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Abstract 

Autonomous path planning is an important application in the field of robotics and control 

systems engineering, especially with the rapid development and commercialization of self-driving 

cars and unmanned autonomous vehicles. Some of the biggest concerns in these cyber-physical 

systems are safety and security. Many different attacks can be and have been conducted on either 

the physical or cyber layer of these systems, and these attacks can cause devastating consequences. 

In this project, the team investigates techniques for planning and following a trajectory in the 

presence of an adversary who spoofs one or more sensors on a wheeled robot platform. The robot 

platform that the team uses is a Turtlebot 3 Burger controlled by an LQG controller. False data 

injection (FDI) attacks were performed on one or more sensors of the Turtlebot, and their effects 

on the robot’s ability to follow a predetermined trajectory were analyzed. A mitigation method 

based on the barrier function, using sensors that are known to be secured and limiting the set of 

feasible control input so that the system never reaches the unsafe region, was also implemented 

and its effectiveness was tested. The team runs simulations and graphs the actual trajectory versus 

the reference trajectory and the mean square error between them to verify that the mitigation 

method allows the robot to maintain its ability to follow the reference trajectory. The team was 

successful in implementing an LQG controller in Python with a low value of dt and very accurate 

reference tracking, as well as proving that the mitigation method is effective against different false 

data injection attacks.     
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1. Introduction 

Within the field of robotics, autonomous operation is a key element in almost any 

application, especially with the development and commercialization of self-driving cars and the 

increased usage of modern unmanned ground vehicle (UGV) in military operations, construction, 

and space exploration [1][2]. However, many different attacks against these systems, especially 

sensor spoofing in the physical layer, have been documented [3]. These attacks raise a concern 

regarding the security and safety of these vehicles, since with a delicate control system a small 

piece of false data can cause dangerous instability issues. An example of this has been 

demonstrated by Charlie Miller and Chris Valasek, who were able to hack into an in-motion Jeep 

Cherokee and send false data to gain full control of the vehicle [4].  

The project used a wheeled robot platform and its desired operation is to autonomously 

travel along a predetermined trajectory, controlled by an LQG controller. Additionally, the team 

implemented a mitigation method against a simulated spoofing attempt on one or more of the 

robot’s sensors. The goal of this project was therefore divided into two specific objectives.  

The first objective was to develop a real-time state feedback controller that can accurately 

model the real-world operation of the robot and correct its movement in order to travel along the 

given trajectory accurately. The team first began the process by taking pre-existing controllers and 

porting them over to work within the Robot Operating System (ROS) and using the Python 

language.  

The second objective involved an element of cybersecurity on the robot platform. Within 

this simulation, the team considered an attacker that attempts to inject inaccurate data to one or 

more sensors on the robot platform. A mitigation strategy was then developed using data from the 

secured sensors and a barrier function.  

The rest of this report is organized as follows: Chapter 2 describes the background to the 

project and the existing implementations that the work was based upon. Chapter 3 includes the 

team’s methodology to implement this described controller, as well as the mitigation method on 

the simulated attack on the robot’s sensors. Chapter 4 details the testing done on the robot in order 

to demonstrate the controller’s effectiveness, the degradation of performance under a simulated 

attack, and the mitigation method to reduce the attack’s effectiveness in disrupting the robot’s 

operation, as well as the result of each test. 
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2. Background 

2.1 Wheeled Mobile Robot (WMR) Platform 

The WMR platform that was used during this project is the Turtlebot3 Burger [5]. The 

Turtlebot platform is a pre-designed two-wheeled robot that can be used for various research, 

educational and prototyping applications, and includes several position and movement sensors, as 

well as a 360-degree LIDAR for mapping and range-finding. The Turtlebot runs on a Raspberry 

Pi and an ARM-based Open Control Unit, both of which have open-source hardware and software 

that can be modified under an open-source license. This open-source nature and amount of pre-

existing software for the Turtlebot makes it a favorable platform for the project.  

 

Figure 1: Turtlebot 3 Burger 

2.2. Existing Work: Model of Robot Environment 

 In order to begin to determine a feedback controller for this robot, a description of the 

robot’s environment and motion must first be developed. Once this description is developed, the 
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robot’s system is then linearized using a feedback linearization process so a feedback controller 

can be used on the robot.  

2.2.1. States 

The robot’s state can be described by its current position , , and its orientation  within 

the operating environment. Additionally, there are two control parameters: the robot's linear 

velocity, , and its angular velocity, .  

 

Figure 2: Model of WMR 

This state vector, q, describes the robot’s current state at any given time: 

 
 (1) 

With this state vector, the state-space representation of this physical system can be developed. The 

state-space representation describes the robot’s position and orientation as a set of input, output, 

and state variables. The state of the robot can be described by:  

  (2) 

with  being the state vector,  being the input vector,  being the state matrix,  being the 

input matrix. The output of the system, , can then be described by: 

 (3) 

with  being the output matrix and  being the measurement noise. This measurement noise is 

assumed to be insignificant. 
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2.2.2. Feedback Linearization 

This state-space representation as developed is non-linear, that is, the change of the output 

is not directly proportional to the change of the input. In order to develop a feedback controller for 

this robot, this representation must be linearized, or transformed from a non-linear representation 

to a linear one using a change of variables and some control input. The feedback linearization 

procedure is described in detail in [6]. The output vector is defined as . Differentiation 

with respect to time yields 

 (4) 

showing that only  affects . Next, an integrator denoted by  is added so that  

  (5) 

By further differentiating , the following equations describing the dynamic compensator with 

control signals ,  was obtained:  

 

  (6) 

 

which fully linearizes the system. Note that singularity occurs at . To avoid this singularity, 

the reference trajectory is assumed to be continuous and persistent, meaning at no point on the 

trajectory should . The fully linearized system can be written as: 

 

 

(7) 

 

In the team’s implementation, the robot is following a figure-8 trajectory  defined by 

the following equations: 

 (8) 
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Figure 3: The reference trajectory, as visualized by orange tape in the Secure Cyber Physical 

Systems Lab 

2.3 Existing Work: PID Controller with Feedback Linearization 

A Proportional - Integral - Derivative (PID) Controller is one of the most basic and widely 

used feedback control loop mechanisms, due to its robustness and simplicity. A PID controller 

calculates the error value e(t) as the difference between a process variable - in this case, the position 

of the robot - and a setpoint - in this case, the reference trajectory. The PID controller then applies 

a correction to that error based on the predetermined proportional, integral, and derivative terms.  

PID controllers have been used widely in different reference tracking applications [7]. For 

this PID controller implementation of a reference tracking robot platform, the team is using a 

similar control scheme to the one proposed by Oriolo, De Luca, and Vendittelli in [6], which 

employs dynamic feedback linearization for better posture stabilization and reference tracking 

performance. 

Assume that the reference trajectory  (7) is continuous and persistent, the error 

 and   can be calculated with  as the robot’s 
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physical position. Using the feedback linearization process mentioned in section 2.2, a PD 

controller can be designed for the robot system [6] 

  

 
(9) 

with proportional gains  and derivative gains . Control signals ,  

will then be fed to the compensator to obtain the real control inputs to the robot.  

2.4 Existing Work: LQR/LQG Controller 

The PID controller is one of the most popular controllers in classical control, which works 

best with a linear time-invariant (LTI) system with a single input and a single output. However, 

most WMR platforms, and specifically the Turtlebot3 Burger platform, are non-linear, dynamic 

systems with multiple inputs and outputs. The system has been transformed to be controllable with 

classical control methods using the dynamic feedback linearization method mentioned in section 

2.3. However, some of the controller’s design parameters must be modified, including control 

parameters and feedback gains, in order to get a satisfactory performance, and in many cases, this 

can prove to be difficult. A different approach to this reference tracking is optimal control, which 

minimizes the cost while optimizes the control performance.  

Due to the nature of having to find the optimal control parameters and feedback gains for 

the system, the classic linear-quadratic regulator (LQR) controller is a good solution to this 

problem since its algorithm provides optimization to design a system that minimizes a 

predetermined cost function. Following is a summary of the system model that the team is working 

with, developed by Luyao Niu, Zhouchi Li and Hongchao Zhang. The system state can be 

described by equation (7). The quadratic cost function in continuous time is described as: 

 
 

 

(10) 

Solving the two equations, the optimal control input was obtained: 

  (11) 
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Since the system model includes processing noise and the state of the system is not directly 

observed, the output and process noise are passed through a Kalman filter to receive the predicted 

state , then using this as well as the reference trajectory to compute the optimal control input, 

making this a Linear Quadratic Gaussian (LQG) controller. Figure 4 shows the block diagram for 

the complete system model.  

 

Figure 4: Linearized system model block diagram 

2.5 Existing Work: False Data Injection Attack and Mitigation  

 Once the controller has been developed in order to properly have the robot travel the 

reference trajectory, it will then be subjected to a simulated data injection attack, which comprises 

one or more of the robot’s sensors. During this attack, there is a number of sensors that are 

considered secure, and the information provided by these sensors is considered to be accurate. The 

other sensors on the robot, however, are considered to be compromisable due to a simulated 

malicious attacker, and the information received from them cannot be considered as accurate.  

The attacks investigated in this project will add random Gaussian noise and constant value 

to the actual positional data output by the sensor. Therefore, during these attack, the controller as 

implemented would have an increasing amount of error and could not be used to properly follow 

the given trajectory during operation. The adversary is also assumed to have knowledge of the 

control policy and is intelligent enough to generate an attacking strategy 𝝉 that can alter the 

trajectory of the robot.   
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False data injection attacks like this against cyber-physical systems (CPSs), especially on 

networked systems, have been widely studied in modern control theory. These systems are 

different from classical control systems in the fact that many operations and communications occur 

on a shared wired or wireless network [8], making them a lot more open to the cyber world, and 

in turn, a lot more vulnerable to attacks on the data transmission or communication layer [9]. 

Research has been conducted on how to detect these kinds of attack [10], and there exists many 

pieces of research on ways to mitigate their effects, for example, a Polynomial-based Compromise-

Resilient En-route Filtering scheme (PCREF) [11] or a filtering-and-learning system to filter out 

the malicious sensor through an optimal filter [12]. 

Another existing solution for mitigating the effect of an adversary involves the use of two 

separate groups of sensors on the robot: the group of secured sensors, and the group of all the 

sensors on the robot, which includes both secured and compromised sensors. This mitigation 

method employs a barrier function approach mentioned in [13], which employs the framework for 

stochastic safety verification using barrier certificates presented in [14]. The approach is to select 

a control policy that minimizes the deviation of the robot’s trajectory from the reference trajectory 

while ensuring that when the vulnerable sensor is compromised, the system remains inside the safe 

region, with or without the presence of an adversary.  The system model being attacked by an 

adversary can be described by the following equations: 

  

 
(12) 

where  and  are processing noise and measurement noise, respectively. Variable  denotes the 

signal injected by the adversary. The optimal control input  can be found by solving the following 

problem: 

 
 

 

                                

(13) 

which is equivalent to solving the following stochastic HJB equation: 
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 (14) 

This equation is computationally very difficult to solve [13], so the relaxation of assuming the 

value function  is equal to the value function of the unconstrained problem was adopted, which 

will allow the removal of the constraint. Solving the minimizer of the unconstrained equation is 

equivalent to solving the following quadratically constrained quadratic program (QCQP): 

  

 

                                

(15) 

in which  is the optimal control input,  is the control input generated by the secured sensors, 

and  as the key design parameter. A high value of means that there is a wider range for control 

input , which in turn will give a better control performance but also means that the attack can bias 

the system to an unsafe region. The team then used Proposition 1, first mentioned in [13], to 

calculate the value of and verify the safety criterion using sum-of-squares (SOS) optimization. The 

maximum value of that still ensures safety can be found using Algorithm 1, also proposed in [13]. 

This operation can be calculated using the SOS Toolbox in MATLAB. 

 

Proposition 1: Suppose that there exist polynomials 

𝜆𝑈(𝑥̅), 𝜆𝐷(𝑥̅, 𝑢̂) 𝐷(𝑥̅) such that the following hold

  𝐷(𝑥̅) +  𝜖 ≥ 0 (16) 

  𝐷(𝑥̅) − 1 𝜆𝑈
𝑇 (𝑥̅)𝑔𝑈(𝑥̅) ≥ 0 (17) 

  𝐷(𝑥̅) ≥ 0 (18) 

 
−

𝛿𝐷

𝛿𝑥̅
(𝑓(𝑥̅) +  𝐵̅𝑢̂) − 𝜆𝐷

𝑇 (𝑥,̅ 𝑢̂)𝑔𝐷
𝛾(𝑢̂)  

 
−

𝛿𝐷

𝛿𝑡̅
−  

1

2
𝑡𝑟 (Λ𝑇

𝛿2

𝛿𝑥̅2
Λ) ≥ 0 (19) 

   𝜆𝑈(𝑥̅) ≥ 0,     𝜆𝐷(𝑥̅, 𝑢̂) ≥ 0 (20) 

Then 𝑃𝑟(⋃ {𝑥(𝑡) ∈ 𝑈})𝑡∈[0,𝑇]  ≤  𝜖

𝑔𝐷
𝛾 (𝑢̂) =  𝛾2 − ∑ 𝑢̂𝑖

2

𝑚

𝑖=1
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Algorithm 1: Algorithm for computing the maximum parameter 𝛾 that 

ensures safety 

1:  procedure SAFETY_SOS 

2:     𝛾 ← 0, 𝛾 ← 𝛾𝑚𝑎𝑥 

3:     while |𝛾 −  𝛾| >  𝜌 do 

4:         𝛾 ← (𝛾 +  𝛾)/2 

5:         𝑞 ← SOS.Feasible(Eq. (16), Eq. (17), Eq. (18), Eq. (19), Eq. (20)) 

6:         if 𝑞 == 0 then 

7:             𝛾 ←  𝛾 

8:         else 

9:             𝛾 ←  𝛾 

10:        end if 

11:   end while 

12:   return 𝛾 

13: end procedure 
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3. Methodology 

To gain an understanding of the existing work done on the robot platform, the existing 

MATLAB code was run on the Turtlebot3 platform. The current MATLAB implementation has a 

PID controller implementation and an LQG controller implementation to travel a “figure 8” shape 

that is described by a parametric function . Both implementations have an initial state that the 

robot is assumed to be in for the first iteration of the controller, and then updates the state using 

the robot’s position and trajectory to calculate the next desired point that the robot should move 

to. The robot’s required speed to get to that next point is then calculated and that information is 

sent to the robot to move to that point. Additionally, within these MATLAB implementations, the 

relation between the planned trajectory and the actual trajectory traveled is graphed in order to 

gain a better understanding of the accuracy of the state controller.       

