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Abstract

Personalized learning considers that the causal effects of a studied learning inter-

vention may differ for the individual student (e.g., maybe girls do better with video

hints while boys do better with text hints). To evaluate a learning intervention

inside ASSISTments, we run a randomized control trial (RCT) by randomly assign-

ing students into either a control condition or a treatment condition. Making the

inference about causal effects of studies interventions is a central problem. Counter-

factual inference answers What if questions, such as ”Would this particular student

benefit more if the student were given the video hint instead of the text hint when

the student cannot solve a problem?”. Counterfactual prediction provides a way to

estimate the individual treatment effects and helps us to assign the students to a

learning intervention which leads to a better learning.

A variant of Michael Jordan’s ”Residual Transfer Networks” was proposed for

the counterfactual inference. The model first uses feed-forward neural networks to

learn a balancing representation of students by minimizing the distance between the

distributions of the control and the treated populations, and then adopts a residual

block to estimate the individual treatment effect.

Students in the RCT usually have done a number of problems prior to participat-

ing it. Each student has a sequence of actions (performance sequence). We proposed

a pipeline to use the performance sequence to improve the performance of counter-

factual inference. Since deep learning has achieved a huge amount of success in

learning representations from raw logged data, student representations were learned

by applying the sequence autoencoder to performance sequences. Then, incorporate

these representations into the model for counterfactual inference. Empirical results



showed that the representations learned from the sequence autoencoder improved

the performance of counterfactual inference.
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Modeling
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Chapter 1

Going Deeper with Deep

Knowledge Tracing

Proper citation of this chapter is as follows:

Xiaolu Xiong, Siyuan Zhao, Eric Van Inwegen, and Joseph Beck. Going deeper

with deep knowledge tracing. In Proceedings of the 9th International Conference on

Educational Data Mining, EDM 2016

Over the last couple of decades, there have been a large variety of approaches to-

wards modeling student knowledge within intelligent tutoring systems. With the

booming development of deep learning and large scale artificial neural networks,

there have been empirical successes in a number of machine learning and data min-

ing applications, including student knowledge modeling. Deep Knowledge Tracing

(DKT), a pioneer algorithm that utilizes recurrent neural networks to model student

learning, reports substantial improvements in prediction performance. To help the

EDM community better understand the promising techniques of deep learning, we

examine DKT alongside of two well-studied models for knowledge modeling, PFA

2



and BKT. In addition to sharing a primer on the internal computational structures

of DKT, we also report on potential issues that arise from data formatting. We take

steps to reproduce the experiments of Deep Knowledge Tracing by implementing a

DKT algorithm using Google’s TensorFlow framework; we also reproduce similar

results on new datasets. We determine that the DKT findings don’t hold an overall

edge when compared to the PFA model, when applied to properly prepared datasets

that are limited to main (i.e. non-help) questions. More importantly, during the in-

vestigation of DKT, we not only discovered a data quality issue in a public available

data set, but we also detected a vulnerability of DKT at how it handles multiple

skill sequences.

1.1 Introduction

Deep knowledge tracing (DKT), the recent adoption of RNN in the area of ed-

ucational data mining, achieved dramatic improvement over well-known Bayesian

knowledge tracing models and the results of it have been demonstrated to be able

to discover the latent structure in skill concepts and can be used for curriculum op-

timization [PBH+15]. One major question in curriculum design is the dependencies

of skills. That is, should skill ”A” be taught before skill ”B”, the other way around,

or does it even matter? Human curriculum experts have their theories; educational

psychologists may run trials to examine the dependencies. Knowledge estimate mod-

els (such as the well-known Bayesian knowledge tracing) are run with the human

input of the skill dependencies. One of the powers of unsupervised learning systems

such as Deep RNN’s is that they can be run without the skill dependencies theories.

As a natural part of model creation, the Deep RNN will create its own rules for

skill dependencies. These dependencies can then be used for curriculum optimiza-
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tion. It has been well recognized that the power of deep learning comes from the

fact that a deep learning algorithm is a particular kind of representation learning

procedure that discovers multiple levels of representation, with higher-level features

representing more abstract aspects of the data; DKT shows a key advantage that it

does not require human expert annotations and can take advantage of any student

input that can be vectorized.

Driven by both noble goals (testing the reproducibility of scientific findings)

and some selfish ones (how did they do so much better at predicting student per-

formance?!), we set out to take the theories, algorithms, and code from the DKT

paper and apply them ourselves to the same data and more data sets. As to the

goal of reproducing the findings, we were motivated by studies discussing the im-

portance of reproducibility [C+15]. In addition to applying DKT to the same data,

we also tested the algorithm on a different new ASSISTments dataset (covers data

in 2014-2015 school year), as well as the one of data sets from KDD Cup 2010

data set. In our experiments with the original DKT algorithm, we uncovered three

aspects of the ASSISTments 2009-2010 dataset that, when accounted for, drasti-

cally reduce the effectiveness of the deep knowledge tracing algorithms. These can

broadly be summarized as 1). an error in reporting the data (wherein rows of data

were randomly duplicated). 2). an inconsistency of skill tagging, and 3). the use of

information ignored by PFA and BKT. We will discuss these three inconsistencies

and their impacts on the prediction accuracy in section 1.3.
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1.2 Deep Knowledge Tracing and Other Student

Modeling Techniques

Unlike the conventional understanding of using multiple processing layers so neural

networks can be described as ”deep”, DKT algorithm uses recurrent neural net-

works that are ”deep” in time to take the task of modeling knowledge in sequential

data sets. This family of models represents latent knowledge state, along with its

temporal dynamics, using large vectors of artificial neurons, and allows the latent

variable representation of student knowledge to be learned from data rather than

hard-coded.

Typical RNNs suffer from the now famous problems of vanishing and explod-

ing gradients. Figure 1.1 shows an unrolled RNN, there are loops at hidden lay-

ers, allowing information to retain. RNN can go deep in terms of time sequence.

When standard activation functions, cumulative backpropagation error signals ei-

ther shrink rapidly, or grow out of bounds. In fact, they decay exponentially in the

number of layers, or they explode. Long short-term memory (LSTM) model [HS97]

is introduced to deal with vanishing gradients problem and it also achieves remark-

able results on many previously un-learnable tasks. LSTM, a variation of recurrent

neural network, contains LSTM units in addition to regular RNN units. LSTM

units have two unique gates: forget and input gates to determine when to forget

previous information, and which current information is important to remember.

In the DKT algorithm, at a certain time step, the input to RNNs is the student

performance on the skill that the student is currently working on. Since RNNs

only accept a fixed length of vector as the input, we used one-hot encoding to

convert student performance into a fixed length of vector whose all elements are

0s except for a single 1. The single 1 in the vector indicates two things: which
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Figure 1.1: An illustration of baseline LSTM model for AES

skill was answered and if the skill was answered correctly. This data presentation

draws a clear distinction between DKT and other student modeling methods, such

as Bayesian Knowledge Tracing and Performance Factor Analysis.

The Bayesian Knowledge Tracing (BKT) model [CA94] is a 2-state dynamic

Bayesian network where student performance is the observed variable and student

knowledge is the latent. The model takes student performances and uses them to

estimate the student level of knowledge on a given skill. The standard BKT model

is defined by four parameters: initial knowledge and learning rate (learning param-

eters) and slip and guess (mediating parameters). The two learning parameters can

be considered as: the likelihood the student knows the skill before he even starts on

an assignment (initial knowledge, K0) and the probability a student will acquire a

skill as a result of an opportunity to practice it (learning rate). The guess parame-

ter represents the fact that a student may sometimes generate a correct response in

spite of not knowing the correct skill. The slip parameter acknowledges that even

students who understand a skill can make an occasional mistake. Guess and slip can

be considered analogous to false positive and false negative. BKT typically uses the

Expectation Maximization algorithm to estimate these four parameters from train-

ing data. Based on the estimated knowledge, student performance at a particular

practice opportunity can be calculated except the very first one, which only apples
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the value of K0.

Skills vary in difficulties and amount of practices needed to master, so values

for four BKT parameters are skill dependent. This lead to one major weakness of

BKT [GBH10], it lacks the ability of handling multi-skill questions since it works

by looking at historical observation of a skill and cannot accommodate all skills

simultaneously. One simple workaround is treating the multiple skill combination as

a new joint skill and estimate a set of parameters for this new skill. Another common

solution of this issue is to associate the performance on multiple skill questions with

all required skills, by listing the performance sequence repeatedly [HBM00]. This

makes the model see this piece of evidence multiple times for each one of required

skills. As a result, a multiple skill question is multiple single skill questions. Another

simpler workaround is treating a multiple skill combination as a new joint skill and

train a set of parameters for this joint skill. It is important to note that the different

approaches of handling multiple skill questions is a debatable issue for DKT method

too, as discussed in section 1.3.

Another popular student modeling approach is the Performance Factors Analysis

Model (PFA) [PJCK09]. PFA is a variant of learning decomposition, and it based

on reconfiguring Learning Factor Analysis. Unlike, BKT, it has the ability to handle

multiple skill questions. Briefly speaking, it uses the form of standard logistic re-

gression model with the student performance as dependent variable. It reconfigures

LFA [CKJ06] on its independent variables, by dropping the student variable and

replaces the skill variable with question identity. This model estimates parameters

for each item’s difficulty and also two parameters for each skill reflecting the effects

of the prior correct and incorrect responses achieved for that skill. Previous work

that compares KT and PFA have shown that PFA to be the superior one. One

reason is due the richer feature set that PFA can utilize and the fact that learning
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decomposition models is ensured to reach global maxima while the typical fitting

approach of BKT is no guarantee of finding a global, rather than a local maximum.

1.3 Methodology and Datasets

1.3.1 Implement DKT in Tensorflow

The original version of DKT (Lua DKT 1) was implemented in Lua scripting lan-

guage using Torch framework and its source code has been released to the public.

In order to have comprehensive understanding of the DKT model, we decided to

replicate and implement DKT model in Python and utilize Google’s TensorFlow

API to help us with building neural networks. TensorFlow is Google Brain’s second

generation machine learning interface, it is flexible and can be used to express a wide

variety for algorithms, including training and inference algorithms for deep neural

network models, and it has been used for conducting research and for deploying

machine learning system into production across many areas.

Our implementation of DKT in TensorFlow (TF DKT 2) can be described as

a directed graph, which is composed of a set of nodes. The graph represents a

dataflow computation, with extensions for allowing certain nodes to maintain and

update persistent state and for branching and looking control, this is crucial for

allowing RNN nodes to work on sequential data. In the directed graph, each node

can has zero or more inputs and zero or more outputs, and represents the instanti-

ation of an operation. An operation represents an abstract computation. Not only

TensorFlow supports low level operations like element-wise mathematical ones to

assemble custom algorithms, it also has high level neural net building blocks. In-

1https://github.com/chrispiech/DeepKnowledgeTracing
2https://github.com/siyuanzhao/2016-EDM
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cluding SoftMax, RNN cells and LSTM cells, built in, which means we have the

luxury of using high level neural net APIs and also have the ability to plug our own

loss functions into our deep learning models.

For our implementation of DKT model, we adapted the loss function of original

DKT algorithm. It has 200 fully-connected hidden nodes in the hidden layer. To

speed up the training process, we used mini-batch stochastic gradient descent to

minimize the loss function. The batch size for our implementation is 100. For one

batch, we randomly select data from 100 students in our training data. After the

batch finishes training, 100 students in the batch are removed from the training

data. We continue to train the model on next batch until all batches are done.

Since a deep neural network has a large number of parameters, overfitting is

a serious problem during training process. To overcome this problem, we applied

Dropout [SHK+14] on each hidden layer. The idea of Dropout is to randomly drop

nodes from the neural network during training. Dropout has a hyper parameter p,

the probability of keeping a node in the network. A small value of p means that

very few of hidden nodes from each hidden layer will be selected during the train-

ing. In our implementation, p is set to be 0.6. Dropout achieves two main system

improvements. First, it forces the nodes within the system to learn important signal

features independent of each other; second it creates some redundancy within the

system, making it more robust. As stated at beginning of Section 2, vanishing and

exploding gradients are two common issues with training recurrent neural network.

LSTM model is utilized to solve vanishing gradients problem.

1.3.2 Student Level Cross Validation

The next important detail is how folds of cross validation are created. In his 1995

paper [K+95] comparing cross-validation and bootstrapping, Kohavi concluded that
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somewhere in the range of 10-20 fold is a valid design. However, there is a unique

aspect of ITS data that requires a bit more care in the selection of the folds. A given

student may have a particular pattern of learning (e.g. getting the first problem

totally wrong to see all of the help, but then mastering the content within the next

few instances). If student data is allowed to exist in multiple folds, the model may

achieve higher apparent correctness by learning a student’s patterns of learning (i.e.

overfitting). If the folds are created such that all of a student’s data exists in only

one fold, the user model can’t benefit from learning a specific student’s pattern of

learning and is forced to generalize; the generalized user model that comes out of

student-level cross validation is more likely to model unseen users better than a

model that does not constrain a student to one fold. Both Lua DKT’s and our

research use student-level cross validation.

1.4 Datasets

1.4.1 ASSISTments 2009-2010 Dataset

The original DKT paper conducted one of three of experiments using the ASSIST-

ments 2009-2010 skill builder data set 3. This data set was gathered from ASSIST-

ments’ skill builder problem sets, in which a student achieves mastery by working

on similar (often isomorphic) questions until they can correctly answer n right in a

row (where n is usually 3). After mastery, students do not commonly rework the

same skill. This dataset contains 525,535 rows of student responses; there are 4,217

student ID’s and 124 skills. Lua DKT achieved an AUC of 0.86 and noticeably out-

performed BKT (AUC = 0.67) on this data set. However, during our investigation

3https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-
data-2009-2010
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on the DKT source code and application, we believe we discovered three issues that

have unintentionally inflated the performance of Lua DKT. These issues are:

Duplicated Records

To our surprise and dismay, we found that the ASSISTments 2009-2010 data set has

a serious issue of quality: large chunks of records are duplications that should not

be there for any reason (e.g., see records of order id 36369610). These duplicated

rows have same information but only differ on the ”opportunity” and ”opportu-

nity original”; these two features record the number of opportunities a student have

practiced on a skill and the number of practices on main problems of a skill respec-

tively. It is impossible to have more than one ”opportunity” counts for a single order

id. This is definitely an error in the data set and these duplicated records should

not be used in any analysis or modeling studies. We counted there are 123,778 rows

of duplications out of 525,535 in the data set (23.6%). The existence of duplicated

data is an avoidable oversight and ASSISTments team has acknowledged this error

on their website. All new experiments in this work and following discussions exclude

data of these duplications.

Mixing Main Problems with Scaffolding Problems

A mastery learning problem sets normally contains over a hundred of main prob-

lems, and each main problem may have multiple associated scaffolding problems.

Scaffolding problems were designed to help student acquire an integrated set of

skills through processes of observations and guided practice; they usually tagged

with different skills and have different designs from the main problems. Because of

the difference in usage, scaffolding questions should not be treated as the same as

main problems. Student modeling methods such as BKT and PFA exclude scaffold-
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ing features. The experiment conducted by Lua DKT did not filter out scaffolding

problems. This means that Lua DKT had the advantage of additional information;

thus the prediction results cannot be compared fairly with BKT. There are 73,466

rows of records of scaffolding problems.

Repeated Response Sequences with Different Skill Tagging (Duplication

by Skill Tag)

The 2009-2010 skill builder dataset was created as a subset from the 2009-2010 full

dataset. The full dataset from 2009-2010 includes student work from both skill

builder assignments (where a student works until a mastery threshold is reached)

and more traditional assignments (where a student has a fixed number of problems).

Any problem (or assignment) can be tagged with any number of skill tags. Typically,

problems have just one skill tag; they seldom are tagged with two skills; they are

very rarely tagged with three or more. Depending on the design of the content

creator, a problem set may have multiple skill tags; many assignments - especially

skill builders - will have the same skill tag for all problems. When the full dataset

was decomposed into only mastery style assignments, the problems and assignments

that were tagged with multiple skills were included with a single tag, but repeated

for each skill. This means that the sequence of action logs from one student working

on one assignment were now repeated once per skill. For models such as RNNs

that operate over sequences of vectors and memory on entire history of previous

inputs, the issue of duplicated sequences is going to add additional weight on to the

duplicated information; this will have undesired effects on RNN models.

For example, suppose we have a hypothetical scenario that a student answers

two problems which have been tagged with skill ”A” and ”B”, he answers first one

correctly and the next one incorrectly. Table 1.1 shows the data set where responses
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Index ID Skill ID Problem ID Correctness
1 A 3 1
1 B 3 1
2 A 4 0
2 B 4 0

Table 1.1: An example of repeated multiple-skill sequence

Index ID Skill ID Problem ID Correctness
1 A, B 3 1
2 A, B 4 0

Table 1.2: An example of joint skills on multiple-skill problems

have been repeated on skill ”A” and ”B”. This format of data can be used in

BKT models, since BKT can build two models for skill ”A” and ”B” separately.

When applying this sequential data set to DKT, we believe DKT can recognize the

pattern that a problem tagged with skill ”B” follows a problem tagged with ”A”; the

skill ”B” problem has extremely high chance to repeat skill ”A” problem’s response

correctness. Note that skill ID can be mapped to skill names, but the order of skill

ID is completely arbitrary.

One approach to change the way of how multiple-skill problems are handled is

to simply use the combination of skills as a new joint skill. Table 1.2 shows the data

set which uses a joint skill of A and B. In this case, DKT no longer has access to

repeated information. PFA and BKT can also adapt this format of data too.

In order to understanding the impact of having scaffolding problems and two

approaches of dealing with multiple-skill problems, we generate three different data

09-10 (a) 09-10 (b) 09-10 (c)
Has duplicated records No No No
Has scaffolding problems Yes No No
Repeated multiple-skill sequences Yes Yes No
Joint skills from multiple-skill No No Yes

Table 1.3: Three variants of ASSISTments 2009-2010 Datasets
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sets (namely 09-10 (a), 09-10 (b), 09-10 (c)) derivate from the ASSISTments 2009-

1010 data set, as summarized in Table 1.3.

1.4.2 ASSISTments 2014-2015 Dataset

Even without the issue of duplicate rows, 2009-2010 skill builder set has lost its

timeliness and certainly cannot represent the latest student data in an intelligent

tutoring system. So we gathered another data set that covers 2014-2015 school

years’ student response records 4. In this experiment, we randomly selected 100

skills from this year’s data records. This data set contains 812,334 rows of records,

each record represent a response to a main problem in a mastery learning problem

set. Each problem set has only one associated skill and we take caution to make sure

there is no duplicated row in this data set. We suspect this new data set contains

different information that covers student learning patterns, item difficulties and skill

dependencies.

1.4.3 KDD Cup 2010 Dataset

Our last data set comes from the Cognitive Algebra Tutor 2005-2006 Algebra sys-

tem 5. This data were provided as a development dataset in the KDD Cup 2010

competition. Although both ASSISTments and Cognitive Algebra Tutor involve

using mathematics skills to solve problems, they are actually rather different from

each other. ASSISTments serves primarily as computer-assisted practice for stu-

dents’ nightly homework and review lessons, while the Cognitive Tutor is part of an

integrated curriculum and has more support for learners during the problem-solving

process. Another difference in terms of content structure is that the Cognitive Tutor

4https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-
data-2009-2010

5http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
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# Records # Students # Skills
09-10 (a) 401,757 4,217 124
09-10 (b) 328,292 4,217 124
09-10 (c) 275,459 4,217 146
14-15 812,334 19,457 100
KDD 607,026 574 436

Table 1.4: Dataset Statistics

presents a problem to a student that consists of questions (also called steps) of many

skills. The Cognitive Tutor uses Knowledge Tracing to determine when a student

has mastered a skill. A problem in the tutor can consist of questions of different

skills, once a student has mastered a skill, as determined by KT, the student no

longer needs to answer questions of that skill within a problem but must answer the

other questions which are associated with the un-mastered skills. The number of

skills in this dataset is substantially larger than the ASSISTments dataset [PH11].

