]. Testing other advanced neural networks such as Segnet
FCN and other segmentation networks could lead to better results.

3.4 Deep Learning

Deep learning allows computational models that are composed of multiple
processing layers to learn representations of data with multiple levels of ab-
straction. These methods have dramatically improved the state-of-the-art in
speech recognition, visual object recognition, object detection and many other
domains such as drug discovery and genomics [11]. Deep learning uses back-
propagation to alter internal model parameters to learn a given dataset. After
learning on an initial dataset the model can then be applied to new data.
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The amount of data required to train a deep learning network can be on
the order of thousands of images. ImageNet contains 14 million photos and
22 thousand categories [21]. Training neural networks on this data takes a
significant amount of time, but produces great results as seen with AlexNet [10]
and VGG [17]. Constructing a large high quality dataset is the first part in any
deep learning problem.

3.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) are an implementation of deep learning.
They can be extremely accurate at image classification and segmentation when
trained on enough data. CNNs typically take a long time to train; much of
the time used to perform matrix multiplications. In tasks such as image clas-
sification neural networks can achieve accuracies of up to 98% [18]. In a task
like cell labeling humans are very accurate, but not necessarily fast. CNN can
be trained to be very fast and accurate, providing decision support to a doctor
within minutes, compared with human examination of a brain whole slide image
(WSI) which takes much longer.

CNNs utilize convolutional layers which are matrices that are multiplied by an
input matrix. The convolutional matrix is filter that activates when a specific
pattern matches the filter. The filter is then translated across an array and
produces an activation matrix. As a large network trains the initial layers tend
to form simple edge, and pattern filters. Deeper layers use lower layers to form
more complex filters before a final layer connects the features generated by the
network to the output classes.

3.5.1 Layers

Figure 3: Low Level Convolutional Filter Examples [8]

Convolutional Layers perform a majority of the heavy computing. They
are a set of small filters that slide across the image producing activations and
results based on their input. Intuitively the network will activate on simple
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features such as edges, or certain colors. Deeper in the network the filters could
recognize entire structures such as letters or numbers [8].

Figure 4: Max Pooling Layer [8]

Pooling Layer Pooling layers reduce the size of their input while trying not
to lose any valuable information. Pooling layers reduce the size of input by
sliding a function across their input. Figure 4 shows a Max Pool layer which
takes the maximum for each subsection of the input [8].

Fully Connected Layer Fully Connected layers connect to every neuron in
the preceding layer. The activations can be calcuated by a matrix multiplication
followed by the bias offset [8].

ReLU: Rectifier Linear Unit ReLU layers are activation layers. When
greater than a preset threhsold they output the input, when less they output 0.
Mathematically they are respresented by max(0, x) if the threshold is 0 [8].

3.6 Transfer Learning

Transfer learning is using a network trained on another dataset and task as
the starting point for a different domain and task. Given a source domain, DS

and source task, TS a target domain DT and target task TT transfer learning
aims to use the information in DS on TS to improve the accuracy of DT in
ST [22].

Transfer learning has been commonly used in image classification and segmen-
tation. Many low level image features are the same among all types of images.
Deep learning takes a lot of data, and the acquiring enough domain specific data
to train a neural network can be very challenging. Transfer learning provides a
starting point to work from. It allows problems without enough data to train a
full network to fine-tune a network. This type of fine tuning is called supervised
domain adaptation [23].
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Figure 5: Trasnfer Learning Pipeline

3.7 Deep Learning in Medical Image Analysis

Deep learning has pervaded every aspect of medical image analysis. They are
used for everything from neurological data to musculoskeletal. For Brain Mag-
netic resonance imaging (MRI) data. deep learning is used for many diseases
including Schizophrenia and Huntingtons. The state of the art research is using
Deep Learning to create connections between MRI brain scans and various dis-
eases. The logic is that if there is a pattern between certain MRI brain activity
and a disease a deep learning network such as a CNN may be able to find it [11].