3.1 Choosing a New Platform 

Using MATLAB made developing the controller easier because of MATLAB’s 

mathematical capabilities. The input, output, and states of the system can be described by a state-

space equation which requires a lot of matrix manipulation and calculation, something that 

MATLAB excelled at. However, the ROS library for MATLAB is not very well-developed, 

making the communication between the robot and the host computer slow, inefficient, and not 

very modular. In contrast, Python has a much more developed ROS library, and a less robust 

mathematical capability than MATLAB. For the purpose of analyzing how data injection attacks 

would affect the reference tracking capability of the wheeled robot platform, performance is very 

important; which is why a port to Python was necessary. 

The scope of this project was to take the existing MATLAB implementations and port them 

to a language that would be more efficient in running the controller. The current limitations of the 

MATLAB implementation result in an application that has a relatively slow runtime and is more 

complex to debug, and there was a desire to port this into a language that would be more efficiently 

compiled and easier to debug and test. On the Turtlebot3, there were two potential options for this 

porting process, C++ being run directly on the OpenCU, or Python being run on the Turtlebot3’s 

Raspberry Pi. Python was the solution that was ultimately chosen due to previous development 
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experience in Python on the Turtlebot3 as well as the large number of pre-existing libraries that 

are developed for the Turtlebot3 platform in Python.  

3.2 Porting to Python: basic movement, ROS, organization of nodes  

Additionally, the Python implementation was done alongside the middle-ware platform 

Robot Operating System (ROS). ROS allows for code to run on the Turtlebot3 in independent 

instances called Nodes and allows for the transfer of data between nodes along Topics. This 

arrangement of code allows for independent functions to be developed and then applied in a variety 

of applications without having to redevelop additional code for each new application of the robot 

platform. Nodes are able to communicate with each other along topics, which are data streams 

over which a specific predetermined type of information can be shared amongst all nodes. This 

topic system relies on “publishers”, which send information out along a topic, and “subscribers”, 

which receives information along a topic. This system of inter-node communication allows for 

calculations to be done in one node, and the results of those calculations or functions to be sent to 

other nodes for additional functions.  

Within the team’s ROS design, a node that represents the LQG or PID Controller was 

initialized, which was subscribed to the current state of the robot. The robot’s state was given by 

its position, as well as its linear and angular velocities. These values were constantly updated by 

the sensors on the robot, which then are input to the controller node. The controller node then takes 

in this information, which was then used in order to determine the set of velocity and direction 

commands that the robot will take in order to move to the next setpoint in the desired trajectory. 

This process was then repeated until the robot has traveled along the entire desired trajectory. 

 

Figure 5: Node graph of the Python implementation of LQG controller 

The whole process was very straightforward since ROS has a well-developed library for 

Python. A class called lqr_controller() was defined and initialized with all the necessary 

subscribers and publishers to different topics as well as all the variables and callback functions. 
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An object of the class was then initialized in the program’s main function and the team can start 

sending and receiving messages to and from the topics.  

 

Figure 6: Block diagram of Python implementation 

3.3 Porting to Python: PID Controller  

The team began the porting process from MATLAB to Python with the PID controller, in 

order to investigate the difficulty of porting as well as any potential problems that the team might 

encounter before moving on to porting the LQG controller which is more complicated but also has 

better performance.  

First, the team needed to find a way to port all the complex matrix mathematics of the 

controller, which are easily handled by MATLAB since MATLAB has a robust library of matrix 

manipulation functions. The team discovered that the numpy library in Python can provide a 

similar mathematical platform to MATLAB. The matrices from MATLAB could be represented 

as numpy arrays for manipulation and calculation. There are a few syntactical differences between 

using matrices in MATLAB and numpy arrays in Python, for example: matrices in MATLAB start 

at index 1 and numpy arrays start at index 0; matrix division is sometimes recommended in 

MATLAB instead of matrix inversion for speed, but this cannot be done in Python since in many 

cases it will result in division by zero errors. These syntactical differences were the main obstacles 

in the team’s port to Python, some of which took the team a few days to find and debug. Another 
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thing the team had to be concerned about was to confirm that the results of all the calculations are 

correct. This was achieved by printing out each of the results in the Python implementation and 

compare them to their counterparts in the MATLAB implementation. 

 The second important thing to implement is a way to keep a constant time between each 

time step. For each timestep length dt, the Turtlebot will carry out its movement according to the 

velocity message that ROS received. This is done in MATLAB by using tic and toc to start and 

stop the timer respectively. At first, the team simply stopped the code from running for dt seconds 

by using sleep(), which works, but was not ideal because this method did not keep consistent time 

and it is bad practice to simply stop the code from running. The team eventually used the function 

time.time() in Python’s time library to start and stop a built-in timer. This provided an accurate 

time measurement as well as not requiring the code to stop running. 

Finally, the team needed to find a way to graph the actual trajectory versus the reference 

trajectory and the mean square error in order to visualize the performance of the controller with 

different parameters. This was achieved with the matplotlib library, a plotting library created for 

Python. The matplotlib library was simple to use and very modular, allowing the team to modify 

all the elements in the graphs and the team was able to plot both the actual trajectory versus 

reference trajectory graph, and the mean square error graphs accurately.   

3.4 Porting to Python: LQG controller  

The port of the LQG controller from the MATLAB implementation to the Python 

implementation turned out to be very similar to that of the PID controller. The team was able to 

use the same techniques and libraries that were used in the port of the PID controller: numpy 

library was used to handle matrix manipulation and calculation, time library was used to keep 

constant time between each timestep, and matplotlib was used to plot the actual trajectory versus 

reference trajectory graph and mean square error.  

There was a big error that required the team some time to fix. Inside the LQG loop, there 

was a wrong calculation of Theta which make all the other results diverge into infinity and make 

the system not BIBO stable. Because Python handles matrix calculations differently from 

MATLAB, the team had to make some changes to split a long calculation into smaller calculations 

and test the result every time step in order to make sure that the outputs are bounded correctly, and 
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the system is stable. After this change, the robot was able to carry out the reference tracking with 

very good performance. 

Another small bug that needed to be fixed was regarding the getKey() function. This 

function was used in order to stop the robot from running when the key “e” was pressed on the 

keyboard, which was important for the debugging process but irrelevant in the final outcome of 

the reference tracking. The function works by waiting 0.1 second for user input each time it is 

called. This function must then be called every time step in order for the user input to be read 

properly and stop the robot from running. However, for a very small value of dt (< 0.1 second), 

this 0.1 second delay yielded a very big decrease in performance, slowing down the robot 

significantly. After the controller was successfully tested and verified to be working properly, this 

function was removed to avoid any negative effect on performance. 

3.5 Attack Simulation and Mitigation Methods 

Initially, the team chose the y-position IMU sensor as the vulnerable sensor and the x-

position IMU sensor and the LIDAR as the secured sensors. However, LIDAR sensors are very 

vulnerable in reality; also, the team was not able to produce reliable y-position data out of the 

LIDAR. Therefore, the team ended up using the LIDAR as the unsecured sensor. 

For the mitigation method the team used a barrier function approach mentioned in section 

2.5. The control input u can be found by solving the QCQP (16) The value of was calculated using 

MATLAB’s SOS Toolbox, and the team found that the optimum value is  = 9.626. 

In MATLAB, the QCQP was solved by setting up the objective equation with the quadobj() 

function and setting up the constraint equation with the quadconstr() function, and inputting the 

two equations into the fmincon() function to get the minimizer output. In Python, the team was 

able to use the cvxpy library, developed by the Convex Optimization Group at Stanford University, 

California. This library allows for simple solving of convex optimization problems using built-in 

functions. The library chooses the appropriate solver depends on the type of problem and then 

rewriting the problem in the selected solver standard form [15]. In this implementation, the team 

used the splitting conic solver (SCS) to solve the convex QCQP. There was a slight difficulty with 

setting up the problem: since the Variable object created by the cvxpy library is not a numpy array 

and does not have a matrix size, there were some issues with numpy trying to multiply matrices 

with incompatible sizes. This was solved by using the overloaded multiplication operator that was 
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defined inside the library to multiply a Variable object with a normal numpy matrix. The QCQP 

solver was then tested in a trajectory simulation and the output was compared with the MATLAB 

version of the simulation, and yielded similar results, as shown in the figure below.   

 

Figure 7: Simulation results of MATLAB version (left) and Python version (right) 

In order to obtain a secondary set of sensors, the LIDAR on the robot was used as an 

unsecured sensor, while the internal IMU of the robot is used as the secured sensor. This simulated 

a situation in which the LIDAR on the robot is subjected to a spoofing attack. The LIDAR on the 

robot can be used to generate a map of the environment in which it is operating. This map was 

generated using the ROS GMapping package, which was an implementation of simultaneous 

localization and mapping (SLAM) within ROS, specifically the open-source OpenSLAM package 

[16]. This GMapping package takes the laser scan information from the robot’s LIDAR and 

generates an occupancy grid of the robot, which is a 2D map of the environment in which the robot 

is operating [17]. The occupancy grid is then generated with each cell having a specific probability 

as to whether an object such as a wall or obstacle is present. This grid contains two types of grid 

cells, unoccupied cells which are likely to not have an object in that cell, and occupied cells which 

are likely to have an object in that cell. Using this GMapping package, an occupancy grid was 

generated of the Secure Cyber Physical Systems Lab at WPI: 
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Figure 8: Map generated by the Turtlebot’s LIDAR 

In order to be used as a secondary sensor for the mitigation method, the GMapping package 

must localize the robot, or determine the robot’s position within the map at any given time. The 

GMapping package provides a method to localize the robot via the transformation, or “/tf” library. 

The tf library allows for ROS to keep track of multiple reference frames at any given time, as well 

as the translation and rotations necessary to move between two given reference frames. The 

GMapping package uses the tf library for several transformations, and from these transformations, 

the robot’s position within the map can be generated. The specific transformation of interest if that 

of /map -> /odom, which can generate the robot’s estimated position within the map. With this 

transformation known, the robot’s position within the map is known, and then can be used within 
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the controller as a secondary position input. This transformation is broadcasted by the GMapping 

package along the /tf topic, so a specific ROS node called a transform listener is needed. This 

tf_listener node takes the transformation along the topic and prints out the robot’s estimated 

position within the map, which can then be published to other nodes. In this implementation, the 

tf_listener node publishes this estimated position to the LQG Controller node along the 

/linear_trans topic, which then can be used as the unsecured input X and Y coordinates in the 

control loop. The ROS lqt_graph, which describes all the nodes using during a given operation, as 

well as the topics they are publishing and subscribed to, gives a detailed description of this setup: 

 

Figure 9: Full node graph of the Python implementation of the mitigation method 
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4. Testing and Results 

4.1 PID Controller 

 The team’s implementation of the PID controller for the autonomous path planning was 

not successful, even without the presence of the simulated attack. The performance of the PID 

controller was inaccurate and unstable; although the Turtlebot seemed to follow a rough trajectory 

that resembled the reference trajectory, the result was not satisfactory. The testing of the original 

MATLAB version also yielded the same performance issues.  

When the controller and the code are initiated, the Turtlebot tries to follow a very rough 

trajectory that resembled the reference trajectory; however, the discrepancy between the 

Turtlebot’s trajectory and the original trajectory, as shown by the reference trajectory versus actual 

trajectory graph and the mean square error versus step number graph (Figure 10), was too large 

for this version of controller to be used in the project to run the autonomous path planning for the 

robot.  

 

Figure 10: Actual trajectory vs Reference trajectory graph and Mean Square Error graph of 

PID controller 

The team made a few small improvements on the performance, but the results were still not good 

enough for reference tracking purposes. Later on, when it was determined that the LQG controller 

version performed much better in every aspect, the team stopped working on the PID controller. 
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4.2 LQG Controller 

The performance of the LQG controller was a lot more accurate and stable than that of the 

PID controller, which was also reflected in the original MATLAB version. When the controller 

and the code were initiated, the Turtlebot did a very good job with following the reference 

trajectory almost exactly with very low variance and error (e). The amount of time allotted for the 

autonomous path planning (T) and the number of steps (num_steps) the Turtlebot take can be 

modified to yield different results. 

The team conducted more tests in order to determine the ideal values of T and num_steps, 

as well as dt that would optimize the Turtlebot’s trajectory, minimize error, and keep runtime low 

enough for testing. As shown in (Figure 11), there existed three main error areas that are consistent 

for all T and num_steps values.  

• The first error zone was at the beginning of the trajectory. The robot overshot outside of 

the reference trajectory then slowly return to the planned path.  

