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Abstract

This project presents a modified method of numerical integration for a “well behaved” function
over the finite interval [−1, 1]. Similar to the Clenshaw-Curtis quadrature rule, this new algorithm
relies on expressing the integrand as an expansion of Chebyshev polynomials of the second kind. The
truncated series is integrated term-by-term yielding an approximation for the integral of which we
wish to compute. The modified method is then contrasted with its predecessor Clenshaw-Curtis, as
well as the classical method of Gauss-Legendre in terms of convergence behavior, error analysis and
computational efficiency. Lastly, illustrative examples are shown which demonstrate the dependence
that the convergence has on the given function to be integrated.
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Introduction

One of the most common topics administered in a numerical analysis course or in standard textbooks
is the idea of quadrature. Quadrature is the classical term reserved for numerically approximating the
integral of a function f(x) over some range of values a ≤ x ≤ b within a specified error tolerance. The
most familiar techniques are those that fall under the Newton-Cotes classification, such as the trapezoidal
rule or Simpson’s rule. These methods are easily implemented but do not converge in general unless the
specified integrand f is analytic in a large region surrounding [a, b] [15]. In addition, the Newton-Cotes
formulas can become unstable due to their high vulnerability to accumulations in rounding error [2].
Usually once analysis of these integration techniques has been exhausted a more powerful method is
proposed.

The general class of Gaussian quadrature rules is much less restricted in terms of convergence. These
methods will always approach the true value for a given integral as long as the function f is continuous
throughout the interval [a, b]. Moreover, the techniques attributed to Gauss lack vulnerability to accu-
mulations in error and occurrences such as the Runge’s phenomenon [11]. The reason behind this lies in
the unequal spacing (or optimal spacing) of the sampled nodes which depend on the specified member of
this quadrature family. Because the Gauss-like methods and the Newton-Cotes rules are interpolatory in
nature, for specific degree polynomials they should exactly produce the result of performing integration
on such a function. More specifically, for an (n+1)-node sampling the Newton-Cotes formulas will exactly
integrate polynomials up to degree n, whereas Gauss-Legendre quadrature will exactly integrate polyno-
mials up to degree 2n+ 1 [15] and Gauss-Lobatto up to degree 2n− 1 [16]. The Gauss formulas require
the computation of the abscissas of various orthogonal polynomials and their corresponding weights. The
most efficient way of finding these values is by means of a tridiagonal Eigenvalue problem in which O(n2)
operations are sufficient [11].

One classical type of quadrature that seems to be overlooked in most entry level textbooks is Clenshaw-
Curtis. This method is constructed based on the Chebyshev expansion of a continuous function. The
given series is integrated term-by-term and its coefficients are approximated using the trapezoidal rule
[1]. The original algorithm presented by its authors C. W. Clenshaw and A. R. Curtis outlined a way of
pre-computing the weights and Chebyshev nodes which relies on the use of a discrete cosine transform.
For large values of n this method proves to be just as computationally expensive as Gauss, requiring
O(n2) operations. After the advent of the fast Fourier transform (FFT) by Cooley and Tukey in 1965
[12], W. M. Gentleman of the University of Waterloo suggested using this new method for computing the
nodes and weights needed in Clenshaw-Curtis. His idea was to convert the (DCT) to a discrete Fourier
transform (DFT), once in this form the (FFT) can be directly applied [4]. Cooley and Tukey were able
to prove that with their algorithm only O

(
n log(n)

)
operations are required for computing the (DFT)

[12]. This big O notation for the computational expense is titled linearithmic and resembles the number
of floating point operations needed in some sorting algorithms found in computer languages such as Java
and C++. Unlike the (DCT), the (FFT) is an extremely stable algorithm [5] and this attribute is always
preferable in numerical analysis. Another useful feature noted by Gentleman was for a node sampling
chosen such that n = 2p for some positive integer p, the already computed function evaluations at those
nodes could be stored and reused. This resembles a property that is also true of the Newton-Cotes
methods with equally spaced nodes.

Similar to Gauss and the Newton-Cotes rules, Clenshaw-Curtis is also an interpolatory quadrature
technique. With this in mind, it should exactly integrate polynomials of degree at most n and can
accomplish this feat in O

(
n log(n)

)
operations. Depending on the analyticity of the integrand f , Gauss-

Legendre may display a factor of 2 convergence advantage over Clenshaw-Curtis. If the function is not
analytic in a large region containing [a, b] then the convergence of both methods is more or less the
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same [15]. This behavior was first observed by O’Hara and Smith in 1968 [3]. Thus, for most functions,
Clenshaw-Curtis is just as effective as its counterpart Gauss-Legendre, but computationally it is orders
of magnitude cheaper when using large values of n.

Expanding upon the Clenshaw-Curtis algorithm, an area of interest that this project explores is the
use of Chebyshev polynomials of the second kind to derive an analogous automatic quadrature routine.
In a similar fashion, we can express any continuous function as a series of Chebyshev polynomials of the
second kind and integrate the series term-by-term producing a weighted sum as the approximation for
the integral. Once again computing the coefficients for such an expansion proves to be a formidable task.
Nonetheless we have some freedom to choose whichever routine best suits our needs. In general we want
to designate a method for such an approximation that is guaranteed to converge. Clenshaw and Curtis
adopted the use of the trapezoidal rule, which in general may not converge, throughout this paper we
will commit ourselves to using the Gauss-Lobatto rule. It will be shown that for certain functions this
modification to Clenshaw-Curtis will demonstrate improved convergence with the trade off of requiring
more floating point operations. In other situations the convergence will be more or less the same as
Clenshaw-Curtis and Gauss-Legendre. We will only examine the ideas of convergence, error analysis
and computational efficiency for this new algorithm. Analysis of numerical stability, preconditioning,
acceleration, adaptivity, multi-dimensions and endpoint or interior singularities are left for future work.

Classical Theory of Orthogonal Polynomials as a Basis for Series
Expansions

It is the interest of this project to examine the convergence behavior of three interpolatory quadra-
ture methods, two of which rely on an order n expansion of the integrand f(x). Before we derive the
Clenshaw-Curtis algorithm and its modification we will need some background information pertinent to
the field of orthogonal polynomials.

Definition 1: Orthogonal Polynomials
The class of functions {Pk(x)} defined over the interval [a, b] are said to be orthogonal if they satisfy the
inner product relation ∫ b

a

Pk(x)P`(x)w(x)dx = δk`ck, (1)

where w(x) is a weighting function, δk` is the Kronecker delta and

ck =

∫ b

a

w(x)P 2
k (x)dx [6]. (2)

These special functions arise in the solutions of many mathematical and physical problems. They posses
numerous useful properties which we will apply throughout the exhibition of this project. Each of the
classical orthogonal polynomials that we will consider satisfy the general differential equation

Q(x)y′′ + L(x)y′ + λky = 0 (3)

where Q(x) is at most a quadratic polynomial, L(x) is a linear polynomial and λk is a real constant chosen
so that the solutions of this equation bear no singularities. With these assumptions we can accordingly
define

λk = −k
(
k − 1

2
Q′′ + L′

)
[8]. (4)
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The weight function under which the polynomial solutions to (3) are orthogonal is defined as the following
ratio

w(x) =
R(x)

Q(x)
(5)

where

R(x) = exp

(∫
L(x)

Q(x)
dx

)
[8]. (6)

This leads us to the generalized solution of (3)

Definition 2: The Rodrigues Formula
The polynomial solutions to equation (3) can be found using the following formula

pk(x) =
1

ekw(x)

dk

dxk
(
w(x)[Q(x)]k

)
[8] (7)

where ek is a standardization constant.
With this we will construct three sets of orthogonal polynomials for later use in this paper.

