

Acadia Visitor Study: A Mobile Tracking Application

An Interactive Qualifying Project submitted to the Faculty of
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfilment of the requirements for the
degree of Bachelor of Science

by:

James Plante
Joseph Hogan

Date:

August 2, 2019

Report Submitted to: Professor Frederick Bianchi

This report represents work of WPI undergraduate students submitted to the faculty as evidence
of a degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects​.

http://www.wpi.edu/Academics/Projects

1

Abstract
Visitor congestion is an issue in Acadia National Park, as it is the most densely visited

national park in the United States. We addressed this problem with a visitor tracking cell phone

application. The data collected from the application aims to aid the park in efficiently using their

limited resources. We tracked WPI students and administered a survey to park visitors. We then

visualized all of the data into intuitive formats. Finally, we generated three ways for the park to

deploy the project in various capacities.

2

Acknowledgements

The group would like to thank both Professors Frederick Bianchi and Thomas J.

Balistrieri for the guidance and editorial oversight throughout this project, as it was essential for

the creation of this paper, and Abraham Miller-Rushing who was the project’s liaison to the

National Park Service. Additionally, the group would like to thank Abdulrahman Alatiq for

assistance in creating the icon and branding for Acadia Visitor Study, as it greatly influenced the

survey’s success. Also, the group would like to thank Ermal Toto for server administration help

over the WPI network, as well as providing an informative interview. The group appreciated the

WPI students who volunteered to use Acadia Visitor Study whenever they went to Acadia

National Park. The group also thanks Paige Neumann for help with initial research and citation

assistance. Finally, the group would like to thank Stephanie Clement and Paige Steele for

information regarding park recommendations.

3

Authorship

Abstract Joseph Hogan, edited by James Plante

Executive Summary Joseph Hogan and James Plante

1. Introduction James Plante and Joseph Hogan

2. Background
2.1 The National Park Service James Plante and Joseph Hogan
2.2 Acadia National Park James Plante and Joseph Hogan
2.3 Overcrowding James Plante and Joseph Hogan
2.4 Interview with Expert James Plante, edited by Joseph Hogan
2.5 Android Studio James Plante, edited by Joseph Hogan
2.6 Servers Joseph Hogan, edited by James Plante
2.7 Data Analysis Software James Plante and Joseph Hogan

3. Methodology
3.1 Benchmarking Joseph Hogan, edited by James Plante
3.2 Development of the Application James Plante, edited by Joseph Hogan
3.3 Surveys James Plante, edited by Joseph Hogan
3.4 Assessment of Data Analysis Software Joseph Hogan, edited by James Plante

4. Results and Analysis
4.1 Survey Results and Analysis James Plante, edited by Joseph Hogan
4.2 Data Visualization James Plante and Joseph Hogan
4.3 Possible Improvements Joseph Hogan, edited by James Plante

5. Recommendations and Conclusion
5.1 Future WPI Involvement in Development and Hosting James Plante and Joseph Hogan
5.2 ​Incorporation of Functionality into Existing Application James Plante, edited by Joseph Hogan
5.3​ OnCell Joseph Hogan, edited by James Plante
5.4 Conclusion Joseph Hogan, edited by James Plante

4

Table of Contents
Abstract 1

Acknowledgements 2

Authorship 3

Table of Contents 4

Executive Summary 6

Table of Tables and Figures 9

1. Introduction 10

2. Background 13
2.1 The National Park Service 13
2.2 Acadia National Park 14
2.3 Overcrowding 17
2.4 Interview with Expert 18
2.5 Android Studio 20
2.6 Servers 20
2.7 Data Analysis Software 21

3. Methodology 23
3.1 Benchmarking 23
3.2 Development of the Application 24
3.3 Surveys 29
3.4 Assessment of Data Analysis Software 32

4. Results and Analysis 35
4.1 Survey Results and Analysis 35
4.2 Data Visualization 41
4.3 Possible Improvements 51

5. Recommendations and Conclusion 53
5.1 Future WPI Involvement in Development and Hosting 53
5.2 Incorporation of App Functionality into Existing Applications 54
5.3 OnCell 55
5.4 Conclusion 56

Bibliography 58

Appendix A: Unit Testing 64

5

Appendix B: Survey Questions 64

Appendix C: Interview Questions 64

Appendix D: Apache 2.0 License 66

Appendix E: Application Source Code 69

Appendix F: Server Source Code 97

Appendix G: Text file to GPX Converter Code 99

Appendix H: Time Parser Code 102

6

Executive Summary

Figure 1: Icon for Acadia Visitor Study. Reprinted from “Icon for Acadia Visitor Study” by Alatiq, A, 2019. Used with permission.

Overcrowding is an increasingly serious problem facing the National Park Service.

Although visitation is encouraged, this influx of visitation is causing a myriad of problems. The

most important goal of the National Park Service is preservation. With limited space and

resources, the NPS is having difficulty accommodating all of their visitors and properly

preserving the lands. This issue is most prominent at Acadia National Park where the visitors per

acre is higher than any other national park (National Park Service, 2019).

Our project was designed to allow the park to do more with the same amount of resources

by providing essential GPS data to the park staff. It is a proof of concept that paves the way for a

park-backed tracking application that will reach the majority of park visitors. By using the data

that is collected, the NPS will be able to more accurately deal with the crowds of visitors each

year.

The park has already addressed overcrowding with the new Transportation Plan, which

encourages visitors to take public transportation around the island, and aims to better manage

7

parking locations, among other goals (National Park Service, 2019). The data our app collects

can also be used to assess the success of this transportation plan.

Our main objectives are to:

1. Build a GPS tracking mobile application targeting the Android operating system

2. Distribute the application to the public and collect data about visitor mobility

3. Determine the efficacy of the application by portraying the data using different analysis

methods

We developed the application for Android, and distributed it to fellow WPI students. We

used a server hosted by WPI to receive and save the time-stamped GPS data using an HTTPS

connection and later exported it for analysis. We were unable to get it into the hands of the

public because Google Play Protect flagged the application.

We administered an entrance survey at the Visitor Center to gauge the applications

favorability among its user base. We had initially planned to distribute a version of the survey as

both an entrance and exit survey on the application. However, the limited rollout of our

application prevented us from doing so.

We first asked the public what mobile platform they used and found that 76.7 percent of

respondents owned iPhones. This is significant, as it indicates that an iOS platform should be

included in future application development. We also determined that many visitors already use

their phone in the park, as 67.1 percent of visitors to Acadia National Park stated that they either

use their phone alone or a phone and a map to navigate. Additionally, we found that visitors were

generally apathetic towards tracking features in other mobile applications, as 66.7 percent of

respondents were comfortable with companies like Google collecting user data. Finally, when

visitors were told our application would similarly track them, but use the data to help the park,

91.7 percent of people were willing to download the application.

After collecting nearly twenty-five thousand data points from six WPI students, we used

ArcGIS to analyze our GPS data, and generate meaningful data visualizations demonstrating the

vast amount of useful information that could be obtained from our app. This information

8

includes: facilities used, trails hiked, and transportation methods utilized. We determined that

this method of data collection is a viable way to monitor visitation and could potentially be used

for predictive analytics in the future given a large enough data pool.

Finally, we developed three main recommendations over the course of the project that the

park can follow to advance the project. Our three main recommendations are as follows: WPI

continues the development of Acadia Visitor Study, incorporate the tracking functionality into an

existing phone application, or develop an application from scratch using the app development

platform OnCell.

9

Table of Tables and Figures
➢ Figure 1: Icon for Acadia Visitor Study ​6

➢ Figure 1.1. Number of recreational visitors to Acadia National Park in the United States
from 2008 to 2018 (in millions) ​10

➢ Figure 2.1. Main Acadia National Park map, showing the majority of the park located on
Mount Desert Island near Bar Harbor. ​14

➢ Figure 3.1: Basic UML Diagram of the Acadia Visitor Study application ​24
➢ Figure 3.2: Screenshot of the notification shown to users when tracking is enabled ​25
➢ Figure 3.3: Screenshot of Acadia Visitor Study’s home screen 26
➢ Figure 3.4: The stand where the surveys were conducted ​29
➢ Figure 3.5: Poster that was shown to visitors ​31
➢ Figure 3.6: Screenshot of the imported data into Google Earth ​32
➢ Figure 3.7: Screenshot of an empty spreadsheet in IBM SPSS ​33
➢ Figure 3.8: Screenshot of Google Earth with the available paths of each user and a

visualization ​34
➢ Figure 4.1: Results of Question 1 ​35
➢ Figure 4.2: Results of Question 2 ​37
➢ Figure 4.3: Results of Question 3 ​38
➢ Figure 4.4: Results of Question 4 ​40
➢ Figure 4.5: Initial Visualization of the Data Collected using ArcGIS ​41
➢ Figure 4.6: Visualization of the Data categorized by UID ​42
➢ Figure 4.7: Comparison of data Counts by UID ​43
➢ Figure 4.8: Visualization of Data Collected with each data point representing a different

elevation ​43
➢ Figure 4.9: Visualization of Data using both velocity and UID. ​44
➢ Figure 4.10: Visualization of a single user driving then hiking ​45
➢ Figure 4.11: Initial density visualization ​46
➢ Figure 4.12: Final density visualization ​46
➢ Figure 4.13: Heatmap with velocity as the weight of the data ​47
➢ Figure 4.14: Mockup visualizations of a two days in Mount Desert Island where gas

prices are extremely low (left) and where they are higher (right). ​48
➢ Figure 4.15: Mockup visualizations of a two days in Mount Desert Island where a cruise

ship is docked (top) and where a cruise ship is not docked (bottom). ​49
➢ Figure 4.16: Mockup visualizations of a two days in Mount Desert Island before the Final

Transportation Plan goes into effect (left) and afterwards (right). ​49
➢ Figure 5.1: Acadia Vehicle Use Study Application ​53

10

1. Introduction
Overcrowding and climate change both pose threats to the National Park System.

Overcrowding has led to an increase in carbon emissions and has decreased visitor experience in

the National Parks over time. It also has had a deleterious effect on the ecology of the parks,

which has increased many parks maintenance costs. Climate change threatens the local ecology,

biodiversity, and geology that the National Park system is dedicated to protecting. These features

are the main attractions for visitors, and all of these issues are expected to worsen in coming

years unless action is taken to accommodate overcrowding.

Figure 1.1​. Number of recreational visitors to Acadia National Park in the United States from 2008 to 2018 (in millions). Reprinted

from ​Statista.com​, by National Park Service, 2019,

https://www.statista.com/statistics/253808/number-of-visitors-of-acadia-national-park-in-the-us​/.

The aforementioned issues the National Park System faces are magnified in Acadia

National Park because of visitor density. The 3.5 million annual visitors make Acadia National

Park the most densely visited national park in the United States, which presents acute challenges

https://www.statista.com/statistics/253808/number-of-visitors-of-acadia-national-park-in-the-us/

11

(National Park Service, 2019). First, increased transportation in the parks has led to the

degradation of many man-made landmarks along Park Loop Road, including the road ways

which can become dangerous for drivers (National Park Service, 2019). The destruction of land

in Acadia is simultaneously the destruction of the park’s biggest tourist attraction. Additionally,

as the park becomes more crowded, it becomes more susceptible to pollution, littering and

carbon emissions.

As such, the ecological, socioeconomic, and psychological impacts of congestion have

been the focus of various IQPs, journals, and studies in the past. In 2017, a research team of WPI

students started to study possible ways of limiting transportation throughout Acadia National

Park. Their recommendations included a reservation system and a two-way gate system to

decrease traffic (Cosmopulos, E., Gaulin, J., Jauris, H., Morisseau, M., & Quevillon, E., 2017).

Another study revisited the idea by analyzing the possibility of tracking vehicles in the park

using a GPS phone tracking system. This project was in response to the limited accuracy of car

counters in the parking lots (Nadeau, G. T., Charbonneau, J. L., Caltabiano, J. P., & Fischler, M.

A., 2018). Other studies have been conducted to analyze the impact of climate change on the

visitor experience while in Acadia. According to a study by the ​Journal of Outdoor Recreation

and Tourism​, park visitors indicated that inclement weather may impact their experience when

surveyed on the impacts of climate change (De Urioste-Stone, Scaccia, & Howe-Poteet, 2015).

In response to visitor congestion, on March 25, 2019, Acadia National Park released a

detailed transportation plan, which includes the relocation and construction of various parking

lots in order to streamline visitor experience. They also plan to implement a reservation system

to limit congestion in high traffic areas. In the study, the park considered various solutions to

congestion while also considering how it would affect both the environment and the visitor

experience. The study concluded that a reservation system for popular locations around the park

would be the best option and would be implemented over the next decade (National Park

Service, 2019). In theory, this solution would help eliminate traffic congestion, but they also

noted that it would negatively affect the historic experience of the park (National Park Service,

2019).

12

As detailed as this plan is, we hope to add valuable information to the plan by supplying

visitor GPS data. With a mobile application we have bridged the information gap and can

provide accurate, GPS data on individuals in the park. Our purpose is to develop and distribute a

full stack, GPS mobile tracking application to gather data, and analyze the application’s efficacy

by suggesting alternate analytical solutions.

13

2. Background

2.1 The National Park Service

The National Park Service has played a role in conservation for over a century. Land

conservation in the United States originated on March 1, 1872 when President Ulysses S. Grant

signed the Yellowstone National Park Protection Act making Yellowstone Park the first national

park in the world (“Yellowstone National Park Protection Act (1872) - Yellowstone National

Park (U.S. National Park Service”, 2018). During that time the Department of the Interior was

responsible for protecting and maintaining all of the lands. Additionally, the United States

established monuments and historical areas, which would be overseen by the Department of War

and the Forest Service of the Department of Agriculture. Eventually, President Woodrow Wilson

created the National Park Service (NPS). The NPS was created on August 25, 1916 by the

National Park Service Organic Act. The NPS was now responsible for the preservation of all 35

sites, consolidating the work of three different organizations into one dedicated entity, whose

mission is to preserve the integrity and natural beauty of the United States’ geography for future

generations (“Quick History of the National Park Service (U.S. National Park Service)”, 2018).

The National Park System has gradually expanded. In 1956, supported by President

Eisenhower, Mission 66 was passed, which was a decade long effort to expand the current park

facilities. The bill created thousands of trails, roads, paths, and park facilities, and revolutionized

the architecture and schematic of the modern national park (Walser, 2017).

Now, the National Park System protects more than 400 parks, making up roughly 84

million acres, or over twice the size of Georgia. The NPS supports over 306,000 jobs, and

directly benefits communities surrounding the parks (“Zinke Announces $35.8 Billion Added to

U.S. Economy in 2017 due to National Park Visitation - Office of Communications (U.S.

National Park Service)”, 2018). Additions to the park service are made by Congress, or by the

President proclaiming national monuments on federal land (“Quick History of the National Park

Service (U.S. National Park Service)”, 2018).

14

2.2 Acadia National Park

Figure 2.1​. Main Acadia National Park map, showing the majority of the park located on Mount Desert Island near Bar Harbor.

Reprinted from ​Wikimedia Commons​, by National Park Service, 2013, http://npmaps.com/wp-content/uploads/acadia-map.jpg.

Maine was first settled by Paleo-Indian hunters around 11,000 years ago. Large game

such as mammoths and mastodons sustained inland hunters, while coastal natives primarily

subsisted on seals and walrus. Increasing temperatures following the end of the Ice Age led to a

mass northward migration of arctic and sub-arctic species. These species were soon replaced by

a variety of smaller mammals, similar to the ecology of Maine today. The Wabanaki people,

who populated much of eastern Maine at this time, are associated with the early settling of

Mount Desert Island (Kaiser, 2018). The island became known to these tribes as the Pemetic, or

“the Sloping Land”. (“History of Acadia - Acadia National Park”)

Europeans brought diseases such as smallpox to coastal Maine that ravaged the native

population. As a result, the population of Wabanaki decreased from ~32,000 to ~1,200 between

the early 1600’s and late 1700’s. In 1603, Samuel de Champlain led a voyage to North America.

After landing in Canada, he traveled along the coast going south past Maine. During this voyage,

he sighted Mouth Desert Island, naming it “the Island of Barren Mountains”. Fifteen years later,

15

in 1618, 75 percent of Maine’s native and coastal population were killed by European diseases

(Kaiser, 2018).

Settlement was delayed for many decades due to conflicts between the English and the

French. However, in the late 1700s, settlers in search of fertile land expanded up the coast of

Maine. Eden, soon to be Bar Harbor was founded during this expansion. The town grew quickly

because of industries such as fishing, shipbuilding, and logging. Mount Desert Island, now part

of Acadia National Park, was initially owned by Francis Bernard, an Englishman serving as royal

governor of Massachusetts (Kaiser, 2018). However, Francis Bernard fled following the

Revolutionary War and his son followed suit, losing their claim on the land in the process

(“History of Acadia - Acadia National Park”).

National attention focused on Mount Desert Island after painters from the Hudson River

School of Art visited there in the mid-1800s (“History of Acadia - Acadia National Park”). The

Hudson School of Art was primarily an artistic movement famed for their beautiful landscapes.

Notably, one of the more famous painters of this movement was Thomas Cole, where he painted

numerous landscapes featuring the geographic features of Mount Desert Island (Kaiser, 2018).