3.8 Models

3.8.1 UNet

UNet consists of a contracting path on the left and an expanding path on the
right. The left side follows the typical architecture of a CNN. The right side
consists of an up-sampling layer followed by a convolution layer to reduce the
number of features. Finally the remaining features are mapped to specific classes
for the output. UNet specializes in learning with a small dataset. It uses
a significant amount of data augmentation to learn the most out of a small
dataset, as small as thirty photos.

3.8.2 SegNet

SegNet has two sides. The convolution downsampling into a big feature space,
and a upsampling half to create the segmentation map. The first is topolog-
ically identical to VGG16. The decoder uses pooling indices and upsampling
to reduce the number of learnable features. The results are then convolved
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Table 1: Example Data: Left image is the raw data. The right image is the
pixel-wise labels. Black is background, dark gray is tau, and light gray is nuclei.

Image Labeled Mask

with trainable features to produce dense feature maps. The novelty of SegNet
lies is in the manner in which the decoder up samples its lower resolution in-
put feature map(s). The design goal of SegNet focused on scene understanding
segmentation, and use memory and processor time efficiently.

3.8.3 Fully Connected Network

FCN matches the standard CNN architecture more closely. It consists of convo-
lutional layers transforming an image into feature matrices, followed by a large
pixel wise prediction layer to form the final segmentation.

4 Methods and Materials

4.1 Materials

The project used anonymized data supplied by Mass General Hospital. All
names and any connection to an individual has been removed. Each position
within a WSI is labeled with 3 classes: background, tau, and nuclei. The data
was sparsely labeled. In Table 1 all strands of tau, and most nuclei are not
labeled.

4.2 Programming Language and Libraries

Python 3.7 [20] was used as the primary language. Pytorch [14] was used for
training, testing and evaluating networks on GPUs, Python Image Library (PIL)
for image processing, and Numpy [19] for data processing. All training, testing
and evaluation was performed on the MIT Supercloud supercomputer.
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4.3 Network Training

WSI Images have a resolution 120,000 by 120,000 pixels averaged over the col-
lection of images. Many small slices of 512 by 512 were randomly selected from
the large image for training and testing. The resulting dataset consisted of 838
images. It was split into three sections, half for testing, one third for testing
and one sixth for validation. The training data was then augmented by flipping
vertically, horizontally, and both to quadruple the size of the training data to
1676.

Stochastic gradient descent was used with a cross entropy loss function. The
learning rate was set at 0.08 and multiplied by 0.01 every epoch. The networks
were trained for 20 epochs. The networks were initiallized trained on large
segmentation datasets.

Every network trained was saved. Post-training analysis was performed to
calculate the intersection over union, true positive rate, false positive rate, and
ROC curve.

Pre-trained base networks were used for every network. SegNet [2] used
VGG19 [17] and FCN [12] used Resnet101 [6]. UNet did not have a pre-trained
base.

4.3.1 FCN Training

In order to train the FCN, the dataset needed to be reduced to images that had
labeled examples of both classes. This balanced the data allowed the network
to learn the classes better. Without balanced classes the network did not learn
nuclei very well and often not at all.

4.3.2 Segnet Training

Segnet was trained only on labeled tau and bvackground, but learned to dis-
tinguish between tau, nuclei and background. Once trained the output for the
background class was thresholded at multiple values to segment the three classes.
All results above a value were labeled nuclei, and below a different value were
labeled tau. The middle values were labeled background. The learned behavior
eliminated the need for labeled nuclei data.

4.4 Segmentation Mask Thresholding

When training on data with only tau labeled the network starts to differentiate
between background and nuclei. After training for 15-20 epoch the network
background class activates more on nuclei than normal background. The dif-
ference allows a threshold to be placed on the segmentation result to effectively
segment the nuclei.
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4.5 Analyzing Entire Whole Slide Image

Segmenting an entire image at 120,000 by 120,000 pixels is not possible given
the GPUs and memory constraints. The WSI was divided into 512 by 512
pixel sections offset by 492 per section. The edges were trimmed to eliminate
erroneous results along the edge of each section. Each segment was run through
the neural network and the output as a three layer Numpy array. The Numpy
array was then transformed into a tiff. The tiff could then be viewed using
mapping software for analysis.