Definition 3: Chebyshev Polynomials of the First Kind
The Chebyshev polynomials of the first kind are defined by the trigonometric formula

Tk(x) = cos
(
k arccos(x)

)
, x ∈ [−1, 1], k ≥ 0 (8)

and can be generated using the three-term recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x) (9)

with T0(x) = 1 and T1(x) = x. This set of polynomials is orthogonal with respect to the weight function
w(x) = (1− x2)−1/2 and forms a complete basis in L2[−1, 1] [7].
These polynomials appear as the solution of the differential equation

(1− x2)y′′ − xy′ + k2y = 0 (10)

and from the general Rodrigues formula as defined in (7) we have an alternative way of constructing the
kth polynomial, namely

Tk(x) =
(−1)k

√
π
√

1− x2
2k
(
k − 1

2

)
!

dk

dxk

[
(1− x2)k−1/2

]
[14]. (11)
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Fig. 1: The first six Chebyshev polynomials Tk(x)

Definition 4: Chebyshev Abscissas of the First Kind
The Chebyshev polynomial Tk(x) of degree k ≥ 1 has k simple roots in [−1, 1] at the points

xk,j = cos

(
(2j − 1)π

2k

)
, for each j = 1, 2, ..., k. (12)

Furthermore, Tk(x) assumes its absolute extrema at the points

x′k,j = cos

(
jπ

k

)
with Tk(x′k,j) = (−1)j , for each j = 0, 1, ..., k [10]. (13)

With this information we can now introduce the desired series expansion upon which the Clenshaw-Curtis
algorithm is formulated.

Theorem 1: The Chebyshev Series Expansion of the First Kind
For any function f(x) ∈ C1[−1, 1], there exists a unique series expansion expressed in terms of Chebyshev
polynomials of the first kind which converges uniformly on [−1, 1] to f . This expansion is written in the
form

f(x) =

∞∑
k=0

′
ckTk(x) =

c0
2
T0(x) +

∞∑
k=1

ckTk(x), −1 ≤ x ≤ 1 (14)

where the prime notation implies the first term of the sum is to be halved. Taking into account the
orthogonality of Tk(x), the coefficients are uniquely determined by means of the inner product

ck =

∫ 1

−1

f(x)Tk(x)√
1− x2

dx∫ 1

−1

T 2
k (x)√

1− x2
dx

[2]. (15)

Making a change of variable, x = cos θ and using the identity that Tk(cos θ) = cos(kθ), the above formula
reduces to

ck =
2

π

∫ π

0

f(cos θ) cos(kθ)dθ [1]. (16)
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The Chebyshev series is known as a generalized Fourier expansion and this is easily seen using the
previously stated change of variable, which transforms (14) into an equivalent form

f(x) =

∞∑
k=0

′
ck cos(kθ)

of which we define as the Fourier cosine series for f .
From a computational standpoint, the upper value of the summation is limited by the processing

capability of the machine we are operating with. This in turn leads to a truncation error of the expansion
for f . It was observed by Lanczos that as a result of truncating the series in (14), the remainder will look
a lot like the first Tk(x) that is neglected, that is

RTn (x) =

∞∑
k=n+1

ckTk(x) ≈ cn+1Tn+1(x). (17)

This approximation of the tail-end of the series holds true if cn+1 6= 0 and if the coefficients ck are rapidly
converging to zero. For a proof of this conjecture the reader is referred to [13]. Lanczos was also able to
show that the error ETn that results from dropping terms beyond Tn(x) is bounded in the following way

∣∣ETn ∣∣ =
∣∣∣f(x)−

(c0
2

+ c1T1(x) + · · ·+ cn
2
Tn(x)

)∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

ckTk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|ck| [6] (18)

where the last inequality is a consequence of the fact that |Tk(x)| ≤ 1 for all x ∈ [−1, 1]. By this
construction one can see that the nth order Chebyshev expansion of f should be exact for polynomials of
degree less than or equal to n, since each ck = 0 for all k ≥ n+ 1. Now consider a truncated power series
representation of our function f . By definition, this function approximation is expressed as an order n
polynomial which must agree with some linear combination of Chebyshev polynomials T0 through Tn.
This implies the following equivalence relationship

n∑
k=0

akx
k =

n∑
k=0

′′
ckTk(x) for all x ∈ [−1, 1].

It has been shown by Hamming [6] that at the nth stage of such an expansion

anx
n → an

2n−1
Tn(x) + lower order terms.

It is for this reason that in general, the Chebyshev series converges much more rapidly than the corre-
sponding power series. Essentially, a power series, or for that matter an nth order Taylor expansion only
provides local convergence surrounding a single point; whereas the Chebyshev series will converge to f
locally to a given interval [a, b].

A Simple Demonstration:
Let us now choose a convenient function, say f = arccos(x), to demonstrate how the Chebyshev

expansion works. Using (16) the necessary coefficients are

c0 =
2

π

∫ π

0

θdθ = π

5



and for k ≥ 1

ck =
2

π

∫ π

0

θ cos(kθ)dθ

=
2

π

[
θ sin(kθ)

k

∣∣∣π
0
−
∫ π

0

sin(kθ)

k
dθ

]

=
2

π

[
cos(kθ)

k2

]π
0

=
2

π

(
(−1)k − 1

k2

)
*Vanishes for even k

which implies

c2k = 0 and c2k−1 =
−4

π(2k − 1)2
.

Therefore by (14) the resultant Chebyshev expansion is given by

arccos(x) =
π

2
− 4

π

∞∑
k=1

T2k−1(x)

(2k − 1)2
.

Now say we wish to approximate the given function f to order 10, the remainder will then be

RT10(x) ≈ −4T21(x)

441π

and the truncation error can be bounded by

|ET10| ≤
∞∑
k=11

|c2k−1| =
4

π

∞∑
11

1

(2k − 1)2
.
= 0.0318045549110114.

As described in the abstract, the goal of this project is to formulate an alternative series expansion for
the function f which can be integrated term-by-term. We will do so using an expansion of Chebyshev
polynomials of the second kind.

Definition 5: Chebyshev Polynomials of the Second Kind
The Chebyshev polynomials of the second kind are defined by the formula

Uk(x) =

(
x+
√

1− x2
)k+1 −

(
x−
√

1− x2
)k+1

2
√

1− x2
=

sin
(
(k + 1) arccos(x)

)
√

1− x2
, x ∈ [−1, 1], k ≥ 0 (19)

and can be generated using the three-term recurrence relation

Uk+1(x) = 2xUk(x)− Uk−1(x) (20)

with U0(x) = 1 and U1(x) = 2x. This set of polynomials is orthogonal with respect to the weight function
w(x) =

√
1− x2 and also forms a complete basis in L2[−1, 1] [14].