Cole’s work was exhibited in New York and drew enormous attention from other artists, among

them was one of Cole’s students, Frederic Church. Inspired by Cole’s work, he returned to the

island to create additional works of Acadia’s landscape. Additionally, other artists and tourists

began to journey to the island, inspired by what they had seen from Cole and Church (“History

of Acadia - Acadia National Park”).

During the 1870’s and 1880’s, Mount Desert Island established an electrical

infrastructure, as well as a public transportation system, convincing tourists to travel to Bar

Harbor. As tourism increased, money flowed into the area leading to the development of luxury

hotels, mansions, and boutiques (“History of Acadia - Acadia National Park”). Growth continued

to accelerate over the coming decades. However, locals were concerned that the growth of Bar

Harbor was affecting the area’s natural beauty. Visitor and former Harvard President Charles

Eliot, as well as resident George Dorr founded the Hancock County Trustees of Public

Reservations, and began purchasing the land under a tax exempt charter. When the tax

16

exemption was revoked, Dorr traveled south to Washington and convinced President Woodrow

Wilson that the government should invest its resources into the land. Two years later, a National

Monument was created by Presidential Proclamation, and was recreated as Lafayette National

Park on February 26th, 1919. A decade later, the name was changed to Acadia National Park

(Kaiser, 2018).

In the summer of 1947, Maine received only half of its expected rainfall, allowing a small

fire to grow into an inferno that ravaged the dry landscape. It burned 17,188 acres of land. The

fire burned 10,000 acres in Acadia, and caused 23 million dollars in damages to the park. Spruce

and fir trees, which initially dominated the forest, burned down and have since given way to

deciduous species. Additionally, many of the mansions on Millionaires Row that burned down

were never repaired. Instead, the seasonal population of Bar Harbor left, ending the opulent

“cottage era” lifestyle that had dominated the island that was beginning to wane during the Great

Depression (“Fire of 1947 - Acadia National Park”).

Mount Desert Island sits squarely within the Gulf of Maine. The Gulf of Maine is dense

with wildlife, containing ~3,000 species, and frequent, massive phytoplankton blooms caused by

high gulf temperatures. Because the Gulf of Maine is a shallow outcrop from the Atlantic Ocean,

the Atlantic tides are slightly amplified. This increases the tidal range in Acadia National Park to

8-12 feet. Acadia includes about 40 miles of public shoreline. This offers visitors exposure to the

intertidal zone, the ecosystem that exists on the coastline between high and low tide. Organisms

at different depths of the intertidal zone spend vastly different amounts of time underwater.

Therefore, they have diverged evolutionarily. This biodiversity there makes studying the

intertidal zone valuable to scientists (Kaiser, 2018).

Today, Acadia contains roughly 320 species of birds, as well as around 50 species of

mammals. There is also a significant elevation change in the park, ranging from sea level to

roughly 1500 feet above. The tops of the higher peaks on Mount Desert Island are essentially

barren. The elevation supports alpine vegetation among other species that could not survive in

the lower lying areas. Humans have brought several non-native plant species to the island. Many

of these, such as the Purple Loosestrife from Europe, are now considered harmful to the native

17

ecology of Mount Desert Island. More threatened than the island is the Gulf of Maine, where

heavy fishing caused many fish populations in the region to collapse by the 1980’s (Kaiser,

2018).

2.3​ ​Overcrowding

Overcrowding is a global pandemic, as it is such a large problem that it has affected the

lives of almost everyone. Overcrowding largely has environmental and economic effects.

Symptoms of overcrowding can be felt in various locations such as cities, highways, and even

parks. When the occupancy limit of a given area is surpassed, the surrounding land and

infrastructure may degrade over time. For instance, highways in the United States are so abused

by the amount of traffic that general maintenance of the highway system costs the United States

government 22.81 billion dollars annually (“23rd Annual Highway Report”, 2018). Also, cities

where overcrowding is a common problem face high rates of poverty and pollution (Pencheon,

2012). This is a problem, especially in developing nations such as China, where it is difficult to

find apartments due to housing shortages in the region, which has been found to negatively affect

the psychology of residents in the area due to reduced living space (Tao, 2017).

Overcrowding also negatively affects the tourism industry. According to tourist demand

theory, it is shown that the closer a destination is to its maximum occupancy, the less desirable a

place it is to travel. This quantitative theory takes into account many aspects such as

environmental and socioeconomic factors. Overcrowding is considered a non-constant supply

side attracting factor. A non-constant supply side attracting factor is a factor that changes based

on the location itself, like the density of crowds at a given time. For instance, as overcrowding

increases, visitor demand goes down, especially in destinations not already known to be crowded

such as forests or beaches (Santana-Jiménez, Y., & Hernández, J. M., 2011).

As stated previously, overcrowding negatively impacts the individual experience and the

environment surrounding the overcrowded location, especially when in more dense areas. For

example, in National Parks, the very land that is being overused is the main attraction for

visitors, and the main object of preservation efforts. This compounds the issue of overcrowding

18

in National Parks therefore putting a greater onus on the National Park Service to mitigate

overcrowding.

Turkewitz and Fremson have given insight into this issue in an article exposing how Zion

National Park in southern Utah is struggling to deal with the increasing visitor population.

Frustrated visitors at the park, many of whom have made plans months in advance, are being

turned away at the entrance of the park due to overcrowding. Additionally, park rangers have to

spend more time and resources to clean up damages that park visitors cause to geographic

features in the park such as littering and carvings on rock faces. Moreover, visitor-made paths

and trails have been an issue for the topsoil and wildlife in the region (2017). Additionally, a

study conducted at Acadia National Park concerning what factors had the most impact when

visiting Ocean Drive found that traffic and visitor congestion was one of the most disliked

aspects of visiting the area (Hallo & Manning, 2009).

Acadia National Park has cited similar conclusions about visitor overcrowding, and is

currently taking steps to mitigate visitor impact. Previously, Acadia National Park has addressed

this issue by expanding infrastructure in the park to account for more people. Acadia National

Park also attempted to manage visitor behavior by making the primary road for travel, Park Loop

Road, a one-way road and created more transportation options to visitors such as the Island

Explorer. However, while these efforts were appropriate for the time, it became apparent that

additional work was needed to address the increasing density of visitors in the park. Moreover,

as previously stated, on March 25, 2019, they have made plans to expand the infrastructure of the

park further to address this issue (National Park Service, 2019). Overall, while the issue of

overcrowding can be addressed by developing infrastructure, the larger issue of overcrowding

needs to be addressed on a more global scale.

2.4 Interview with Expert

Interviewing is an ethnographic technique that involves a one-to-one interaction with a

person in order to gain information about a subject. Although both interviews and surveys

concern getting information from individuals, interviews are typically different than surveys as

19

they can address greater complexities because the interviewer is able to give more open-ended

questions. Interviews can be done in three ways: fully structured, semi-structured, and

unstructured. Fully structured interviews typically involve the interviewer asking questions in a

pre-defined order, and as such are easier to compare when doing multiple interviews. In contrast,

unstructured interviews involve the interviewer asking a question about a specific topic and

letting the person speak freely about that topic, following the interviewee’s lead.

Semi-structured interviews are a combination of both fully structured and unstructured

approaches. The interviewer asks a predetermined set of questions, and the interviewee has the

freedom to make additional observations. The interviewer can ask follow up questions or

continue with the predetermined questions (Lazar, Feng, & Hochheiser, 2010). We will be using

semi-structured interviewing for this project as it provides additional flexibility for interview

questions and we will be interviewing only one person, making fully structured interviewing

inappropriate for our purposes.

Ermal Toto was interviewed during our research. Toto is a research data scientist​ ​and

former senior software engineer at Worcester Polytechnic Institute, where he is currently

pursuing his PhD. He mainly specializes in data mining, machine learning, and researching the

use of these methods to detect the mood of individuals. Toto also currently works for the

Information Technology department at WPI (Toto, 2019). He was questioned primarily

regarding techniques and practices of smartphone app development and current server

integration as referred to in Appendix H. In addition to helping with the initial planning of the

application through the interview, Toto was able to set up the required server backend, database,

and web domain (which is described in Section 2.6) on the WPI network as well as secure it by

enabling SSL encryption on the website. He was also able to provide us access to WPI’s GitLab

instance, which easily allowed us to work on the project in remote locations and create a backup

for any existing code.

20

2.5 Android Studio

The project is a mobile tracking application and was developed using Android Studio.

Android Studio is an integrated development environment (or IDE) that is developed by Google

for creating Android applications. It is based on the IntelliJ IDE which is mainly optimized for

developing Java applications. As such, Android Studio has many features that are industry

standard across many IDEs such as autocomplete, support for refactoring variable names within

an entire project, and integrated unit testing. Moreover, Android Studio has many additional

features that make Android development much easier. For instance, it features a layout editor so

developers can change the location of buttons, search bars, and other menu elements without

having to resort to a text editor (“Download Android Studio and SDK tools”, 2019). Another

advantage is the Android Debug Bridge (ADB), so when an Android phone is connected to a PC,

it can download the current build of the application and run it. Finally, it provides a virtualized

Android environment if a phone is not available, allowing for users who either do not own an

Android phone or do not have one on-hand to test their code (“Download Android Studio and

SDK tools”, 2019).

2.6 Servers

A server is a computer than runs a persistent piece of software that provides a service for

other programs. Devices that utilize a server are called clients and can connect to a server to use

that server’s resources. The network formed is called the client-server model. A frequently

implemented protocol to facilitate communication between the client and server is called the

request-response model. This model involves the client sending a request to the server for

information. Afterwards, the server responds with the information requested. The main purpose

of a server is to execute work for and share resources among other computers. For example, if

there is a task that thousands of applications or devices need to accomplish, exporting that task to

a server is highly efficient (“Server - Definition and Details”, 2019). Servers can have a wide

range of specialized purposes from file storage, hosting websites, and computing large amounts

of data using protocols such as SSH, FTP, DNS, and HTTP.

21

Most servers are relied upon by a large network of clients. Thus, they need to be reliable

and efficient. In order to fulfill these unique requirements, some servers run on specialized

hardware. To increase reliability and speed, servers can be clustered to increase server uptime as

much as possible. Clustering is the process of pooling together multiple servers to handle

requests from the client. This allows for individual servers to fail without the entire service going

down for the user. This can be done through transparent clustering, where one “dispatcher”

server handles all of the requests from the client. Afterwards, the dispatcher can uniformly

distribute the requests to the server pool and send the response to the user. Clustering also

increases the performance of the service because it can handle more requests (Schroeder,

Goddard, & Ramamurthy, 2000).

Our application utilizes a LAMP (Linux, Apache Web Server, MariaDB database, and

PHP backend) server to store the data points collected. Additionally, it allows us to search

through a large amount of data points in a very short time. The server is currently hosted on

<acadiatrails.wpi.edu> and whenever accessed, generates a random unique ID that the

application can use, then outputs it to an HTML document. The application then parses this

document for its own use. It can also accept data in the form of JSON formatted strings that are

then parsed to store the data in a MariaDB database. The server also allows the easy exporting of

data to an ASCII text file, which can then be read by various data analysis software.

2.7 Data Analysis Software

We researched the efficacy of various platforms to analyze the GPS data we will obtain.

Our research led us to two choices: ArcGIS and the IBM SPSS Statistics pack. Both applications

have the ability to analyze the GPS data for trends. ArcGIS is capable of viewing the GPS data

on a map overlay and plotting the routes of each person. It can also compare the routes and show

heat maps of areas with higher concentrations of visitors (ESRI, 2019). The SPSS Statistics pack

can create models of the data to show trends between different people’s paths and fill in missing

data gaps. It can be used to provide a predictive analysis of future trends assuming more people

22

will visit the park (IBM, 2019). We will be determining the efficacy of these applications while

in the park.

23

3. Methodology
Our mission was to develop and distribute a full stack, GPS mobile tracking application

to gather data and analyze the application’s efficacy by suggesting alternate analytical solutions.

This will hopefully aid park staff in mitigating tourist congestion in Acadia National Park by

providing a way to collect data on visitor behavior. Our main objectives will be to:

1. Build a GPS tracking mobile application targeting the Android operating system

2. Distribute the application to the public and collect data about visitor mobility

3. Determine the efficacy of the application by portraying the data using different analysis

methods

3.1 Benchmarking

Before arriving in Acadia National Park, we used benchmarking to assess the various

ways that visitor tracking has been addressed in parks of a similar size. Although benchmarking

is typically a business tool, we have adapted the technique to fit our needs. Rather than iterating

over a physical product, we iterate over our proposed solution. With each pass, we modified our

statement and then analyzed the revision to gauge improvement. During our initial research, we

underwent a brief benchmarking session.

During our session, we looked for the most effective example of visitor tracking, Disney

World. Through the use of several, highly accurate methods, Disney World tracks most of the

movement of its 53 million annual visitors (“Walt Disney World Statistics”, 2017). They then

use this data to improve visitor experience. They can move resources dynamically around the

park to cater to visitor needs, as well as alert visitors during times, and in areas where congestion

is going to be high. Unfortunately, the park’s methods are not transferable to our situation

because the nature of their tracking was far too invasive to be employed in a National Park

(​Geissler & Rucks, 2011)​.

24

3.2 Development of the Application

Figure 3.1: Basic UML Diagram of the Acadia Visitor Study application

The application that was developed for this study, Acadia Visitor Study, is an Android

application written in Java. In general, the application was originally designed to both track

users’ GPS data while in the park and as a way to deploy exit surveys. Android was chosen as

the platform to target since it has native Java support and it would not require submission to the

Google Play Store, since that would slow development due to the limited amount of time allotted

for the project. However, due to difficulties installing the application with Google Play Protect,

an antivirus that was recently incorporated into the Google Play Store, a full rollout of the

application was not possible during the time of the project to visitors in the park and was instead

tested with WPI students.

25

Figure 3.2: Screenshot of the notification shown to users when tracking is enabled

To give a complete overview of the application, it is appropriate to get an idea of the

different tasks that the application has to handle. As such, Acadia Visitor Study has a number of

threads that work simultaneously to accomplish these tasks. First, the UI thread is the standard

method that Android uses to handle any on-screen events that may happen in any of the ‘screens’

(also known as Activities) that are visible to the user. As such, many of the ‘intensive’ tasks of

the application (i.e. storing GPS information, sending GPS points to a server, etc.) are relegated

to other threads.

Next, there is another thread that runs when the application starts and will start collecting

GPS points as soon as the user clicks on the ‘Start Tracking’ button and will keep track of a

queue of GPS points that will be uploaded to a WPI server after the queue gets to a certain size

and when there is an Internet connection. This system of collecting the GPS points in “batches”

is a simple way to account for situations where Internet is not available, which is a common

occurrence especially in popular destinations such as Jordan Pond. This service is run in the

foreground as a notification so users will be able to see what their current location is in real time

and be able to disable the tracking from outside of the application. Additionally, this gives the

user transparency as to what the application is doing at any given time. Finally, there are worker

threads that will be created on-demand to do any network operations that may be needed by

either the UI thread or the GPS thread when uploading to the server.

26

Figure 3.3: Screenshot of Acadia Visitor Study’s home screen

The user interface (or UI) is an important aspect of Acadia Visitor Study since our group

wanted to prioritize transparency to users above all else. As such, we addressed this in a number

of ways. First, as previously stated, we make it clear what data is being collected by having a

persistent notification when the application is tracking users. Next, we also made sure that data

would not be collected unless the user consented to the data collection. To implement this, we

created a toggle button to start and stop the data collection thread and created an instructions

27

screen detailing how to use the application and what data is collected. Finally, to help gain user

trust in our application as to our own intentions, we also gave a brief description on who we are

in the instructions page and our contact information so if there were any issues with the

application, we could be easily contacted to fix any issues if they did arise.

The security of transmitting the location data for storage and the anonymity of the data

collected is another aspect that we considered in creating Acadia Visitor Study. First, the data

that is sent to the server in the form of a JSON file is encrypted using the HTTPS protocol, which

the server then reads and stores in a secure MariaDB database. As such, the data that is collected

by the application will not be vulnerable to man-in-the middle attacks, so the data cannot be

easily interpreted by malicious parties. Additionally, the server code was written in a way to

prevent any unauthorized access to the database by using parameterized SQL statements, a

built-in feature of the PHP programming language. Next, all of the data that is collected from the

user is completely anonymous and does not contain any demographic information, although the

application could be easily augmented to add this functionality. As suggested by our interview

with Ermal Toto, the only unique information that can identify a user is a randomly generated

user ID when the application is first launched. The determination of the user ID is done by the

server itself to prevent any collisions in the database. Then, the ID is sent to the phone via an

HTML page, which the app then parses and stores for later use. Finally, in order to avoid

collecting data from the user when outside of Mount Desert Island and the Schoodic Peninsula,

geofences are used to check the boundaries in which the application can collect data. If the user

is outside of either of these regions no data points are collected, although any points that have

been collected will be uploaded to the server to prevent loss of any data points going to or from

Mount Desert Island and the Schoodic Peninsula. The user is also notified that no data points

will be collected.

