

Assistive Bass Guitar for Those Affected by Muscular
Dystrophy

A Major Qualifying Project Report
submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science by:

Chloe Adler-Mandile
Michael Altavilla
Candan Iuliano
Steven Lussier

Faculty Advisor:

Professor Stephen Bitar

Sponsored By:
The New England Center for Analog and Mixed Signal Design (NECAMSID)

Date: March 27, 2020

Abstract
Muscular Dystrophy is a group of disorders in which there is a progressive loss of muscle

mass and strength. The most common form, Duchenne Muscular Dystrophy (DMD) tends to

affect young males and has no cure. DMD causes a decrease in motor control over time, so those

affected with talents in the arts may lose their ability to express themselves in this way. This

project creates an assistive aid for those affected with DMD which allows them to play the bass

guitar. Using a combination of motors, solenoid plungers, and a microcontroller, the user is able

to interface with a tablet and create music.

2

Acknowledgments
We would like to give a special thanks to all who helped us during this MQP especially

our team advisor, Professor Stephen Bitar, whose weekly meetings and insight we could not have

completed this project without. For his wealth of knowledge regarding robotic instruments, we

would like to thank Professor Scott Barton, who provided us with invaluable advice regarding

tuning design. Additionally, for exceptional guidance in our printed circuit board design, we

would like to thank PhD Candidate and Research Assistant Ian Costanzo. For his generosity of

materials, knowledge, and time, we would also like to thank Electronics Technician III, William

Appleyard.

Thank you to everyone who helped to make this project a reality, we couldn’t have done

it without you.

3

Table of Contents
Abstract 2

Acknowledgments 3

Table of Contents 4

Table of Authorship 8

Executive Summary 10
Objective 1: Wireless Application 10
Objective 2: Automatic Tuning 10
Objective 3: Clean Output Sound 10
Objective 4: Ease of Use with Low Mobility 10

1. Introduction 16

2. Literature Review 16
2.1 NECAMSID Information 16
2.2 The Arts and Disabilities 17

2.2.1 Physiological Effects related to Muscular Dystrophy 17
2.3 Muscular Dystrophy 18

2.3.1 Duchenne Type Muscular Dystrophy 18
2.3.2 Range of Motion 19

2.4 Musical Background 19
2.4.1 Fundamentals of Music 20

2.4.1.1 Tones and Semitones 20
2.4.1.2 Pitch 20
2.4.1.3 Scale 21
2.4.1.4 Timbre 21
2.4.1.5 Articulation 22

2.4.2 The Standard Bass Guitar 22
2.4.2.1 Physical Design 22

2.4.2.1.1 Neck with Frets 22
2.4.2.1.2 Pickups 23
2.4.2.1.3 Tuning 24

2.4.2.2 Musical Techniques 25
2.5 Prior Art 26

4

2.5.1 Art for the Disabled MQP 26
2.5.2 Assistive Aid for playing the Ukulele 26
2.5.3 Other Assistive Musical Accommodations 27
2.5.4 Improvements 28

2.6 Design Constraints 29
2.6.1 Tuning 29
2.6.2 Inputs 31
2.6.4 Fretting 33
2.6.5 Plucking 34
2.6.6 Arduino Mega 34
2.6.7 Component Power 35

3. Procedure 36
3.1 Mission Statement 36

3.1.1 Goals 36
3.2 Design Constraints 37

3.2.1 Muscular Dystrophy 37
3.2.2 Functionality 38
3.2.3 Resources Limitations 39

3.3 General Architecture 39
3.3.1 Fretting Design 40
3.3.2 Plucking Design 42
3.3.3 Tuning 43
3.3.4 Inputs/Android App 46

4. Methodology 47
4.1 Design Objectives 48

Objective 1: Wireless Application 48
Objective 2: Automatic Tuning 48
Objective 3: Clean Output Sound 48
Objective 4: Ease of Use 48

4.2 Design Constraints 49
Constraint 1: Force and Torque Requirements 49
Constraint 2: String Selection 49
Constraint 3: Noise Interference 49
Constraint 4: User Mobility 50
Constraint 5: Power Requirement 50

5

4.3 General Design Aspects 50
4.3.1 Hardware Inputs 51

4.3.1.1 Power Requirement 51
4.3.1.2 Microcontroller Selection 52
4.3.1.2 User Interface Input 54

4.3.2 Hardware Outputs 55
4.3.2.2 Plucking Servo 58

4.3.3 User Interface 59
4.3.3.1 Bluetooth Connectivity 60
4.3.3.2 Android Application 61

4.3.4 Signal Analysis 64
4.3.5 Tuning Hardware 66
4.3.6 Additional Design Features 69

4.4 Summary 69

5. Realization and Results 70
5.1 Finalized Design 70

5.1.1 Variations from Concept Design 70
5.2 Testing Period 71

5.2.1 Tuning Implementation 71
5.2.2 Mechanical Work 73
5.2.3 Circuitry 77

Filter 77
Power Switching 79
Motor 80
Bluetooth 82
Servo 82
Solenoids 83

5.2.4 Mobile Application 83
5.2.5 Sound Testing 85

5.2.5.1 Sound Dampening 85
5.2.5.2 Sound Amplification 90

5.2.6 Combined Module Testing 91
Filter 91
Power Switching 92
Motor 93
Bluetooth 93

6

Solenoids 94
PCB 94

5.2.7 Overall Implementation Overview 97

6. Discussion 99
6.1 Achievements 99
6.2 Shortcomings 100

6.2.1 Mobile App 100
6.2.2 Solenoids 100
6.2.3 Tuning Implementation 101

6.3 Impact for Assistive Technology 101
6.4 Manufacturing and Costs Evaluation 102
6.5 Limitations 104
6.6 Future Work 104

6.6.1 Real-time Tuning 104
6.6.2 Professional Mobile Application 105
6.6.3 Hammering and Strumming Actuators 106

7. Conclusion 107

Appendix A 108

Appendix B 120

References 122

7

Table of Authorship
Section Primary Author Primary Editors

Abstract Candan Iuliano Steven Lussier

Acknowledgments Chloe Adler-Mandile Michael Altavilla

Executive Summary Chloe Adler-Mandile Steven Lussier

1. Introduction Steven Lussier Candan Iuliano

2. Literature Summary

2.1 NECAMSID Information Steven Lussier Candan Iuliano

2.2 The Arts and Disabilities Steven Lussier Chloe Adler-Mandile

2.3 Muscular Dystrophy Steven Lussier Chloe Adler-Mandile

2.4 Musical Background Chloe Adler-Mandile Candan Iuliano

2.5 Prior Art Candan Iuliano Michael Altavilla

2.6 Design Constraints Candan Iuliano Steven Lussier

3. Procedure

3.1 Mission Statement Steven Lussier Chloe Adler-Mandile

3.2 Design Constraints Steven Lussier Candan Iuliano

3.3 General Architecture Chloe Adler-Mandile Michael Altavilla

3.3.1 Fretting Design Candan Iuliano Steven Lussier

3.3.2 Plucking Design Candan Iuliano Michael Altavilla

3.3.3 Tuning Michael Altavilla Steven Lussier

3.3.4 Inputs/Android App Chloe Adler-Mandile Steven Lussier

4. Methodology

4.1 Design Objectives Chloe Adler-Mandile Steven Lussier

4.2 Design Constraints Steven Lussier Candan Iuliano

4.3 General Design Aspects Candan Iuliano Michael Altavilla

4.3.1 Hardware Inputs Michael Altavilla Candan Iuliano

8

4.3.2 Hardware Outputs Candan Iuliano Michael Altavilla

4.3.3 User Interface Steven Lussier Chloe Adler-Mandile

4.2.4 Signal Analysis Chloe Adler-Mandile Michael Altavilla

4.3.5 Tuning Hardware Michael Altavilla Steven Lussier

4.3.6 Additional Design Features Michael Altavilla Steven Lussier

4.4 Summary Steven Lussier Candan Iuliano

5. Realization and Results

5.1 Finalized Design Michael Altavilla Steven Lussier

5.2 Testing Period

5.2.1 Tuning Implementation Candan Iuliano Chloe Adler-Mandile

5.2.2 Mechanical Work Michael Altavilla Steven Lussier

5.2.3 Circuitry Chloe Adler-Mandile Steven Lussier

5.2.4 Mobile Application Candan Iuliano Chloe Adler-Mandile

5.2.5 Sound Testing Steven Lussier Candan Iuliano

5.2.6 Combined Module Testing Chloe Adler-Mandile Candan Iuliano

5.2.7 Overall Implementation Steven Lussier Michael Altavilla

6. Discussion

6.1 Achievements Steven Lussier Michael Altavilla

6.2 Shortcomings Candan Iuliano Steven Lussier

6.3 Impact for Assistive Technology Steven Lussier Candan Iuliano

6.4 Manufacturing and Costs Evaluation Michael Altavilla Steven Lussier

6.5 Limitations Chloe Adler-Mandile Candan Iuliano

6.6 Future Work Steven Lussier Chloe Adler-Mandile

7. Conclusion Chloe Adler-Mandile Michael Altavilla

Appendices

References

9

Executive Summary
Art in all its forms, is a way for someone to express themselves and realize their identity.

People with disabilities are prone to struggles with self esteem and identity. This project,

sponsored by the New England Center for Analog and Mixed Signal Design (NECAMSID), aims

to create an Assistive Bass Guitar in order to provide a creative outlet for people with Muscular

Dystrophy.

Muscular Dystrophy is a group of diseases which causes the affected to progressively

lose muscle mass and muscle strength. This can affect range of motion, and limit the person’s

ability to perform certain things independently, including playing an instrument such as the bass

guitar. A standard four string bass with 24 frets covers 38 separate notes, or 3 octaves with 2

extra semitones. The product described in this report is limited in the number of notes it can

produce, but with less limitations on time and budget, this product could easily be improved to

more closely resemble a standard bass guitar. The description below highlights and outlines the

Mission Statement for the creation of the assistive device:

- This project is an assistive aid that will improve the ability of someone affected

with Duchenne Muscular Dystrophy (DMD) to manipulate a bass guitar. This will

include plucking, tuning and fretting so that the user would be able to play a

variety of songs that range in structure and notes. The device will allow those

with an affinity to play music with the inability to play to have an outlet for their

musical expression.

Design Objectives

Objective 1: Wireless Application

Objective 2: Automatic Tuning

Objective 3: Clean Output Sound

Objective 4: Ease of Use with Low Mobility

10

General Block Diagram

Figure I: General Block Diagram

Microcontroller

 The deciding design feature in the selection of a microcontroller was the amount of

digital I/O pins. This led to the decision to use the Arduino Mega 2560, with the 12 volt

operating voltage and the ample amount of extra digital I/O pins for expansion.

Filter

 The filter block of our design contains an active low-pass filter with a gain of 20 and a

cut-off frequency of 170 Hz as it is intended to take a 150 mV peak input signal from the bass

pick-ups and output a filtered signal ranging from 0 to 5V. The internal source resistance of the

pickup is modeled by a 10 kΩ resistor.

11

Figure II: Signal Amplifier and Filter Circuit Schematic

Power Switching

The majority of our circuitry is powered by five volts, so we employ a buck-converter

module to step down a twelve volt supply and create a five volt rail. The module we use is part

number 106990003 from Seeed Technology Co., Ltd.

Motor

 In order to control the direction of the DC motor in our tuning block, we utilize the

HiLetgo BTS7960 motor driver module which employs two BTN7970 PN half bridges created

by Infineon.

12

Figure III: Motor Control Diagram

Bluetooth

The HC-06 bluetooth module is powered by six volts. The HC-06 uses 3.3 V logic, but

the Arduino uses 5 V logic. Because of this, a voltage divider is used between the transmit of the

Arduino and the receive of the bluetooth to step the 5 V logic down to 3.3 V.

Figure IV: Bluetooth Module Schematic

13

Servo

The plucking mechanism of our system consists of a servo motor which is powered by a

five volt rail and is connected to the Arduino through a digital pin for controlling purposes.

Figure V: Servo Schematic

Solenoids

 The fretting of the string is executed by five push-pull solenoids, one for each fret of our

design. Each of these solenoids is controlled through the gate of a MOSFET connected to a

digital pin on the Arduino with a diode connecting the source to the twelve volt supply. This

ensures voltage only flows into the positive bank to account for kickback from the solenoid when

it turns off.

Figure VI: Single Solenoid Schematic

14

The final design meets the objectives of this project, but leaves plenty of room for future

work. Future work for this project would include the implementation of real-time tuning, the

development of a professional mobile application, and the testing of the product on people

affected by range-of-motion limitations.

With future work completed, the device proposed in this paper has the potential to assist

not only people affected by Muscular Dystrophy, but an entire community of people

experiencing limited range of motion, to express themselves through music.

15

1. Introduction

Our project is an assistive aid that will improve the ability of someone affected with

Duchenne Muscular Dystrophy (DMD) to manipulate a bass guitar. DMD is a degenerative

muscular disease that affects young males ages 3-5. As they age they lose more and more

muscular strength and control, eventually resulting in their premature death. Those who possess

talent in art forms such as musical instruments can no longer experience their passion due to their

limitations. This project will allow those afflicted to be able to play a bass guitar with minimal

movement.

2. Literature Review

2.1 NECAMSID Information

NECAMSID, short for The New England Center for Analog and Mixed Signal Design at

WPI, is a research laboratory at WPI for industry-sponsored research and project work. The lab

sponsors many student projects and research, including both senior projects and graduate work.

In the past, multiple company sponsors have been a part of NECAMSID, including Allegro

Microsystems, BAE Systems, Texas Instruments and Analog Devices. The type of work within

the lab revolves around real world applications and limitations of circuits and systems, with

students testing limitations in these systems. With this type of work and sponsorship involving

the common interest of analog design and mixed signal design, sponsors and students can share

information and work together effectively [26].

16

2.2 The Arts and Disabilities

Art is used as a way to express oneself through the means of creative freedom. With art,

people are allowed to express themselves and connect with their emotions to create different

forms of art, whether it be in the form of drawings musical based. Due to this cathartic

experience with creating art, art therapy has been used to provide emotional stability and

wellbeing to those who have trouble expressing themselves. Due to this, art has been used as a

form of therapy to those with disabilities. Those with disabilities struggle with a sense of

normalcy and identity, and can help progress the disability identity over time [21]. From art and

art-based learning, both self-esteem and confidence levels rose in those who had disabilities as

this expression through certain art forms allowed those with disabilities to express themselves

where they previously could not. Engaging youths with the arts allowed them to “adopt a more

positive, inclusive and potentially multi-identity perspective” [23]. Those with disabilities who

are prone to struggles with identity and self esteem issues can utilize art as a means to build

esteem and confidence by freely expressing their emotions through art therapy.

2.2.1 Physiological Effects related to Muscular Dystrophy

Art can be used to help alleviate behavioral issues amongst those with DMD. Studies

have shown that there is an increased occurrence of concerning neurobehavioral issues among

young boys and males with Muscular Dystrophy. These neurobehavioral issues include anxious

behavior in social situations, along with depressed thoughts. In a study involving 23 boys who

have Muscular Dystrophy between the ages of 8 and 15, an assessment of occurrence of these

concerning behavioral issues was conducted against a control group [22]. The results show a

significantly more occurrence of both depressive disorders and dysthymic disorders among the

males with Muscular Dystrophy(6). From this study, 64.7 % of those in the study reported being

anxious at the time. 58.8 % also stated they have anxiety in social situations, especially those in

peer to peer relationships. The study also elaborated on the issues of depression within the study

group as 41 % of the males were found to have a depressed mood [22].

17

2.3 Muscular Dystrophy

Muscular Dystrophy is a group of diseases which causes the affected party to

progressively lose muscle mass and muscle strength. A genetic mutation causes interference in

the creation of protein synthesis within the cells. These inhibited proteins are needed to build

muscles and maintain healthy muscle development. This abnormal production of proteins is the

root cause for the progressive loss of muscle mass and strength over time. Other symptoms that

form in early childhood are troubling walking, pain within the muscles, and difficulty standing

[11]. Because of these symptoms, people resort to the use of a wheelchair for mobility. As of

right now, there is no cure for this disease, with physical therapy and other medical treatments

used to slow the progression of the disease. Muscular Dystrophy is a genetic disease, meaning

that the mutated gene can be passed down from family members. Muscular Dystrophy typically

affects young children, mainly young boys, with the possibility of 1 in every 5,000 males being

affected [11]. There are many types of Muscular Dystrophy, all involving the similar symptoms

of the progressive loss of motor control and muscle loss. The most common form, however, is

Duchenne type Muscular Dystrophy (DMD). Other types of Muscular Dystrophy occur later in

life, and are usually more gradual in effect.