These polynomials emerge as the solution of the differential equation

(1− x2)y′′ − 3xy′ + k(k + 2)y = 0 (21)

6



and posses a Rodrigues representation of

Uk(x) =
(−1)k(k + 1)

√
π

2k+1
(
k + 1

2

)
!
√

1− x2
dk

dxk

[
(1− x2)k+1/2

]
[14]. (22)

Fig. 2: The first six Chebyshev polynomials Uk(x)

Definition 6: The Filippi Abscissas
The Chebyshev polynomial Uk(x) of degree k ≥ 1 has k simple roots in [−1, 1] at the points

xk,j = cos

(
jπ

k + 1

)
, for each j = 1, 2, ..., k [14]. (23)

With this we are now able to state the following theorem which establishes the desired series expansion
that our modified Clenshaw-Curtis quadrature technique will rely on.

Theorem 2: The Chebyshev Series Expansion of the Second Kind
For any function f(x) ∈ C1[−1, 1], there exists a unique series expansion expressed in terms of Chebyshev
polynomials of the second kind which converges uniformly on [−1, 1] to f . This expansion is written in
the form

f(x) =

∞∑
k=0

′
ψkUk(x) =

ψ0

2
U0(x) +

∞∑
k=1

ψkUk(x), −1 ≤ x ≤ 1 (24)

where the coefficients ψk are uniquely determined using the inner product

ψk =

∫ 1

−1
f(x)Uk(x)

√
1− x2 dx∫ 1

−1
U2
k (x)

√
1− x2 dx

[2]. (25)

Part of our modified Clenshaw-Curtis method will utilize the Gauss-Lobatto quadrature technique. This
algorithm relies on the Legendre polynomials and the corresponding roots of their derivatives. We will also
be closely comparing both methods to Gauss-Legendre quadrature which also uses these same polynomials
and their respective roots. To proceed we will need the following two definitions.

7



Definition 7: Legendre Polynomials
The Legendre polynomials are a set of orthogonal functions over the interval [−1, 1] with respect to the
weight function w(x) = 1. They are ascertained by the Rodrigues formula

Pk(x) =
1

2kk!

dk

dxk
[
(x2 − 1)k

]
[14]. (26)

Similar to the Chebyshev polynomials, the Legendre polynomials form a complete basis set in L2[−1, 1].
These functions can also be generated by means of Bonnet’s recursion formula

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x) (27)

in which we must multiply each Pk(x) by the normalizing factor 2
2k+1 to allow the coefficients to match

the polynomials given by (26).

Fig. 3: The first six Legendre polynomials Pk(x)

Although there is no closed expression for the roots of the Legendre polynomials we can approximate
there value in the following way

Definition 8: Abscissas of the Legendre Polynomials
The Legendre polynomial Pk(x) of degree k ≥ 1 has k simple roots xk,1 > xk,2 > · · · > xk,k where

xk,j =

(
1− 1

8k2
+

1

8k3

)
cos

(
4j − 1

4k + 2
π

)
+O(k−4) [14]. (28)

This concludes the necessary framework upon which the remainder of the analysis in this project is based.
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Gauss-Legendre and Clenshaw-Curtis Quadrature

Throughout the analysis presented in this project we will make use of two numerical integration tech-
niques, Gauss-Legendre and Clenshaw-Curtis, we shall examine the former first. In general a quadrature
formula is an approximation of a definite integral for a given function. It is expressed as a weighted sum
of function evaluations at some conveniently chosen set of points that lie in the interval of integration.
An n−point quadrature rule is designed to yield the exact value of which we would obtain from direct
integration of a polynomial of degree at most n. To achieve this we require a set of nodes to be sampled,
denoted by xi and the corresponding weights wi for i = 1, 2, ..., n. The most generic quadrature formula
is then written as ∫ b

a

f(x)dx ≈
n∑
i=1

wif(xi). (29)

For Gauss-Legendre quadrature we choose the conventional interval of integration [−1, 1] and define each
Gauss node xi as the ith root of the nth Legendre polynomial Pn(x) (See Definition 7). The weights that
correspond to these nodes are given by

wi =
2

(1− x2i )[P ′n(xi)]2
=

2(1− x2i )
(n+ 1)2[Pn+1(xi)]2

[16] (30)

and for the n−point Gauss-Legendre rule this will allow for exact integration of any polynomial up to
degree 2n−1. The error estimate for this method of integration is well known and we will refer the reader
to Abramowitz & Stegun [9] for a derivation and proof.

Theorem 3: Gauss-Legendre Error Estimate
For any function f ∈ C2n[−1, 1], the error as a result of performing Gauss-Legendre quadrature to ap-
proximate the integral of f over [−1, 1] can be estimated by∫ 1

−1
f(x)dx−

n∑
i=1

wif(xi) ≈
22n+1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), for some ξ ∈ (−1, 1) [16]. (31)

A Derivation of Clenshaw-Curtis Quadrature:
The second, and more important type of quadrature that we consider is that of Clenshaw-Curtis. As

presented in their original 1960 paper, Clenshaw and Curtis came up with a fundamental method that
relies on direct integration of the nth order Chebyshev expansion of the first kind for f(x) and makes
use of some unique properties of the Chebyshev polynomials. Let us work through a derivation of this
algorithm beginning with the integral∫ 1

−1
f(x)dx =

∫ 1

−1

∞∑
k=0

′
ckTk(x)dx

=

∫ 1

−1
lim
n→∞

n∑
k=0

′
ckTk(x)dx.

Because the series converges uniformly we can interchange summation and integration giving us

=

∫ 1

−1

(
c0T0(x)

2
+ lim
n→∞

n∑
k=1

ckTk(x)

)
dx = c0 + lim

n→∞

n∑
k=1

ck

∫ 1

−1
Tk(x)dx. (32)
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To simplify the expression in (32) we can use the following three properties∫
Tk(x)dx =

1

2

(
Tk+1(x)

k + 1
− Tk−1(x)

k − 1

)
+ const. =

kTk+1(x)

k2 − 1
− xTk(x)

k − 1
+ const. (33)

Tk(1) = 1 and Tk(−1) = (−1)k [14]. (34)

This leads to ∫ 1

−1
f(x)dx = c0 +

∞∑
k=1

ck

∫ 1

−1
Tk(x)dx

*Application of (33) = c0 +

∞∑
k=1

ck

(
kTk+1(1)

k2 − 1
− Tk(1)

k − 1
− kTk+1(−1)

k2 − 1
− Tk(−1)

k − 1

)

*Application of (34) = c0 +

∞∑
k=1

ck

(
k

k2 − 1
− 1

k − 1
− k(−1)k+1

k2 − 1
− (−1)k

k − 1

)

= c0 +

∞∑
k=1

ck

(
k(k − 1)− k(k − 1)(−1)k+1 − (k2 − 1)− (k2 − 1)(−1)k

(k2 − 1)(k − 1)

)

= c0 +

∞∑
k=1

ck

(
k(k − 1)

(
1 + (−1)k

)
− (k2 − 1)

(
1 + (−1)k

)
(k2 − 1)(k − 1)

)

= c0 +

∞∑
k=1

ck

((
1 + (−1)k

)
(k(k − 1)− (k2 − 1))

(k2 − 1)(k − 1)

)

= c0 +

∞∑
k=1

ck

((
1 + (−1)k

)
(1− k)

(k2 − 1)(k − 1)

)

*Vanishes for odd k = c0 +

∞∑
k=1

ck

(
1 + (−1)k

1− k2

)

= c0 +

∞∑
k=1

2c2k
(1− 4k2)

.

