
Xeero Anumba, Acito, Sessa i

Xeero: A 3D Action-Puzzle-Platforming Game

by

Eric Anumba, Daniel Acito and Anthony Sessa

A Project Report

submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Interactive Media and Game Development

29 April 2015

Approved

Brian Moriarty, Project Chair

Britton Snyder

Keith Zizza

Xeero Anumba, Acito, Sessa ii

Abstract
 This report discusses the design and development of Xeero, a 3D action-puzzle-

platforming game constructed from our own custom engine, original art and sound assets.

Despite a small development team, we strove to create a highly-polished and marketable

interactive experience. We explain the methodology employed, results gained, and challenges

faced by each member of the team in pursuit of this goal.

Xeero Anumba, Acito, Sessa iii

Acknowledgements
 We owe significant thanks to a myriad of contributors who, without their support, the

completion of this project would not be possible. Thanks to our thesis advisor Brian Moriarty,

who provided us with much invaluable insight with his experience in the video game industry,

and encouraged us throughout the entire development process.

 Thanks to Britt Snyder and Keith Zizza, who served on our thesis committee.

Additionally, Zizza was a valuable resource regarding audio development; we are especially

thankful for him loaning Dan Acito some of the hardware he needed for creating the music, as

well as providing guidance throughout the entire music developing process.

 Our friends Caitlin Malone and Dan Manzo helped us design and implement a testing

protocol which we were able to use to gain much-needed user feedback. These tests were

extremely helpful and could not have been accomplished as easily without their assistance.

Caitlin went on further to assist us in writing a business plan that our team plans to expand on in

the near future.

 We’d like to extend our thanks to the WPI IMGD community. Our fellow students took

time to test our game, and provided us much encouragement. Their excitement to see us succeed

was a driving factor for us.

 A special thanks to Emily Hensley, who is a constant source of inspiration and whose

faith and encouragement spurred Eric Anumba on through the course of the project.

 Finally, thanks to friends and family. At no time were we ever short of support, and we

are very appreciative of all of you.

Xeero Anumba, Acito, Sessa iv

Table of Contents

Abstract... ii

Acknowledgements .. iii

Table of Contents ... iv

1. Introduction ... 1

2. Background ... 2

2.1. Concept ... 2

2.2. Experience Goal and Audience .. 4

2.3. Concept Origin ... 6

2.3.1. Origin at UK and Entering WPI ... 6

2.3.2. Forming the Team - Dan and Audio .. 8

2.3.3. Forming the Team - Anthony and Production .. 9

3. Design ...11

3.1. Game Overview ..11

3.2. Inspirations ...11

3.3. Story ...16

3.3.1. Setting ...16

3.3.2. Characters ...17

3.3.3. Plot ..18

3.4. Level Structure ..19

3.4.1. Overview ..19

3.4.2. Programs ...20

3.4.3. Hubs ..21

3.4.4. Breakdown of Hub 1 ..22

3.4.5. Boss Fights ..23

3.4.6. Boss Fight 1 - Beta Virus - Debris Construct ..24

3.5. Mechanics ..25

3.5.1. Motivations ..25

3.5.2. Running and Jumping ..26

3.5.3. Digitizing and Materializing ..27

3.5.4. Attacking and Defending ..28

3.5.5. Reaper ...30

Xeero Anumba, Acito, Sessa v

3.6. Controls ..33

3.7. Objects ...34

3.7.1. Platforms ...34

3.7.2. Small Platforms ..35

3.7.3. Falling Platforms ..35

3.7.4. Fading Platforms ..35

3.7.5. Walls ..36

3.7.6. Breakpoints ..36

3.7.7. Leap Targets..37

3.7.8. Digitizable Objects ...37

3.7.9. Hazards and Obstacles ..40

3.7.10. Switches ...44

3.7.11. Corrupted Objects ..47

3.7.12. Enemies ...47

3.7.13. Reward Objects ..50

3.8. HUD ..53

3.8.1. Health Bar ..54

3.8.2. Low Health Indicator ..54

3.8.3. Character Portrait ..55

3.8.4. Digitize Slots ..55

3.8.5. Combo Meter ...56

3.8.6. BitBucks Display ..57

3.8.7. Enemy Health Bars ..58

3.9. Level Editor ...58

3.9.1. Motivations ..58

3.9.2. Programmer ...59

3.9.3. Linking ...60

3.9.4. Mockup Objects ...61

3.9.5. Level Sharing ...63

3.10. Tutorials and Help ...63

3.10.1. Tutorial Equations ..64

3.10.2. Info Pages ..66

3.10.3. Revamped Tutorial Tooltips ..67

Xeero Anumba, Acito, Sessa vi

3.10.4. Loading Tips ...68

4. Visual Art ...70

4.1. Introduction ...70

4.2. Style - 3D ..71

4.3. Modeling ...74

4.4. Color Schemes ...74

4.5. Lighting and Shading ..76

4.6. Animation ..77

4.7. Process - 3D ...79

4.7.1. Software Used ...79

4.7.2. Characters and Props ..79

4.7.3. Debris Model..87

4.8. Style - 2D ..87

4.9. Environment..90

4.10. Objects ..92

4.11. Promotional Artwork ..94

5. Audio ...95

5.1. Sound Effects ...95

5.2. Music .. 104

6. Technical Development .. 113

6.1. Framework and Platforms ... 113

6.2. Building the Engine ... 114

6.2.1. WorldObjects ... 114

6.2.2. GameWorlds .. 117

6.2.3. Content Management .. 119

6.2.4. Animation Controllers ... 120

6.2.5. Lua Scripting .. 122

6.2.6. Play Recording .. 122

6.2.7. Level Editor .. 123

7. Project Management .. 125

7.1. Production .. 125

7.2. Scheduling/Team Meetings ... 125

7.2.1. Team ... 125

Xeero Anumba, Acito, Sessa vii

7.2.2. Prep ... 126

7.2.3. Advisor... 126

7.3. Festivals ... 126

7.4. Playtesting .. 127

7.5. Trailers .. 127

8. Postmortem ... 129

8.1. What Went Right ... 129

8.1.1. Eric Anumba .. 129

8.1.2. Dan Acito ... 130

8.1.3. Anthony Sessa ... 130

8.2. What Went Wrong... 131

8.2.1. Eric Anumba .. 131

8.2.2. Dan Acito ... 131

8.2.3. Anthony Sessa ... 132

8.3. What we would do differently .. 133

8.3.1. Eric Anumba .. 133

8.3.2. Dan Acito ... 133

8.3.3. Anthony Sessa ... 134

9. Conclusion ... 135

Works Cited .. 136

Appendix A: Initial Game Metrics .. 139

D Unit .. 139

Maps ... 139

Node Positioning ... 139

Movement Metrics ... 140

Map Coordinates ... 140

Appendix B: Xeero Promotional Poster .. 141

Appendix C: Sound List .. 142

Appendix D: Sample Gantt Chart .. 145

Appendix E: Sample Meeting Minutes .. 146

Appendix F: Festival Schedule ... 147

Appendix G: Xeero Test Protocol #1 – Post-Play Survey .. 148

Appendix H: Xeero Test Protocol #2 – Overview .. 150

Xeero Anumba, Acito, Sessa viii

Testing summary .. 150

Protocol Details ... 150

Appendix I: Xeero Test Protocol #2 – In-Game Survey ... 153

Tutorial (Program 1-1) ... 153

First Breakpoint ... 153

First Long Jump ... 153

Split Path ... 153

Digitizing the Block .. 154

Double Wide Gap .. 154

Facing Malware ... 154

Dodging Turrets ... 155

Program 1-2 .. 155

Second Gate ... 155

Falling Platforms .. 156

Block Countering ... 156

Falling Platform Fight ... 156

Blocking at the Gate .. 157

Linked Hit Switches ... 157

Final Puzzle ... 157

Extra Notes/Observations .. 158

Appendix J: Xeero Test Protocol #2 – Post-Play Questionnaire ... 159

Xeero Anumba, Acito, Sessa 1

1. Introduction
This paper will discuss the IMGD Master’s Project Xeero, a 3D action-puzzle-

platforming game developed for PC. The team consists of Eric Anumba, Daniel Acito, and

Anthony Sessa. Eric acted as the technical developer, designer, and visual artist. He produced the

game binaries, designed the mechanics and levels, and created the 2D and 3D art assets. Dan was

in charge of audio development; he designed the sound effects to be utilized throughout

gameplay, as well as the music. Anthony acted as the team’s producer; he designed production

plans and schedules to ensure that team was making adequate progress every week.

Our motivation for this project was to design and implement a game that would be

marketable; it is our intention to continue development after the completion of this project, and

have Xeero commercially published.

Xeero will be released in stages, so that additional content may be distributed to players

over time. Releases will be episodic; our initial release will contain only a few levels, but each

successive installment will add more levels, mechanics, and story beats. Between updates,

players will have access to a level editor that allow them to create and share levels using the

mechanics that have already been released.

Over the course of the project, the team has been exhibiting and testing the game. Xeero

has been demoed at PAX East and other local exhibitions, and has been playtested by dozens of

students and players.

Xeero Anumba, Acito, Sessa 2

2. Background

2.1. Concept

"Is your computer running slowly? Suffering from data corruption and software glitches?

Your machine may already be infected by The Alpha Virus! Before you throw your computer

away, try Xeero! This program will run, jump, and Digitize its way through your system,

stomping out malware and bugs! Be a hero, buy Xeero!"

The game is centered on the titular character, Xeero, an anti-virus program navigating a

computer system devastated by the Alpha Virus, fighting and defeating malware and (literally)

stomping bugs.

Figure 1: The world of Xeero

The world Xeero inhabits is treated as a single, infected computer, composed of several

separate infected “programs,” represented by the levels the player experiences. Each program

contains at least one bug for the player to find and eliminate. Doing so fixes “corruption” in other

Xeero Anumba, Acito, Sessa 3

parts of the system, allowing Xeero to progress to later levels. However, to find the bug, Xeero

must navigate through the waves of malware infecting the programs and the hazards of the

system’s security (e.g. firewalls and gates).

Xeero has one essential skill: the ability to

digitize certain components of the world, giving

him new functionality and abilities. He can digitize

blocks to allow him to reach high or far away areas,

bombs to destroy obstacles, and upgrade chips to

give him new capabilities.

One of the first abilities Xeero acquires is the

control over Reaper, a telekinetic blade. This tool allows

him to destroy malware and free their corrupted data. The

player is given offensive and defensive abilities with

Reaper (like a basic attack and the ability to block), and lets

the player engage in combat with the enemies that appear

in the game.