2.3.1 Duchenne Type Muscular Dystrophy

The most common form of Muscular Dystrophy is Duchenne type, which affects 1 in

every 3500 males. The dystrophin gene, which is the largest human genome, is mutated to cause

the blockage of protein synthesis. The dystrophin gene occurs on the X chromosome, making

Duchenne Muscular Dystrophy an X-linked recessive disorder [17]. This is why males are more

affected by the disorder, as they only need one mutation on the X chromosome due to their X-Y

genome make-up, while females would require two mutations on both their X chromosomes.

Symptoms begin to show in young boys between the ages of three and five, with a

waddling gait, clumsiness and enlarged calf muscles being indicators to the disorder. Around the

age of 12, the children become wheelchair bound due to the lack of muscle mass in the legs to

18

allow the child to walk. The lack of motor control also affects involuntary muscle movement as

well, where involuntary muscle movements like that of the heart and lungs become severely

weakened. Due to this, life-threatening complications like heart issues and breathing difficulties

occur. The life expectancy of a person with Duchenne Muscular dystrophy is 27 years old,

however with newer medical advancements like that of stem cell therapy and gene targeting, the

outlook of the disorder is changing for the better [17].

2.3.2 Range of Motion

The progressive loss of motor control causes a person’s range of motion to be severely

reduced. Most with Duchenne Muscular Dystrophy are limited to a wheelchair by the age of 12,

due to weakness in the legs that prevents them from walking correctly. However, the most well

preserved muscles in a person with DMD is within the wrist and hand muscles [24]. In a test

conducted by Hiller and Wade [20], 28 boys with DMD at an average age of 14 years old were

asked to help perform a study regarding arm, hand and wrist movements. A test known as the

Jebsen Hand Function test was performed, which assesses a broad range of hand functions using

activities that would occur in daily living. The study reported that many of the subjects

performed well in activities such as stacking checkers, writing and page turning. However, many

subjects had difficulty lifting both light and heavy objects against gravity [24]. The research

shows that lifting objects is a difficulty amongst people with DMD amongst all ages, however

hand, wrist and finger movement can still be relatively preserved over time. This allows those

with the disorder to utilize everyday objects, and other interfaces.

2.4 Musical Background

In order to create an assistive bass guitar, the fundamentals of music need to be

understood and considered as well as the physical design of a standard bass guitar and the

common techniques a musician of this instrument would master. The physical forces of the

interactions between the musician and their bass guitar must also be analyzed in order to be

19

reproduced in this project. Once the music theory, artist’s techniques, physical theory and design

are understood, an assistive bass guitar can be created which will most closely achieve the same

techniques as a standard bass guitar.

2.4.1 Fundamentals of Music

Several important fundamentals include tone, pitch, scale and mode, rhythm and melody,

timbre, dynamics and articulation.

2.4.1.1 Tones and Semitones

A musical tone is a steady periodic sound and is characterized by its duration, pitch, and

timbre. A pure tone is a sinusoidal waveform while a complex tone is a combination of two or

more pure tones. Semitones represent the distance between two tones in a scale and are the

smallest step that can be taken between pitches in music.

A tone’s pitch is its fundamental frequency. Frequency refers to the number of vibrations

that a string makes in a specific period of time. Due to the sinusoidal behavior of tones, their

fundamental frequencies can be analyzed using the Fourier theorem. Often the lowest of the

frequencies, the fundamental frequency, and pitch, is also the inverse of the period of the

waveform [12].

2.4.1.2 Pitch

A string vibrates with a particular fundamental frequency (pitch). It is possible, however,

to produce pitches with different frequencies from the same string. The four properties of the

string that affect its frequency are length, diameter, tension, and density.

Pitch is a perception of a tone’s lowness or highness. The difference in pitch between two

notes is called an interval. The most basic interval is unison, which occurs between two notes of

the same pitch. The octave interval is two pitches that are either double or half the frequency of

one another. Specific frequencies are assigned letter names. For example, A4 (the A above

20

https://en.wikipedia.org/wiki/Periodic_function
https://en.wikipedia.org/wiki/Duration_(music)
https://en.wikipedia.org/wiki/Pitch_(music)
https://en.wikipedia.org/wiki/Timbre
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Waveform
https://en.wikipedia.org/wiki/Fourier_theorem
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Interval_(music)
https://en.wikipedia.org/wiki/Octave

middle C on the piano) is commonly assigned to the frequency of 440 Hz. Therefore, a note of

half or double the pitch frequency (ie 220 Hz or 880 Hz) would be in octave intervals of A4 and

would be considered A3 and A5. Pitches in octave intervals of each other are grouped into a

single class determined by their assigned note letter. So, the notes with fundamental frequency

(pitch) of 220 Hz, 440 Hz, and 880 Hz are all grouped into the “A” pitch class [15].

2.4.1.3 Scale

Notes can be arranged in a variety of scales. A scale is a set of musical notes ordered by

fundamental frequency or pitch. Western music theory generally divides the octave into a series

of twelve tones, called a chromatic scale, within which the interval between adjacent tones is

called a half step or semitone.

Most scales are octave-repeating, so their pattern of notes is the same in every octave. An

octave-repeating scale can be represented as a circular arrangement of pitch classes. For instance,

the increasing C major scale is C–D–E–F–G–A–B–[C], with the bracket indicating that the last

note is an octave higher than the first note. The distance between two successive notes in a scale

is called a scale step.

2.4.1.4 Timbre

Timbre is the principal phenomenon that allows us to distinguish one instrument from

another when both play at the same pitch and volume. Although timbre can be accurately

described and analyzed by Fourier analysis and other methods because it results from the

combination of all sound frequencies, attack and release envelopes, and other qualities that a tone

comprises, it has no standard nomenclature.

Timbre is principally determined by the relative balance of overtones produced by a

given instrument due to its construction, and the envelope of the sound (including changes in the

overtone structure over time). Timbre varies widely between different instruments, voices, and to

a lesser degree, between instruments of the same type due to variations in their construction, and

significantly, the performer's technique. The timbre of most instruments can be changed by

21

https://en.wikipedia.org/wiki/Scale_(music)
https://en.wikipedia.org/wiki/Note_(music)
https://en.wikipedia.org/wiki/Fundamental_frequency
https://en.wikipedia.org/wiki/Pitch_(music)
https://en.wikipedia.org/wiki/Chromatic_scale
https://en.wikipedia.org/wiki/Semitone
https://en.wikipedia.org/wiki/Octave
https://en.wikipedia.org/wiki/Degree_(music)
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Timbre
https://en.wikipedia.org/wiki/Overtones
https://en.wikipedia.org/wiki/Envelope_(waves)

employing different techniques while playing. For example, the timbre of a trumpet changes

when a mute is inserted into the bell.

2.4.1.5 Articulation

Articulation refers to the duration of the notes a musician plays. The most commonly

performed articulations of all instruments from long to short include legato, tenuto, marcato,

staccato, and martelé. Many of these articulation techniques can be combined to create certain

crossovers of style.

In bass guitar, the more common forms of articulation are staccato and legato. Staccato

notes are described as separated or detached. They can be created by plucking a note and then

muting the sound after the desired duration, causing quick and discrete notes in the melody.

Legato notes are described as smooth and connected. They can be created by plucking a note and

then immediately plucking the next, creating a fluid pattern of notes with no discernible

disconnect between them.

2.4.2 The Standard Bass Guitar

The many aspects of the design of the modern bass guitar that make it a popular

instrument in the music industry today should be understood when creating an assistive bass

guitar for this project. The techniques used by musicians when playing this instrument must also

be understood in order to enable the user to master the same techniques.

2.4.2.1 Physical Design

A standard four string bass requires a neck with frets, 4 strings, a pickup, and a tuning

mechanism.

22

https://en.wikipedia.org/wiki/Tenuto
https://en.wikipedia.org/wiki/Marcato
https://en.wikipedia.org/wiki/Martel%C3%A9_(bowstroke)

2.4.2.1.1 Neck with Frets

A standard four string bass with 24 frets covers 38 separate notes, or 3 octaves with 2

extra semitones. Figure 1 shows a diagram of the notes available on a 24 fret, 4 string bass

guitar.

Figure 1: Notes of a 24 Fret Bass

Retrieved from

http://smartbassguitar.com/bass-essentials-series-pt-3-bass-guitar-notes-fretboard-radius-and-neck-profile/#.XZo-iEZKg2w

As stated in section 2.4.1.2, four properties of the string that affect its frequency are

length, diameter, tension, and density. When a musician presses their finger on a string, they

shorten its length, increasing the pitch. [27]

23

http://smartbassguitar.com/bass-essentials-series-pt-3-bass-guitar-notes-fretboard-radius-and-neck-profile/#.XZo-iEZKg2w

2.4.2.1.2 Pickups

Figure 2: Guitar Pickup
Retrieved from https://www.guitarworld.com/gear/how-does-a-guitar-pickup-really-work

A pickup sits underneath the strings on the body of the bass guitar and senses the

vibrations in the string and converts it to an electrical signal that can be amplified and played

through an electric speaker. There are many different physical designs of a pickup including

magnetic, piezoelectric, and optical.

A magnetic bass guitar pickup generally uses a sensor which measures changes in

magnetic reluctance caused by the vibrations in the strings. It is essentially a coil wound around

a permanently magnetized probe which sits below a string made out of a magnetic metal. When

the string vibrates through the probe's magnetic field, the flux density is modulated. This induces

AC voltages in the coil. It is this signal that gets amplified to create the sound of an electric

guitar.

2.4.2.1.3 Tuning

A bass guitar should be tuned every time it is played. The standard tuning for a 4 string

bass is E, A, D, G from thickest to thinnest string. The bass strings are tuned in fourths.

All-fourths tuning is based on the perfect fourth (five semitones) meaning the consecutive open

24

notes of all-fourths tuning are spaced apart by five semitones on the chromatic circle, which lists

the twelve notes of the octave. This is the reason why the A note can be heard on the 5th fret of

the E string and the D on the 10th and so on. See Figure 2 to visualize the standard all-fourths

tuning of a bass guitar.

Figure 3: Tuning Pegs
By Pastorius - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3233695

A bass guitar string is tuned using a tuning peg attached to a worm drive, shown in Figure

3. A worm drive is a gear arrangement in which a screw (called the worm) interacts a gear

(called the worm gear). Like other gear arrangements, a worm drive can reduce rotational speed

or transmit higher torque.

As stated in section 2.4.1.2, four properties of the string that affect its frequency are

length, diameter, tension, and density. This tuning mechanism affects the tension in the string in

order to control the frequency. A string stretched between two points will have tension.

Increasing tension in the string gives it a higher frequency while loosening it lowers the

frequency. [27]

Overall the tuning of a string follows the following form:

f 1 = 2L
√ T

m/L (1)

25

https://en.wikipedia.org/wiki/Gear_train
https://en.wikipedia.org/wiki/Revolutions_per_minute
https://en.wikipedia.org/wiki/Torque

Where T represents the string tension, m represents the string mass, and L represents the

string length.

2.4.2.2 Musical Techniques

There are many popular fretting techniques for musicians to master with a standard four

string bass, including hammer-on and muting.

A hammer-on is a common articulation on bass which produces a note by pressing down

(hammering) a string which has already been plucked. For example, if a musician plays a note on

the third fret, they could then simply press the fifth fret of the same string without plucking again

and create a second hammered note.

Muting can be useful in two ways, to cut off the ringing at the end of a note’s desired

length and to create muted notes. A musician would mute the end of a note by playing that note

and then applying pressure to the string to damp the vibrations and end the note. This can

provide staccato articulation to the melody. A musician would play a muted note by applying

some pressure on the string while playing, creating a muted, or “dead”, note.

2.5 Prior Art

After conducting research in the assistive instrument field, we found that there were

many other aids to help those disabled play music including past MQPs.

2.5.1 Art for the Disabled MQP

The idea for our project came from a past MQP named Art for the Disabled, which was

done by Joshua R. Denoncour. Our project is essentially a continuation of his where we will

make improvements to his original design. The project consisted of a single string that would be

plucked and muted through the use of solenoids. The project also tuned the string with the use of

a metal gear motor. He had used force sensitive resistors as input for plucking and muting using

a mouse like design for the player to play with.

26

This MQP is very helpful for us moving forward with our project. Josh layed out many

things for improvement upon his design. From his recommendation we will use a higher

amperage power supply to power the components in our system. We also know the various

torque and pressure requirements needed for tuning the string. His filtering will also be used as a

model for how we will filter our incoming signals for better tuning. This MQP is a very valuable

resource for us in terms of our progress moving forward [1].

2.5.2 Assistive Aid for playing the Ukulele

Another previous MQP conducted was the assistive aid for playing the ukulele. Although

this is a different instrument than a bass guitar, many of the concepts used here will be useful to

our design. This MQP implements a fretting design over the neck of the ukulele to push down on

the string for fretting. This design consisted of solenoids suspended by a machined structure to

put direct pressure on the strings. Another aspect which Joshua also used in his project was the

use of the force sensitive resistors as the systems inputs. They designed a mouse-like controller

so the player would only need to use his fingers to play.This seemed like the best method to limit

the amount of movement needed.

One of the main differences with this MQP to ours is the string material. The ukulele uses

nylon strings whereas a bass guitar has metal string.This means our pressure requirements will

be much greater to properly fret. This project also had to create a structure to hold the solenoids

above the neck for fretting. Learning from this we decided to rotate our instrument sideways to

avoid the laborious process of making an apparatus for the solenoids. Overall this MQP was very

successful with the only issue being in buzzing caused by the solenoids when firing. [2]

2.5.3 Other Assistive Musical Accommodations

On the market currently there are very few aids to assist those affected by movement

limitations to play bass guitar. One of the most common options would be to use a digital music

player. One option is a touch pad music controller. This is essentially a layout of buttons that can

be programmed to output a particular sound. This allows the addition of several musical sounds

and notes including a bass. These run anywhere from $50 to $500 depending on the quality.

27

Though this may be a solution, it is only just digital music and doesn’t give the same sound and

freedom of actually playing a bass.

Figure 4: Touchpad Music Controller

 Another example that was created in association with the Muscular Dystrophy

Association (MDA), is called the Laser Band, shown in figure 5. This project uses a device

which contains four low-intensity lasers to play music [quest.mda.org, 2012]. If a laser is

blocked by the player, it will play notes corresponding to what was programmed to that laser.

This device is mostly used to collaborate with professionally created music, but it can also be

used to create any music one has in mind. It was designed with disabled people in mind, offering

multiple means to operate the device if user mobility is limited. However, this still would require

the movement of the players arms and hands, whereas we want our design to cover the most

extreme cases of limited movement. [3]

Figure 5: Laser Band

28

2.5.4 Improvements

The first thing our project aims to improve is the amount of technique we can play the

bass guitar. Joshua's design was very limited in that it only had muting and plucking. Through

the use of fretting we will be able to perform lagato, stacado and hammer ons. The

implementation of fretts will also allow a larger variety of notes. Another improvement will be

the plucking mechanism. To improve upon Joshua’s design we will use a servo rather than a

solenoid to pluck string. We also plan to cut down on the amount of hardware needed to use the

device. Our design will use an android tablet device that can operate the guitar over bluetooth.

There will be an app designed so that it can accommodate the players hand position so that they

can more easily play the device.

2.6 Design Constraints

In order to build the prototype, we needed to design multiple circuits that work together

through a central microprocessor. The first stage will be the tuning of the circuit. The main

frequency of the string will be detected and will adjust the string tension accordingly through the

use of a metal gear motor. The inputs of the circuit will be which frets the player intends to play.

This could be achieved by wireless transmission through bluetooth from an app to the guitar or

through the use of force sensitive resistors as inputs. Plucking and fretting will be conducted

through a combination of solenoids and servos that will be tied through the microprocessor to the

inputs.

2.6.1 Tuning

To tune the bass string we will need to use a filter to isolate the main frequency of the

bass string.

When the string is plucked there will be harmonics that surround the main frequency of

the string's vibration. The frequency range of a bass string will range from 40hz - 400hz,

meaning that we will need to use a low pass filter.

29

After reading through Joshua R. Denoncour’s MQP report for his MQP “Art for the

Disabled”, he did testing with many low pass filter designs. His final design used a fourth order

butterworth filter. He chose the fourth order butterworth due to its sharper break frequency roll

off. A butterworth filter also has a flat frequency response meaning no ripples in the pass band.