Therefore the (n+ 1)-point Clenshaw-Curtis rule is

∫ 1

−1
f(x)dx ≈

∫ 1

−1

n∑
k=0

′′
ckTk(x)dx = c0 +

n/2−1∑
k=1

2c2k
1− 4k2

+
cn

1− n2
[1] (35)

where n must be an even integer greater than or equal to 4. If we insert the coefficients c2k as defined in
(16) the formula becomes

∫ 1

−1

f(x)dx ≈
2

π

∫ π

0

f(cos θ)dθ +
4

π

n/2−1∑
k=1


∫ π

0

f(cos θ) cos(2kθ)dθ

1− 4k2

+
2

π

∫ π

0

f(cos θ) cos(nθ)dθ

1− n2
. (36)
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Based on observation of the coefficients in (16), it may be cumbersome to compute such integrals, so
we rely on the trapezoidal rule to approximate their value. We will use the points of extrema for the nth

Chebyshev polynomial Tn(x), given in (13), as the sampling points for this approximation.

∫ π

0

f(cos θ) cos(kθ)dθ ≈ π

2n

f(x′n,0) cos(kx′n,0) + 2

n−1∑
j=1

f(x′n,j) cos(kx′n,j) + f(x′n,n) cos(kx′n,n)


=

π

2n

f(1) + (−1)kf(−1) + 2

n−1∑
j=1

f

(
cos

(
πj

n

))
cos

(
πkj

n

)
which implies

2

π

∫ π

0

f(cos θ) cos(kθ)dθ ≈ 2

n

n∑
j=0

′′
f

(
cos

(
πj

n

))
cos

(
πkj

n

)
[1] (37)

where the double prime notation signifies the first and last term of the sum are to be halved. It was
originally suggested by Clenshaw and Curtis [1] that this summation be computed using a discrete cosine
transform (DCT). In 1972, twelve years after the publication of their paper, Gentleman [5] suggested
the use of Cooley and Tukey’s algorithm, the fast Fourier transform (FFT). Today it is customary to
pre-compute the weights

wn,j =
2

n
cos

(
πkj

n

)
and evaluate the summation in (37) using this technique. By doing so, the computation that would
have otherwise required O(n2) operations now can be performed in only O(n log n) operations. We will
omit further explanation of both these transform methods and refer the reader to [12]. Long before the
Chebyshev series was being considered in the use of numerical integration, Hungarian mathematician
Lipót Fejér suggested the use of the Chebyshev Abscissas and extrema on the open interval (−1, 1) for
approximating the integrals found in (16) [15]. Incorporating this idea in the procedure to find the ex-
pression of (37) would have lead to slightly different results. In any case, let it be known that there are
two variations of Clenshaw-Curtis quadrature known as Fejér’s first and second rules.

An Error Bound for the Clenshaw-Curtis Rule:
We will next present a remainder term for the truncated Chebyshev series, similar to that of (17).

Upon interpolating our given function at the zeros of Tn+1(x) we can express f in the form

f(x) =

n∑
k=0

′′
ckTk(x) +

Tn+1(x)

2n(n+ 1)!
fn+1(ξ) [7] (38)

where as usual |ξ| < 1. Let us define a bound for the (n+ 1)st derivative of f evaluated at some ξ(x)∣∣fn+1(ξ)
∣∣ ≤M, where M = max

−1≤x≤1

∣∣fn+1(x)
∣∣ . (39)

Now using (38) we can generate an approximate error bound for the integral of f , assuming that f ∈
Cn+1[−1, 1]. We begin by integrating both sides of the expression∫ 1

−1
f(x)dx =

n∑
k=0

′′
ck

∫ 1

−1
Tk(x)dx+

1

2n(n+ 1)!

∫ 1

−1
Tn+1(x)fn+1(ξ)dx

11



appealing to (35) this becomes

∫ 1

−1
f(x)dx−

c0 +

n/2−1∑
k=1

2c2k
1− 4k2

+
cn

1− n2

 =
1

2n(n+ 1)!

∫ 1

−1
Tn+1(x)fn+1(ξ)dx.

Now taking absolute value to both sides we obtain∣∣∣∣∣∣
∫ 1

−1
f(x)dx−

c0 +

n/2−1∑
k=1

2c2k
1− 4k2

+
cn

1− n2

∣∣∣∣∣∣ =

∣∣∣∣ 1

2n(n+ 1)!

∫ 1

−1
Tn+1(x)fn+1(ξ)dx

∣∣∣∣
≤ 1

2n(n+ 1)!

∫ 1

−1

∣∣Tn+1(x)fn+1(ξ)
∣∣dx

*Use of Cauchy-Schwarz inequality ≤ 1

2n(n+ 1)!

(∫ 1

−1

∣∣Tn+1(x)
∣∣2dx)1/2(∫ 1

−1

∣∣fn+1(ξ)
∣∣2dx)1/2

*Use of (39) and |Tn+1(x)| ≤ 1 ≤
√

2

2n(n+ 1)!

(∫ 1

−1
M2dx

)1/2

=
M

2n−1(n+ 1)!
.

Therefore an error bound for the Clenshaw-Curtis rule is∣∣∣I(f)− Icc(f, n)
∣∣∣ ≤ M

2n−1(n+ 1)!
. (40)

Let us examine the integral of a simple function and test the validity of this error bound. Choose
f(x) = ex, this implies

M = max
−1≤x≤1

|ex| = e

and

I(f) =

∫ 1

−1
exdx = e− 1

e

.
= 2.350402387287603.

Table 1: Actual Error vs. Error Bound for the Clenshaw-Curtis Rule

n Clenshaw-Curtis Approximation Absolute Error Error Bound

4 2.350375376931479 2.701035612373559× 10−5 0.002831543571312
6 2.350402366696299 2.059130332909831× 10−8 1.685442601971135× 10−5

8 2.350402387267139 2.046407487910074× 10−11 5.852231256844216× 10−8

10 2.350402387287584 1.865174681370263× 10−14 1.330052558373686× 10−10

The inequality given in (40) may not be the best error bound, but nonetheless it is a bound which works
for sufficiently differentiable integrands f(x).
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Modified Clenshaw-Curtis Quadrature

Now that we have successfully derived the original algorithm, we can proceed forward with a modifi-
cation to this method. We shall begin with the Chebyshev series of the second kind as defined in (24),

f(x) =

∞∑
k=0

′
ψkUk(x).