One issue of using KDD data on PFA is how to estimate item difficulty feature. In

this work, we use a concatenation of problem name and step name. However many

such pairs are only attempted by 1 student and the difficulty values of these items

are either 1.0 or 0.0, leading to both over-fitting and data leakage. To fix that, we

replace difficulty values of these items with skills’ difficulty information. Filtering

out rows with missing values resulting in 607,026 rows of data with students re-

sponded correctly at 75.5% of the time. This data set has 574 students worked on

436 skills in mathematics. The complete statistic information of five data sets can

be found in table 1.4.
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Torch DKT TF DKT PFA BKT
09-10 (a) 0.79 0.81 0.7 0.6
09-10 (b) 0.79 0.82 0.73 0.63
09-10 (c) 0.73 0.75 0.73 0.63
14-15 0.7 0.7 0.69 0.64
KDD 0.79 0.79 0.71 0.62

Table 1.5: AUC Results

1.5 Results

Student performance predictions made by each model are tabulated and the accuracy

was evaluated in terms of Area Under Curve (AUC) and the square of Pearson

correlation (r2). AUC and r2 provide robust metrics for evaluation predictions where

the value being predicted is either a 0 or 1 also represents different information on

modeling performance. An AUC of 0.50 always represents the scored achievable

by random chance. A higher AUC scores represents higher accuracy. r2 is the

square of Pearson correlation coefficient between the observed and predicted values

of dependent variable. In the case of r2, it is normalized relative to the variance

in the data set and it is not a directly a measure of how good the modeled values

are, but rather a way of measuring the proportion of variance we can explain using

one or more variables. r2 is similar to root mean squared error (RMSE), but is

more interpretable. For example, it is unclear whether an RMSE of 0.3 good or bad

without knowing more on the data set. However, an r2 of 0.8 indicates the model

is account for most of variability in the data set. Neither AUC nor r2 method is a

perfect evaluation metric, but, when combined, they account for different aspects of

model and provide us a basis for evaluating our models.

Experiments on every data set have been 5-fold student level cross validated and

all parameters are learned on training data. We used EM to train BKT and the

limit of iteration was set to 200. Besides the number of hidden nodes of size of
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Lua DKT TF DKT PFA BKT
09-10 (a) 0.22 0.29 0.11 0.04
09-10 (b) 0.22 0.31 0.14 0.07
09-10 (c) 0.14 0.18 0.14 0.07
14-15 0.1 0.1 0.09 0.06
KDD 0.21 0.21 0.1 0.05

Table 1.6: R2 Results

mini-batch parameters we have discussed, we set the number of epochs of DKT to

100.

The cross-validated model predictions results are shown in Table 1.5 and Table

1.6. As can be seen, DKT clearly outperforms BKT on all data sets, but the results

are no longer overwhelmingly in favor of DKT (both implementations) with DKT

only markedly beating PFA in 3 of 5 data sets. Note that Lua DKT uses RNN, TF

DKT uses LSTM.

On the ASSISTments datasets, average DKT prediction performance across two

implementations is better than PFA and it is not affected from removing scaffold-

ing, as we change dataset from 09-10 (a) to 09-10 (b). On the other hand, PFA’s

performance increases from 0.70 to 073 in AUC and 0.11 to 0.14 in r2 (p 0.05), we

believe that removing scaffolding helps reducing noise from data and providing PFA

with a dataset with lower variance. When we switch to dataset 09-10 (c) where

multiple skills were combined into joint skills, the performance of DKT suffers a

noticeable hit, average AUC and average r2 drop from 0.81 to 0.74 and from 0.30

to 0.18 respectively. This observation confirms our suspicion on repeated response

sequence inflates the performance of DKT models. On the 09-10 (c) dataset and

14-15 dataset where no repeated response sequences and scaffolding problems, we

notice that PFA perform as good as DKT.

A deeper way of looking at the impact of repeated response sequences on data
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set (d) is splitting the prediction results into two, the predictions of leading records

and repeated data points. We see that predictions on repeated data points (e.g.

skill ”B” problems in Table 4) have nearly perfect performance metrics (AUC =

0.97, r2 = 0.74). On the other hand, the leading records (e.g. skill A problems in

Table 4) have much lower prediction results (AUC = 0.77, r2 = 0.23). That said,

we also notice these numbers are still higher than 09-10 (c)’s results, which uses

joint skill tags to avoid repeated sequences. One can explain this as making DKT

to model skills individually can cause data duplications but it also can have benefits

on building skill dependences over time and use such information to make better

predictions.

On the KDD dataset, the performance results of two DKT implementations are

definitely better than both BKT and PFA (p 0.05). There are a few possible reasons

for this performance gap between PFA and DKT. First of all, as we have mentioned,

we have to adjust item difficulty values for many problems in order to avoid over-

fitting and data leakage, which leads to lower predictive power of that feature and

lower PFA performance. Another possible explanation of DKT is winning on KDD

data set is that DKT can better exploit step responses. The structure of KDD data

set made it is difficult to distinguish ”main problems” and ”scaffolding problems”,

thus PFA is unable to have a more unified data set for this part of experiment. That

said, the advantage of DKT shows its power on complicated and realistic datasets.

1.6 Discussion and Contribution

Within this paper, we have compared two well-studied knowledge modeling methods

with the emerging Deep Knowledge Tracing algorithm. We have compared these

models in terms of their power of predict student performance in 5 different data sets.
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Contrary to our expectation, the DKT algorithm did not achieve overwhelmingly

better performance when compared to PFA model on ASSISTments data sets, when

they are properly prepared. DKT appears to perform much better on KDD dataset,

but we believe this is due to PFA model undermined by inaccurate item difficulty

estimation.

A second interesting finding is that when DKT is fed repeated response sequences

derived from the transformation of problems tagged with multiple skills, the overall

performance of DKT is certainly better than PFA and BKT. Our explanation is

that DKT’s implementation backbone, RNNs, has the power of remembering ex-

act patterns of sequential data and could thus inflate prediction performance on

responses tagged with multiple skills and repeated per skill. More discussion and

special attention are required when handling multiple skill problems in DKT algo-

rithm. In fact, we are very interested in what kinds of high level features DKT can

detect from data, so we explore the relationship between skill difficulties between

predicted performance values across skills on the 14-15 data set. Skill difficulties

is not an independent variable for all three models and our assumption is that the

correlation between it and the predicted performance (average of predicted correct-

ness) of a model can reflect that model’s ability of detecting such hidden information

from a dataset.
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Chapter 2

Incorporating Rich Features into

Deep Knowledge Tracing

Proper citation of this chapter is as follows:

Liang Zhang, Xiaolu Xiong, Siyuan Zhao, Anthony Botelho and Neil T. Heffernan.

Incorporating Rich Features into Deep Knowledge Tracing. In Proceedings of the

Fourth ACM Conference on Learning @ Scale, L@S 2017

The desire to follow student learning within intelligent tutoring systems in near

real time has led to the development of several models anticipating the correctness

of the next item as students work through an assignment. Such models have in-

cluded Performance Factors Analysis (PFA), Bayesian Knowledge Tracing (BKT),

and more recently with developments in deep learning, Deep Knowledge Tracing

(DKT). This DKT model, based on the use of a recurrent neural network, exhibited

promising results. Thus far, however, the model has only considered the knowledge

components of the problems and correctness as input, neglecting the breadth of

other features collected by computer-based learning platforms. This work seeks to
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improve upon the DKT model by incorporating more features at the problem-level.

With this higher dimensional input, an adaption to the original DKT model struc-

ture is also proposed, incorporating an auto-encoder network layer to convert the

input into a low dimensional feature vector to reduce both the resource requirement

and time needed to train. Experiment results show that our adapted DKT model,

observing more combinations of features, can effectively improve accuracy.

2.1 Introduction

Models that attempt to follow the progression of student learning often represent

student knowledge as a latent variable. As students work on new problems, these

models update their estimates of student knowledge based on the correctness of

responses. The problem emerges to be time series prediction, as student perfor-

mance on previous items is indicative of future performance. Models then use the

series of questions a student has attempted previously and the correctness of each

question to predict the students performance on a new problem. Two well-known

models, Bayesian Knowledge tracing (BKT) [CA94] and performance factor analy-

sis (PFA) [PJCK09] have been widely explored due to their ability to capture this

progression of knowledge with reliable accuracy. Both of these models, exhibiting

success in terms of predictive accuracy, use differing algorithms to estimate student

knowledge. BKT, for example, uses a bayesian network to learn four parameters

per knowledge component, or skill, while the PFA model uses a logistic regression

over aggregated performance to determine performance for each skill. The concept

to treat each skill individually is perhaps a leading factor in the success of these

models, as they understand that students will exhibit different learning behaviors

depending on content.
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Deep learning is an emerging approach which has proved to yield promising

results in a range of areas including pattern recognition, natural language processing

and image classification[18]. The deep aspect of deep learning refers to the multiple

levels of transformation that occur between input nodes and output nodes; these

levels are usually referred to as layers, with each layer consisting of numerous nodes.

The hidden nodes are used to extract high level features from previous layers and

pass that information on to the next layer. However, the features extracted by

deep learning is largely uninterpretable due to the complexity. This complexity

makes it infeasible to explain the meaning behind every parameter learned by the

model, unlike BKT and PFA which attempt to incorporate interpretability with its

estimates.

Many deep learning algorithms like recurrent neural network (RNN) and con-

volutional neural networks (CNN) have been proposed in recent years to benefit

machine learning systems with complex, yet more accurate representative models.

Such an attempt in the field of learning analytics is that of Deep Knowledge Trac-

ing (DKT). Building from the promising results of that model, this work seeks to

make better use of the complex nature of deep learning models to incorporate more

features to improve predictive accuracy. We also explore how other deep learning

structures can help reduce these high dimensional inputs into smaller representative

feature vectors.

2.2 Deep Learning in Education

Deep knowledge tracing (DKT), introduced by Piech et al. [PBH+15], applies a

RNN for this educational data mining task of following the progression of student

knowledge. Similar to BKT, this adaptation observes knowledge at both the skill

22



level, observing which knowledge component is involved in the task, and the problem

level, observing correctness of each problem. The input layer of the DKT model is de-

scribed as an exercise-performance pair of a student, {(Xst1,1, Yst1,1), (Xst1,2, Yst1,2),

. . . , (Xst1,T , Yst1,T )}, while the output layer is Yst1,2, Yst1,3, . . . , Yst1,T+1. The term

Xst1,1 refers to the feature combination of question (or skill) and correctness of stu-

dent 1 on a problem of skill 1. Yst1,1 refers to the correctness of a problem from skill

1 for student 1. In other words, the skill and correctness of each item is used to

predict the correctness of the next item, given that problems skill.

The DKT algorithm uses a recurrent neural network to represent latent knowl-

edge state, along with its temporal dynamics. As a student progresses through an

assignment, it attempts to utilize information from previous timesteps, or problems,

to make better inferences regarding future performance. A popular variant of RNN,

also used in the DKT model, is that of long short-term memory (LSTM) networks.

The key difference of LSTMs to traditional RNNs is the internal node structure,

that acts like a conveyor belt in determining how to modify information within each

recurrent node. The LSTM variant uses three gates to remove or add information

to the cell states, determining how much information to remember from previous

timesteps and also how to combine that memory with information from the current

timestep.

The recurrent hidden nodes are trained to identify and retain the relevant as-

pects of the input history as it pertains to student performance. The appearance of

DKT drew attention by the educational data mining community due to the claimed

dramatic improvement over BKT, claiming about 25% gain in predictive perfor-

mance using the ASSISTments 2009 benchmark dataset. At the 2016 Educational

Data Mining Conference, three papers [WKHE16, KLM16, XZIB16] were published

to compare DKT with traditional probabilistic and statistical models. They argue
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that traditional models and variants still perform as well as this new method with

better interpretability and explanatory power.

Due to the recency of the DKT model, it is not as deeply researched as other

established methods. We believe that DKT is a promising approach due to its com-

parable performance, and with the emergence of new neural network optimization

algorithms, the structure has space for improvement. Thus far only question (or

skill) and correctness are considered as input to the DKT model, but the network

can easily consider more features. In this paper, we explore the inclusion of more

features to improve the accuracy of prediction. However, the incorporation of new

features can quickly increase the input layer dimensionality, requiring careful con-

sideration to avoid model overfitting and also to ensure the feasibility of training

such a model within reasonable hardware requirements.

While a simple feed-forward neural network can be trained relatively quickly

depending on the number of nodes and size of the dataset, RNNs are considerably

more computationally expensive due to the comparatively larger number of param-

eters. In such models fitting procedures often take hours or days to run on large

data sets. For example, training a LSTM DKT model with 50 skills and 200 hidden

nodes needs to learn 250,850 parameters. In our environment, the training of DKT

models on the ASSISTments 2009 benchmark dataset takes 3.5 minutes per epoch,

equating to more than 14 hours when using a 5 fold cross validation run over 50

epochs. In contrast, BKT is able to train on the same dataset within 10 minutes.

In this way, training time and the number of parameters are considered as an

important metric of comparison; such models need to provide significant gains to

predictive performance to justify their usage over simpler models. To this extent,

the network structure of DKT may benefit from reduced dimensionality, particularly

if this can be achieved without sacrificing performance. An auto-encoder is one
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such approach to this problem. Auto-encoders are multi-layer neural networks with

a small central layer that can convert high dimensional data to low dimensional

representative embeddings that can be used to reconstruct the high dimensional

input vectors; in this way dimensionality is reduced without the loss of important

information. This technique is an unsupervised learning algorithm that applies

backpropagation, much like a traditional feed-forward neural network, observing

the input vector as the training output. Using a smaller number of nodes in the

hidden layer, therefore, finds a smaller number of values that can reconstruct the

input. Once trained, the output layer can be removed, and the hidden layer can

connect to another network layer. Auto-encoders may be stacked in this way,s but

t each layer must be trained one at a time. Like other neural network, the gradient

descent method is used to train the weight values of the parameters.

2.3 Improving DKT with More Features

Intelligent tutoring systems often collect additional features about the interaction of

students including information on problems, instructional aids, and time spent on

individual tasks. Models and algorithms that make use of this additional information

have been proposed. For example, hint usage and the number of attempts need to

find the problem answer are adopted to predict the performance in the sequence

of actions (SOA) model [DZWH13]; partial credit history acquired based on the

number of hints used and the number of attempts are used to predict the probability

of that students getting the next question correct [VIAWH15].

As previously described, it is easy to incorporate useful information such as this

into the input layer of a neural network. However, the key consideration is how fea-

ture engineering is performed on these features. Feature engineering played a vital
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Figure 2.1: A one layer auto-encoder neural network; the weights of the decoder
is simply the matrix transpose of the encoders. The hidden layer becomes a dense
feature vector representative of the input layer.

26



role for the NTU team [YLH+10] who won the KDD competition in 2010. They in-

corporated a large number of features and cross-features into a vector-space model

and then trained a traditional classifier. They also identified some useful feature

combinations to improve the performance. Cross features were used in the original

DKT work as well, utilizing a one-hot encoding to represent an correct and incorrect

response for each skill separately as a vector of 2 times the number of skills; alter-

natively, such information could be represented separately, with a one-hot encoding

representing skills, and just one binary metric to indicate correctness equating to a

vector of the number of skills plus 1. In wide-and-deep learning proposed by Google

[CKH+16], sparse features and cross features are selected for wide part, while the

continuous columns and the embedding dimension for each categorical column are

selected for deep part. These exemplary models use the engineering of features to

improve model accuracy helping to motivate the methodology of this work.

2.3.1 Feature Process

In order to train the RNN model on student-tutor interaction data, the information

must be converted into a sequence of fixed-length input vectors. Several features are

selected for our modeling experiment; they are exercise (skill) tag, correctness, time

(the time in seconds before the student’s first response), hint usage (total number

of hints requested by the student), attempt count (the number of attempts made

to answer correctly on this problem), and problem view (total number of times the

student encountered the problem so far). The exercise tag feature is used to identify

the content of a problem, acting as the skill-level tag. In different datasets, the skill

level tag can exhibit differing representations, described by either a numeric skill id

or the name of the knowledge component.

Numerical features like time, hint usage, attempt count and problem views can
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be bucketed into categorical features which can be used to construct cross features

in order to reduce the complexity of the model. This process simplifies the input

without losing much information, as small differences in numeric values are often

less important than large differences. For example, if a student finishes exercise a

within 10 seconds while the other student is 300 seconds in the same exercise, the

time difference represents their different mastery in exercise. Meanwhile, compar-

ing a student who finishes in 10 seconds to a student who finishes in 11 seconds

demonstrate similar, if not arguably the same level of understanding. Bucketing

still captures this information while significantly reducing model complexity. The

numeric features in this paper are bucketed across all skills and the result is repre-

sented by a one-hot encoding.

Cross features such as the tuple of exercise and correctness, are represented

as one integer represented by a one-hot encoder. The advantage of using cross

features has been shown to improve model performance [YLH+10] while models

representing features separately exhibit degraded performance [PBH+15]. However,

the disadvantage of using cross features is the rapid increase of the dimensionality of

the input vector. As the dimensionality increases, it is hard for the model to converge

to the global optimal. At the same time, computational resources may become

exhausted due to the large number of parameters. Dimensionality reduction, and

the extraction of key features, is critical to guarantee the running of such models.

Here, an auto-encoder is used to accomplish this task. In our experiment, the

dimension is successfully reduced to a quarter of the input size. We train the initial

weights using an auto-encoder, and hold them constant while training the remainder

of the model.
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Figure 2.2: Feature concatenation

2.3.2 Model

The input vector of our model is constructed by concatenating one-hot encodings for

separate features as illustrated in figure 2.2, where vt represents the resulting input

vector of each student exercise. The term et refers to the exercise tag, while ctrefers

to correctness, and tt represents time before the first response. Concatenation is

described in the formulas below.

vt = O(C(et, ct)) + ′O(C(tt, yt)) + ′O(tt) (2.1)

C(et, ct) = et + (max(e) + 1) ∗ ct (2.2)

In these, O(·) is the one-hot encoder format, C(·, ·) is the cross feature, and the

+′ operator is used to denote concatenation, not addition in 2.1. In 2.2, 1 is added
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Figure 2.3: Feature concatenation

in the expression due to the unincluded exercise.

Figure 2.3 depicts the resulting model representation utilizing an auto-encoder

layer to support the added features. In Figure 3, v1′ represents the feature vector

extracted from v1 by auto-encoder; after training, this is simply the output of the

hidden layer for each input vector. The gray arrows mean that weights between the

two layers are held constant, so the auto-encoder is trained separately in advance.

From our experiments, we noticed that the fine tuning of auto-encoder weights,

if trained with the RNN together, would lead to overfitting due to the increase

of parameters. Therefore, the pre-trained weights in encoder are fixed to prevent
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overfitting.

vt′ = tanh(Waevt + bae) (2.3)

ht = σ(Whxvt′+Whhht−1 + bh) (2.4)

yt = σ(Whyht + by) (2.5)

The model predicts performance in every exercise but just one prediction is

selected at each time step because just one label exists at that time. The loss

function was defined to use cross-entropy, as is common in other RNN models.

2.4 Datasets and Environment

Three educational datasets are tested in this paper. Each of these datasets comes

from a system in which students interact with an intelligent tutor system for math

content. Area under the curve (AUC) and r-squared metrics are measured for each.

The original DKT model with inputs that include only exercise tag and correctness

is used as a model for comparison. Since it is a time-series algorithm, students whose

records are less than 2 are not considered.

2.4.1 ASSISTments 2009-2010 Datasets

ASSISTments is a computer-based learning system that simultaneously teaches and

assesses students. This dataset was gathered from ASSISTments skill builder prob-

lem sets, which are assignments in which a student works on similar questions until

he/she can correctly answer n consecutive problems correctly (where n is usually

3). After completion, students do not commonly rework the same skill. Xiong et al
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[XZIB16] discovered three issues that have unintentionally inflated the performance

of DKT in the original version, so the updated version of this dataset is adopted

here.

Unlike other datasets, the records of a student may not be consecutive. That is

why some previous works [PBH+15] report 15,391 students while others [XZIB16]

report 4,217. In our model, all records that belong to one student are concatenated.

The exercise tag is defined as the skill id.

In order to simplify the model and use cross features between time and others,

the time is bucketed according to boundaries [-1, 60, 300, 1200, 3600, INF]. The

boundary of hint count is defined as [-1, 0, 2, 4, INF], and [-1, 1, 20, 100, INF] for

attempt count.

After preprocessing, this dataset consists of 4,217 students, 124 exercise tags and

338,000 records in total.

2.4.2 ASSISTments 2014-2015 Datasets

In addition to the 2009-2010 skill builder set we felt it appropriate to include a more

recent representation of student data within the ASSISTments platform. We also

used another dataset from ASSISTments that covers student response records from

the 2014-2015 school year.