• The second error zone appeared just before the midway point of the trajectory. Visually, 

the robot could be seen to oscillate, going back and forth constantly for a few steps, then 

returned to the planned path. 

• The third error zone was at the end of the trajectory. The team suspected that this error is 

caused by the robot slowly coming to a stop slightly before the reference trajectory was 

supposed to end. 

 

Figure 11: Three error zones, as seen on trajectory graph and mean square error graph 
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The team also noticed a pattern in the Turtlebot’s trajectory with different values of T and 

num_steps. Lowering the value of T caused the robot to run off course and amplify the length of 

the initial overshoot before the Turtlebot come back to its planned trajectory. Any T value lower 

than 50 (seconds) would cause the robot to run a shrunken version of the reference trajectory with 

a very long overshoot, which was undesirable. The length of the initial overshoot, as well as the 

error between the reference trajectory and the actual trajectory, were reduced with increasing value 

of T; however, this will cause the robot to take a longer time to run the whole trajectory. The team 

noticed that for values higher than T = 150, the average error (not including the three error zones 

mentioned above) between the actual trajectory and the reference trajectory became very low (< 

0.00002). The errors in the problem areas mentioned above also became very small, with e = 

0.0002 for the initial overshoot and e = 0.0001 for the second error zone (Figure 12). 

 

Figure 12: Trajectory and mean square error graph with T = 150 

At T = 300, the error in the second zone is nearly indistinguishable from the general noise 

of the control system (Figure 13). Increasing T afterward yields insignificant reduction to the 

errors. For best performance, the team would recommend using T = 300; for general testing and 

attack simulation, the team would recommend using T = 150.  
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Figure 13: Trajectory and mean square error graph with T = 300 

The team also experimented with different values of num_steps, which would also change 

the value of dt accordingly, as dt = T/num_steps. The higher the value of num_steps, the lower dt 

gets and the smaller the length of the error zones will become. The team has found no performance 

issues with raising the value of num_steps, as long as the value of dt is kept larger than the time 

the computer needs to perform all the calculations, about 0.0002s. If the value of dt is lower than 

the time the computer needs to perform the calculations in the loop, the Turtlebot will experience 

unstable behaviors as some of the calculations will be lost and override before getting sent from 

the host computer to the Turtlebot. In order to make ample room for the computer to calculate each 

loop and the data to be sent to the Turtlebot, the team suggests setting the num_steps value so that 

dt value equals to 0.001 for the best performance. Due to how accurate the Turtlebot’s trajectory 

was compared to the reference trajectory, the team decided that this version of the LQG controller 

is sufficient to control the robot and move on to attack simulation on the Turtlebot’s sensor. 

4.3 Attack Simulation 

Once the robot was able to travel the given planned trajectory with good performance, the 

attack simulation was then considered on the robot. For the first attack, the team simulated a simple 

random noise injection into the y-position sensor of the robot.  
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Within the simulation, an attacker was attempting to send false data to the robot’s sensors 

which results in inaccurate tracking of the robot’s position. This was modeled within the code 

application as a random number within the bound that was added or subtracted to the 

measured value of the robot’s y position. This resulted in an inaccurate measurement for the current 

position of the robot which is then fed into the feedback of the LQG controller. Injecting false data 

at every time step caused the robot to behave very erratically since the false data would cascade 

and the LQG controller did not have enough time to stabilize the system. The resulting reference 

tracking attempt of the robot can be seen in Figure 14. 

 

Figure 14: LQG reference tracking with attack on y-position IMU sensor 

In order to test the ability of the LQG controller to self-stabilize the system in the case of 

a weaker attack, instead of injecting false data every time step, the attacker injected a larger false 

data every 20 time steps. The LQG controller did a good job of stabilizing the robot platform in 

this case, with a reasonably small deviation from the reference trajectory, as seen in Figure 15 



24 

 

 

Figure 15: LQG reference tracking with attack on y-position IMU sensor every 20 time steps 

Later on, the team tested another attack, this time on the y-position of the robot received 

by the LIDAR. The Turtlebot’s LIDAR would do an initial scan of its surroundings to get an 

occupancy grid and determine its initial position, then compare its current position to the initial 

position to generate y-position measurement. Random Gaussian noise was then added to this 

reading and fed into the current position matrix of the robot.    

4.4 Mitigation Methods 

The team decided to select the LIDAR as the unsecured sensor, since in practical 

applications of autonomous driving and reference tracking, LIDAR is the most easily and 

commonly compromised sensor [18], while the IMU sensors are very secured in general. 

Furthermore, the y-position received from the LIDAR, due to calculation errors, transmission 

delay from the robot to the transform listener to the controller, and the inherent inconsistency of 

the occupancy grid being generated each time, is not as accurate as the position received by the 

IMU sensors. 

With this simulated attack on the robot’s sensors in place, the mitigation method was then 

implemented in order to properly retain control of the system as the robot completes the trajectory. 

As previously introduced, the mitigation method relies on two sets of sensors, the set of secured 
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sensors, and the set of all sensors used in order to determine the robot’s position. The barrier 

function, with the set of possible control input limited by the design parameter , prevents the 

robot from reaching the unsafe region. The team then calculated the optimal control input by 

solving the QCQP mentioned in section 2.5. Within the attack simulation, the secured sensor was 

the robot’s IMU, and the unsecured sensor is the LIDAR on the robot, with the reported position 

of the robot from the GMapping transformation modified by random Gaussian noise. This 

modified position value was then fed into the mitigation method calculation as the unsecured input, 

with the IMU position value used as the secured input.  

The results were satisfactory: the robot was able to stay very close to the reference 

trajectory with the mitigation method implemented, as shown in figure 16. The team was able to 

get dt value to as low as 0.02 with no issues with instability, essentially turning the system into a 

continuous-time one. This was due to the greatly improved performance of the QCQP solver in 

the Python implementation of the mitigation method compared to the MATLAB version.  

 

Figure 16: Reference trajectory vs Actual trajectory graph and mean square error graph of the 

Python implementation of the mitigation method (T = 150, dt = 0.02, random Gaussian noise) 

The team was also able to get dt value to be as low as 0.01, by setting T = 100 and 

num_steps = 10000, and receive a good result from the controller; however, while debugging, the 

team noticed that the elapsed time between each time step can become higher than 0.01 second 

due to calculation time for solving the QCQP. This can be seen in figure 17; note the elapsed 

runtime is 108 seconds, exceeding T value by 8 seconds, which might cause the robot’s movement 
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to be inaccurate. Since the control input calculations take around 0.01 second to complete, the team 

recommend that dt value should not be set to less than 0.02.  

 

Figure 17: Reference trajectory vs Actual trajectory graph and mean square error graph of the 

Python implementation of the mitigation method (T = 100, dt = 0.01, random Gaussian noise) 

 Another test of the mitigation method was done with a different attack, by adding a constant 

to the y position generated from the LIDAR. The results were very similar to the mitigation method 

against the random Gaussian noise attack, proving that the mitigation method works well 

regardless of the false data injection attack performed on the y position of the LIDAR. 
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Figure 18: Reference trajectory vs Actual trajectory graph and mean square error graph of the 

Python implementation of the mitigation method (T = 150, dt = 0.02, constant attack) 

  The team also experimented with different values of T, as high as T = 300 and as low as T 

= 50 while keeping dt at 0.02. At T = 300, the accuracy at which the Turtlebot can follow the 

reference trajectory under attack was greatly improved (Figure 19). However, this came at a cost 

of increasing the runtime to 300 seconds which is not practical for testing purposes. Meanwhile, 

at T = 50, the actual trajectory appeared to be shrunk when compared to the reference trajectory 

and some instability was observed (Figure 20).  
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Figure 19: Reference trajectory vs Actual trajectory graph and mean square error graph of the 

Python implementation of the mitigation method (T = 300, dt = 0.02, random Gaussian noise) 

 

Figure 20: Reference trajectory vs Actual trajectory graph and mean square error graph of the 

Python implementation of the mitigation method (T = 50, dt = 0.02, random Gaussian noise) 

Similar behavior was observed during the testing of the Python implementation of the LQG 

controller, so the effects of runtime on the robot’s accuracy for reference trajectory tracking was 

expected for the Python implementation of the mitigation method. Therefore, for best performance, 

the team would recommend using T = 300; for general testing, the team would recommend using 

T = 150, modifying number of timesteps proportionally to keep dt value at a constant 0.02. Overall, 
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the mitigation method does a good job of preventing the system from deviating too far from the 

reference trajectory. 

 

Figure 21: From left to right: LQG controller with no attack, LQG with mitigation method 

against random Gaussian attack, LQG with mitigation method against constant attack 
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5. Conclusion 

5.1. Summary 

The project was successful in implementing a Python version of an LQG controller for the 

purpose of autonomous path planning and mitigation against false data injection attacks on a 

compromised sensor by using other known secured sensors. The Python version was improved 

and had a huge performance improvement over its MATLAB counterpart, allowing dt to be as low 

as 0.001 in the LQG controller implementation and as low as 0.02 in the mitigation method 

implementation, making the system essentially continuous-time. This is due to the very well-

developed ROS library that is available on Python, as well as the speed of calculations of the two 

mathematical libraries, cvxpy and numpy. Both factors contributed to allowing the control of the 

robot and the calculations of the control input to be carried out very quickly.  

5.2. Future Works & Improvements 

The Python implementation of the LQG controller and the mitigation method works very 

well; however, as of right now, the programs are required to be set up on a host computer with all 

the dependencies installed. Putting the code onto the Raspberry Pi 3 on the Turtlebot and install 

the necessary dependencies there will allow any host computer to run the reference tracking on the 

Turtlebot just by connecting to the Raspberry Pi. During the process of trying to port the code and 

running it on the Raspberry Pi, the team ran into a few difficulties. Firstly, there is no official 

documentation for this procedure for the Turtlebot, and most ROS applications the team researched 

are using a host computer to control the Turtlebot. Secondly, since the Raspberry Pi is much less 

powerful than a PC, it will take the complex matrix multiplication and other calculations much 

longer to carry out, which will impact dt and performance. However, if the code is able to be 

installed and run on the Turtlebot as an embedded system, it will provide additional flexibility and 

autonomy to the system by not requiring a host computer to which the robot is tethered to.  
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7. Appendix 

Appendix A: How to Use the Python Implementation 

Getting Started 

These instructions will get you a copy of the project running on a local machine, in which 

the robot attempts to autonomously drive a "figure eight" trajectory while there is a simulated 

attack on the robot's LIDAR sensor, injecting it with false position data. The software uses a 

mitigation method in order to reduce the effect of the simulated attack and allows for the robot to 

travel the pre-planned trajectory with little disruption to desired operation. The complete code 

repository can be accessed at https://github.com/hoangminh2408/PathPlanningMQP2019 

Prerequisites 

This project runs code on a remote computer using Ubuntu Linux 16.04 with ROS Kinetic 

Installed. This remote computer communicates to a Turtlebot3 Burger robot via Wi-Fi connection. 

Installing 

First, in order to run the simulation, ROS Kinetic must be installed. Installation instructions 

for ROS Kinetic can be found on the ROS Documentation Website. Once ROS is installed, create 

a Catkin Workspace in which the project package can be created. Once the workspace directory is 

created, the workspace must be created with catkin via 

catkin_make 

and the workspace must be sourced with 

source devel/setup.bash 

The entire repository can then be placed as a folder within the workspace directory. 

Running the simulation 

The project consists of two tests, the LQG Controller which allows for the robot to travel 

the preplanned trajectory, and the LQG Controller with the mitigation method under a simulated 

false data injection attack. 

https://github.com/hoangminh2408/PathPlanningMQP2019
http://wiki.ros.org/kinetic/Installation
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
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LQG Controller Test 

In order to run the LQG Controller test, roscore must first be started in a terminal window 

on a remote computer: 

roscore 

Then, connect to the Turtlebot3 from the remote computer in a second terminal window 

and bringup the basic ROS packages on the turtlebot (must be run on the Turtlebot3 itself via SSH, 

not on the remote computer) 

roslaunch turtlebot3_bringup turtlebot3_robot.launch 

Once roscore is up and the bringup packages have been run on the robot, navigate to the 

pathplanning package folder within the catkin workspace using a third terminal window. An easy 

way to navigate to this folder within ros is: 

roscd pathplanningmqp 

Once in the pathplanningmqp directory, run the test using: 

rosrun pathplanningmqp FBL_LQD_ros.py 

The robot must be placed in the middle of a room with moderate amount of free space to 

complete the trajectory. The robot will then attempt to travel the "figure eight" curve 

autonomously, with information about each iteration of the loop printed to the terminal. Once the 

robot has traveled the required amount, it will stop automatically. The program then displays graph 

outputs of the robot's trajectory over time compared to the actual pre-programmed trajectory, as 

well as other data to measure how closely the robot was able to follow the pre-programmed 

trajectory. 

False Data Injection (FDI) Test 

The FDI Test involves the LQG controller being run while a simulated attacker injects false 

information to the robot's Y position sensor. This requires the use of two separate sets of sensors, 

the Turtlebot3's LIDAR and it's internal IMU, which both are able to report the robot's position. 

Within this simulation, the LIDAR's Y position is given a random offset each iteration of the 

control loop. The mitigation method then takes the IMU and LIDAR position values, and 

calculates a 
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The first two steps to run the FDI test are the same as running the LQG test, which includes 

running roscore and the bringup packages, then navigating to the pathplanningmqp directory 

within the catkin workspace. Next, the built-in ROS GMapping package must be run in a third 

terminal window. This allows for the generation of a map of the robot's environment by the 

LIDAR: 

roslaunch turtlebot3_slam turtlebot3_slam.launch slam_methods:=gmapping 

With the gmapping running, the transform listener must be run in a seperate window, which 

allows for the estimated position of the robot within the map to be output to the LQG Controller. 