There is also a zero role off response in the stop band. The frequency response of the filter can be

seen in figure 6 This filter is a very commonly used digital filter in audio circuits and was chosen

for the wide range of resources to help with our implementation. [8]

Figure 6: Frequency response of a Butterworth Filter

However, after researching we determined that an active lowpass filter would serve our

project just as well. The lowpass filter will utilize an operational amplifier to increase the signal

to read into the analog to digital converter of the arduino. A typical guitar pluck produces around

a 150mv signal which we will increase using a filter with a gain of 20. Using the signal fed into

the arduino we can use auto-correlation and peak detection algorithms to isolate the main

frequency. If we are using an A-String a good range of frequency would be about 40-70hz which

helped us choose our cutoff frequency.

To tune the string we will use a 12v metal geared motor seen in figure 7. The motor has

a 43.8:1 metal gearbox ratio and an encoder that provides a resolution of 16 counts per

revolution of the motor shaft. It can provide 18kg.cm of torque and up to 251 rpm at the output

shaft. The econder in the motor allows the ability to move either forward or backwards which

30

will be needed when tuning the string. The encoder will be useful with our filtering system as it

can be rotated specific amounts to better dial in to a specific note or tone. This motor costs

around $29 which is a reasonable price and provides all the functionality needed to tune the

guitar as desired. [9]

Figure 7: Metal DC Geared Motor w/Encoder - 12V 251RPM 18Kg.cm

2.6.2 Inputs

We currently have two devised methods of inputs for this circuit, the first of which is an

analog input. Previous MQPs used force sensitive resistors (FSR) as inputs to the plucking and

tuning mechanisms for the bass. This acts as a variable resistor with it’s resistance fluctuating

depending on the amount of pressure on it. Within the resistor there is a conductive layer that

generates more current with a larger force on it. The player would press down on the

corresponding sensor and it would press on the desired fret using a signal from the sensor to the

solenoid. Each fret would have a corresponding input sensor and use a wired connection to

transmit the signal. Each input would be connected to a separate digital I/O pin. Using equation 1

we can determine the voltage values of the FSR that correspond to the tuning tension needed

[10].

 (2)o V cc (R / (R F SR)) V = +

31

Figure 8: Force Sensitive Resistor

Figure 9: Force Sensitive Resistor Circuit Setup

The other method we are focusing on for input is the use of an android app through a

tablet. This would utilize an HC-06 bluetooth chip that is compatible with our arduino

microprocessor. The app would be designed in a premade program called MIT App inventor.

This program has many interface options and functionality for what we need to accomplish. The

app would have a layout that had each fret input layed out and a button for plucking. An issue

that may arise with this method comes in the form of latency between input to output. Our group

32

does not have extensive experience with app programming and therefore are not certain this will

be implemented. As of now we will work towards the android app input but will use the analog

input as a backup method and a testing method.

2.6.4 Fretting

A typical bass guitar has 24 frets on its neck. For each fret there will be a solenoid

pressing down on the string to change its frequency. Solenoids are electromagnets that contain a

coil of copper wire with an armature in the middle. When the coil is energized, the slug is pulled

into the center of the coil. This makes the solenoid able to pull or push. The armature for these

solenoids is 30mm. The solenoids have a newton starting force at 12V. Each solenoid will be a

seperate input that corresponds to a finger press from the player. Though guitar playing has more

technique to how much pressure is put on fretting each string, we are treating this as a binary

application. This means that the solenoids will be either pushing on not pushing on the string.

After conducting tests on force needed to push down on the fret we found we would need around

8 newtons. The servo we will use will have 10 newtons of force. The solenoid will need a

transistor and a diode for it to work with an arduino. The transistor will be used as a current

amplifier to charge up the magnetic coil within the solenoid. The diode will be used to prevent

the coil from discharging back into the arduino. The circuit setup for the solenoid connected to

an arduino can be seen in figure 14. [5]

Figure 10: Push Pull Solenoid

33

2.6.5 Plucking

To pluck the guitar, there will be using a TowerPro SG-5010 servo.A Servo is a small

device that is driven by a DC motor and gear train to drive an output shaft. This servo has a 180

degree rotation (90 degrees in either direction) which will more than cover the distance needed to

pluck the string. Through testing we determined that we shouldn’t need more than 90 degrees of

rotation. The servo works with 1-2ms pulses that are well within the rotation range we need for

plucking. [4] The servo will be mounted to the far end of the string so as to not interfere with the

solenoids during plucking. There will be a guitar pick attached to the output shaft which will be

the contact point for the string. The servo will also be connected to our arduino but will not

require any external components for operation as shown in figure 11.

Figure 11: TowerPro SG-5010 servo

2.6.6 Arduino Mega

The arduino mega was chosen as our microprocessor due to it’s large number of inputs.

It has 54 digital I/O pins which is much more than we need for our 10 planned inputs. However,

the extra input pins allows for more expansion later on if we decide to add the ability for new

playing techniques or adding more strings to the guitar. The mega offers 5V output digital I/O

pins that will work well with many small voltage solenoids. It also runs on relatively low power,

needing a 7-20v operating voltage. The mega is also cheap costing around $30. The mega should

be able to account for every need moving forward with this project. [7]

34

Figure 12: Arduino Mega

Figure 13: Arduino Mega Pin Layout

2.6.7 Component Power

The DC geared motor that will be used in the tuning design runs on 6-12V. We plan on

running it at its maximum voltage for a higher running speed. At rest this will draw around

350mA. Under load it can draw up to a maximum of 5.1 amps. Adjusting the load of a bass

string will draw much lower current which will range from 1.1 amps to 2.1 amps. This will only

be used at the beginning when tuning before playing. [9]

35

The push pull solenoids that we will use run on 12V with a current draw about 10mA at

idle 250mA during movement depending on how it is being operated. We plan on using 10 -20

meaning that we will potentially have a minimum of 0.1A draw to 2.5A maximum draw. The

maximum value will most likely never be used due to the way a bass is played. Typically only

one to two will be pressed at once meaning that the maximum draw will not be achieved. [5]

To pluck the string a servo will be used. This has a 10mA current draw when idle and a

100-250mA draw when in use. This will draw more current than a single solenoid as it will be in

use more plucking on every note.[4]

All of these components will be connected to the arduino mega which runs on a

recommended 7-20 volt operating voltage.[7] The motor will be run on 12 volts. The power will

be supplied by a 12V 5A adaptor. The power in will be split to the motor, the arduino and the

solenoids. This will be a tricky configuration seeing as we will need to divide this up amongst 20

components.

3. Procedure

3.1 Mission Statement
This project is an assistive aid that will improve the ability of someone affected with

Duchenne Muscular Dystrophy (DMD) to manipulate a bass guitar. This will include plucking,

tuning and fretting so that the user would be able to play a variety of songs that range in structure

and notes. The device will allow those with an affinity to play music with the inability to play to

have an outlet for their musical expression.

3.1.1 Goals

1. Playable bass guitar with two octave range

Due to the single string implementation, creating a diverse note and frequency range will

be a challenge. Acquiring a large enough octave range will allow the user to play a more

diverse assortment of songs.

36

2. Usable with low mobility

The main functionality of this instrument is to allow users with MD to play a bass guitar.

The implementation of a user friendly assistive aid mobile app is a necessity.

3. Instantaneous input to sound

Latency will be a persistent issue with this automated device. Integrating software

properly to connect the interface and the electro-mechanical device with minimize

latency will help reduce lagging sound.

4. Clean output sound with minimal noise

A clear output sound without static and interference is essential in creating a playable

bass guitar. The use of low noise devices and dampening functionalities will reduce

unwanted vibrations and interference.

3.2 Design Constraints

When designing and prototyping with the assistive bass guitar, many design constraints

had to be followed in order to meet the proper project requirements to satisfy the needs of the

target audience. The bass guitar needs to allow users with DMD to easily play the guitar through

the medium of a user friendly tablet application. Functionality issues also complicate the design

of this device, as the single string design causes certain frequency and note limitations. The

complex usage of multiple mechanical and electrical devices in tandem leave room for latency

errors that also contain the design of the device.

3.2.1 Muscular Dystrophy

One of the main functions of this device is to aid those with the disorder of DMD. This

requires the device to have certain assistive aids that allows the user to properly utilise the

instrument according to their specific needs and movement ranges. Due to this, one of the top

priorities in constructing the assistive bass is to have an interface that is easily accessible to a

person with a limited range of motion.

37

The user interface for the bass guitar will be a specialized app on a tablet connected via

bluetooth. In the app, there will be a limited and simple display that has only the necessary

buttons to allow the playing of the bass guitar. Due to the constraints of the range of motion of

the user, the buttons will be mapped on the app based on natural hand placement of those with

MD. Each button will be relatively big in size as to make button pressing easier. Each button will

be mapped to a certain fret solenoid, and when pressed, will activate that solenoid and the

plucking device to allow a note to be played. There will also be option buttons for the other

playing aspects of the bass guitar, like that of hammer-ons.

3.2.2 Functionality

Due to the proposed design of our project, there will be a few limitations in the

functionality when compared with the functionality of a standard bass guitar. These limitations

will include limitations in frequency, possible techniques, and playing speed.

The frequency range of our assistive bass guitar will be limited by the number of strings

as well as the number of solenoids we use. In order to create a simple and low cost design, we

propose the use of a single “A” string with 12 solenoids. This design will cover one full octave

from A1 (55 Hz) to A2 (110 Hz). Ideally, the assistive bass would cover two full octaves, but

this would require 24 solenoids and may not be cost effective for this prototype.

The techniques which will be possible with the assistive bass guitar include hammer-ons

and muting. The assistive bass guitar will not have functionality for the player to perform sliding.

This is due to the solenoid design for fretting.

The final design limitation of the assistive bass guitar is the playing speed. This will be

limited by both the speed of the DC motor which controls the plucking, the speed of the

solenoids which control fretting, and the latencies between the application interface, the

microcontroller, and the motors themselves.

38

3.2.3 Resources Limitations

Another constraint that the team abides by is the allocation of certain resources. The main

constraints faced involve time and budget. Both of these constraints shaped certain design

choices and material selections.

The time period allowed for the creation of this device is relatively long, as three terms

are allocated to designing and building. This means a time period from August to March is

allocated. However, the acquisition of certain materials causes delays in the project development.

For example, materials need to be ordered ahead of schedule to make sure their arrival is on

time, as well as to test their functionalities. Due to procurement of materials, the design stage

needs to be expedited in order to allow proper time to be given to the ordering of materials.

Budget is also a constraint faced on the project. Each team member has a budget of $200.

With a team of four members, the budget is $800 for the team. While a large amount of money,

finding certain materials that will function properly, like a powerful solenoid, is rather difficult.

Keeping a budget along with finding the best materials for the automated bass will be a

challenge.

3.3 General Architecture

Overall there are 4 main areas that make up the design on the bass guitar: fretting,

plucking, tuning and user interface. All of these aspects need to be controlled through a central

microprocessor, in which we chose the arduino mega to fill that role. Each aspect needs to work

simultaneously to all the use to play the bass. The inputs will be placed using an android app

which will each control a component within another portion of the bass. The whole guitar will be

contained within one platform and be powered from an external source. Figure 14 shows a

general block diagram of the proposed design.

39

Figure 14: General Block Diagram

3.3.1 Fretting Design

The fretting aspect of the design originally consisted of two options, using servos or

solenoids to push down on the string. After meeting with Scott Barton, he recommended the use

of solenoids over servos. The reasoning behind this decision was that servos are much louder

than solenoids when operating. We would want our design to be as quiet as possible so that we

can hear the music clearly, which is why we are moving forward with solenoids.

After conducting research of solenoid use with an arduino controller, there were many

projects that already existed that were along the lines of what we needed to build. The code used

to program the solenoids is a modified led flashing code. Essentially, we power the solenoid and

use an input signal from the arduino to activate it. Since the arduino can only output 5v, we

needed to use an external power source to bring it to its operating voltage of 12v. Another

40

constraint was the amount of current needed to activate the solenoid. To solve this we use a

IRFZ44Z mosfet to amplify the current. Since we don’t want to draw current from the arduino,

this mosfet works very well with our design since the mosfet can be activated with a voltage.The

supply voltage will be positive which will bias the gate terminal positive and attract electrons

under the gate region towards it. The charge differential generates a current across the channel to

charge the coil within the solenoid. Applying a voltage to the base of the mosfet opens the gate

and allows the solenoid to be connected to ground and gets powered by the external source. The

final component to this design was a diode. The diode is there to prevent the solenoid from

discharging back into the circuit. Since it only lets current pass from one end, it cycles around

and discharges from the resistance in the solenoid rather than back into the mosfet. The circuit

design for this can be seen in figure 15. The preliminary design can be seen in figure 16. This

design currently uses push buttons for testing. The pushbuttons bring the logic high or low for

the input signal to the gate and turn on their respective solenoids.

Figure 15: Solenoid to Arduino Connection

41

Figure 16: Preliminary Solenoid Fetting Test Circuit

3.3.2 Plucking Design

The plucking portion of the guitar is the simplest portion of the design. The plucking is

performed by a servo with a pick attached to the armature. Figure 18 shows the servo attached to

the pick. The servo will also be wired into the arduino board. The servo will have 3 connections,

power, ground and the signal input to when it needs to rotate. The circuit layout can be seen in

figure 19. The servo operates on 5V and operates using 1-2ms pulses to rotate within 180

degrees. The servo can rotate 90 degrees on a 2ms pulse and -90 degrees on a 1ms pulse. For the

purpose of plucking the string we only need to rotate within 30 degrees of motion. With a

smaller range, the speed in which plucking can occur is increased and doesn’t require multiple

servos.

42

Figure 17: Servo Connected to Arduino

Figure 18: Servo with pick attached

3.3.3 Tuning

The main concept that set our project apart from many other automatic guitars is the fact

that we are designing a completely self sufficient model. This means that regardless of

temperature changes, stretching of the string, or settling of the physical design, the bass will

always keep its one string in tune. The single string design was confirmed during our meeting

with Scott Barton, where he agreed that the ability to play two octaves worth of notes would be

sufficient for creating a usable instrument. With this in mind, as a team we realized that the

43

concept of self tuning would arguably be the most challenging concept of the project, and require

significant testing in an isolated test setup before being integrated into the overall design. Doing

so would allow team members to focus on the mechanical design and coding aspect of self

tuning simultaneously.

The first step of creating the test was mocking up connections between the geared DC

motor and a dowel for tensioning the string. During initial research, our team determined that the

use of worm gears has two major benefits in the design of guitar tuning. On one hand the use of a

vertical worm gear to horizontal rotor allows for a design that mitigates shear forces between

gears. While this is important, we found in our early testing that the true benefits of using worm

gears was the fact that once the tension was set on the string, the DC motor no longer required

power and the mechanical advantages of the worm gear would take over and hold the string at

the set tension. As a team we developed an initial design which consisted of a modified six string

guitar tuning peg coupled to the rotor of the high torque motor. Initially, a strong metal based

epoxy was used to conjoin both shafts, but after testing the material began to break down. We

took this time to utilize the Washburn laboratories and speak to the professionals in the

machining shop who helped source a 6mm collar with double set screws to conjoin both shafts.

The test platform seen below shows our general goal for creating a setup focused solely on self

tuning. The design itself will take on a few changes as the project develops, but the use of wood,

sheet metal, L-brackets, and miscellaneous hardware allowed us to create an effective design

quickly so that team members could distribute the workload and begin coding while further

improvements were made to the mechanical design.

44

Figure 19: Self Tuning Test Platform

With a basic platform to experiment with self tuning, our team began exploring options

for the software side of the system. Looking at the picture above, it is worth noting that the guitar

pickup is not installed in the test platform. This development will be addressed in the near future,

as it is required to self tune the system. In our case, the pickup is directly connected to a typical

auxiliary jack that would go to a normal guitar amplifier. These leads will connect to both the

arduino and a seperate amplifier circuit for creating audio. Taking the outputs of the guitar

pickup and sending them to the arduino will allow our team to perform signal analysis and

manipulation in order to reach an acceptable frequency range.

Using the simulink packages for Arduino, the basic concept of self tuning our team

applied required that at first the string be set to an approximate benchmark tension. The code's

goal is then to pluck the string to receive an audio signal. This signal is registered by noting

whether the amplitude is outside of a set threshold slightly greater than the resting magnitude of

the input scope. Once a closed system of input signals and scope readings is established, the code

then analyzes the period of the wave, as period and pitch are directly related when regarding

sound waves. This portion of the process requires “pitch estimation”, where the motor

compensates to ensure the wave period is within an acceptable set threshold of equivalent pitch.