4.6 Data Storage and Code Backup

All code and data is stored on the MIT Supercloud Supercomputer. A shared
directory was created to ease collaboration between myself and Lincoln Labora-
tory. The supercomputer does not backup their data system, so daily backups of
the code were saved and moved to my local computer. Git was used for version
control.

4.7 Testing Protocol

4.7.1 Evaluation procedure

The data was sparsely labeled, which upon normal evaluation produced a large
amount of false positives. To generate accurate analysis on only the labeled
elements, the predictions need to be cropped around the ground truth. To crop,
the ground truth was expanded on all sides by 20 pixels, then used to crop the
prediction. The network prediction was then compared to the ground truth to
calculate the various metrics.

4.7.2 Segmentation Network Success Measures

A confusion matrix of the number of true positives, false positives, true neg-
atives, and false negatives was constructed for every network at every epoch
during the training process.

The true positive rate, false positive rate, intersection over union (IoU), and
dice loss score will be used to determine success. Determining which network is
the best based on these metrics is the goal. We cannot compare results to [16]
because the data is not available to the public. A good qualitative segmentation,
differences above 0.1 for IoU between all networks to determine which one is the
best.

4.7.3 ROC Curve

ROC curves show the values of the true positive rate (TPR) and the false
positive rate (FPR) for varying threshold values. A ROC curve that is above
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the line y = x represent results that have a TPR greater than FPR. The goal
is the maximize TPR and minimize FPR.

4.8 Results Colorization

The results were thresholded to label tau, background and nuclei. Additional
thresholds were added to differentiate between the strength of prediction. The
thresholds were determined based on the optimal point in the ROC curve.

5 Results

5.1 Timing

Table 2: Timing
Network Training Time 20 Epochs (Minutes) WSI Evaluation Time (Minutes)
Segnet 21.5 30.5
FCN 25.2 60.0
UNet 5.45 62.7

The time to train the networks ranged from 21 to 25 minutes. The segmen-
tation software used 2 Nvidia Volta GPUs and 16 processors. The processing
time decreases when more GPUs are used.

5.2 Quantitative Results

Table 3: Best Intersection of Union and Dice Loss
Network and Class IoU Dice Loss

SegNet tau 0.611 0.234
FCN tau 0.520 0.297
UNet tau 0.544 0.272

Segnet Nuclei 0.538 0.309
FCN Nuclei 0.542 0.306
UNet Nuclei 0.387 0.441

The IoU and Dice loss scores were chosen based on the best TPR and FPR
values. Segnet had a better IoU score for tau, and within 0.004 for nuclei.
Both networks had an average IoU greater 0.5. The numerical values are good
for determineing which network is better. However, since the data was sparsely
labeled the absolute value cannot be compared to other papers. UNet performed
very poorly on nucleus segmentation. For tau, UNet did well.
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Table 4: ROC Curves by Network and Class: The orange, blue, and green lines
are Segnet, FCN, and UNet respectively. The left graph is for the tau class, and
the right graph is for Nuclei.
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5.2.1 ROC Curves

Table 4 shows the ROC curve for tau and Nuclei with FCN and Segnet. UNet
is higher than FCN with tau, but lower at nuclei than the other two networks.

5.3 SegNet

5.3.1 Qualitative Results

Table 5: Segnet Segmentation Example: tau is brown and Nuclei is blue. Darker
colors represent higher network confidence in segmentation.