The process of feature processing with the exception of handling skill ids in this

datasets is same as in the previous dataset. Unlike the ASSISTments 2009 dataset,

some assignments have no mapped skill id so use the sequence id to represent skill

id directly. Since the sequence level is finer than skill level, this process would

introduce the noise to the dataset. The new skill id is mapped to the same pattern.

After pre-processing, the dataset consists of 19,103 students, 85 exercise tags,

and 707,866 records.
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2.4.3 KDD Cup 2010 Datasets

KDD Cup 2010 is an education data mining competition organized by an ACM

Special Interest Group on Knowledge Discovery and Data Mining (KDD) to predict

student algebraic problem performance given information regarding past perfor-

mance. The dataset came from Carnegie Learning’s Cognitive Tutor in Algebra

from years 2005-2009.

Unlike the ASSISTments platform, the Cognitive Algebra Tutor is part of an

integrated curriculum and has more support for the learner during the problem-

solving process. It provides a much finer representation of the concepts assessed by

an individual item. Each step a student takes to answer problem is counted as a

separate interaction, with each step potentially assessing different knowledge com-

ponents (KCs). We use each interaction (step) as the finest problem for prediction,

over 438 knowledge components representing skill. The exercise tag is a numerated

knowledge component derived from the text description. A skill composed of several

sub-components is considered as a separate knowledge component. Time is buck-

eted according to boundaries [-1, 10, 60, 150, 300, INF]. Hint usage is bounded by

[-1, 2, 5, 10, INF]. As there is no attempt count field in this dataset, problem view

is instead used and bucketed according the boundaries [-1, 2, 5, 10, INF].

After processing, the data set consist of 574 students, 438 exercise tags and

809,684 records.

2.5 Result

The prediction is evaluated in terms of Area under curve (AUC) and the square of

Pearson correlation (R2). Experiment undergo 5-fold student level cross validation.

There are a lot of possible feature and cross feature selection methods, but here

33



Model 2009 2014 KDD
DKT: exercise/correct 0.829 0.714 0.799
DKT + time/correct 0.857 0.725 0.806
AE(DKT + time/correct) 0.855 0.721 0.803
DKT + time/correct + time + hint + attempt 0.859 0.728 0.808
AE(DKT + time/correct + time + hint + attempt) 0.857 0.716 0.794
AE(DKT + time/correct + exercise/time + time + hint
+ attempt)

0.863 0.731 0.808

Table 2.1: The results of each of the explored models. The + operator denotes
concatenation. The attempt feature in KDD data refers to the problem view feature.

Model 2009 2014 KDD
DKT: exercise/correct 0.323 0.115 0.234
DKT + time/correct 0.387 0.129 0.245
AE(DKT + time/correct) 0.387 0.124 0.239
DKT + time/correct + time + hint + attempt 0.388 0.133 0.25
AE(DKT + time/correct + time + hint + attempt) 0.393 0.119 0.221
AE(DKT + time/correct + exercise/time + time + hint
+ attempt)

0.403 0.135 0.25

Table 2.2: R2 results

we just explore few of them. AUC and R2 provide robust metrics for evaluation

predictions where the value being predicted is either a 0 or 1 also represents different

information on modeling performance. An AUC of 0.50 always represents the scored

achievable by random chance. A higher AUC score represents higher accuracy. R2

is the square of Pearson correlation coefficient between the observed and predicted

values of dependent variable.

On all three datasets, models with incorporated features outperform the original

DKT model. In the ASSISTments 2009 dataset, AUC value is improved to 0.857

from 0.829 after adding the cross feature of exercise and time. However, the AUC

value just increases 0.2% when adding more features such as time, hint usage and

attempt count into the input vectors. Even adding a cross feature of exercise and

time shows no further improvement.

The adoption of the auto-encoder when compared to models using the same
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features shows degraded performance of about 0.2%. In the ASSISTments 2014

dataset, it decreases to 0.716 from 0.728 while 0.808 to 0.794 in KDD data set.

However, the auto-encoder is essential if more features are to be considered. For

example, the input dimension of the last model, AE(DKT + time/correct + exer-

cise/time + time + hint + attempt), in KDD dataset is 3,079, which exhausted

the GPU resources in our environment without an auto-encoder even when using

small batch sizes. From the above results, the improvement of prediction is mainly

contributed by incorporation of cross features.

2.6 Conclusion

The feature transformation and feature combination, when properly selected, can

be used to improve the prediction accuracy. Although the parameters are difficult

to interpret, such RNN models are adopted due to the performance gains.

The improvement here is attributed to the incorporation of cross features. The

auto-encoder allows for the support of larger input vectors, making it possible to

explore such combinations represented in one-hot encodings.

The work of extending these models has several potential directions to pursue.

One such direction can explore even more features, engineered in different manners,

such as tokening the words of knowledge components for different exercise represen-

tations. Similarly, a wide and deep approach can be explored in how the features

are represented within model training.

The numerical data like time and hint usage can also be revisited in future

work. Bucketed according to the distribution within each exercise rather than across

all exercises will likely improve the representation of those features. For example,

because skill B is harder than skill A, most students may answer skill A in 20 seconds
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while the same student requires 300 seconds in skill B.

Because of flexible structure of deep learning, another research direction is to

use similar RNN model structures to make other predictions regarding concepts like

wheel spinning, student dropout, or hint usage.
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Part II

Application of Memory Networks
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Chapter 3

Condensed Memory Networks for

Clinical Diagnostic Inferencing

Proper citation of this chapter is as follows:

Aaditya Prakash, Siyuan Zhao, Sadid A. Hasan, Vivek V. Datla, Kathy Lee, Ashe-

qul Qadir, Joey Liu and Oladimeji Farri. Condensed Memory Networks for Clinical

Diagnostic Inferencing. In Proceedings of the Thirty-First AAAI Conference on Ar-

tificial Intelligence, AAAI 2017

Diagnosis of a clinical condition is a challenging task, which often requires signifi-

cant medical investigation. Previous work related to diagnostic inferencing problems

mostly consider multivariate observational data (e.g. physiological signals, lab tests

etc.). In contrast, we explore the problem using free-text medical notes recorded

in an electronic health record (EHR). Complex tasks like these can benefit from

structured knowledge bases, but those are not scalable. We instead exploit raw text

from Wikipedia as a knowledge source. Memory networks have been demonstrated
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to be effective in tasks which require comprehension of free-form text. They use

the final iteration of the learned representation to predict probable classes. We

introduce condensed memory neural networks (C-MemNNs), a novel model with

iterative condensation of memory representations that preserves the hierarchy of

features in the memory. Experiments on the MIMIC-III dataset show that the pro-

posed model outperforms other variants of memory networks to predict the most

probable diagnoses given a complex clinical scenario.

3.1 Introduction

Clinicians perform complex cognitive processes to infer the probable diagnosis af-

ter observing several variables such as the patient’s past medical history, current

condition, and various clinical measurements. The cognitive burden of dealing with

complex patient situations could be reduced by having an automated assistant pro-

vide suggestions to physicians of the most probable diagnostic options for optimal

clinical decision-making.

Some work has been done in building Artificial Intelligence (AI) systems that

can support clinical decision making [LKEW15a, CBS+16a, CBS+16b]. These works

have primarily focused on the use of various biosignals as features. EHRs typically

store such structured clinical data (e.g. physiological signals, vital signs, lab tests

etc.) about the patients clinical encounters in addition to unstructured textual

notes that contain a complete picture of the associated clinical events. Structured

clinical data generally contain raw signals without much interpretation, whereas un-

structured free-text clinical notes contain detailed description of the overall clinical

scenario.

In this paper, We also explore the use of an external knowledge source like
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Wikipedia from which the model can extract relevant information, such as signs

and symptoms for various diseases. Our goal is to combine such an external clinical

knowledge source with the free-text clinical notes and use the learning capability of

memory networks to correctly infer the most probable diagnosis.

Memory Networks (MemNNs) [WCB14, SSWF15] are a class of models which

contain an external memory and a controller to read from and write to the mem-

ory. Memory Networks read a given input source and a knowledge source several

times (hops) while updating an internal memory state. The memory state is the

representation of relevant information from the knowledge base optimized to solve

the given task. This allows the network to remember useful features. The notion of

neural networks with memory was introduced to solve AI tasks that require com-

plex reasoning and inferencing. These models have been successfully applied in the

Question Answering domain on datasets like bAbi [WBC+15], MovieQA [TZS+16],

and WikiQA [SSWF15, MFD+16]. Memory networks are harder to train than tradi-

tional networks and they do not scale easily to a large memory. End-to-End Memory

Networks [SSWF15] and Key-Value Memory Networks (KV-MemNNs) [MFD+16]

try to solve these problems by training multiple hops over memory and compart-

mentalizing memory slots into hashes, respectively.

When the memory is large, hashing can be used to selectively retrieve only

relevant information from the knowledge base, however not much work has been done

to improve the information content of the memory state. If the network were trained

for factoid question answering, the memory state might be trained to represent

relevant facts and relations from the underlying domain. However, for real world

tasks, a large amount of memory is required to achieve stateof-the-art results. In

this paper, we introduce Condensed Memory Networks (C-MemNNs), an approach

to efficiently store condensed representations in memory, thereby maximizing the
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utility of limited memory slots. We show that a condensed form of memory state

which contains some information from earlier hops learns efficient representation.

We take inspiration from human memory for this model. Humans can learn new

information and yet remember even very old memories as abstractions. We also

experiment with a simpler form of knowledge retention from previous hops by taking

a weighted average of memory states from all the hops (A-MemNN). Even this

simpler alternative which does not add any extra parameter is able to outperform

standard memory networks. Empirical results on the MIMIC-III dataset reveal that

C-MemNN improves the accuracy of clinical diagnostic inferencing over other classes

of memory networks. To the best of our knowledge, this is the first empirical study

to classify diagnosis from EHR free-text clinical notes using memory networks

3.2 Related Work

3.2.1 Memory Networks

Memory Networks (MN) [WCB14] and Neural Turnin Machines (NTM) [GWD14a]

are two classes of neural networks models with external memory. MN store all infor-

mation (e.g. knowledge base, background context) into external memory, assign a

relevance probability to each memory slot using content-based addressing schemes,

and read contents from each memory slot by taking the their weighted sum with rel-

evance probabilities. End-to-End Memory Networks introduced multi-hop training

[SSWF15] and do not require strong supervision unlike MemNN. Key-value Memory

Networks [MFD+16] have a key-value paired memory and is built upon MemN2N.

Key-value paired structure in memory is a generalized way of storing content in

memory. The contents in key memory are used to calculate the relevance probabil-

ities. The contents in value memory are read into the model to help make the final
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prediction.

NTM form another family of neural networks models with external memory.

The NTM controller uses both content and location-based mechanism to access

the memory. On the other hand, MN only uses content-based mechanism. The

fundemental difference between these two models is the MN do not have a mechanism

to change the content in memory, while the NTM can modify the content of the

memory in each episode. This leads to the fact that MN is easier to be trained in

practice.

Another related class of models is attention-based neural networks. These mod-

els are trained to learn attention mechanism so that they can focus on important

information on given input. Applying attention mechanism on machine reading

comprehension task [HKG+15, DLCS16, CCW+16, SBB16] has shown promising

results.

3.2.2 Neural Networks for Clinical Diagnosis

[LKEW15b] trained Long-short Term Memory (LSTM) to classify 128 diagnoses

from 13 frequently but irregularly sampled clinical measurements extracted from

patient’s Electronic Health Record (EHR). Similary to their work, we formulate the

problem as multilabel classification, since each medical note might be associated

with multiple diagnoses. There are two differences between these two work. In our

work, patient’s EHR come from discharge summary, which are unstructured texts

and do not contain time series information, while their data set are time series and

each time series has fixed number of clinical measurements. We trained the model

on the whole patient’s EHR and did not extract hand-engineered features from these

EHR, while they resampled all time series to an hourly rate and filled gaps created by

window-based resampling in clinical measurements. We applied Memory Networks

42



models instead of LSTM to classify diagnoses. Since memory component provides

the flexibilities to store knowledge base, we collected related Wikipedia page for

each diagnoses and embed these pages in memory.

3.3 Dataset

MIMIC-III (Multiparameter Intelligent Monitoring in Intensive Care) [JPS+16] is a

large freely-available clinical database. It contains physiological signals and various

measurements captured from patient monitors, and comprehensive clinical data ob-

tained from hospital medical information systems for over 58K Intensive Care Unit

(ICU) patients. We use the noteevents table from MIMIC-III: v1.3, which contains

the unstructured free-text clinical notes for patients. We use ’discharge summaries’,

instead of ’admission notes’, as former contains actual ground truth and free-text.

Since discharge summaries are written after diagnosisdecision, we sanitize the notes

by removing any mention of class-labels in the text.

As shown in Table 3.1, medical notes contain several details about the patient

but the sections are not uniform. We do not separate the sections other than the

DIAGNOSIS, which is our label. There are multiple labels (diagnoses) for a given

note, and a note can belong to multiple classes of diagnoses, thus we formulate

our task as a multiclass-multilabel classification problem. The number of diagnoses

per note is also not consistent and shows a long tail (Figure 3.1). We have taken

measures to counteract these issues, which are discussed in the Memory addressing

section.

Some diagnoses are less frequent in the data set. Without enough training in-

stances, a model is not able to learn to recognize these diagnoses. Therefore, we

experiment with a varying number of labels in this work (see details in the Experi-
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Medical Note (partially shown)

Date of Birth: [**2606-2-28**] Sex: M
Service: Medicine
CHIEF COMPLAINT:
Admitted from rehabilitation for hypotension (systolic blood pressure to
the 70s) and decreased urine output. HISTORY OF PRESENT ILL-
NESS:
The patient is a 76-year-old male who had been hospitalized at the
[**Hospital1 3007**] from [**8-29**] through [**9-6**] of 2002 after un-
dergoing a left femoral-AT bypass graft and was subsequently discharged
to a rehabilitation facility.
On [**2682-9-7**], he presented again to the [**Hospital1 3087**] after
being found to have a systolic blood pressure in the 70s and no urine
output for 17 hours.

Final Diagnosis

Cardiorespiratory arrest.
Non-Q-wave myocardial infarction.
Acute renal failure.

Table 3.1: An example of MIMIC-III

Figure 3.1: Distribution of number of diagnosis in a note.
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Cardiac arrest (partially shown)

Cardiac arrest is a sudden stop in effective blood circulation due to the
failure of the heart to contract effectively or at all.[1] A cardiac arrest
is different from (but may be caused by) a myocardial infarction (also
known as a heart attack), where blood flow to the muscle of the heart is
impaired such that part or all of the heart tissue dies. ...
Sign and symptoms
Cardiac arrest is sometimes preceded by certain symptoms such as faint-
ing, fatigue, blackouts, dizziness, chest pain, shortness of breath, weak-
ness, and vomiting. The arrest may also occur with no warning. ...

Table 3.2: Partially shown example of a relevant Wikipedia page.

ments section).

3.3.1 Knowledge Base

We use Wikipedia pages (see Table 3.2) corresponding to the diagnoses in the

MIMIC-III notes as our external knowledge source. WikiProject Medicine is dedi-

cated to improving the quality of medical articles on Wikipedia and the information

presented in these pages are generally shown to be reliable [Tre11]. Since some

diagnosis terms from MIMIC-III dont always match a Wikipedia title, we use the

Wikipedia API with the diagnoses as the search terms to find the most relevant

Wikipedia pages. In most cases we find an exact match while in the rest we pick the

most relevant page. We use the first paragraph and the paragraphs corresponding

to the Signs and symptoms sections for our experiments. In cases where such a

section is not available, we use the second and third paragraphs of the page. This

happens for the obscure diseases, which have a limited content.
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Figure 3.2: Distribution of number of diagnosis in a note.

3.4 Condensed Memory Networks

The basic structure of our model is inspired by MemNN. Our model tries to learn

memory representation from a given knowledge base. Memory is organized as some

number of slots m1, . . . ,mt. For the given input text i.e. medical notes x1, . . . , xn,

the external knowledge base (wiki pages, wiki titles) (k1, v1), (k2, v2), . . . , (km, vm),

and the diagnoses of those notes y, we aim to learn a model F such that

F(xn, (km, vm)) = ŷ → y (3.1)

We break down this function F , in four parts I,G,O,R which are the standard

components of Memory Networks.

• I: Input memory representation is the transformation of the input x to

some internal representation u using learned weights B. This is the internal

state of the model and is similar to the hidden state of RNN-based models.

46



In this paper, we propose the addition of a condensed memory state ũ, which

is obtained via the iterative concatenation of successively lower dimensional

representations of the input memory state u.

• G: Generalization is the process of updating the memory. MemNN updates

all slots in the memory, but this is not feasible when the size of the knowledge

source is very large. Therefore, we organize the memory as key-value pairs as

described in [MFD+16]. We use hashing to retrieve a small portion of keys for

the given input.

• O: Output memory representation is the transformation of the knowledge

(k, v) to some internal representation m and c. While End-to-End MemNN

uses an embedding matrix to convert memories to learned feature space, our

model uses a two-step process because we represent wikititles and wikipages

as different learned spaces. We learn matrix A to transform wikipages (keys)

and C to transform wikititles (values). Our choice of wikipages as keys and

wikititles as values is deliberate the input ”medical notes” more closely match

the text of the wikipages and the diagnoses more closely match the wiki-titles.

This allows for a better mapping of features; our empirical results validate this

idea.

Let k represent the hop number. The output memory representation is ob-

tained by:

ok =
∑
i

Addressing(uk,mk) · cki (3.2)

where Addressing is a function which takes the given input memory state u

and provides the relevant memory representation m.

• R: Response combines the internal state u, internal condensed state ũ and
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the output representation o to provide the predicted label ŷ. We sum u and

o and then take the dot product with another learned matrix W . We then

concatenate this value with condensed memory state ũ. This value is then

passed through sigmoid to obtain the likelihood of each class. We use sig-

moid instead of softmax in order to obtain multiple predicted labels, ŷ1, . . . , ŷr

among possible R labels.

uk+1 = uk + ok (3.3)

ũk + 1 = uk+1 ⊕D1 · ũk (3.4)

where ⊕ denotes concatenation of vectors.

Our major contribution to memory networks is the use of condensed memory

state ũ in combination with input memory state u to do the inference. As

shown in Figure 3.2(a), ũ is transformed to include the information of previous

hops, but in lower dimensional feature space. This leads to a longer term

memory representation, which is better able to represent hierarchy in memory.

ŷr = arg max
r∈R

1

1 + e−1∗(ũk+1)·W

3.4.1 Network Overview

Figure 3.2(b) shows the overview of the structure. The input x is converted to

internal state u1 using transformation matrix B. This is combined with memory key

slots m1 using matrix A. Memory addressing is used to retrieve the corresponding

memory value c1. This value is transformed using matrix C to output memory
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representation o1. In parallel, memory state u is condensed to half of its original

dimension using the transformation matrix D. If u is of size 1K then D is of size

KK
2

. We call this reduced representation of u the condensed memory state, ũ. This

is the end of first hop. This process is then repeated for a desired number of hops.

After each hop, the condensed memory state ũ becomes the concatenation of its

previous state and its current state, each reduced to half its original dimension.

3.4.2 Average Memory Networks

In C-MemNN, the transformation of ũ at every hop adds more parameters to the

model, which is not always desirable. Thus, we also present a simpler alternative

model, which we call A-MemNN, to capture hierarchy in memory representation

without adding any learned parameters. In this alternative model, we compute

the weighted average of ũ across multiple hops. Instead of doing concatenation of

previous ũ values, we simply from different hops, we simply maintain an exponential

moving average.

ũk+1 = ũk +
ũk−1

2
+
ũk−1

4
+ . . . (3.5)

where, the starting condensed memory state is same as input memory state ũ1 = u1.

3.4.3 Memory Addressing

Key-Value addressing as described in KV-MemNN uses softmax on the product of

question embeddings and retrieved keys to learn a relevance probability distribu-

tion over memory slots. The representation obtained is then the sum of the output

memory representation o, weighted by those probability values. KV-MemNN was

designed to pick the single most relevant answer given a set of candidate answers.
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Using softmax significantly decreases the estimated relevance of all but the most

probable memory slot. This presents a problem for multi-label classification in

which several memory slots may be relevant for different target labels. We experi-

mented with changing softmax to sigmoid to alleviate this problem, but this was not

sufficient to allow the incorporation the condensed form of the internal state u aris-

ing from earlier hops. Thus, we explore a novel alternate addressing scheme, which

we call gated addressing. This addressing method uses a multi-layer feed-forward

neural network (FNN) with a sigmoid output layer to determine the appropriate

weights for each memory slot. The network calculates a weight value between 0 and

1 for each memory slot, and a weighted sum of memory slots is obtained as before.