Figure 2: Xeero digitizing an object

Figure 3: Xeero attacking with Reaper

Xeero Anumba, Acito, Sessa 4

2.2. Experience Goal and Audience

The game was designed to be played by established fans of 3D action games and

platformers, such as those available for popular consoles like the Microsoft Xbox and Sony

PlayStation. Action and platform games focus on the player having quick reflexes and the ability

to perform controller moves with high precision. These players derive satisfaction from

completing challenging levels and honing their skills. Thus, the game seeks to evoke satisfaction

from the player, while also offering tough but forgiving gameplay.

The game seeks to evoke a sense of satisfaction in the player with themselves, by doing

or witnessing a moment in gameplay that makes them feel like they have impressively mastered

the rules of the world. To that end, the Xeero is focused on having the user experience two types

of “moments” when playing the game.

Figure 4: Xeero acquiring a new ability

Unlocking an exciting new ability. The player is given “upgrade chips” over the course

of the game, each giving the player a new ability. At the moment of acquisition, a burst of light

and energy (see the figure above), emits from the player, to reward the player for their gain.

Xeero Anumba, Acito, Sessa 5

Additionally, the new ability should be exciting and interesting to use, and at first use, the player

should feel immediate satisfaction.

Figure 5: Combat in Xeero, aided by compressors

 Combined interaction of game mechanics. The player is given tools over the course of

the game and sees a variety of objects, each with their own effects or dangers. In certain

moments, several different mechanics should interplay in a way that works to the player’s

advantage (either by helping them swiftly and deftly win a fight or clear a puzzle), and the player

should feel a sense of satisfaction when the gameplay just “clicks.”

 In the other moments of gameplay, the player should be constantly engaged and

challenged. Each puzzle or encounter of the game should be challenging for the player to

complete, requiring heightened reflexes and the player to exercise practiced mechanics, but also

should be flexible in allowing the player to fail early and often. The player is allowed to “die” in

the game, either by falling off of the map into the program-wide firewall below, or by running

out of health by getting hit by enemies. On death, the game should quickly reset and drop the

player off right where they failed so they may attempt the section of level again. Failing at a

Xeero Anumba, Acito, Sessa 6

puzzle should be of little consequence to the

player, and they should be allowed to

quickly try again until they execute the

section correctly. Thus, the game should

offer ample checkpoints and very quick

respawn animations.

2.3. Concept Origin

2.3.1. Origin at UK and
Entering WPI

 Eric originally created the design of the game as a class project in his undergraduate

computer science program at the University of Kentucky. At the time, in second half of his

senior year, he attended the program’s first game programming course, and began crafting Xeero,

then called “Debugger,” as the final project for the course.

 The course was focused on using the Microsoft XNA Framework, a platform with which

Eric was familiar. Since his freshman year, he had been working with the framework to develop

games in his spare time. By building a series of games as side projects, he sought to familiarize

himself with as much of the game development process as he could. He studied game

programming, focusing on C# and XNA, covering graphics, physics, multi-threading, database,

and network programming. He leveraged his interest in drawing and character creation to start

learning how to create and animate 3D models using Blender, a free 3D asset creation program,

and to draw digitally with Adobe Photoshop and Illustrator.

Figure 6: The program-wide firewall threatening to destroy Xeero

Xeero Anumba, Acito, Sessa 7

 Eric had built a series of other

games over the course of his

undergraduate studies. His first large

project, an ambitious online, multiplayer

collectible card game, allowed him to

study networking and database

programming and learn the foundations

of using Blender and Photoshop to create assets. He tried his hand at building a game engine

from the ground up using OpenGL, and he worked with a team of other students to develop an

arcade-style game, “Boom! Zap! Pow!” for the Microsoft Kinect for Windows (pictured below).

 By his senior year, having built a

handful of other games, Eric wanted to

build a larger project that he could refine

and improve. He created the concept for the

character and outlined the gameplay he’d

like to implement. By the end of the class,

he had produced a prototype for Xeero, with

a few working levels.

Figure 7: "Second Advent," an online collectible card game

Figure 8: "Boom! Zap! Pow!" a game for the Microsoft Kinect

Xeero Anumba, Acito, Sessa 8

Figure 9: An early prototype of Xeero

 After graduating, Eric continued to work on the project, refining what was already

present and adding new features. The prototype created for UK covered the core platforming and

digitizing mechanics, but Eric wanted to add combat, more digitizable objects, and more puzzles.

He continued working on Xeero as a hobby as he started the graduate program Worcester

Polytechnic Institute’s Interactive Media and Game Development program.

 Early in the program, he demoed the game to Professor Brian Moriarty, who encouraged

Eric to pursue it as his Master’s Project. He advised Eric to continue refining the game, to seek

attention at conventions, and to pursue commercial distribution.

2.3.2. Forming the Team - Dan and Audio

 When Dan and Eric met, they were both attending a training seminar for incoming

teaching assistants for WPI. Both of them were new to the Worcester area, and didn’t really

know anyone. They quickly bonded as they were the only two students who would be working

for the IMGD department.

Xeero Anumba, Acito, Sessa 9

A few months into our first semester, Eric pulled Dan aside and demoed Xeero to him.

One thing that stood out in this current version of the game was an obvious lack of audio. There

were no sound effects, no audio feedback, and no music. The game looked and played well, but

needed a soundtrack. That was when Dan made a case for himself to join Eric’s project.

 Having grown up a trombone player, Dan always was interested in music. Throughout

high school he had much experience in playing and performing music, but he had zero

experience in writing it. During his undergraduate studies at RIT, he enrolled in a lot of music

theory courses and took up creating digital music as a hobby. At the same time, he also took up

an interest in game audio. He enrolled in classes that focused on recording sounds, and

manipulating them using digital audio workstations (DAWs). Despite the experience of creating

sound effects and music, there were few opportunities to actually use them in a game.

 Xeero was the perfect opportunity to finally put the skills Dan had learned to the test. At

the same time, it would be a chance to gain experience designing for one game specifically,

instead of just generically. Eric agreed that he could use the assistance with the audio, so Dan

became a member of the team.

2.3.3. Forming the Team - Anthony and Production

Anthony was always willing and ready to jump into a leadership role whenever possible.

About a year into development, Eric and Dan were introduced to Anthony through Professor

Moriarty after one of his spring classes. Anthony was returning to WPI for the IMGD graduate

program working on the management track. Anthony, having been afforded the opportunity to

take on leadership roles in multiple projects beforehand, had served as the producer on his MQP,

Demon Dissension, with Nick Konstantino, Brian Seney, and Mike Metzler the previous year.

Xeero Anumba, Acito, Sessa 10

 Professor Moriarty informed Anthony that Eric and Dan were in need of a producer for

Xeero since the project was beginning to ramp up into a full-fledged project. At the time,

Anthony was still looking for a project to work on for his graduate degree and Xeero presented

the perfect opportunity to work on a project that had the potential to turn into something special.

Xeero not only provided another opportunity to gain experience as a producer, but the

potential to add a high quality portfolio piece to Anthony’s resume. Upon agreeing to join the

team, Anthony was granted access to the repository and he took time over the summer to begin

planning out the development path the project would take.

Xeero Anumba, Acito, Sessa 11

3. Design
Eric was responsible for the concept and gameplay of Xeero. The following section

describes the concept, story, and mechanics for the game finalized by the writing of this

document. The section will describe some of the “game objects” implemented for Xeero as well

as the design decisions and motivations for specific objects.

3.1. Game Overview

 Xeero is a 3D, third-person action-puzzle-platformer, in which the player controls an

avatar, Xeero, to progress through levels. The player has a small set of actions the player can

perform: running, jumping, attacking, dodging, and they must use all of these actions to solve

puzzles, reach platforms, and defeat enemies.

 The game is designed for Windows, with gamepad support. Through the underlying

architecture of the game, it can be easily ported to the Xbox 360, and releases for Linux, Mac,

PlayStation 4, and the Xbox One are possible with relatively few changes to the codebase.

3.2. Inspirations

 Xeero draws from different genres (action, platformers, and puzzle) and draws specific

inspirations from games within each genre. The game seeks to distill the essence from each genre

and unite their mechanics in such a way that a single mechanic doesn’t apply to just a single

section of Xeero, but uses its properties to apply it to the entirety of the game’s action-puzzle-

platforming spectrum.

Xeero Anumba, Acito, Sessa 12

Figure 10: Combat from Darksiders (Yablonski) and Dust: An Elysian Tail (Chambers)

 The game drew inspiration from action games, like Microsoft Studio’s Dust: An Elysian

Tail, Nordic Games’ Darksiders, Nintendo’s Bayonetta, and Sony’s God of War. These 3D

games offer fast, reflex-heavy combat encounters. They usually pit a single character, controlled

by the player, against multiple enemies of varying types. Different enemies require different

strategies; many encounters can require multiple attempts before the player is able to complete

them, or new enemies may require the player to change their strategy.

The examples mentioned are exclusively in third-person perspective, lending to flashy,

vicious combat animations, which can be satisfying to a player to achieve with a few button

presses. These games focus heavily on “combos,” where the player can chain different types of

attacks together by pressing different buttons in different order or by holding certain buttons

during the attack animations. Some games, like those mentioned above, also offer minimal

platforming, usually giving the player a basic jumping or climbing controls, and allow the player

to perform simple platforming tasks to break up successive combat encounters.

Xeero Anumba, Acito, Sessa 13

Figure 11: Combat from Kingdom Hearts II (venomblade891)

In a similar vein, Kingdom Hearts series, published by Square Enix, heavily influenced

the design of combat. This game combines the combat of action games with the character

progression of role-playing games. This game also demonstrates one of the “moments” of

gameplay Xeero attempts to encapsulate: unlocking exciting new abilities. In games of this

series, initially the player is presented with a character with a very minimal action set. As the

player progresses in these games, they are given new abilities as their character “levels up.”

These abilities are designed to make combat experiences easier, either by giving the player more

offensive options (through new kinds of physical attacks or special attacks/spells) or giving the

player more options when on the defensive (through unlocking an ability that lets the player

block, dodge, or escape enemy “combos”). Late in the game, the player is presented with the

“flashy and vicious” combat animations that action games usually give players immediately; by

having the player work to “earn” these abilities through leveling up and fighting several

Xeero Anumba, Acito, Sessa 14

encounters, it is satisfying for the player when they receive a new, flashy ability that makes

combat easier.

Figure 12: Blocking and countering in Bastion (C.)

 Additionally, Warner Bros. Interactive Entertainment’s Bastion provided inspiration for

combat. In Bastion, the player has access to a variety of equipment, which perform different

actions on button presses, and the player is allowed to swap them out. The game allows the

player to play offensively or defensively, for example, the player can block attacks at the right

time to counter the attack, damaging the attacker. Thus, in any combat encounter, the player has

several options for how they choose to dispatch enemies, and the player is allowed to explore

different play styles to find what is most satisfying for them.