For sufficiently chosen functions which satisfy the conditions of Theorem 2, this series will converge
uniformly to f . That being said we can integrate both sides yielding∫ 1

−1
f(x)dx =

∫ 1

−1

∞∑
k=0

′
ψkUk(x)dx

=

∫ 1

−1
lim
n→∞

n∑
k=0

′
ψkUk(x)dx

and because of the uniform convergence of the series we are allowed to interchange summation and
integration, thus reducing the above expression to

=

∫ 1

−1

(
ψ0U0(x)

2
+ lim
n→∞

n∑
k=1

ψkUk(x)

)
dx = ψ0 + lim

n→∞

n∑
k=1

ψk

∫ 1

−1
Uk(x)dx. (41)

Let us note that there exists a convenient derivative relationship between Chebyshev polynomials of the
first and second kind which states

Uk(x) =
1

k + 1

d

dx

(
Tk+1(x)

)
[14], (42)

applying this we can re-express (41) in the following way.∫ 1

−1
f(x)dx = ψ0 +

∞∑
k=1

ψk
k + 1

∫ 1

−1

d

dx

(
Tk+1(x)

)
dx

*By the Fundamental Theorem of Calculus = ψ0 +

∞∑
k=1

ψk
k + 1

(
Tk+1(1)− Tk+1(−1)

)
*Application of (34) = ψ0 +

∞∑
k=1

ψk
k + 1

(
1− (−1)k+1

)
*Vanishes for odd k = ψ0 +

∞∑
k=1

ψk
(
1 + (−1)k

)
k + 1

= ψ0 +

∞∑
k=1

2ψ2k

2k + 1
.

Therefore the modified quadrature rule in its (n+ 1)-point truncated form is expressed as∫ 1

−1
f(x)dx = ψ0 +

n/2−1∑
k=1

2ψ2k

2k + 1
+

ψn
n+ 1

(43)
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for any even integer n ≥ 4. Now using (25) we can determine the coefficients ψk by using the change of
variable x = cos θ and the trigonometric definition of Uk as defined in (19). The inner product (Uk, Uk)
with respect to the weight function will become

∫ 1

−1
U2
k (x)

√
1− x2 dx = −

∫ 0

π

sin2
(

(k + 1) arccos
(

cos θ
))

1− cos2 θ
sin2 θ dθ

=

∫ π

0

sin2
(
(k + 1)θ

)
dθ

=
1

2

∫ π

0

1− cos
(
(2k + 2)θ

)
dθ

=
1

2

[
θ − 1

2k + 2
sin
(
(2k + 2)θ

)]θ=π
θ=0

=
π

2
.

Similarly the inner product (f, Uk) with respect to the weight function will become

∫ 1

−1
f(x)Uk(x)

√
1− x2 dx = −

∫ 0

π

f(cos θ)
sin
(

(k + 1) arccos
(

cos θ
))

√
1− cos2 θ

√
1− cos2 θ sin θ dθ

=

∫ π

0

f(cos θ) sin
(
(k + 1)θ

)
sin θ dθ.

Therefore the coefficients from (25) simplify to

ψk =
2

π

∫ π

0

f(cos θ) sin
(
(k + 1)θ

)
sin θ dθ. (44)

Plugging the result of (44) into the right hand side of (43) we obtain our final form of the modified
Clenshaw-Curtis method. For an n + 1 node sampling within the interval [−1, 1], we can approximate
the integral of f over this same interval using the following formula

∫ 1

−1

f(x)dx ≈
2

π

∫ π

0

f(cos θ) sin
2
θ dθ +

4

π

n/2−1∑
k=1


∫ π

0

f(cos θ) sin
(
(2k + 1)θ

)
sin θ dθ

2k + 1

+
2

π

∫ π

0

f(cos θ) sin
(
(n+ 1)θ

)
sin θ dθ

n+ 1
.

(45)
In general, it will be required that the coefficients ψk be numerically approximated for efficiency pur-
poses. Instead of using the trapezoidal rule as seen in the method of Clenshaw and Curtis, we will now
approximate the coefficients to higher precision using the Gauss-Lobatto rule.

Definition 9: Gauss-Lobatto Quadrature:
The n−point Gauss-Lobatto rule is defined as∫ 1

−1
f(x)dx ≈ 2

n(n− 1)

[
f(1) + f(−1)

]
+

n−1∑
i=2

wif(xi) [16] (46)
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where xi is the (i − 1)st root of P ′n−1(x), the derivative of the (n − 1)st Legendre polynomial. The
corresponding weights are given by

wi =


2

n(n− 1)(Pn−1(xi))2
, for i = 2, ..., n− 1

2

n(n− 1)
, for i = 1, or i = n

. (47)

Theorem 4: Gauss-Lobatto Error Estimate
For any function f ∈ C2n−2[−1, 1], the error as a result of performing Gauss-Lobatto quadrature to
approximate the integral of f over [−1, 1] can be estimated by

En ≈ −
n(n− 1)3 22n−1

[
(n− 2)!

]4
(2n− 1)

[
(2n− 2)!

]3 f (2n−2)(ξ), for some ξ ∈ (−1, 1) [9]. (48)

A Proof of this theorem can be found in Abramowitz & Stegun’s book. Because the Gauss-Lobatto rule
is only established for integration of a function over the interval [−1, 1], when computing the ψk’s we
must make the following change of interval∫ b

a

f(x̄)dx̄ =
b− a

2

∫ 1

−1
f

(
b− a

2
x+

b+ a

2

)
dx [10]. (49)

This implies that the coefficients ψk will now take on the form

2

π

∫ π

0

f(cos θ̄) sin
(
(k + 1)θ̄

)
sin θ̄ dθ̄ =

∫ 1

−1
f
(

cos
π

2
(θ + 1)

)
sin
(π

2
(k + 1)(θ + 1)

)
sin
(π

2
(θ + 1)

)
dθ.

(50)

An Error Bound for the Modified Clenshaw-Curtis Rule:
Let us now derive an upper bound for the error that results from using the modified Clenshaw-Curtis

method to approximate the integral of f . Upon interpolating our given function at the zeros of Un+1(x)
we can express f in a similar way as done in (38),

f(x) =

n∑
k=0

′′
ψkUk(x) +

Un+1(x)

2n+1(n+ 1)!
fn+1(ξ) [7] (51)

where again |ξ| < 1. First let’s assume that the condition f ∈ Cn+1[−1, 1] holds, then by integrating
both sides of the expression we find∫ 1

−1
f(x)dx =

n∑
k=0

′′
ψk

∫ 1

−1
Uk(x)dx+

1

2n+1(n+ 1)!

∫ 1

−1
Un+1(x)fn+1(ξ)dx;

applying (43) this becomes

∫ 1

−1
f(x)dx−

ψ0 +

n/2−1∑
k=1

2ψ2k

2k + 1
+

ψn
n+ 1

 =
1

2n+1(n+ 1)!