3.4.4 Document Representation

There are a variety of models to represent knowledge in key-value memories, and

the choice of model can have an impact on the overall performance. We use a

simple bag-of-words (BoW) model which transforms each word wij in the document

di = wi1, wi2, wi3, . . . , w in to embeddings, and sums these together to obtain the

vectors Φ(di) =
∑

j Awij , with A being the embedding matrix. Medical notes,

memory keys and memory values are all represented in this way.

3.5 Experiments

The distribution of diagnoses in our training data has a very long tail. There are

4,186 unique diagnosis in all of MIMIC-III. However, many diagnoses (labels) occur

in only a single note. This is not sufficient to efficiently train those labels. The 50

most-common labels cover 97% of the notes and the 100 most-common labels cover

99.97%. Thus, we frame this task as multi-label classification for top-N labels. We
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# classes = 50 # classes = 100

#
Hops

Model
AUC

(macro)

Average
Precision

@5

Hamming
Loss

AUC
(macro)

Average
Precision

@5

Hamming
Loss

3

End-to-End 0.759 0.32 0.06 0.664 0.23 0.15
KV MemNN 0.761 0.36 0.05 0.679 0.24 0.14
A-MemNN 0.762 0.36 0.06 0.675 0.23 0.14
C-MemNN 0.785 0.39 0.05 0.697 0.27 0.12

4

End-to-End 0.760 0.33 0.04 0.672 0.24 0.15
KV MemNN 0.776 0.35 0.04 0.683 0.24 0.13
A-MemNN 0.775 0.37 0.03 0.689 0.23 0.11
C-MemNN 0.795 0.42 0.02 0.705 0.27 0.09

5

End-to-End 0.761 0.34 0.04 0.683 0.25 0.14
KV MemNN 0.775 0.36 0.03 0.697 0.25 0.11
A-MemNN 0.804 0.40 0.02 0.720 0.29 0.11
C-MemNN 0.833 0.42 0.01 0.767 0.32 0.05

Table 3.3: Evaluation results of various memory networks on MIMIC-III dataset

present experiments for both the 50 most-common and 100-most common labels. For

all experiments, we truncate both notes and wiki-pages to 600 words. We reduce the

trained vocabulary to 20K after removing common stop-words. We use a common

dimension of 500 for all embedding matrices. We use a memory slot of dimension

300. A smaller embedding of dimension 32 is used to represent the wiki-titles.

We presents experiments for end-to-end memory networks , Key-Value Mem-

ory Networks (KV-MemNNs) and our models, Condensed Memory Networks (C-

MemNN) and Averaged Memory Networks (A-MemNN). We separately train mod-

els for three, four and five hops. The strength of our model is the ability to make

effective use of several memory hops, and so we do not present results for one or

two hops.
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3.5.1 Results and Analysis

We present experiments in which performance is evaluated using three metrics: the

area under the ROC curve (AUC), the average precision over the top ten predictions,

and the hamming loss. The AUC is calculated by taking unweighted mean of the

AUC values for each label - this is also known as the macro AUC. Average precision

over the top ten predictions is reported because it is a relevant metric for real world

applications. Hamming loss is reported instead of accuracy, because it is a better

measure for multi-label classification.

As shown in Table 3.3, C-MemNN is able to exceed the results of various other

memory networks across all experiments. The improvement is more pronounced

with a higher number of memory hops. This is because of the learning saturation of

vanilla memory networks over multiple hops. While A-MemNN has better results

for higher hops it does not improve upon KV-MemNN at lower hops. The strength

of our model lies at higher hops, as the condensed memory state ũ after several hops

contains more information than the same size input memory state u. Across all

models, results improve as the number of hops increases, although with diminishing

returns. The AUC value of C-MemNN with five memory hops for 100 labels is higher

than the AUC value for End-to-End models trained only for three hops, which shows

efficient training of higher hops produces good results.

Most documents do not have five labels (Figure 3.1) and thus precision obtained

for five predictions is poor across all models. Hamming Loss correlates very well

with other metrics along with the cross-entropy loss function, which was used for

training.
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3.6 Conclusions and Future Work

[WCB14] discussed the possibility of a better memory representation for complex

inferencing tasks. We achieved a better memory representation by condensing the

previous hops in a novel way to obtain a hierarchical representation of the internal

memory. We have shown the efficacy of the proposed memory representation for

clinical diagnostic inferencing from raw textual data. We discussed the limitations

of memory networks for multi-label classification and explored gated addressing to

achieve a better mapping between the clinical notes and the memory slots. We

have shown that training multiple hops with condensed representation is helpful,

but this is still computationally expensive. We plan to investigate asynchronous

memory updating, which will allow for faster training of memory networks. In the

future, we will explore other knowledge sources and recently proposed word vectors

for medicine words, BioNLP [CCKP16].
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Chapter 4

Automated Essay Scoring using

Neural Memory Model

Proper citation of this chapter is as follows:

Siyuan Zhao, Yaqiong Zhang, Xiaolu Xiong, Anthony Botelho and Neil T. Heffer-

nan. A Memory-Augmented Neural Model for Automated Grading. In Proceedings

of the Fourth ACM Conference on Learning @ Scale, L@S 2017

The need for automated grading tools for essay writing and open-ended assign-

ments has received increasing attention due to the unprecedented scale of Massive

Online Courses (MOOCs) and the fact that more and more students are relying on

computers to complete and submit their school work. In this paper, we propose

an efficient memory networks-powered automated grading model. The idea of our

model stems from the philosophy that with enough graded samples for each score in

the rubric, such samples can be used to grade future work that is found to be simi-

lar. For each possible score in the rubric, a student response graded with the same

score is collected. These selected responses represent the grading criteria specified
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in the rubric and are stored in the memory component. Our model learns to predict

a score for an ungraded response by computing the relevance between the ungraded

response and each selected response in memory. The evaluation was conducted on

the Kaggle Automated Student Assessment Prize (ASAP) dataset. The results show

that our model achieves state-of-the-art performance on this dataset.

4.1 Introduction

Automated grading is a critical part of Massive Open Online Courses (MOOCs)

system and any intelligent tutoring systems (ITS) at scale. Essay writing is usu-

ally a common student assessment process in schools and universities. In this task,

students are required to write essays of various length, given a prompt or essay

topic. Some standard tests, such as Test of English as a Foreign Language (TOEFL)

and Graduate Record Examination (GRE), assess student writing skills. Manually

grading these essay will be time-consuming. Thus automated essay scoring (AES)

systems has been used in these tests to reduce the time and cost of grading es-

says. Moreover, as massive open online courses (MOOCs) become widespread and

the number of students enrolled in one course increases, the need for grading and

providing feedback on written assignments are ever critical.

AES has employed numerous efforts to improving its performance. AES uses sta-

tistical and Natural Language Processing (NLP) techniques to automatically predict

a score for an essay based on the essay prompt and rubric. Most existing AES sys-

tems are built on the basis of predefined features, e.g. number of words, average word

length, and number of spelling errors, and a machine learning algorithm [CH13]. It

is normally a heavy burden to find out effective features for AES. Moreover, the per-

formance of the AES systems is constrained by the effectiveness of the predefined
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features. Recently another kind of approach has emerged, employing neural network

models to learn the features automatically in an end-to-end manner [TN16]. By this

means, a direct prediction of essay scores can be achieved without performing any

feature extraction. The model based on long short-term memory (LSTM) networks

in [TN16] has demonstrated promise in accomplishing multiple types of automated

grading tasks.

Neural Networks have achieved promising results on various NLP tasks, including

machine translation [BCB14, CvMG+14], sentiment analysis [dSG14], and question

answering [KIO+16, WCB14, MFD+16, SSWF15]. Neural Network models, in terms

of NLP tasks, use word vectors to learn distributed representations from text. The

advantages are that these models do not require hand-engineered features and can

be trained to solve tasks in an end-to-end fashion.

Recent work [TN16] has exploited several Recurrent Neural Network (RNN)

models to solve AES tasks. The results show that neural-based models outper-

form even strong baselines. Memory Networks (MN) [WCB14, MFD+16, SSWF15]

have been recently introduced to deal with complex reasoning and inferencing NLP

tasks and have been shown to outperform RNNs on some complex reasoning tasks

[SSWF15]. MN is a class of models which contains an external scalable memory

and a controller to read from and write to that memory. The notion of neural

networks with memory was introduced to solve complex reasoning and inferring

AI-tasks which require remembering external contexts.

To our knowledge, no study has been conducted to investigate the feasibility and

effectiveness of MN applied in automated grading tasks. In this study, we develop

a generic model for such tasks using Memory Networks inspired by their capability

to store rich representations of data and reason over that data in memory. For each

essay score, we select one essay exhibiting the same score from student responses as
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a sample for that grade. All collected sample responses are loaded into the memory

of the model. The model is trained with the rest of student responses in a supervised

learning manner on these data to compute the relevance between the representation

of an ungraded response and that of each sample. The intuition is that as a part of a

scoring rubric, a number of sample responses of variable quality are usually provided

to students and graders to help them better understand the rubric. These collected

responses are characterized with expectations of quality described in the rubric. The

model is expected to learn the grading criteria from these responses. We evaluate

our model on a publicly available essay grading data set from the Kaggle Automated

Student Assessment Prize (ASAP) competition 1. Our experiments show that our

model achieves state-of-the-art results on this dataset.

The rest of the paper is organized as follows. Section 2 gives an overview of

related work in this research area. Section 3 provides detailed information of our

model. Section 4 describes the ASAP dataset and evaluation metrics used to test

our framework. Furthermore, it contains the details of our implementation and

experimental setup to help other researchers replicate our work. In section 5, we

present the results of our our model and compare them with other models. Finally,

we discuss the results and conclude the paper.

4.2 Related Work

4.2.1 Automated Grading

MOOCs were introduced in 2008 and become more popular recently. Most MOOCs

systems provide automated grading as their important features to prove the effi-

ciency of their interaction with massive number of online users. Some specific as-

1https://www.kaggle.com/c/asap-aes
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signment types have been adopted for automated grading since the correct answers

of these kinds of assignments have some simple fixed-forms, such as multi-choice

questions. Programming assignments are the represents of these kinds of assign-

ments with simple form answer such as ”yes” or ”no” [FW65, Hel07]. Not satisfied

with providing answers for one specific assignment, more efforts have been devoted

to providing feedback on many different assignments according to the shared features

of the programming codes [NPHG14, PHN+15].

However, many assignment types cannot be responded well only with simple feed-

back. Some studies have been conducted with the attempt to fixing this problem

by using semi-automatic grading approach. This kind of approach aims to opti-

mize the collaboration between humans and machines and provide short-answers

[MPRo13, BBJV14]. Another approach is to provide prediction directly. One

research direction of this approach is to apply information extraction techniques

to constructing specific answer patterns manually or to training from large train-

ing dataset with strong supervision support. Another direction is to compare the

students’ answers with a established standard answer with an unsupervised text-

similarity approach [MM09].

Most studies mentioned above are dealing with simple fixed-form answers or

short-answers assignments. Some complex assignments have long form answer in-

stead of short, simple one. Essay writing with a given topic is a typical assignment

with long form answers and AES has become one important research branch of

automated grading system.

AES is generally treated as a machine learning problem. We can group the ex-

isting AES solutions from different points of view. Most developed AES system is

based on a number of predefined features. These features include essay length, num-

ber of words, lexicon and grammar, syntactic features, readability, text coherence,
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essay organization, and so on [CH13]. Recently, there emerges another trial to treat

the whole essays as inputs and learn the features automatically in an end-to-end

manner [TN16]. Without pres-working on features extraction, work burden was

lightened. Moreover, the predicting accurate is improved by removing the depen-

dency of effectiveness of predefined features.

Based on learning techniques utilized in existing solutions, we divide them into

three categories: regression based approach, classification based approach and pref-

erence ranking based approach. PEG-system and E-rater are two examples that

belong to regression based approach. Specifically, when the scores range of the es-

says is wide, the regression based approach is normally adopted since it treats the

essay score as a continuous value.

Besides essay writing, some complex assignments such as medicinal assignments

utilized regression model as well [GZF16]. Some work such as [RL02, Lar98] treated

the AES task as a classification problem. Each possible score is converted into a

class label. By using classic classification algorithms, AES system predicts which

class an essay should belongs to. Since it treats each score as a class label, this

kind of approach is not suitable for a very large range of scores. Recently preference

ranking based approach was also proposed by [YBM11].

According to the prompts or essay topics the AES system deals with, the existing

solutions can be divided into two groups: prompt-specific and generic. The prompt-

specific approach train the AES system with essays from one specific topic. This

kind of AES system normally has excellent performance on the specific topic it was

trained. Most of existing works belongs to this prompt-specific approach. Generic

approach train the AES system with essays from different prompts. As an example,

the work of [CH13] proposed a domain adaptation technique which is based on

Bayesian linear ridge regression, to achieve a generic prompt adaption AES system.
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This kind of approach normally neglects the prompt related features but focus on

writing quality.

4.2.2 Memory Networks

Memory Networks (MN) [WCB14] and Neural Turing Machines (NTM) [GWD14b]

are two classes of neural networks models with external memory. MN store all

information (e.g. knowledge base, background context) into external memory, assign

a relevance probability to each memory slot using content-based addressing schemes,

and read contents from each memory slot by taking the their weighted sum with

relevance probabilities. End-to-End Memory Networks (MemN2N) [SSWF15] can be

trained end-to-end compared to MN, and hence require less supervision. Key-value

Memory Networks [MFD+16] have a key-value paired memory and is built upon

MemN2N. Key-value paired structure in memory is a generalized way of storing

content in memory. The contents in key memory are used to calculate the relevance

probabilities. The contents in value memory are read into the model to help make

the final prediction.

4.3 Model

An illustration of our model is given in Figure 4.1, which is inspired by the work of

memory networks applied in question answering [MFD+16, SSWF15]. Our model

consists of four layers: input representation layer, memory addressing layer, mem-

ory reading layer, and output layer. Input representation layer is responsible for

generating a vector representation for a student response. Memory addressing layer

loads selected samples of student responses to memory, and assigns a weight to each

memory piece. Afterward memory reading layer gathers the content from memory
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Figure 4.1: An illustration of memory networks for AES. The score range is 0 -
3. For each score, only one sample with the same score is selected from student
responses. There are 4 samples in total in memory. Input representation layer is
not included.
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by taking weighted sum of each memory piece based on the weights calculated from

previous layer, and produces a resulting state. Finally the output layer makes the

prediction on the basis of the resulting state. Neural networks models are usually

featured with multiple computational layers to learn a more abstract representation

of the input. Our model is extended to have the structure of multiple layers (hops)

by stacking memory addressing layer and memory reading layer repeatedly.

4.3.1 Input Representation

Each student response is represented as a vector in our model. Given a student

response x = {x1, x2, x3, ..., xn}, where n is the length of the response, we map

each word into a word vector wi = Wxi. All word vectors come from a word

embedding matrix W ∈ Rd×V , where d is the dimension of word vector and V is the

vocabulary size. To represent an essay in a vector, we selected position encoding

(PE) described in [SSWF15]. By the scheme of PE, the vector representation of a

response is calculated by m =
∑

j lj ·Wxij, where · is an element-wise multiplication.

lj is a column vector with the structure lkj = (1− j/J)−(k/d) (1− 2j/J) (assuming

1-based indexing), where J is the total number of words in the response, d is the

dimension of word vector, and k is the embedding index. PE is a simple and efficient

way to represent a response, and does not need to learn extra parameters.

Alternative way to represent a response is to feed each word vector from a re-

sponse into Recurrent Neural Networks (RNN) [TN16]. Compared to traditional

forward neural networks, hidden states of RNN are able to retain the sequential

information. By feeding a response into RNN, all the information which are useful

for the grading ideally should be stored in the hidden states. Instead of taking the

last hidden state as the essay representation, it is recommended to calculate the

mean of all hidden states to retrieve the representation for a long response.
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4.3.2 Memory Addressing

After generating the representation of the responses, we select a sample from student

response for every possible score, which is graded with the same score. The selected

samples work as a representation of the criteria in the rubric for all possible scores.

Expert knowledge can be used here to choose most representative sample for each

score or even generate a number of ideal samples. The motivation is that the model

is highly likely to distinguish the difference within the criteria for each score with

these representative samples. For our experiment, we randomly pick a sample from

student responses for each score, which is graded with that score.

All sampled responses are loaded into the memory as an array of vectorsm1,m2, ...,mh,

where h is the total number of sampled essays. An ungraded response is denoted as

x. The basic idea of memory addressing is that it assigns a weight/importance to

each sampled response mi by calculating a dot product between x and mi followed

by a softmax.

pi = Softmax(xAT ·miB
T ) (4.1)

where Softmax(yi) = eyi/
∑

j eyj , A is a k × d matrix and so is B. Defined in this

way p is a weight vector over all sampled responses. A and B are learned matrices

used to transfer the response representation to a d-dimensional features space. The

intuition is that the responses with the same grade are highly likely to have the

similar representation in the feature space.
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4.3.3 Memory Reading

After weight vector p is calculated, the output of the memory is computed as a

weighted sum of each piece of memory in m:

o =
∑
i

pimiC
T (4.2)

where C is a k×d matrix used to transfer the response representation to the feature

space. The k × d matrix C may be identical to A, but from our experiment, we

found that training a separate C leads to a better performance. From the equation,

we can see that weight vector p controls the amount of content that is read from

each memory piece.

4.3.4 Multiple Hops

The success of neural networks is due to its ability of learning multiple layers of

neurons and each layer can transform the representation at previous level into a

higher level of abstract representation. Inspired by this idea, we stack multiple

memory addressing steps and memory reading steps together to handle multiple

hops operations.

After receiving the output o from equation 4.2, the ungraded response u is up-

dated with:

u2 = Relu(R1(u+ o)) (4.3)

where R1 is a k × k matrix, u = xAT and Relu(y) = max(0, y). Then memory

addressing step and reading memory step are repeated, using a different matrix Rj

on each hop j. The memory addressing step is modified accordingly to use the
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updated representation of the ungraded response.

pi = Softmax(uj ·miB) (4.4)

4.3.5 Output Layer

After a fixed number H hops, the resulting state uH is used to predict a final score

over the possible scores:

ŝ = Softmax(uHW + b) (4.5)

where W is k × r matrix, r is the number of possible scores and b is the bias value.

Note that the number of output nodes equals to the length of score range. We

calculate a distribution over all possible scores and select most probable score as the

prediction.

The whole network is trained in end-to-end fashion without any hand-engineered

features, and the matrices A,B,C,W and R1, ..., RH are learned through backprop-

agation and stochastic gradient descent by minimizing a standard cross entropy loss

between the predicted score ŝ and the actual score s.

4.4 Experimental Setup

4.4.1 Dataset

Dataset used in this study comes from Kaggle Automated Student Assessment

Prize (ASAP) competition sponsored by William and Flora Hewlett Foundation

(Hewlett). There are 8 sets of essays and each set is generated from a single prompt.

All responses collected in the dataset were written by students ranging from grade

7 to grade 10. Score range varies on essay sets. All essays were graded by at least
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Set # Essays
Avg.
len.

Max
len.

Min
score

Max
score

Mean
score

1 1,783 350 911 2 12 8
2 1,800 350 118 1 6 3
3 1,726 150 395 0 3 1
4 1,772 150 383 0 3 1
5 1,805 150 452 0 4 2
6 1,800 150 489 0 4 2
7 1,569 250 659 0 30 16
8 723 650 983 0 60 36

Table 4.1: Selected Details of ASAP dataset

2 human graders. The average length of the essays differs for each essay set, rang-

ing from 150 words to 650 words. Selected details for each essay set is shown in

Table 4.1.

4.4.2 Evaluation Metric

Quadratic weighted Kappa (QWK) is used to measure the agreement between the

human grader and the model. We choose to use this metric because it is the official

evaluation metric of the ASAP competition. Other work such as [CH13, TN16,

PCN15] that uses the ASAP dataset also uses this evaluation metric. QWK is

calculated using

k = 1−
∑

i,j wi,jOi,j∑
i,j wi,jEi,j

(4.6)

where matrices O, w and E are the matrices of observed scores, weights, and ex-

pected scores respectively. Matrix Oi,j corresponds to the number of student re-

sponses that receive a score i by the first grader and a score j by the second grader

(the model in our experiment). The weight matrix are wi,j = (i − j)2/(N − 1)2,

where N is the number of possible scores. Matrix E is calculated by taking the outer

product between the score vectors of the two graders, which are then normalized to
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have the same sum as O.