This uses the ROS /tf library: 

rosrun pathplanningmqp transform_listener.py 

With the GMapping and transform listener running, the FDI test can then be run: 

rosrun pathplanningmqp FBI_LQR_FDI_simulation.py 

The robot will then attempt to travel the same trajectory as in the LQG Test, while 

mitigating the simulated attack on the robot's LIDAR sensor. 

Additional Notes 

If the Turtlebot3 model is not set within ROS, an error may occur when trying to run either 

of the tests. In order to set the model, use: 

export TURTLEBOT3_MODEL=burger 

If the python file cannot be executed, make sure that the python file is given proper 

executable user permissions: 

chmod +x FILE_NAME_HERE.py 

Built With 

• Turtlebot3 - An open-source autonomous robot platform 

• Robot Operating System (ROS) - Robot Middleware Package used on Turtlebot3 

• NumPy - Mathematical Library for Python in order to complete calculations using 

matricies 

• CVXPy - Convex Optimization solver library for Python 

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/
https://numpy.org/
https://www.cvxpy.org/
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 Appendix B: PID Controller Implementation in Python Code 

#Filename: PID_ros.py 
#!/usr/bin/env python 
import numpy as np 
import rospy 
import roslib 
import tf 
import math 
from tf.transformations import euler_from_quaternion 
import copy 
import time 
import sys, select, os 
import matplotlib.pyplot as plt 
if os.name == 'nt': 
  import msvcrt 
else: 
  import tty, termios 
from geometry_msgs.msg import PoseStamped, Twist, Pose, PoseWithCovariance 
from nav_msgs.msg import Odometry 
from sensor_msgs.msg import Imu, LaserScan 
from tf.transformations import euler_from_quaternion 
#Done as a node itself 
  
# def controller_init(robot): 
  
# robot.vel_msg.linear.x = Xi 
# robot.vel_msg.angular.z = omega 
# robot.vel_pub.publish(robot.vel_msg) 
print("Initializing Controller...") 
T = 100 
num_steps = 600 
tgetkey = 0 
n = 3 
m = 2 
p = 3 
pMinusS = np.array([2]) 
A = np.identity(3) 
B = np.array([[1, 0], 
              [1, 0], 
              [0, 1]]) 
C = np.identity(3) 
Sigma_w = np.identity(3) 
Sigma_v = np.identity(3) 
Q = np.array([[1, 0, 0], 
              [0, 1, 0], 
              [0, 0, 1]]) 
R = np.array([[1, 0], 
              [0, 1]]) 
start_point = np.array([0, 0, 0]) 
rd_tar = 1 
rd_obs = 1 
target = np.array([2, 0.001, 0]) 
obs = np.array([-1, 1]) 
t = np.linspace(0, 99, num = num_steps 
) 
  
kp1 = 1 
kp2 = 1 
kd1 = 0.8 
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kd2 = 0.8 
  
x1 = 0.5*np.sin(t/10) 
x2 = 0.5*np.sin(t/20) 
  
parametric_func = np.zeros((2,num_steps)) 
parametric_func[0] = x1 
parametric_func[1] = x2 
  
dt = float(T)/float(num_steps); 
s = np.zeros((n, num_steps)) 
b = np.zeros((n,n,num_steps)) 
  
s[:,num_steps-1]=[0,0,0] 
b[:,:,num_steps-1]=np.zeros(3) 
degree = 3 
  
g_D = rd_tar^2 
g_U = rd_obs^2 
  
ref_traj = parametric_func 
diffrc = ref_traj[:,0] 
# ref_traj[:,:] = ref_traj[:,:] - diffrc[:]; 
robot_pos = np.zeros((2,num_steps)) 
  
ref_length = len(ref_traj[1]) 
ref_traj = np.concatenate((ref_traj, np.ones((1,ref_length)))) 
for i in range(0,ref_length-1): 
    ref_traj[2,i] = np.arctan((ref_traj[1,i+1]-ref_traj[1,i])/(ref_traj[0,i+1]-ref_traj[0,i])); 
ref_traj[2,ref_length-1] = ref_traj[2,ref_length-2] 
  
ref_traj_dot = np.zeros((3,ref_length)) 
for i in range (1, ref_length): 
    ref_traj_dot[0,i] = ref_traj[0,i]-ref_traj[0,i-1] 
    ref_traj_dot[1,i] = ref_traj[1,i]-ref_traj[1,i-1] 
    ref_traj_dot[2,i] = ref_traj[2,i]-ref_traj[2,i-1] 
  
ref_traj_db_dot = np.zeros((3,ref_length)) 
for i in range(0, ref_length-1): 
    ref_traj_db_dot[0,i] = ref_traj_dot[0,i+1]-ref_traj_dot[0,i] 
    ref_traj_db_dot[1,i] = ref_traj_dot[1,i+1]-ref_traj_dot[1,i] 
    ref_traj_db_dot[2,i] = ref_traj_dot[2,i+1]-ref_traj_dot[2,i] 
# add the third dimension: xdd, ydd 
# rd = [x_dot; y_dot]; 
ref_length = len(ref_traj[2]) 
rd = np.zeros((2,ref_length-1)) 
for i in range (0, ref_length-1): 
    rd[0,i] = ref_traj[0,i+1]-ref_traj[0,i] 
    rd[1,i] = ref_traj[1,i+1]-ref_traj[1,i] 
  
rdd = np.zeros((2,ref_length-2)) 
for i in range(0,ref_length-2): 
    rdd[0,i] = rd[0,i+1]-rd[0,i] 
    rdd[1,i] = rd[1,i+1]-rd[1,i] 
  
# redefine start point and target 
# start_point = ref_traj(:,1); 
  
target = ref_traj[:,ref_length-1] 
  
if dt <= 0: 
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    dt = 1e-4; 
  
if n <= 0: 
    n = 2; 
  
  
if m <= 0: 
    m = 2; 
  
  
if p <= 0: 
    p = 2; 
  
[secureSensors] = pMinusS.shape; 
if secureSensors > p: 
    print('The number of secure sensors should be smaller than or equal to the total number of sensors.') 
  
[rowA, colA] = A.shape; 
if rowA != n or colA != n: 
    print('A should be an n*n matrix.') 
  
[rowB, colB] = B.shape; 
if rowB != n or colB != m: 
    print('B should be an n*m matrix.') 
  
[rowC, colC] = C.shape; 
if rowC != p or colC != n: 
    print('C should be an p*n matrix.') 
  
[rowQ, colQ] = Q.shape; 
if rowQ != n or colQ != n: 
    print('Q should be an n*n matrix.') 
  
[rowR, colR] = R.shape; 
if rowR != m or colR != m: 
    print('R should be an m*m matrix.') 
  
#parameters initialization 
C_alpha = C[pMinusS-1,:]; 
Sigma_v_alpha = Sigma_v[pMinusS-1, pMinusS-1]; 
R_inv = np.linalg.inv(R); 
Sigma_v_inv = np.linalg.inv(Sigma_v);tgetkey 
  
x_hat = np.zeros((n, num_steps)); 
x_alpha_hat = np.zeros((n,num_steps)); 
x_real = np.zeros((n,num_steps)); 
x0 = start_point; 
x_hat[:,0] = x0; 
x_alpha_hat[:,0] = x0; 
x_real[:,0] = x0; 
  
G = Sigma_w; 
  
P = np.zeros((n,n,num_steps)); 
  
Sigma_x = np.zeros((n, n, num_steps)); 
  
u = np.zeros((m, num_steps)); 
y = np.zeros((p, num_steps)); 
  
x_p = np.zeros((n,1)); 
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Sigma_x_p = np.zeros((n,n)); 
  
error = np.zeros((1,num_steps)); 
cost = np.zeros((1,num_steps)); 
start_time = 0 
elapsed_time = 0 
  
finish = False; 
# set(gcf,'CurrentCharacter','@'); % set to a dummy character 
  
first_step_angle = np.arctan((ref_traj[1,1] - ref_traj[1,0])/(ref_traj[0,1] - ref_traj[0,0])); 
init_angle = 0; 
theta = first_step_angle-init_angle; 
state_init = [0,0,1e-4]; 
#Initial B 
B_ind = 0; 
  
B = np.array([[np.cos(0.0079),0], 
              [np.sin(0.0079),0], 
              [0,1]]); 
  
y[:,0] = state_init; 
  
# plot(y(1,1),y(2,1)) 
# hold on 
for i in range (0,num_steps): 
    P[:,:,i] = np.subtract(b[:,:,i],Q); 
  
Phi = np.zeros((n,n,num_steps)); 
Theta = np.zeros((n,p,num_steps)); 
Theta[:,:,0] = Phi[:,:,0]*C.conj().transpose()*Sigma_v_inv; 
for i in range (1,num_steps): 
    Phi_temp = A*Phi[:,:,i-1]*A.conj().transpose()+Sigma_w; 
    Theta[:,:,i] = Phi_temp*C.conj().transpose()*np.linalg.inv(C*Phi_temp*C.conj().transpose()+Sigma_v); 
    Phi[:,:,i] = A*Phi_temp*A.conj().transpose() + Sigma_w – 
                 Phi_temp*C.conj().transpose()*np.linalg.inv(C*Phi_temp*C.conj().transpose()+Sigma_v)* 
                 C*Phi_temp.conj().transpose(); 
  
  
u[0,0] = ref_traj_db_dot[0,0] + kp1*(ref_traj[0,0]-y[0,0]) 
u[1,0] = ref_traj_db_dot[1,0] + kp2*(ref_traj[1,0]-y[1,0]) 
  
  
def getKey(): 
    if os.name == 'nt': 
      return msvcrt.getch() 
  
    tty.setraw(sys.stdin.fileno()) 
    rlist, _, _ = select.select([sys.stdin], [], [], tgetkey) 
    if rlist: 
        key = sys.stdin.read(1) 
    else: 
        key = '' 
  
    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) 
    return key 
  
def plotting(): 
    global ref_traj, robot_pos 
    fig1 = plt.figure() 
    fig1.suptitle("Reference trajectory vs Actual trajectory") 
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    plt.ioff() 
    plt.plot(ref_traj[0,:], ref_traj[1,:], label = 'Reference trajectory') 
    plt.plot(robot_pos[0,:], robot_pos[1,:], label = 'Actual trajectory') 
  
    fig2 = plt.figure() 
    fig2.suptitle("Mean Square Error\n" + "dt = " + str(dt) + "; T = " + str(T) + "; num_steps = " +  
                  str(num_steps) + "; Elapsed time: " + str(elapsed_time)) 
    error = np.zeros(num_steps) 
    for i in range(0, num_steps): 
        error[i] = math.pow((np.linalg.norm(x_hat[0:2,i]-ref_traj[0:2,i])),2)/2; 
    plt.plot(error) 
  
    plt.show() 
  
class pid_controller: 
    def __init__(self): 
        print("Creating PID Controller Node") 
        rospy.init_node('PID_Controller') 
        self.vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size = 2) 
        self.odom_sub = rospy.Subscriber('/odom', Odometry, callback=self.odom_callback) 
        self.imu_sub = rospy.Subscriber('/imu', Imu, callback=self.imu_callback) 
        self.scan_sub = rospy.Subscriber('/scan', LaserScan, callback=self.scan_callback) 
        self.odom_msg= Odometry() 
        self.pose_msg = Pose() 
        self.vel_msg = Twist() 
        self.imu_msg = Imu() 
        self.scan_msg = LaserScan() 
        self.odom_updated = False 
        self.imu_updated = False 
        self.scan_updated = False 
  
        self.odom_pose = Pose() 
        print("Robot.py Initialized") 
  
    def odom_callback(self, msg): 
        self.odom_msg = msg 
        self.odom_updated = True 
  
    def imu_callback(self, msg): 
        self.imu_msg = msg 
        self.imu_updated = True 
  
    def scan_callback(self, msg): 
        self.scan_msg = msg 
        self.scan_updated = True 
  