∫ 1

−1
Un+1(x)fn+1(ξ)dx.
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Taking absolute value to both sides we obtain∣∣∣∣∣∣
∫ 1

−1
f(x)dx−

ψ0 +

n/2−1∑
k=1

2ψ2k

2k + 1
+

ψn
n+ 1

∣∣∣∣∣∣ =

∣∣∣∣ 1

2n+1(n+ 1)!

∫ 1

−1
Un+1(x)fn+1(ξ)dx

∣∣∣∣
≤ 1

2n+1(n+ 1)!

∫ 1

−1

∣∣Un+1(x)fn+1(ξ)
∣∣dx

*Use of Cauchy-Schwarz inequality ≤ 1

2n+1(n+ 1)!

(∫ 1

−1

∣∣Un+1(x)
∣∣2dx)1/2(∫ 1

−1

∣∣fn+1(ξ)
∣∣2dx)1/2

*Use of (39) and |Un+1(x)| ≤ n+ 1 ≤ 1

2n+1(n+ 1)!

(∫ 1

−1
(n+ 1)2dx

)1/2(∫ 1

−1
M2dx

)1/2

=

√
2(n+ 1)

√
2M

2n+1(n+ 1)!
=

M

2nn!
.

Therefore an error bound for the modified Clenshaw-Curtis rule is∣∣∣I(f)− Imcc(f, n)
∣∣∣ ≤ M

2nn!
. (52)

Now consider another simple integral to verify the validity of (52). Let f(x) = cos(2x), this implies

M = max
−1≤x≤1

∣∣∣∣ dn+1

dxn+1

(
cos(2x)

)∣∣∣∣ = 2n+1

and

I(f) =

∫ 1

−1
cos(2x)dx =

sin(2)− sin(−2)

2
= sin(2)

.
= 0.909297426825682.

Table 2: Actual Error vs. Error Bound for the Modified Clenshaw-Curtis Rule

n Clenshaw-Curtis Approximation Absolute Error Error Bound

4 0.909642376076686 3.449492510044783× 10−4 0.083333333333333
6 0.909292487926950 4.938898732098629× 10−6 0.002777777777778
8 0.909297472613820 4.578813816991101× 10−8 4.960317460317460× 10−5

10 0.909297426528125 2.975569790564236× 10−10 5.511463844797178× 10−7

12 0.909297426827113 1.431410545649214× 10−12 4.175351397573620× 10−9

14 0.909297426825676 5.218048215738236× 10−15 2.294149119545945× 10−11

It is evident from this example that the given inequality in (52) will suffice to bound the error for
sufficiently differentiable functions.

Findings and Results

The next eight figures show various examples which compare the convergence behavior and compu-
tational efficiency of Gauss-Legendre, Clenshaw-Curtis and the modified Clenshaw-Curtis routine (MC-
CGL) as it will be denoted. The “GL” in this acronym stands for Gauss-Lobatto which is being applied
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to compute the coefficients defined in (44). The error convergence graphs are measuring the ratio of the
log of the absolute error to the number of nodes sampled. The log of the error is chosen because as n
grows large the errors can be on the order of 10−15 which is difficult to see on a graph in comparison to
error of order 10−2, a common value for small node samplings. The computational efficiency graphs are
each utilizing MATLAB’s built in “tic toc” command to measure the amount of processing time that each
algorithm requires for specific values of n. A third graph is shown in each example displaying the given
function f and the shaded region of area in which the integral approximation is attempting to compute.
Lastly, the numerical value of the integral computed to 16 digits of precision is given for each function.

One first observation made, is when examining these examples, Clenshaw-Curtis in all cases remains
computationally superior to Gauss-Legendre and MCCGL. This is merely a confirmation of the behavior
that we predicted from the beginning and is a consequence of the (FFT) versus a tridiagonal eigenvalue
problem. For decaying and non-decaying oscillatory functions as shown in figures 4 and 8 Gauss-Legendre
converges faster than Clenshaw-Curtis and MCCGL. Looking directly at the later two, Clenshaw-Curtis
slightly outperforms MCCGL. In contrast, for nonnegative decaying and non-decaying oscillatory func-
tions as depicted in figures 5 and 9, the new quadrature algorithm MCCGL converges faster than both
Gauss-Legendre and Clenshaw-Curtis. For products of several functions such as the example shown in
figure 6, the convergence of all three methods is almost identical. In cases where special functions are
used such as the error function erf(x) found in figure 7, MCCGL mirrors the behavior of Clenshaw-Curtis
and Gauss slightly outperforms each. There are many other examples that can be tested and in general
the behavior of convergence will vary from situation to situation. Figure 10 shows one of these cases
where the new quadrature rule does significantly worse than its opponents. To examine the performance
of MCCGL alone, table 3 has been included, which provides numerical approximations within an error
tolerance of 10−15 for 15 sample integrals.

Error Convergence and Computational Efficiency Comparisons:

Fig. 4: f(x) = cos
(√

377x
)

+ sin
(√

135x
)
, I(f)

.
= 0.055318603004214
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Fig. 5: f(x) =
∣∣∣ cos

(√
377x

)
+ sin

(√
135x

)∣∣∣, I(f)
.
= 1.646690417700640
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Fig. 6: f(x) = x2e−x
2

tan(x) arccos(x), I(f)
.
= −0.321556002594905
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Fig. 7: f(x) = ln(x+ 2e)erf(πx), I(f)
.
= 0.175664900305971
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Fig. 8: f(x) = e−3x cos
(
16
√

3πx
)
, I(f)

.
= −0.176358246030565
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Fig. 9: f(x) =
∣∣∣e−3x cos

(
16
√

3πx
)∣∣∣, I(f)

.
= 4.202933872637208
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Fig. 10: f(x) = ecos(
√
47πx), I(f)

.
= 2.438081482203559
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Fig. 11: f(x) = arctan
(
x2
)
, I(f)

.
= 0.595805337996175
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Table 3: 15 sample integrals computed by MCCGL within an error tolerance of 10−15

Integrand f(x) MCCGL Approximation Nodes Required Computation Time (Seconds)

ex 2.350402387287603 12 0.009287600000000√(
100π

)2 − x2 628.3174696833920 4 0.000079444000000

x/ (ex + 1) −0.158885300995123 16 0.005830175521202

1/
(
1 + x2

)
1.570796326794896 34 0.013707653551110

23
25 cosh(x)− cos(x) 0.479428226688802 12 0.004472379038743

cos
(√

521x
)

+ sin
(√

273x
)

−0.064910975381289 50 0.025488112094860

ln
(
x+ 2e2

)
erf(2πx) 0.066862331558334 64 0.038738946516917

e−2x cos
(
16
√

2x
)

−0.218673123892560 50 0.026050324700878

x arctan
(
x3
)

0.355120831053971 42 0.045733800000000

ex arctan
(
x3
)

0.398130064822845 42 0.035174700000000

x sin(30x)
/√

1− x2/
(
4π2
)

−0.012696821645673 60 0.048116700000000

x sin(30x) cos(50x)
/√

1− x2/
(
4π2
)

0.019528272812124 120 0.123265800000000

x sin(50x) cos(75x) 0.033518732588154 170 0.286400100000000

1/
(
x4 + x2 + e

)
0.631299652055891 28 0.016825800000000

tan(x)/ (1 + ex sin(πx)) −0.719818067507943 90 0.121847500000000
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Direct Comparison of CCGL and MCCGL:

One further consideration that was made, was to apply the Gauss-Lobatto rule to the original
Clenshaw-Curtis algorithm in order to compute the coefficients given in (16). Doing so we see that
this new modification, denoted by CCGL, along with MCCGL, both display nearly identical convergence
patterns and require the same order of floating point operations. This behavior is interesting and can be
attributed to the similar nature of both kinds of Chebyshev polynomials. Although for certain functions
the expansions in (14) and (24) will vary slightly in how fast they converge on [−1, 1], both approaches
should display the same rate of asymptotic convergence. It is for this reason that the observed error as
a result of integrating f bears close resemblance for both methods.