4.4.3 Implementation Details

To help other researchers to replicate our results, the details of implementing and

training the model are articulated below. We plan to publish our source code once

the paper is accepted. The model was implemented using Tensorflow framework

[MAP+15]. We used Adaptive Moment Estimation (Adam) stochastic gradient de-

scent [KB14] for optimizing the learned parameters. Compared to normal stochastic

gradient descent, Adam computes adaptive learning rate for each parameter and em-

pirical results has shown that Adam achieves better outcomes. The learning rate

was set to 0.002 and batch size for each iteration to 32 for all models. As final pre-

diction layer, we used a fully connected layer on top of output from memory reading

layer with a softmax activation function. The model learned the parameters by

minimizing a standard cross-entropy loss between predicted score and the correct

score.

For regularization we used L2 loss on all learned parameters with lambda set

to 0.3 and limited the norm of the gradients to be below 10. Moreover, we added

gradient noise sampled from a Gaussian distribution with mean 0 and variance 0.001

when training the memory networks.

We used the publicly available pre-trained Glove word embeddings [PSM14],

which was trained on 42 billion tokens of web data, from Common Crawl 2. The

dimension of each word vector is 300. Word2vec [MSC+13] is another popular word

embedding algorithm and pre-trained word embeddings are also publicly available

from this algorithm. As results shown in [PSM14], Glove outperforms word2vec on

word analogy, word similarity, and named entity recognition tasks.

2http://commoncrawl.org
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5-fold cross validation was used to evaluate our model. For each fold, the data

was split into two parts: 80% of the data as the training data and 20% as the testing

data. The sampled response for each score is selected from the training data. A

model was trained on each essay set due to the fact that score range varies among

8 essay sets.

4.4.4 Baselines

We compare our model with Enhanced AI Scoring Engine (EASE), an open-source

AES system, to demonstrate the improvements on performance. EASE, like tradi-

tional NLP techniques, requires fine-grained hand-engineered features and builds a

regression model on top of these features. The reason we use this system as one

of baselines is that it achieved best QWK scores among all open-source systems

participated in ASAP competition. [PCN15] described a set of reliable features and

reported the results of two models using these features: support vector regression

(SVR) and Bayesian linear ridge regression (BLRR).

[TN16] examined several neural networks models, e.g. RNN and Convolutional

Neural Networks (CNN), on ASAP dataset. In their experiments, Long Short Term

Memory networks (LSTM), a variant of RNN, achieved the best performance. LSTM

is designed to have three gates in each hidden node: input gate, forget gate, and

output gate. By controlling these three gates, LSMT has the capability of attaining

long-term dependencies. Applying LSTM to ASAP dataset leads to the better

performance compared to EASE. LSTM becomes a stronger baseline for our model.

The structure of the LSTM model described in [TN16] is presented in Figure 4.2.

As mentioned above, LSTM is an alternative approach of learning the repre-

sentation of an essay. But LSTM is more computationally expensive than position

encoding (PE) is. We run our model with LSTM instead of PE on ASAP dataset
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Figure 4.2: An illustration of baseline LSTM model for AES

and find that the performance suffers in the case of LSTM. In this paper we only

report the results of our model with PE.

To verify the efficacy of GloVe word embeddings and external memory, we devel-

oped a simple multi-layer forward neural networks (FNN) model, which is similar to

our model with respect to the model structure, but without an external memory. We

refer this baseline model as FNN for the rest of paper for convenience. As shown

in Figure 4.3, each word of a student response is first converted to a continuous

vector using GloVe word embeddings. The vector representation for the response is

obtained by applying PE on all word vectors from the response. Afterward the rep-

resentation is fed into 4 hidden layers, each of which has 100 hidden nodes. Apply

a softmax operation on the resulting states of last hidden layer at output layer to

predict the final score. The model is also trained using Adam Optimizer by min-

imising the standard cross entropy between ŝ and truth score s. FNN is properly
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Figure 4.3: An illustration of baseline FNN. Use GloVe with PE to represent a
student response. The representation is fed into 4-layer networks and each layer has
100 hidden nodes.

defined by the equations below:

h0 = Relu(ATx) (4.7)

hi = Relu(Rihi−1), for i ≥ 1 (4.8)

ŝ = Softmax(hHW ) (4.9)

where x is the representation generated by GloVe with PE for a student response.

hi is the output of hidden layer i. H is the total number of hidden layers. A, Ri

,and W are weight matrices. The bias vectors are omitted in the equations.

4.5 Results

We first report the QWK scores of the ASAP dataset by varying the number of hops

in our model in Table 4.2. We see that the average of the QWK scores across 8 sets

remains the same from 1 hop to 3 hops and the average decreases a little for 4 hops
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Set
# Hops

1 2 3 4 5
1 0.83 0.83 0.83 0.84 0.71
2 0.72 0.72 0.71 0.69 0.67
3 0.73 0.73 0.72 0.72 0.72
4 0.81 0.82 0.81 0.81 0.81
5 0.83 0.83 0.83 0.83 0.82
6 0.83 0.83 0.82 0.82 0.82
7 0.8 0.8 0.81 0.78 0.77
8 0.71 0.71 0.69 0.67 0.66

avg 0.78 0.78 0.78 0.77 0.75

Table 4.2: QWK scores vs. number of hops in our model.

and 5 hops. With 2 hops, set 2, 3, 4, 5, 6 and 8 have the best scores. Set 1 has the

best score with 4 hops, and set 7 has the best score with 3 hops. We see that the

performance of the model is insensitive to the number of hops.

We then compare our results on 2 hops with the best results from other baselines

mentioned above in Table 4.3. Column MN presents the QWK scores from our

model. Column EASE (SVR) and column EASE(BLRR) contain the results from

EASE with two different regression methods. We also compare our model with

other neural models in [TN16] and the best results from [TN16] is listed in column

LSTM+CNN of Table 4.3. Note that their best results reported in the paper are

obtained by ensembling results from 10 runs of LSTM and 10 runs of CNN. However,

in our experiment, the results are recorded from a single run of a single model after

optimizing the hyperparameters. This is not fair to compare their best results with

ours directly. Therefore we also pick the best performance achieved by a single

model from their paper and list in Column LSTM of Table 4.3. In their setup, the

number of hidden nodes in LSTM is 300 and pre-trained word embeddings released

by [ZSCM13] is used.

As indicated in Table 4.3, our model outperforms in 7 out of 8 sets (except
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Set MN FNN EASE(SVR) EASE(BLRR) LSTM LSTM+CNN Human

1 0.83 0.75 0.78 0.76 0.78 0.82 0.72
2 0.72 0.7 0.62 0.61 0.69 0.69 0.81
3 0.73 0.7 0.63 0.62 0.68 0.69 0.77
4 0.82 0.8 0.75 0.74 0.8 0.81 0.85
5 0.83 0.8 0.78 0.78 0.82 0.81 0.75
6 0.83 0.79 0.77 0.78 0.81 0.82 0.78
7 0.8 0.73 0.73 0.73 0.81 0.81 0.72
8 0.71 0.63 0.53 0.62 0.59 0.64 0.63

Avg 0.78 0.74 0.7 0.71 0.75 0.76 0.75

Table 4.3: QWK scores on ASAP dataset.

for set 7) and improves the average QWK score by 4.0% compared to the baseline

LSTM. Even compared to their best ensembled model (LSTM+CNN), our model

still achieved better performance in 7 essay sets (except for essay 7). As expected,

our model surpasses EASE in all 8 sets and improves average QWK score by 10%.

The results from the FNN model mentioned above is presented in column FNN

of Table 4.3. In our experiments, FNN has 4 hidden layers and each layer has

100 hidden nodes, whose structure is similar to that of our model except that the

external memory is removed. When comparing these results to the best results from

EASE, we find that this basic model outperforms EASE in 7 out of 8 sets of essays

(except for essay set 1) and is even comparable with the complex model (LSTM).

This proves that using Glove word embeddings with PE to represent a student

response is able to capture important features useful for grading the response. The

effectiveness of the external memory is proved by the fact that MN accomplishes

better performance on 7 sets (set 4 is equal) than FNN does. The comparison

between FNN and other models indicates that representing a student response using

GloVe with PE and adding external memory are two key factors which may lead to

the good performance on ASAP dataset.

In ASAP dataset, two human graders are assigned to each student response
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and each grader gives a score separately. The final gold-standard score for each

response is calculated based on these two scores. In Column Human of Table 4.3,

we calculated the QWK scores between these two graders to measure the agreement

between two graders.

4.6 Discussion and Conclusion

In this study, we develop a generic model for automated grading tasks using memory

networks and word embeddings. To our best knowledge this is the first study that

memory networks are applied for this kind of task. Our model is tested on ASAP

dataset and achieves state-of-the-art performance in 7 out of 8 essay sets. Similar

to other neural networks models for AES, our model can be trained in an end-

to-end fashion and does not require any hand-engineered features. Compared to

RNN, CNN, using GloVe word embeddings with PE to represent a student response

makes our model simple and cost-effective. Adding external memory improves the

performance over FNN model, which means our model is able to take advantage of

sampled responses stored in the external memory.

Our model can be generalized to automatically grade assignments from other

subjects. As shown above, there are two key factors to the performance: reliable

representation and memory component. In order to apply our model to other kinds

of assignment, learning a good vector representation for the assignment is the first

step. It is analogous to how the regression model is built for supervised NLP tasks:

first extract numerical hand-engineered features from text and then apply a regres-

sion model on these generated features to predict true labels. In the context of

neural networks, a vector is required to represent the student response. Learning

the vector can be a part of the predictive model. For example, the word embed-
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dings in [TN16] are learned from their predictive model. These vectors can also

come from pre-trained models, like GloVe and word2vec. The next step is to select

characterized samples and store these samples to memory. The purpose of this step

is to teach the model to understand the grading strategy and eventually associate a

vector representation to a score.

However, we only test our model on one dataset. There is a need to explore

our model with more datasets that contain various formats of assignments to verify

our model. Furthermore, the representation of the assignment and the mechanism

for measuring relevance among assignments is still elementary. Future work should

therefore focus on these two areas to improve the generalizability of the model. A

lot of effort is still needed to better interpret memory networks and explain the key

factors behind our performance improvement.
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Part III

Counterfactual Inference
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Chapter 5

Estimating Individual Treatment

Effects with Residual

Counterfactual Networks

Proper citation of this chapter is as follows:

Siyuan Zhao and Neil T. Heffernan. Estimating Individual Treatment Effect from

Educational Studies with Residual Counterfactual Networks. In Proceedings of the

10th International Conference on Educational Data Mining, EDM 2017

Personalized learning considers that the causal effects of a studied learning interven-

tion may differ for the individual student. Making the inference about causal effects

of studies interventions is a central problem. In this paper we propose the Residual

Counterfactual Networks (RCN) for answering counterfactual inference questions,

such as ”Would this particular student benefit more from the video hint or the text

hint when the student cannot solve a problem?”. The model learns a balancing rep-

resentation of students by minimizing the distance between the distributions of the
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control and the treated populations, and then uses a residual block to estimate the

individual treatment effect based on the representation of the student. We run ex-

periments on semi-simulated datasets and real-world educational online experiment

datasets to evaluate the efficacy of our model. The results show that our model

matches or outperforms the state-of-the-art.

5.1 Introduction

The goal of personalized learning is to provide pedagogy, curriculum, and learning

environments to meet the needs of individual students. For example, an Intelligent

Tutor System (ITS) decides which hints would most benefit a specific student. If the

ITS could infer what the student performance would be after receiving each hint,

then it would simply choose the hint which leads to the best performance for the

student. To make this possible, we might run an online educational experiment by

randomly assigning students to one of the hints, and collect student performance.

Then making predictions about causal effects of possible interventions (e.g. available

hints) becomes a central problem in this case. In this paper we focus on the task of

answering counterfactual questions [Pea09] such as, ”Would this particular student

benefit more from the video hint or the text hint when the student cannot solve a

problem?”

There are two ways of collecting data for counterfactual inference: randomized

control trials (RCTs) and observational studies. In RCTs, participants (e.g. stu-

dents) are randomly assigned to interventions (e.g. video hints or text hints), while

participants in observational studies are not essentially randomly assigned to inter-

ventions. For example, consider the experiment of evaluating the efficacy of video

hints and text hints for a certain problem. Under the design of RCT, students who
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need a hint would be randomly assigned to either the video hints or the text hints.

In an observational study, students are assigned to one of the interventions based on

their contextual information, such as knowledge level or personal preference. RCTs

are expensive in terms of time and money compared to observational studies.

[JSS16] proposed Balancing Neural Networks (BNN) which can be applied to

solve the counterfactual inference problem. They used a form of regularizer to

enforce the similarity between the distributions of representations learned for pop-

ulations with different interventions, for example, the representations for students

who received text hints versus those who received video hints.This reduces the vari-

ance from fitting a model on one distribution and applying it to another. Because

of random assignment to the interventions in RCTs, the distributions of the popu-

lations within different interventions are highly likely to be identical. However, in

the observational study, we may end up with the situation where only male stu-

dents receive video hints and female students receive text hints. Without enforcing

the similarity between the distributions of representations for male and female stu-

dents, it is not safe to make a prediction of the outcome if male students receive

text hints. In machine learning, ”domain adaptation” refers to the dissimilarity of

the distributions between the training data and the test data.

Neural networks have been shown to successfully learn good representation of

high-dimensional data in several tasks [BCV13]. Recent work [LZWJ16] has demon-

strated that (deep) neural networks can be used with domain adaptation approaches

to produce outstanding results on some domain adaptation benchmark datasets.

These successful methods encourage similarity between the deep features represen-

tations w.r.t the different domains. This similarity is often enforced by minimizing

a certain distance between the networks’ domain-specific hidden features.

Motivated by their work, we propose the Residual Counterfactual Networks
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(RCN) for the counterfactual inference to estimate the individual treatment effect

and evaluate its efficacy in both a simulated dataset and a real-world dataset from

an educational online experiment. The RCN extends the BNN by adding a resid-

ual block to estimate the individual treatment effect (ITE) based on the learned

representation of participants. The idea of the residual block is originated from

the state-of-the-art deep residual learning [HZRS16]. We enable the estimation of

ITE by plugging several layers into neural networks to explicitly learn the residual

function with reference to the learned representation.

The rest of the paper is organized as follows. Section 2 provides an overview

of the problem setup of counterfactual inference for estimating the ITE. Section 3

details information of our model. Section 4 gives an overview of related work in this

research area. Section 5 describes the datasets and evaluation metrics used to test

our model. Section 6 presents the results of our model and compares them with

other models. Finally, we discuss the results and conclude the paper.

5.2 Problem Setup

Let T be the set of proposed interventions we wish to consider, X the set of partici-

pants, and Y the set of possible outcomes. For each proposed intervention t ∈ T , let

Yt ∈ Y be the potential outcome for x when x is assigned to the intervention t. In

randomized control trial (RCT) and observed study, only one outcome is observed

for a given participant x; even if the participant is given an intervention and later

the other, the participant is not in the same state. In machine learning, ”bandit

feedback” refers to this kind of partial feedback. The model described above is also

known as the Rubin-Neyman causal model [Rub05, Rub74].

We focus on a binary intervention set T = {0, 1}, where intervention 1 is often
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referred as the ”treated” and intervention 0 is the ”control.” In this scenario the

ITE for a participant x is represented by the quantity of Y1(x) − Y0(x). Knowing

the quantity helps assign participant x to the best of the two interventions when

making a decision is needed, for example, choosing the best intervention for a specific

student when the student has a trouble solving a problem. However, we cannot

directly calculate ITE due to the fact that we can only observe the outcome of one

of the two interventions.

In this work we follow the common simplifying assumption of no-hidden con-

founding variables. This means that all the factors determining the outcome of

each intervention are observed. This assumption can be formalized as the strong

ignorability condition:

(Y1, Y0) ⊥ t|x, 0 < p(t = 1|x) < 1,∀x.

Note that we cannot evaluate the validity of strong ignorability from data, and the

validity must be determined by domain knowledge.

In the ”treated” and the ”control” setting, we refer to the observed and un-

observed outcomes as the factual outcome yF (x), and the counterfactual outcome

yCF (x) respectively. In other words, when the participant x is assigned to the ”con-

trol” (t = 0), yF (x) is equal to Y1(x), and yCF (x) is equal to Y0(x). The other way

around, yF (x) is equal to Y0(x), and yCF (x) is equal to Y1(x).

Given n samples
{

(xi, ti, y
F
i )
}n
i=1

, where yFi = ti ·Y1(xi)+(1−ti)Y0(xi), a common

approach for estimating the ITE is to learn a function f : X × T → Y such that
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f(xi, ti) ≈ yFi . The estimated ITE is then:

ˆITE(xi) =

y
F
i − f(xi, 1− ti), ti = 1.

f(xi, 1− ti)− yFi , ti = 0.

We assume n samples
{

(xi, ti, y
F
i )
}n
i=1

form an empirical distribution p̂F =

{(xi, ti)}ni=1. We call this empirical distribution p̂F ∼ pF the empirical factual

distribution. In order to calculate ITE, we need to infer the counterfactual outcome

which is dependent on the empirical distribution p̂CF = {(xi, 1− ti)}ni=1. We call the

empirical distribution p̂CF ∼ pCF . The pF and pCF may not be equal because the

distributions of the control and the treated populations may be different. The in-

equality of two distributions may cause the counterfactual inference over a different

distribution than the one observed from the experiment. In machine learning terms,

this scenario is usually referred to as domain adaptation, where the distribution of

features in test data are different than the distribution of features in training data.

5.3 Model

We proposed RCN to estimate individual treatment effect using counterfactual infer-

ence. The RCN first learns a balancing representation of deep features Φ : X → Rd,

and then learns a residual mapping ∆f on the representation to estimate the ITE.

The structure of the RCN is shown in Figure 5.1.

To learn a representation of deep features Φ, the RCN uses fully connected layers

with ReLu activation function, where Relu(z) = max(0, z). We need to generalize

from factual distribution to counterfactual distribution in the feature representation

Φ to obtain accurate estimation of counterfactual outcome. The common successful

approaches for domain adaptation encourage similarity between the latent feature
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Figure 5.1: Residual Counterfactual Networks for counterfactual inference. IPM
is adopted on layers fc1 and fc2 to minimize the discrepancy distance of the deep
features of the control and the treated populations. For the treated group, we add
a residual block fcr1-fcr2 so that fT (x) = fC(x) + ∆f(x)

representations w.r.t the different distributions. This similarity is often enforced

by minimizing a certain distance between the domain-specific hidden features. The

distance between two distributions is usually referred to as the discrepancy distance,

introduced by [MMR09], which is a hypothesis class dependent distance measure

tailored for domain adaptation.

In this paper we use an Integral Probability Metric (IPM) measure of distance

between two distributions p0 = p(x|t = 0), and p1 = p(x|t = 1), also known as the

control and treated distributions. The IPM for p0 and p1 is defined as

IPMF(p0, p1) := sup
f∈F

∣∣∣∣∫
S

fdp0 −
∫
S

fdp1

∣∣∣∣ ,
where F is a class of real-valued bounded measurable functions on S.

The choice of functions is the crucial distinction between IPMs [SFG+09]. Two

specific IPMs are used in our experiments: the Maximum Mean Discrepancy (MMD),

and the Wasserstein distance. IPMF is called MMD, when F = {f : ‖f‖H 6 1},

where H represents a reproducing kernel Hilbert space (RKHS) with k as its re-
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producing kernel. In other words, the family of norm-1 reproducing kernel Hilbert

space (RKHS) functions lead to the MMD. The family of 1-Lipschitz functions

F = {f : ‖f‖L ≤ 1}, where ‖f‖L is the Lipschitz semi-norm of a bounded continuous

real-valued function f , make IPM the Wasserstein distance. Both the Wasserstein

and MMD metrics have consistent estimators which can be efficiently computed in

the finite sample case [SFG+12]. The important property of IPM is that

p0 = p1 iff IPMF(p0, p1) = 0.

The representation with reduction of the discrepancy between the control and

the treated populations helps the model to focus on balancing features across two

populations when inferring the counterfactual outcomes. For instance, if in an ex-

periment, almost no male student ever received intervention A, inferring how male

students would react to intervention A is highly prone to error and a more conser-

vative use of the gender feature might be warranted.