 The game also drew inspiration from puzzle games like Valve Corporation’s Portal on

how to construct interesting puzzles and how to teach players to play the game while the player

is playing the game. The Portal series, a first-person puzzle solving game with no combat, has a

Xeero Anumba, Acito, Sessa 15

very minimal set of actions the player can perform (the controls of the game essentially contain

three buttons), but the game incrementally adds new objects in the world on which the player can

use their actions, and each object adds a new level of complexity to the mechanics to which the

player already has access. Each puzzle of the game is itself a tutorial for future puzzles in the

game, and the game is steadily able to introduce higher complexity to the player.

Figure 13: An example of the complexity of puzzles in Portal (Valve Corporation)

In these games simple objects have a variety of uses, and this game typifies the other

“moment” of gameplay Xeero attempts to create: the interplay of game mechanics. The player

can solve a complex puzzle consisting of several parts by using their limited actions and

leveraging the behaviors of various objects in the world.

Puzzle games like Portal and action games like Darksiders have vastly different

mechanics, gameplay, and target audience. So, the design of Xeero drew inspiration from games

like Nobilis’ Trine for combining different types of play experience. Games in the Trine series

are action-puzzle-platformers, in which the player has control over three different characters,

each character typifying one of those genres (i.e. there is a character designed for combat, one

for solving puzzles, and one for platforming). The player is able to switch between the characters

Xeero Anumba, Acito, Sessa 16

at will for whichever task is required of them. Then, short sections of each level are designed to

either be devoted to one type of action or another or require a combination of characters.

Additionally, characters are not solely devoted to one style of play (e.g. the puzzle

solving and platforming characters can also be used in combat, and the platforming and combat

characters can also solve puzzles). In much the same way, Xeero seeks to unite different, and

sometimes contradictory, aspects into a cohesive whole.

3.3. Story

The development of the story for Xeero occurred late in the project; the main character,

world, and visual style had already been developed before the story was considered. Gameplay

and visual style had been given precedence in development, and the purpose of the game was to

deliver a gameplay-driven experience to the player. Despite this, story for this game was

considered an essential component to providing a full experience for the player. Thus, a story

was constructed to fit within the visual themes presented and to give context to the environment.

The following sections will describe the setting, characters, and plot for the game.

3.3.1. Setting

Figure 14: Overlook of a sample level in Xeero

Xeero Anumba, Acito, Sessa 17

Xeero takes in a single, infected computer, ostensibly the computer of the player playing

the game. The world of Xeero is void-like, a mostly empty space composed of the remnants of a

computer system devastated by the Alpha Virus. The virus worms its way through programs,

leaving behind bugs that corrupt data in the system and malware that impede attempts to

eliminate bugs.

The protagonist, Xeero, navigates through “hubs” in the game, subsections of the system

off of which programs branch. By repairing the bugs in each program, Xeero can fix the

corruption in hubs, and slowly work to repair the entire system.

3.3.2. Characters

Xeero
Xeero, the protagonist of the game, is the

character controlled by the player. Xeero is an anti-virus

program, a program created specifically to seek out and

destroy the Alpha Virus.

Xeero is determined and driven to find the virus

(as dictated by his programming) and is silent (as he has

no mouth). However, the program isn’t immune to

distraction and is far from stoic.

He is outfitted in a red hood and a goggle-like

terminal, through which he can emote with commonly

used text emoticons. His right arm is a gauntlet, the tool

that allows him to digitize aspects of the world around him, and his boots allow him the mobility

to run and jump through cyberspace.

Figure 15: The titular character

Xeero Anumba, Acito, Sessa 18

Xeero himself is an invader in the system he defends, injected externally by the player,

and must defend himself against both malware and the system’s security.

(Currently Unnamed Program)

 This program is a companion program to Xeero, one also designed to hunt and destroy

the Alpha Virus. Equipped with similar hood, boots, and gauntlet, and wielding the same

digitizing ability as Xeero, she shares his drive for the mission for which they were designed.

 Dead set on her mission, she is unafraid to make her own path, separate from Xeero, to

hunt their prey. Xeero, however, prone to distraction and hopelessly smitten, makes finding her

just as important to his mission as finding the Alpha Virus.

The Alpha Virus

 This program is the driving force behind the events of the game. A virus of unknown

origin, this creature infects systems, wreaking havoc and destroying data.

A hulking, massive creature, the virus emits corruption. The virus has the ability to

corrupt anything it touches, leaving behind bugs in programs. It can replicate and mutate,

creating hordes of different malware to thrash the system.

To the player, it is the reason their computer has been razed. To the anti-virus programs,

it is their (mostly) singular reason for existing.

3.3.3. Plot

 The plot of Xeero will be broken into segments, each segment will be delivered as part of

the content distributed in one “episode” of the game. The story encompassed by the first

segment, the segment this project is designed to create, introduces the player to the main actors

in the story, and establishes the Alpha Virus as a threat.

Xeero Anumba, Acito, Sessa 19

At the beginning of the story, once the player starts the game, the Alpha Virus can be

seen “downloading” itself into the player’s computer, corrupting and distorting the player’s

display. The player must then run “Xeero.exe,” ostensibly an anti-virus program, to eliminate the

Alpha Virus.

This leads the player into the world of Xeero. They follow the freshly-compiled

protagonist as he drops into the infected system. With barely enough time to get his bearings, he

is immediately confronted by the Alpha Virus. The massive creature crosses Xeero’s path, but

the anti-virus program is so insignificant to the beast, Xeero doesn’t even catch its attention.

Before long, the creature departs, off to spread corruption and mayhem, leaving Xeero alone to

ponder his chances against the behemoth.

Not long after, Xeero witnesses his companion program chasing after the beast, oblivious

to Xeero, intent on fulfilling her mission. Xeero is instantly smitten and resolves to find the

Alpha Virus, if that means that he can find the girl. Here, the player starts the game, entering the

tutorial, and joining the world of Xeero.

3.4. Level Structure

 The following describes the different types of levels in Xeero and their intended purpose.

This section will briefly describe some of the levels implemented for this master project.

3.4.1. Overview

The settings of Xeero are treated as an interconnected world for the player to navigate.

The entire world of the game is a single computer system, composed of the infected programs

the player can fix. The world is divided into “hubs” that connect the individual levels the player

must navigate.

Xeero Anumba, Acito, Sessa 20

3.4.2. Programs

 “Programs,” or levels, make up the

bulk of playing time for the player. Within

each program, there is a “bug” the player

must reach. The bug is always located at the

end of the level, and the player must

sequentially move through all of the obstacles

of the level to reach the bug.

Each level is designed to take 30-40 minutes to complete the first time the player

attempts it, and is designed to be played all at once: while the player is allowed to “die”

anywhere in the level to be returned to where they

last failed, if the player completely exits the game,

when they resume, they will need to start the level

from the beginning again.

Each level in the game must be completed

once to make larger progress in the game, but the

player always has access to the programs and can

play any level as many times as they want.

Each level contains currency (which

regenerates each time the level starts) that the player can acquire to upgrade their character.

Some levels contain special rewards for the player (like an upgrade or a container with a large

sum of money) that the player can only collect once (i.e. after they have been collected for the

first time, they stop appearing in the level). These special rewards may take more effort for the

Figure 16: A "bug" in a program

Figure 17: A pillar of light denotes the location
of the bug

Xeero Anumba, Acito, Sessa 21

player to collect or may require an ability the player has yet to gain. For these, the player may

want to revisit previously cleared programs to collect these rewards.

Once the player reaches the end of

the level and stomps out the bug, they are

transported back to the hub level to which

the program is connected.

3.4.3. Hubs

 Hubs act as branching points for

levels in Xeero. The entire experience of the game is broken into installments, and each

installment has its own singular hub and levels connected to that hub. From any hub, the player

can travel to programs in that hub or to adjacent hubs. Typically, the programs within each hub

are blocked and can only be unblocked when the player destroys bugs in previous programs.

Thus, each level of a hub unlocks a later level, leading finally to the last level of the hub, a boss

fight.

 Hubs, the levels within them, and the boss fight, are designed around a theme, allowing

the visual layout of hubs to vary significantly from installment to installment. Each hub is also

focused on introducing new digitizable objects and allowing the player to discover the various

uses the object provides.

 Hubs act as an area of both respite and challenge for the player. Hubs are free of combat

encounters, and the player is able to travel to sections of the hub unimpeded by most hazards.

Additionally, in every hub there is a station for the player to purchase upgrades and improve

their character. However, platforming or puzzle-solving is required to reach new programs

Figure 18: Money scattered around a level

Xeero Anumba, Acito, Sessa 22

within the hub. Further, hubs usually contain multiple special items for the player to collect (like

one-time containers of money) that require significant effort to reach.

3.4.4. Breakdown of Hub 1

Figure 19: The first hub. "1-1," "1-2," etc. denote levels

Hub 1, the hub developed for this project, is based around the theme “debris.” The hub is

composed of dozens of broken islands floating in space, with a swirling cloud of debris rushing

past the player. The ultimate goal for the player is to reach the center of the hub, toward the giant

portal leading to the boss fight.

There are eight levels in this hub (each 30-40 minutes long). Each level in the hub

unlocks levels of subsequent numbering in the diagram (Program 1-1 unlocks 1-2, and so on).

Xeero Anumba, Acito, Sessa 23

However, even after the levels have been unlocked, the player has to discover how to reach the

portal to each level. Once all of the programs have been beaten, the large portal in the center,

marked “Boss,” will active, allowing the player to fight the boss of the hub. At any time, the

player can reach the station, marked VM, to purchase upgrades for their character (see section

“Objects - Vending Machines”).

Additionally, there are special rewards, marked T1 through T4, that the player can reach

through challenging platforming (see section “Objects - Big Archives”). These give large

amounts of money the player can use at the vending machine for upgrades.

3.4.5. Boss Fights

 Boss fights act as the climax for each installment and are the final level the player plays

in any hub. These are designed to allow the player to use the mechanics, abilities, and objects the

player gained over the course of the hub in a combat situation. Each boss fight is related to the

theme of the hub.

 Each boss fight level also serves as a connection between hubs; after the player defeats

the boss, they can travel through the level to reach the next or previous hub.

Xeero Anumba, Acito, Sessa 24

3.4.6. Boss Fight 1 - Beta Virus - Debris Construct

Figure 20: A mockup of the first boss in Xeero

The boss fight developed for this project, for the first installment of Xeero, was the

construct boss, composed of scattered debris given life by the Alpha Virus. This boss is designed

to test the basic combat maneuvers of the player, running, jumping, dodging, blocking, basic

attacks, and leaping (see section “Mechanics - Attacking and Defending”). The boss also lets

the player use their ability to digitize blocks and use properties of the object to defeat the boss

(see section “Digitizable Objects - Block”).