  
    # Odom 
    def pid_loop(self, msg, i): 
        global B, robot_pos 
        if i == 0: 
            stime1 = time.time() 
            Xi = u[0,0]*np.cos(y[2,0])*dt+u[1,0]*np.sin(y[2,0])*dt 
            omega = (u[1,0]*np.cos(y[2,0])-u[0,0]*np.sin(y[2,0]))/Xi 
            if omega > 0.3: 
                omega = 0.3 
            elif omega < -0.3: 
                omega = -0.3 
            self.vel_msg.linear.x = Xi 
            self.vel_msg.angular.z = omega 
            self.vel_pub.publish(self.vel_msg) 
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            elapsed = time.time() - stime1 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
        else: 
            stime1 = time.time() 
            print("Step number: " + str(i)) 
            tbot_x = msg.pose.pose.position.x 
            tbot_y = msg.pose.pose.position.y 
            robot_pos[0,i] = tbot_x 
            robot_pos[1,i] = tbot_y 
            quat = (msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z,  
                    msg.pose.pose.orientation.w) 
            angles = euler_from_quaternion(quat) 
            y[:,i] = [tbot_x, tbot_y, angles[2]]; 
            x_temp = np.matmul(A,x_hat[:,i-1]) + np.matmul(B,u[:,i-1]); 
            x_hat[:,i] = x_temp + np.matmul(Theta[:,:,i],(y[:,i]-np.matmul(C,x_temp))); 
            B = np.array([[np.cos(y[2,i]),0],[np.sin(y[2,i]),0],[0,1]]) 
            u[0,i] = ref_traj_db_dot[0,i] + kp1*(ref_traj[0,i]-y[0,i]) +  
                     kd1*(ref_traj_dot[0,i]-y[0,i]+y[0,i-1]); 
            u[1,i] = ref_traj_db_dot[1,i] + kp2*(ref_traj[1,i]-y[1,i]) +  
                     kd2*(ref_traj_dot[1,i]-y[1,i]+y[1,i-1]); 
            Xi = u[0,i]*np.cos(y[2,i])*dt+u[1,i]*np.sin(y[2,i])*dt 
            omega = (u[1,i]*np.cos(y[2,i])-u[0,i]*np.sin(y[2,i]))/Xi 
            # if omega > 0.3: 
            #  omega = 0.3 
            # elif omega < -0.3: 
            #  omega = -0.3 
            if y[2,i] > math.pi or y[2,i] < -math.pi: 
             y[2,i] = y[2,i] - 2*math.pi*np.sign(y[2,i]); 
            # error[i] = math.pow(np.linalg.norm(y[0:2,i] - ref_traj[0:2,i]),2)/2 
            self.vel_msg.linear.x = Xi 
            self.vel_msg.angular.z = omega 
            self.vel_pub.publish(self.vel_msg) 
            elapsed = time.time() - stime1 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
            print("Elapsed time:" + str(elapsed)) 
            print("----------------------") 
        # print(self.vel_msg) 
  
if __name__ == "__main__": 
    if os.name != 'nt': 
        settings = termios.tcgetattr(sys.stdin) 
    try: 
        Robot = pid_controller() 
        # controller_init(Robot) 
        # Robot.odom_callback(Robot.odom_msg) 
        start_time = time.time() 
        for i in range(0, num_steps): 
            key = getKey() 
            if key == 'e': 
                Robot.vel_msg.linear.x = 0 
                Robot.vel_msg.angular.z = 0 
                Robot.vel_pub.publish(Robot.vel_msg) 
                exit() 
                break 
            Robot.pid_loop(Robot.odom_msg,i) 
        Robot.vel_msg.linear.x = 0 
        Robot.vel_msg.angular.z = 0 
        Robot.vel_pub.publish(Robot.vel_msg) 
        elapsed_time = time.time() - start_time 
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        plotting() 
        rospy.spin() 
    except rospy.ROSInterruptException: 
        pass 
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Appendix C: LQG Controller Implementation in Python Code 

#Filename: FBI_LQR_ros.py 
#!/usr/bin/env python 
import rospy 
import roslib 
import tf 
import math 
from tf.transformations import euler_from_quaternion 
import copy 
import time 
import matplotlib.pyplot as plt 
import time 
import sys, select, os 
if os.name == 'nt': 
  import msvcrt 
else: 
  import tty, termios 
from geometry_msgs.msg import PoseStamped, Twist, Pose, PoseWithCovariance 
from nav_msgs.msg import Odometry 
from sensor_msgs.msg import Imu, LaserScan 
from tf.transformations import euler_from_quaternion 
  
#Initialize Controller Variables 
print("Initializing Controller Variables") 
print("................................") 
  
#Change T and num_steps to modify runtime and dt (dt = T/num_steps) 
T = 150; 
num_steps = 15000; 
tgetkey = 0; #for getkey() function used for debugging, recommend not to use because this will increase dt 
significantly 
  
n = 3; 
m = 2; 
p = 3; 
  
pMinusS = np.array([2]); 
A = np.identity(3); 
B = np.array([[1, 0], 
              [1, 0], 
              [0, 1]]) 
C = np.identity(3); 
Sigma_w = np.array([[1e-6, 0, 0], 
                    [0, 1e-6, 0], 
                    [0, 0, 1e-6]]); 
Sigma_v = np.array([[1e-6, 0, 0], 
                    [0, 1e-6, 0], 
                    [0, 0, 1e-6]]); 
Q = np.array([[1, 0, 0], 
              [0, 1, 0], 
              [0, 0, 1]]); 
R = np.array([[1, 0], 
              [0, 1]]); 
  
rd_tar = 1; 
rd_obs = 1; 
target = np.array([2, 0.001, 0]); 
obs = np.array([-1, 1]); 
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#Reference trajectory 
t = np.linspace(0.0, 100.0, num = num_steps); 
x1 = 0.8*np.sin(t/10); 
x2 = 0.8*np.sin(t/20); 
  
parametric_func = np.zeros((2,num_steps)) 
parametric_func[0] = x1 
parametric_func[1] = x2 
  
dt = float(T)/float(num_steps); 
s = np.zeros((2, num_steps)); 
stemp = np.array([[0],[0]]); 
b = np.zeros((2,2,num_steps)); 
s[:,num_steps-1]=[0,0]; 
A_l = np.identity(2); 
B_l = dt*np.identity(2); 
Q_l = np.identity(2); 
degree = 3; 
B_lh = B_l.conj().transpose() 
g_D = rd_tar^2; 
g_U = rd_obs^2; 
  
ref_traj = parametric_func 
diffrc = ref_traj[:,0] 
  
ref_length = len(ref_traj[1]); 
ref_traj = np.concatenate((ref_traj, np.ones((1,ref_length)))); 
  
for i in range(0,ref_length-1): 
    ref_traj[2,i] = np.arctan((ref_traj[1,i+1]-ref_traj[1,i])/(ref_traj[0,i+1]-ref_traj[0,i])); 
ref_traj[2,ref_length-1] = ref_traj[2,ref_length-2]; 
  
ref_traj_dot = np.zeros((3,ref_length)); 
for i in range (1, ref_length): 
    ref_traj_dot[0,i] = (ref_traj[0,i]-ref_traj[0,i-1])/dt 
    ref_traj_dot[1,i] = (ref_traj[1,i]-ref_traj[1,i-1])/dt 
    ref_traj_dot[2,i] = (ref_traj[2,i]-ref_traj[2,i-1])/dt 
  
ref_traj_db_dot = np.zeros((3,ref_length)) 
for i in range(0, ref_length-1): 
    ref_traj_db_dot[0,i] = (ref_traj_dot[0,i+1]-ref_traj_dot[0,i])/dt 
    ref_traj_db_dot[1,i] = (ref_traj_dot[1,i+1]-ref_traj_dot[1,i])/dt 
    ref_traj_db_dot[2,i] = (ref_traj_dot[2,i+1]-ref_traj_dot[2,i])/dt 
  
ref_length = len(ref_traj[2]); 
rd = np.zeros((2,ref_length-1)); 
for i in range (0, ref_length-1): 
    rd[0,i] = ref_traj[0,i+1]-ref_traj[0,i]; 
    rd[1,i] = ref_traj[1,i+1]-ref_traj[1,i]; 
  
rdd = np.zeros((2,ref_length-2)); 
for i in range(0,ref_length-2): 
    rdd[0,i] = rd[0,i+1]-rd[0,i]; 
    rdd[1,i] = rd[1,i+1]-rd[1,i]; 
  
# redefine start point and target 
# start_point = ref_traj(:,1); 
start_point = ref_traj[:,0]; 
target = ref_traj[:,ref_length-1] 
  
if dt <= 0: 
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    dt = 1e-4; 
  
if n <= 0: 
    n = 2; 
  
if m <= 0: 
    m = 2; 
  
if p <= 0: 
    p = 2; 
  
[secureSensors] = pMinusS.shape; 
if secureSensors > p: 
    print('The number of secure sensors should be smaller than or equal to the total number of sensors.') 
  
[rowA, colA] = A.shape; 
if rowA != n or colA != n: 
    print('A should be an n*n matrix.') 
  
[rowB, colB] = B.shape; 
if rowB != n or colB != m: 
    print('B should be an n*m matrix.') 
  
[rowC, colC] = C.shape; 
if rowC != p or colC != n: 
    print('C should be an p*n matrix.') 
  
[rowQ, colQ] = Q.shape; 
if rowQ != n or colQ != n: 
    print('Q should be an n*n matrix.') 
  
[rowR, colR] = R.shape; 
if rowR != m or colR != m: 
    print('R should be an m*m matrix.') 
  
C_alpha = C[pMinusS-1,:]; 
Sigma_v_alpha = Sigma_v[pMinusS-1, pMinusS-1]; 
R_inv = np.linalg.inv(R); 
Sigma_v_inv = np.linalg.inv(Sigma_v); 
  
x_hat = np.zeros((n, num_steps)); 
x_alpha_hat = np.zeros((n,num_steps)); 
x_real = np.zeros((n,num_steps)); 
x0 = start_point; 
x_hat[:,0] = x0; 
x_alpha_hat[:,0] = x0; 
x_real[:,0] = x0; 
  
G = Sigma_w; 
  
P = np.zeros((n,n,num_steps)); 
  
Sigma_x = np.zeros((n, n, num_steps)); 
  
u = np.zeros((m, num_steps)); 
y = np.zeros((p, num_steps)); 
  
x_p = np.zeros((n,1)); 
Sigma_x_p = np.zeros((n,n)); 
  
error = np.zeros((1,num_steps)); 
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cost = np.zeros((1,num_steps)); 
finish = False; 
  
#Calculate s matrix 
for j in range(num_steps-2, -1, -1): 
    k = -(np.linalg.inv(B_l.conj().transpose()*b[:,:,j+1]*B_l+R)*B_l.conj().transpose()*b[:,:,j+1])*A_l; 
    b[:,:,j] = A_l.conj().transpose()*(b[:,:,j+1]-b[:,:,j+1]*B_l*np.linalg.inv(B_l.conj().transpose()* 
               b[:,:,j+1]*B_l+R)*B_l.conj().transpose()*b[:,:,j+1])*A_l+Q_l; 
    ref_traj_a = np.array([[ref_traj[0,j+1]],[ref_traj[1,j+1]]]) 
    stemp = np.matmul((A_l.conj().transpose() + k.conj().transpose()*B_l.conj().transpose()),stemp) –  
            np.matmul(Q_l,ref_traj_a); 
    s[0,j] = stemp[0] 
    s[1,j] = stemp[1] 
  
first_step_angle = np.arctan((ref_traj[1,1] - ref_traj[1,0])/(ref_traj[0,1] - ref_traj[0,0])); 
init_angle = 0; 
theta = first_step_angle-init_angle; 
state_init = [0,0,1e-4]; 
B_ind = 0; 
  
B = np.array([[np.cos(0.0079),0], 
              [np.sin(0.0079),0], 
              [0,1]]); 
y[:,0] = state_init; 
  
P = np.zeros(b.shape) 
for i in range (0,num_steps): 
    P[:,:,i] = np.subtract(b[:,:,i],Q_l); 
  
Phi = np.zeros((n,n,num_steps)); 
Theta = np.zeros((n,p,num_steps)); 
Theta[:,:,0] = Phi[:,:,0]*C.conj().transpose()*Sigma_v_inv; 
  
#Calculate initial control input u 
uu1 = np.linalg.inv(np.matmul(np.matmul(B_lh,b[:,:,0]),B_l)+R) 
uu2 = np.matmul(uu1,B_lh) 
uu3 = (np.matmul(np.matmul(b[:,:,0],A_l),x_hat[0:2,0])+s[:,0]) 
uu3 = np.reshape(uu3,(2,1)) 
uu4 = np.matmul(uu2,uu3)/dt 
uu4 = np.reshape(uu4,(2,1)) 
uu5 = np.reshape(ref_traj_db_dot[0:2,0]*dt,(2,1)) - uu4 
u[:,0] = np.reshape(uu5,(1,2)) 
  
start_time = 0 
elapsed_time = 0 
  
#Plot graphs 
def plotting(): 
    global ref_traj, y, dt, T, num_steps, elapsed_time 
    plt.ioff() 
  
    #Reference trajectory vs Actual trajectory 
    fig1 = plt.figure() 
    fig1.suptitle("Reference trajectory vs Actual trajectory\n " + "dt = " + str(dt) + "; T = " + str(T) + ";  
                  num_steps = " + str(num_steps) + "; Elapsed time: " + str(elapsed_time)) 
    plt.plot(ref_traj[0,:], ref_traj[1,:], label = 'Reference trajectory') 
    plt.plot(y[0,:], y[1,:], label = 'Actual trajectory') 
  
    #Mean Square Error 
    fig2 = plt.figure() 
    fig2.suptitle("Mean Square Error\n" + "dt = " + str(dt) + "; T = " + str(T) + "; num_steps = " +  
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                  str(num_steps) + "; Elapsed time: " + str(elapsed_time)) 
    error = np.zeros(num_steps) 
    for i in range(0, num_steps): 
        error[i] = math.pow((np.linalg.norm(x_hat[0:2,i]-ref_traj[0:2,i])),2)/2; 
    plt.plot(error) 
  
    #Reference x vs Actual x 
    fig3 = plt.figure() 
    fig3.suptitle("Reference x vs Actual x") 
    plt.plot(ref_traj[0,:], label = "Reference x") 
    plt.plot(y[0,:], label = "Actual x") 
  
    #Reference y vs Actual y 
    fig4 = plt.figure() 
    fig4.suptitle("Reference y vs Actual y") 
    plt.plot(ref_traj[1,:], label = "Reference y") 
    plt.plot(y[1,:], label = "Actual y") 
  
    plt.show() 
  