After balancing the feature representations of the control and the treated pop-

ulations, the next step is to infer the treatment effect for participant x. We adopt

the residual block [HZRS16] to estimate the treatment effect.

As shown in Figure 5.2, F (x) is the underlying desired function mapping. Instead

of stacking a number of layers to fit the desired F (x), we let stacked fully connected

layers learn the residual mapping ∆f(x) = F (x) − x. Then the origin mapping is

converted into ∆f(x) + x. The operation ∆f(x) + x is performed by a shortcut

connection and an element-wise addition. Learning residual mapping is favored

over fitting the desired mapping directly, because it is easier to find the residual

with reference to an identity mapping than to learn the mapping as new.

The goal of the residual block is to approximate a residual function ∆f such that
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Weight

Figure 5.2: Residual block

fT (x) = fC(x) + ∆f(fC(x)), where fC is the deep representation of participant x

before being fed into the output layer, and fT is the input to the output layer for the

treated population. The output layer is a ridge linear regression to generate the final

outcome. From the definition of the residual function ∆f , we see that ∆f(x) is the

estimated treatment effect for participant x, which is our interest in a control and

treated experiment. With the residual block directly connected to fc2, the residual

function ∆f(x) is dependent on the feature representation of participant x.

We plug in the residual block (shown in Figure 5.1) between fc2 layer and final

output layer for the treated population in order to estimate the ITE. There is no

residual block plugged in between fc2 layer and the final output layer for the con-

trol population. The final output layer ϕ(·) is a linear regression to calculate the

predicted outcome, such that Y c = ϕ(fC(x)), and Y t = ϕ(fT (x)).

Recall the problem setup described above that there exist n samples
{

(xi, ti, y
F
i )
}n
i=1

,

where yFi = ti · Y1(xi) + (1 − ti)Y0(xi). In the control and the treated setting, we

assume that nc(nc > 0) samples
{

(xi, 0, y
(0)
i )
}nc

i=1
∼ Dc are assigned to the control

(t = 0), and nt(nt > 0) samples
{

(xi, 1, y
(1)
i )
}nt

i=1
∼ Dt are assigned to the treated

(t = 1), such that n = nc + nt. As described above, RCN is an integration of deep
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feature learning, feature representation balancing, and treatment effect estimation

in an end-to-end fashion with the loss function as such:

min
fT =fS+∆f(fS)

1

nc

nc∑
i=1

L(fc(xi), y
(0)
i )

+
1

nt

nt∑
i=1

L(ft(xi), y
(1)
i )

+ λ · IPM(Dc, Dt),

where λ is the tradeoff parameter for the IPM penalty, L is the loss function of

the model. In the case of binary classification, L is the standard cross entropy. In

the case of regression, L is root-mean-square error (RMSE). During the training,

the model only has the access to the factual outcome.

5.4 Related Work

From a conceptual point of view, our work is inspired by the work on domain

adaptation and deep residual learning. [LZWJ16] proposed the Residual Transfer

Network that adopt MMD distance to learn transferable deep features from labeled

data in the source domain and unlabeled data in the target domain and adds a

residual block to transfer the prediction classifier from the target domain to the

source domain. The structure of our model is similar to that of their model. Deep

residual learning is introduced by [HZRS16], the winner of the ImageNet ILSVRC

2015 challenge, to ease the training of deep networks. The residual block is designed

to learn residual functions ∆F (x) with reference to the layer input x. Reformulating

layers to the residual block makes the training easier than directly learning the

original functions F (x) = ∆F (x) + x.

Our model extends the work by [JSS16, SJS16], where the authors build a con-
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nection between domain adaptation and counterfactual inference. They use IPMs,

such as MMD and wasserstein distance, to learn a representation of the data which

balances the control and treated distributions. The treatment assignment is con-

catenated with the representation to predict the factual outcome as while the reverse

treatment assignment is concatenated with the representation to predict the coun-

terfactual outcome. Compared to their work, we add a residual block to estimate

the individual treatment effect based on the representation.

[WA17, AI16] proposed causal forests which is built upon the idea of random

forests to estimate the heterogeneous treatment effect with semi-parametric asymp-

totic convergence rate.

ASSISTments is a platform that combines large-scale online education (like Khan

Academy & MOOCs) with technology for rigorous scientific research using random-

ized experiments and data mining. It has been used in over 20 published randomized

controlled experiments to investigate different ways to improve student learning.

An experiment was conducted by [RH06] to determine if students benefitted more

if they were given the scaffolds versus just being given hints that tried to provide

them the same information that the scaffolding questions asked them. [OH15] ex-

amined adding student preference to the ASSISTments platform. The purpose of

this experiment was to see whether providing students a choice in feedback style

would alter performance and learning gains.
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Figure 5.3: Visualization of the IHDP dataset by t-SNE (left). Visualization of the
ASSISTments dataset by t-SNE (right). Each dot represents a data point. The blue
means the data point from the control while the red means the data point from the
treatment.

5.5 Experiments

5.5.1 Evaluation Metrics

To compare among various models, we report the RMSE of estimated individual

treatment effect, denoted

εITE =

√√√√ 1

n

n∑
i=1

((Y1(xi)− Y0(xi))− ˆITE(xi))2,

and the absolute error in average treatment effect

εATE =

∣∣∣∣∣ 1n
n∑

i=1

(ft(xi)− fs(xi))−
1

n

n∑
i=1

(Y1(xi)− Y0(xi))

∣∣∣∣∣ .
Following [Hil11, JSS16], we report the Precision in Estimation of Heterogeneous
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Effect (PEHE),

PEHE =

√√√√ 1

n

n∑
i=1

((Y1(xi)− Y0(xi))− (ŷ1(xi)− ŷ0(xi))2.

Compared to the fact that achieving a small RMSE of estimated ITE needs the

accurate estimation of counterfactual responses, a good (small) PEHE requires the

accurate estimation of both factual and counterfactual responses.

However, calculating εITE, εATE, and PEHE requires the ”ground truth” of the

ITE for each participant in the experiment. We cannot gather the counterfactual

outcomes from RCTs and observational studies, and thus do not have the ITE

of each participant. We cannot evaluate εITE and PEHE on these datasets. In

order to evaluate the performance on these datasets across various models, we use a

measure, called policy risk, introduced by [SJS16]. Given a model f , the participant

x is assigned to the treatment πf (x) = 1 if f(x, 1) − f(x, 0) > λ (in the case of

RCN, ∆f > λ), where λ is the treatment threshold, and to the control πf (x) = 0

otherwise. The risk policy is defined as:

RPol(πf ) = 1− (E[Y1|πf (x) = 1] · p(πf = 1)

+ E[Y0|πf (x) = 0] · p(πf = 0)).

The empirical estimator of the risk policy on a dataset is calculated by:

R̂Pol(πf ) = 1− (E[Y1|πf (x) = 1, t = 1] · p(πf = 1)

+ E[Y0|πf (x) = 0, t = 0] · p(πf = 0)).

To obtain the policy risk, we select a subset of participants in the dataset where
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Table 5.1: Hypothetical data for some example students. The predicted outcome is
the probability that the student would complete the assignment. Students in bold
are those whose randomized treatment assignment is congruent with the recommen-
dation of the counterfactual inference model. Data from these students would be
used to calculate the policy risk.

ID Group Completion
Predicted
outcome if

treated

Predicted
outcome if
not treated

Treatment
effect

Treat?

1 Control 1 0.8 0.75 0.05 1
2 Control 0 0.3 0.45 -0.15 0
3 Treatment 0 0.50 0.38 0.12 1
4 Control 1 0.78 0.9 -0.12 0
5 Treatment 1 0.9 0.6 0.3 1
6 Treament 1 0.91 0.99 -0.08 0
7 Control 0 0.83 0.70 0.13 1
8 Control 1 0.73 0.83 -0.1 0

the treatment recommendation inferred by the model is the same as the treatment

assignment in the experiment and then calculate the average loss from the subset

of the data.

For the datasets without the ”ground truth” on ITE, we also calculate the aver-

age treatment effect on the treated by ATT = 1
nt

∑nt

i=1 y
(1)
i − 1

ns

∑ns

i=1 y
(0)
i , and report

the error on ATT as εATT =
∣∣∣ATT− 1

nt

∑nt

i=1(ft(xi)− fs(xi))
∣∣∣.

5.5.2 Baselines

Balancing Neural Networks (BNN) is another neural networks-based model for coun-

terfactual inference. Compared to RCN, it has exactly the same fc1 and fc2 layers

with IPM regularizer to learn the representation Φ(x) of the participant x. How-

ever, instead of using residual block to estimate treatment effect, it concatenates

the treatment assignment ti to the output of fc2 layer Φ(x) and feeds [Φ(xi), ti] to

another two fully connected layers to generate the predicted outcome. We refer to

this particular structure of BNN as BNN-2-2, following [JSS16].
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... ...

Figure 5.4: CFR for ITE estimation. L is a loss function, IPM is an integral
probability metric

The Counterfactual Regression (CFR) [SJS16] is built on the BNN. The impor-

tant difference between these two models is that the CFR uses a more powerful

distribution metric in the form of IPMs to learn a balancing representation. We

compare our model with BNN-2-2 and CFR to verify the efficacy of residual block

in terms of estimating individual treatment effect.

We introduce a simple neural networks baseline model to evaluate the efficacy

of the IPM regularizer and residual mapping. This baseline model is a feed-forward

neural networks model with four hidden layers, trained to predict the factual out-

come based on X and t, without the IPM regularizer and the residual block. We

refer to this as NN-4.

5.5.3 Simulation based on real data - IHDP

The Infant Health and Development Program (IHDP) dataset was a semi-simulated

dataset introduced by [Hil11]. The dataset consists of a number of covariates from

a real randomized experiment. The goal of the experiment is to study the impact

of superior child care and home visits on future cognitive test scores. [Hil11] dis-

carded a biased subset of the treated population in order to introduce imbalance
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between treated and control subjects and used a simulated counterfactual outcome.

Eventually, there are 747 subjects (139 treated, 608 control), each represented by

25 covariates assessing the attributes of the children and their mothers.

5.5.4 ASSISTments dataset

The ASSISTments online learning platform is a free web-based platform utilized by

a large user-base of teachers and students. The system, based primarily in math

content, allows teachers to assign several types of assignments for classwork and

homework, reporting on student performance and learning progress. Students are

given immediate feedback on each problem, and are also presented with several forms

of instructional aid including hints, that provide a useful message, and scaffolded

questions that break down the problem into smaller steps. The platform has been

the subject of a recent study within the state of Maine [RFMM16], demonstrating

significant learning gains for students using the platform.

The dataset used in this work comes from one of 22 randomized controlled experi-

ments [SPH16] collected within the platform. This experiment was run in assignment

types known as ”skill builders” in which students are given problems until a thresh-

old of understanding is reached; within ASSISTments, this threshold is traditionally

three consecutive correct responses. Reaching this threshold denotes sufficient per-

formance and completion of the assignment. In addition to this experimental data,

information of the students prior to condition assignment is also provided in the

form of problem-level log data providing a breadth of student information at fine

levels of granularity.

In this experiment, there are two kinds of hints (video versus text) available for

each problem from the assignment when students answer the problem incorrectly.

The assignment to the video hint and the text video was random. Video content was
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Table 5.2: IHDP. Results and standard errors for 1000 repeated experiments
Model εITE εATE PEHE
NN-4 2.0 ± 0.0 0.5 ± 0.0 1.9 ± 0.1

BNN-2-2 1.7 ± 0.0 0.3 ± 0.0 1.6 ± 0.1
CFR 1.4 ± 0.0 0.2 ± 0.0 1.6 ± 0.1
RCN 1.1 ± 0.0 0.05 ± 0.0 1.4 ± 0.1

designed to mirror text hint in an attempt to provide identical assistance. There

are 147 students who received the video hint and 237 students who received the text

hint. The dataset includes 15 covariates such as student past-performance history,

class-past performance history. We solve a binary classification task which is to

predict the completion of the assignment for each student.

The visualization of IHDP dataset and ASSISTments dataset by t-Distributed

Stochastic Neighbor Embedding (t-SNE) [MH08] is shown in Figure 5.3. The t-

SNE is non-parametric visualization technique that can reveal hidden structures in

the data by giving each high-dimensional data point a location in a two or three-

dimensional map. We see that the control and the treatment populations in both

datasets are not completely separated from each other. The ASSISTments dataset

is slightly more balanced than the IHDP dataset.

5.6 Results

The results of IHDP is presented in Table 5.2 when the treatment threshold λ = 0.

We see that our proposed RCN performs the best on the dataset in terms of estimat-

ing ITE, ATE and PEHE. There is an especially large improvement on estimating

ITE. These results indicate that the residual block ∆f(x) helps accurately predict

the value of ITE based on the feature representation Φ(x) for a given participant x.

The results of ASSISTments dataset are the interest of our work since we hope
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to apply the RCN to educational experiments in order to support decision making

in terms of personalized learning. The results in terms of policy risk and the average

treatment effect on the treated are shown in Table 5.3 when the treatment threshold

λ = 0. The model TA means ”Treated All” where all students are assigned to the

treatment while the model NT means ”Not Treated” where all students are assigned

to the control. Without considering that the effects of an intervention may differ for

individual students, the model with the better performance out of these two models

would be adopted when a choice must be made between these two interventions.

The RCN, which considers the individual treatment effect, outperforms the TA and

the NT. This indicates that taking the individual effect into account helps make

a better choice of interventions. The comparison between the CFR and the RCN

suggests that the RCN performs better than the CFR does in terms of risk policy

and ATT.

To investigate the correlation between policy risk and treatment threshold λ, we

plot the value of policy risk as a function of treatment threshold λ in Figure 5.5, and

the histogram of the predicted ITE from the RCN and the CFR on the ASSISTments

dataset in Figure 5.6 and Figure 5.7 respectively. For the results of the ASSISTments

dataset from the CFR, the maximum predicted ITE in the dataset is 0.44. Once

the threshold λ is larger than 0.44, the CFR is converted to ”Not Treated” where

all students are assigned to the control. Since the maximum predicted ITE in the

ASSISTments dataset from the CFR is 0.18, the CFR is converted to ”Not Treated”

once the treatment threshold λ is larger than 0.18.
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Figure 5.5: Treatment threshold versus policy risk on ASSISTments dataset. The
lower policy risk is the better.

Table 5.3: Results of the ASSISTments Dataset
Model RPOL εATT

TA 0.14 -
NT 0.27 -

CFR 0.14 0.08
RCN 0.06 0.01
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Figure 5.6: Histogram of predicted ITE from the RCN on ASSISTments dataset.
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Figure 5.7: Histogram of predicted ITE from the CFR on ASSISTments dataset.
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5.7 Conclusion

As online educational experiments become popular and easy to conduct, and ma-

chine learning becomes a major tool for researchers, counterfactual inference gains

a lot of interest for the purpose of personalized learning. In this paper we propose

the Residual Counterfactual Networks (RCN) to estimate the individual treatment

effect. Because of the dissimilarity between the distributions of the control and the

treated populations, the RCN uses IPMs, such as Wasserstein and MMD distance,

to learn balancing deep features from the data. A residual block is adopted on the

deep features to learn the individual treatment effect (ITE) so that estimation of

the ITE is dependent on the deep features. We apply our model to both synthetic

datasets and real-world datasets from online educational experiment, indicating that

our model achieves the state-of-the-art.

One open question for the future work is how to generalize our model for the

situations where there is more than one treatment in the experiment. Integral

Probability Metric (IPM) can only measure the distance between two distributions.

We could use pair-wised IPM if there are more than two distributions. But this

would be computationally time-consuming if the number of distributions increases.

Since running experiments is expensive and collecting enough data for the model

to make a reliable prediction is difficult, we need a better optimization algorithm

which allows us to train the model efficiently.
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Chapter 6

Sequence Learning of Student

Representations for

Counterfactual Inference

Personalized learning considers that the causal effects of a studied learning interven-

tion may differ for the individual student. Randomized Controlled Trials (RCTs)

are golden standard to evaluate a learning intervention by randomly assigning par-

ticipants to either a control condition or an experiment condition. Counterfactual

inference answers ”what if” questions such as, ”Would this particular student master

this skill had she received a different set of hints?”. This helps assign a particular

student to the best of the two interventions when making a decision is needed. Prior

to participating the RCT, students usually have done a number of problems and their

actions on each problem are logged. In other words, each student has a sequence of

actions (performance sequence). We propose a pipeline to use performance sequence

to improve the performance of counterfactual inference. First, student representa-

tions are learned by applying the sequence autoencoder to performance sequences.
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Then, incorporate these representations into the model for counterfactual inference.

Empirical results show that the representations learned from sequence autoencoder

improve the performance of counterfactual inference.

6.1 Introduction

Personalized learning provides a learning intervention which satisfies a particular

student’s needs. Randomized Controlled Trials (RCT) are golden standard to eval-

uate a learning intervention by randomly assigning participants to either a control

condition or an experiment condition. Making the inference about causal effects of

studies interventions is a central problem. Counterfactual inference answers ”What

if” questions, such as ”Would this particular student benefit more if the student

were given the video hint instead of the text hint when the student cannot solve a

problem?” (an illustrative example is displayed in Figure 6.1). Counterfactual pre-

diction provides a way to estimate the individual treatment effects and then allows

researchers to determine which learning intervention leads particular students to a

better learning.

ASSISTments, an online tutoring system, is a research platform which supports

running a number of RCTs. Before students join these experiments, they have done

a various number of problems and their interactions with the tutor were logged.

Their interactions represent their performance history. We propose to use student

performance history prior to joining the experiment to learn a representation of

these students. Ideally, the representation indicates student skill proficiency and

the goal is to help the counterfactual model to better estimate individualized treat-

ment effects. Currently, student’s features are numeric, which measure student

performance, such as student percent correctness, number of skills mastered, and
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are calculated directly from student performance sequence prior to the RCTs.

Autoencoder, an unsupervised neural networks model, has achieved promising

results in learning a dense representation from unlabeled data and then incorporat-

ing the representation into supervised learning models, such as feed-forward neural

networks (FNN) and Recurrent Neural Networks (RNN). Autoencoder is trying to

learn the underlying distribution from the unlabeled data and represent a data point

in a dense embedding. Note that embedding and representation are used exchange-

ably in this paper. [KWK+16] applied Variational Autoencoder (VA) to learning

an efficient feature embeddings from unlabeled student data and demonstrated that

these embeddings improve the performance of two independent classification tasks in

educational data mining (EDM). Their work inspires us to learn student embeddings

from student performance sequence for counterfactual inference. [SMS15, DL15] in-

troduced the sequence autoencoder (SEA) to learn a representation for sequence

data (such as, language and videos). The idea of the SEA is to train an encoder

RNN which reads the input sequence into a vector and then a decoder RNN to

recover the input sequence from the vector. A SEA can produce a general and

task-independent representation for a sequence. Integrating the representation into

a classification model reduces the input dimension and makes the training of the

classification model quick and stable. Student performance sequence is a sequence

of their actions on problems, which represents their skill proficiency. Fitting the

performance sequence of a student into SEA presumably generate a dense vector

which indicates the skill proficiency of a student.

The counterfactual model used in this work is the Residual Counterfactual Net-

work (RCN) [ZH17]. The model first uses feed-forward neural networks to learn a

balancing representation of students by minimizing the distance between the distri-

butions of the control and the treated populations, and then adopt a residual block
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Figure 6.1: An illustrative example to demonstrate the idea behind counterfac-
tual inference. Observed: The student received video hints and mastered the skill.
Counterfactual: Would this student have mastered the skill if he had received text
hints?
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to estimate the individual treatment effect based on the student representation.

The goal of this work is to propose an approach to learn a student embeddings

from their behavior on problems that they have worked on so that these embeddings

would improve the performance of the RCN. There are an unsupervised way and

a supervised way to learn student embeddings. The unsupervised way does not

require labeled data and learned embeddings are task-independent. SEA is the most

commonly used models for this unsupervised sequence learning. Even though the

embeddings are not learned specifically for the counterfactual inference, but these

embeddings are general representations of the students which would potentially

be helpful for various classification tasks in EDM. The supervised way requires

labeled data and the embeddings are learned in the process of solving a classification

task. These embeddings are usually task-dependent and less general compared to

unsupervised embeddings. We run experiments with these two ways of learning

embeddings to verify whether there exists a performance gap between these two

types of embeddings.