45

3.3.4 Inputs/Android App

For the application that will be created for the device, there will be multiple inputs that

are mapped to certain functionalities of the assistive bass guitar. The application will need to be

designed in a way that is accessible to the player with muscular dystrophy. Our proposed design

is shown below in Figure 20.

Figure 20: Interface Design

The interface design includes inputs for each note as well and options to mute or

hammer-on. The interface design also includes an input to tune the string and to select legato or

staccato playing. Lastly, we would like to include an option to play a demo, mainly for

46

presentation purposes. A basic flowchart which outlines the processes started by each user input

is shown below in Figure 21.

Figure 21: Input/Output Flowchart

4. Methodology

In designing an assistive bass guitar to allow those with limited motion within their hands

and fingers, a set of design objectives was formulated to help guide the project in a way to

maximize its accessibility for those with Muscular Dystrophy. Each of these objectives were set

in order to analyze its functionality, and ultimately tested leading to a finalized prototype piece.

While these design objectives were used to fulfill the overall project goal of allowing those with

Muscular Dystrophy to effortlessly play a bass guitar, certain constraints known prior to the

design period, along with constraints found during testing, limited the project's design freedom.

These constraints resulted from mechanical and electrical limitations, along with constraints set

by the user audience of the assistive instrument. Both the design objectives and constraints on the

project created the parameters needed to build a finalized prototype. These parameters are

discussed in detail below, and outline the process and guidelines the team followed to design and

build the assistive bass guitar for those with Muscular Dystrophy.

47

4.1 Design Objectives

With the goal of creating a successful and marketable product for our customer base, the

team created a list of objectives for the design. These objectives were determined early in the

design process and were re-assessed throughout in order to ensure their success.

Objective 1: Wireless Application

● The instrument should follow a wireless design. The tablet which the user

interacts with to control the instrument should communicate with the instrument

through bluetooth. This is important to our customers because it allows the same

portability and freedom as a traditional bass guitar.

Objective 2: Automatic Tuning

● The instrument should be able to tune its string automatically before the user

plays. This is an important aspect because the act of tuning the bass guitar

manually would be difficult for our customer with MD.

Objective 3: Clean Output Sound

● The instrument should produce a clean output sound similar to a traditional bass

guitar. The notes it plays should be distinguishable and clear with minimal noise

interference.

Objective 4: Ease of Use

● The application should be simple and easy to use with a minimal range of motion

required to play the range of notes available. This is an important objective as it

relates closely to the user’s disability.

48

4.2 Design Constraints

The following constraints were also taken into consideration throughout the design period

and the testing period of the project. These limitations helped to keep the project within its

original scope.

Constraint 1: Force and Torque Requirements

● Torque requirements apply to the encoded motor that automatically tunes the A

string, along with the servo at the base of the guitar designed to pluck the string.

The angular force required from the bass guitar string has to be taken into

consideration when sourcing motor and servo. Force requirements also are

required for linearly pushing down on the string to hit the frets on the bass guitar

neck, and require the solenoids to have enough force to hold the string down to

make a note play.

Constraint 2: String Selection

● String selection is an important part in this design, as frequency range and string

tension affect the overall function of the bass guitar. The string chosen needs to

have a large enough range of playable notes to allow common songs to be played,

while the tension in the string needs to be manageable to allow the motor and

servo to be able to pull and pluck the string.

Constraint 3: Noise Interference

● As a musical instrument, the bass guitar should have a clean output sound with

minimal noise coming from other sources. This is why during the design portion

of the project, low-noise emitting parts were given a high priority, resulting in the

selection of solenoids over servos to push on the frets.

49

Constraint 4: User Mobility

● The intended audience of this device are those with limited mobility within their

hands due to the disorder known as Muscular Dystrophy. Due to this, the User

Interface of the device needs to accommodate limited hand motion, making

assistive touch functionality a big requirement for the design.

Constraint 5: Power Requirement

● The power supply chosen needs to convert the 120 V AC voltage from an outlet,

to a 12 V DC voltage that has a high enough current rating to allow all the

electrical devices connected to be powered. This maximum current calculation

was done in preliminary stages to procure a power supply early on in the project,

and re-calculated later to finalize its design details.

4.3 General Design Aspects

The main design architecture for the assistive project can be classified into different

areas. The hardware design aspects involve both input and output hardware to the device.

Software involves both user interaction and signal analysis. The additional features section

covers extraneous features regarding the mechanical design of the assistive bass guitar.

Hardware inputs involve the work required to operate the device, which includes

powering the device, along with the android device that is used to provide the user input to the

device. The hardware outputs include devices used to produce the physical process of playing the

bass, along with the circuitry required to drive these outputs.

The software of the device includes both the user interface to allow the user to play the

device, and the signal analysis to ascertain the fundamental frequency of the string in its current

state in order to automatically tune the string. Both areas of software require a microcontroller to

read analog and digital inputs in order to control the hardware outputs. The last area of the

50

general aspects of the device involves the additional features of the bass guitar design. This

mainly includes the mechanical design and construction of the device

4.3.1 Hardware Inputs

4.3.1.1 Power Requirement

In order to support the variety of components in the system, a high current power supply

was chosen based on the needs of the circuit. In our design, the components that require power

are the solenoids, plucking servo, tuning motor, bluetooth chip, filtering op-amp and the arduino

mega.

 The largest power requirements of the system are the fretting solenoids. Each of the

solenoids has an individual current draw of approximately 1.6A and are rated for 12V. To

accommodate this massive power requirement, the code for the solenoids is set up to only allow

one of them to fire off at once. Therefore, we can never have two solenoids extended at the same

making our maximum current drain for the fret 1.6A. Bass playing technique also only uses one

fret at a time making this set up even more favorable to the design.

 The controller of these solenoids is the arduino mega board which itself draws 70mA on

a 5V supply. Each digital I/O pin can supply a maximum of 40mA with a maximum board

supply of 200mA. To minimize current drain from the arduino, we will be using external power

supplies to power and components controlled from the board.This will eliminate any issue of

overdrawing from the board making it only supply a digital signal to each component.

The plucking servo operates on a 4.8-6.8V supply. To have the servo pluck as fast as

possible it will operate at the maximum rated voltage. The servo will not be draining power

constantly much like the solenoid. When operated, it draws about 300mA of current.

For the bluetooth chip we are using an HC-06 bluetooth module. This model runs well

with arduino as it operates from 3.3V-5V and draws a maximum of 30mA when operating.

Finally we must account for the tuning aspect of the guitar. The plan for tuning the guitar

is that it will be performed before playing and will not require any power once tuned. This aspect

51

of the design has two parts to power, the amplifier for the guitar signal and the encoded motor to

tighten the string. To power the amplifying chip, we are using a 5V supply. The current draw for

this device is so small that it is insignificant. The DC motor uses a 12V supply and drais 150mA

under no load. After monitoring the motor under the load of the tuning peg it drains

approximately 200-300mA depending on the tension.

Total Approximate Current → 1.6A + 0.07A + 0.3A + 0.03A + 0.250 ≈ 2.25A

While it would potentially be possible to operate the system using a 3A 12V power

supply, there were a few considerations that ultimately allowed up to choose a 12V 5A supply to

use with the system. The mosfets used in tuning and operating the solenoids themselves have an

inherent current draw. Being able to support these sub-circuits of the system are important, and

in order to accommodate them and the other devices at their maximum current draw values, we

found that a margin of about 2X was acceptable. The choice was solidified by the fact the 5A

power supply was a common output rating and cost no more than less ample models.

We also have to focus on the individual requirements of each component. The solenoids

and the motor run on 12V. This won’t be an issue to power as our main power rail is 12V

however, our other components run on smaller voltages. Therefore, we are going to utilize buck

boost converters to step down the voltage to our required needs. The design will use two

converters, one to make a 5V rail to power the op-amp, bluetooth chip and the arduino. The other

converter will be used to power the servo at 6.8V. All the components will be wired in parallel to

each get recommended operating voltages and to split incoming current accordingly.

4.3.1.2 Microcontroller Selection

A major aspect of this project is the digital interface between the user input and the bass

guitar, along with the frequency analysis of the bass string. To accomplish both of these

concepts, a microcontroller is needed. More specifically, this microcontroller is needed to have

both analog and digital I/O pins to take input readings. The analog input reading is the sinusoidal

waveform outputted from the bass guitar pick-up itself filtered through the active low-pass filter.

52

This analog input will be converted from an analog signal into a digital signal through an A/D

converter, which will allow software to be written to take the digital signal and find the

frequency through peak to peak detection. The digital I/O pins are needed for our hardware.

During the selection process, our design at the time required 8 digital I/O pins. These were for

the five solenoids, one for the bluetooth module, and two for the h-bridge module controlling the

encoded motor. Along with these, the microcontroller ideally would be powered by a 12 volt

source, and be able to have a power rail to power the bluetooth module and servo.

The team also took into consideration the amount of experience members had with

certain microprocessors and coding environments. Many of the team members had prior

experience in the arduino environment, and were accustomed to its functionality and IDE coding

environment. By taking into consideration the specifications needed to be satisfied, along with

the prior knowledge of the team, the arduino family was chosen as the type of microprocessor

the team would utilize. In the figure shown below, the specifications of six different

microcontrollers from the arduino family are listed in a chart. Each one of the microcontrollers

below was a candidate for the processor we would use.

Figure 22: Design options for Microcontroller

In selecting the microcontroller, the main design feature that decided the selection was

the amount of digital I/O pins, as throughout the design and testing process, more I/O pins may

53

need to be available. Due to this, the Arduino Mega 2560 was chosen as the microcontroller the

team would use, with the 12 volt operating voltage and the ample amount of extra digital I/O

pins for expansion.

Figure 23: General Pinout for the Arduino Mega 2560

4.3.1.2 User Interface Input

The preliminary design feature to interface the user to the bass guitar was a touch screen

design. A digital interface with a touch-enabled design was chosen due to the ease of use the

touch screen would provide for the user with Muscular Dystrophy. Also, a touch screen design

provided a cleaner, more aesthetically pleasing device, as we can eliminate wired connections

and circuitry required to connect the user's physical input to a microcontroller. From our

preliminary concept idea, the team decided to use a tablet as the device to allow for the

interaction between the user and the device. A tablet was chosen due to its large surface area,

which will allow for a larger application with larger input buttons to be created. The larger

surface area for the application allows for the user to more easily control the bass guitar, and

more readily allows a user with limited motion within their hands to control the bass with the

input touch-screen buttons.

54

The next design decision was to choose the type of tablet, which was between an IOS

based tablet or an android based tablet. In choosing the type, the team based its decision on the

ease of interfacing the tablet with an external microcontroller with bluetooth. An android tablet

has more documentation and accessibility in connecting a device using user created applications

than an IOS device. This was the deciding factor in choosing a tablet, as an IOS device would

prove difficult in interfacing an application with the device. From this, an android tablet was

chosen as the user interface input. Another factor that went into this decision was the devices

available to the team for testing. A group member had a pre-existing Samsung Galaxy tablet that

could be used as a testing environment for the project, which solidified the team's design choice.

With the tablet, an android application will be pre-installed onto the device that will

allow the user to connect through bluetooth to the assistive device, and allow the user provided

inputs to the microcontroller, which will control the physical actuation of the hardware outputs

of the device. A button press on the tablet corresponds to a digital signal that is sent through

bluetooth, and sets a digital high on the digital out pin on the microcontroller, which will in turn

control the device. The software and microcontroller operation is described in depth in the

proceeding sections of the methodology.

4.3.2 Hardware Outputs

The hardware outputs of the guitar will be what we use to produce the sound of the string.

The two outputs that we will have will be fretting and plucking. To accomplish this, we need to

make sure that we account for the player’s limited range of motion. We ideally want the player to

move as little as possible but still use devices that simulate a human playing. Our solution was to

control the fretting using solenoids and the plucking using a servo. These devices are more

binary than the actions of a human but with enough precision can come very close to performing

the same as a human.

55

4.3.2.1 Solenoids

To perform the fretting on the bass guitar we came up with the solution to use solenoids

to press down on the guitar string at the desired points. A solenoid is essentially an

electromagnet that contains a coil of copper wire with an armature in the middle. When the coil

is energized, the slug is pulled into the center of the coil and fires off the armature pushing it

outward. We needed to simulate a human finger pressing down onto the string and keeping

constant direct pressure. Using a solenoid was a clear solution as once it was powered and

extended, it could hold the string to change the tension in the string for a new note. For the

purposes of this project we are using the solenoids in a binary sense where they are either

retracted or putting tension on the string. Human fingers provide much better manipulation of the

string but we needed to limit human movement making the solenoids the best replacement. The

solenoid being used in our project can be seen in figure 3.

Figure 24: 12V 25N Push Pull Solenoid

The solenoid we chose needed to be strong enough to press down on the string to have it

make contact with the frets on the neck of the guitar. We did some testing using pressure gauges

and determined that we would need approximately 12-15 newtons of force to press down. We

decided to use a 25 newton solenoid to make sure that we had more than enough force to

56

accomplish this. This solenoid had an operating voltage of 12V and a current draw of

approximately 1.6A.

Since a solenoid is an inductor inside, we would need enough current flowing through it

fast enough to create an electric field to fire it off. This would require us to use a power

MOSFET to amplify the current. To expedite the process of our design choice, we tried to use

MOSFETS available to us in the NECAMSID lab to avoid waiting for more parts to ship. We

needed a MOSFET that could output at least 1.6A of current using a gate to source voltage of

5V. This gate to source voltage value was determined as this is the digital output value the

Arduino Mega’s digital I/O pins use. The Arduino would be our controller that opened the gate

for the solenoid to activate. After exploring our options we chose the IRFZ44Z as it more than

met our specifications. The datasheet showed that it outputs about 2A from drain to source with a

4.5V gate to source voltage which was more than enough for our application. This can be seen in

the voltage to the current graph in figure 4.

Figure 25: Voltage to Current Graph for IRFZ44Z

The last component needed for the solenoid circuit was a diode. This was used across the

solenoid to prevent it from discharging back into our microcontroller. The diode would make the

57

current discharge across the solenoid in a loop preventing it from going back to the gate. Again

using the components available to use we used a basic N4007 diode. The entire circuit layout for

a single solenoid can be seen in Section 3.3.1 as Figure 15.

For our guitar design we plan on using 5 solenoids for fretting. We chose this amount for

a variety of reasons. We believe that 5 solenoids will give a large range of notes across the A

string. We also didn’t want to overcrowd the neck of the guitar as the solenoids are large and

each require the circuit setup shown in figure 15. Power issues were one of our concerns seeing

as each one darain 1.6A. Our solution was to set up the guitar to only be able to use one solenoid

at a time. The solenoids use no current when off and when playing a bass guitar you would only

use one fret at a time.

4.3.2.2 Plucking Servo

To pluck the string of the guitar we are using a metal gear servo. A servo is a device that

utilizes a combination of dc motors, gear train and a potentiometer to drive an output shaft. The

servo used in our design can be seen in figure 6. This servo was chosen for a number of reasons.

We had originally purchased a smaller servo, but the tension on the bass string was too much for

it to pluck. We decided to get a much larger servo that could provide 20kg of torque. The servo

has a metal armature that will be attached to the main output shaft. A guitar pick will be affixed

to the end of it which will be the contact point to the string. A servo was the best device to use

for this application as its high torque and range of motion easily simulates the plucking motion of

a guitar pick on a string.

58

Figure 26: Plucking Servo

 The servo has 3 connections, power, ground and the signal input to when it needs to

rotate. It operates from 4.8-6.8V and uses pulse width modulation through the signal input wire.

The servo uses 1-2ms pulses to rotate within 270 degrees. The servo can rotate 90 degrees on a

2ms pulse and -90 degrees on a 1ms pulse. For the servo’s operating voltage it takes 0.16 sec to

rotate at 5V and 0.14 sec at 6.8V. The servo will be operated at 6.8V as we want it to be able to

pluck as fast as possible with as little larceny. For the purpose of plucking the string we only

need to rotate within 30 degrees of motion. With a smaller range, the speed in which plucking

can occur is increased and doesn’t require multiple servos. The servo will be set up to rotate back

and forth to pluck the string to avoid having it rotate all the way around. It will oscillate back and

forth within the 30 degree range. The circuit layout can be seen in Figure 17 in Section 3.3.2.

