

Human Supervision of Multi-Robot Systems

A Major Qualifying Project by:

Donald Bourque

Thomas DeSilva

Nicholas Otero

Motivation

- Tasks often require multiple agents
- Robots are quick, safe, and/or reliable
- Humans offer judgment and flexibility

[1], [2], [3]

Project Goals

- Develop a framework for human supervision of multi-robot systems
- Devise a test to evaluate the framework
- Assemble a team of robots to perform the test

Research and Inspiration

- Distributed coordination
- Task and role assignments
- Utility function calculations

Human-robot interface design

[4]

Framework Design

Framework Workflow (cont'd)

Framework Workflow

Framework Workflow (cont'd)

Framework Workflow (cont'd)

Testing The Framework

Evaluate the effectiveness of the framework:

- Unit tests of specific framework functions
- Search and discover mission

Robots

Turtlebot Hermes Husky

Graphical User Interface

Task Robot Situational Hub Awareness Hub Hub Feedback Hub

Graphical User Interface (cont'd)

Localization

- Needed to determine position of robots within the operating area
- Used Augmented Reality(AR) tags and wheel odometry
- Position belief was maintained by a rolling average filter

Localization

Worcester Polytechnic Institute

Results

- Hermes, Husky, and the Turtlebots were able to be represented in the system with different attributes.
- The bidding algorithm was able to assign tasks to robots who were the most capable of doing them.
- Roles allowed the user to exert coarse control over the task allocation process.
- The human supervisor was able to gain situational awareness using the camera view, the map view, and the help alert.
- The human supervisor could directly assign tasks, interrupt tasks and directly control one or more robots at a time.

Results (cont'd)

- Large amounts of latency in communications slowed the execution of the system.
- Prerequisites needed too much information to be practical.
- Localization methods had different levels of effectiveness on different platforms.

Video

References

- [1] http://www.unocha.org/roap/about-us/emergencyresponse
- [2] http://www.contourcrafting.org/space-colonies/
- [3] http://www.dailymail.co.uk/news/article-2585981/Workers-casually-dismantle-cranes-usedbuild-Shanghai-Tower-knee-wobbling-2-000ft-up.html
- [4]people.csail.mit.edu/rak/www/sites/default/files/pubs-/KneEtal13.pdf
- [5] http://www.robocup2014.org/?p=893
- [6] http://wiki.ros.org/ar_track_alvar
- [7] http://www.bls.gov/news.release/pdf/cfoi.pdf

Questions?

Motivation Follow Up

- As of 2013 [7]:
 - 100 fatalities(33%) were reported in the manufacturing industry which may have been preventable through robots.
 - 294 fatalities(37%) involving falling and 80 fatalities(10%) involving proximity to dangerous machines were reported in the construction industry. These could be prevented with human supervised robot teams.
- In space environments, teams of humans are difficult to maintain and could be replaced by robots. However, human supervision and judgment is still needed.
- Hazardous environments such as Fukushima Daiichi could require multi-robot systems with human supervision.

GUI Follow Up – Request Help

GUI Follow Up – Edit tasks

GUI Follow Up – Roles

Path Planning and Execution

- Path planning was implemented using A*
- Path execution was accomplished using a piecewise proportional controller:

$$\omega = K_{\omega} \Delta \theta$$

$$v = \begin{cases} 0, & \Delta \theta > \varepsilon \\ K_{\nu} \Delta d, & \Delta \theta \leq \varepsilon \end{cases}$$

Where:

 ω and v are the robot's angular and linear velocities K_ω and K_v are the proportional gains for angular and linear velocity

ε is the allowable angular error before linear motion is initiated.

Navigation Follow Up

Communications Follow Up

- Pings to router > 10s
- Network traffic generated by system < 60kb/s
- Processor load on supervisor's computer <20%
- Improved performance when operating in Gateway Garage

Possible cause was using overcrowded wireless channels

Utility Function

$$\sum_{a=attribute\ value} a = attribute\ value$$
$$w = weight$$