The player must use their dodging and jumping abilities to dodge the simple swipes of

the boss’s claws, and can use their ability to block attacks to deflect ranged attacks emitted by

the boss. The boss incorporates a block object, lodged in its chest. The player can attack the

block, dislodging it, allowing the player to digitize it. The player can then use the block to

interrupt the boss’s attacks (by forcing the boss to hit the block) to stun the boss enough to allow

the player to damage it, eventually defeating the creature.

Xeero Anumba, Acito, Sessa 25

All levels in the game, whether they are programs, hubs, or boss fights, are designed to be

modular. Very few large set pieces were developed for the game. Instead, the world geometry,

puzzles and hazards are composed of smaller, modular pieces, each piece both altering the visual

appearance and also the gameplay of the level. This allows for more rapid level mockups and

development, and also allows more control and ease of use for players when the level editor is

packaged and released with the game.

3.5. Mechanics

 This section describes the how the game world is manipulated by the player, and

describes the motivation for incorporating each mechanic.

3.5.1. Motivations

 In many platforming games, and one of the games inspiring this project, Portal, the

player is given a very small set of actions they can perform integral to type of gameplay (in some

platformers, solely running and jumping, and in Portal, opening two types of portals and picking

up objects). These games take their minimal set of actions and iterate, finding new, unique, and

interesting ways the mechanic can be applied. In platformers, the player can have a variety of

acrobatics based solely on jumping (wall jumping, climbing over ledges, stomping on enemies).

 In Xeero, a game focused on blending different genres of games, takes a similar

approach. It applies a single (or related pair) of action for each “slice” of gameplay (combat,

platforming, puzzle solving), and attempts to find interesting ways each mechanic can be used

and reused over the different play styles incorporated into the game.

Xeero Anumba, Acito, Sessa 26

 In the game, for each “slice,” there is a pair of associated actions: running and jumping

(platforming), digitizing and materializing (puzzle-solving), and attacking and defending

(combat).

3.5.2. Running and Jumping

Figure 21: Xeero performing a wall jump

Running and jumping is a staple to many games. In platformer games, the focus of the

game is executing properly-timed jumps or maneuvers requiring precise control of the character.

In these types, jumping is reapplied in wall jumping or double jumping. These mechanics are

essential in Xeero, with much of the challenge of navigating around the world consisting of

properly timed or precisely executed jumps, double jumps, or wall jumps. Running/jumping can

also be used to solve puzzles, or to give the player advantages in combat.

In the game, some switches act as pressure plates, and can only be activated by the player

standing on them. In combat, enemies can be stunned if the player jumps on their heads,

interrupting their actions and giving the player a moment to strike.

Xeero Anumba, Acito, Sessa 27

3.5.3. Digitizing and Materializing

Figure 22: Xeero digitizing a block to create a platform for himself

 Digitizing is the foundational affordance of Xeero, the ability through which nearly every

other one of his abilities is acquired. He can digitize certain components of the world and store

them in his gauntlet. Some objects he can reuse to help him navigate the world, while others give

him new abilities.

 The first type of object the player can digitize in the game are upgrade chips (see section:

Digitizable Objects - Upgrade Chips). These are one-time objects; once they are digitized, they

are permanently stored in Xeero’s gauntlet. These give the player new abilities.

 More commonly, the player can digitize various objects located around the world. These

digitizable objects can be stored in the gauntlet and materialized back into the world when the

player needs them. Each object has different effects, and the player can store up to two different

objects in their gauntlet simultaneously. The player can digitize block objects to help the player

Xeero Anumba, Acito, Sessa 28

reach cover long gaps or reach high platforms. They can also digitize bombs to destroy obstacles

blocking the player’s path.

Reusable objects like blocks

and bombs can also be used in

combat. Blocks, which help Xeero

cross gaps, can also be used as blunt

instruments. Xeero can materialize

blocks into the world above

enemies, and slam them down to

quickly dispatch a large group of

enemies. Bombs can be hurled into

enemies, causing them to instantly

detonate.

3.5.4. Attacking and
Defending

 In the design of combat, focus was given to “depth and intention.” Mike Birkhead, senior

game designer for some of the God of War games, argues that successful action games focus on

depth, rather than breadth. At any “state” for the player character, there are a relatively few

number of moves they can perform, but each move leads to a state that allows another few moves

to be executed, leading deeper and deeper until the character is able to perform a string of moves

in succession. In action games, the focus is on the “combo,” and allowing the player to string

together long chains of moves in impressive fashion, evoking a sense of satisfaction in the player

(see Experience Goals and Audience).

Figure 23: Using a block in combat to crush an enemy

Xeero Anumba, Acito, Sessa 29

 Almost in contradiction, Birkhead also makes the arguments for breadth of intention in

action games. He argues that players have goals and intentions when playing action games; the

goal is usually simple: “I want to defeat my opponent.” Intention is the question of how.

Intention can be the strategy the player intends to employ: like using dodges and quick

movements to flank enemies, committing to big, slow, devastating attacks to quickly clear out

enemies, moving quickly and committing only to quick, light attacks. Birkhead argues that

successful action games give the player a variety of viable intentions, allowing the player to play

the game in the most satisfying way.

 Birkhead also argues the value of constraints, or restricting the viable set of intentions to

which the player has access based on the environment or enemies the player is facing. By

introducing new environments or enemies that favor one type of intention over another, the

designer can keep the player engaged by encouraging them to mix strategies, creating more

interesting strings of attacks.

 These philosophies were considered in the design of combat in Xeero. The game sought a

relatively few number of commands dedicated to combat, but, combined with mechanics for

platforming and puzzle-solving, it allowed for a breadth of intention from the player on how they

chose to dispatch the malware before them. Additionally, at nearly any moment or “state” of the

character, the player has access to most of their arsenal, allowing them to string together series of

actions.

Xeero Anumba, Acito, Sessa 30

3.5.5. Reaper

Near the beginning of the game, the player gains Reaper, a

telekinetic blade. This weapon follows the player for the remainder

of the game, and grants Xeero many of his offensive and defensive

abilities.

Offensive Abilities

Figure 25: Xeero fighting a group of viruses

 The player has access to two attacks, a primary and secondary, but each attack can be

altered to create a larger range of options.

The primary attack is a basic attack, which is a combo of three swings the player can

execute. This deals a moderate amount of damage, has a short range, and is the most common

method of dispatching enemies.

Figure 24: Reaper, attached to
Xeero's back

Xeero Anumba, Acito, Sessa 31

The player also has access to a secondary attack, a “telekinetic leap,” through which the

player can quickly leap to enemies, closing the gap between them and allowing the player to hit

the enemies with their basic attacks.

The player can also use both the

primary and secondary attack controls to apply

different types of attacks. By holding the

primary attack button, the player can use a

“block-breaking” attack, a heavy attack that

deals more damage and can stop enemies from

blocking other attacks from the player.

However, performing this attack ends their

combo, restricting the number of actions the

player can perform immediately after using the

attack.

Similarly, by holding the secondary attack button, the player can perform a “knockback”

attack, that deals little damage, but knocks enemies backward a far distance. This can be used to

break up large clumped groups, give the player space to recover, or knock enemies off of ledges.

These attacks can be further altered through upgrades the player can acquire. Through

upgrades, the player can acquire new attacks, but these attacks do not change the mechanism

through which the player performs the attacks. Instead, the attacks are situational and are

activated when appropriate. For example, the player can gain an attack that works as the final

strike in their three-hit basic combo. This attack deals higher damage, but only to one enemy,

while their default attack can hit multiple. If the player is faced with a single enemy, when the

Figure 26: Breaking the block of an enemy

Xeero Anumba, Acito, Sessa 32

player reaches the last strike of the combo, the game will observe the number of enemies around

and choose the most appropriate attack. Most of the attacks described (basic attacks, block

breakers, knockbacks) can be altered in this way by acquiring upgrades.

Attacks were designed to be modified this way to keep the number of controls the player

needed to learn low (allowing the game to reuse a mechanic in different ways) while providing a

variety of flashy, satisfying moves.

Offensive abilities, like others in Xeero, can also be used outside of combat. The basic

attack can be used to trigger switches necessary to solve puzzles. The telekinetic leap can be

used to quickly close the gap between enemies or objects, so the player can use them to quickly

hit timed switches. The player can also use the leap to cover large gaps the player couldn’t

otherwise cross.

Defensive Abilities
 Reaper also allows the player to block

attacks. While blocking, all damage the player

takes is dramatically reduced. However, the player

is only able to block attacks from the front. The

player can use the block to mitigate a barrage of

damage coming at them, or if they are willing to

take a risk, they can use block to deal damage to

enemies. By initiating a block at the right moment

before an attack hits, the player is able to counter

the attack, reflecting projectiles and stunning attackers while dealing damage.

Figure 27: Blocking with Reaper

Xeero Anumba, Acito, Sessa 33

 Additionally, the player can dodge. Dodging quickly moves the player in one direction

and makes them temporarily immune from taking damage. The player can dodge incoming

strikes, quickly engage or disengage from a group, or quickly move to flank an enemy.

Combat and Intentions
 Through the dedicated attack actions, platforming mechanics, and puzzle-solving tools,

the player has access a breadth of “intentions” they can have in combat. In combat encounters,

the player can rely solely on the basic attack to aggressively clear out groups of enemies, use

digitizable block objects to smash groups of enemies to quickly eliminate them, or play

defensively, relying on the mobility afforded by dodging and the countering afforded by

blocking to let enemies effectively eliminate themselves.

3.6. Controls
 Breadth of intention was also considered when developing the controls for Xeero.

Emphasis was given on allowing the player to use whatever control scheme they found

comfortable. This manifested itself early in development with bind-able key-mappings for all

controls, controller support for the PC version of the game, and both a left-handed and right-

handed control schemes for the mouse and keyboard.

 Many PC games are exclusively designed for right-handed players. The decision to by

default assign left-handed controls (in addition to right-handed controls) was mostly a personal

one; the designer of the game, Eric, is left-handed.

 Many of the games inspiring Xeero were built for consoles, and the game’s controls are

most similar to third-person action games, so controller support was added for players who are

accustomed to (or prefer) the controls of console action games.

 Additionally, player feedback was vital in crafting the controls used by the game. Often

usability testing revealed conflicts with the designer’s intention for controls and player’s

Xeero Anumba, Acito, Sessa 34

expectations. New user-settable control options and control redesign emerged from player

feedback.

3.7. Objects
 The following section details how the design philosophies described in the Mechanics

section were applied in the design of level elements in the game.

3.7.1. Platforms

Figure 28: A static platform, a basic building block of levels

These are the building blocks of levels, and the primary means for the player to get from

place to place. Xeero can stand, run, and jump from these, and can grab onto their ledges to pull

himself up.

By themselves, they offer little challenge, but when they are spaced properly, or variants

are used, they can introduce challenge for the player.