The final aspect of the application that our group wanted to address is its extensibility and

modularity for other groups to use in the future. First, we wanted the application to be able to

accommodate different geographical areas easily. Therefore, we created an interface to add

custom geofences of any arbitrary shape that is needed, although we only implemented simple

28

circular and rectangular geofences due to the limited timeframe. Additionally, most of the code

relating to communicating with the server is also abstracted out to the point that a completely

new implementation of the server code (as seen in SQLDatabase.java) could be written to

support other network protocols. Lastly, we made an interface for survey questions so if any

additional types of questions are needed, all that will need to be written would be the classes to

support the new type and modifying the UI to accommodate the questions.

29

3.3 Surveys

Figure 3.4: The stand where the surveys were conducted

Surveys are an essential component of our work in Acadia National Park. During our

time in the park, we conducted an entrance survey to aggregate visitor experience. It was graded

on a Likert scale ranging from one to seven, with one indicating they strongly disagree with the

statement and seven indicating they strongly agree. Primarily, we surveyed visitors because we

hoped to get a fresh reflection on their time at the park. Their feedback was essential when

analyzing the effectiveness of our application. Knowing how the visitors feel about being tracked

shows how practical gathering data will be in the future. Finally, their feedback provided insight

into the effectiveness of the parks new traffic management plan. The questions for this survey

may be found in Appendix B.

Initially, when developing the survey, we planned to have both an entrance and exit

survey: one before users would download the application and the other intended to be filled out

30

within the application after leaving the park. However during our time at the park, we ran into

issues with rolling out the application to users, since Google Play would flag our application as

malware. This was problematic due to the fact that in order to get around this issue, certain

security features of the Android operating system would have to be disabled and re-enabled

during the installation of our app. Therefore, wary of the ethical and moral implications of

compromising the security of users, we decided to combine both the entrance and exit surveys

into one four question entrance survey.

We chose to set up our booth outside of the Visitor Center to get as many people as

possible to answer the survey. Additionally, we collaborated with the WPI Carbon Footprint

Team, that was doing a consecutive study on Acadia National Park’s environmental impacts to

create a poster to attract visitors:

31

Figure 3.5: Poster that was shown to visitors. Adapted from “Poster for Acadia Visitor Study” by Alatiq, A. 2019. Adapted with

permission.

After researching what should be included in the poster, we decided that a QR code that

will link to a website to download the application will be best for our needs, since it would

attract visitors to the poster regardless if the application was available to download or not.

According to an experimental study conducted by the ​Journal of Business Research​, while the

increased complexity in an advertisement containing a QR code may attract curious customers, if

a brand has a perceived fit with the QR code itself, less curious customers will also be attracted

to it (Okazaki, Navarro, Mukherji, & Plangger, 2017). As such the choice of using a QR code

32

alongside WPI branding to advertise the application will attract more people to the booth, as WPI

is well known in the northeastern United States as a more technical university.

Finally, while we were on premises for peak times during the hours of 10:30 a.m. to 1:30

p.m. in order to get data from as many people as possible, we also wanted to broaden our sample

and prevent selection bias (Nadeau et al., 2018). As such, we decided to survey visitors at

off-peak hours such as 9 a.m., when the Visitor Center opens.

In Section 4.1 we describe the results of the survey in more detail.

3.4 Assessment of Data Analysis Software

Data visualization is a valuable tool when collecting large amounts of complex data. In

fact, when deploying Acadia Visitor Study to just a few students, over twenty-five thousand data

points were collected over two weeks. For that reason an important part of our project is to find a

suitable software suite that can visualize the GPS data effectively. We chose two different

programs to bring with us to the project site. The first program we used is called ArcGIS. The

program was developed by ESRI, and is designed to compile geographic data.

33

Figure 3.6: Screenshot of the imported data into Google Earth

The second program we used is a more general data analysis package developed by IBM

called the SPSS statistics pack.

Figure 3.7: Screenshot of an empty spreadsheet in IBM SPSS

Although visualization is effective, looking at the data we directly collect only accounts

for a small fraction of the possible value. By cross referencing our data with other available data,

like weather, we can begin to extract meaningful correlations. Intuitively, predicting visitor

traffic can be straightforward, for example, if a cruise ship is in town, Bar Harbor is going to be

more crowded. However, with more experience, comes greater predictive accuracy. So, park

rangers may be able to more accurately predict the crowds given a more abstract correlation, like

gas prices.

We initially loaded in our GPS data into Google Earth to visualize the paths of our users.

During this process, the data had to be converted into the GPX format so the program could read

the paths of users correctly. To accomplish this, we created a Python script to convert the data

into separate tracks per UID using the GPXPY and SRTM.py modules. Additionally, using the

34

SRTM.py module, we were able to generate elevation data using only the latitude and longitude

values of our data. Unfortunately, when graphing the data, Google Earth does not discriminate

between individual GPS track segments, so the data for some users was unreadable for our

purposes. The source code for the script is located in Appendix G.

Figure 3.8: Screenshot of Google Earth with the available paths of each user and a visualization

This gave us our preliminary visualization technique. Then we transitioned to using

ArcGIS for the visualization of GPS data, which are detailed in Section 4.2. Afterwards, we

attempted to use SPSS Statistics to analyze the data collected, but it was not able to create usable

data in time for the conclusion of the project.

35

4. Results and Analysis

4.1 Survey Results and Analysis

The survey as described in Appendix D was distributed to seventy-three participants over

the course of two days at the Visitor Center. It paints a very interesting picture of the average

first-time visitor of Acadia National Park and their receptiveness to a mobile tracking

application. This is also a continuation and affirmation of survey data that was collected by last

year’s WPI Visitor Tracking team as it was collected in the same location and concerns a similar

subject matter.

The first question had visitors indicate which smartphone platform they used. The main

purpose of this question to assess the viability of the target platform for Acadia Visitor Study and

whether it would be advantageous to port the application to other platforms. The results are

shown as seen below:

Figure 4.1: Results of Question 1

36

The response to this question was surprising because it was not consistent with the

current worldwide mobile operating system market share, where Android represents 71.62

percent of the market as of June 2019 (“Operating system market share,”, 2019.). In comparison,

our results showed that 23.3 percent of respondents indicated that they were Android users

whereas 76.7 percent indicated that they were iOS users. A potential explanation for these

results may be that most people that visit Acadia National Park’s Visitor Center are first-time

guests, indicating that most of them are tourists (Nadeau et al., 2018). Since most people who

will go on vacation have some disposable income, it would make sense that many people would

also be able to afford an iPhone, since they are more expensive, on average, when compared to

many Android phones. Regardless, this may have drastic implications for the deployment of

Acadia Visitor Study, since most people surveyed would be unable to download and use it.

Based on this result, it would be beneficial for future groups to pursue development of an iOS

application in addition to an Android application due to the potential iOS user base.

The second question posed to the visitors was whether they used a phone or a map to

navigate through the park. The main purpose of this question was to assess the viability of

incorporating the existing tracking functionality in Acadia Visitor Study into another application

used for navigation. That way the user would have outside incentive to download and use the

application. The results are shown below:

37

Figure 4.2: Results of Question 2

It appears that there is an almost even split between respondents that would either use a

map, phone, or both for navigation, with 32.9 percent of respondents indicating that they would

use a map, 35.6 percent of respondents indicating they would use a phone, and 31.5 percent of

respondents indicating they would use both while navigating through Acadia National Park.

Additionally, with this data, it can be stated that 67.1 percent of respondents would use their

phone for navigation at some point during their stay at the park. Therefore, there is a pre existing

majority of visitors who already use a mapping application, therefore also using the GPS

functionality on their phones.

The third question posed to the respondents was whether they were comfortable with

companies like Google collecting GPS data from users. The main purpose of this question was to

get the general opinion of tracking software in existing applications. The results are as shown

below:

38

Figure 4.3: Results of Question 3

As seen by the previous graphs, visitors of Acadia National Park generally accept various

tracking technologies employed by companies like Google, with around two-thirds of

respondents feeling comfortable with companies tracking users in general. However, there is a

notable minority of approximately 11 percent of respondents that are absolutely not comfortable

39

with this, and 22.2 percent who would slightly disagree with being comfortable with the

technology. Additionally, many of the respondents that were comfortable with the tracking did

so apathetically, with many stating that Google already had most of their data anyway through its

other products. However, these results changed drastically when an incentive to help the park

was introduced. To assess this, the respondents were asked if they would be willing to download

an application that would have this tracking functionality similar to Google, but it would be

anonymized and would benefit Acadia National Park. The results of this question are graphed

below:

40

Figure 4.4: Results of Question 4

As both graphs clearly show, there was a vastly positive response to downloading a

phone tracking application if it helps the park with visitor congestion and if the data was

collected anonymously. 91.7 percent of respondents indicated that they would be download the

application. However, while the minority of respondents who refused to download the

application is smaller than the previous question, they were more vocal about their refusal citing

reasons such as decreased battery life and low incentive to download the application.

Additionally, these results are not very surprising due to similar studies in the past. For example,

a study that was conducted in Acadia National Park in 2004 to assess the role of GPS trackers as

a way to monitor traffic in the park indicated that 4.6 percent of respondents refused to place

GPS trackers in their cars for the purpose of data collection (Hallo, Manning, Valliere, &

Budruk, 2005).

Although it appears that respondents would be willing to download a mobile tracking

application such as Acadia Visitor Study, many would be unable to download the application

41

because they own an iPhone. However, there is a majority of willing users that a park-sponsored

tracking application could take advantage of.

4.2 Data Visualization

As stated in Section 3.4, we primarily used ArcGIS as a tool to visualize the data

collected through our application. It is a particularly powerful program that converts data into a

visual and intuitive format, portraying the data using multiple parameters. Although ArcGIS can

import both tab-delimited text files and GPX files, the time data collected by Acadia Visitor

Study had to be converted to a string format that ArcGIS could convert easily to a time data type.

So, we created a Python script that takes in a tab-delimited text file and converts it to a useable

time format, which is conveniently also human-readable. The source code of this can be found in

Appendix H.

Figure 4.5: Initial Visualization of the Data Collected using ArcGIS

When initially imported into ArcGIS, it was clear that the location is very accurate and

sensitive to small changes, even in areas with a low data connection. Even though this is the

case, we found that in rare circumstances the data will shift erratically if there is limited

connection to GPS. However, these inaccuracies can easily be edited to make the data more

42

usable. From the data collected, it is observable that the geofencing functionality of our

application is working, as there are no points from outside of Mount Desert Island or the

Schoodic Peninsula after geofencing was implemented. Once the data was cleaned up from

application debugging sessions, we started to create some visualizations.

The first method of visualization was done by using only a single variable. This method

used UID to distinguish the users. This was a good test case because it proves that the program

can be used to distinguish points by many other use characteristics in the future like

demographics for example. In order to accomplish this, we used the Symbology function to

change the color of the data generated by each user to create this graph:

Figure 4.6: Visualization of the Data categorized by UID

43

Figure 4.7: Comparison of data Counts by UID

As seen by both the graph and the chart, it is relatively simple to create a categorical

visualization based on location and on a single variable. Through this process, we also

discovered that ArcGIS can keep track of the frequency of each category used, which is

important when creating heat maps. We then converted the existing data to the GPX format to

get elevation values then graphed the elevation of each user:

Figure 4.8: Visualization of Data Collected with each data point representing a different elevation

44

We discovered that the program has the capability to run basic statistics to generate

charts. Additionally, ArcGIS has native support for analyzing data in a given time range. This is

a very useful feature when looking at historical data, as well as looking at very particular

portions of the data. It also has native animation support, meaning that is has the ability to

animate the visualizations over time. We were able to use these features to give an animated

visualization of a single user that went throughout Mount Desert Island. This animation was

useful to extrapolate much more data than is strictly collected. We were able to understand the

users method of transportation as well as the attractions they visited in the park that day.

We then attempted to produce multivariable visualization. We used the Symbology

function to create graphs that incorporated multiple data fields. Our first attempt was visualizing

both User ID and velocity fields represented by both the color and size of each data point

respectively:

Figure 4.9: Visualization of Data using both velocity and UID.

 As seen by our initial visualization, the WPI students made use of cars along the main

roads, which are demarcated by the larger data points. We then focused on a period of time when

we knew that a student was hiking on one of the trails, and verified that there was a noticeable

difference between the size of the data points when walking and when driving:

45

Figure 4.10: Visualization of a single user driving then hiking

ArcGIS’s heatmapping feature is another way to visualize the data collected. In short,

ArcGIS takes in a ‘weight’ value such as velocity and is able to plot it out on a map based on the

density of the weights of all local data points. As such, we began to have difficulties when using

this visualization, as most of the students tended to stay on the College of the Atlantic campus

because they were staying there. So the density of the data at that location washed out the density

of the students that went out into the park. The heat map below illustrates the weighting issue:

46

Figure 4.11: Initial density visualization

In order to get a more accurate graph showing the most visited areas of the park, we

reduced the area that the heatmap covered to not include the College of the Atlantic. ArcGIS

then dynamically adjusts the weight of the heatmap to only include the weight of the currently

viewed points. Since many of the students either went to Cadillac Mountain to check on sensors,

and to hike, most of the points obtained are from those areas. This can be observed from the

visualization below:

Figure 4.12: Final density visualization

The final visualization that we attempted was to weigh each point based on its velocity,

which unsurprisingly highlights Park Loop Road, roads taken to get to any hiking trails, the road

up to Cadillac Mountain, and Bar Harbor Road, which is used to get on and off of the island.

However, this cannot be used to accurately indicate the travel frequency on specific roads unless

the velocity of all cars on all roads observed are the same. This visualization shows where cars

traveled the fastest.

47

Figure 4.13: Heatmap with velocity as the weight of the data

While the information that was collected as a part of this study has limited value to the

park due to the extremely limited sample set, a few conclusions can be made. First, the data

collected by the application is accurate and can accommodate the low-reception areas of the park

well, as there was little data loss when users were traveling in those areas. Second, ArcGIS is a

feature-rich software package that can make various charts and visualizations using existing data

sets and can easily handle situations with single or multiple variables, making it ideal for

importing large data sets for visualization. Finally, while ArcGIS does not have the ability to do

predictive analytics on its own (although there are extensions to do so), these visualizations show

that Acadia Visitor Study is an effective way to collect data on visitors that will aid the park staff

in handling congestion.

Looking to the future, the data that we collected has useful applications for many of the

problems that the park faces. However, there is a potential for much deeper analysis. Assuming

that the park can get an app to many visitors, they will be able to collect millions of data points a

year. These data points will plot similarly to the data that we have already visualized. However,

the trends that emerge will be much more meaningful. The concept of predictive analytics is

nothing more that enhanced observation: when enough data is collected over time, patterns will

begin to appear. Direct causality for a trend may not be immediately obvious, but given enough

48

observations, the certainty with which you can predict outcomes increases (Abbasi, Lau, &

Brown, 2015). Therefore, when the park has millions of data points over several years, they will

be able to accurately predict the behavior of visitors before they ever arrive.

To demonstrate this, we created mockups as to how this data could be visualized and

interpreted:

Figure 4.14: Mockup visualizations of a two days in Mount Desert Island where gas prices are extremely low (left) and where

they are higher (right).

49

Figure 4.15: Mockup visualizations of a two days in Mount Desert Island where a cruise ship is docked (top) and where a cruise

ship is not docked (bottom).

Figure 4.16: Mockup visualizations of a two days in Mount Desert Island before the Final Transportation Plan goes into effect

(left) and afterwards (right).

50

As seen by these mockup visualizations, predictive analysis could be used to analyze a

wide variety of variables such as fluctuating gas prices, cruise ship schedules or even the roll out

of the Transportation Plan itself. For instance, the first mockup visualization (Figure 4.14), when

gas prices are low, Route 3 and Park Loop Road are the most visited destinations in the park due

to the fact that more visitors could travel to Acadia National Park by car from outside of the

island. In contrast, when gas prices are higher, as seen by the right figure, less people could

potentially arrive in the park by car and therefore rely on the Island Explorer to get around the

park. The various stops of the Island Explorer are highlighted in that mockup highlighted. In the

second mockup (Figure 4.15), whenever a cruise ship is docked, the most densely traveled area

could be Bar Harbor, whereas whenever it is not docked, the total density of visitors can be

distributed throughout the park more evenly and the data would become less washed out. Finally,

in the last mockup (Figure 4.16), it shows that before the Final Transportation Plan is in effect,

the most densely traveled areas could be at the main attractions such as the Jordan Pond House

and Cadillac Mountain, whereas after it takes effect, the visitation could be much more spread

out to other areas of Mount Desert Island.

Predictive analysis can help the park in many ways. First, they can transition from being

reactive to traffic patterns, to being proactive in dealing with excessive traffic days. They are

working with a limited amount of resources so efficiency is the key. When more visitors come to

the park many of the services the park supplies are spread thin. For instance, over the July 4th

weekend of this year, park officials and emergency responders at Acadia National Park were

struggling to keep up with the demand of visitors. There were over seven-hundred radio calls to

park officials, and many common roads such as Ocean Drive were temporarily shut just to

respond to these calls because traffic had become such a barrier to emergency vehicles (Broom,

2019). Therefore, predictive analytics can enable the park to preemptively place their resources

in the most useful locations, hopefully circumventing, or preventing such traffic issues all

together. Overall, Acadia Visitor Study has the potential to collect the raw data to make this

possible.