4.3.3 User Interface
The user interface for the Assistive Bass Guitar was created with design goals that would

allow ease of use for the user. More specifically, the design needed to be created in order to

allow users with Muscular Dystrophy, those with limited motion within their extremities, to

readily play the instrument without difficulty. From this, a preliminary concept using a touch

screen interfaced using a bluetooth connected chip to the microprocessor was imagined. This

would allow the user to connect with the instrument wirelessly from a distance, with minimal

motion needed to press the required touch screen buttons to activate the proper notes. With this

59

in mind, the first step in the process was to acquire and program a bluetooth chip in order to

interface a secondary application to the electronic circuit created to play the instrument.

4.3.3.1 Bluetooth Connectivity

The bluetooth module ordered was an HC-06 bluetooth module. This chip was selected

due to its ideal low-distance communication of under 50 meters, along with its low-power mode

configuration. When acquired, the bluetooth chip was integrated into the solenoid electronic

circuit. Testing was done using basic circuit elements, like that of LEDs to test the functionality

of the short-range communication. A simple code was programmed to allow the connection of

the bluetooth chip to set the digital out pin 9 of the Arduino Nano to turn on the LED by setting

the Digital Out pin to a high state. This testing went as planned, and allowed for the next step in

the design process.

The HC-06 module transfers data at a 2.4 Ghz band and has a Baud rate set to 9600. To

find the sampling frequency, we will use the Baud rate and the number of integers we send over

the network which will allow us to get the speed at which the data is sent. The HC-06 transceiver

is connected to the VCC 5-volt operating pin of the Arduino, along with the GND pin of the

Arduino. Also, the Tx and Rx pins are connected to allow communication between the two

devices.

Figure 27: Connection of HC-06 Bluetooth module to an Arduino Mega

60

The figure above demonstrates the connections that are set up between the HC-06 and the

Bluetooth transceiver. The Vcc, or 5v source, is connected between the devices, along with the

GND pins on both. Also, the Tx and Rx pins on both devices are connected to each other, which

allows the transmitting and receiving of data between the devices.

4.3.3.2 Android Application

The next step involved creating an application to communicate with the bluetooth

module. To create the app, research was done to find an environment that would allow our team

to create a simple application in order to allow the user to press a button that would correlate to a

solenoid hitting a note on the bass guitar. This research led to the adoption of using the

environment MIT App Inventor, which is a programming environment that allows the creation of

a wide range of applications that can be connected to an arduino using bluetooth. Once this was

chosen to program the interface, preliminary code was created to test the functionality of the

application.

Since our team has limited experience in designing and creating mobile applications,

much research went into studying and learning the MIT App Inventor environment, with

multiple tutorials being completed in order to become familiarized with the process. From this,

the code to interface the app with the bluetooth chip was learned. From here, the next step in the

design process was undertaken. This involved creating buttons to correlate with each solenoid.

These buttons were programmed to each respective digital out pin from the Arduino, allowing

separate solenoids to be activated based on the button pressed. For testing purposes, one button

was programmed and connected through bluetooth commands within MIT App Inventor to test

functionality and feasibility.

61

Figure 28: Sample of Android Application code within MIT App Inventor IED

The figure above is a section of the code written using the MIT App Inventor to interface

an android application to the Arduino Mega using the bluetooth module. The code is repetitive in

nature, as each piece calls for a button press to correspond to sending a “digital high” or “digital

low” signal to the microprocessor.

For testing purposes, a button press would allow the solenoid to activate over bluetooth,

allowing latency tests between the app and the arduino to analyze the latency between the app

and the firing of the solenoids. This latency was problematic at first, as a significant delay was

found between the button press and the solenoid activating. To fix this issue, the program created

was re-organized to allow minimal use of delays within the Arduino code, along with setting the

delays to the lowest possible delay setting without causing activation issues with the solenoid.

This fixed the latency issues, and allowed the final stages of the app to be designed.

The final steps involved repeating the code to allow for all the solenoids to be activated

with a button press, with five buttons being programmed to correlate with the five different

solenoids. This was an easy process after the first button was programmed, as the code was just

repeated with each separate button within the MIT App Inventor. Once this was complete, the

aesthetics and functionality of the app was worked on to allow the user to easily be able to press

the buttons with minimal motion of their hands. This was done by increasing the button sizes and

spacing the buttons in a way that matches the shape of a hand. This allows limited motion from

the user, and also limits the room for error of a button press due to the increased size of the

62

buttons. Lastly, a dark theme was applied to the application mainly for aesthetic purposes to

allow the user to clearly see the buttons, with the text within the buttons that indicated the note

that button controls.

Figure 29: Snapshot of designer block of application

Figure 10 shown above is a preliminary version of the android application created for the

assistive bass guitar. A connect to device button is placed in order to connect the device to the

arduino using the HC-06 module. The open note button is used for tuning purposes, as the servo

will pluck the string in order to find the frequency of the string in its current state.

At the completion of the testing period of the application, an android tablet was acquired

to allow the app to be downloaded and installed. A Samsung Galaxy Tab E was used to

download and install the created application, and testing was done to make sure the application

fit the screen size of the tablet. MIT App Inventor has tools to auto-fit the application to the

connected device, along with screen-rotation tools, so not much programming needed to be done

in order to fit the bigger tablet display compared to that of the android phone previously used to

test the application. With the finished application running on the tablet, the next step in the

63

design process was to have a person with limited motion in their hands to test the design and

provide feedback to test whether the application created allows the user to easily control the

instrument through the mobile application.

4.3.4 Signal Analysis

To tune the string automatically, the small AC signal from the pick-up on the bass must

be amplified, biased, and filtered so that it can be read on an analog input pin of the Arduino

Uno. This signal must then be analyzed within the arduino code to determine the frequency of

the string. This data is then used to control the tuning hardware described in figure 11.

Figure 30: Ideal Tuning Block Diagram

64

The amplifier block consists of an inverting operational amplifier with negative feedback

and a DC biasing network to take the small AC signal at 0 V DC and convert it to a 2.5 V peak

signal at 2.5 V DC. It also contains a low-pass filter with a cut off frequency of 170 Hz. This is a

reasonable cut off frequency since the string of the bass guitar being used is A, of 55 Hz.

Figure 31: Signal Amplifier and Filter Circuit Schematic

This analog voltage signal, once within the 0 to 5 V range of the arduino, is fed to an

analog input pin. Within the arduino, this signal is analyzed for its frequency. This analysis is

conducted by sampling the signal at a specified sampling frequency given the equipment used.

The sampling conducts peak detection, meaning it detects the peaks of the signal. The algorithm

used to determine the frequency is called autocorrelation (see Appendix A for the source code

used). This means that the arduino creates a copy of a portion of the input signal to be analyzed,

and then measures the correlation between the two signals at the peaks by adding their

amplitudes. At correlated peaks, the sum of the amplitudes is very high. The arduino then moves

the copied signal by a determined period (determined by the sampling frequency) and at each

65

sample, sums the signals. It continues to do this until the entire portion is analyzed. The resulting

sum waveform contains periodic impulses created by the correlated peaks. The frequency of the

signal is then equal to the sampling frequency used divided by the period of these peaks

(Reliable Frequency Detection Using DSP Techniques).

Once the signal is analyzed for its frequency, this frequency is compared to the desired

frequency of the string, 55 Hz. Depending on the relationship between the measured frequency

and the desired frequency, the arduino communicates with the motor to turn the tuning peg in a

specified direction for a predetermined increment.

The arduino then commands the plucking servo to pluck again, and this signal analysis

process is repeated until the frequency is within the desired range.

4.3.5 Tuning Hardware
Tension Mechanism - The mechanical electrical design of the automatic tuning portion of

the project consists of two main components, a geared DC motor and a modified bass tuning peg.

The concept of tuning a bass guitar is contingent on one concept, holding tension and therefore

staying in tune. A regular bass guitar is capable of holding tune through the use of the worm gear

design of the tuning peg. Knowing this, we felt as though it was most logical to modify a typical

tuning peg, and adapt the gearset to be applied to the DC motor. The motor used was chosen for

its low speed (RPM) and high torque gearbox output. The motor alone could not be directly

matched to the tuning peg. Using a basic one-to-one motor shaft coupler, we were able to

directly connect the motor’s rotor to the shaft of the tuning peg where the butterfly knob would

typically be placed. In doing so there is a two part step down of the original DC motor’s output.

First through the designed gearbox on the end of the motor, and second through the step down

gear set of the worm gear. By combining the lockout properties of both pieces, there is no need

for constant power to the motor. Once the string is within tuned frequency, power can be

removed and the string will hold tension.

66

Motor Control - As described in the previous section on signal analysis, the motor is

controlled by the arduino uno. In order to allow the motor to turn in either direction, an H-bridge

is used. The H-bridge module in our design is a HiLetgo BTS7960 43A High Power Motor

Driver Module, as shown in Figure 13.

Figure 32 : H-bridge module schematic

An H-bridge is a circuit which switches the polarity of an applied voltage. They are often

used in applications to allow DC motors to run forwards and backwards. A basic representation

of an H-bridge is provided in Figure 14. When switch 1 and 4 are closed, the current flows

through the motor from left to right, and the motor will start spinning in one direction. If switch 2

and 3 are closed instead, current will flow through the motor from right to left and the motor will

spin in the opposite direction.

67

Figure 33: A basic H-bridge representation

The duty cycle of the PWM signal determines the speed of the motor, but we leave this at

50% duty cycle because we are not concerned with speed as we are determining the amount of

tuning by delays within the code and want the speed to stay constant. The code which the

arduino uses to control the motor is simple. If the frequency is lower than desired, the arduino

will send signals to the h-bridge which will cause the motor to turn forwards. If the frequency is

higher than desired, the arduino will send signals to the h-bridge which will cause the motor to

turn backwards (see Appendix B for preliminary source code).

68

4.3.6 Additional Design Features

Mechanical Design - The mechanical design of the project aimed to create an authentic

experience, allowing users to feel as in touch with the original instrument. For this reason an

actual bass guitar body and neck were used, in addition to primarily using as much wood in

construction as possible. Wood was also the ideal choice in the construction of the assistive

guitar as it allowed the team to easily construct the device and manipulate the design according

to our needs.

Platform - In order to host the electronics necessary for creating the assistive bass guitar,

a solid foundation for the bass and supporting components was necessary. A quality piece of

hardwood was used as a base for the entire system, allowing for proper mounting of the bass and

solenoids. Each solenoid received its own pedestal carefully spread out over the length of the

neck of the guitar. The solenoids were screwed using their proper mounting holes into the 1x4”

pedestals, which were subsequently attached to the base using small L-brackets.

Bass - The bass itself was attached to the base carefully by using a combination of cut

construction lumber, L-brackets, and screws. Two primary arms were attached to the hardwood

base. These acted as a guitar stand in which the bass guitar was permanently connected to.

Larger L-brackets were used between the arms and the base in order to ensure that the heavy

weight of the instrument would not result in any shifting or possible damage due to moving the

instrument. The only true modifications to the chosen bass guitar were the two sets of pilot holes

drilled in the back of the body, and the removal of the butterfly knob from the string tuning peg.

Looking at the project as a whole, the design is most similar to an exoskeleton for a bass guitar,

allowing a user to adapt most guitars within reason to the platform.

4.4 Summary

The section written above describes the approach and mindset of the team in designing

and creating the assistive bass guitar for those with muscular dystrophy. In our approach for the

project, we assigned each team member a different aspect of the project. These general sections

69

were the hardware inputs and outputs, software inputs and the user interface, signal analysis and

tuning hardware and mechanical design. Each member specializes in one of these sections,

however all team members worked on all aspects of the projects. This sectionalizing was mainly

for organizational purposes to make sure tasks and objectives were met in each part of this

project. Due to this, both the hardware, software, signal analysis and mechanical aspects of this

project were done in unison, as to progress the project in a timely manner.

5. Realization and Results

5.1 Finalized Design
 The final design of the prototype developed in parallel with the development of each

individual testing module of the project. Primarily, the design consists of a typical bass guitar

mounted horizontally along a base of perforated board. Constructed to hold the guitar upright, a

pine “guitar stand” is directly screwed and adhered to the project base using L-brackets and

heavy weight epoxy. Each of the five solenoids is epoxied directly to pedestals of pine, which are

upright and placed along the neck of the guitar. The tuning motor has a custom bracket built at a

90 degree angle which is directly screwed into the head of the guitar. Mounting for the plucking

servo was completed by mounting a custom 3-D printed box to the face of the guitar with wood

screws. Construction was completed using assorted hardware and heavyweight gorilla glue

epoxy.

5.1.1 Variations from Concept Design
During the initial brainstorming period the envisioned design of the project quickly

changed from a flat laying guitar approach to the horizontal upright project that the team

pursued. Major changes to the project occurred during the development of the individual testing

modules of the project. Major design changes were primarily in regards to the tuning motor and

servo. Initially it was thought that the motor itself would directly connect to the string of the

guitar, and there would be a direct mounting point to the base of the project. The team quickly

70

found that modifying a bass tuning peg was a far more realistic approach and allowed for directly

mounting the motor to the head of the guitar. The servo enclosure developed when the need for a

secure mounting position became a roadblock for the project, and self plucking was no longer

applicable to testing the project systems. Initially the team thought that the servo would be

placed on a pine pedestal such as the solenoids, but placing the enclosure directly on the guitar

allowed for a far more aesthetically pleasing look, and allowed for a far more predictable and

consistent plucking mechanism.

5.2 Testing Period

After the team finalized the overall design, and determined the plans of action in order to

implement each module of said design, the prototyping period of the process began. This stage of

the project included the building of both the electrical, mechanical and software portions of the

project. Each module was split into different groups, where each team member was assigned to a

different aspect of the design to help expedite the building and testing process. At every stage,

testing was done separately on each system to ensure the proper working of each system. At the

end of the testing period, each module was combined together in order to have a complete

working prototype assistive bass guitar. In the sections that follow, each area of the project is

described in depth regarding the testing and realization of the project and its coming to fruition.

5.2.1 Tuning Implementation

After much testing and configuration the guitar is now able to tune itself to a desired

note. We chose the A-String for the single string to be played as it offered a large range of notes

and was not too hard to tighten. As described in the methodology section, the string is plucked

and passed through a low pass filter to the arduino where it runs a function to determine the main

frequency of the signal. This filter can be seen in figure XXX. The filter was set to have a gain of

20 since the incoming signal of the guitar was about 150mV and we needed to make the signal

much larger to read it. The signal wave can be seen in the figure below.

71

Figure 34: Low Pass Filter Circuit

Figure 35: Input Signal vs. Output Signal

72

Since we are using an A-String we want it to be tuned to 55 hertz. The arduino will first

detect the initial frequency. If it is out of tune, it will first determine the frequency and turn the

motor attached to the tuning peg to either tighten or loosen the string. The motor was

programmed using different increments of time to get the string in tune. For example, if the

frequency detected is 40hz and our target frequency is 55hz, the motor will turn for 1.5 seconds

counterclockwise to tighten the string. The amounts of time for each frequency were determined

through multiple tests to find the correct string tension. The program is then set up to test the

strings frequency again to make sure it was correctly tuned. The times set for each frequency will

tune within two hertz however, some factors such as the string slipping may throw this off.

Therefore, it will continue to test the string until it is in tune. If it is already within two hertz of

the desired note it will not activate the motor and turn on an LED indicating that it has exited

tuning mode. Since the tuning is done before playing, time was not an issue to need the motor to

spin faster.

When plucking the string, we found that the signal became harder to isolate as the string

lost energy. This loss in energy makes the algorithm detect larger values since it is trying to

compensate for this change. Therefore, the code is set to filter out the outliers and only record the

main frequency. The guitar was also altered slightly to better detect the string’s pluck. The

guitar’s pickup was moved closer to the string and the string was lowered down so it would be

detected better.

5.2.2 Mechanical Work
Solenoids

The solenoids were adhered to pedestals placed along the neck of the guitar. Due to the

tapering of the guitar string from one end to the other, there is a variation of 3mm between the

pedestals to allow all five solenoids to hit approximately in the center of the string. The pedestals

are made of pine due to it being one of the best softwoods for construction. The solenoids are

very simply epoxied to the tops of the pine blocks, and the bottoms are connected using both

L-brackets and epoxy. Using L bracts ensures that the pedestals stand square to the neck of the

guitar. Each solenoid has a slightly modified neck consisting of larger hardware. Increasing the

73

cross-sectional area of the solenoids contact point allows for more even pressure being applied to

the string, and more tolerance in regards to the placement of the solenoids.