6.2 Related Work

SEA was first introduced by [SMS15] to learn video representations. Then a similar

idea was proposed by [DL15] for semi-supervised sequence learning. SEA is not

the only unsupervised neural networks model for sequence learning. [KWK+16] ap-

plied Convolutional Neural Networks student autoencoder (CNN-SAE) to learning

student embeddings from sequence data. The encoder consists of CNN layers and

the decoder consists of RNN layers. The CNN-SAE uses variational autoencoder

by combining Bayesian inference with neural networks [KWK+16]. Recent work

has shown that variational autoencoders produce better performance compared to
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normal autoencoders.

From a conceptual point of view, the RCN is inspired by the work on domain

adaptation and deep residual learning. [LZWJ16] proposed the Residual Transfer

Network that learns transferable deep features from labeled data in the source do-

main and unlabeled data in the target domain and adds a residual block to transfer

the prediction classifier from the target domain to the source domain. The structure

of the RCN is similar to that of their model. Deep residual learning is introduced by

[HZRS16], the winner of the ImageNet ILSVRC 2015 challenge, to ease the training

of deep networks. The residual block is designed to learn residual functions ∆F (x)

with reference to the layer input x. Reformulating layers to the residual block makes

the training easier than directly learning the original functions F (x) = ∆F (x) + x.

The RCN extends the work by [JSS16, SJS16], where the authors built a con-

nection between domain adaptation and counterfactual inference. They learned

a representation of the data which balances the control and treated distributions.

Then the treatment assignment was concatenated with the balancing representation

to predict the factual outcome as while the reverse treatment assignment was con-

catenated with the balancing representation to predict the counterfactual outcome.

Compared to their work, the RCN does not concatenate the treatment assignment,

and adds a residual block to estimate the individual treatment effect based on the

representation.

[WA17, AI16] proposed causal forests which is built upon the idea of random

forests to estimate the heterogeneous treatment effect with semi-parametric asymp-

totic convergence rate.

Another research direction in this pipeline is the counterfactual model for in-

dividualized treatment effects estimation. Recent work [HLLBT17, SS17, AvdS17]

have proposed various models for counterfactual inference. Especially, the Gaussian
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process is used in these two papers [SS17, AvdS17]. The Gaussian process GP(µ0, k)

is a non-parametric model that is fully characterized by its prior mean function

µ0 : X → R and its positive-definite kernel, or covariance function, k : X ×X → R.

6.3 Problem setup

The problem setup for counterfactual inference in this work is similar to the setup

in [ZH17]. Let T be the set of proposed interventions we wish to consider, X

the set of participants, and Y the set of possible outcomes. For each proposed

intervention t ∈ T , let Yt ∈ Y be the potential outcome for x when x is assigned to

the intervention t. In RCT and observed study, only one outcome is observed for

a given participant x; even if the participant is given an intervention and later the

other, the participant is not in the same state. The model described above is also

known as the Rubin-Neyman causal model [Rub05, Rub74].

We focus on a binary intervention set T = {0, 1}, where intervention 1 is often

referred as the ”treated” and intervention 0 is the ”control.” In this scenario the

individual treatment effects (ITE) for a participant x is represented by the quantity

of Y1(x)−Y0(x). Knowing the quantity helps assign participant x to the best of the

two interventions when making a decision is needed, for example, choosing the best

intervention for a specific student when the student has a trouble solving a problem.

However, we cannot directly calculate ITE due to the fact that we can only observe

the outcome of one of the two interventions.

When applying the counterfactual inference, we follow the common simplifying

assumption of no-hidden confounding variables. This means that all the factors

determining the outcome of each intervention are observed. This assumption can
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be formalized as the strong ignorability condition:

(Y1, Y0) ⊥ t|x, 0 < p(t = 1|x) < 1,∀x.

Note that we cannot evaluate the validity of strong ignorability from data, and the

validity must be determined by domain knowledge.

In the ”treated” and the ”control” setting, we refer to the observed and un-

observed outcomes as the factual outcome yF (x), and the counterfactual outcome

yCF (x) respectively. In other words, when the participant x is assigned to the ”con-

trol” (t = 0), yF (x) is equal to Y1(x), and yCF (x) is equal to Y0(x). The other way

around, yF (x) is equal to Y0(x), and yCF (x) is equal to Y1(x).

Given n samples
{

(xi, ti, y
F
i )
}n
i=1

, where yFi = ti ·Y1(xi)+(1−ti)Y0(xi), a common

approach for estimating the ITE is to learn a function f : X × T → Y such that

f(xi, ti) ≈ yFi . The estimated ITE is then:

ˆITE(xi) =

y
F
i − f(xi, 1− ti), ti = 1.

f(xi, 1− ti)− yFi , ti = 0.

We assume n samples
{

(xi, ti, y
F
i )
}n
i=1

form an empirical distribution p̂F =

{(xi, ti)}ni=1. We call this empirical distribution p̂F ∼ pF the empirical factual

distribution. In order to calculate ITE, we need to infer the counterfactual outcome

which is dependent on the empirical distribution p̂CF = {(xi, 1− ti)}ni=1. We call the

empirical distribution p̂CF ∼ pCF . The pF and pCF may not be equal because the

distributions of the control and the treated populations may be different. The in-

equality of two distributions may cause the counterfactual inference over a different

distribution than the one observed from the experiment. In machine learning terms,

this scenario is usually referred to as domain adaptation, where the distribution of
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features in test data are different than the distribution of features in training data.

6.4 Models for Sequence Learning

In this section, we propose to use the SEA to learn the representation of a student

from their performance sequence. The SEA combines the idea of the RNN and the

autoencoder. We first start with the autoencoder, then introduce the RNN, and

finally dive into the details of the SEA.

6.4.1 Autoencoder

Autoencoder [B+09] is an unsupervised neural network that is trained to read the

input into a lower-dimensional vector and then reconstruct the input from the vec-

tor. Unlike supervised learning algorithms, the unsupervised learning algorithms do

not require labels for the data. An autoencoder consists of two parts: the encoder

and the decoder. The encoder learns the mapping from the input x to the embed-

ding z. The decoder reconstructs the input to x̃ from the vector. Figure 6.2 shows

the structure of an autoencoder. It has a hidden layer that maps the input x to a

vector z. Since the encoder and the decoder have its own parameters respectively,

an autoencoder cannot perfectly learn to reconstruct the input. The model is forced

to prioritize which aspects of the input should be copied, and it often learns use-

ful properties of the data [GBC16]. However, the autoencoder cannot be directly

applied to sequence data.

6.4.2 Recurrent Neural Networks

RNNs are popular models for sequence learning task. It has a memory in the

hidden layer which keeps the sequential information that the model has calculated.
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Figure 6.2: The structure of an autoencoder. An autoencoder consists of the encoder
and the decoder. In this figure, the encoder maps input data from 4 dimensions to
2 dimensions with one hidden layers. The decoder reconstructs the input data from
the 2-dimension code.
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Figure 6.3: A Recurrent Neural Network model.

As shown in Figure 6.3, there is a loop in the hidden state h, which passes the

information from the previous time step to the next time step. In practice, RNN

suffers from the long-term dependencies. In other words, if the input sequence is

long, the model cannot remember all dependencies from the beginning to the end.

To better understand the RNN, equations for calculating the hidden state h of RNN

are listed below.

ht = tanh(Uxt +Wht−1) (6.1)

Long-short Term Memory (LSTM) is a variant of RNN which is introduced to

solve the long-term dependencies issue. Each LSTM hidden cell has a memory unit.

The unit is shown in Figure 6.4. The memory unit learns to capture new information

and forget irrelevant old information at each time step. Equations for calculating

the hidden state h of LSTM are listed below.
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i = sigmoid(U ixt +W iht−1) (6.2)

f = sigmoid(U fxt +W fht−1) (6.3)

o = sigmoid(U oxt +W oht−1) (6.4)

g = tanh(U gxt +W ght−1) (6.5)

ct = ct−1 · f + g · i (6.6)

ht = tanh(ct) · o (6.7)

Compared to a RNN, a LSTM has three extra gates: an input gate i, a forget

gate f , and an output gate o. Since the sigmoid function outputs the value between

0 and 1, these gates determine how much of information passes through. g is the

candidate hidden state, which is the same equation for the hidden state in vanilla

RNN. ct is the internal memory of the LSTM unit. When calculating ct, the forget

gate f controls how much of the previous internal memory passes through while the

input gate i defines how much of candidate hidden state passes through. Finally,

the hidden state ht is computed by multiplying the internal memory ct with the

output gate o.

Gated Recurrent Unit (GRU) is a variant of LSTM, which combines the forget

and the input gates into a single ”update gate”. Equations for calculating the hidden

state h of GRU are listed below.
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Figure 6.4: A LSTM cell. Reprint from [Gra13].
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z = sigmoid(U zxt +W zht−1) (6.8)

r = sigmoid(U rxt +W rht−1) (6.9)

h̃ = tanh(Uhxt +W h(ht−1 · r)) (6.10)

ht = z · ht−1 + (1− z) · h̃ (6.11)

A GRU has two gates: a reset gate r and an update gate z. The reset gate

determines how much of the past hidden state is kept when the current input is

combined with the past hidden state. The update gate defines how much of the

past hidden state is retained.

6.4.3 Sequence Autoencoder

As mentioned ahead, [SMS15, DL15] applied the SEA to sequence learning. The

details of training the SEA in these two papers are slightly different, but the ideas

behind these two papers are the same: encode the input sequence into a vector

and then recover the exact input sequence from the vector. Figure 6.5 shows the

approach described in [SMS15]. The structure of the SEA consists of two RNNs,

the encoder RNN and the decoder RNN. The encoder reads in the input sequence

and after the last input is read, the cell state and the output state are copied over

to the decoder. The learned representation of the input sequence is the cell state at

the last input. The decoder tries to reconstruct the input sequence from the learned

representation. To make the decoder easier to be trained, the decoder can predict

the input sequence in reverse order and take the output generated at previous step

as input at current step, i.e. the dotted box indicated in Figure 6.5.

To apply the SEA to student performance sequence, the input on each time step
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Figure 6.5: The structure of SEA. The model consists of two RNNs, an encoder
RNN and a decoder RNN. The input is a sequence of vectors and the encoder reads
in the input sequence. After the last input is read, the cell state and output state
are copied over to the decoder. The decoder predicts the target sequence, which is
the same as the input sequence. Reprint from [SMS15].

to the encoder RNN is student’s logged actions on one problem (such as, correctness,

number of hints requested, the time taken to solve this problem, etc.). After the

encoder RNN reads all logged actions of a student, the hidden state of the current

model is the student representation. The model reconstructs the input sequence

from the student representation. The encoder RNN and the decoder RNN can be

either the same RNN or two separate RNNs.

6.4.4 Counterfactual Model

We used the RCN model for the counterfactual inference. The RCN first learns a

balancing representation of deep features Φ : X → Rd, and then learns a residual

mapping ∆f on the representation to estimate the ITE. The structure of the RCN

is shown in Figure 6.6.
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Figure 6.6: Residual Counterfactual Networks for counterfactual inference. Maxi-
mum Mean Discrepancy (MMD) is adopted on layers fc1 and fc2 to minimize the
discrepancy distance of the deep features of the control and the treated populations.
MMD measures the distance between control and treated in hidden layers. For the
treated group, we add a residual block fcr1-fcr2 to learn treatment effects ∆f(x) so
that fT (x) = fC(x) + ∆f(x) where fT (x) is predicted treatment outcome and fC(x)
is predicted control outcome.

The RCN uses feed-forward neural networks (fc1 and fc2 in Figure 6.6) with

ReLu activation function to learn a balancing representation of deep features Φ,

where Relu(z) = max(0, z). We need to generalize from factual distribution to

counterfactual distribution in the feature representation Φ to obtain an accurate

estimation of the counterfactual outcome. The common successful approaches for

domain adaptation encourage similarity between the latent feature representations

w.r.t the different distributions. This similarity is often enforced by minimizing

a certain distance between the domain-specific hidden features. The distance be-

tween two distributions is usually referred to as the discrepancy distance, introduced

by [MMR09], which is a hypothesis class dependent distance measure tailored for

domain adaptation.

Let H be the reproducing kernel Hilbert space (RKHS) and k : Ω × Ω → R be

a characteristic kernel associated with it. The RKHS H satisfies the reproducing

property 〈f, k(x, ·)〉H = f(x)∀f ∈ H, ∀x ∈ Ω. The kernel function k(x, ·) implies a
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feature mapping φ(x) : Ω → H, such that k(x, x′) = 〈φ(x), φ(x′)〉H. Alternatively,

k(x, x′) can be considered as a metric of similarity between two points x, x′ ∈ Ω.

Maximum Mean Discrepancy (MMD) is a way to measure the distance between two

distributions p and q in the RKHS H. MMD between p and q is interpreted as the

distance between the mean embeddings of p and q in the RKHS. The RCN uses

MMD to measure the distance between the distribution of student features in the

control and the distribution of student features in the treatment. The empirical

estimator of MMD can be calculated with the student features from each condition

using the equation below:

MMD2(Dc, Dt) =
nc∑
i=1

nc∑
j=1

k(xci , x
c
j)

n2
c

+
nt∑
i=1

nt∑
j=1

k(xti, x
t
j)

n2
t

− 2
nc∑
i=1

nt∑
j=1

k(xci , x
t
j)

ncnt

where k(·, ·) is the kernel function in RKHS, Dc is the distribution of student

features in the control, xc is sample data from Dc, Dt is the distribution of student

features in the treatment, xt is sample data from Dt, nc is the total number of

sample data from Dc, and nt is the total number of sample data from Dt.

With this empirical estimator, we do not need to inference the real distribution

Dc and Dt in order to estimate the MMD. It can be calculated from given inde-

pendent i.i.d data from both distributions. The counterfactual model minimizes the

MMD as a regularizer to learn a balanced representation between the control and

the treated.

A residual block [HZRS16] (fcr1 and fcr2 in Figure 6.6) is used to estimate the

treatment effects ∆f(x), where x is balancing representations after fc2. fT (x) is
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Figure 6.7: The structure of the pipeline. First, train the sequence autoencoder
with problem logs. After the sequence autoencoder finishes training, the student
representations are calculated. Then take the student representations as the input
to the RCN.

predicted treatment outcome and fC(x) is predicted control outcome. So predicted

treatment outcome can be expressed as fT (x) = fC(x) + ∆f(x).

6.4.5 Pipeline

In summary, there are two components in this pipeline: the SEA model and the

RCN model. The structure of the pipeline is shown in Table 6.7. The data available

for each student are their performance history, e.g., their actions on every problem

that they have worked on prior to joining RCTs. We first fit student performance

history into the SEA to learn a representation. These representations presumably

indicate student skill proficiency and distinguish these students. Then we take these

representations of the students in the RCT as input to the RCN and train the RCN

to estimate the potential treatment outcome and control outcome. With potential

114



Exp 1

# in control 198
# in treatment 184
CR in control 0.64
CR in treatment 0.62
p-value 0.66

Exp 2

# in control 141
# in treatment 166
CR in control 0.88
CR in treatment 0.85
p-value 0.34

Table 6.1: Statistics on two experiments. CR = completion rate.

outcomes, the ITE for each student is the difference between the potential treatment

outcome and the potential control outcome. If the ITE is larger than 0, it means

that the student benefits more from the treatment condition. Otherwise, it means

that the student benefits more from the control condition. An accurate estimate of

ITE helps the decision makers (e.g., Intelligent Tutoring System) provide a learning

intervention which leads to a better learning outcome.

6.5 Datasets

6.5.1 Randomized Controlled Trials

We investigated two RCTs in our experiments. In both RCTs, students were ran-

domly assigned to text hints or video hints. For students in text/video hints condi-

tion, they would receive text/video hints when they asked for hints. The content of

text hints and the content of video hints are basically the same. Some of statistics

on these two experiments are shown in Table 6.1. The results of t-test (p-value) in-

dicate that neither of condition in two RCTs is significantly better. This makes the

task more difficult for the pipeline. Because if one of the conditions is significantly

better, the only thing that the pipeline needs to learn is to assign all student to that

condition regardless of the contextual information of a student. For some of RCTs,

even though two conditions are not significantly different, there still might exist the
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interaction between the condition and the contextual information of a student. The

goal of the pipeline is to find the interaction (e.g., the slight difference between these

two conditions) and assign students to the proper condition. The outcome measured

in these two experiments is the completion rate. The average completion rate for

each condition is listed in Table 6.1.

6.5.2 Problem Logs

RCTs were run in assignment types known as ”skill builders” in which students

are given problems until a threshold of understanding is reached; within ASSIST-

ments, this threshold is traditionally three consecutive correct responses. Reaching

this threshold denotes sufficient performance and completion of the assignment. In

addition to this experimental data, information of the students prior to condition

assignment is also provided in the form of problem-level log data providing a breadth

of student information at fine levels of granularity.

For each student in RCTs, we have their completeness on the problem set. Be-

yond that, we also have their action information on all problems that they have

worked on inside the ASSIStments prior to the experiment. Action information on

one problem includes the correctness of this problem, the number of hints requested

by the student, the number of attempts and the time taken to make the first action

on this problem. Once the student finishes a problem, one row will be inserted

into the logged data. Note that students in ASSISTments cannot proceed to the

next problem until they type the correct answer to the current problem. Students

usually work on a number of problem sets or skill builders across a school year. So

one student ends up with various length of the sequence of their action information.

The features of problem logs in all RCTs include correctness, hint count, attempt

count, first response time, bottom hint and first action. The meaning of these
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features is listed below.

• Correctness is binary correctness as measured by the student’s first action or

attempt at solving the problem, where 1 means correct on first attempt and

0 means incorrect on first attempt, or asked for help.

• Hint count is the number of hints that a student asked for prior to solving the

problem. Attempt count is the number of attempts that a student made prior

to solving the problem.

• First response time is the time between when the problem was started and

when the student made his/her first action.

• The bottom out hint is the last hint for a problem that usually gives out the

correct answer to students so that they can move on to the next problem in

the problem set. Bottom hint is a binary variable where 1 means the student

asked for the bottom out hint and 0 means the student did not ask for the

bottom out hint.

• First action is a numerical value representing the student’s first action taken

after the problem started where 0 means attempt and 1 means requested a

hint.

A sample data of problem logs for one student is shown in Table 6.2.

6.5.3 Preprocessing

From Table 6.2, we can see that problem set id is a categorical feature. There

are usually a large number of unique problem sets in the dataset for a RCT since

students have worked on various problem sets in the past. One-hot encoding is

a widely used approach to convert a categorical feature into a finite-length vector
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Student
Id

Problem
Set Id

Problem
Id

Correctness
Attempt

count
Hint
count

First response
time

1 1 273719 0 2 0 20s
1 1 426035 1 1 0 10s
1 1 426037 0 3 2 16s
1 1 426038 0 1 3 30s
1 1 285171 1 1 0 21s
1 2 21054 1 1 0 8s
1 2 32154 0 2 2 12s
1 2 62104 1 1 0 14s

Table 6.2: An example of problem logs for an student. The student has worked on
two problem sets (1 and 2), and solved 5 problems for problem set 1 and 3 problems
for problem set 2.

Problem Set ID One-Hot Encoding

1 [1, 0, 0, 0]
2 [0, 1, 0, 0]
3 [0, 0, 1, 0]
4 [0, 0, 0, 1]

Table 6.3: An illustrative example of using one-hot encoding to represent a cate-
gorical feature. In this example, there are 4 unique problem sets (1, 2, 3, 4), so
the number of elements in one-hot vector is 4. Each element corresponds to one
problem set.

where only one of elements is one and the rest are zeros. The length of one-hot

vector is equal to the number of unique values in the categorical feature. However,

if the number of unique values is too large (e.g., 5000), it is not practical to use a

5000-dimensional vector to represent this feature. We can truncate unique values

to a small set by picking top n most frequent values and combining the rest of

values into a single value as ’others’. In the end, this categorical feature can be

represented as a (n + 1)-length vector. An illustrative example of using one-hot

encoding to represent problem set id is shown in Table 6.3.

The values of attempt count, hint count and first response time vary according

to the difficulty of the problem and the total number of hints for the problem. To
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measure these three features on the same scale, we normalized these three features

by calculating the percentile within the problem set and then dividing the results

by 100.

Afterward, for each row of problem logs, we concatenated the one-hot vector for

problem set id with three normalized features (attempt count, hint count, and first

response time) and two binary features (bottom hint and first action) to form the

input vector.

6.6 Experiments

6.6.1 Evaluation

The RCT data are randomly split to two parts. One part is the training data, which

is used to train the model. The other one is the testing data. The hyper-parameters

were tuned only on training data. The model cannot access the test data during the

training and its performance was tested on the test data after it was trained. This

corresponds to the case where a new student requests hints and the goal is to select

the best set of hints.