51

4.3 Possible Improvements

There were several aspects of the project that could have been improved to enhance the

overall outcome of the research. The most notable issue was with getting the app onto the phones

of users. This issue arose late in the project, and there was not enough time to respond

effectively. Google Play Protect, as previously mentioned, labeled the app as malicious software.

Since the application was being installed via .APK file, not through the Google Play Store, and

because the previous group did not have the same problem, the assumption was made that google

would not block the application from getting onto all devices. However, Google had updated

their security policies since the last project, meaning that Google Play Protect now scans all

.APK files downloaded onto the device. Had we looked into the security regulations much earlier

in the development process, accommodating Google’s security requirements would have been

possible.

Although the application was not successfully roll out to the public, the visitor survey

uncovered another piece of data that shows room for improvement: 76.7 percent of all the

visitors polled use iOS. The Android development platform was chosen because our team had

more experience in Java, and thought Google had less strict app regulations. However, given the

survey findings, it is clear; the application should have been developed for iOS first in order to

get the app into the hands of as many users as possible.

Many visitors were apathetic towards large companies taking their data, or they saw it as

a worthwhile tradeoff for the services those companies provide. The initial design of the exit

survey was conscious of user privacy and refrained from asking them any identifying questions.

This sacrificed useful data, like demographics and state residence for the users’ peace of mind.

However, the survey data indicates that the exit survey could have had more detailed

demographics questions without unsettling the majority of users. Therefore the exit survey

should have included questions regarding detailed user information.

When developing the recommendations for the park to take this project to a larger scale,

the team reached out to another popular park application: Chimani. The goal was to begin

52

facilitating a relationship between the park and Chimani so that at some point in the future, they

could incorporate the app’s functionality into their preexisting code. However, it takes much

more time than what was available to generate a strong enough relationship to move forward

with such a project, the two companies would have needed to begin to generate that relationship

much earlier. Working so closely together would necessitate preliminary legal work that is

beyond the scope of the project, and would take too long to complete. In the future, a project

should either be more focused on generating such relationships from the start, or not get

involved.

53

5. Recommendations and Conclusion
The main goal of the application is to show the park that there is value in taking on this

project themselves, and rolling it out in a much larger scale. With this in mind, we came up with

three possible solutions:

5.1 Future WPI Involvement in Development and Hosting

Figure 5.1: Acadia Vehicle Use Study Application

First, we suggest that WPI continues to support the development of Acadia Visitor Study

for future use. This solution is beneficial because both the application and server are already

written, making deployment easy for future groups. Additionally, the modularity of the

application makes it possible for developers unfamiliar with Android Studio to expand the

functionality of the application to suit their needs. For instance, there is a fork of Acadia Visitor

Study called Acadia Ranger Study for use with rangers in Acadia National Park. In all, with the

existing source code, it was easy to modify the existing code and re-brand the application for

54

another research groups use, with the total development time of the fork only taking a few days

to implement. Also, there is another research group from WPI that is going to use our application

in Glacier National Park to assess traffic congestion. Finally, the application’s source code is

licensed under the Apache v2 license, making it available for other groups outside of WPI to use.

 However, there are a few drawbacks for continuing this solution. First, because of the

nature of the IQP project, there will be many developers working on the project across several

different years, which is not conducive to progress. Additionally, there is no iOS version

developed yet, which could make visitor data collection difficult for future groups since

according to the survey results from Section 4.1, most visitors have iPhones. However, the server

will not have to be re-written to accommodate the new application as long as it sends a POST

request with the same information and format as Acadia Visitor Study. Finally, as previously

mentioned, distributing the application as an APK file was proven to be impractical due to

restrictions from Google Play Protect, making publishing on the Google Play Store to be the only

realistic option to get the application to users. It would take a considerable amount of time to

publish this application on the Google Play Store due to the standards required.

5.2 Incorporation of App Functionality into Existing Applications

 Our second recommendation is to insert the functionality of our app into an existing

application. This has several benefits. First, we can benefit from the existing user base, and many

people already use navigational applications in the park so there is already an incentive to use the

application. With this in mind, we reached out to a developer who specializes in hiking

applications for mobile devices, Chimani, to see if there was an interest. In response, they

expressed an interest in expanding their application to incorporate tracking functionalities to

benefit the park. This is a large opportunity for the park due to the potential user base, as

observed by our survey results in Section 4.1. Chimani focuses on both iOS and Android

development. So their application would be able to reach nearly all of the people that go into the

park. Finally, since both iOS and Android applications are already written, it would not take

much time to develop this functionality.

55

However, this approach has one major drawback: if the application ultimately used for

incorporation is not what the average visitor would use while in the park, then it would not be

effective at collecting data, since users do not have an incentive to use it. This can be mitigated

by conducting studies that would assess what users at Acadia National Park would want to use.

Then, a final decision could be made as to what application would be best to incorporate this

tracking functionality. The park would also be unable to expand or add any features since they

are not the main developer of the application.

5.3 OnCell

Finally, our strongest recommendation is that the park develop an application using

OnCell’s platform. OnCell is a development platform specially designed for informational GPS

tours. It requires no coding on the consumer side. OnCell has worked with over seventy different

national parks and monuments building GPS based tour and informational applications (Gilbert,

2019). Not only have they worked with the National Park Service in the past, they have just

finished developing an application for the Friends of Acadia called Acadia Quest. This

application provides interactive travel suggestions, blending information about the park with

information about Friends of Acadia. The app also supports a GPS-based badge system, where

registered teams can hike around the park competing to get the most badges. Friends of Acadia

plans to expand their application to include things like online donation, volunteer registration,

and park alerts (Steele, 2019). This preliminary application has paved the way for a smooth

transition to the development of an official Acadia National Park app.

Drawing from the application developed for Friends of Acadia, the cost to build the

application will be around $2500, and there will be a subsequent subscription-based charge for

support, which will vary depending on the application’s maintenance needs. In order to get the

application operational with just the visitor tracking functionality, it will take the park an

estimated 100 work hours to complete (Steele, 2019). Although the analytics still would not be

done for the park, this is still the least disruptive way for them to get the GPS data they need.

56

OnCell provides a drag-and-drop interface for easy app design, and will take care of all

the technical needs of the project. This lowers the technical barrier to entry for the park. As

mentioned above they will take care of all application support such as system updates. However,

the platform that OnCell provides does not support continuous GPS data collection. But, OnCell

indicated that they would be willing to work with their development team to generate a slightly

modified platform that will accommodate the needs of the project.

OnCell is in the process of becoming the official application vendor of the National Park

Service, and Acadia National Park is in dire need of analytical solutions to their congestion

issues. The barrier for Acadia National Park to develop this application is very low, and there are

experienced individuals, individuals who have worked with OnCell for over two years, that are

close to the park. They will act as a valuable resource when the park decides to develop their

own OnCell application.

5.4 Conclusion

In all, the project sought to accomplish three objectives. The first objective was to

develop an application as a proof-of-concept, designed only to track the GPS location of visitors

to Acadia National Park as a way to monitor visitor congestion. While the application was

operational in time to distribute to visitors, it was rejected by Google Play Protect, preventing its

distribution. This was crucial because asking members of the public to disable this feature safety

feature was not an option due to ethical concerns.

The rejection of the application caused a pivot to the second part of our project. We

decided we could get sufficient data for assessment using ArcGIS from just WPI students.

However, the survey that was in the application could not accurately represent the visitors if it

was only filled out by WPI students. Therefore, we administered an edited version of the survey

that was in the application to visitors at the Visitor Center, thus concluding there is a willing user

base for Acadia Visitor Study, even though we were not able to distribute it to them.

57

Once the data was collected, we transitioned to the third and final phase of the project.

We analyzed the data, and generated several options for moving forward with a large scale

version of our application. We generated data visualizations using ArcGIS. From these

visualizations we were able to show the wealth of data that can be collected from just the GPS

data of the visitor. We then explored the future possibilities of big data analysis on a larger

hypothetical data pool. We generated three recommendations: that WPI continue the

development of the project, Acadia National Park incorporates the data collection functionality

of our application into a preexisting application, or that they develop their own application from

scratch. Regardless of what recommendations Acadia National Park pursues, they could aid in

monitoring visitor congestion in the coming years.

58

Bibliography

Abbasi, A., Lau, R. Y. K., & Brown, D. E. (2015). Predicting behavior. ​IEEE Intelligent

Systems​, ​30​(3), 35–43.​ ​https://doi.org/10.1109/MIS.2015.19

23rd Annual Highway Report. (2018, February 8). Retrieved April 20, 2019, from Reason

Foundation website:

https://reason.org/policy-study/23rd-annual-highway-report/maintenance-disbursements-

per-mile/​.

Beck, K., Beedle,M., Bennekum,A., Cockburn,A., Cunningham,W., Fowler,M.,...Thomas,D.

(2001). ​Manifesto For Agile Software Development.​ Retrieved April 9, 2019, from

http://agilemanifesto.org/​.

Bell, D. (2004, September 15). ​The class diagram​. Retrieved April 3, 2019, from IBM

Developer website:

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/se0

4/bell/index.html​.

Broom, Dick. (2019, July 11). Acadia was ‘swamped’ with hundreds of calls for help over July

Fourth holiday. Retrieved July 25, 2019, from Press Herald website:

https://www.pressherald.com/2019/07/11/acadia-national-park-swamped-with-calls-for-a

ssistance-over-july-4th-holiday/

Budget Prioritizes Improvements to Critical Park Infrastructure while Saving Tax Dollars -

Office of Communications (U.S. National Park Service). (2019, March 11). Retrieved

April 14, 2019, from National Park Service website:

https://www.nps.gov/orgs/1207/03-11-2019-budget-proposal.htm​.

Cosmopulos, E., Gaulin, J., Jauris, H., Morisseau, M., & Quevillon, E. (2017).

Preparing Acadia National Park for Modern Tourist Congestion. ​(Undergraduate

 Interactive Qualifying Project No. E-project-072717-222628). Retrieved

 from Digital WPI: ​https://digitalcommons.wpi.edu/iqp-all/2746/​.

https://doi.org/10.1109/MIS.2015.19
https://doi.org/10.1109/MIS.2015.19
https://reason.org/policy-study/23rd-annual-highway-report/maintenance-disbursements-per-mile/
https://reason.org/policy-study/23rd-annual-highway-report/maintenance-disbursements-per-mile/
https://reason.org/policy-study/23rd-annual-highway-report/maintenance-disbursements-per-mile/
http://agilemanifesto.org/
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell/index.html
https://www.pressherald.com/2019/07/11/acadia-national-park-swamped-with-calls-for-assistance-over-july-4th-holiday/
https://www.pressherald.com/2019/07/11/acadia-national-park-swamped-with-calls-for-assistance-over-july-4th-holiday/
https://www.pressherald.com/2019/07/11/acadia-national-park-swamped-with-calls-for-assistance-over-july-4th-holiday/
https://www.nps.gov/orgs/1207/03-11-2019-budget-proposal.htm
https://www.nps.gov/orgs/1207/03-11-2019-budget-proposal.htm
https://digitalcommons.wpi.edu/iqp-all/2746/

59

De Urioste-Stone, S. M., Scaccia, M. D., & Howe-Poteet, D. (2015). Exploring visitor

perceptions of the influence of climate change on tourism at Acadia National Park,

Maine. Journal of Outdoor Recreation and Tourism, 11, 34–43.

https://doi.org/10.1016/j.jort.2015.07.001​.

Download Android Studio and SDK tools. (2019). Retrieved April 17, 2019, from Android

Developers website:​ ​https://developer.android.com/studio​.

ESRI (2019). About ArcGis. Retrieved from

https://www.esri.com/en-us/arcgis/about-arcgis/overview.

Fields, S., Gao, W., Goodale. L., Kirch, R., & Lin, J.. (2016). ​The Carbon Footprint of Acadia

National Park​ (Undergraduate Interactive Qualifying Project No.

E-project-072716-191454). Retrieved from Digital WPI:

https://web.wpi.edu/Pubs/E-project/Available/E-project-072716-191454/unrestricted/Bar

_Harbor_2016_Carbon_Footprint_IQP.pdf.

Fire of 1947 - Acadia National Park (U.S. National Park Service). Retrieved March 28, 2019,

from https://www.nps.gov/acad/learn/historyculture/fireof1947.htm

Geissler, G. L., & Rucks, C. T. (2011). ​The overall theme park experience: A visitor satisfaction

tracking study​. ​Journal of Vacation Marketing​, ​17​(2), 127–138.

https://doi.org/10.1177/1356766710392480

Gilbert, J. (2019, July 29). Personal Interview.

Hallo, J. C., & Manning, R. E. (2009). Transportation and recreation: A case study of visitors

driving for pleasure at Acadia National Park. ​Journal of Transport Geography​, ​17​(6),

491–499.​ ​https://doi.org/10.1016/j.jtrangeo.2008.10.001

Hallo, J. C., Manning, R. E., Valliere, W., & Budruk, M. (2005). A Case Study Comparison of

Visitor Self-reported Travel Routes and GPS Recorded Travel Routes. ​In: Bricker, Kelly,

Comp., Ed. 2005. Proceedings of the 2004 Northeastern Recreation Research

https://doi.org/10.1016/j.jort.2015.07.001
http://www.birds.cornell.edu/citscitoolkit/conference/2012/agenda/speakers/miller-rushing/
https://developer.android.com/studio
https://developer.android.com/studio
https://www.nps.gov/rlc/schoodic/education.htm
https://doi.org/10.1177/1356766710392480
https://doi.org/10.1016/j.jtrangeo.2008.10.001
https://doi.org/10.1016/j.jtrangeo.2008.10.001

60

Symposium. Gen. Tech. Rep. NE-326. Newtown Square, PA: U.S. Department of

Agriculture, Forest Service, Northeastern Research Station: 172-177.​ Retrieved from

https://www.fs.usda.gov/treesearch/pubs/9588

Hamill, P. (February, 2009). ​Unit test frameworks​. Sebastopol (CA): O’Reilly.

History of Acadia - Acadia National Park (U.S. National Park Service). (n.d.). Retrieved March

28, 2019, from ​https://www.nps.gov/acad/learn/historyculture/history-of-acadia.htm

IBM (2019). Features and modules. Retrieved from

https://www.ibm.com/products/spss-statistics/details

Kaiser, J. (2018). ​Acadia: The Complete Guide​ (5th ed.). Destination Press & ITS Licensors.

Lazar, J., Feng, J. H., & Hochheiser, Harry. (2010). ​Research Methods in Human-Computer

Interaction 2nd Edition​. Wiley.

National Park Service. (2019). ​Acadia National Park Final Transportation Plan Environmental

Impact Statement​. 282.

Nadeau, G. T., Charbonneau, J. L., Caltabiano, J. P., & Fischler, M. A. (2018). ​Visitor Cell

Phone Application: An Innovative Design to Monitor Visitor Mobility in Acadia

National Park​. Worcester Polytechnic Institute.(Undergraduate Interactive Qualifying

E-project-080218-145202). Retrieved from Digital WPI

http://www.wpi.edu/Pubs/E-project/Available/E-project-080218-145202/unrestricted/traf

ficIQP.pdf​.

Pencheon, D. (2012). People and planet: From vicious cycle to virtuous circle: Overpopulation,

poverty, and environmental degradation share common solutions. ​BMJ: British Medical

Journal,​ ​345​(7864), 9-9. Retrieved from ​http://www.jstor.org/stable/43512334

Okazaki, S., Navarro, A., Mukherji, P., & Plangger, K. (2017). The curious versus the

overwhelmed: Factors influencing QR codes scan intention. ​Journal of Business

Research​.​ ​https://doi.org/10.1016/j.jbusres.2017.09.034

Operating system market share. (2019). Retrieved July 16, 2019, from NetMarketShare website:

https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter

https://www.fs.usda.gov/treesearch/pubs/9588
https://www.fs.usda.gov/treesearch/pubs/9588
https://www.nps.gov/acad/learn/historyculture/history-of-acadia.htm
http://www.wpi.edu/Pubs/E-project/Available/E-project-080218-145202/unrestricted/trafficIQP.pdf
http://www.wpi.edu/Pubs/E-project/Available/E-project-080218-145202/unrestricted/trafficIQP.pdf
http://www.jstor.org/stable/43512334
https://doi.org/10.1016/j.jbusres.2017.09.034
https://doi.org/10.1016/j.jbusres.2017.09.034
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D

61

%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in

%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%2

2Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platf

orm%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22

platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart

%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segmen

ts%22%3A%22-1000%22%7D

Quick History of the National Park Service (U.S. National Park Service). (2018, May 14).

Retrieved April 14, 2019, from National Park Service website:

https://www.nps.gov/articles/quick-nps-history.htm

Schroeder, T., Goddard, S., & Ramamurthy, B. (2000). Scalable Web server clustering

technologies. ​IEEE Network​, ​14​(3), 38–45.​ ​https://doi.org/10.1109/65.844499​.

Santana-Jiménez, Y., & Hernández, J. M. (2011). Estimating the effect of overcrowding on

tourist attraction: The case of Canary Islands. ​Tourism Management​.

https://doi.org/10.1016/j.tourman.2010.03.013​.