Figure 36: Solenoid Placement on Mounted Pedestals

Motor
The DC geared tuning motor is attached to the neck of the guitar using strictly metal

hardware. An L-bracket was used to create a 90 degree angle between a mounting bracket

consisting of the supplied motor mount and a strip of metal used as the base. The motor itself

connects to a modified bass guitar tuning peg with the butterfly knob removed. The coupler used

between both shafts is a 6mm solid motor couplers. The side which directly connects to the

tuning peg is milled out for 6.456mm and tapped through to accept M3 metric hardware. A lathe

was used for all milling to ensure that the solid coupler would provide a straight connection

between both shafts.

74

Figure 37: DC Geared Motor Mount

Servo
The metal geared servo required two major considerations, a mounting point and

necessary noise damping. An enclosure was custom made to allow for direct mounting to the

bass guitar. The enclosure was designed in solidworks, exported as an STL file and printed with

support material on a 3D printer. The design allows for 1/4in gaps on four of five sides of the

servo which were filled with high density sound damping foam. The 5th side had an 1/8 in gap

filled with foam. The servo itself had its metal arm slightly modified to accept a guitar pick on

the end. All hardware used on the servo was M3 metric hardware.

Figure 38: Solidworks File of Servo Enclosure

75

Figure 39: Printed Enclosure Mounted with Servo and Foam

Stands and Mounts

In order to mount the guitar, pine was cut to form a horizontal stand for the guitar. The

tops of the stands were cut to mimic the natural curves of the guitar for aesthetic reasons. In

order to mount the pine to the project base, large L-brackets were used. At the front of the guitar

two small blocks of pine ensure that the guitar sits upright at exactly 90 degrees. To mount the

guitar to the pine stands, 1 ¼ in wood screws were used to drill all the way through both bodies

of wood.

Figure 40: Pine Guitar Mounts

76

5.2.3 Circuitry

The design includes six main blocks: power switching, signal processing, motor driving,

bluetooth connection, solenoid driving, and servo driving. The more detailed blocks will be

explained in the following sections. Below is a top-level block diagram of the circuitry of this

project. It should be noted that the solenoid block in the top level diagram is multiplied by the 5

solenoids of the design.

Figure 41: Top Level Block Diagram of Circuitry

Filter

The filter block of our design contains an active low-pass filter with a gain of 20 and a

cut-off frequency of 170 Hz as it is intended to take a 150 mV peak input signal from the bass

pick-ups and output a filtered signal ranging from 0 to 5V. A diagram of the filter circuit used is

provided in the signal analysis portion of the methodology section of this paper as Figure 33. We

measured the internal source resistance of the pickup and modeled it by a 10 kΩ resistor.

The operational amplifier used in this block is the OPA344P by Texas Instruments and

has the following simplified block diagram.

77

Figure 42: Operational Amplifier Block Diagram, OPA344P [33]

In the implementation of this op-amp, we use the five volt rail supplied by the buck

converter module as V+ and ground as V-. Our non-inverting input is the raw signal from the

pick-ups of the bass guitar and our inverting input utilizes a voltage divider to pull the output

signal above ground and set the DC voltage reference to 2.5 volts. The use of the 200 kΩ and 10

kΩ resistors creates negative feedback which sets the closed loop gain of the op-amp to 20.

Closed Loop Gain = 0Av = V in

V out = −
Rf

Rin
= − 10 kΩ

200 kΩ = − 2

We don’t mind that the signal is inverted since this doesn’t affect the frequency of the

signal, which is the focus of our signal analysis. The 4.7 nF capacitor in the negative feedback

circuit sets the cut-off frequency to 170 Hz.

Cutoff Frequency = → C = 70 Hzf c = 1
2πRC = 1 = 1

2π(200 kΩ) C .7 nF1
2π(200 kΩ)(170 Hz) = 4

The resulting success of this circuit is shown in Section 4.2.1.

78

Power Switching

The majority of our circuitry is powered by five volts, so we employ a buck-converter

module to step down a twelve volt supply and create a five volt rail. The module we use is part

number 106990003 from Seeed Technology Co., Ltd. The module utilizes the LM2596

Step-Down Voltage Regulator from Texas Instruments. A schematic of the LM2596 is shown

below.

Figure 43: Step-Down Voltage Regulator Block Diagram, LM2596 [30]

The module follows the adjustable output application of this chip, as provided below by

Texas Instruments. Using the potentiometer located on the module (shown below as R2), we set

the output voltage value to be 5 V.

79

Figure 44: Step-Down Voltage Regulator, LM2596 Adjustable Output Application [30]

Motor

In order to control the direction of the DC motor in our tuning block, we utilize a motor

driver module. This module, its connections to the motor, and its connections to the Arduino are

provided below.

Figure 45: Motor Control Diagram

Our team utilized a HiLetgo BTS7960 motor driver module to drive the tuning motor.

80

The schematic of the motor driver module is provided below:

Figure 46: Motor Driver Module Schematic [31]

In the motor driver module schematic above, VCC is five volts and the second header is

supplying twelve volts. The two components titled BTN7970 are each PN half bridges created by

Infineon. The block diagram of one half bridge is shown below.

Figure 47: Infineon BTN7970 PN Half Bridge Block Diagram [32]

81

Bluetooth

The HC-06 bluetooth module is powered by six volts. The connection between the

Arduino and the HC-06 bluetooth module is outlined below.

Figure 48: Bluetooth Module Schematic

The HC-06 uses 3.3 V logic, but the Arduino uses 5 V logic. Because of this, a voltage

divider is used between the transmit of the Arduino and the receive of the bluetooth to step the 5

V logic down to 3.3 V.

 5 V) .3 VV out = V in
R2

R + R1 2
= ((4.12 kΩ)

(2.2 kΩ) + (4.12 kΩ) = 3

Servo

The plucking mechanism of our system consists of a servo motor which is powered by

our five volt rail and is connected to the Arduino through a digital pin for controlling purposes. A

schematic of this block is provided below.

Figure 49: Servo Schematic

82

Solenoids

The fretting of the string is executed by five push-pull solenoids, one for each fret of our

design. Each of these solenoids is controlled through the gate of a MOSFET connected to a

digital pin on the Arduino with a diode connecting the source to the twelve volt supply. This

ensures voltage only flows into the positive bank to account for kickback from the solenoid when

it turns off. One of these circuits is outlined below, as each solenoid block is equivalent.

Figure 50: Single Solenoid Schematic

5.2.4 Mobile Application

As stated in the background section, we utilized MIT App inventor to design and create a

mobile application to control the guitar through the use of an android tablet. The app was

designed to send a string data type to the arduino via bluetooth to control a digital logic output to

each of the guitar’s components. The program was very versatile in that it was able to operate

with the bluetooth client of our chip, matching its baud rate automatically to communicate. The

app was run off of a server that transmitted data to our tablet in real time. We were able to edit

the app without needing to start a new session each time. When we were satisfied with the final

product it allowed us to change it into a stand alone app that would work separately from its

server.

83

The app was set up to have multiple buttons for guitar control having a button for each of

the five frets, one to play an open note and one button to tune the guitar. The implementation of

the buttons was very straightforward using block like coding to program each one. The coding

format for the app can be seen in figure 54. Each block was set up to send a string to the arduino.

The arduino utilized the loop() function to continually check incoming strings and compare them

to carry out its various functions. For example if the user wanted to press down on the first fret,

they would press the “Fret1” button and the arduino would send a string value of “2on” to be

compared within the code. (“2on” was used instead of “1on” since the 2 indicates the digital I/O

pin number that controls the first fret) There were the additions of other buttons for testing

purposes such as direct control of the motor to be able to put the string out of tune.

Figure 51: Bluetooth Set up and Fret Control Code

Overall MIT app inventor was very useful in the creation of a mobile application. It saved

a lot of time in programming as we did not have to do larger amounts of coding by ourselves.

The use of a mobile application also saved a lot of time by using digital inputs rather than

84

analog. Previous MQPs used force sensitive resistors and buttons for inputs. The ability to add

and remove buttons on the fly rather than replacing physical components allowed for faster

testing and more versatility to the functionality of our project.

5.2.5 Sound Testing

An important aspect during the testing period of the finalized design was the output

sound produced from the mechanical actuators manipulating the guitar, along with the output

sound from the connected amplifier. Once all the electrical and mechanical portions of the design

were implemented together, the output quality began to be an important part of the testing

process. This includes the control of the output noise from the bass amplifier, and the

minimization of extraneous noises coming from the actuators, like that of the firing of the

solenoids and the turning of the plucking servo.

5.2.5.1 Sound Dampening

In order to reduce the amount of mechanical noise from the added electrical components

on the bass guitar, research and testing periods were conducted in the field of material science,

where certain mechanical properties of materials were researched. In general, this project

requires materials that have good acoustical dampening properties, where the material handles

and stores acoustical vibrations well, which means the sound cannot travel as far.

The servo module produces a lot of high-pitched noise from the turning of the small

plastic gears within its enclosed gearbox. Intrinsically, small servos produce a lot of excess

sound due to this, so a sound dampening method needs to be implemented in order to reduce the

noise the servo produces. From this, tests were done with extra plastic and foam pieces within

our NECAMSID lab, where the foam would be placed around the servo to see the effect. The

team discovered that a foam cover securely placed around the servo module would cause a

significant decrease in the high-pitch noise. From this, a 3D printed module of a servo case was

created using Solidworks to allow foam to be placed around the servo, all while the servo is

mounted to the guitar itself. The Solidworks design is shown above in figure 40

85

After this was accomplished, multiple tests were conducted to see if the sound emitted

from the new encompassed servo was reduced. The results were very positive, as the servo gear

sounds were reduced, however vibrations still were allowed to be transferred through mechanical

connections to the guitar itself. Due to this, a sound-dampening vinyl, a very dense material, was

attached to the servo itself to help reduce this transfer of vibrations. After this, the servo was

re-attached to the bass guitar and the testing period began for the final servo testing. After the

sound-dampening material of both the foam and the dense vinyl material were added to the servo

module, along with the 3D printed enclosed servo case, the high-pitched noise from the servo

was successfully reduced.

Figure 52: Sound-dampening foam material

Another area where sound-dampening was needed is with the solenoids. The activation of

the solenoid itself is relatively quiet, however the metal solenoid tip striking the bass string

created a loud noise that needed to be reduced. The striking of the solenoid on the bass string

also causes a vibration in the string that was unforeseen and needed to be addressed. When the

solenoid retracts, there is a metallic striking sound that is caused by the retraction of the metal

plunger of the solenoid into its case.

To help reduce the excess noise interference created by the solenoids, many intuitive and

simple methods were first tested and employed. First, the string of the bass guitar itself was

raised higher from the neck of the bass guitar. This was done by using an Allen key set to raise

the height of the string, which can be manually changed with a mechanism on the bottom of the

86

bass guitar. This simple change helped to reduce the unwanted vibration after contact as the

string was no longer vibrating of the lower frets. The next simple fix was adding a small rubber

o-ring to the very end of the solenoid. This does two things. The first is the small o-ring limits

the retraction of the solenoid by a very small length. Second, the rubber piece acts as an insulator

between the two metal contact points which absorbs some of the vibration and sound that would

otherwise cause a loud metallic clicking noise. Once these two simple additions were made, the

solenoids already operated at a quieter level.

However, the striking of the metal solenoid tip onto the bass string still needed further

testing. To do this, the team used the material science application CES EduPack, which is a

database of a wide variety of materials that allows the user to test for differing material

properties to see which material is best suited for a certain application. For our application,

research went into the type of material needed that would best mimic a human finger stringing a

bass string. For this, the material properties of Compression Strength, Hardness and Fracture

Toughness were found to be the most important. Compression Strength is the yield strength in

compression, meaning the elasticity of the material. For our purposes, a lower limit is ideal to

have a more elastic material. Hardness is a material's overall strength. Our material does not have

to be extremely strong, however it needs to be pliable enough to absorb sound vibrations. Lastly,

Fracture Toughness is how durable the material is over time. This is an important quality, as this

specific material will be utilized repeatedly on multiple solenoid strikes. With this information,

values were inserted into Stage 1 of the program which sets parameters for selection of materials.

This sorts and limits certain materials from passing the selection process. Next, a graph was

created of a Price per density versus hardness to visualize the materials that fit the qualifications.

The graph is shown below.

87

Figure 53: Price/Density vs. Hardness Limiting Graph

From the graph created, eight (8) different materials were limitedely selected to fit our

material qualifications. The oval shapes represent a certain material, with the color representing

the sub-group material type. The teal color group represents Elastomers, and the Blue color

group represents Polymers. From here we tested multiple materials based on how available the

product would be to use, with price and usability being the major factors. From this, were tested

multiple materials that were readily available for usage.

At the end of testing, the team decided to use Polyurethane, which has the highest

hardness out of all the selected materials. We chose this due to its low price point, along with its

availability. The material chosen is shown below.

88

Figure 54: Polyurethane material bumpers for Solenoid Tips

The material shown above was then added to the solenoids and tested with the overall

system. The solenoids were each individually fired onto the bass string, testing whether the

sound was dampened and reduced due to the added material. The implementation onto the

solenoid is shown below:

Figure 55: Polyurethane material bumpers for Solenoid Tips

89

Looking at the above figure, the Polyurethane elastomer material was added to the top of the

solenoid. To increase the surface area of the striking material onto the solenoid to accommodate

the material, two washer pieces were added to the solenoid piston, with the material placed on

top. This allows an increased area for the solenoid to hit the bass string, which ensures a proper

hold onto the string itself to help reduce vibrations. As can be seen as well, the o-ring mentioned

previously can be seen in this picture, which helps to reduce the retraction noise of the solenoid.

With all of these additions and sound-dampening techniques tested, the solenoids actuated more

quietly, successfully ending the testing period of the sound-proffing period of the project.

5.2.5.2 Sound Amplification

The final output sound of the bass guitar was the last testing step in the process of

combining the overall assistive bass module. This was due to the fact that minimal work was

needed to be done in order to properly amplify the output sound of the bass guitar to produce the

desired sound output. To acquire the required sound, the same output from the guitar that is

inputted into the active low pass filter circuit is also inputted into a bass amplifier. This was

accomplished by splicing the bass wire to allow a connection to both the low-pass filter and the

bass amplifier simultaneously. The team had access to a spare bass amplifier that was provided

by one of the team members, and also had spare bass amplifier wires that were purchased earlier

within the project period. From here, the first test was to make sure the desired sound came from

the bass amplifier with normal playing of the bass. From there, the overall system was tested

with the added assistive components. This testing period went smoothly and as expected, as all

other modules were previously tested. Lastly, a bass amplifier was purchased as the final portion

of the project period. This bass amplifier is shown below.

90

Figure 56: Purchased Bass Amplifier

5.2.6 Combined Module Testing

In order to test each block of our design as we made changes and worked towards our

final design, we breadboarded each block and combined them to create a working testing system.

The breadboarded test setups described in this section follow the circuit schematics outlined in

Section 4.2.3.

Filter

The filter test setup is shown below. The top rail is the twelve volt supply rail while the

bottom rail is the five volt supply rail. The active low pass filter utilizes a combination of resistor

and capacitor values to achieve a cutt-off frequency of 170 Hz.

91

Figure 57: Filter test setup

Power Switching

An image of the buck converter module and its test setup is provided below. In this

image, the top rail is connected to the twelve volt supply while the bottom rail is the new five

volt supply created by the buck. This buck module allows the breadboard to supply two different

voltage levels for the device. The 12V supply (top rail) powers the motor, solenoid and Arduino

Mega, while the 5V supply (bottom rail) powers the bluetooth module and H-bridge module for

the motor.

Figure 58: Buck Converter Test Setup

92

Motor

The breadboard test setup for the motor driver module is shown below. The motor is

connected to the H-bridge module which is digitally controlled by the Arduino.

Figure 59: Motor driver test setup

Bluetooth

The breadboard test setup for the bluetooth module is provided below. The blue wires

connect from the transmit and receive pins of the bluetooth module to the receive and transmit

pins of the Arduino (not shown). A simple voltage divider using that utilizes a ⅔ ratio divides the

5 V from the digital pins of the Arduino to a 3.3 V operating voltage for the Bluetooth HC-06

module.

93

Figure 60: Bluetooth Breadboard Test Setup

Solenoids

Lasty, the five solenoid testing blocks are breadboarded as shown below. The LEDs were

used in place of the solenoids for easy visualization of progress during testing. When a test

button on the working mobile application is pressed, for example if “LED 1” is pressed, then a

signal of “1on” is sent to the arduino, which sends a digital high signal to turn the first LED on.