Xeero Anumba, Acito, Sessa 35

3.7.2. Small Platforms
 These are identical to default platforms but smaller in

size. The player has to more precisely aim their jumps to reach

these platforms.

3.7.3. Falling Platforms
 These broken, corrupted platforms can’t support weight

for very long. Whenever the player (or any

object) touches the platform, it shakes and

falls away. These can be used in platforming

to force the player to keep moving, or

introduced in combat to add “hotspots” the

player and enemies should avoid.

3.7.4. Fading Platforms
 These broken platforms only

function some of the time. They

oscillate in a cycle, from translucent

to opaque. When translucent, objects

fall or “phase” right through them.

When platforming, the player must

time their jumps correctly to avoid

phasing through these.

Figure 29: Small platform

Figure 30: A broken, falling platform

Figure 31: A broken, semi-tangible platform

Xeero Anumba, Acito, Sessa 36

3.7.5. Walls

These are used with one of the variants of the jump mechanic, the wall jump. The player

can leap off of these walls to reach far away or higher

platforms. If the player idles, they will begin to

quickly slide off of the wall and eventually fall off.

Like falling platforms, the player has limited time to

correctly execute a succession of wall jumps. These

walls provide variants like platforms: small, falling,

and fading.

3.7.6. Breakpoints

These act as checkpoints for the player. As long

as the player touches the breakpoint, the state of the

level is automatically saved: the position of every

object, the state of every switch. When the player

“dies,” the level resets, depositing the player back at the

breakpoint, restoring the level to the same state as when

the player touched it.

 These are essential to the “tough but forgiving”

gameplay the design of the game attempts to create (see

Figure 32: A broken wall

Figure 33: An activated breakpoint

Xeero Anumba, Acito, Sessa 37

section Experience Goals and Audience). These are spread liberally throughout the levels to

allow the player to frequently save their state.

3.7.7. Leap Targets

This object is designed to give platforming functionality to

a combat ability (as discussed in the “Motivation” section of

Mechanics). The player can use their telekinetic leap ability to

reach this object from far away. This is useful for climbing large

gaps the player otherwise couldn’t cross. It, like walls, requires

quick reaction and more precise control from the player to execute

successive leaps at these targets.

3.7.8. Digitizable Objects
These are objects that allow the player to frequently use Xeero’s ability to digitize.

Different objects have different effects and purposes, and it is impressed upon the player to

determine how to use the objects with which they are presented to solve puzzles or pass

obstacles.

Figure 34: A tethered leap target

Xeero Anumba, Acito, Sessa 38

Blocks
 Blocks are solid cubes, tough and

sturdy, and not easily moved. The player

can pick up and reuse blocks, which take up

a slot in their gauntlet’s inventory. Despite

their simple nature, blocks have a variety of

uses.

Blocks can be used like platforms.

When in the world, the player can stand on

them and grab onto their edges. The player

can materialize a block in front of Xeero to climb up to reach high platforms. If the player is in

mid-air, the player can materialize a block as an improvised platform, allowing them to cross

large gaps.

The player can also use a block’s sturdy nature to create obstructions. Some objects

prevent the player from progressing: Gates block the player’s path, Slicers can move too quickly

to be dodged, and Compressors crush any object that pass under it, but

Figure 35: A digitizable block

Figure 36: A compressor
ledged in a block

Xeero Anumba, Acito, Sessa 39

the player can wedge a block under them, jamming them, and allowing the player to pass through

unharmed.

The weight and shape of the block can also help the player solve puzzles. Buttons require

the player or another heavy weight to keep them active,

and Block Switches require a block to activate. The

player can slam a block onto those switches, activating

them to solve puzzles.

Blocks also have uses in combat. As with buttons

and block switches, the player can slam blocks onto target

malware, crushing them and eliminating large clusters of

viruses.

Blocks are the focus of the first hub of Xeero, and

are the only digitizable tool of its type implemented for

this project.

Figure 37: Using a block to wedge a gate open

Xeero Anumba, Acito, Sessa 40

Upgrade Chips
These are the primary means for the

player to acquire new abilities. The player can

digitize these into Xeero’s gauntlet,

permanently imbuing him with a new ability.

The abilities granted by chips can vary.

They can allow the player to digitize a new type

of object (like Blocks) or give the player a new

platforming ability (like wall jumping - see

Mechanics - Platforming) or a new combat

ability (like the telekinetic leap - see Mechanics

- Offensive Abilities).

These can be scattered around levels or purchased from Vending Machines. When in a

level, it is treated as a special one-time object; once it has been picked up and integrated, it will

no longer appear in the level.

3.7.9. Hazards and Obstacles

 These objects, usually components of system security, serve to impede Xeero’s progress.

These offer puzzle-solving and platforming challenges for the player.

Figure 38: An upgrade chip

Xeero Anumba, Acito, Sessa 41

Gates

Figure 39: A gate, which can block Xeero's progress

These large gates block Xeero from proceeding until he opens them. Gates can only be

opened by Switches, which may require the completion of a puzzle or platforming segment for

access.

Xeero Anumba, Acito, Sessa 42

Bit Slicers

These guillotine-like slicers rapidly

slice up and down. They serve as a platforming

challenge; the player must time jumps correctly

to avoid getting sliced.

 Slicers can also serve as a puzzle

element. They can slice so quickly, it is

impossible for the player to jump through in

time. In such cases, the player must either

obstruct the slicer with a Block or deactivate it

with Switches.

Additionally, if there are Enemies nearby, the player can lead them through a slicer to

quickly dispatch them.

Motion-Sensing Compressors
These deadly obstacles immediately crush any

object that passes beneath. The player can’t move under it

fast enough to avoid getting crushed, but must find a

Block to obstruct or a Switch to deactivate it.

Figure 41: A motion-sensing
compressor

Figure 40: A bit slicer

Xeero Anumba, Acito, Sessa 43

Corruption Walls

Figure 42: A corruption wall blocking Xeero's progress

These impenetrable obstacles block Xeero’s progress. They knock back any object that

touches it, and reflect all attacks. They usually appear near malware, and the corrupted data must

be freed from malware before these can be disabled.

 In combat, they also reflect the attacks of enemies, allowing the player to use the enemy’s

attacks against them, giving the player another “intention” in combat (see Mechanics -

Attacking and Defending).

Turrets

Turrets automatically target and fire lasers at Xeero. The

player can dodge to avoid their assault. The player can also

attack the turrets to destroy them, and, if they are far enough

away, the player can block and counter their attacks to destroy

them (see Mechanics - Defensive Abilities).
Figure 43: A laser turret

Xeero Anumba, Acito, Sessa 44

Purge Gates

Figure 44: A purge gate purging a block

These gates don’t physically impede Xeero’s progress, but instead “purge” any

digitizable object that touches the surface of the gate, whether they are materialized in the world

or carried by Xeero in his gauntlet. If the player needs to transport a digitizable object from one

area to another, they must either find a new way to reach the area or disable the gate with

Switches.

3.7.10. Switches

Switches act as puzzle elements in the game. These are the “locks” for which the player

must use a “key,” or a specific type of action, to unlock. These can be linked to any receiver in

the game (a receiver being an object like Gates, Slicers, Compressors, etc.) and can be arranged

to challenge the player in many different ways.

Xeero Anumba, Acito, Sessa 45

Hit Switch
These are simple switches, triggered by a swing

of the player’s weapon. A hit switch can be activated as

long as the player can get close to it. They can be placed

behind large gaps, requiring the player to figure out how

to cross the gap in order to reach the switch.

 Hit switches can be linked with each other,

requiring the player to touch every switch in the “circuit”

to activate it. The component switches of a circuit can be

scattered in various locations to increase the challenge.

Timed Hit Switches
These function similarly to Hit Switches, but when linked in a circuit, they can be set to

a timer. Then, once one switch has been hit, the player has a limited amount of time to activate

the remaining switches in the circuit. Hitting one switch in the circuit resets the timer on all of

the timed hit switches. Circuits can be arranged to require the player quickly execute a set of

actions or to use their telekinetic leap (see Mechanics - Offensive Abilities) to reach all of the

switches in time.

Figure 45: An active hit switch

Xeero Anumba, Acito, Sessa 46

Buttons
Buttons are triggered when

Xeero stands on them. They can be

set to either immediately deactivate

when Xeero steps off, or to wait

until a delay timer runs down,

giving the player a limited period

to perform a task before the switch

fails.

 Buttons can also be

activated by placing a Block on them. Doing so eliminates any timed requirements, assuming the

player can find a block to use.

Block Switches

Figure 47: A block switch, waiting for a block

These function similarly to buttons, but can only be activated by placing a Block on it.

They can be deactivated immediately or on a timer.

Figure 46: A button

Xeero Anumba, Acito, Sessa 47

3.7.11. Corrupted Objects

These special hazards are corrupted

versions of other objects the player can use (e.g.

switches or portals). They act like Corruption

Walls, knocking back any object that touches

them, and reflecting all attacks. The player can’t

interact with these objects until their corruption

has been cleared. To do this, the player must enter

the level of the bug that is corrupting the object

and destroy it, freeing the object to be used.

Corrupted objects are used primarily in hub levels, helping to tie individual levels into the

larger puzzle of the hub. Often, to reach the final level (the boss fight) of the hub, the player must

use the objects scattered around the level. These objects may be corrupted, requiring the player

to clear levels to gain their uses. Additionally, other rewards may be scattered around the level

requiring the use of the corrupted object to obtain them.

3.7.12. Enemies
These creatures are malware introduced to the system by the Alpha Virus. Early in the

game, the player is given a weapon they can use to fight the creatures and free their corrupted

data.

Combat encounters occur within levels, usually in large spaces. When the player

approaches certain areas of the level, these enemies materialize and combat begins. In some

cases, the player must defeat all enemies to progress; in others, combat is optional. Combat

Figure 48: A corrupted object spawner

Xeero Anumba, Acito, Sessa 48

encounters, platforming, and puzzle-solving are interspersed throughout each level to give the

player an even mix of each.

Malware in the game can take many forms, but the majority of enemies in the installment

developed for this project are viruses. Viruses are not too difficult to defeat one-on-one, but they

have the ability to replicate themselves, quickly overwhelming the player. Each virus is designed

to encourage the player to discover and exercise different strategies and moves (see Mechanics -

Attacking and Defending).

Figure 49: Variations on the same type of enemy in scale and color scheme

Enemies can vary in difficulty; two enemies of the same type may not have the same

difficulty. Enemies that are more difficult are larger in size, and the color palette used for the

enemy goes from cool colors to warm colors (blue, green, yellow, orange, red).

All enemies drop reward items when they are defeated, representing the “corrupted data”

they are releasing. Most enemies drop Health Data that immediately heal the player and

BitBucks that the player can use to buy upgrades at Vending Machines.