Server - Definition and Details. (2019). Retrieved April 20, 2019, from

https://www.paessler.com/it-explained/server​.

Steele, P. (2019, July 29). Personal Interview.

The Acadia Experience. (2019). Retrieved March 28, 2019, from Friends of Acadia website:

https://friendsofacadia.org/programs/sustainable-visitation/​.

Tao, L. W. (2017). ​The drawbacks of housing overcrowding characteristic to rural migrants’ life

in Beijing​. ​HBRC Journal​, ​13​(3), 315–320.​ ​https://doi.org/10.1016/j.hbrcj.2015.11.002

Turkewitz, J., & Fremson, R. (2017, December 22). National Parks Struggle With a Mounting

Crisis: Too Many Visitors. ​The New York Times​. Retrieved from

https://www.nytimes.com/2017/09/27/us/national-parks-overcrowding.html

Toto, E. (2019). Ermal Toto - Home Page. Retrieved April 23, 2019, from

http://users.wpi.edu/~toto/

https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D
https://www.nps.gov/articles/quick-nps-history.htm
https://www.nps.gov/articles/quick-nps-history.htm
https://doi.org/10.1109/65.844499
https://doi.org/10.1109/65.844499
https://doi.org/10.1016/j.tourman.2010.03.013
https://doi.org/10.1016/j.tourman.2010.03.013
https://www.paessler.com/it-explained/server
https://www.paessler.com/it-explained/server
https://www.schoodicinstitute.org/about/partnership-with-acadia-national-park/
https://friendsofacadia.org/programs/sustainable-visitation/
https://friendsofacadia.org/programs/sustainable-visitation/
https://doi.org/10.1016/j.hbrcj.2015.11.002
https://doi.org/10.1016/j.hbrcj.2015.11.002
https://www.nytimes.com/2017/09/27/us/national-parks-overcrowding.html
http://users.wpi.edu/~toto/
http://users.wpi.edu/~toto/

62

Walser, L. (2017, February 8).​ How Mission 66 Shaped the Visitor Experience at National Parks

| National Trust for Historic Preservation​. Retrieved April 14, 2019, from National Trust

for Historic Preservation website:

https://savingplaces.org/stories/how-mission-66-shaped-the-visitor-experience-at-national

-parks

Walt Disney World Statistics. (2017). Disney World Statistics - The Truly Fascinating Numbers

Behind Disney. Retrieved April 19, 2019, from Magic Guides website:

https://magicguides.com/disney-world-statistics/

Wells, D.(October 8th, 2013). ​Extreme Programming: A Gentle Introduction​. Retrieved April 9,

2019, from​ ​http://www.extremeprogramming.org

Yellowstone National Park Protection Act (1872) - Yellowstone National Park (U.S. National

Park Service). (2018, July 13). Retrieved April 14, 2019, from National Park Service

website:

https://www.nps.gov/yell/learn/management/yellowstoneprotectionact1872.htm

Zinke Announces $35.8 Billion Added to U.S. Economy in 2017 due to National Park Visitation

- Office of Communications (U.S. National Park Service). (2018, April 25). Retrieved

April 14, 2019, from National Park Service website:

https://www.nps.gov/orgs/1207/04-25-2018-economic-impact.htm

Figures:

Figure 1​. Icon for Acadia Visitor Study. Reprinted from “Icon for Acadia Visitor Study” by

Alatiq, A, 2019. Used with permission.

Figure 1.1​. Number of recreational visitors to Acadia National Park in the United States from

2008 to 2018 (in millions). Reprinted [or adapted] from ​Statista.com​, by National Park Service,

2019,

https://www.statista.com/statistics/253808/number-of-visitors-of-acadia-national-park-in-the-us/.

https://savingplaces.org/stories/how-mission-66-shaped-the-visitor-experience-at-national-parks
https://savingplaces.org/stories/how-mission-66-shaped-the-visitor-experience-at-national-parks
https://savingplaces.org/stories/how-mission-66-shaped-the-visitor-experience-at-national-parks
https://magicguides.com/disney-world-statistics/
https://magicguides.com/disney-world-statistics/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
https://www.nps.gov/yell/learn/management/yellowstoneprotectionact1872.htm
https://www.nps.gov/yell/learn/management/yellowstoneprotectionact1872.htm
https://www.nps.gov/orgs/1207/04-25-2018-economic-impact.htm
https://www.nps.gov/orgs/1207/04-25-2018-economic-impact.htm
https://netmarketshare.com/operating-system-market-share.aspx?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Mobile%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22platform%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22platformsDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222018-07%22%2C%22dateEnd%22%3A%222019-06%22%2C%22segments%22%3A%22-1000%22%7D

63

Figure 2.1​. Main Acadia National Park map, showing the majority of the park located on Mount

Desert Island near Bar Harbor. Reprinted [or adapted] from ​Wikimedia Commons​, by National

Park Service, 2013, ​http://npmaps.com/wp-content/uploads/acadia-map.jpg​.

Figure 3.5.​ Poster that was shown to visitors. Adapted from “Poster for Acadia Visitor Study” by

Alatiq, A. 2019. Adapted with permission.

http://npmaps.com/wp-content/uploads/acadia-map.jpg

64

Appendix A: Unit Testing
Unit testing is a process that happens during app development. A program is made up of

many small tasks, that work together in intricate ways. When a program crashes any number of

these interactions could be the cause. Unit testing isolates each of these tasks and tests their

functionality to quickly find the problem and is important for project management and

integration (Hamill, 2009). In our project, we will be using the white box method for unit testing

our application. White box testing is when the person testing the code, typically the software

developer, knows how it was written so that changes can be made real time (Wells, 2013).

Additionally unit tests can be reused as the project increases in complexity each iteration, which

allows testing for any feature regressions. We will be using JUnit testing suite to test the

application . This is the best solution for our team because JUnit interfaces very easily with

Android Studio and we have had experience working with JUnit in the past for undergraduate

work. Overall, test-driven design is essential to the agile development process.

Appendix B: Survey Questions

● What type of phone do you have?

● Do you use a phone or a map to navigate throughout the park?

● I feel comfortable with companies like Google collecting my GPS data.

● If the tracking benefits Acadia National Park, I would be willing to use a similar

anonymous tracking application in the future.

Appendix C: Interview Questions
The answers provided during this interview with Mr. Toto will be paraphrased for brevity.

Question 1​: How will we be able to handle spotty coverage in the park, since the application
needs internet access in order to send data? How will we be able to store data locally?

65

Answer​: You will need to have a SQLite database on the phone itself, and you can record the
data as JSON objects or just plaintext. The best way would be to record them as JSON objects.
Then, you can sync that SQLite database with another SQLite database on the server. They are
identical copies, except with the app you can just purge it, since you don’t want it to grow too
much. Make sure to sync with the server once you have the data you need.

Question 2​: What steps do we need to take to ensure the security of the individuals’ location
data when using the application?
Answer​: First, you should have an SSL certificate on the server to ensure that the data is
encrypted and make sure the application can communicate with the encrypted port. Second, do
not store any personally identifiable data on the server itself. The network traces can technically
identify the person, but do not store their name or anything that identifies them. Come up with a
unique identifier per person and base the data on that.

Follow up​: Is there a universal common standard for doing this?
Answer​: It depends. Of course, you could get the phone ID that clearly identifies them. If you
want to go a step further, you generate a random number and you make sure the number does not
already exist on the database itself. Then you would store everything based on that number. It is
important that you do not use the same number for two people. You should generate the number
on the server, which is how the session will start, and then they submit the data with that number.

Question 3​: We want to be able to disable the application at certain times, especially when the
visitor would exit the park. How would we be able to handle that situation?
Answer: ​You can create a geofence inside of the application around the GPS locations of the
parks. This way, if a user were to step outside of the bounds of the park, the background process
running the data collection can be disabled. Thus, the tracking component of the application will
be disabled until the user turns it back on.

Question 4​: Since we do not need to display the person’s location while using the app, we have
thought to strip down the Google Maps API to only track user movements throughout the park.
Is this the correct approach?
Answer:​ Most likely, you would not need the Google Maps API at all. You could map Acadia
National Park with a set of points instead of using the API to do that for you and you could
create your own geofence. You could figure out a polygon of where the park is and detect if you
are in that polygon to detect if you are in the park or not. You should also put a buffer so there is
a margin of error in visitor detection.

Follow up:​ So, is accessing the GPS data on the phone itself similar to a camera or other sensors
on the phone itself?

66

Answer:​ Yes, it is built-in. The GPS is available to apps to use and you do not need an API to
gain access to it. While Android Studio may recommend the use of the Google Maps API to
track user location, the location sensors on the phone itself could give the current latitude,
longitude, and likely altitude depending on the phone. If the altitude is not provided from the
phone, you will likely need the Google Maps API to do so.

Appendix D: Apache 2.0 License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined
by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source" form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

67

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this
definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic
mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by

68

combination of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses granted to You
under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

You must give any other recipients of the Work or Derivative Works a copy of this
License; and

You must cause any modified files to carry prominent notices stating that You changed
the files; and

You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents of the NOTICE file are for
informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the
NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of Your
modifications, or for any such Derivative Works as a whole, provided Your use, reproduction,
and distribution of the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms
and conditions of this License, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any separate license agreement you
may have executed with Licensor regarding such Contributions.

69

6. Trademarks. This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for reasonable and
customary use in describing the origin of the Work and reproducing the content of the NOTICE
file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely
responsible for determining the appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate and
grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty,
indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Appendix E: Application Source Code
MainActivity.java
package​ com.example.acadiavisitorstudy;

import​ android.Manifest;

70

import​ android.content.BroadcastReceiver;
import​ android.content.ComponentName;
import​ android.content.Context;
import​ android.content.DialogInterface;
import​ android.content.Intent;
import​ android.content.IntentFilter;
import​ android.content.ServiceConnection;
import​ android.content.SharedPreferences;
import​ android.content.pm.PackageManager;
import​ android.location.Location;
import​ android.os.Bundle;
import​ android.os.IBinder;
import​ android.preference.PreferenceManager;
import​ android.support.annotation.NonNull;
import​ android.support.v4.app.ActivityCompat;
import​ android.support.v4.content.ContextCompat;
import​ android.support.v4.content.LocalBroadcastManager;
import​ android.support.v7.app.AlertDialog;
import​ android.support.v7.app.AppCompatActivity;
import​ android.util.Log;
import​ android.view.View;
import​ android.widget.Button;
import​ android.widget.Toast;

import​ com.google.android.gms.location.FusedLocationProviderClient;

public​ ​class​ ​MainActivity​ ​extends​ ​AppCompatActivity​ {

// Middle button

static​ ​private​ Button trackingButton;

// Used to check button state (should be ported to a preference

static​ ​private​ ​boolean​ ifNotTracking;

private​ FusedLocationProviderClient fusedLocationClient; ​// Fused Location Client

// Class tag

private​ ​static​ ​final​ String TAG = ​"MainActivity"​;

// Permission code number (doesn't matter what it is)

private​ ​static​ ​final​ ​int​ LOCATION_PERMISSION_CODE = ​0​;

// ID for the notification channel

private​ ​static​ ​final​ String CHANNEL_ID = ​"AcadiaVisitorStudy"​;

// A reference to the service used to get location updates.

private​ LocationUpdatesService mService = ​null​;

// The BroadcastReceiver used to listen from broadcasts from the service.

private​ MyReceiver myReceiver;

// Tracks the bound state of the service.

private​ ​boolean​ mBound = ​false​;

private​ ​final​ ServiceConnection mServiceConnection = ​new​ ServiceConnection() {

71

 @Override

 public​ ​void​ ​onServiceConnected​(ComponentName name, IBinder service) ​{
 Log.d(TAG, ​"onServiceConnected: This method is called"​);
 LocationUpdatesService.LocalBinder binder = (LocationUpdatesService.LocalBinder) service;

 mService = binder.getService();

 mBound = ​true​;
 }

 @Override

 public​ ​void​ ​onServiceDisconnected​(ComponentName name) ​{
 mService = ​null​;
 mBound = ​false​;
 }

};

/**

 * Receiver for broadcasts sent by {​@link​ LocationUpdatesService}.
 */

private​ ​class​ ​MyReceiver​ ​extends​ ​BroadcastReceiver​ {
 @Override

 public​ ​void​ ​onReceive​(Context context, Intent intent) ​{
 Location location = intent.getParcelableExtra(LocationUpdatesService.EXTRA_LOCATION);

 if​ (location != ​null​) {
 Toast.makeText(MainActivity.​this​, LocationHelper.getLocationText(location),
 Toast.LENGTH_SHORT).show();

 }

 }

}

@Override

protected​ ​void​ ​onCreate​(Bundle savedInstanceState) ​{
 super​.onCreate(savedInstanceState);

 myReceiver = ​new​ MyReceiver();

 LocationHelper.requestingLocationUpdates(​this​);

 setContentView(R.layout.activity_main);

 trackingButton = (Button) findViewById(R.id.tracking_button);

 // If there is no user ID, we want to create it

 // If the application is not launched for the first time

 // reset the buttons.

 ifNotTracking = ​true​;
}

@Override

protected​ ​void​ ​onStart​() ​{
 super​.onStart();

 PreferenceManager.getDefaultSharedPreferences(​this​);

 // Bind to the service. If the service is in foreground mode, this signals to the service

72

 // that since this activity is in the foreground, the service can exit foreground mode.

 bindService(​new​ Intent(​this​, LocationUpdatesService.class), mServiceConnection,
 Context.BIND_AUTO_CREATE);

}

@Override

protected​ ​void​ ​onResume​() ​{
 super​.onResume();
 LocalBroadcastManager.getInstance(​this​).registerReceiver(myReceiver,
 new​ IntentFilter(LocationUpdatesService.ACTION_BROADCAST));
 SharedPreferences settings = getSharedPreferences(getString(R.string.pref_file),

Context.MODE_PRIVATE);

 ifNotTracking = settings.getBoolean(​"ifNotTracking"​, ​true​);
 changeButtonState(!ifNotTracking);

}

@Override

protected​ ​void​ ​onPause​() ​{
 LocalBroadcastManager.getInstance(​this​).unregisterReceiver(myReceiver);
 super​.onPause();

}

@Override

protected​ ​void​ ​onStop​() ​{
 if​ (mBound) {
 // Unbind from the service. This signals to the service that this activity is no longer

 // in the foreground, and the service can respond by promoting itself to a foreground

 // service.

 unbindService(mServiceConnection);

 mBound = ​false​;
 }

 SharedPreferences s = getSharedPreferences(getString(R.string.pref_file),

Context.MODE_PRIVATE);

 s.edit().putBoolean(​"ifNotTracking"​, ifNotTracking).apply();
 super​.onStop();

}

/***

 * Method to start collecting data

 * ​@param​ view
 */

public​ ​void​ ​startCollection​(View view) ​{
 if​ (ifNotTracking)
 {

 // Check location permissions

 if​ (ContextCompat.checkSelfPermission(​this​, Manifest.permission.ACCESS_FINE_LOCATION)
 != PackageManager.PERMISSION_GRANTED) {

 // Need to request permissions.

 requestLocationPermission();

 } ​else​ {
 // Notify the user that the tracking has started

 Toast.makeText(​this​, R.string.on_track_start, Toast.LENGTH_SHORT).show();

 changeButtonState(ifNotTracking);

73

 // Start up the location service

 mService.requestLocationUpdates();

 ifNotTracking = ​false​;
 }

 } ​else​ {
 // Stop the foreground service

 mService.removeLocationUpdates();

 changeButtonState(ifNotTracking);

 // Notify the user that we are not tracking anymore (we promise)

 Toast.makeText(​this​, R.string.on_track_stop, Toast.LENGTH_SHORT).show();

 ifNotTracking = ​true​;
 }

}

/***

 * Changes the state of the tracking button depending on when it is being tracked.

 * ​@param​ ifNotTracking
 */

private​ ​void​ ​changeButtonState​(​boolean​ ifNotTracking) ​{
 if​ (ifNotTracking) {
 // Set to red and stop

 trackingButton.setText(R.string.tracking_button_text_stop);

 trackingButton.setBackgroundResource(R.color.stop_t);

 } ​else​ {
 // Set to green and start

 trackingButton.setText(R.string.tracking_button_text_start);

 trackingButton.setBackgroundResource(R.color.start_t);

 }

}

//comment to check

/***

 * Launches the SurveyActivity activity

 * ​@param​ view
 startActivity(intent);

}

/***

 * Launches the LicenseActivity activity

 * ​@param​ view
 */

public​ ​void​ ​viewLicense​(View view)​{
 Intent intent = ​new​ Intent(​this​, LicensingActivity.class);
 startActivity(intent);

}

/***

 * Launches the InstructionActivity activity

 * ​@param​ view
 */

public​ ​void​ ​viewInstructions​(View view)​{
 Intent intent = ​new​ Intent(​this​, InstructionActivity.class);

74

 startActivity(intent);

}

/**

 * Method to get user permissions about location. Displays a message box if permission is

 * initially denied.