Fig. 12: f(x) = cos(10x)Γ(x+ 2)erf(
√

1 + x), I(f)
.
= −0.115420768826884
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Table 4: A comparison of the errors for f(x) = cos(10x)Γ(x+ 2)erf(
√

1 + x)

n CCGL Approx. CCGL Error MCCGL Approx. MCCGL Error

4 −0.127880902110724 0.012460133283840 −0.110269423215667 0.005151345611217
8 −0.111758657474522 0.003662111352363 −0.082034833703284 0.033385935123600
12 −0.114825707423031 0.000595061403853 −0.114549294656312 0.000871474170572
16 −0.115382301684895 0.000038467141989 −0.115460693253348 0.000039924426463
20 −0.115403326736661 0.000017442090223 −0.115446088057898 0.000025319231014
24 −0.115410611797485 0.000010157029400 −0.115436370720138 0.000015601893254
28 −0.115414349392029 0.000006419434855 −0.115431025001805 0.000010256174921
32 −0.115416459037443 0.000004309789441 −0.115427858133590 0.000007089306705
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Fig. 13: f(x) = cosh (tanh (sinh(x))), I(f)
.
= 2.278006221315598
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Table 5: A comparison of the errors for f(x) = cosh (tanh (sinh(x)))

n CCGL Approx. CCGL Error MCCGL Approx. MCCGL Error

4 2.276846498382461 0.001159722933137 2.277985124995150 0.000021096320449
6 2.278014932115627 0.000008710800029 2.277992122558898 0.000014098756700
8 2.278007981850735 0.000001760535136 2.278007217776638 0.000000996461039
10 2.278006110197199 0.000000111118399 2.278006228565790 0.000000007250192
12 2.278006221540577 0.000000000224979 2.278006215719572 0.000000005596026
14 2.278006221698916 0.000000000383317 2.278006221636900 0.000000000321302
16 2.278006221293295 0.000000000022303 2.278006221324897 0.000000000009299
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Future Work

Beyond the scope of what has been presented in this project, there are many other possible avenues of
research that can be pursued related to Clenshaw-Curtis quadrature. It is natural for one to hold interest
in investigating the use of other sets of orthogonal functions for the basis of an expansion. Such research
was attempted for this project using the Legendre and Hermite polynomials, but to no avail a suitable
algorithm for integration was not found. In both cases, Legendre integration over the interval [−1, 1] and
Hermite integration over the interval (−∞,∞) lead to problems when attempting to integrate the series
term-by-term. Similar to (14), if we expand the integrand f(x) in a Legendre Series

f(x) =

∞∑
k=0

`kPk(x), −1 ≤ x ≤ 1 (53)

it is easily verified that integrating this sum term-by-term will yield a trivial result due to the fact that∫ 1

−1
Pk(x)dx = 0, for all k ≥ 1

and

`k =
2k + 1

2

∫ 1

−1
f(x)Pk(x)dx ⇒ `0 =

1

2

∫ 1

−1
f(x)dx.

All we are left with is ∫ 1

−1
`0 dx =

∫ 1

−1
f(x)dx

which is an uninteresting finding. To the same end, if we expand the integrand as a series of Hermite
polynomials the aforementioned trivial result will occur upon term-by-term integration. Some other
possible considerations for this research area are the use of the Laguerre polynomials over the interval
[0,∞) or the Jacobi polynomials, a generalized form of the Chebyshev polynomials. Nevertheless, this
would require more extensive analysis to achieve an algorithm similar to that of Clenshaw-Curtis. In
terms of computational efficiency it would also be interesting to mimic the work of Gentleman [5] and
apply the fast Fourier transform to the modified method presented in (45) and to any future algorithms
derived from the use of other sets of orthogonal functions.

Apart from the integration of a function of one variable a compelling idea would be to make use
of what are called the multivariate Chebyshev polynomials to construct higher dimensional expansions
of a function of several variables. Quite a bit of work has been pursued in this field relating to the
development of recursion formulas for multivariate Chebyshev polynomials of the first kind. It is rather
uncharted territory when it comes to generating the second kind of these polynomials, let alone using
them as means for an expansion of some function. It would be useful to develop an efficient Clenshaw-
Curtis algorithm which can compute double and triple integrals within some error tolerance, over various
domains. Comparison of such an algorithm with Gauss-Quadrature for multiple integrals may yield
valuable results in terms of convergence behavior and error bounds. To pursue such an idea we will
require assorted elements from group theory such as the concept of Dynkin diagrams, which pertain to
Weyl groups (finite reflection groups) and the overall theory of Lie groups. We will also need a keen
understanding of root systems or root lattices within a Lie group. With this we will be able to develop
a suitable algorithm for multiple integration over appropriate domains.
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Some other topics relating to MCCGL that can be analyzed are

• stability of the algorithm,

• the possibility of preconditioning the eigenvalue problem which is solved each time Gauss-Lobatto
attempts to find the coefficients ψk in the series shown in (24),

• incorporating an adaptivity technique which will allow for user specified error tolerance rather than
the choice of n,

• and lastly, find a suitable way of handling endpoint and interior singularities of the kernel f(x).
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Appendix A: MATLAB Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The (n+1)−po int Gauss−Legendre Quadrature Rule %%
%% Input : The func t i on f ( x ) and the number o f nodes to be sampled N %%
%% Output : The approximate i n t e g r a l and computation time %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on [ I time ] = gauss ( f ,N)
t i c
beta = . 5 . / s q r t (1−(2∗(1:N) ) . ˆ ( −2 ) ) ; % 3−Term Recurrence C o e f f i c i e n t s
T = diag ( beta , 1 ) + diag ( beta ,−1) ; % Jacobi Matrix
[V,D] = e i g (T) ; % Eigenvalue Decomposition
x = diag (D) ; [ x , i ] = s o r t ( x ) ; % Legendre Absc i s sa s
w = 2∗V(1 , i ) . ˆ 2 ; % Corresponding Weights
I = w∗ f e v a l ( f , x ) ; % I n t e g r a l Approximation
time = toc ; % Computation time