Figure 61: Solenoid Test Circuit using LEDs

94

PCB

Once our breadboard setup was functioning, we created a printed circuit board (PCB)

using the Altium Designer PCB design software and had it printed at OSHPARK. The PCB is a

two-layer board with a ground layer and another layer for both the five and twelve volt traces.

Most footprints were downloaded from UltraLibrarian, except for the buck converter which was

discontinued. Some footprints required simple edits, for example the MOSFET footprints found

on UltraLibrarian had incorrect order of the terminals. Other than these few issues, the schematic

and footprint creation portion of the PCB design was simple. As for the traces, the five volt

traces do not require much current to flow through them, so we made them 40 mil wide. The

only part which required a significant amount of current was the input header for the twelve volt

supply, the traces between the twelve volt supply and the buck converter, and the twelve volt

traces powering the solenoids. As for the input header, we wanted to use the same header pins

for everything for a simple design, so we doubled the header pins for the twelve volt supply in

order to double the current capability from three amps to six amps. These header pins have a

pitch of 2.54 mm to match the pitch of the Arduino header pins. The traces carrying the twelve

volt signal have a width of 140 mil to ensure proper current capabilities for the design. An image

of the PCB layout in Altium is provided below.

95

Figure 62: PCB Layout in Altium Designer

An image of the final soldered PCB is provided below.

96

Figure 63: Final Soldered PCB

5.2.7 Overall Implementation Overview

For the project, testing was accomplished for each module separately to allow for

multiple stages to be tested simultaneously. For example, testing on the MOSFET power

switching to turn on the Solenoids was done in tandem with the motor mounting portion of the

encoded motor to the head of the neck of the bass guitar. Due to this, the final portion of the

design came together piece by piece, with the end of the testing period allowing the merger of all

the modules together to create the overall prototyped design module.

The overall implementation mainly required the combination of the electrical portion

with the mechanical portion. This entailed connecting the electrical circuits of the power

97

switching, filtering and bluetooth connections, to that of the physical mechanical structure of the

bass guitar. Once this was accomplished, the final prototype for the assistive bass guitar was

completed. Our design consisted of a bass guitar mounted upright onto a wood frame. Wood

connectors were used and screwed into both the bass guitar itself and the bottom wood frame to

keep the bass guitar upright and sturdy. The encoded motor had a mount specially fabricated to

allow the connection of the motor, through a coupler, to the worm gear of the tuning pegs of the

bass guitar. The servo was attached with the enclosed sound-proof case to the base of the guitar

to allow the plucking of the bass strings. Solenoid mounts were created out of wood blocks,

which were measured to take into account the height at which the solenoids needed to be in order

to strike the bass string. Epoxy was then used to secure the solenoids to their respective mounts.

Each one of these mounted components has an electrical wire connection to another

module, all of which have been fastened to the wood base. The created printed circuit board

(PCB), was fastened to the wood base of the mount, to which the solenoid and servo connections

route. The motor is connected to an H-bridge module, which is fastened next to the PCB. Lastly,

the Arduino Mega microprocessor is also fastened next to the PCB in a way to reduce wire

connections between the bass guitar and the electrical components. A bass amplifier has a

connection from the output of the bass guitar that allows the final output sound to be played. All

of these modules were created and tested separately in order to facilitate processes, and

combined post-testing to create the finalized design. To use and play the assistive bass guitar, an

android tablet is used to connect to the assistive bass guitar through the use of an app called

“Bitar’s Guitar” downloaded on the tablet device.

98

6. Discussion

6.1 Achievements

At the conclusion of the project, the team was successful in bringing to fruition the design

concept detailed at the start of the prototyping process. From this, the team based the amount of

success achieved in the completion of the project to the amount of delivered design objectives

and goals. The objectives and goals for this project are outlined in the Methodology section in

sections prior in this research paper, and outlined the goals that the project intended to fulfill.

This objectives were as follows:

- Wireless Application

- Automatic Tuning

- Clean Output Sound and Signal

- Ease of use

At the project's conclusion, the team has successfully implemented all the objectives that

were outlined, and all the intended goals were achieved. The wireless application was

implemented with the use of a bluetooth enabled module connected to the Arduino Mega, which

allowed the communication between the user interface and the assistive bass guitar. The user

interface to play the bass guitar was implemented with the application builder MIT App

Inventor. The user interface provides touchscreen buttons that correlate with playing frets and

notes on the bass guitar, and also allows the user to tune the device before initial usage.

The automatic tuning provides the user the ability to adjust the bass string in order to

have the string be in tune. The single string design of the device uses the ‘A’ string, which is

considered in tune at 55 Hz. The tuning software created, along with the mechanically mounted

encoded motor, work together in order to tune the string within +- 2 Hz of this ideal frequency.

99

The achievement in a clean output sound did not just involve the addition of an amplifier

to the output of the bass guitar, but also with the success in sound-dampening materials and

designs implemented by the team which allowed for the reduction of extraneous noise from the

added electro-mechanical components. Research was done on materials and material properties

in order to find suitable methods to help absorb excess sound vibrations from the solenoids, sero

and motor. Without the addition of these sound-proofing methods, unwanted vibrations would

have caused a rather noisy output sound.

The last objective that the team set for the completion of the project was the usability of

the device for those with Muscular Dystrophy. In order to accomplish this, the successful

implementation of a touch screen tablet design was used in order to place the buttons in a way to

easily mimic that of a person’s hand placement. This allows those, not only with MD, but all to

easily play the assistive bass guitar.

6.2 Shortcomings

6.2.1 Mobile App

One shortcoming of the app was the inability to transmit the serial monitor of the arduino

to the app screen. We wanted to be able to see any transmitted information from the arduino on

the screen of the tablet without the need of a computer. We were unable to send the information

correctly as the data would not transmit correctly and resulted in errors. We determined that this

was not necessary for the project and focused efforts elsewhere to keep on schedule.

The other shortcoming of this app was that it was very difficult to design a nice UI. It had

a rigid autoplace grid and was non intuitive when placing buttons and text boxes. We were able

to make a decent UI but were disappointed in its lack of designability.

6.2.2 Solenoids

A shortcoming of the solenoids is that it can only be used in a binary sense. This means

that it can only be in two states, extended or retracted. We wanted to mimic a human finger

100

pressing down on the string as closely as possible. However, the solenoid is a little more forceful

than a human finger, firing off instantly rather than a slower press. The instantaneous contact

with the string would cause it to vibrate making it harder to get a clean sound from the guitar.

We were able to negate some of this by using rubber tips on the ends to dampen the vibration.

The solenoids also presented the challenge of not allowing the use of every fret. Due to

budget constraints and design time we were only able to apply solenoids to five of the twenty

four frets on the neck of the guitar. We would have liked to be able to play a larger range of

notes, however the five we chose offer a wide enough range to play. Though it is not as good as a

regular finger it still works well as an alternative.

6.2.3 Tuning Implementation

Some shortcomings of the tuner is that we were unable to move the motor using units

other than time. This meant that we would need to write several switch case statements to

account for the full range of the string. Each case accounted for a range of two hertz. Overall it

worked very well to get within two hertz of the targeted fifty five hertz. We would have liked to

correlate each frequency to a bit value to more accurately and reliably tune to a specific

frequency. Unfortunately, we could not account for small amounts of motor and string slippage

while tuning, instead using time to turn the motor proved very effective in the end and we are

happy with the result.

6.3 Impact for Assistive Technology

The project had a focus to allow those with Muscular Dystrophy the opportunity to

continue their love for arts with an assistive device. This device is that of an assistive bass guitar

that will allow those with limited movement in their hands to play a guitar-type acoustical

instrument. While the main focus for the team was specifically MD affected people, the device

has the overreaching potential to a broader array of people that have afflictions causing limited

motion within their hands. For example, stroke victims have a similar loss of muscular function

within their extremities, meaning this device has the potential to allow stroke victims the

101

opportunity as well to continue with their desire to play instruments. This project has the

potential to be expanded for more strings and a larger variety of instruments.

6.4 Manufacturing and Costs Evaluation

The prototype designed throughout this MQP relied heavily on custom manufacturing

techniques and manual design work that is relatively hard to quantify. The major area of concern

is costs involved in custom woodworking, and materials used. Realistically, the team

understands that the full production of the project would most likely require material changes.

While wood was used for the primary construction of the project, in order to feasibly pursue

production, a more suitable material like metal or acrylic would make the most sense from a

manufacturing standpoint. Major manufacturing challenges the team faced while using wood

were primarily regarding tolerance. While wood is easily used for construction, wood stock is

not always “perfect” in nature. Additionally, the project required multiple custom fabricated

pieces, such as the collar between the tuning motor and bass tuning peg. While parts of this

nature were easily manufactured with time and persistence using the teams resources at WPI,

quantifying what their cost to build in an industrial setting is difficult without further research

into the manufacturing requirements. The quantifiable costs of the project prototype can be seen

below in the overall bill of materials.

102

Part Price Per Unit No. of Units Total Costs Total Project Cost

1/4 W Resistors $0.02 5 $0.10
$318.64

1N4004 Diode $0.19 5 $0.95

Arduino Mega $35.00 1 $35.00

Bluetooth Module $7.99 1 $7.99

Buck Boost Converter $1.50 1 $1.50

Capacitor $0.29 1 $0.29

Guitar Cord $3.99 1 $3.99

H-Bridge $13.49 1 $13.49

IRFZ44Z Mosfet $0.91 10 $9.10

Metal Gear Servo $17.95 1 $17.95

Misc Hardware and
Wood $20.00 1 $20.00

Motor shaft coupler $4.25 1 $4.25

OP 344P Op-Amp $1.50 1 $1.50

Rubber Solenoid Tips $0.09 5 $0.45

Servo Enclosure $4.30 1 $4.30

Solenoids $18.95 5 $94.75

Sound Damping Foam $9.99 1 $9.99

Tuning Motor $32.00 1 $32.00

Used Bass Guitar $40.00 1 $40.00

Vinyl $12.55 1 $12.55

Wires $8.49 1 $8.49

Figure 64: Bill of Materials

Major areas of consideration for the further production of the project would require a

standardized guitar of use. This would simplify the large scale manufacturing of the supporting

mechanical design and create a more realistic approximation of the total costs involved with this

project. The 3D printed servo enclosure would be supplemented with a suitable ABS plastic

103

alternative produced in large quantities, bringing the overall manufacturing of the part to cents

rather than dollars.

6.5 Limitations

Overall, the design proposed by this report was successful in meeting its objectives but

there is room for improvement in certain areas. The team encountered a few limitations in the

design and actualization of this project in areas such as app-development, mechanical design,

and resource shortages.

Our team lacked members with strong experience in computer science and mechanical

engineering, as our team was composed of all electrical and computer engineering students. If we

had more of a background in computer science, our application design would have been able to

follow a more advanced design. Also, if we had more of a background in mechanical

engineering, aspects such as sound dampening and structural design could have improved.

Another limitation on the team in the design of this project was a shortage of time and

financial resources. With more time, the team could have invested more attention on the

improvement of all aspects of the design including the user application and the aesthetics of the

final product. With access to more financial resources, more solenoids could be purchased for a

wider range of available notes.

6.6 Future Work

6.6.1 Real-time Tuning

Originally, the team wanted to implement a method to allow the string to automatically

tune the string in real time. This would entail that the output signal from the bass guitar would

need to be constantly checked through the peak-detection software, which would send an

encoded position for the motor to move to in order to re-tune the string to the proper frequency.

The problem with this design is that it requires an extreme amount of mechanical movement

from the motor, which would be extremely loud and unreasonable to implement. Initial attempts

104

were made at implementing this design, however many issues arised with latency and

mechanical error. The motor could not tune fast enough in order to play a melody with only one

strum.

During the design period of the project, the team met with Professor Scott Barton of arts,

communications and humanities at Worcester Polytechnic Institute. Barton has experience in

working with self-playing instruments and self-playing guitars, and provided the team with

insight into methods that would be beneficial to the assistive bass guitar. He mentioned that the

issue of real time tuning has been an ongoing problem, and is extremely complicated to

implement. For this reason, and our issues at implementation, the team decided to instead tune

the bass guitar prior to playing, and use multiple frets and solenoids to implement note playing.

A future implementation of this project has the potential to focus just on this problem, as its

implementation is a complex problem enough in itself to be a long-term project.

6.6.2 Professional Mobile Application

The team implemented its mobile application using the software MIT App Inventor. This

application is a very basic app builder that does not allow much manipulation of the interface,

making the interface not as usable as initially desired. The team lacked experience in the field of

Computer Science and app development, meaning we had to resort to using a simpler app builder

environment in order to deliver a mobile experience. In future implementations of this project, a

new application for the user interface between the user and the guitar would allow a better

overall experience for the user. The team recommends that Computer Science majors, or those

with a more in-depth computer science background, implement an application for the user

interface that allows for a more complex design. This would allow for an interface that would

make the user more readily able to touch the different buttons that correlate to a note being

played on the guitar. Also, a more in-depth application would allow for a more professional

looking application as well, where more artistic freedom can be implemented.

105

6.6.3 Hammering and Strumming Actuators

Another area where the team believes there is room for improvement is the way in which

the bass guitar is played. The team decided, through research and conversations with an

experienced professor in the field of robotic acoustical instruments, that a combination of

solenoids and servos was the best course of action in order to play the bass guitar remotely. The

solenoids are best used for the hammering operation as they provide a linear force directly onto

the string, while also being relatively quiet and fast. A servo, while having a high-pitched noise

due to the gearing, provides an effective plucking mechanic that is easy to program. However,

the team ran across some issues with using these devices to play the bass guitar.

With the solenoids, the team originally had intentions of using smaller 10 N rated

solenoids, however after multiple tests realized that the force required to push down on the string

is much greater. This caused the team to pivot, and purchase much larger solenoids that have a

25 N rating force. These solenoids are much louder as well, making the noise interference

problem much harder. A similar issue occured with the servo, as original intentions were to use a

smaller servo that would fit more easily on the bass guitar. Instead, a much larger servo needed

to be purchased to have enough force to pluck the bass string. Due to these issues, future

renditions of this project have the potential to research and test new methods of playing the bass

guitar. One idea that the team has is to use a stepper motor in place of the servo. A stepper motor

would provide a more accurate and timely pluck of the string, while also providing quiet

operation. Also, instead of using multiple solenoids mounted on the base of the device, a track

system could be implemented to have only one type of actuator push down on the string. These

and other ideas have the potential to improve the functionality and play style of the assistive bass

guitar.

106

7. Conclusion
The design of the Assistive Bass Guitar was an overall success. The four objectives

outlined in Section 4.1 were met. The design is wireless, using a bluetooth module, so that the

user can comfortably control the instrument from the tablet. The design also succeeds in

automatic tuning through the use of an algorithm which employs autocorrelation. The third

objective, that the design produce a clean output sound, was met through the use of sound

dampening materials in the solenoids and servo motor. Lastly, the tablet application is easy to

use and allows all available notes to be reached. Although the objectives were met, the latter

objective (ease of use) could be improved by physically testing the design with people affected

by Muscular Dystrophy. Also with a higher budget, more solenoids could be used to reach more

frets. Overall, as a proof of concept, this design is a success and with some future work, it could

have a positive impact.