#Use this function to stop the robot with a key press, not recommended because this will increase dt 
significantly. Set tgetkey = 0 to disable 
def getKey(): 
    global tgetkey 
    if os.name == 'nt': 
      return msvcrt.getch() 
  
    tty.setraw(sys.stdin.fileno()) 
    rlist, _, _ = select.select([sys.stdin], [], [], tgetkey) 
    if rlist: 
        key = sys.stdin.read(1) 
    else: 
        key = '' 
  
    termios.tcsetattr(sys.stdin, termios.TCSADRAIN, settings) 
    return key 
  
#LQR controller class, initialize node, publishers, and subscribers 
class lqr_controller: 
    def __init__(self): 
        print("Creating LQR Controller Node") 
        print("............................") 
        rospy.init_node('LQR_Controller') 
        self.vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size = 2) 
        self.odom_sub = rospy.Subscriber('/odom', Odometry, callback=self.odom_callback) 
        self.imu_sub = rospy.Subscriber('/imu', Imu, callback=self.imu_callback) 
        self.scan_sub = rospy.Subscriber('/scan', LaserScan, callback=self.scan_callback) 
        self.odom_msg = Odometry() 
        self.pose_msg = Pose() 
        self.vel_msg = Twist() 
        self.imu_msg = Imu() 
        self.scan_msg = LaserScan() 
        self.odom_updated = False 
        self.imu_updated = False 
        self.scan_updated = False 
  
    def odom_callback(self, msg): 
        self.odom_msg = msg 
        self.odom_updated = True 
  
    def imu_callback(self, msg): 



48 

 

        self.imu_msg = msg 
        self.imu_updated = True 
  
    def scan_callback(self, msg): 
        self.scan_msg = msg 
        self.scan_updated = True 
  
    def lqr_loop(self, msg, i): 
        global A, B, Xi, omega,n,x_hat,dt 
        #Calculate initial Xi and omega 
        if i == 0: 
            stime1 = time.time() 
            Xi = u[0,0]*np.cos(x_hat[2,0])*dt+u[1,0]*np.sin(x_hat[2,0])*dt 
            omega = dt*(u[1,0]*np.cos(x_hat[2,0])-u[0,0]*np.sin(x_hat[2,0]))/Xi 
            self.vel_msg.linear.x = Xi 
            self.vel_msg.angular.z = omega 
            self.vel_pub.publish(self.vel_msg) 
            elapsed = time.time() - stime1 
  
            #Loop until elapsed >= dt 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
        else: 
            stime1 = time.time() #start stopwatch for one single step 
            print("Step number " + str(i)) 
            x_temp = np.matmul(x_hat[:,i-1],A).reshape(-1, 1) +  
                     np.matmul(B,np.array([[1.5*Xi*dt],[omega*dt]])); 
            A_ext = np.array([[1, 0, -dt*Xi*np.sin(x_hat[2,i-1])], 
                     [0, 1, dt*Xi*np.cos(x_hat[2,i-1])], 
                     [0, 0, 1]]) 
            Phi_temp = np.matmul(np.matmul(A_ext,Phi[:,:,i-1]),A_ext.conj().transpose())+Sigma_w; 
  
            #Get positions from Turtlebot 
            tbot_x = msg.pose.pose.position.x 
            tbot_y = msg.pose.pose.position.y 
            quat = (msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z,  
                    msg.pose.pose.orientation.w) 
            angles = euler_from_quaternion(quat) 
            y[:,i] = [tbot_x, tbot_y, angles[2]]; 
  
            z = y[:,i].reshape(-1,1)-np.matmul(C,x_temp); 
            s_temp = np.matmul(np.matmul(C,Phi_temp),C.conj().transpose())+Sigma_v; 
            Theta[:,:,i] = np.matmul(np.matmul(Phi_temp,C.conj().transpose()),np.linalg.inv(s_temp)); 
            x_hat[:,i] = np.reshape(x_temp + np.matmul(Theta[:,:,i],z),3); 
            Phi[:,:,i] = np.matmul((np.identity(n) - np.matmul(Theta[:,:,i],C)),Phi_temp) 
            B = np.array([[np.cos(x_hat[2,i]),0],[np.sin(x_hat[2,i]),0],[0,1]]) 
  
            #Calculate control input u 
            uu1 = np.linalg.inv(np.matmul(np.matmul(B_lh,b[:,:,i]),B_l)+R) 
            uu2 = np.matmul(uu1,B_lh) 
            uu3 = (np.matmul(np.matmul(b[:,:,i],A_l),x_hat[0:2,i])+s[:,i]) 
            uu3 = np.reshape(uu3,(2,1)) 
            uu4 = np.matmul(uu2,uu3)/dt 
            uu4 = np.reshape(uu4,(2,1)) 
            uu5 = np.reshape(ref_traj_db_dot[0:2,i]*dt,(2,1)) - uu4 
            u[:,i] = np.reshape(uu5,(1,2)) 
  
            #Calculate Xi and omega 
            Xi = u[0,i]*np.cos(x_hat[2,i])*dt+u[1,i]*np.sin(x_hat[2,i])*dt 
            if Xi != 0: 
                omega = dt*(u[1,i]*np.cos(x_hat[2,i])-u[0,i]*np.sin(x_hat[2,i]))/Xi 
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            else: 
                omega = 0 
            print("Xi is: " + str(Xi)) 
            print("omega is: " + str(omega)) 
            print("IMU X: " + str(tbot_x)) 
            print("IMU Y: " + str(tbot_y)) 
  
            #Publish message to velocity topic 
            self.vel_msg.linear.x = Xi 
            self.vel_msg.angular.z = omega 
            self.vel_pub.publish(self.vel_msg) 
            elapsed = time.time() - stime1 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
            print("Elapsed time:" + str(elapsed)) 
            print("----------------------") 
  
#Main function 
if __name__ == "__main__": 
    if os.name != 'nt': 
        settings = termios.tcgetattr(sys.stdin) 
    try: 
        start_time = time.time() 
        Robot = lqr_controller() 
        for i in range(0, num_steps): 
            key = getKey() 
            if key == 'e': 
                Robot.vel_msg.linear.x = 0 
                Robot.vel_msg.angular.z = 0 
                Robot.vel_pub.publish(Robot.vel_msg) 
                exit() 
                break 
            Robot.lqr_loop(Robot.odom_msg,i) 
        Robot.vel_msg.linear.x = 0 
        Robot.vel_msg.angular.z = 0 
        Robot.vel_pub.publish(Robot.vel_msg) 
        elapsed_time = time.time() - start_time 
        plotting() 
        rospy.spin() 
    except rospy.ROSInterruptException: 
        pass 
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Appendix D: Mitigation Method Simulation Code 

#Filename: lqgRT_py.py 
#!/usr/bin/env python 
import matlab.engine 
import numpy as np 
import math 
import copy 
import time 
import matplotlib.pyplot as plt 
import sys, select, os 
if os.name == 'nt': 
  import msvcrt 
else: 
  import tty, termios 
import cvxpy as cvx 
# T              -- the final time of the system 
# dt             -- the time duration of each iteration 
# num_steps      -- the number of iterations during T, 1000 is not enough 
# n              -- the dimension of the system state 
# m              -- the dimension of the system input 
# p              -- the dimension of the system observation 
# pMinusS        -- the index list of the secure sensors(row vector) 
# A              -- n*n state matrix 
# B              -- n*m input matrix 
# C              -- p*n output matrix 
# C_alpha        -- the matrix obtained by selecting the rows from C indexed in 
#                   the observation matrix y that are not affected by the adversary 
# Q              -- n*n cost matrix 
# R              -- m*m cost matrix 
# Sigma_w        -- n*n autocorrelation matrix 
# Sigma_v        -- p*p autocorrelation matrix 
# Sigma_v_alpha  -- the covariance matrix of v_alpha 
# ref_traj       -- n*num_steps polynomial reference trajectory 
# degree         -- the degree of the polyfit for the reference trajectory 
eng = matlab.engine.start_matlab() 
def lqgRT_v2(T, num_steps, n, m, p, pMinusS, A, B, C, Sigma_w, Sigma_v, Q, R, start_point, rd_tar, rd_obs,  
             target, obs, t, parametric_func, degree): 
    dt = float(T)/float(num_steps); 
    g_D = math.pow(rd_tar,2) 
    g_U = math.pow(rd_obs,2) 
  
    ref_traj = parametric_func 
    s_coeff = np.zeros((n,degree + 1)) 
    for i in range(0,n): 
        s_coeff[i,:] = np.polyfit(t, np.reshape(ref_traj[i,:],num_steps), degree) 
    for i in range(0,n): 
        ref_traj[i,:] = np.polyval(s_coeff[i,:], t) 
    if dt <= 0: 
        dt = 1e-4 
    if n <= 0: 
        n = 2 
    if m <= 0: 
        m = 2 
    if p <= 0: 
        p = 2 
    secureSensors = len(pMinusS) 
    C_alpha = C[pMinusS-2,:] 
    Sigma_v_alpha = Sigma_v[pMinusS-2, pMinusS-2] 
    R_inv = np.linalg.inv(R) 



51 

 

    P = np.zeros((n,n,num_steps)) 
  
    x = np.zeros((n, num_steps)) 
    s = np.zeros((n, num_steps)) 
    x_hat = np.zeros((n, num_steps)) 
    x_alpha_hat = np.zeros((n,num_steps)) 
    x_real = np.zeros((n,num_steps)) 
    x0 = start_point 
    x[:,0] = np.reshape(x0,2) 
    x_hat[:,0] = np.reshape(x0,2) 
    x_alpha_hat[:,0] = np.reshape(x0,2) 
    x_real[:,0] = np.reshape(x0,2) 
  
    G = Sigma_w; 
    Sigma_v_inv = np.linalg.inv(Sigma_v) 
  
    Phi = np.zeros((n,n)); 
    Theta = np.zeros((n, p)); 
    Phi_alpha = np.zeros((n,n)) 
    Theta_alpha = np.zeros((n, secureSensors)) 
  
    A_h = A.conj().transpose() 
    B_h = B.conj().transpose() 
    C_h = C.conj().transpose() 
    C_alpha_h = C_alpha.conj().transpose() 
    Phi_alpha_h = Phi_alpha.conj().transpose() 
    for i in range(num_steps - 2, -1, -1): 
        P[:,:,i] = P[:,:,i+1] + dt*(np.matmul(A_h,P[:,:,i+1]) + np.matmul(P[:,:,i+1],A) –  
                   np.matmul(np.matmul(np.matmul(np.matmul(P[:,:,i+1],B),R_inv),B_h),P[:,:,i+1]) + Q) 
        dsdt = (A_h - np.matmul(np.matmul(np.matmul(P[:,:,i],B),R_inv),B_h)).conj().transpose() 
        dsdt = np.matmul(dsdt, s[:,i+1]) - np.matmul(Q,ref_traj[:,i+1]) 
        s[:,i] = s[:,i+1] + dsdt*dt 
    BG = np.hstack((B,G)) 
    start_time = time.time() 
    K = np.array([[22.8662692463450,22.8662692463450],[22.8662692463450,22.8662692463450]]) 
    # K = np.asarray(eng.KalmanOutput(matlab.double(A.tolist()), matlab.double(BG.tolist()),  
          matlab.double(C.tolist()), 0, matlab.double(Q.tolist()), matlab.double(R.tolist()), 0, nargout = 1)) 
    Phi_alpha_prev = Phi_alpha + 0.0001 
    Theta_alpha_prev = Theta_alpha + 0.0001 
    Phi_alpha_bool =  abs(Phi_alpha - Phi_alpha_prev) >= 0.001 
    while np.all(abs(Phi_alpha - Phi_alpha_prev) >= 0.001) or  
          np.all(abs(Theta_alpha_prev - Theta_alpha_prev) >= 0.001): 
        Phi_alpha_prev = Phi_alpha_prev 
        Theta_alpha_prev = Theta_alpha 
        dPhi_alpha_dt = np.matmul(A,Phi_alpha) + np.matmul(Phi_alpha,A_h) + Sigma_w –  
                        np.matmul(np.matmul(np.matmul(np.matmul(Phi_alpha,  
                        C_alpha_h),np.linalg.inv(Sigma_v_alpha)),C_alpha),Phi_alpha_h) 
        Phi_alpha = Phi_alpha + dt*dPhi_alpha_dt 
        Theta_alpha = np.matmul(np.matmul(Phi_alpha, C_alpha_h), np.linalg.inv(Sigma_v_alpha)) 
  