[15]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The (n+1)−po int Clenshaw−Curt i s Quadrature Rule %%
%% Input : The func t i on f ( x ) and the number o f nodes to be sampled N %%
%% Output : The approximate i n t e g r a l and computation time %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on [ I time ] = c l e n s h a w c u r t i s ( f ,N)
t i c
f a = f (−1);
a s s i g n i n ( ’ c a l l e r ’ , ’ fa ’ , 0 ) ;
x = cos ( p i ∗ ( 0 :N) ’/N) ; % Chebyshev Absc i s sa s
fx = f e v a l ( f , x )/(2∗N) ; % f eva luated at each po int
g = r e a l ( f f t ( fx ( [ 1 :N+1 N: − 1 : 2 ] ) ) ) ; % Fast Four i e r Transform
a = [ g ( 1 ) ; g ( 2 :N)+g (2∗N:−1:N+2); g (N+1) ] ; % Chebyshev C o e f f i c i e n t s
w = 0∗a ’ ; w( 1 : 2 : end ) = 2 ./ (1 − (0 : 2 :N) . ˆ 2 ) ; % Weight Vector
I = w∗a ; % I n t e g r a l Approximation
time = toc ; % Computation time

[15]

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The (n+1)−po int Clenshaw−Curt i s /Gauss−Lobatto Rule %%
%% Input : The func t i on f ( x ) and the number o f nodes to be sampled N %%
%% Output : The approximate i n t e g r a l and computation time %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on [ approx time ] = CCGL( f ,N)
format long
t i c
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c = ze ro s (N, 1 ) ;
g = @( x ) cos ( ( p i / 2 ) .∗ x+(pi / 2 ) ) ; % Change o f v a r i a b l e
h = @( x ) f ( g ( x ) ) ;
c0 = quadl (h , −1 ,1) ; % Leading Chebyshev c o e f f i c i e n t
f o r k = 2 : 2 :N % Integrand o f the c k ’ s

h = @( x ) f ( g ( x ) ) . ∗ cos ( k . ∗ ( ( p i / 2 ) .∗ x+(pi / 2 ) ) ) ;
c ( k ) = quadl (h , −1 ,1) ; % Computation o f the c o e f f i c i e n t s

end % us ing Gauss−Lobatto quadrature
intSum = 0 ;
f o r m = 1 :N/2−1

intSum = intSum + 2∗ c (2∗m)/(1−(2∗m) ˆ 2 ) ; % Weighted sum
end
approx = c0 + intSum + c (N)/(1−Nˆ 2 ) ; % I n t e g r a l approximation
time = toc ; % Computation time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% The (n+1)−po int Modif ied Clenshaw−Curt i s /Gauss−Lobatto Rule %%
%% Input : The func t i on f ( x ) and the number o f nodes to be sampled N %%
%% Output : The approximate i n t e g r a l and computation time %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

func t i on [ approx time ] = MCCGL( f ,N)
t i c
format long
p s i = ze ro s (N, 1 ) ;
g = @( x ) cos ( ( p i / 2 ) .∗ x+(pi / 2 ) ) ; % Change o f v a r i a b l e
h = @( x ) f ( g ( x ) ) . ∗ ( s i n ( ( p i / 2 ) .∗ x+(pi / 2 ) ) ) . ˆ 2 ;
p s i 0 = quadl (h , −1 ,1) ; % Leading Chebyshev c o e f f i c i e n t

% computed us ing Gauss−Lobatto
f o r k = 2 : 2 :N % Integrand o f the ps i k ’ s

h = @( x ) f ( g ( x ) ) . ∗ s i n ( ( k +1) .∗ ( ( p i / 2 ) . . .
.∗ x+(pi / 2 ) ) ) . ∗ s i n ( ( p i / 2 ) .∗ x+(pi / 2 ) ) ;

p s i ( k ) = quadl (h , −1 ,1) ; % Computation o f the c o e f f i c i e n t s
end
intSum = 0 ;
f o r m = 1 :N/2

intSum = intSum + 2∗ p s i (2∗m)/(2∗m+1); % Weighted sum
end
approx = 2∗ ps i 0 + intSum ; % I n t e g r a l approximation
time = toc ; % Computation time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% A func t i on to compare Gauss Quadrature , Clenshaw−Curtis , & MCCGL %%
%% Input : The func t i on f ( x ) and the number o f i t e r a t i o n s %%
%% Ouput : Error convergence and computation time t a b l e s and graphs %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
func t i on [ ] = quadratureComparison ( f , itmax )
c l f
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c l o s e a l l
format longG
I e x a c t = double ( i n t e g r a l ( f , −1 ,1 ) ) ;
f o r N = 2 : itmax

[ intG (N) timeG (N) ] = gauss ( f ,N) ;
errorG (N) = abs ( I exac t−intG (N) ) ;
[ intCC (N) timeCC(N) ] = c l e n s h a w c u r t i s ( f ,N) ;
errorCC (N) = abs ( I exac t−intCC (N) ) ;
[ intMCCGL(N) timeMCCGL(N) ] = MCCGL( f ,N) ;
errorMCCGL(N) = abs ( I exac t−intMCCGL(N) ) ;

end
d i sp ( ’ Gauss ErrorG Clenshaw−Curt i s ErrorCC ’ )
d i sp ( [ intG ’ errorG ’ intCC ’ errorCC ’ ] )
d i sp ( ’ MCCGL ErrorMCCGL ’ )
d i sp ( [ intMCCGL’ errorMCCGL ’ ] )
d i sp ( ’ The exact va lue o f the i n t e g r a l i s ’ )
d i sp ( I e x a c t )
vec = 1 : itmax ; X = −1 : . 001 : 1 ;
subplot ( 2 , 2 , 4 )
hold a l l
area (X, f (X) )
p = p lo t (X, f (X) ) ;
s e t (p , ’ Color ’ , ’ black ’ , ’ LineWidth ’ , 1 )
g r id on
x l a b e l ( ’ I n t e r v a l o f In t eg ra t i on ’ )
y l a b e l ( ’ f ( x ) ’ )
t i t l e ( ’ V i s u a l i z a t i o n o f the I n t eg ra l ’ )
subplot ( 2 , 2 , [ 1 3 ] )
hold a l l
p l o t ( vec , l og ( errorG ) )
p l o t ( vec , l og ( errorCC ) )
p l o t ( vec , l og (errorMCCGL ) )
g r id on
x l a b e l ( ’ Node Sampling N’ )
y l a b e l ( ’ l og ( Error ) ’ )
t i t l e ( ’ Convergence Behavior ’ )
l egend ( ’ Gauss−Legendre ’ , ’ Clenshaw−Curtis ’ , ’MCCGL’ )
subplot ( 2 , 2 , 2 )
hold a l l
p l o t ( vec , l og ( timeG ) )
p l o t ( vec , l og ( timeCC ) )
p l o t ( vec , l og (timeMCCGL) )
g r id on
x l a b e l ( ’ Node Sampling N’ )
y l a b e l ( ’ l og ( Computation Time ) ’ )
t i t l e ( ’ Comparison o f Computational Time ’ )
legend ( ’ Gauss−Legendre ’ , ’ Clenshaw−Curtis ’ , ’MCCGL’ )
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