107

Appendix A

#include <Servo.h>
#define LENGTH 512

//solenoid pin selection
int led1 = 2;
int led2 = 3;
int led3 = 4;
int led4 = 7;
int led5 = 6;
int tune_led = 44;

//servo pin selection
int servo1 = 9;
//integer for servo starting position out of 360 degrees
int servpos = 40;
Servo myservo;
int tx = 1;
int rx = 0;
char inSerial[15];

//frequency detection declarations
byte rawData[LENGTH];
int count;

//motor control
int mleft = 10;
int mright = 13;

// Sample Frequency in kHz
const float sample_freq = 8919;
int Afreq = 55;
int freqSum;

int len = sizeof(rawData);
int i, k, a;
long sum, sum_old;
int thresh = 0;

108

float freq_per = 0;
float avg_freq = 0;
int nums = 0;
float main_freq = 0;
byte pd_state = 0;

void setup() {
 Serial.begin(9600);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 pinMode(led3, OUTPUT);
 pinMode(led4, OUTPUT);
 pinMode(led5, OUTPUT);
 pinMode(tune_led, OUTPUT);

 pinMode(tx, OUTPUT);
 pinMode(rx, INPUT);

 pinMode(mright, OUTPUT); //setup H-bridge control pins at outputs
 pinMode(mleft, OUTPUT);

 pinMode(servo1, OUTPUT);
 myservo.write(servpos);

 analogRead(A1);
 count = 0;
 allpinslow();

}
void loop() {
 int i = 0;
 int m = 0;
 delay(60);
 if (Serial.available() > 0) {
 while (Serial.available() > 0) {
 inSerial[i] = Serial.read();
 i++;

109

 }
 inSerial[i] = '\0';
 Check_Protocol(inSerial);
 }
}

void allpinslow()
{
 digitalWrite(led1, HIGH);
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 digitalWrite(led2, LOW);
 digitalWrite(led3, HIGH);
 digitalWrite(led3, LOW);
 digitalWrite(led4, HIGH);
 digitalWrite(led4, LOW);
 digitalWrite(led5, HIGH);
 digitalWrite(led5, LOW);

}

void damp() {

 digitalWrite(led3, HIGH);
 delay(2000);
 digitalWrite(led3, LOW);

}
void servo(){
 myservo.attach(servo1);
 servpos = servpos + (servpos * -2);
 myservo.write(servpos);
 delay(100);
 myservo.detach();
}

void detect_frequency()
{
 Serial.begin(115200);

110

 for (a = 0; a < 5000; a++) {
 //Serial.println(a);

 if (count < LENGTH) {

 count++;
 rawData[count] = analogRead(A1) >> 2; //shifts datat by 2 to fit 10bit ADC rading into 8 bit
byte
 if (a == 1000) {

 servo();
 }
 }
 else {

 sum = 0;
 pd_state = 0;
 int period = 0;
 for (i = 0; i < len; i++)
 {
 // Autocorrelation
 sum_old = sum;
 sum = 0;
 for (k = 0; k < len - i; k++)
 sum += (rawData[k] - 128) * (rawData[k + i] - 128) / 256;

 // Serial.println(sum);

 // Peak Detect State Machine

 //pd_state = 2
 if (pd_state == 2 && (sum - sum_old) <= 0)
 {
 period = i;
 pd_state = 3;
 }
 //pd_state = 1
 if (pd_state == 1 && (sum > thresh) && (sum - sum_old) > 0) pd_state = 2;

 //pd_state = 0
 if (!i) {

111

 thresh = sum * 0.5;
 pd_state = 1;
 }
 }
 // for(i=0; i < len; i++) Serial.println(rawData[i]);

 // Frequency identified in Hz
 //pd_state = 3
 if (thresh > 100) {
 freq_per = sample_freq / period;
 if ((period != 0) && (freq_per < 80)) {

 main_freq = freq_per;
 delay(10);
 Serial.println(main_freq);

 }

 }
 count = 0;
 }
 }
 //main_freq = avg_freq/nums;
}

void tune_string() {
 freqSum = Afreq + main_freq;
 //Serial.println(freqSum);

 switch (freqSum) {
 case 90 ... 94: //frequency detected is between 35 and 39 Hz
 digitalWrite(mleft, HIGH);
 digitalWrite(mright, LOW);
 delay(2000); //turn motor clockwise to increase frequency for 5 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 95 ... 97: //frequency detected is between 40 and 42 Hz
 digitalWrite(mleft, HIGH);

112

 digitalWrite(mright, LOW);
 delay(1500); //turn motor clockwise to increase frequency for 5 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 98 ... 100: //frequency detected is between 43 and 45 Hz
 digitalWrite(mleft, HIGH);
 digitalWrite(mright, LOW);
 delay(1250); //turn motor clockwise to increase frequency for 5 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 101 ... 103: //frequency detected is between 46 and 48 Hz
 digitalWrite(mleft, HIGH);
 digitalWrite(mright, LOW);
 delay(1000); //turn motor clockwise to increase frequency for 5 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 104 ... 107: //frequency detected is between 49 and 52 Hz
 digitalWrite(mleft, HIGH);
 digitalWrite(mright, LOW);
 delay(750); //turn motor clockwise to increase frequency for 1 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 108 ... 112: //frequency detected is between 53 and 57 Hz
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 113 ... 115: //frequency detected is between 58 and 60 Hz
 digitalWrite(mleft, LOW);

113

 digitalWrite(mright, HIGH);
 delay(500); //turn motor counterclockwise to decrease frequency for 1 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 116 ... 118: //frequency detected is between 58 and 60 Hz
 digitalWrite(mleft, LOW);
 digitalWrite(mright, HIGH);
 delay(750); //turn motor counterclockwise to decrease frequency for 1 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 119 ... 121: //frequency detected is between 61 and 70 Hz
 digitalWrite(mleft, LOW);
 digitalWrite(mright, HIGH);
 delay(1000); //turn motor counterclockwise to decrease frequency for 5 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 case 122 ... 125: //frequency detected is between 58 and 60 Hz
 digitalWrite(mleft, LOW);
 digitalWrite(mright, HIGH);
 delay(1250); //turn motor counterclockwise to decrease frequency for 1 s
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 damp();
 freqSum = 0;
 break;
 default: //assuming frequency will not be outside range of 40 to 70 Hz: frequency
detected is between 54 and 56 Hz
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW); //do not turn motor
 break;
 }
}

114

void Check_Protocol(char inStr[]) {
 //int i = 0;
 int m = 0;

 if (!strcmp(inStr, "demo")) {

 }

 if (!strcmp(inStr, "tuneron")) {
 delay(100);
 detect_frequency();
 delay(100);
 tune_string();

 delay(10);

 while ((abs(main_freq - Afreq) > 2) && (main_freq > 0)) {

 main_freq = 0;
 delay(100);
 detect_frequency();
 delay(5000);
 tune_string();
 //Serial.println(main_freq);
 delay(10);

 if (abs(main_freq - Afreq) <= 2) {
 break;

 }

 }

 damp();
 main_freq = 0;
 Serial.println("tuneroff");
 digitalWrite(tune_led, HIGH);
 delay(2000);
 digitalWrite(tune_led, LOW);

115

 delay(10);
 Serial.begin(9600);

 }

 if (!strcmp(inStr, "righton")) {
 digitalWrite(mright, HIGH);
 digitalWrite(mleft, LOW);
 }

 if (!strcmp(inStr, "rightoff")) {
 digitalWrite(mright, LOW);
 digitalWrite(mleft, LOW);
 }

 if (!strcmp(inStr, "lefton")) {
 digitalWrite(mleft, HIGH);
 digitalWrite(mright, LOW);
 }
 if (!strcmp(inStr, "leftoff")) {
 digitalWrite(mleft, LOW);
 digitalWrite(mright, LOW);
 }

 if (!strcmp(inStr, "servo")) { //Led Off
 servo();
 }

 if (!strcmp(inStr, "2off")) { //Led Off
 delay(50);
 allpinslow();
 digitalWrite(led1, LOW);
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }
 //Serial.println(inStr);
 if (!strcmp(inStr, "2on")) { //Led on
 allpinslow();
 digitalWrite(led1, HIGH);

116

 //delay(50);
 servo();
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

 if (!strcmp(inStr, "3off")) { //Led Off
 allpinslow();
 digitalWrite(led2, LOW);
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

 if (!strcmp(inStr, "3on")) { //Led on
 allpinslow();
 digitalWrite(led2, HIGH);
 //delay(50);
 servo();
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }
 if (!strcmp(inStr, "4off")) { //Led Off
 allpinslow();
 digitalWrite(led3, LOW);
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

 if (!strcmp(inStr, "4on")) { //Led on
 allpinslow();
 digitalWrite(led3, HIGH);
 //delay(50);
 servo();
 // for (m = 0; m < 11; m++) {

117

 // inStr[m] = 0;
 // }
 i = 0;
 }
 if (!strcmp(inStr, "5off")) { //Led Off
 allpinslow();
 digitalWrite(led4, LOW);
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

 if (!strcmp(inStr, "5on")) { //Led on
 allpinslow();
 digitalWrite(led4, HIGH);
 //delay(50);
 servo();
 for (m = 0; m < 11; m++) {
 inStr[m] = 0;
 }
 i = 0;
 }
 if (!strcmp(inStr, "6off")) { //Led Off
 allpinslow();
 digitalWrite(led5, LOW);
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

 if (!strcmp(inStr, "6on")) { //Led on
 allpinslow();
 digitalWrite(led5, HIGH);
 //delay(50);
 servo();
 // for (m = 0; m < 11; m++) {
 // inStr[m] = 0;
 // }
 i = 0;
 }

118

 else {
 for (m = 0; m < 11; m++) {
 inStr[m] = 0;
 }
 i = 0;
 }
}

119

Appendix B

120

121

References

[1] J. Denoncour, “Art for the Disabled’ February-2019.

[2] E. Lacroix, A. Sylvia, R. Yang, S. Arce, and K. Nazareth, “Assistive Aid for Playing the

Ukulele by Persons with Duchenne Muscular Dystrophy,” 28-Apr-2016.

[3] "Search: Magicmakingmusic." Search: Magicmakingmusic. Web. 13 Apr. 2016.

[4] Adafruit Industries. “Standard Servo - TowerPro SG-5010.” Adafruit Industries Blog RSS,

https://www.adafruit.com/product/155.

[5] Adafruit Industries. “Small Push-Pull Solenoid - 12VDC.” Adafruit Industries Blog RSS,

https://www.adafruit.com/product/412.

[6] Aidan. “Controlling a Solenoid with an Arduino - Tutorial.” Core Electronics, 22 Nov. 2018,

https://core-electronics.com.au/tutorials/solenoid-control-with-arduino.html.

[7] Arduino Mega 2560 Rev3, https://store.arduino.cc/usa/mega-2560-r3.

[8] Kim, Vadim. How to Design 10 KHz Filter. (Using Butterworth Filter Design). Msu.edu,

2011.https://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Documents/How%2

0to%20Design%2010%20kHz%20filter-Vadim.pdf

[9] “Metal DC Geared Motor w/Encoder - 12V 251RPM 18Kg.Cm.” DFRobot,

https://www.dfrobot.com/product-634.html#.UWE4PNb8n5-5.4.

122

https://store.arduino.cc/usa/mega-2560-r3
https://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Documents/How%20to%20Design%2010%20kHz%20filter-Vadim.pdf
https://www.egr.msu.edu/classes/ece480/capstone/fall11/group02/web/Documents/How%20to%20Design%2010%20kHz%20filter-Vadim.pdf
https://www.dfrobot.com/product-634.html#.UWE4PNb8n5-5.4

[10] Ada, Lady. “Force Sensitive Resistor (FSR).” Adafruit Learning System,

https://learn.adafruit.com/force-sensitive-resistor-fsr/using-an-fsr.

[11] Duchenne Muscular Dystrophy (DMD) | Muscular Dystrophy Association. (2019).

Retrieved 8 October 2019, from https://www.mda.org/disease/duchenne-muscular-dystrophy

[12] Roederer, J. G. (2009). The Physics and Psychophysics of Music an Introduction. New

York, NY: Springer US.

[13] Hartmann, W. (1997). Signals, sound, and sensation . Woodbury, N.Y: American Institute

of Physics.

[14] Fitch, W., & Rosenfeld, A. (2007). Perception and Production of Syncopated Rhythms.

Music Perception: An Interdisciplinary Journal, 25(1), 43-58. doi:10.1525/mp.2007.25.1.43

[15] Physics of Music - Notes. (n.d.). Retrieved from

https://pages.mtu.edu/~suits/notefreqs.html.

[16] Blecha, Peter. "Audiovox #736: The World's First Electric Bass Guitar!". Vintage Guitar.

Slog, John J.; Coryat, Karl (1999). The Bass Player Book: Equipment, Technique, Styles and

Artists. Backbeat Books. ISBN 0-87930-573-8.

[17] Imtiaz F, S. (2015). A Classical Case of Duchenne Muscular Dystrophy. Hereditary

Genetics, 04(01). doi: 10.4172/2161-1041.1000139

[18] Walter, M., & Reilich, P. (2017). Recent developments in Duchenne muscular dystrophy:

facts and numbers. Journal Of Cachexia, Sarcopenia And Muscle, 8(5), 681-685. doi:

10.1002/jcsm.12245

123

https://www.mda.org/disease/duchenne-muscular-dystrophy
https://pages.mtu.edu/~suits/notefreqs.html
http://www.vintageguitar.com/1782/audiovox-736/
https://en.wikipedia.org/wiki/Vintage_Guitar_(magazine)
https://en.wikipedia.org/wiki/Backbeat_Books
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-87930-573-8

[19] Hunnekens, M., Huijben, J., & de Groot, I. (2017). Hand function in boys and men with

Duchenne muscular dystrophy (DMD). Neuromuscular Disorders, 27, S234. doi:

10.1016/j.nmd.2017.06.499

[20] Hiller LB, Wade CK. Upper extremity functional assessment scales in children with

Duchenne muscular dystrophy: a comparison. Arch Phys Med Rehabil 1992;73:527-34. Lord JP,

Portwood MM, Lieberman JS,

[21] Sulewski, J., Boeltzig, H., & Hasnain, R. (2012). Art and Disability: Intersecting Identities

Among Young Artists with Disabilities. Disability Studies Quarterly, 32(1). doi:

10.18061/dsq.v32i1.3034

[22] C. Fitzpatrick, C. Barry, and C. Garvey, “Psychiatric Disorder Among Boys With Duchenne

Muscular Dystrophy,” Developmental Medicine & Child Neurology, vol. 28, no. 5, pp. 589–595,

1986.

[23] Taylor, M. (2005). Self-identity and the arts—Education of disabled young people.

Disability & Society, 20(7), 763-778.

[24] Caspers Conway, K., Mathews, K., Paramsothy, P., Oleszek, J., Trout, C., Zhang, Y., &

Romitti, P. (2015). Neurobehavioral Concerns Among Males with Dystrophinopathy Using

Population-Based Surveillance Data from the Muscular Dystrophy Surveillance, Tracking, and

Research Network. Journal Of Developmental & Behavioral Pediatrics, 36(6), 455-463. doi:

10.1097/dbp.0000000000000177

[25] The New England Center for Analog and Mixed Signal Design atWPI. (2019). Retrieved 8

October 2019, from http://users.wpi.edu/~mcneill/analog/center.html

124

http://users.wpi.edu/~mcneill/analog/center.html

[26] How To Build Custom Android App for your Arduino Project using MIT App Inventor -

HowToMechatronics. (2019). Retrieved 8 October 2019, from

https://howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-ard

uino-project-using-mit-app-inventor/

[27] Frequency and Pitch. (n.d.). Retrieved from

https://www.nde-ed.org/EducationResources/HighSchool/Sound/frequencypitch.htm.

[28] Vibrating String. (n.d.). Retrieved from

http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/string.html.

[29] Reliable Frequency Detection Using DSP Techniques. (2017, February 4). Retrieved from

http://www.akellyirl.com/reliable-frequency-detection-using-dsp-techniques/.

[30] SIMPLE SWITCHER® Power Converter 150-kHz, 3-A Step-Down Voltage Regulator,
LM2596, Rev. E, Texas Instruments, 2020. [Online]. Available:
http://www.ti.com/lit/ds/symlink/lm2596.pdf

[31] BTS7960 43A High Power Motor Driver Module, HiLetgo, 2018. [Online]. Available:
http://www.hiletgo.com/ProductDetail/1958385.html

[32] High Current PN Half Bridge NovalithIC™, BTN7970, Rev. 1.1, Infineon, 2007. [Online].

Available: https://www.mouser.com/datasheet/2/196/BTN7970_DS_11-255465.pdf

[33] LOW POWER, SINGLE-SUPPLY, RAIL-TO-RAIL OPERATIONAL AMPLIFIERS

MicroAmplifier ™ Series, OPA344P, Texas Instruments, 2008. [Online]. Available:

https://www.ti.com/lit/ds/symlink/opa344.pdf

125

https://howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-arduino-project-using-mit-app-inventor/
https://howtomechatronics.com/tutorials/arduino/how-to-build-custom-android-app-for-your-arduino-project-using-mit-app-inventor/
https://www.nde-ed.org/EducationResources/HighSchool/Sound/frequencypitch.htm
http://hyperphysics.phy-astr.gsu.edu/hbase/Waves/string.html
http://www.akellyirl.com/reliable-frequency-detection-using-dsp-techniques/
http://www.ti.com/lit/ds/symlink/lm2596.pdf
http://www.hiletgo.com/ProductDetail/1958385.html
https://www.mouser.com/datasheet/2/196/BTN7970_DS_11-255465.pdf
https://www.ti.com/lit/ds/symlink/opa344.pdf