 */

private​ ​void​ ​requestLocationPermission​() ​{
 if​ (ActivityCompat.shouldShowRequestPermissionRationale(​this​,
Manifest.permission.ACCESS_FINE_LOCATION)){

 new​ AlertDialog.Builder(​this​)
 .setTitle(​"Permission needed"​)
 .setMessage(​"Permission is needed to use the GPS of your phone."​)
 .setPositiveButton(​"ok"​, ​new​ DialogInterface.OnClickListener() {
 @Override

 public​ ​void​ ​onClick​(DialogInterface dialog, ​int​ which) ​{
 ActivityCompat.requestPermissions(MainActivity.​this​, ​new​ String[]
{Manifest.permission.ACCESS_FINE_LOCATION}, LOCATION_PERMISSION_CODE);

 }

 })

 .setNegativeButton(​"cancel"​, ​new​ DialogInterface.OnClickListener() {
 @Override

 public​ ​void​ ​onClick​(DialogInterface dialog, ​int​ which) ​{
 dialog.dismiss();

 }

 }).create().show();

 } ​else​ {
 ActivityCompat.requestPermissions(​this​, ​new​ String[]
{Manifest.permission.ACCESS_FINE_LOCATION}, LOCATION_PERMISSION_CODE);

 }

}

/***

 * Required method to handle the resulting permissions.

 * ​@param​ requestCode
 * ​@param​ permissions
 * ​@param​ grantResults
 */

@Override

public​ ​void​ ​onRequestPermissionsResult​(​int​ requestCode, @NonNull String[] permissions, @NonNull
int​[] grantResults) ​{
 if​ (requestCode == LOCATION_PERMISSION_CODE) {
 if​ (grantResults.length > ​0​ && grantResults[​0​] == PackageManager.PERMISSION_GRANTED) {
 Toast.makeText(​this​, ​"Permission Granted"​, Toast.LENGTH_SHORT).show();
 } ​else​ {
 Toast.makeText(​this​, ​"Permission Denied"​, Toast.LENGTH_SHORT).show();
 }

 }

}

@Override

public​ ​void​ ​onSaveInstanceState​(Bundle outState) ​{
 super​.onSaveInstanceState(outState);
 outState.putBoolean(​"ifNotTracking"​, ifNotTracking);

75

}

@Override

protected​ ​void​ ​onRestoreInstanceState​(Bundle savedInstanceState) ​{
 super​.onRestoreInstanceState(savedInstanceState);
 boolean​ currentState = savedInstanceState.getBoolean(​"ifNotTracking"​);

 SharedPreferences settings = getSharedPreferences(getString(R.string.pref_file),

Context.MODE_PRIVATE);

 ifNotTracking = settings.getBoolean(​"ifNotTracking"​, currentState);

 if​ (!ifNotTracking) {
 // Set to red and stop

 trackingButton.setText(R.string.tracking_button_text_stop);

 trackingButton.setBackgroundResource(R.color.stop_t);

 } ​else​ {
 trackingButton.setText(R.string.tracking_button_text_start);

 trackingButton.setBackgroundResource(R.color.start_t);

 }

}

}*/

public​ ​void​ ​launchSurvey​(View view) ​{
 Intent intent = ​new​ Intent(​this​, SurveyActivity.class);
 }

LocationHelper.java (modified from Google’s Location Code Sample)
package​ com.example.acadiavisitorstudy;

import​ android.app.Application;
import​ android.content.Context;
import​ android.location.Location;
import​ android.preference.PreferenceManager;

import​ java.text.DateFormat;
import​ java.util.ArrayList;
import​ java.util.Date;

public​ ​class​ ​LocationHelper​ ​extends​ ​Application​ {

/**

 * Copyright 2017 Google Inc. All Rights Reserved.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

76

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

// Blank constructor

LocationHelper(){}

static​ ​final​ String KEY_REQUESTING_LOCATION_UPDATES = ​"requesting_locaction_updates"​;
static​ ​final​ ​float​ NUMBER_OF_METERS_IN_MILE = ​1609.34f​;

/**

 * Returns true if requesting location updates, otherwise returns false.

 *

 * ​@param​ context The {​@link​ Context}.
 */

static​ ​boolean​ ​requestingLocationUpdates​(Context context) ​{
 return​ PreferenceManager.getDefaultSharedPreferences(context)
 .getBoolean(KEY_REQUESTING_LOCATION_UPDATES, ​false​);

}

/**

 * Stores the location updates state in SharedPreferences.

 * ​@param​ requestingLocationUpdates The location updates state.
 */

static​ ​void​ ​setRequestingLocationUpdates​(Context context, ​boolean​ requestingLocationUpdates) ​{
 PreferenceManager.getDefaultSharedPreferences(context)

 .edit()

 .putBoolean(KEY_REQUESTING_LOCATION_UPDATES, requestingLocationUpdates)

 .apply();

}

/**

 * Returns the {​@code​ location} object as a human readable string.
 * ​@param​ location The {​@link​ Location}.
 */

static​ String ​getLocationText​(Location location) ​{
 return​ location == ​null​ ? ​"Unknown location"​ :
 "("​ + location.getLatitude() + ​", "​ + location.getLongitude() + ​")"​;

}

static​ String ​getLocationTitle​(Context context) ​{
 return​ context.getString(R.string.location_updated,
 DateFormat.getDateTimeInstance().format(​new​ Date()));

}

/***

 * Checks if a Location is within an array of Geofences. Returns true if yes, false if no.

 * ​@param​ location
 * ​@param​ geofences
 * ​@return
 */

static​ ​boolean​ ​ifWithinGeofences​(Location location, ArrayList<IGeofence> geofences) ​{
 boolean​ withinGeofence = ​false​;

 /*

 * Check all of the geofences

77

 */

 for​ (IGeofence geofence : geofences) {
 if​ (geofence.withinGeofence(location)){
 withinGeofence = ​true​;
 }

 }

 return​ withinGeofence;
}

}

LocationUpdateService.java (modified from Google’s Location Code Sample)

package​ com.example.acadiavisitorstudy;

/**

 * Copyright 2017 Google Inc. All Rights Reserved.

 *

 * Licensed under the Apache License, Version 2.0 (the "License");

 * you may not use this file except in compliance with the License.

 * You may obtain a copy of the License at

 *

 * http://www.apache.org/licenses/LICENSE-2.0

 *

 * Unless required by applicable law or agreed to in writing, software

 * distributed under the License is distributed on an "AS IS" BASIS,

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

 * See the License for the specific language governing permissions and

 * limitations under the License.

 */

import​ android.app.ActivityManager;
import​ android.app.Notification;
import​ android.app.NotificationChannel;
import​ android.app.NotificationManager;
import​ android.app.PendingIntent;
import​ android.app.Service;
import​ android.content.Context;
import​ android.content.Intent;
import​ android.content.SharedPreferences;
import​ android.content.res.Configuration;
import​ android.location.Location;
import​ android.net.ConnectivityManager;
import​ android.net.NetworkInfo;
import​ android.os.Binder;
import​ android.os.Build;
import​ android.os.Handler;
import​ android.os.HandlerThread;
import​ android.os.IBinder;
import​ android.os.Looper;
import​ android.support.annotation.NonNull;
import​ android.support.v4.app.NotificationCompat;

78

import​ android.support.v4.content.LocalBroadcastManager;
import​ android.util.Log;

import​ com.google.android.gms.location.FusedLocationProviderClient;
import​ com.google.android.gms.location.LocationCallback;
import​ com.google.android.gms.location.LocationRequest;
import​ com.google.android.gms.location.LocationResult;
import​ com.google.android.gms.location.LocationServices;
import​ com.google.android.gms.tasks.OnCompleteListener;
import​ com.google.android.gms.tasks.Task;

import​ java.util.ArrayList;

/**

 * A bound and started service that is promoted to a foreground service when location updates have

 * been requested and all clients unbind.

 *

 * For apps running in the background on "O" devices, location is computed only once every 10

 * minutes and delivered batched every 30 minutes. This restriction applies even to apps

 * targeting "N" or lower which are run on "O" devices.

 *

 * This sample show how to use a long-running service for location updates. When an activity is

 * bound to this service, frequent location updates are permitted. When the activity is removed

 * from the foreground, the service promotes itself to a foreground service, and location updates

 * continue. When the activity comes back to the foreground, the foreground service stops, and the

 * notification assocaited with that service is removed.

 */

public​ ​class​ ​LocationUpdatesService​ ​extends​ ​Service​ ​implements​ ​IResultListener​{

private​ ​static​ ​final​ String PACKAGE_NAME =
 "com.google.android.gms.location.sample.locationupdatesforegroundservice"​;

private​ ​static​ ​final​ String TAG = LocationUpdatesService.class.getSimpleName();

/**

 * The name of the channel for notifications.

 */

private​ ​static​ ​final​ String CHANNEL_ID = ​"channel_01"​;

static​ ​final​ String ACTION_BROADCAST = PACKAGE_NAME + ​".broadcast"​;

static​ ​final​ String EXTRA_LOCATION = PACKAGE_NAME + ​".location"​;

private​ ​static​ ​final​ String EXTRA_STARTED_FROM_NOTIFICATION = PACKAGE_NAME +
 ".started_from_notification"​;

private​ ​final​ IBinder mBinder = ​new​ LocalBinder();

/**

 * The desired interval for location updates. Inexact. Updates may be more or less frequent.

 */

private​ ​static​ ​final​ ​long​ UPDATE_INTERVAL_IN_MILLISECONDS = ​15000​;

/**

 * The fastest rate for active location updates. Updates will never be more frequent

79

 * than this value.

 */

private​ ​static​ ​final​ ​long​ FASTEST_UPDATE_INTERVAL_IN_MILLISECONDS =
 UPDATE_INTERVAL_IN_MILLISECONDS / ​2​;

/**

 * The identifier for the notification displayed for the foreground service.

 */

private​ ​static​ ​final​ ​int​ NOTIFICATION_ID = ​12345678​;

/**

 * Used to check whether the bound activity has really gone away and not unbound as part of an

 * orientation change. We create a foreground service notification only if the former takes

 * place.

 */

private​ ​boolean​ mChangingConfiguration = ​false​;

private​ NotificationManager mNotificationManager;

/**

 * Contains parameters used by {​@link​ com.google.android.gms.location.FusedLocationProviderApi}.
 */

private​ LocationRequest mLocationRequest;

/**

 * Provides access to the Fused Location Provider API.

 */

private​ FusedLocationProviderClient mFusedLocationClient;

private​ ​static​ ​final​ ​int​ REQUEST_PERMISSIONS_REQUEST_CODE = ​34​;

private​ LocationCallback mLocationCallback;

private​ Handler mServiceHandler;

private​ ArrayList<Location> locationList; ​// Temporary List of all Batched location points
private​ ​static​ ​final​ ​int​ MIN_BATCH_SIZE = ​5​; ​// Minimum batch size in order to upload the data

private​ ConnectivityManager cm;

private​ ILocationProcessor server;

/**

 * The current location.

 */

private​ Location mLocation;

private​ ArrayList<IGeofence> geofences;

public​ ​LocationUpdatesService​() ​{
}

@Override

public​ ​void​ ​onCreate​() ​{
 // Add a geofence for Mound Desert Island and Schoodic Peninsula

80

 geofences = ​new​ ArrayList<IGeofence>();
 geofences.add(​new​ CircularGeofence(​new​ GPSPoint(​44.323684​, -​68.288247​), ​13384.08f​));
 geofences.add(​new​ CircularGeofence(​new​ GPSPoint(​44.346791​, -​68.052729​), ​4212.80f​));

 mFusedLocationClient = LocationServices.getFusedLocationProviderClient(​this​);

 // This is called whenever a new location update is made by the API

 mLocationCallback = ​new​ LocationCallback() {
 @Override

 public​ ​void​ ​onLocationResult​(LocationResult locationResult) ​{
 super​.onLocationResult(locationResult);
 onNewLocation(locationResult.getLastLocation());

 }

 };

 createLocationRequest();

 getLastLocation();

 HandlerThread handlerThread = ​new​ HandlerThread(TAG);
 handlerThread.start();

 mServiceHandler = ​new​ Handler(handlerThread.getLooper());
 mNotificationManager = (NotificationManager) getSystemService(NOTIFICATION_SERVICE);

 locationList = ​new​ ArrayList<Location>();

 // Android O requires a Notification Channel.

 if​ (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 CharSequence name = getString(R.string.app_name);

 // Create the channel for the notification

 NotificationChannel mChannel =

 new​ NotificationChannel(CHANNEL_ID, name, NotificationManager.IMPORTANCE_LOW);

 // Set the Notification Channel for the Notification Manager.

 mNotificationManager.createNotificationChannel(mChannel);

 }

 // Create ConnectivityManager

 cm = (ConnectivityManager)

getApplicationContext().getSystemService(Context.CONNECTIVITY_SERVICE);

 server = ​new​ SQLDatabase(getApplicationContext(), ​this​);
}

@Override

public​ ​int​ ​onStartCommand​(Intent intent, ​int​ flags, ​int​ startId) ​{
 Log.i(TAG, ​"Service started"​);
 boolean​ startedFromNotification = intent.getBooleanExtra(EXTRA_STARTED_FROM_NOTIFICATION,
 false​);

 // We got here because the user decided to remove location updates from the notification.

 if​ (startedFromNotification) {
 removeLocationUpdates();

 stopSelf();

 }

 // Tells the system to not try to recreate the service after it has been killed.

 return​ START_NOT_STICKY;

81

}

@Override

public​ ​void​ ​onConfigurationChanged​(Configuration newConfig) ​{
 super​.onConfigurationChanged(newConfig);
 mChangingConfiguration = ​true​;

}

@Override

public​ IBinder ​onBind​(Intent intent) ​{
 // Called when a client (MainActivity in case of this sample) comes to the foreground

 // and binds with this service. The service should cease to be a foreground service

 // when that happens.

 Log.i(TAG, ​"in onBind()"​);
 stopForeground(​true​);
 mChangingConfiguration = ​false​;
 return​ mBinder;

}

@Override

public​ ​void​ ​onRebind​(Intent intent) ​{
 // Called when a client (MainActivity in case of this sample) returns to the foreground

 // and binds once again with this service. The service should cease to be a foreground

 // service when that happens.

 Log.i(TAG, ​"in onRebind()"​);
 stopForeground(​true​);
 mChangingConfiguration = ​false​;
 super​.onRebind(intent);

}

@Override

public​ ​boolean​ ​onUnbind​(Intent intent) ​{
 Log.i(TAG, ​"Last client unbound from service"​);

 // Called when the last client (MainActivity in case of this sample) unbinds from this

 // service. If this method is called due to a configuration change in MainActivity, we

 // do nothing. Otherwise, we make this service a foreground service.

 if​ (!mChangingConfiguration && LocationHelper.requestingLocationUpdates(​this​)) {
 Log.i(TAG, ​"Starting foreground service"​);

 startForeground(NOTIFICATION_ID, getNotification(!LocationHelper.ifWithinGeofences(mLocation,

geofences)));

 }

 return​ ​true​; ​// Ensures onRebind() is called when a client re-binds.
}

@Override

public​ ​void​ ​onDestroy​() ​{
 mServiceHandler.removeCallbacksAndMessages(​null​);

}

/**

 * Makes a request for location updates. Note that in this sample we merely log the

 * {​@link​ SecurityException}.
 */

public​ ​void​ ​requestLocationUpdates​() ​{

82

 Log.i(TAG, ​"Requesting location updates"​);
 LocationHelper.setRequestingLocationUpdates(​this​, ​true​);
 startService(​new​ Intent(getApplicationContext(), LocationUpdatesService.class));
 try​ {
 mFusedLocationClient.requestLocationUpdates(mLocationRequest,

 mLocationCallback, Looper.myLooper());

 } ​catch​ (SecurityException unlikely) {
 LocationHelper.setRequestingLocationUpdates(​this​, ​false​);
 Log.e(TAG, ​"Lost location permission. Could not request updates. "​ + unlikely);
 }

}

/**

 * Removes location updates. Note that in this sample we merely log the

 * {​@link​ SecurityException}.
 */

public​ ​void​ ​removeLocationUpdates​() ​{
 Log.i(TAG, ​"Removing location updates"​);
 try​ {
 mFusedLocationClient.removeLocationUpdates(mLocationCallback);

 LocationHelper.setRequestingLocationUpdates(​this​, ​false​);

 // Update button state

 SharedPreferences s = getSharedPreferences(getString(R.string.pref_file),

Context.MODE_PRIVATE);

 s.edit().putBoolean(​"ifNotTracking"​, ​true​).apply();

 // Remove cached points

 locationList.clear();

 stopSelf();

 } ​catch​ (SecurityException unlikely) {
 LocationHelper.setRequestingLocationUpdates(​this​, ​true​);
 Log.e(TAG, ​"Lost location permission. Could not remove updates. "​ + unlikely);
 }

}

/**

 * Returns the {​@link​ NotificationCompat} used as part of the foreground service.
 */

private​ Notification ​getNotification​(​boolean​ outOfRange) ​{
 Intent intent = ​new​ Intent(​this​, LocationUpdatesService.class);

 CharSequence text = LocationHelper.getLocationText(mLocation);

 CharSequence oorString = getString(R.string.out_of_range);

 // Extra to help us figure out if we arrived in onStartCommand via the notification or not.

 intent.putExtra(EXTRA_STARTED_FROM_NOTIFICATION, ​true​);

 // The PendingIntent that leads to a call to onStartCommand() in this service.