    gamma = 9.9216 
    Phi = np.zeros((n,n)) 
    Phi_alpha = np.zeros((n,n)) 
    Phi_alpha_h = Phi_alpha.conj().transpose() 
    for i in range(1, num_steps): 
        u_alpha = np.matmul(np.matmul(np.matmul(-0.5*R_inv,B_h),P[:,:,i-1]),x_alpha_hat[:,i-1]) -   
                  np.matmul(np.matmul(0.5*R_inv,B_h), s[:,i-1]) 
        u_alpha = np.reshape(u_alpha,(2,1)) 
        start_time = time.time() 
        z = cvx.Variable(2) 
        obj = cvx.Minimize(cvx.quad_form(z,R) + np.matmul(np.matmul(x_hat[:,i-1].T, P[:,:,i-1]),B.T)*z +  
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              np.matmul(s[:,i].T,B)*z) 
        prob = cvx.Problem(obj,[0.5*cvx.quad_form(z,np.eye(2))+(-2*u_alpha.T*z) +  
               (np.matmul(u_alpha.T,u_alpha)) - math.pow(gamma,2) <= 0]) 
        prob.solve() 
        u_ast = np.reshape(2*z.value,(2,1)) 
        print(u_ast) 
        # u_ast = 
eng.QCQPSolver(matlab.double(B.tolist()),matlab.double(R.tolist()),matlab.double(u_alpha.tolist()),gamma,matlab
.double(P.tolist()),matlab.double(x_hat.tolist()),matlab.double(s.tolist()),i+1,n,matlab.double(start_point.tol
ist()), nargout = 1) 
        elapsed_time = time.time() - start_time 
        w = np.random.normal(0,1,(n,1)) 
        dxdt = np.reshape(np.matmul(A, x[:,i-1]),(2,1)) + np.matmul(B,u_ast) + w 
        x[:,i] = np.reshape(np.reshape(x[:,i-1],(2,1)) + dxdt*dt,2) 
        v = np.random.normal(0,1,(p,1)) 
        v_alpha = v[pMinusS-1,:] 
        attack = np.random.random((p,1)) 
        attack[pMinusS-1,0] = 0 
        y = np.reshape(np.matmul(C,x[:,i]),(2,1)) + v + attack 
        y = np.reshape(y,(2,1)) 
        y_alpha = np.matmul(C_alpha,x[:,i]) + v_alpha 
        dPhi_alpha_dt = np.matmul(A,Phi_alpha) + np.matmul(Phi_alpha, A_h) 
        dPhi_alpha_dt = dPhi_alpha_dt + Sigma_w –  
                        np.matmul(np.matmul(np.matmul(Phi_alpha,C_alpha_h)*Sigma_v_alpha,C_alpha),Phi_alpha_h) 
        dPhi_dt = np.matmul(A,Phi) + np.matmul(Phi, A_h) + Sigma_w – 
                  np.matmul(np.matmul(np.matmul(np.matmul(Phi,C_h),Sigma_v_inv),C),Phi.conj().transpose()) 
        Phi_alpha = Phi_alpha + dt*dPhi_alpha_dt 
        Theta_alpha = np.matmul(Phi_alpha,C_alpha_h)*Sigma_v_alpha 
        Phi = Phi + dt*dPhi_alpha_dt 
        Theta = np.matmul(np.matmul(Phi,C_h),Sigma_v_inv) 
        Phi_alpha_h = Phi_alpha.conj().transpose() 
        dxhat_dt = np.reshape(np.matmul(A,x_hat[:,i-1]),(2,1)) + np.matmul(B,u_ast) +  
                   np.matmul(Theta,(y - np.reshape(np.matmul(C,x_hat[:,i-1]),(2,1)))) 
        x_hat[:,i] = np.reshape(np.reshape(x_hat[:,i-1],(2,1)) + dt * dxhat_dt,2) 
        dxhat_alpha_dt = np.reshape(np.matmul(A,x_alpha_hat[:,i-1]),(2,1)) + np.matmul(B, u_ast) +  
                         np.matmul(Theta_alpha, (y_alpha - np.matmul(C_alpha, x_alpha_hat[:,i-1]))) 
        x_alpha_hat[:,i] = np.reshape(np.reshape(x_alpha_hat[:,i-1],(2,1)) + dt*dxhat_alpha_dt,2) 
        x_real[:,i] = np.reshape(np.reshape(x_real[:,i-1],(2,1)) + dt*(np.reshape(np.matmul(A,x_real[:,i-
1]),(2,1)) + np.matmul(B,u_ast)),2) 
  
        print("Time elapsed: " + str(elapsed_time)) 
        print(i) 
    plotting(ref_traj, x_real) 
def plotting(ref_traj, x_real): 
    plt.ioff() 
    fig1 = plt.figure() 
    plt.plot(ref_traj[0,:], ref_traj[1,:], label = 'Reference trajectory') 
    plt.plot(x_real[0,:], x_real[1,:], label = 'Actual trajectory') 
    plt.show() 
if __name__ == "__main__": 
    t = np.linspace(-5,0,10000); 
    # t = np.reshape(t,(1,10000)) 
    x1 = t 
    x2 = 5*np.ones(10000);  
    lqgRT_v2(1, 10000, 2, 2, 2, np.array([2]), np.identity(2), np.identity(2),  
             np.array([[1,1], [1, -1]]), np.identity(2), np.identity(2), np.identity(2),  
             1e-3*np.identity(2), np.array([[-5], [5]]), 1, 1, np.array([[0], [5]]),   
             np.array([[0], [2.5]]), t, np.vstack((x1,x2)), 5) 
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Appendix E: Mitigation Method Implementation Code 

#Filename: FBI_LQR_FDI_simulation.py 
#!/usr/bin/env python 
import numpy as np 
import rospy 
import roslib 
import tf 
import math 
from tf.transformations import euler_from_quaternion 
import copy 
import time 
import matplotlib.pyplot as plt 
import sys, select, os 
if os.name == 'nt': 
  import msvcrt 
else: 
  import tty, termios 
from geometry_msgs.msg import PoseStamped, Twist, Pose, PoseWithCovariance 
from nav_msgs.msg import Odometry 
from sensor_msgs.msg import Imu, LaserScan 
from tf.transformations import euler_from_quaternion 
from pathplanningmqp.msg import transform 
import cvxpy as cvx 
  
#Initialize Controller Variables 
print("Initializing Controller Variables") 
print("................................") 
  
#Change T and num_steps to modify runtime and dt (dt = T/num_steps) 
T = 150; 
num_steps = 7500; 
tgetkey = 0; #for getkey() function used for debugging, recommend not to use because this will increase dt 
significantly 
  
rd_tar = 1; 
rd_obs = 1; 
target = np.array([2, 0.001, 0]); 
obs = np.array([-1, 1]); 
  
#Reference trajectory 
t = np.linspace(1, 100.0, num = num_steps); 
x1 = 0.8*np.sin(t/10); 
x2 = 0.8*np.sin(t/20); 
parametric_func = np.zeros((2,num_steps)) 
parametric_func[0] = x1 
parametric_func[1] = x2 
  
n = 4; 
n_l = 4; 
m = 2; 
p = 5; 
pMinusS = np.array([1, 2, 4, 5]); 
  
A = np.array([[0, 0, 1, 0], 
              [0, 0, 0, 1], 
              [0, 0, 0, 0], 
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              [0 ,0 ,0 ,0]]); 
  
B = np.array([[0, 0], 
              [0, 0], 
              [1, 0], 
              [0, 1]]) 
  
C = np.array([[1, 0, 0, 0], 
              [0, 1, 0, 0], 
              [0, 1, 0, 0], 
              [0, 0 ,1, 0], 
              [0, 0 ,0 ,1]]); 
  
Sigma_w = np.array([[1e-6, 0, 0, 0], 
                    [0, 1e-6, 0, 0], 
                    [0, 0, 1e-6, 0], 
                    [0, 0, 0, 1e-6]]); 
  
Sigma_v = np.array([[1e-6, 0, 0, 0 ,0], 
                    [0, 1e-6, 0, 0, 0], 
                    [0, 0, 6*1e-4, 0, 0], 
                    [0, 0, 0, 1e-6, 0], 
                    [0, 0, 0, 0, 1e-6]]); 
Q = np.identity(4); 
R = np.identity(2); 
  
dt = float(T)/float(num_steps); 
s = np.zeros((n_l, num_steps)); 
b = np.zeros((n_l,n_l,num_steps)); 
  
stemp = np.array([[0],[0]]); 
  
s[:,num_steps-1]=[0,0,0,0]; 
A_l = np.identity(2); 
B_l = dt*np.identity(2); 
Q_l = np.identity(2); 
degree = 3; 
B_lh = B_l.conj().transpose() 
g_D = rd_tar^2; 
g_U = rd_obs^2; 
  
ref_traj = parametric_func 
  
ref_length = len(ref_traj[1]); 
ref_traj = np.concatenate((ref_traj, np.ones((1,ref_length)))); 
for i in range(0,ref_length-1): 
    ref_traj[2,i] = np.arctan((ref_traj[1,i+1]-ref_traj[1,i])/(ref_traj[0,i+1]-ref_traj[0,i])); 
ref_traj[2,ref_length-1] = ref_traj[2,ref_length-2]; 
start_point = ref_traj[:,0] 
  
ref_traj_dot = np.zeros((3,ref_length)); 
for i in range (1, ref_length): 
    ref_traj_dot[0,i] = (ref_traj[0,i]-ref_traj[0,i-1])/dt 
    ref_traj_dot[1,i] = (ref_traj[1,i]-ref_traj[1,i-1])/dt 
    ref_traj_dot[2,i] = (ref_traj[2,i]-ref_traj[2,i-1])/dt 
  
ref_traj_db_dot = np.zeros((3,ref_length)) 
for i in range(0, ref_length-1): 
    ref_traj_db_dot[0,i] = (ref_traj_dot[0,i+1]-ref_traj_dot[0,i])/dt 
    ref_traj_db_dot[1,i] = (ref_traj_dot[1,i+1]-ref_traj_dot[1,i])/dt 
    ref_traj_db_dot[2,i] = (ref_traj_dot[2,i+1]-ref_traj_dot[2,i])/dt 
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rd = np.zeros((2,ref_length-1)); 
for i in range (0, ref_length-1): 
    rd[0,i] = ref_traj[0,i+1]-ref_traj[0,i]; 
    rd[1,i] = ref_traj[1,i+1]-ref_traj[1,i]; 
  
rdd = np.zeros((2,ref_length-2)); 
for i in range(0,ref_length-2): 
    rdd[0,i] = rd[0,i+1]-rd[0,i]; 
    rdd[1,i] = rd[1,i+1]-rd[1,i]; 
  
start_point = np.concatenate((start_point, ref_traj_dot[0:2, 0])); 
target = ref_traj[:,ref_length-1] 
ref_traj = np.concatenate((ref_traj[0:2,:], ref_traj_dot[0:2,:])) 
s_coeff = np.zeros((n,degree + 1)) 
  
diffrc = ref_traj[:,0] 
diffrc = np.reshape(diffrc,(4,1)) 
ref_traj[:,:] = ref_traj[:,:] - diffrc; 
start_point = ref_traj[:,0] 
if dt <= 0: 
    dt = 1e-4; 
  
if n <= 0: 
    n = 2; 
  
if m <= 0: 
    m = 2; 
  
if p <= 0: 
    p = 2; 
  
[secureSensors] = pMinusS.shape; 
if secureSensors > p: 
    print('The number of secure sensors should be smaller than or equal to the total number of sensors.') 
  
[rowA, colA] = A.shape; 
if rowA != n or colA != n: 
    print('A should be an n*n matrix.') 
  
[rowB, colB] = B.shape; 
if rowB != n or colB != m: 
    print('B should be an n*m matrix.') 
  
[rowC, colC] = C.shape; 
if rowC != p or colC != n: 
    print('C should be an p*n matrix.') 
  
[rowQ, colQ] = Q.shape; 
if rowQ != n or colQ != n: 
    print('Q should be an n*n matrix.') 
  
[rowR, colR] = R.shape; 
if rowR != m or colR != m: 
    print('R should be an m*m matrix.') 
  
C_alpha = C[pMinusS-1,:]; 
Sigma_v_alpha = np.array([[1e-6, 0, 0, 0], 
                          [0, 1e-6, 0, 0], 
                          [0, 0, 1e-6, 0], 
                          [0, 0, 0, 1e-6]]) 
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Sigma_v_alpha_inv = np.linalg.inv(Sigma_v_alpha) 
R_inv = np.linalg.inv(R); 
Sigma_v_inv = np.linalg.inv(Sigma_v); 
  
x_hat = np.zeros((n, num_steps)); 
x_alpha_hat = np.zeros((n,num_steps)); 
x_real = np.zeros((n,num_steps)); 
x0 = ref_traj[:,0]; 
x_hat[:,0] = x0; 
x_alpha_hat[:,0] = x0; 
x_real[:,0] = x0; 
  
G = np.identity(n); 
  
P = np.zeros((n,n,num_steps)); 
  
Sigma_x = np.zeros((n, n, num_steps)); 
  
u = np.zeros((m, num_steps)); 
u_ast = np.zeros((m, num_steps)) 
u_diff = np.zeros((m, num_steps)) 
  
y = np.zeros((p, num_steps)); 
y_alpha = np.zeros((secureSensors, num_steps)); 
y_dist = np.zeros((1, num_steps)); 
  
x_p = np.zeros((n,1)); 
Sigma_x_p = np.zeros((n,n)); 
  
error = np.zeros((1,num_steps)); 
cost = np.zeros((1,num_steps)); 
finish = False; 
  
P = np.zeros((n,n)) 
P_prev = P+0.001 
  
while np.all(abs(P - P_prev)) >= 0.001: 
    P_prev = P 
    P = P + (2*Q + np.matmul(A.T, P) + np.matmul(P, A) - 
0.5*np.matmul(np.matmul(np.matmul(np.matmul(P,B),R_inv),B.T),P)) * dt 
BG = np.hstack((B,G)) 
  
#Kalman filter coefficients 
K = np.array([[1.28718850581117, -6.38557171480376e-16, -2.40028202841119e-17,  
               0.414213562373096, 1.58212337667351e-16], 
              [7.26223872225245e-17, 1.28602530882083, 0.00214337551470138,  
               -1.42961771886354e-15, 0.414011544555625], 
              [0.414213562373095, 2.63342314537682e-16, -5.03336638922339e-18,  
               0.910179721124455, 1.37263357977565e-16], 
              [-1.22893379785640e-16, 0.414011544555625, 0.000690019240926037,  
               -1.37425909154522e-16, 0.910114698839084]]) 
  
Phi_alpha = np.zeros((n,n)) 
Theta_alpha = np.zeros((n,secureSensors)) 
  
Phi_alpha_prev = Phi_alpha + 0.001 
Theta_alpha_prev = Theta_alpha + 0.001 
  
while np.all(abs(Phi_alpha - Phi_alpha_prev)) >= 0.001: 
    Phi_alpha_prev = Phi_alpha; 
    Theta_alpha_prev = Theta_alpha; 
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    dPhi_alpha_dt = np.matmul(A,Phi_alpha) + np.matmul(Phi_alpha, A.T) + Sigma_w –  
                    np.matmul(np.matmul(np.matmul(np.matmul(Phi_alpha_prev,C_alpha.T), 
                    Sigma_v_alpha_inv),C_alpha),Phi_alpha.T) 
    Phi_alpha = Phi_alpha + dt*dPhi_alpha_dt 
    Theta_alpha = np.matmul(np.matmul(Phi_alpha,C_alpha.T),Sigma_v_alpha_inv) 
  