The benefit of the counterfactual inference is that it can assign an individual stu-

dent to the best condition since it calculates the ITE. The effectiveness of treatment

in RCTs has traditionally been measured by the ATE. Since ATE only estimates

the average effects of treatment across the control population and the treatment

population, it does not verify whether any particular student would benefit by the

treatment when a decision needs to be made about whether giving the treatment to

the student. For instance, in the case of text hints as the control and video hints

as the treatment, ATE is close to zero. In fact, boys benefit more from text hints

and girls benefit more from video hints. With ATE, we cannot find this kind of
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preference. Counterfactual inference potentially could identify the preference with

accurate estimation of ITE.

However, the ”ground truth” of the ITE for each student in RCTs is unknown.

We cannot gather the counterfactual outcomes from RCTs and thus do not have

the ITE of each student. To accurately evaluate the counterfactual model, [VKD07]

proposed a method, which first identifies all students where the treatment recom-

mendation from the model is the same as the actual randomized assignment. Once

we have students with congruent treatment recommendations, we can check whether

these students are assigned to the better condition by looking at their performance

(e.g., completion, test score). An illustrative example of how this evaluation method

works is shown in Table 6.4.

6.6.2 Baselines

To properly evaluate the proposed pipeline, we developed some baseline models.

The effectiveness of treatment in RCTs has traditionally been measured by the

average treatment effects (ATE), and ATE does not verify any particular student

would benefit by the treatment. In other words, traditional ATE methods try to

find better condition between the control and the treatment, and then assign all

students to the better one. To mimic these methods, we adopted two simplest

baselines, ”assign all to the control” and ”assign all to the treatment”. ”Assign

all to the control” provides the control condition to all students regardless of the

contextual information, on the other hand, ”assign all to the treatment” provides

the treatment condition to all students.

When we previously analyzed these two RCTs, we engineered the numeric fea-

tures for each student which were aggregated from problem logs on two dimensions:

the student and the class that the student enrolled in. There are 16 features in to-
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tal including ’prior percent correct’, ’prior percent completion’, ’prior class percent

completion’, etc. The meaning of these three features is listed below to give a brief

idea of how the numeric features look like.

• Prior percent correct - the percent of past problems that the student answered

correctly.

• Prior percent completion - the percent of previously completed assignments.

• Prior class percent completion - the percent of previously completed assign-

ments of the class that the student enrolled in.

We used the RCN with these numeric features as another baseline to verify

that whether the representation learned from the SEA can help the RCN assign

a particular student to a more suitable condition. We referred to this baseline as

”RCN with numeric features” in Table 6.5.

The effectiveness of unsupervised representation learning is another point that

we need to verify in our experiments. To this end, we developed another baseline

model by first feeding student performance sequence into a RNN and then taking

the hidden state at the last input from RNN as the input to the RCN. Compared to

the SEA, there is no decoder RNN in this baseline, so the RNN is trained differently.

The parameters of the RNN and the parameters of the RCN were trained together.

We refer to this baseline as ’RCN with RNN’ in Table 6.5.

6.6.3 Data Collection

We collected problem logs for students in the RCT prior to participating it. This

leads to various length of sequences. The average length of the sequences is around

800-900. There does exist crazy-long sequence, i.e., 8000. Due to the nature of
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the input of the RNN, all sequences have to be either truncated or padded to the

same length. This length was determined by the value of 70th percentile of length

vector of all sequences, which is referred to as max sequence length. If the length of a

sequence is shorter than the max sequence length, the sequence is padded with zeros

to reach the max sequence length. If the length is longer than the max sequence

length, the sequence is truncated by removing time steps from the beginning.

6.6.4 Configurations of Sequence Autoencoder

Before we started to run experiments, there are several decisions to make about

the configuration of the SEA. First is the type of RNN. As mentioned before, there

are three types of RNN: vanilla RNN, LSTM and GRU. Second is whether the

decoder of the SEA predicts the input sequence in reverse order or not. Third

is whether the encoder RNN and the decoder RNN are the same RNN or not. A

sanity check was conducted on the performance of these configurations by predicting

whether a student who had started an assignment would finish the assignment.

We randomly chose an assignment and collected problem logs for students who

started the assignment. The problem logs were fed into the sequence autoencoder to

learning the student representations. Then a two-layer feed-forward neural network

was built to predict the completion of the assignment and it takes the learned

representations as the input. We conducted the sanity check for each combination

of three configurations and chose the one which has the best performance. In our

experiments, the type of RNN in the sequence autoencoder was GRU, and the

encoder and the decoder are exactly the same GRU. Also, the decoder predicts the

input sequence in the reverse order.
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Exp 1 (263052)

Assign all to treatment 0.61
Assign all to control 0.65
RCN with numeric features 0.65
RCN with RNN 0.66
RCN with SEA 0.71

Exp 2 (263115)

Assign all to treatment 0.88
Assign all to control 0.88
RCN with numeric features 0.90
RCN with RNN 0.92
RCN with SEA 0.93

Table 6.5: Completion rate of 4 baselines and RCN with SEA on the testing data.
The higher the better.

6.7 Results

As mentioned before, all RCT data were split into two parts: the training data and

the testing data. All baselines and the RCN with sequence autoencoder were trained

on the training data. Once models were trained, the final results were calculated

on the testing data. The results of 4 baselines and RCN with SEA on two RCTs

are listed in Table 6.5. Since the outcome which is used to measure the goodness

of conditions is the completion rate for both RCTs, we calculated the completion

rate for all matched students found by the evaluation method mentioned in Section

6.6.1.

RCN with SEA achieved the best completion rate compared to baselines in both

RCTs. The interpretation of this performance achievement is three-fold:

• Achieving better results compared to ”assign all to treatment” and ”assign all

to control” indicates that the proposed pipeline is able to detect the interaction

between conditions and the contextual information of the student.
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• Achieving better results compared to RCN with numeric features indicates

that the representations learned from the SEA indeed help the RCN more

accurately assign individual students to the correct condition.

• RCN with RNN reaches the comparable result with RCN with SEA in Exp. 2,

but worse result in Exp. 1. This indicates the performance of the RCN with

RNN is not as stable as the RCN with SEA across RCTs.

Another interesting finding is that the RCN with numeric features and the RCN

with RNN do not outperform the simple baseline ”assign all to treatment” in Exp.

1. The goodness of student representations has an impact on whether the RCN

can find the interactions. When the student is under-represented, the RCN cannot

assign particular students to proper condition. Intuitively, it is not surprising that

both the RCN with RNN and the RCN with SEA outperform the RCN with numeric

features in two RCTs since raw problem logs contain rich information, such as the

problem sets that the student has worked on and the action changes over problems,

compared to numeric features aggregated from problem logs.

Incorporating the RNN into the RCN makes the model more complicated and

increases the difficulty of training the model. This is one of possible reasons why

the RCN with RNN is not as stable as the RCN with SEA across RCTs. Learning

representations using sequence autoencoder is independent of predicting tasks and

keeps the complexity of the RCN as it is.

6.7.1 Power Analysis

To verify the reliability of the results from RCN with SEA, we first conducted a

series of the power analysis. After running the model on the test data, students in

the test data are splitting into two groups: a group of students whose recommended
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condition is the same as the actual assigned condition, called the ”matched group”,

and a group of students whose recommended condition does not match the actual

assigned condition, called the ”unmatched group”. The purpose of comparing the

matched group and the unmatched group is to verify that whether the model can

reliably assign individual student to the better condition. We reported the p-value

and effect size between the completion rate of the matched group and that of the

unmatched group in the first part of Table 6.6 and Table 6.7 for Exp 1 and Exp 2,

respectively. In Exp 1, the completion rate on the matched group (N = 103, M =

0.72, SD = 0.45) was significantly higher than that on the unmatched group (N =

114, M = 0.56, SD = 0.5), p = 0.03, effect size = 0.29. In Exp 2, the completion

rate on the matched group (N=75, M = 0.93, SD = 0.25) was higher than that on

the unmatched group (N=74, M = 0.84, SD = 0.37) with p = 0.06, effect size =

0.30.

We also compared the matched group with the group of students who were

assigned to the better condition (either the treatment group or the control group).

The treatment group had a higher completion rate in both Exp 1 and Exp 2. The

p-value and effect size between the matched group and the treatment group were

reported in the second part of Table 6.6 and Table 6.7, respectively. In Exp 1, the

completion rate on the matched group (N=75, M = 0.93, SD=0.25) was higher than

that on the treatment group (N=79, M = 0.88, SD=0.32) with p = 0.31 and effect

size = 0.16. In Exp 2, the completion rate on the matched group (N=75, M = 0.93,

SD=0.25) was higher than that on the treatment group (N=79, M = 0.88, SD=0.32)

with p = 0.31 and effect size = 0.16.
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Exp 1

n mean std p-value effect size

Matched 101 0.71 0.45
0.01 0.36

Unmatched 96 0.54 0.5

n mean std p-value effect size

Matched 101 (38/63) 0.71 0.45
0.37 0.13

Control 92 0.65 0.48

Table 6.6: Power analysis of Exp 1 for the RCN with SEA. The first part of the
table indicates that the completion rate on the matched group (N=103, M = 0.72,
SD=0.45) was significantly higher than that on the unmatched group (N=114, M =
0.56, SD=0.5) with p = 0.03 and effect size = 0.29. The second part of the table in-
dicates that the completion rate on the matched group (N=103, M = 0.72, SD=0.45)
was higher than that on the treatment group (N=105, M = 0.66, SD=0.48) with p
= 0.34 and effect size = 0.13. In the matched group, 38 students is in the control
and 63 students in the treatment.

Exp 2

n mean std p-value effect size

Matched 75 0.93 0.25
0.06 0.30

Unmatched 74 0.84 0.37

n mean std p-value effect size

Matched 75 (42/33) 0.93 0.25
0.31 0.16

Treatment 79 0.88 0.32

Table 6.7: Power analysis of Exp 2 for the RCN with SEA. The first part of the
table indicates that the completion rate on the matched group (N=75, M = 0.93,
SD = 0.25) was higher than that on the unmatched group (N=74, M = 0.84, SD
= 0.37) with p = 0.06, effect size = 0.30. The second part of the table indicates
that the completion rate on the matched group (N=75, M = 0.93, SD=0.25) was
higher than that on the treatment group (N=79, M = 0.88, SD=0.32) with p = 0.31
and effect size = 0.16. In the matched group, 42 students is in the control and 33
students in the treatment.
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6.8 Discussion

Using counterfactual inference for analyzing RCTs allows researchers to calculate

ITE so particular students can be assigned to a learning condition that leads to

better learning. The RCN model is designed for this purpose and the empirical

results reveal that the RCN requires effective student representations to better de-

tect the interaction between conditions and the student’s contextual information.

Sometimes, the numeric features aggregated from problem logs are not sufficient

for the RCN to learn something useful. Aggregating problem logs loses informa-

tion about the problem sets that a student has worked on and action changes over

problems. To alleviate this downside, we proposed to use sequence autoencoder to

learn student representations from problem logs. Empirical results indicate that the

SEA can produce effective student representations which help the RCN reach better

performance.

The SEA is an unsupervised learning algorithm, thus it does not require labelled

information from the data. Besides problem logs, logged data on assignment level

and on action level can also be used for student representation learning. The repre-

sentations learned from the SEA are task-independent and can be applied to various

predicting tasks in EDM. In our experiment setup, we only used problem logs from

students who participated the RCT. To learn a more general representation, we can

sample some of students who were not in the RCT and mix these students with

students in the RCT.

Integrating a RNN into RCN (RCN with RNN) is more intuitive and direct

approach compared to the unsupervised SEA. However, this approach increases the

difficulty of training a RCN and a RNN together. The performance of RCN with

RNN is not as stable as that of RCN with SEA.
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Not all RCTs have the interactions between the conditions and student’s contex-

tual information that the RCN can detect. It is obvious that this type of interaction

does not exist when one of conditions is significantly better than the other one. Em-

pirically speaking, this type of interaction exists when both conditions are slightly

different and certain types of students have some preferences on one of conditions.

Both RCTs in our experiments do not have a small p-value, so p-value is an indi-

cator of the interaction to some extent. Surveys of student’s preferences on some

conditions might serve as another indicator.

6.9 Conclusions

To make use of problem logs, we proposed to learn student representations with

the SEA. The empirical results illustrate that the representations learned from the

SEA improve the performance of the RCN so particular students can be assigned

to appropriate condition. The comparison between the RCN with RNN and the

RCN with SEA indicates that the performance of the unsupervised way of learning

representations is more stable. Representations learned from the SEA are task-

independent and potentially can be applied to other predicting tasks in EDM.
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Appendix A

More Experiments for RCN with

SEA

A.1 Results

I included results on more RCTs in Table A.1 - Table A.10.

A.2 Results Analysis

In total, we run the RCN with SEA on 12 RCTs. The model achieved better

performance than the better of the control and the treatment on 5 out of 12 RCTs

(PS263052, PS263115, PS246647, PS246482, PS241622). The model prescribed the

better of the control and the treatment on 2 out of 12 RCTs (PS237447, PS259379).

The model performed worse than the better of two conditions on 2 out of 12 RCTs

(PS226210, PS246627). The model achieved similar results with the better of two

conditions on 3 out of 12 RCTs (PS303899, PS243393, PS255116).

We also reported effect size from using RCN across all 12 RCTs in Table A.11.
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PS: 246627

completion rate on test data

Assign all to treatment 0.68
Assign all to control 0.69
Model with numeric features 0.61
Model with autoencoder 0.68

n mean std p-value effect size

Treatment 120 0.68 0.47
0.87 -0.02

Control 140 0.69 0.46

n mean std p-value effect size

Matched 120 (0/120) 0.68 0.47
0.87 -0.02

Unmatched 140 0.69 0.46

n mean std p-value effect size

Matched 120 0.68 0.47
0.87 -0.02

Control 140 0.69 0.46

Table A.1: Results on the problem set 246627. In the matched group, none of
students is in the control and 120 students in the treatment.

131



PS: 237447

completion rate on test data

Assign all to treatment 0.95
Assign all to control 0.97
Model with numeric features 0.97
Model with autoencoder 0.97

n mean std p-value effect size

Treatment 194 0.95 0.21
0.30 -0.11

Control 158 0.97 0.16

n mean std p-value effect size

Matched 158 (158/0) 0.97 0.16
0.30 0.11

Unmatched 194 0.95 0.21

n mean std p-value effect size

Matched 158 0.97 0.16
1 0

Control 158 0.97 0.16

Table A.2: Results on the problem set 237447. In the matched group, all students
is in the control and none in the treatment.
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PS: 255116

completion rate on test data

Assign all to treatment 0.79
Assign all to control 0.80
Model with numeric features 0.79
Model with autoencoder 0.80

n mean std p-value effect size

Treatment 131 0.79 0.41
0.81 -0.03

Control 119 0.80 0.40

n mean std p-value effect size

Matched 136 (40/96) 0.80 0.40
0.69 0.05

Unmatched 114 0.78 0.41

n mean std p-value effect size

Matched 136 0.80 0.40
0.95 0.01

Control 119 0.80 0.40

Table A.3: Results on the problem set 255116. In the matched group, 40 students
is in the control and 96 students in the treatment.
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PS: 246647

completion rate on test data

Assign all to treatment 0.83
Assign all to control 0.83
Model with numeric features 0.87
Model with autoencoder 0.85

n mean std p-value effect size

Treatment 138 0.83 0.38
0.99 0

Control 132 0.82 0.38

n mean std p-value effect size

Matched 138 (20/118) 0.85 0.36
0.33 0.18

Unmatched 132 0.80 0.40

n mean std p-value effect size

Matched 138 0.85 0.36
0.63 0.06

Treatment 138 0.83 0.38

Table A.4: Results on the problem set 246647. Even though Model with numeric
features achieved best performance, the reliable test was conducted on Model with
autoencoder. In the matched group, 20 students is in the control and 118 students
in the treatment.
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PS: 246482

completion rate on test data

Assign all to treatment 0.73
Assign all to control 0.71
Model with numeric features 0.73
Model with autoencoder 0.76

n mean std p-value effect size

Treatment 124 0.73 0.44
0.66 0.06

Control 106 0.71 0.46

n mean std p-value effect size

Matched 114 (43/71) 0.76 0.43
0.17 0.18

Unmatched 116 0.68 0.47

n mean std p-value effect size

Matched 114 0.76 0.43
0.35 0.12

Treatment 124 0.73 0.44

Table A.5: Results on the problem set 246482. In the matched group, 43 students
is in the control and 71 students in the treatment.
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PS: 243393

completion rate on test data

Assign all to treatment 0.69
Assign all to control 0.72
Model with numeric features 0.69
Model with autoencoder 0.72

n mean std p-value effect size

Treatment 454 0.69 0.46
0.30 -0.07

Control 479 0.72 0.45

n mean std p-value effect size

Matched 479 (380/99) 0.72 0.45
0.46 0.05

Unmatched 454 0.69 0.46

n mean std p-value effect size

Matched 479 0.72 0.45
0.89 -0.01

Control 479 0.72 0.45

Table A.6: Results on the problem set 243393. In the matched group, 380 students
is in the control and 99 students in the treatment.
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PS: 241622

completion rate on test data

Assign all to treatment 0.82
Assign all to control 0.86
RCN with numeric features 0.89
RCN with SEA 0.84

n mean std p-value effect size

Treatment 152 0.82 0.38
0.30 -0.12

Control 163 0.86 0.34

n mean std p-value effect size

Matched 151 (41/110) 0.89 0.32
0.11 0.18

Unmatched 152 0.82 0.38

n mean std p-value effect size

Matched 151 0.89 0.32
0.55 0.07

Control 163 0.87 0.34

Table A.7: Results on the problem set 241622. Since RCN with numeric features
achieved the best performance and RCN with SEA was worse than Assign all to
control, the reliable test was conducted on results from RCN with numeric features.
In the matched group, 41 students is in the control and 110 students in the treatment.
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PS: 303899

completion rate on test data

Assign all to treatment 0.9
Assign all to control 0.86
RCN with numeric features 0.87
RCN with SEA 0.9

n mean std p-value effect size

Treatment 210 0.92 0.27
0.64 0.04

Control 235 0.91 0.29

n mean std p-value effect size

Matched 213 (195/18) 0.92 0.28
0.82 0.02

Unmatched 232 0.91 0.29

n mean std p-value effect size

Matched 213 0.92 0.28
0.74 0.03

Treatment 210 0.92 0.27

Table A.8: Results on the problem set 303899. In the matched group, 195 students
is in the control and 18 students in the treatment.
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PS: 226210

completion rate on test data

Assign all to treatment 0.56
Assign all to control 0.64
RCN with numeric features 0.6
RCN with SEA 0.61

n mean std p-value effect size

Treatment 177 0.56 0.50
0.09 -0.17

Control 210 0.64 0.48

n mean std p-value effect size

Matched 207 (158/49) 0.61 0.49
0.7 0.04

Unmatched 180 0.59 0.49

n mean std p-value effect size

Matched 207 0.61 0.49
0.54 -0.06

Control 210 0.64 0.48

Table A.9: Results on the problem set 226210. In the matched group, 158 students
is in the control and 49 students in the treatment.
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PS: 259379

completion rate on test data

Assign all to treatment 0.52
Assign all to control 0.4
RCN with numeric features 0.39
RCN with SEA 0.52

n mean std p-value effect size

Treatment 75 0.52 0.50
0.14 0.24

Control 75 0.4 0.49

n mean std p-value effect size

Matched 75 (0/75) 0.52 0.50
0.14 0.24

Unmatched 75 0.4 0.49

n mean std p-value effect size

Matched 75 0.52 0.50
1 0

Treatment 75 0.52 0.50

Table A.10: Results on the problem set 259379. In the matched group, none of
students is in the control and 75 students in the treatment.
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All 12 RCTs

completion rate on test data

Assign all to treatment 0.75
Assign all to control 0.76
RCN with SEA 0.77

n mean std p-value effect size

Treatment 1959 0.75 0.43
0.39 -0.03

Control 1979 0.76 0.42

n mean std p-value effect size

Matched 1954 (874/1080) 0.77 0.42
0.08 0.06

Unmatched 1984 0.75 0.43

n mean std p-value effect size

Matched 1954 0.77 0.42
0.64 0.01

Control 1979 0.76 0.42

Table A.11: Results across all 12 RCTs. In the matched group, 874 students were
in the control and 1080 in the treatment.
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