 PendingIntent servicePendingIntent = PendingIntent.getService(​this​, ​0​, intent,
 PendingIntent.FLAG_UPDATE_CURRENT);

 NotificationCompat.Builder builder;

 if​ (outOfRange)
 {

83

 builder = ​new​ NotificationCompat.Builder(​this​)
 .addAction(R.drawable.ic_cancel, getString(R.string.remove_location_updates),

 servicePendingIntent)

 .setContentText(oorString)

 .setContentTitle(LocationHelper.getLocationTitle(​this​))
 .setOngoing(​true​)
 .setPriority(Notification.PRIORITY_LOW)

 .setSmallIcon(R.mipmap.ic_launcher)

 .setTicker(text)

 .setWhen(System.currentTimeMillis());

 } ​else​ {
 builder = ​new​ NotificationCompat.Builder(​this​)
 .addAction(R.drawable.ic_cancel, getString(R.string.remove_location_updates),

 servicePendingIntent)

 .setContentText(text)

 .setContentTitle(LocationHelper.getLocationTitle(​this​))
 .setOngoing(​true​)
 .setPriority(Notification.PRIORITY_LOW)

 .setSmallIcon(R.mipmap.ic_launcher)

 .setTicker(text)

 .setWhen(System.currentTimeMillis());

 }

 // Set the Channel ID for Android O.

 if​ (Build.VERSION.SDK_INT >= Build.VERSION_CODES.O) {
 builder.setChannelId(CHANNEL_ID); ​// Channel ID
 }

 return​ builder.build();
}

private​ ​void​ ​getLastLocation​() ​{
 try​ {
 mFusedLocationClient.getLastLocation()

 .addOnCompleteListener(​new​ OnCompleteListener<Location>() {
 @Override

 public​ ​void​ ​onComplete​(@NonNull Task<Location> task) ​{
 if​ (task.isSuccessful() && task.getResult() != ​null​) {
 mLocation = task.getResult();

 } ​else​ {
 Log.w(TAG, ​"Failed to get location."​);
 }

 }

 });

 } ​catch​ (SecurityException unlikely) {
 Log.e(TAG, ​"Lost location permission."​ + unlikely);
 }

}

private​ ​void​ ​onNewLocation​(Location location) ​{
 mLocation = location;

 // Check if within geofences, then record the data.

 if​(LocationHelper.ifWithinGeofences(location, geofences)){

 Log.i(TAG, ​"New location: "​ + location);

84

 // Notify anyone listening for broadcasts about the new location.

 Intent intent = ​new​ Intent(ACTION_BROADCAST);
 intent.putExtra(EXTRA_LOCATION, location);

 LocalBroadcastManager.getInstance(getApplicationContext()).sendBroadcast(intent);

 // Update notification content if rufloatnning as a foreground service.

 if​ (serviceIsRunningInForeground(​this​)) {
 mNotificationManager.notify(NOTIFICATION_ID, getNotification(​false​));
 }

 // Add location to exisitng list

 locationList.add(mLocation);

 Log.i(TAG, ​"onNewLocation: Location added!"​);
 } ​else​ {
 Log.i(TAG, ​"onNewLocation: Location outside of range. Will not record location."​);
 // Update notification content if running as a foreground service.

 if​ (serviceIsRunningInForeground(​this​)) {
 mNotificationManager.notify(NOTIFICATION_ID, getNotification(​true​));
 }

 }

 if​(canAccessNetwork(cm) && locationList.size() >= MIN_BATCH_SIZE) {
 /*

 * Once there is a network connection, take the bunch of network data and

 * send it to the server

 */

 server.processDataPoints(locationList);

 }

}

/**

 * Sets the location request parameters.

 */

private​ ​void​ ​createLocationRequest​() ​{
 mLocationRequest = ​new​ LocationRequest();
 mLocationRequest.setInterval(UPDATE_INTERVAL_IN_MILLISECONDS);

 mLocationRequest.setFastestInterval(FASTEST_UPDATE_INTERVAL_IN_MILLISECONDS);

 mLocationRequest.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);

}

/**

 * Class used for the client Binder. Since this service runs in the same process as its

 * clients, we don't need to deal with IPC.

 */

public​ ​class​ ​LocalBinder​ ​extends​ ​Binder​ {
 LocationUpdatesService ​getService​() ​{
 return​ LocationUpdatesService.​this​;
 }

}

/**

 * Returns true if this is a foreground service.

 *

 * ​@param​ context The {​@link​ Context}.

85

 */

public​ ​boolean​ ​serviceIsRunningInForeground​(Context context) ​{
 ActivityManager manager = (ActivityManager) context.getSystemService(

 Context.ACTIVITY_SERVICE);

 for​ (ActivityManager.RunningServiceInfo service : manager.getRunningServices(
 Integer.MAX_VALUE)) {

 if​ (getClass().getName().equals(service.service.getClassName())) {
 if​ (service.foreground) {
 return​ ​true​;
 }

 }

 }

 return​ ​false​;
}

/***

 * Checks if the device has an active Internet connection

 */

public​ ​boolean​ ​canAccessNetwork​(ConnectivityManager cm) ​{
 NetworkInfo activeNetwork = cm.getActiveNetworkInfo();

 return​ (activeNetwork != ​null​ && activeNetwork.isConnected());
}

/***

 * When the data is sumbitted to the database

 * ​@param​ result
 */

@Override

public​ ​void​ ​onSubmit​(​boolean​ result) ​{
 // If the server succeeded, clear the list.

 if​ (result) {
 locationList.clear();

 }

}

}

86

SurveyActivity.java
package​ com.example.acadiavisitorstudy;

import​ android.os.Bundle;
import​ android.support.v7.app.AppCompatActivity;
import​ android.view.View;
import​ android.widget.SeekBar;
import​ android.widget.TextView;
import​ android.widget.Toast;

import​ java.util.ArrayList;

public​ ​class​ ​SurveyActivity​ ​extends​ ​AppCompatActivity​ ​implements​ ​IResultListener​ {

// Array to store the questions

private​ ArrayList<Integer> questionArray = ​new​ ArrayList<Integer>();
private​ ​static​ ​final​ ​int​ NUMBER_OF_QUESTIONS = ​3​;

@Override

protected​ ​void​ ​onCreate​(Bundle savedInstanceState) ​{
 super​.onCreate(savedInstanceState);
 setContentView(R.layout.activity_survey);

 // Getting the values for the seekbars

 SeekBar seekQuestionOne = (SeekBar) findViewById(R.id.question3_seekbar);

 SeekBar seekQuestionTwo = (SeekBar) findViewById(R.id.question4_seekbar);

 SeekBar seekQuestionThree = (SeekBar) findViewById(R.id.question5_seekbar);

 // For all questions set an initial quantity for the default value

 for​(​int​ i = ​0​; i < NUMBER_OF_QUESTIONS; i++) {
 questionArray.add(​4​);
 }

 // TextViews for displaying current choice.

 final​ TextView questionOneDisplay = (TextView) findViewById(R.id.question_3_value);
 final​ TextView questionTwoDisplay = (TextView) findViewById(R.id.question_4_value);
 final​ TextView questionThreeDisplay = (TextView) findViewById(R.id.question_5_value);

 seekQuestionOne.setOnSeekBarChangeListener(​new​ SeekBar.OnSeekBarChangeListener() {
 int​ progressValue = ​4​;
 @Override

 public​ ​void​ ​onProgressChanged​(SeekBar seekBar, ​int​ progress, ​boolean​ fromUser) ​{
 progressValue = progress;

 questionArray.set(​0​, progressValue + ​1​);
 questionOneDisplay.setText(Integer.toString(progressValue + ​1​));
 }

 @Override

 public​ ​void​ ​onStartTrackingTouch​(SeekBar seekBar) ​{

 }

 @Override

87

 public​ ​void​ ​onStopTrackingTouch​(SeekBar seekBar) ​{
 }

 });

 seekQuestionTwo.setOnSeekBarChangeListener(​new​ SeekBar.OnSeekBarChangeListener() {
 int​ progressValue = ​4​;
 @Override

 public​ ​void​ ​onProgressChanged​(SeekBar seekBar, ​int​ progress, ​boolean​ fromUser) ​{
 progressValue = progress;

 questionArray.set(​1​, progressValue + ​1​);
 questionTwoDisplay.setText(Integer.toString(progressValue + ​1​));
 }

 @Override

 public​ ​void​ ​onStartTrackingTouch​(SeekBar seekBar) ​{

 }

 @Override

 public​ ​void​ ​onStopTrackingTouch​(SeekBar seekBar) ​{
 }

 });

 seekQuestionThree.setOnSeekBarChangeListener(​new​ SeekBar.OnSeekBarChangeListener() {
 int​ progressValue = ​4​;
 @Override

 public​ ​void​ ​onProgressChanged​(SeekBar seekBar, ​int​ progress, ​boolean​ fromUser) ​{
 progressValue = progress;

 questionArray.set(​2​, progressValue + ​1​);
 questionThreeDisplay.setText(Integer.toString(progressValue + ​1​));
 }

 @Override

 public​ ​void​ ​onStartTrackingTouch​(SeekBar seekBar) ​{

 }

 @Override

 public​ ​void​ ​onStopTrackingTouch​(SeekBar seekBar) ​{
 }

 });

}

/***

 * Submits survey data and closes the Survey Activity

 * ​@param​ view
 */

public​ ​void​ ​onSubmit​(View view) ​{

 // This is where we will submit the user's survey answers

 ArrayList<ISurveyQuestion> questions = ​new​ ArrayList<ISurveyQuestion>();

 for​ (​int​ response : questionArray) {
 ISurveyQuestion question = ​new​ LikertScaleQuestion(response);
 questions.add(question);

 }

 // Submit the questions to the server

88

 ILocationProcessor server = ​new​ SQLDatabase(getApplicationContext(), ​this​);
 server.processSurvey(questions);

 finish();

}

/***

 * Handles when the survey is submitted (or not)

 * ​@param​ result
 */

@Override

public​ ​void​ ​onSubmit​(​boolean​ result) ​{
 if​ (result) {
 Toast.makeText(​this​, getString(R.string.survey_submit_success), Toast.LENGTH_LONG).show();
 } ​else​ {
 Toast.makeText(​this​, getString(R.string.survey_submit_failed), Toast.LENGTH_LONG).show();
 }

}

}

LicensingActivity.java
package​ com.example.acadiavisitorstudy;

import​ android.os.​Bundle​;
import​ android.support.v7.app.​AppCompatActivity​;
import​ android.view.​View​;

public ​class​ ​LicensingActivity​ ​extends​ ​AppCompatActivity​ {

@Override

protected​ void onCreate(​Bundle​ savedInstanceState) {
 super​.onCreate(savedInstanceState);
 setContentView(​R​.layout.activity_license);

}

public void onDone(​View​ view) {
 finish();

}

}

InstructionActivity.java
package​ com.example.acadiavisitorstudy;

import​ android.os.​Bundle​;
import​ android.support.v7.app.​AppCompatActivity​;
import​ android.view.​View​;

public ​class​ ​InstructionActivity​ ​extends​ ​AppCompatActivity​ {

@Override

protected​ void onCreate(​Bundle​ savedInstanceState) {
 super​.onCreate(savedInstanceState);

89

 setContentView(​R​.layout.activity_instructions);

}

public void onDone(​View​ view) {
 finish();

}

}

ILocationProcessor.java
package​ ​com.example.acadiav​isitorstudy;

import android.location.Location;

import java.util.ArrayList;

/*

 * This provides the ​interface​ ​for​ how the locations will be processed externally.
 * regardless ​of​ how it ​is​ modified ​in​ the future.
 */

public ​interface​ ILocationProcessor {

/***

 * Should ​return​ ​true​ ​if​ the GPS points have been processed.
 * ​False​ ​if​ ​not​.
 * @​return
 */

boolean processDataPoints(ArrayList<Location> locations);

/***

 * Should ​return​ ​true​ ​of​ the survey has been submitted.
 * ​False​ ​if​ ​not​.
 */

boolean processSurvey(ArrayList<ISurveyQuestion> questions);

}

SQLDatabase.java
package​ com.example.acadiavisitorstudy;

import​ android.content.Context;
import​ android.content.SharedPreferences;
import​ android.location.Location;
import​ android.os.AsyncTask;
import​ android.util.Log;

import​ org.json.​JSONArray​;
import​ org.json.JSONException;
import​ org.json.​JSONObject​;

import​ java.io.​BufferedReader​;

90

import​ java.io.DataOutputStream;
import​ java.io.InputStreamReader;
import​ java.net.HttpURLConnection;
import​ java.net.URL;
import​ java.util.ArrayList;

import​ javax.net.ssl.HttpsURLConnection;

public​ class SQLDatabase implements ILocationProcessor{

private​ ​final​ ​String​ url = ​"https://acadiatrails.wpi.edu//index.php"​; ​// URL to send the data
to.

private​ ​int​ uid;
private​ ​static​ ​final​ ​String​ TAG = ​"SQLDatabase"​;
final​ ​String​ PREFS_NAME = ​"Preferences"​;
private​ Context context;
IResultListener resultListener;

SQLDatabase(Context context, IResultListener resultListener) {

 this​.context = context;
 SharedPreferences settings = context.getSharedPreferences(PREFS_NAME, Context.MODE_PRIVATE);

 this​.resultListener = resultListener; ​// Declare a listener to get the results

 if​ (settings.contains(​"uid"​) && (settings.getInt(​"uid"​, ​0​) != ​0​)){
 //User already has an ID

 uid = settings.getInt(​"uid"​, ​0​);
 }

 else​{
 Log.d(TAG, ​"SQLDatabase: Generate ID"​);
 AsyncTaskRunnerGET getUID = ​new​ AsyncTaskRunnerGET();
 getUID.execute(url);

 }

}

/***

 * Uploads all of the cached data points to a SQL Server.

 * Should return true if the GPS points have been processed.

 * False if not.

 * @return

 */

@Override

public​ ​boolean​ processDataPoints(ArrayList<Location> locations) {
 // Currently a stub right now to test the logic.

 Log.i(TAG, ​"Processing bundle of size "​ + locations.​size​());
 JSONObject​ jobj = ​new​ ​JSONObject​();
 try​ {
 jobj.put(​"user"​, uid);
 jobj.put(​"operation"​,​"location"​);
 JSONArray​ jarray = ​new​ ​JSONArray​();
 // Put all location objects in the JSON array

 for​ (Location l : locations) {
 JSONObject​ blob = ​new​ ​JSONObject​();

91

 blob.put(​"latitude"​, l.getLatitude());
 blob.put(​"longitude"​, l.getLongitude());
 blob.put(​"velocity"​, l.getSpeed());
 blob.put(​"time"​, l.getTime());
 jarray.put(blob);

 Log.i(TAG, ​"Location point: "​ + LocationHelper.getLocationText(l) + ​"has been uploaded
to the server."​);
 }

 jobj.put(​"data"​,jarray);
 AsyncTaskRunnerPOST serverUpload = ​new​ AsyncTaskRunnerPOST(resultListener);
 serverUpload.execute(url, jobj.toString());

 return​ ​true​;
 } ​catch​ (JSONException e) {
 e.printStackTrace();

 return​ ​false​;
 }

}

/***

 * Uploads all of the survey responses to a server

 * @param questions

 * @return

 */

@Override

public​ ​boolean​ processSurvey (ArrayList < ISurveyQuestion > questions) {
 // Currently a stub right now to test the logic.