Xeero Anumba, Acito, Sessa 49

Spider Virus
These are small enemies that are fairly easy to defeat

alone, but can replicate frequently. They are susceptible to

most attacks, and the player is free to use any preferred

strategy to dispatch them, though it is advisable to destroy

them quickly.

 Spider viruses are designed to be multi-purpose, with

both long-range and close-range attacks. In a large arena, groups of spiders can be deadly when

targeting the player from far away, but their attacks can be avoided by jumping or dodging, and

all of their attacks can be countered.

Soldier Virus

Figure 51: A soldier virus

These viruses are larger and tougher than their spider counterparts, but replicate less

frequently. They lack a long-range attack, but their close-range attacks have higher damage and a

Figure 50: A spider virus

Xeero Anumba, Acito, Sessa 50

wide range, which makes jumping a less viable avoidance strategy and encourages the player to

use their blocking or dodging ability to mitigate damage. These enemies are also more likely to

block, dodge, or retaliate player attacks.

 The player benefits by putting distance between themselves and these enemies, and by

making liberal use of blocking and dodging.

3.7.13. Reward Objects

 Mid-way through designing and developing Xeero, it became clear that the player needed

more incentives to perform the tasks the game was asking of them. This observation led to the

development of reward objects.

 Two primary reward objects were implemented: Upgrade Chips (discussed previously)

and BitBucks, together with the objects used to facilitate them.

 Most of the rewards are entirely optional for the player. Small rewards are easy to obtain,

while larger rewards require extra challenges for the player to complete.

BitBucks
BitBucks are the currency of Xeero, and the basis of the game’s reward system. They are

dropped by enemies when they are defeated, but can also be scattered around levels for the

player to collect. The location of the currency varies, with low value

money being easily reached, but higher, more valuable denominations

farther away or requiring more finesse or puzzle-solving. BitBucks

are designed to be very frequently picked up, giving a small, but

consistent reward to the player for progressing. They can be used to

Figure 52: A single BitBuck

Xeero Anumba, Acito, Sessa 51

entice the player to move to one area or another or to point them to an important object for them

to focus on.

Health Data
These rewards immediately restore some of the player’s

health. They offer respite to the player between particularly

dangerous encounters in which the player may have taken a large

amount of damage. Health data can be scattered sparsely through

levels, and can also be dropped by defeated enemies.

Archives
Archives contain both BitBucks and Health Data in

small quantities, and are refreshed each time a level begins. The

player can “attack” them to collect the rewards concealed within.

These can be placed in combat

areas to give the player a source for

more health if they run low during

the encounter.

Big Archives
These one-time rewards contain large quantities of Health

Data and BitBucks. They are placed in optional locations that

require substantial effort to reach.

Figure 53: A piece of health
data

Figure 54: An archive,
containing compressed health

data and BitBucks

Figure 55: A big archive,
containing a large amount of

BitBucks and health

Xeero Anumba, Acito, Sessa 52

Vending Machines
Vending Machines allow players to

make use of any BitBucks collected. They

contain Upgrade Chips which the player can

purchase and subsequently digitize. The

upgrades gained through vending machines are

entirely optional, but make some aspects of the

game easier for the player.

Figure 56: An idle vending machine

Xeero Anumba, Acito, Sessa 53

Figure 57: Xeero feeding money into the vending machine

3.8. HUD

 The following section describes the elements of the heads-up display (HUD) used in

Xeero.

The HUD is where most of the information needed by the player is located. Unlike some

action games, but following the conventions of platformers, Xeero attempts to keep the full state

of the player on screen at all times.

Xeero Anumba, Acito, Sessa 54

Figure 58: The HUD of Xeero, marking relevant items

3.8.1. Health Bar

 The health bar, or “data fidelity meter,”

indicates the player’s health. As Xeero takes

damage from attacks, his data becomes more

corrupted, and he loses “data fidelity.” When the

bar is empty, Xeero “crashes,” and is sent back to the last hit breakpoint to recompile.

 The health bar ticks down as the player takes damage, leaving behind a red indicator to

show the player how much health was lost. As the player loses health, the bar changes color from

blue to red and begins to flash when the player has low health.

3.8.2. Low Health Indicator

 When the player has low health, the edges of the screen glow red and a quiet, but

noticeable tone begins to play, warning the player.

Figure 59: The health bar when Xeero has low health

Xeero Anumba, Acito, Sessa 55

3.8.3. Character Portrait

 The character portrait shows the emotional state of Xeero over the course of the level.

Xeero’s portrait will emote contextually as events happen in the game. Most often, Xeero is idle.

He will begin to glare when he enters combat, and he will have a more intense glare as he

performs attacks. He squeezes his eyes shut when hit in combat, and his head will droop when he

has low health. His head droops more intensely when he “crashes.” His eyes will be upturned

happily when he collects Health Data or BitBucks.

3.8.4. Digitize Slots

 The digitize slots show the player what is currently in their gauntlet. The player is

allowed to store up to two objects in the gauntlet (one left and one right), reflected by the icons

in the HUD.

The indicator is designed to display information for each state the object is in within the

gauntlet and to have a visual cue for every action the player can perform with the object. The

indicator matches the state of the object, animating to show it being digitized to or materialized

from Xeero’s gauntlet. It shows the object crumbling when it has been disassembled, and wipes

Figure 60: Some of the different states of the character portrait

Xeero Anumba, Acito, Sessa 56

it away when the object has been purged by a Purge Gate.

Figure 61: Some of the different states of a digitize slot

 When the slot is empty, the player can hold the digitize button to aim at the object they

want to digitize. The HUD will show a ghost of the object that will be digitized in the appropriate

slot. When the slot is filled and the materialize button is held, the object will glow in the

appropriate slot to show which object will be materialized.

3.8.5. Combo Meter
 The combo meter is designed to add a sense of satisfaction and reward to combat (see

Audience and Experience Goals) and to inform the player on helpful strategies in combat.

 When the player successfully hits an enemy (or

successfully blocks and counters an attack - see Mechanics -

Defensive Abilities), the combo meter will increment for every

object hit. Upon reaching predetermined threshold values, the

player will gain a multiplier on the hit counter. The multiplier

increases the amount of BitBucks and Health Data that is

dropped by Enemies and Turrets when they are defeated. The

player can up to double the amount of money and health gained from combat. Whenever the

player is hit and stunned by an attack, the counter will tick snap down to the next lowest

multiplier value.

 The player doesn’t have to maintain a single chain of attacks in a combo to keep ticking

the hit counter, and the counter will maintain its value while the player is out of combat.

Figure 62: The combo counter and
current multiplier

Xeero Anumba, Acito, Sessa 57

The hit counter is designed to add a sense of reward to combat; the player should feel

satisfaction for building up a high value in the hit counter. Each successive hit causes a short

animation to play on the counter, where the number will grow and shake. The intensity of the

animation increases with the number of hits on the counter, and another, more intense animation

plays whenever the multiplier increases. The intensity of the animations is designed to bolster the

visceral impact of connecting a strike in combat.

Additionally, the inclusion of the hit counter helps encourage the player to adopt a

strategy in combat. If a player chooses to focus on building up a higher hit counter, the player is

then encouraged to avoid getting struck in combat, and the player may then try to use their

defensive abilities more often.

3.8.6. BitBucks Display
 The BitBucks display shows the player how many BitBucks they currently have in their

possession. The display uses animations to bolster the reward sensation from collecting

BitBucks (see Objects - Reward Objects).

 When the player picks up BitBucks, they is added to a

running total in their wallet. After a beat, the money gained will

rapidly tick down, flowing into the player’s total wallet. When the

running total reaches zero, the player’s total will pulse and a “cha-

ching!” sound effect plays. The intention is for the player to feel the relative weight of adding

one BitBuck, ten, or a thousand.

 When the player purchases an Upgrade Chip from a Vending Machine,

the money ticks down with a similar animation as the Xeero feeds money

into the machine.

Figure 63: Gaining money

Figure 64: Losing money

Xeero Anumba, Acito, Sessa 58

3.8.7. Enemy Health Bars

Enemy health bars show the current health of enemies the player

is fighting, similar to the player health bar. The bar appears over the

head of the enemy, but only when the enemy is close to the player and

is taking damage.

3.9. Level Editor
 The following section describes the level editor created for

Xeero, motivations and design decisions behind its construction, and how it is used to construct

levels in the game.

3.9.1. Motivations

 Early in development, a flexible format was created to allow levels to be developed

programmatically. Originally, the intention was to allow levels to be mocked up on paper before

being entered into a text file to be read by the game.

 However, levels quickly grew in complexity, requiring hours of manual entry to create.

Because the game had to be loaded before the results of the entry could be viewed, much of the

design process to create a level matching a drawn mockup involved writing to a file, opening the

game, closing the game, tweaking the level file, and opening the game again. Additionally, when

the levels were play tested and tweaks needed to be made, the specific section of the level had to

be tracked down by matching coordinates to the visual layout of the level. Using manual entry

text files made both designing and implementing levels a laborious task.

 From the very first prototypes of the game, Xeero was designed to use modular levels:

each level is made up of small pieces common to most levels (for more information, see

Appendix A, which describes how space is partitioned for level building and player navigation).

Figure 65: A health bar over
the head of an enemy

Xeero Anumba, Acito, Sessa 59

Levels in Xeero avoid large set pieces or long stretches of custom content that can only be used

for a single level. Reusing as much content as possible was a top design priority.

3.9.2. Programmer

Figure 66: The interface of "Programmer," with relevant items marked

Together, these motivations informed the creation of the level editor, Programmer. This

tool allows the modular level elements of the game to be dragged and dropped onto a level,

allowing them to be quickly mocked up, tested, and changed.

Every object in the game can be placed into levels from the menu in the UI marked

Object Menu. The designer can drag and drop the object from their pane in the menu or can

double click to add the object to the level. Once the object is in place, various parameters can be

set on the object (like how long Falling Platforms take to fall or which upgrade the player gains

from an Upgrade Chip) by using the menu marked Parameter Menu. Chunks of the level can

be selected and moved by clicking and dragging on either a single object or on a selected group

of objects by dragging on empty space in the main area marked Main Area. The upper menu

Xeero Anumba, Acito, Sessa 60

marked Top Bar allows the designer to copy and paste sections of the level, undo and redo

actions, and save and open different levels. The upper menu also allows the designer to play the

level as it is being constructed, allowing for rapid testing and refinement.

The levels created with the level editor can be saved to and loaded from human- and

machine-readable XML.

3.9.3. Linking

Figure 67: Linking a switch to a gate

Some objects can define relationships with other objects in the game. Such “links” are

defined by right-clicking and dragging between two compatible objects. In Xeero, most link

relationships are generalized into “switches” and “receivers.” Any “switch” object (like Buttons,

Hit Switches, and even objects like Turrets) can be linked to any “receiver” object (like Gates,

or any hazard that can be enabled or disabled), allowing the switch to activate or deactivate the

receiver in the level once the switch has been activated.