P = np.zeros((n,n,num_steps)); 
s = np.zeros((n, num_steps)); 
  
for i in range(num_steps - 2, -1, -1): 
    P[:,:,i] = P[:,:,i+1] + dt*(np.matmul(A.T,P[:,:,i+1]) + np.matmul(P[:,:,i+1],A) - 
0.5*np.matmul(np.matmul(np.matmul(np.matmul(P[:,:,i+1],B),R_inv),B.T),P[:,:,i+1]) + 2*Q) 
    dsdt = (A.T - 0.5*np.matmul(np.matmul(np.matmul(P[:,:,i],B),R_inv),B.T)) 
    dsdt = np.matmul(dsdt, s[:,i+1]) - 2*np.matmul(Q,ref_traj[:,i+1]) 
    s[:,i] = s[:,i+1] + dsdt*dt 
  
Phi = np.zeros((n,n,num_steps)) 
Phi_alpha = np.zeros((n,n,num_steps)) 
Theta = np.zeros((n,p,num_steps)) 
Theta_alpha = np.zeros((n,secureSensors,num_steps)) 
  
#Gamma should not exceed 15 
gamma = 15 
  
for i in range(1, num_steps): 
    dPhi_alpha_dt = np.matmul(A, Phi_alpha[:,:,i-1]) + np.matmul(Phi_alpha[:,:,i-1], A.T) + Sigma_w - 
np.matmul(np.matmul(np.matmul(np.matmul(Phi_alpha[:,:,i-
1],C_alpha.T),Sigma_v_alpha_inv),C_alpha),Phi_alpha[:,:,i-1].T) 
    Phi_alpha[:,:,i] = Phi_alpha[:,:,i-1] + dt*dPhi_alpha_dt 
    Theta_alpha[:,:,i] = np.matmul(np.matmul(Phi_alpha[:,:,i],C_alpha.T),Sigma_v_alpha_inv) 
  
    dPhi_dt = np.matmul(A,Phi[:,:,i-1]) + np.matmul(Phi[:,:,i-1], A.T) + Sigma_w - 
np.matmul(np.matmul(np.matmul(np.matmul(Phi[:,:,i-1],C.T),Sigma_v_inv),C),Phi[:,:,i-1].T) 
    Phi[:,:,i] = Phi[:,:,i-1] + dt*dPhi_dt 
    Theta[:,:,i] = np.matmul(np.matmul(Phi[:,:,i],C.T),Sigma_v_inv) 
  
first_step_angle = np.arctan((ref_traj[1,1] - ref_traj[1,0])/(ref_traj[0,1] - ref_traj[0,0])); 
init_angle = 0; 
theta = first_step_angle-init_angle; 
state_init = [0,0,1e-4]; 
B_ind = 0; 
Xi = np.zeros((1,num_steps)) 
omega = np.zeros((1,num_steps)) 
angles = 0 
  
def plotting(): 
    global ref_traj, y, dt, T, num_steps, elapsed_time 
    plt.ioff() 
  
    #Reference trajectory vs Actual trajectory 
    fig1 = plt.figure() 
    fig1.suptitle("Reference trajectory vs Actual trajectory\n " + "dt = " + str(dt) + "; T = " + str(T) + "; 
num_steps = " + str(num_steps) + "; Elapsed time: " + str(elapsed_time)) 
    plt.plot(ref_traj[0,:], ref_traj[1,:], label = 'Reference trajectory') 
    plt.plot(y[0,:], y[1,:], label = 'Actual trajectory') 
  
    #Mean Square Error 
    fig2 = plt.figure() 
    fig2.suptitle("Mean Square Error\n" + "dt = " + str(dt) + "; T = " + str(T) + "; num_steps = " + 
str(num_steps) + "; Elapsed time: " + str(elapsed_time)) 
    error = np.zeros(num_steps) 
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    for i in range(0, num_steps): 
        error[i] = math.pow((np.linalg.norm(x_hat[0:2,i]-ref_traj[0:2,i])),2)/2; 
    plt.plot(error) 
  
    #Reference x vs Actual x 
    fig3 = plt.figure() 
    fig3.suptitle("Reference x vs Actual x") 
    plt.plot(ref_traj[0,:], label = "Reference x") 
    plt.plot(y[0,:], label = "Actual x") 
  
    #Reference y vs Actual y 
    fig4 = plt.figure() 
    fig4.suptitle("Reference y vs Actual y") 
    plt.plot(ref_traj[1,:], label = "Reference y") 
    plt.plot(y[1,:], label = "Actual y") 
  
    #Reference y vs Lidar's y 
    fig5 = plt.figure() 
    fig5.suptitle("Reference y vs Lidar's y") 
    plt.plot(ref_traj[1,:], label = "Reference y") 
    plt.plot(y[2,:], label = "Lidar's y") 
    plt.show() 
  
class lqr_controller: 
    def __init__(self): 
        print("Creating LQR Controller Node") 
        print("............................") 
        rospy.init_node('LQR_Controller') 
        self.listener = tf.TransformListener() 
  
        self.vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size = 2) 
        self.odom_sub = rospy.Subscriber('/odom', Odometry, callback=self.odom_callback) 
        self.imu_sub = rospy.Subscriber('/imu', Imu, callback=self.imu_callback) 
        self.scan_sub = rospy.Subscriber('/scan', LaserScan, callback=self.scan_callback) 
        self.trans_sub = rospy.Subscriber('/linear_trans', transform, callback=self.trans_callback) 
        self.odom_msg = Odometry() 
        self.pose_msg = Pose() 
        self.vel_msg = Twist() 
        self.imu_msg = Imu() 
        self.scan_msg = LaserScan() 
        self.trans_msg = transform() 
        self.odom_updated = False 
        self.imu_updated = False 
        self.scan_updated = False 
        self.trans_updated = False 
  
    def odom_callback(self, msg): 
        self.odom_msg = msg 
        self.odom_updated = True 
  
    def imu_callback(self, msg): 
        self.imu_msg = msg 
        self.imu_updated = True 
  
    def scan_callback(self, msg): 
        self.scan_msg = msg 
        self.scan_updated = True 
    def trans_callback(self, msg): 
        self.trans_msg = msg 
        self.trans_updated = True 
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    def lqr_loop(self, msg, i, trans_msg): 
        global A, B, Xi, omega,n,x_hat,dt,angles 
        if i == 0: 
            stime1 = time.time() 
            tbot_x = msg.pose.pose.position.x 
            tbot_y = msg.pose.pose.position.y 
            quat = (msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z,  
                    msg.pose.pose.orientation.w) 
            angles = euler_from_quaternion(quat) 
            print(tbot_x) 
            print(tbot_y) 
  
            y_lidar = trans_msg.linear_transform #from transform listener 
            print("Y LIDAR IS:" + str(y_lidar*8)) 
            y[:,0] = [tbot_x, tbot_y, y_lidar*8, 0, 0] 
            y_alpha[:,0] = [y[0,0],y[1,0],y[3,0],y[4,0]] 
            u[:,0] = -0.5*(np.matmul(np.matmul(np.matmul(R_inv,B.T),P[:,:,0]),x_hat[:,0])) –  
                     0.5*(np.matmul(np.matmul(R_inv,B.T),s[:,0])) 
            u_ast[:,0] = u[:,0] 
            Xi[0,0] = 0.9*T*dt*(u_ast[0,0]*np.cos(angles[2]) + u_ast[1,0]*np.sin(angles[2])) 
            if Xi[0,i] != 0: 
                omega[0,0] = 0.9*T*dt*(u_ast[1,0]*np.cos(angles[2]) - u_ast[0,0]*np.sin(angles[2]))/Xi[0,0] 
            else: 
                omega[0,0] = 0 
            self.vel_msg.linear.x = Xi[0,0] 
            self.vel_msg.angular.z = omega[0,0] 
            self.vel_pub.publish(self.vel_msg) 
            elapsed = time.time() - stime1 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
        else: 
            stime1 = time.time() 
            print("Step number " + str(i)) 
  
            #Predicting states 
            dxhat_dt = np.reshape(np.matmul(A,x_hat[:,i-1]),(4,1)) +  
                       np.reshape(np.matmul(B,u_ast[:,i-1]),(4,1)) +  
                       np.matmul(Theta[:,:,i-1],np.reshape(y[:,i-1],(5,1)) –  
                       np.reshape(np.matmul(C,x_hat[:,i-1]),(5,1))) 
            print("DXHAT_DT: " + str(dxhat_dt)) 
            x_hat[:,i] = np.reshape(np.reshape(x_hat[:,i-1],(4,1)) + dt * dxhat_dt, 4) 
            print("X_HAT: " + str(x_hat[:,i])) 
            dxhat_alpha_dt = np.reshape(np.matmul(A,x_alpha_hat[:,i-1]),(4,1)) +  
                             np.reshape(np.matmul(B, u_ast[:,i-1]),(4,1)) +  
                             np.matmul(Theta_alpha[:,:,i-1], (np.reshape(y_alpha[:,i-1],(4,1)) – 
                             np.reshape(np.matmul(C_alpha, x_alpha_hat[:,i-1]),(4,1)))) 
            print("DXHAT_ALPHA_DT: " + str(dxhat_dt)) 
            x_alpha_hat[:,i] = np.reshape(np.reshape(x_alpha_hat[:,i-1],(4,1)) + dt*dxhat_alpha_dt,4) 
            print("X_ALPHA_HAT: " + str(x_alpha_hat[:,i])) 
            u[:,i] = -0.5*(np.matmul(np.matmul(np.matmul(R_inv,B.T),P[:,:,i]),x_alpha_hat[:,i])) –  
                     0.5*(np.matmul(np.matmul(R_inv,B.T),s[:,i])) 
            print("U: " + str(u[:,i])) 
  
            #QCQP Solver 
            z = cvx.Variable(2) 
            obj = cvx.Minimize(cvx.quad_form(z,R) + np.matmul(B.T,np.reshape(np.matmul(x_hat[:,i], P[:,:,i]) +  
                  s[:,i],(4,1))).T*z) 
            prob = cvx.Problem(obj,[0.5*cvx.quad_form(z,np.eye(2))+(-2*u[:,i].T*z) +  
                   (np.matmul(u[:,i].T,u[:,i])) - math.pow(gamma,2) <= 0]) 
            prob.solve(solver = 'SCS') 
            u_ast[:,i] = np.reshape(2*z.value,2) #Control input u alpha 
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            print("Control input: " + str(u_ast[:,i])) 
            Xi[0,i] = (9000/T)*dt*(u_ast[0,i]*np.cos(angles[2]) + u_ast[1,i]*np.sin(angles[2])) 
            if Xi[0,i] != 0: 
                omega[0,i] = (9000/T)*dt*(u_ast[1,i]*np.cos(angles[2]) - u_ast[0,i]*np.sin(angles[2]))/Xi[0,i] 
            else: 
                omega[0,i] = 0 
            print("Xi is: " + str(Xi[0,i])) 
            print("omega is: " + str(omega[0,i])) 
            self.vel_msg.linear.x = Xi[0,i] 
            self.vel_msg.angular.z = omega[0,i] 
            self.vel_pub.publish(self.vel_msg) 
            elapsed = time.time() - stime1 
            while elapsed < dt: 
                elapsed = time.time() - stime1 
            print("Elapsed time:" + str(elapsed)) 
  
            #Get positions from Turtlebot 
            tbot_x = msg.pose.pose.position.x 
            tbot_y = msg.pose.pose.position.y 
            quat = (msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z,  
                    msg.pose.pose.orientation.w) 
            angles = euler_from_quaternion(quat) 
            print("angles: " + str(angles)) 
  
            #Get Y from lidar 
            y_lidar = trans_msg.linear_transform 
            print("Y LIDAR IS:" + str(y_lidar*8)) 
            print("ACTUAL Y IS: " + str(tbot_y)) 
            print("----------------------") 
            a = 0.01*np.random.randn() 
            y[0,i] = tbot_x 
            y[1,i] = tbot_y 
            y[2,i] = y_lidar*8+a 
            y[3,i] = (tbot_x - y[0,i-1])/dt 
            y[4,i] = (tbot_y - y[1,i-1])/dt 
            y_alpha[:,i] = [y[0,i],y[1,i],y[3,i],y[4,i]] 
  
if __name__ == "__main__": 
    if os.name != 'nt': 
        settings = termios.tcgetattr(sys.stdin) 
    try: 
        start_time = time.time() 
        Robot = lqr_controller() 
        for i in range(0, num_steps): 
            Robot.lqr_loop(Robot.odom_msg,i,Robot.trans_msg) 
        Robot.vel_msg.linear.x = 0 
        Robot.vel_msg.angular.z = 0 
        Robot.vel_pub.publish(Robot.vel_msg) 
        elapsed_time = time.time() - start_time 
        print("x_hat is: " + str(x_hat)) 
        print("u is: " + str(u)) 
        plotting() 
        rospy.spin() 
    except rospy.ROSInterruptException: 
        pass 
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Appendix F: Video Demos 

LQG controller: 

https://www.youtube.com/watch?v=ZOC838J_mFE&feature=share 

Mitigation method: 

https://www.youtube.com/watch?v=7I73yQhsI0o&feature=share 

https://www.youtube.com/watch?v=ZOC838J_mFE&feature=share
https://www.youtube.com/watch?v=7I73yQhsI0o&feature=share