WSI Section Segmentation Result Colorized

The resulting correctly segments the tau and nuclei in the example images.
The raw output shows black areas where the network predicts there are tau, and
white areas where the network predicts there are nuclei. The blue border on the
image is caused by incomplete border data. The first 20 pixels of the images
around the border can be ignored. The network has a few false postivies. The
blue area immediately to the right of the central tau area segments the white
area around the nuclei wrongly as nuclei. The vary dark tau region in the
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Table 6: Segnet Bad Segmentation Example
WSI Section Segmentation Result Colorized

center of the image was labeled incorrectly as background when it was infact
tau. The nuclei segementation segmented a majority with minimal error. The
region along the edge of the image labeled nuclei is noise caused by the edge.

5.4 Fully Connected Network (FCN)

5.4.1 Qualitative Results

Table 7: FCN Results
Class WSI Section Segmentation Result Overlay

Class 1 tau

Class 2 Nuclei

FCN did not fully segment the middle tau shape. The smaller sections of
tau on the bottom edge of the picture were not labeled either. The nuclei
segmentation was accurate on multiple cells, but missed some.
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5.5 UNet Failure

Table 8: UNet Results
Original Prediction

Unet failed to segement the three classes effectively. It was able to differen-
tiate between tau and background, as well as nuclei and background, but not
between tau and nuclei. The network was trained with various loss functions,
learning rates, data augmentation, data class balance, and with singular classes,
but could not learn effectively. What information it did learn did not generalize
well. It learned to match the ground truth, but not expand to segment all oc-
currences of tau and nuclei. As shown in Table 5.5 it segments the tau correct,
but not the nuclei.

6 Discussion

6.1 Imagery

Visually the segmentation accuracy of Segnet is extremely accurate and com-
prehensive. When viewed zoomed out it is easy to see the patterns of tau and
nuclei throughout the image and where they cluster.

The results from Table 5 show accurate segmentations on both tau and nu-
clei. This corresponds with a IoU above 0.5, and a low dice score. The results
from Segnet were qualitatively much better than FCN net even though the
quantitative measures were quite similar. UNet failed to distinguish between
tau and nuclei enough to produce usable results. The FCN tau results could be
overlayed ontop of the Segnet results as an additional class to segment neurofib-
rillary tangles. When entire WSI images were segmented the color scheme used
to differentiate between background, tau and nuclei enabled faster analysis of
the data.
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Figure 6: Segnet Red and Blue: Red is tau. Blue is Nuclei.

6.2 Quantitative

Based on the ROC curve along with IoU and Dice loss Segnet provided the best
segmentation. The quantitative results are good for determing which network
is the best. The qualitative results are better for determining the utility of the
network.

6.3 Interpreting Results

Figure 6 shows the value of segmenting an entire WSI. There is a large band of
tau across the center of the image. Below the band there is less tau, but more
nuclei, and above there is less nuclei and more tau. The larger denser sections
of tau and nuclei are easily distinguishable.
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6.4 Use for Doctors

Now that a computer can process the data a doctor no longer needs to spend
the time manually labeling the image. The Braak staging process can now be
modified to include actual numbers instead of none, some and many. The process
has been automated to save time, and allow them to only review the finished
results. An automatic diagnosis feature is possible based on the results using
predetermined thresholds of the ratio between tau and nuclei. More research
into the formations of tau and nuclei in the image enabled by this research will
allow better understanding of Alzheimers and could help treat patients with the
disease.

7 Conclusion

After an analysis of segmentation methods on brain WSI’s Segnet has created
the best results as shown through quantitative and qualititative analysis meth-
ods. FCN performs better when the tau clusters are large and distinct, but
fails to identify small strands of tau. UNet segments tau very well, but does
not recognize Nuclei. Doctors can now use the automatically labeled data to
improve analysis and decrease time spent labeling. Future research can use the
quantification of tau and nuclei thia paper produces to increase our understand-
ing of the disease and how to improve diagnosis and treatment. There is now
significant potential for using the segmentation results to segment additional
patterns that are now more visible.

References
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