Xeero Anumba, Acito, Sessa 61

3.9.4. Mockup Objects

Figure 68: The mockup objects in different colors

Additionally, the editor gives the designer access to “mockup objects,” blank primitives

of different shapes -- such as boxes, spheres, and capsules -- that can be used to quickly sketch

out levels. These objects can be color coded by the designer, and the designer can type in notes

that are stored with the object to distinguish their function.

Mockup objects can be used to sketch out the proportions and platforming challenges of

levels without needing to set parameters for every object. These can also be used to create the

structure of a level for which the required objects haven’t yet been created. The figure below

shows the first hub level mocked up and fully realized.

Xeero Anumba, Acito, Sessa 62

Figure 69: A version of Hub 1 using mockup objects

Figure 70: Finalized version of Hub 1

Xeero Anumba, Acito, Sessa 63

3.9.5. Level Sharing
Additionally, the level editor is built into the executable game as a game state that can be

triggered from within the game. As a result, the level editor can construct levels to be saved and

used for players of the game, but also allows players to create, save, edit, and transmit level files.

The level editor, from its conceptualization, was design to be packaged with the game, allowing

players to use the simple drag-and-drop controls to construct and share their own levels.

3.10. Tutorials and Help

 As discussed in the Inspirations sections, Xeero drew from games like Portal for

constructing tutorials for the player. Many puzzles of Xeero are designed to teach the player

about different controls and the properties of various objects.

 The tutorials for Xeero went through several iterations over the course of this project,

each time changing based on feedback and observations from players. Initially, the only method

for teaching the player new information was through “tutorial tooltips (pictured below).”

Figure 71: A sample tutorial tooltip

These tooltips displayed all of the information the player was given about the game, from

controls, to mechanics, to object properties. Inside levels, there were orbs the player could touch,

which would trigger the tooltips to appear. The intention was for the player to see and touch each

orb, read the information, and use that information to proceed in the level. However, initial

playtest showed players avoiding the orbs, missing the displayed tooltip, or not reading the

messages they contained. Then, inevitably, the player would attempt -- and fail -- the section of

Xeero Anumba, Acito, Sessa 64

the level the tutorial was attempting to teach them about,

and the player would not understand what they were

intended to do.

To remedy these issues, four new types of tutorials

were introduced to Xeero: tutorial “equations,” info

pages, revamped tutorial tooltips, and loading tips.

3.10.1. Tutorial Equations

 Initially, information about the controls of the

game (e.g. “press A to jump”) was given exclusively through tutorial messages at the bottom of

the screen. This presented two problems. Messages quickly became verbose for simple

mechanics, and, in areas where there were several control instructions in succession, they gave

the players more text than they were willing to read. Additionally, the text of tutorial messages

was defined within the level editor, making all of the text fixed within the level. However, as

discussed in the Controls section, all of the mapped buttons could be remapped by the player.

Further, the game allows the player to use either the mouse and keyboard or a gamepad when

playing on the PC. Taking all of these factors into account created awkward tutorial messages

such as. “Press ‘A’ or space/left control to jump (these controls can be remapped in the options

menu).”

Figure 72: A tutorial bubble

Xeero Anumba, Acito, Sessa 65

Figure 73: A tutorial equation as shown to the player

Visual tutorials sought to remedy these issues. At certain sections of the game, a tutorial

(like the one picture above) would appear near the bottom of the screen. These pictorially

depicted controls for the player to use to aid the player quickly learning new information. The

player would see a large image for a button and a symbol and would be encouraged to try the

button and experiment.

Additionally, the visual tutorial system recognizes the possible control configurations the

player can use. Each button on the gamepad, keyboard, and mouse has an icon, and the equation

Figure 74: A tutorial equation for mouse/keyboard and gamepad
controls

Xeero Anumba, Acito, Sessa 66

can show whichever button is mapped to that control. The tutorials also can detect which

hardware the player is using to play the game (mouse/keyboard or gamepad), and will show the

appropriate buttons to the player.

Through pictorial display and dynamic button icons, visual tutorial “equations” reduce

the verbosity and inaccuracy of early tutorial messages.

3.10.2. Info Pages

 While visual tutorials are designed to teach the player about controls used in the game,

Info Pages are designed to teach the player about specific objects they can encounter in levels.

 Some information about objects is critical to the player’s understanding of the mechanics

of the game. When this information was displayed in a tutorial message, the player could ignore

or unintentionally miss the information presented to them.

Figure 75: An info page for a breakpoint

The info pages are full-screen animations that display the name of the object, a large icon

of the object, and a brief description. While the info page is running, the game underneath is

paused, and the player must press a button to acknowledge the info page to dismiss it. This large

Xeero Anumba, Acito, Sessa 67

animation immediately captures the eye of the player, and, while it can’t force the player to read

anything, it at least ensures that the player is aware that there is information for them to learn.

When a player approaches an important object in a level for the first time, the info page is

triggered after the player gets within

a certain distance. Info pages can

also be used for player upgrades.

When the player gains a new ability

(called a new “subroutine” in-game),

the player is also shown an info page

detailing the upgrade they have just

received.

3.10.3. Revamped Tutorial Tooltips
Some information presented in the game is location-specific, not mapped to a specific

object, details mechanics in a way that is difficult to present in pictures, or is not critical enough

to block the player from playing a level. For this information, the original tutorial messages are

used, but they have been modified to mitigate the issues they originally presented.

Initially, these tooltips could only be activated by the player choosing to touch a small

“tutorial bubble” within a level. The activation method for these tooltips have been expanded

with a series of objects classified as “conditionals.” Conditionals are objects that can be

manipulated in the level editor that act like drag-and-drop Boolean logic. Conditionals can be

linked to a tutorial message, so for however long the condition is true, the message will be

displayed for the player.

There are a variety of different conditionals that can be hooked to tutorials. Most directly

related to their original activation method is the “Touching” conditional, which is triggered when

Figure 76: An info page for an upgrade

Xeero Anumba, Acito, Sessa 68

the player touches an invisible sphere of arbitrary radius. This allows a tutorial message to be

activated when the player enters a section of the level, rather than by touching a small sphere. A

“Died Here” conditional triggers when the player “dies” while touching the trigger. This is used

to display messages to the player when they repeatedly fail a certain section of a level. Some

conditionals can be very specific, like “Ledge Hang” conditionals that are triggered if the player

is hanging off of any ledge or a “Materialize Blocked” conditional that is triggered whenever the

player tries to materialize an object (see Mechanics - Digitizing and Materializing) when there

is another object in the way.

These conditionals,

like Boolean logic, can also

be linked together. The

level designer has access to

an “And” and an “Or”

conditional that can link

two conditionals together

using the appropriate logic.

3.10.4. Loading Tips
Some types of information don’t fit any of the above categories. Some information is

miscellaneous, not tied to a specific location in a level, or is just informative about the world of

the game. These short (usually one sentence) pieces of information are given to the player in the

loading screens of the game that appear between levels.

This information can sometimes be dependent on the current progress the player has

made in the game; the tip “you can only block attacks from the front” only applies after the

player has received their weapon and has been taught to block attacks. Thus, each tip in the game

Figure 77: Linking conditionals with "and" and "or" conditionals

Xeero Anumba, Acito, Sessa 69

can be triggered to show only after the player has beaten a specific level. The tips can also be set

to hide themselves after a player has beaten a specific level.

Through pictorial tutorial equations, full-screen info pages, conditionally triggered

tooltips, and miscellaneous loading screen tips, each type of instruction given to the player is

dispensed in a way designed to most effectively teach the required information.

Xeero Anumba, Acito, Sessa 70

4. Visual Art
Eric was also responsible for the visual art of Xeero. The following section describes the

visual style developed for the game, discusses some of the technology used, assets created, the

motivation for particular styles, and the art that inspired the design of the assets.

4.1. Introduction

 The initial direction for the concept and art style of the game was heavily influenced by

the creation of the protagonist. Xeero was the first element of the game conceptualized and went

through a number of iterations.

 In the first iteration of Xeero, the computer motif was not established; the character could

have existed in a different fantasy or sci-fi world. Despite this, the first iteration of Xeero

maintained many of the features that would carry over to his final version: he retained goggles,

gauntlet arm, and large boots, albeit in a different style.

 The next iterations of Xeero softened the edges

on the character, attempting to make the character seem

less potentially malicious and friendlier. The figure to

the right shows the evolution as the proportions of the

character were finalized.

 After the character concept was designed, Eric

next designed the concepts for the types of objects

Xeero would use, and the concept of “digitizing” and the

computer motif was developed. The figure below shows

some sketches of the initial objects designed for the
Figure 78: Early sketches if Xeero

Xeero Anumba, Acito, Sessa 71

game, including a block, an elevator platform that would raise

and lower for Xeero to stand on, a key object that unlock locked

doors, and bombs that would destroy certain obstacles.

As the protagonist and associated objects took shape,

Eric began designing the aesthetic the rest of the game would

employ.

4.2. Style - 3D

Figure 80: A sample level in Xeero

Figure 79: Early object sketches

Xeero Anumba, Acito, Sessa 72

 From the start of the project, Eric had a preference for stylized 3D rendering, stemming

from an early interest in animated movies. The creation of the art for the game was focused on

simulating “cartoon-like” visuals and animations. Xeero also drew inspirations from video games

using a similar style.

 Xeero was inspired by games of the

“Tales” series. Games in these series have

heavily anime-inspired, stylized graphics.

Character proportions are often shorter, and

the colors are often solid and bright. Partially

a product of the technical limitations of their

time and features of anime, often models

contained simple shapes and colors, with

much of the detail of characters and props informed by shading. In several 3D games of the

series (like Namco’s Tales of Symphonia pictured above), the games use a combination of cel-

shading (using flat, binary “light and dark areas” for shadows) and pre-baked smooth shading on

the textures of models. Additionally, to help

distinguish the objects from the environment

and mimic the drawing techniques used in

cartoons and anime, characters and props all

have black outlines.

 Games in the Kingdom Hearts series also

provided inspiration for art. While the early

games do not use cel-shading -- or dynamically
Figure 82: Texture baked shading in Kingdom Hearts II

(Renmiri)

Figure 81: Colors and character proportions in Tales of
Symphonia (Acev)

Xeero Anumba, Acito, Sessa 73

generated shading of any kind -- the games still attempt to create visuals reminiscent of the style

of Disney animations. There is an emphasis on large proportions for both characters and props,

and objects have soft shading baked into the textures of the objects. Original character models

are created to bridge the gap between the large disproportions used in Western animation and the

more realistic proportions used in anime.