 Log.d(TAG, ​"processSurvey: Processing "​ + Integer.toString(questions.​size​()));
 JSONObject​ jobj = ​new​ ​JSONObject​();
 try​ {
 jobj.put(​"user"​, uid);
 jobj.put(​"operation"​,​"survey"​);

 // Creating the data field

 JSONObject​ jsurv = ​new​ ​JSONObject​();

 // For each question, add to JSON

 for​ (​int​ i = ​0​; i < questions.​size​(); i++) {
 jsurv.put(​"q"​ + Integer.toString(i + ​1​), questions.​get​(i).toString());
 }

 jobj.put(​"data"​,jsurv);
 AsyncTaskRunnerPOST serverUpload = ​new​ AsyncTaskRunnerPOST(resultListener);
 serverUpload.execute(url, jobj.toString());

 return​ ​true​;
 } ​catch​ (JSONException e) {
 e.printStackTrace();

 return​ ​false​;
 }

}

private​ class AsyncTaskRunnerPOST extends AsyncTask<​String​, ​String​, Boolean> {

 private​ IResultListener resultListener;

92

 AsyncTaskRunnerPOST(IResultListener resultListener) {

 this​.resultListener = resultListener;
 }

 @Override

 protected​ Boolean doInBackground(​String​... params) {
 HttpsURLConnection httpURLConnection = ​null​;
 try​ {

 URL url = ​new​ URL(params[​0​]);
 httpURLConnection = (HttpsURLConnection) url.openConnection();

 httpURLConnection.setRequestMethod(​"POST"​);
 httpURLConnection.setRequestProperty(​"Content-Type"​, ​"application/json;
charset=UTF-8"​);
 httpURLConnection.setRequestProperty(​"Accept"​, ​"application/json"​);
 httpURLConnection. setDoOutput(​true​);
 httpURLConnection.connect();

 DataOutputStream os = ​new​ DataOutputStream(httpURLConnection.getOutputStream());
 os.writeBytes(params[​1​]);
 os.flush();

 os.close();

 // Just keep this here. The server needs someone to talk to

 BufferedReader​ br = ​new​ ​BufferedReader​ (​new
InputStreamReader(httpURLConnection.getInputStream(), ​"utf-8"​));
 StringBuilder response = ​new​ StringBuilder();
 String​ responseLine = ​null​;
 while​ ((responseLine = br.readLine()) != ​null​) {
 response.​append​(responseLine.​trim​());
 }

 Log.d(TAG, ​"doInBackground: "​ + response.toString());

 if​ (httpURLConnection != ​null​) {
 httpURLConnection.disconnect();

 }

 return​ ​true​;

 } ​catch​ (Exception e) {
 e.printStackTrace();

 if​ (httpURLConnection != ​null​) {
 httpURLConnection.disconnect();

 }

 return​ ​false​;
 }

 }

 @Override

 protected​ ​void​ onPostExecute(Boolean result) {
 // Take the result and give it to the listener class to process

 resultListener.onSubmit(result);

 }

}

93

private​ class AsyncTaskRunnerGET extends AsyncTask<​String​, ​String​, Boolean> {

 private​ ​String​ resp;
 private​ ​final​ ​String​ USER_AGENT = ​"Mozilla/5.0"​;

 @Override

 protected​ Boolean doInBackground(​String​... params) {
 HttpsURLConnection httpURLConnection = ​null​;
 try​ {

 URL url = ​new​ URL(params[​0​]);
 httpURLConnection = (HttpsURLConnection) url.openConnection();

 httpURLConnection.setRequestMethod(​"GET"​);
 httpURLConnection.setRequestProperty(​"USER_AGENT"​, USER_AGENT);

 int​ responseCode = httpURLConnection.getResponseCode();
 Log.d(TAG, ​"doInBackground: response Code "​ + responseCode);

 // Just keep this here. The server needs someone to talk to

 BufferedReader​ br = ​new​ ​BufferedReader​ (​new
InputStreamReader(httpURLConnection.getInputStream(), ​"utf-8"​));
 StringBuilder rsp = ​new​ StringBuilder();
 String​ responseLine = ​null​;

 while​ ((responseLine = br.readLine()) != ​null​) {
 rsp.​append​(responseLine.​trim​());
 }

 Log.d(TAG, ​"doInBackground: "​ + rsp.toString());
 resp = rsp.toString();

 uid = Integer.parseInt(resp);

 SharedPreferences settings = context.getSharedPreferences(PREFS_NAME,

Context.MODE_PRIVATE);

 settings.edit().putInt(​"uid"​, uid).apply();

 if​ (httpURLConnection != ​null​) {
 httpURLConnection.disconnect();

 }

 return​ ​true​;

 } ​catch​ (Exception e) {
 e.printStackTrace();

 resp = e.getMessage();

 if​ (httpURLConnection != ​null​) {
 httpURLConnection.disconnect();

 }

 return​ ​false​;
 }

 }

94

 @Override

 protected​ ​void​ onPostExecute(Boolean result) {
 }

}

}

GPSPoint.java
package com.example.acadiavisitorstudy;

public​ ​class​ ​GPSPoint​ {

/***

 * Custom class to operate with the geofence classes

 */

private​ ​double​ latitude;
private​ ​double​ longitude;

// Constructor

public​ ​GPSPoint​(​double​ latitude, ​double​ longitude) ​{
 this​.latitude = latitude;
 this​.longitude = longitude;

}

// Getters

/***

 * Gets the latitude value of the GPS point

 * @return (float) - latitude value

 */

public​ ​double​ ​getLatitude​() ​{
 return​ ​this​.latitude;

}

/***

 * Gets the longitude value of the GPS point

 * @return (float) - longitude value

 */

public​ ​double​ ​getLongitude​() ​{
 return​ ​this​.longitude;

}

}

IGeofence.java
package​ com.example.acadiavisitorstudy;

import​ android.location.Location;

public​ ​interface​ ​IGeofence​ {
 ​/*
 * Common interface for different types of Geofences

*/

 ​/***

95

* Returns true when the location l is within a geofence.

* ​@param​ l
* ​@return
*/

 ​boolean​ ​withinGeofence​(Location l)​;
}

CircularGeofence.java
package​ com.example.acadiavisitorstudy;

import​ android.location.Location;

public​ ​class​ ​CircularGeofence​ ​implements​ ​IGeofence​{

private​ ​double​ latitudeCenter; ​// Latitude of the center of the circle
private​ ​double​ longitudeCenter; ​// Longitude of the center of the circle
private​ ​double​ radius; ​// Radius of geofence (in meters)

// Constructor

public​ ​CircularGeofence​(​double​ latitudeCenter, ​double​ longitudeCenter, ​float​ radius) ​{
 this​.latitudeCenter = latitudeCenter;
 this​.longitudeCenter = longitudeCenter;
 this​.radius = radius;

}

public​ ​CircularGeofence​(GPSPoint point, ​float​ radius) ​{
 this​.latitudeCenter = point.getLatitude();
 this​.longitudeCenter = point.getLongitude();
 this​.radius = radius;

}

/***

 * Determine if a given location l is within a geofence.

 * ​@param​ l
 * ​@return
 */

@Override

public​ ​boolean​ ​withinGeofence​(Location l) ​{
 // Create a new Location object

 Location dest = ​new​ Location(​"null"​);
 dest.setLatitude(​this​.latitudeCenter);
 dest.setLongitude(​this​.longitudeCenter);

 float​ distance = l.distanceTo(dest);

 return​ distance <= radius;
}

}

RectangularGeofence.java

96

package​ com.example.acadiavisitorstudy;

import​ android.location.Location;

public​ ​class​ ​RectangularGeofence​ ​implements​ ​IGeofence​ {

private​ ​double​ topLeftLatitude; ​// Latitude of the first GPS point
private​ ​double​ topLeftLongitude; ​// Longitude of the second GPS point
private​ ​double​ bottomRightLatitude; ​// Latitude of the second GPS point
private​ ​double​ bottomRightLongitude; ​// Longitude of the second GPS point

// Constructor

public​ ​RectangularGeofence​(GPSPoint topLeftPoint, GPSPoint bottomRightPoint) ​{
 this​.topLeftLatitude = topLeftPoint.getLatitude();
 this​.topLeftLongitude = topLeftPoint.getLongitude();
 this​.bottomRightLatitude = bottomRightPoint.getLatitude();
 this​.bottomRightLongitude = bottomRightPoint.getLongitude();

}

@Override

public​ ​boolean​ ​withinGeofence​(Location l) ​{

 // Get the point's latitude and longitude

 double​ compareLatitude = l.getLatitude();
 double​ compareLongitude = l.getLongitude();

 return​ ((compareLatitude <= ​this​.topLeftLatitude) && (compareLatitude >=
this​.bottomRightLatitude)
 && (compareLongitude <= ​this​.bottomRightLongitude) && (compareLongitude >=
this​.topLeftLongitude));

}

}

IResultListener.java
package com.example.acadiavisitorstudy;

public ​interface​ ​IResultListener​ {
/*

* ​Interface​ to listen to the ​result​ ​of​ ​POST​ requests. ​Implement​ this ​method​ ​and
* you can use the ​ILocationProcessor​ ​interface
* @param - ​result​ should be ​true​ ​if​ operation ​is​ successful ​or​ ​false​ ​if​ ​not
*/

void​ onSubmit(boolean ​result​);
}

ISurveyQuestion.java
public​ ​interface​ ​ISurveyQuestion​ {

/*

 * This interface is for all survey questions to get processed into.

 */

97

/***

 * Converts the survey question into a parsable format as an Integer

 * @return

 */

int​ ​toInteger​()​;

/***

 * Converts the survey question into a parsable format as a String.

 * @return

 */

String ​toString​()​;

}

LikertScaleQuestion.java
package​ com.example.acadiavisitorstudy;

public​ ​class​ ​LikertScaleQuestion​ ​implements​ ​ISurveyQuestion​ {

int​ response; ​// value of likert scale question (1-7)

LikertScaleQuestion(​int​ response) {
 this​.response = response;

}

@Override

public​ ​int​ ​toInteger​() ​{
 return​ response;

}

@Override

public​ ​String ​toString​() ​{
 return​ String.​valueOf​(response)​;

}

}

Appendix F: Server Source Code
<?php

/*

 * Acadia Trails Sample PHP Server

 * James Plante

 * Jack Hogan

 */

require_once​ ​'login.php'​;
$conn = ​new​ mysqli($hn, $un, $pw, $db);

98

if​ ($conn->connect_error) ​die​(​"Fatal Error"​);

if​ ($_SERVER[​'REQUEST_METHOD'​] === ​'POST'​)
{

 $json = file_get_contents(​'php://input'​);
 $json_array = json_decode($json, ​TRUE​);
 $user = $json_array[​'user'​];
 ​echo​(​"<h1>User: "​. $user.​"</h1>"​);
 ​if​ ($json_array[operation] == ​'location'​)
 {

 ​echo​(​"<h2>Location Mode</h2>"​);

 ​/*
 * For every element in the json array, put the point in the server.

 */

 $arr_size = count($json_array[​'data'​]);

 ​for​ ($i = ​0​; $i < $arr_size; $i++)
 {

 ​// Assigning values
 $latitude = $json_array[​'data'​][$i][​'latitude'​];
 $longitude = $json_array[​'data'​][$i][​'longitude'​];
 $velocity = $json_array[​'data'​][$i][​'velocity'​];
 $time = $json_array[​'data'​][$i][​'time'​];

 ​echo​(​"Latitude: "​.$latitude);
 ​echo​(​"Longitude: "​.$longitude);
 ​echo​(​"Velocity: "​.$velocity);
 ​echo​(​"Time: "​.$time);

 ​// Execute prepared statemnt
 $stmt = $conn->prepare(​'INSERT INTO location_data VALUES(?,?,?,?,?)'​);
 ​echo​($stmt->bind_param(​'iiddd'​, $user, $time, $latitude, $longitude, $velocity));
 $stmt->execute();

 ​echo​(​'Statement executed'​);
 }

 }

 ​elseif​($json_array[operation] == ​'survey'​)
 {

 ​// Parse the JSON as if a survey then insert into db
 $q1 = $json_array[​'data'​][​'q1'​];
 $q2 = $json_array[​'data'​][​'q2'​];
 $q3 = $json_array[​'data'​][​'q3'​];

 ​// Execute prepared statement to insert into server
 $stmt = $conn->prepare(​'INSERT INTO survey VALUES(?,?,?,?)'​);
 $stmt->bind_param(​'iiii'​,$user, $q1, $q2, $q3);
 $stmt->execute();

 }

 ​else
 {

 ​echo​(​"ERROR!"​);
 }

}

elseif​ ($_SERVER[​'REQUEST_METHOD'​] === ​'GET'​)
{

99

 ​// If it is a GET request, just print this out
 ​echo​(get_random_number($conn));
}

else

{

 ​echo​(​"ERROR!"​);
}

/***

 * Gets a random number from 0 to the 32 bit integer limit

 */

function​ ​get_random_number​($conn)
{

 $can_exit = ​FALSE​;
 ​while​(!$can_exit)
 {

 $value = random_int(​0​, ​2147483647​);

 ​if​ (if_can_store($value, $conn))
 {

 $can_exit = ​TRUE​;
 ​return​ $value;
 }

 }

}

/***

 * Checks if a user id with the given number n can

 * be stored.

 * Returns true if yes, false if no.

 * ​@param​ (int) $n - The id being searched
 * ​@param​ (connection) $conn - The database
 */

function​ ​if_can_store​($n, $conn)
{

 $query = ​"SELECT * FROM location_data where UID = "​.$n;
 $result = $conn->query($query);

 ​return​ ($result->num_rows == ​0​);
}

?>

Appendix G: Text file to GPX Converter Code

"""

TXT to GPX Utility to export MySQL plaintext output into GPX data

James Plante (jplante@wpi.edu)

"""

from​ datetime ​import​ datetime

100

import​ gpxpy
import​ gpxpy.gpx
import​ sys
import​ srtm

"""

Takes in a date in UTC and returns a string with the month, day, and year

@param n - (int) UTC date in milliseconds

"""

def​ ​utc_to_local​(utc):
return​ datetime.fromtimestamp(utc/​1e3​)

"""

Generates the GPX file in the form of a string to be outputted to a file

@param tup_list - list of tuples to parse

"""

def​ ​create_gpx_xml​(tup_list):
gpx = gpxpy.gpx.GPX()

Create first track in our GPX:

gpx_track = gpxpy.gpx.GPXTrack(name=str(tup_list[​0​][​0​]))
gpx.tracks.append(gpx_track)

Create first segment in our GPX track:

gpx_segment = gpxpy.gpx.GPXTrackSegment()

gpx_track.segments.append(gpx_segment)

#Temp variables

last_point = ​None
current_track = gpx_track

current_segment = gpx_segment

last_uid = tup_list[​0​][​0​]

Process all of the tuples to create points (assume list is sorted)

for​ (uid, time, latitude, longitude, velocity, utctime) ​in​ tup_list:
 # if it reaches the end of the current UID make another track

 if​ (uid != last_uid):
 last_uid = uid

 current_track = gpxpy.gpx.GPXTrack(name=str(uid))

 gpx.tracks.append(current_track)

 # Create first segment in our GPX track:

 current_segment = gpxpy.gpx.GPXTrackSegment()

 current_track.segments.append(current_segment)

 last_point = ​None

 current_point = gpxpy.gpx.GPXTrackPoint(latitude, longitude, speed=velocity, time=time)

 # If the time differs by more than 2 minutes, then create a new track segment

 if​ (last_point != ​None​ ​and​ (time - last_point).total_seconds() >= ​120​):
 current_segment = gpxpy.gpx.GPXTrackSegment()

 current_track.segments.append(current_segment)

 current_segment.points.append(current_point)

 last_point = time

101

Adding elevation data using SRTM.py

elevation_data = srtm.get_data()

elevation_data.add_elevations(gpx)

return​ gpx.to_xml(version=​"1.0"​)

"""

Takes in a line of the graph and parses it. Returns a tuple of all

of the data

"""

def​ ​parse_line​(st):
st_array = st.split();

uid = st_array[​0​]
time = utc_to_local(int(st_array[​1​]))
latitude = st_array[​2​]
longitude = st_array[​3​]
velocity = st_array[​4​]
utctime = int(st_array[​1​])
tup = (uid, time, latitude, longitude, velocity, utctime)

return​ tup

"""

Parses file to get all of the data from the input file

Returns an list of tuples sorted by UID.

"""

def​ ​read_file​(filename):
f = open(filename, ​'r'​)
tup_list = []

for​ line ​in​ f:
 tup = parse_line(line)

 tup_list.append(tup)

f.close()

Sort the list by UID then return

tup_list.sort(key=​lambda​ tup:(tup[​0​], tup[​5​]))
return​ tup_list

Parsing arguments

if​ len(sys.argv) != ​2​:
print(​"Usage: python3 txt_to_gpx <filename> where:\nfilename - File to parse."​)
exit(​0​)

filename = sys.argv[​1​]

points_tup = read_file(filename) ​# GPS points in the form of tuples

raw_xml = create_gpx_xml(points_tup)

Write to the output file

with​ open(filename + ​"-exported.gpx"​, ​"w"​) ​as​ f:
f.write(raw_xml)

print(​"Data exported to "​ + filename + ​"-exported.gpx"​)

102

Appendix H: Time Parser Code
"""

UTC to date utility

James Plante (jplante@wpi.edu)

"""

from​ datetime ​import​ datetime
import​ sys

"""

Takes in a date in UTC and returns a string with the month, day, and year

@param n - (int) UTC date in milliseconds

"""

def​ ​utc_to_local​(utc):
return​ datetime.fromtimestamp(utc / ​1e3​).strftime(​"%Y/%m/%d %H:%M:%S"​)

"""

Takes in a line of the graph and parses it. Returns a tuple of all

of the data

"""

def​ ​parse_line​(st):
st_array = st.split()

uid = st_array[​0​]
time = utc_to_local(int(st_array[​1​]))
latitude = st_array[​2​]
longitude = st_array[​3​]
velocity = st_array[​4​]
tup = (uid, time, latitude, longitude, velocity)

return​ tup

"""

Parses file to get all of the data.

"""

def​ ​parse_file​(filename):
f = open(filename, ​'r'​)
output_file = open(filename + ​"-parsed.txt"​, ​'w'​)
output_file.write(​"UID\tTime\tLatitude\tLongitude\tVelocity\n"​)
for​ line ​in​ f:

 tup = parse_line(line)

 output_file.write(​"{0}\t{1}\t{2}\t{3}\t{4}\n"​.format(*tup))
f.close()

output_file.close()

Parsing arguments

if​ len(sys.argv) != ​2​:
print(​"Usage: python3 utc_to_date <filename> where:\nfilename - File to parse."​)
exit(​0​)

filename = sys.argv[​1​]
parse_file(filename)