 Kingdom Hearts games also use an abundance of particle effects and elaborate character

animations in combat. In line with the

“moments” of gameplay Xeero attempts to

evoke (see Experience Goal and

Audience), Kingdom Hearts games give

the player elaborate, “flashy and vicious”

attacks the player can execute, using a

variety of additional particle effects and

acrobatic animations.

 Xeero also drew inspiration from

Bastion. The worlds in Bastion are heavily

modular, each level building itself around the

player as the player progresses through it. This

influenced the “modular” design of levels

discussed in Level Structure.

Xeero also drew from games like

Bastion and games in the Mario series when

determining the proportions and scale for the player character. In games from either series, based

Figure 83: Use of particle effects in Kingdom Hearts II
(WastedMeerkat)

Figure 84: A level constructing itself in Bastion (Northernlion)

Xeero Anumba, Acito, Sessa 74

on their relative proportions to the environments in which they find themselves and the

proportion of their body parts, protagonist are short, roughly half of the size of an average adult.

From these inspirations, the art style for Xeero was developed. The following sections

will describe how these inspirations informed different aspects of the asset creation process.

4.3. Modeling

 Like games in the Tales and Kingdom Hearts series, for both character and props, models

were created with large, simple shapes and large

proportions. For most objects, very few intricate

details were developed, instead focusing on the

general form and the silhouettes of the objects.

Very little sculpting was used for props; most

objects in the game represent some sort of

“computer component” were composed of

mostly hard edges. Normal maps are not used in

Xeero, to intentionally keep the art minimalistic,

to give as much visual information as possible in

larger shapes, and to reduce the urge to continue adding finer and finer details to models as

development continued.

4.4. Color Schemes

 Inspired from both games in the Tales series and the Tron series and independent artists,

Xeero uses splashes of saturated, bright colors against mostly black and gray environments.

Early in development, a “core set” of colors was developed; most of the predominant colors used

Figure 85: Large, simple shapes in models for Xeero

Xeero Anumba, Acito, Sessa 75

in texturing and in particle effects are slight modifications in saturation and brightness of these

core colors.

Figure 86: The fundamental hues used in Xeero

In texturing, most surfaces use a single, flat color based on the color scheme shown

above. Then, like in early Kingdom Hearts games, a layer of soft shadows is baked into the

texture.

Additionally, to emphasize the contrast between these vibrant colors and the black or

gray environments, Xeero uses a full-screen bloom effect on brighter colors. This helps vibrant

colors and bright particle effects show their intensity compared to the darkness of the rest of the

world of Xeero.

Figure 87: Full-screen bloom effect disabled

Xeero Anumba, Acito, Sessa 76

Figure 88: Full-screen bloom effect enabled

4.5. Lighting and Shading

 While Xeero employs soft shadows baked into textures, the game also dynamically

shades objects using cel-shading techniques similar to those in the Tales series.

Figure 89: Xeero with and without cel-shading

 In cel-shading, for any surface, light values are calculated by determining the angle the

surface makes with the light source, like typical diffuse lighting. However, instead of allowing

Xeero Anumba, Acito, Sessa 77

intermediate values of light and dark based on the angle of

incident light, angles below a certain threshold are considered

“light” and others “dark.” Using this binary measurement, the

surface is then shaded a preset shade based on whether it is

“light” or “dark.” Most levels of Xeero contain a single,

directional “cel light,” which is used to determine the direction

and intensity of the cel-shading effect.

 However, in addition to cel-shading, Xeero also uses

more realistic lighting effects. For some visual effects that represent the release of “energy,” like

digitizing, fire effects, and explosions, colored lights are used. These lights use gradients

calculated from the angle of

the incident light ray and are

additively added to the colors

generated from cel-shading.

 Like games in the

Tales series, Xeero gives

objects a black border

(though, Xeero

indiscriminately gives all objects a border, rather than just characters and props, since the props

are the environment).

4.6. Animation
In Xeero, any change in the visual state of an object is done through an animation; very

few objects are allowed to change without doing so smoothly over a period of time. All

Figure 90: Shading in Xeero has no
gradients, only binary "light" and

"dark"

Figure 91: Gradient additive lighting used for an explosion effect

Xeero Anumba, Acito, Sessa 78

animations involving movement take realistic physics into account, whether these objects are

directly simulating physics with acceleration, velocity, and forces or are simply simulating the

resultant movement created by these physical phenomena. Xeero makes liberal uses of damped

springs in the game to allow objects to smoothly snap (and potentially bounce) into place,

whether it is camera motion, opening and closing gates, or floating, telekinetic weapons.

 With few exceptions, skeletal animation in Xeero is restricted solely to the player

character and the malware the player combats. For these animations, the primary focus was to

give realistic properties to unrealistic motion. The player may be able to float in mid-air,

telekinetically grab a block object, or spin in mid-air, but the properties of realistic motion, like

Disney’s 12 Principles of Animation (Thomas and Johnston), are considered for each motion.

Most animations attempt to telegraph their motion with necessary windup, give a sense of weight

to the action with appropriate follow-through, and attempt to make the objects feel like actual,

physics constructs with overlapping actions and considering the inertia of the object’s component

pieces. This helps establish satisfying motion for character actions, typified in the games of the

Kingdom Hearts series.

 Additionally, each character has a large number of motions, and the player is able to

perform actions in rapid succession (see Mechanics - Attacking and Defending). Thus, the

characters need to be able to quickly and seamlessly transition from one animation into another.

Partially, this is accomplished with a small number of transition animations, specifically leading

one animation into another, but the majority of animations work from a given idle pose of the

character into whichever action the character will perform. To avoid any unattractive “snapping”

from one pose to another, an animation blending system was developed (see Animation

Xeero Anumba, Acito, Sessa 79

Blending), to allow any arbitrary number of animations to blend and transition into any other

arbitrary number of animations.

4.7. Process - 3D

 The following section will describe the process and software Eric used to create some of

the 3D assets used in Xeero.

4.7.1. Software Used

 For the creation of 3D assets, Eric used Adobe Photoshop, Blender, and ZBrush. Adobe

Photoshop, photo and image editing software, was used for building modeling sheets during

conceptualization and for building textures for models. Blender is a full 3D pipeline application,

with features from the initial stages of modeling and sculpting to skinning and animation. The

3D application was used in modeling, texturing, rigging, skinning, and animating models.

ZBrush, a digital sculpting tool, was used to sculpt some characters.

4.7.2. Characters and Props

 Most characters and props created for the game follow a similar process:

conceptualization and sketching, modeling, sculpting, texturing, rigging and skinning, and

animation, finalizing each step before moving onto the next.

Xeero Anumba, Acito, Sessa 80

Concept and Sketches
 First the concept for the object or

character is created. For characters, this

usually involves defining unique

characteristics and features for the

character, and firming the design through

several rough sketches. In this step, most of

the details for the character, like clothes and

ornaments, are represented on paper.

 Next, the proportions for the

character are precisely defined. Eric creates

a modeling sheet that will be used to model the character. Usually, in this step, paper sketches

are scanned and a modeling sheet is created in Adobe Photoshop.

Figure 93: The modeling sheet used for Xeero

Modeling sheets usually contain several views of the character -- front, profile, or back

view -- and any additional equipment the character may use, like a weapon.

Figure 92: An early sketch of Xeero

Xeero Anumba, Acito, Sessa 81

Figure 94: The modeling sheet used for the soldier virus

For most props, the necessary functionality has already been defined in the terms of

gameplay and mechanics, and this step involved giving form to the function. Most props in

Xeero are based on real computer hardware, redesigned for Xeero. For those props, sketches or

modeling sheets aren’t usually created, and reference images are gathered instead.

Modeling

 After modeling sheets have been created for characters, these are imported into Blender,

mapping each view in the modeling sheet to the corresponding view in Blender, so the

proportions of the model can be easily compared to the modeling sheet and adjusted. Here the

general proportions for the model are created through box and extrusion modeling.

Xeero Anumba, Acito, Sessa 82

Figure 95: Modeling Xeero from the modeling sheet

 Most props use mostly hard surfaces using more precise angles and lengths, so their

geometry is entirely modeled in Blender. For props, there’s usually more experimentation with

forms, since the final design object is mostly undefined.

Sculpting
 Some characters were modeled in Blender first, then imported into ZBrush, while others

were created entirely in ZBrush. When models are created exclusively in ZBrush, a similar

method is employed: the modeling sheet is imported and mapped to the appropriate views and

the general forms of the model are created.

 After the general forms have been created, either through ZBrush or imported from

Blender, shapes are refined and details added, while ensuring that most shapes stay simple and

minimalistic, as mentioned in the Style - 3D section. After the model has been shaped and

refined, they are retopologized to meet the vertex count requirements for the game, and are

exported to Blender.

Xeero Anumba, Acito, Sessa 83

Figure 96: Sculpting the torso for the soldier virus

Texturing

Figure 97: The UV seams for a prop

In Blender, seams and UV maps are created and assigned to the imported character or modeled

prop. For some props, extra consideration is given for certain effects; some props change the

color of some of their materials as part of an animation in-game. Sections of the model that will

be used for the same effects are grouped into single textures.

Xeero Anumba, Acito, Sessa 84

 UV maps are exported and loaded into

Photoshop where the colors and shading are

defined. For most surfaces, flat colors with soft

shading is applied directly to the texture (see Style

- 3D).

 Some models use “tech lines,” or glowing

lines that appear when certain actions occur in

game (pictured right). Other objects also “erode” as

they become more corrupted, becoming

fragmented (pictured left). Both types of

information, where the tech lines appear and

what parts of the

model get eroded,

is defined and

encoded within the

textures generated

for a model.

 For most props in the game, this completes the model, and it is

exported and used in-game. For characters and some props, they

need to be rigged and skinned so they may be animated.

Figure 98: A texture map for the compressor, soft
shading is baked into the texture

Figure 99: Xeero using different "tech line" colors

Figure 100: Xeero, eroded from low
health

Xeero Anumba, Acito, Sessa 85

Rigging and Skinning
 At this stage, the model has been finalized: the geometry and textures have been defined

and the models are anticipated to require no or

minimal changes.

 Eric uses Blender’s rigging tools to

define a skeleton for the character or prop.

Most models use either deform bones (bones

that directly move vertices on the model) or

inverse kinematic positioning bones (bones that

define the end position and joint direction for

deform bones that use inverse kinematics).

 Next, the character mesh is skinned, and the model’s vertices are heat-mapped to the

bones of the skeleton. From there, Eric weight paints (determines how much influence any bone

has on a single vertex) the models to correct errors in the heat-mapping and to ensure that joints

and folds in the mesh are correctly deforming.

Figure 102: Weight painting bones for the spider virus

Figure 101: The skeleton used for the spider virus

Xeero Anumba, Acito, Sessa 86

 After testing, tweaking, and weight painting, the model is ready for animation.

Animation
 Usually, after a model has been skinned, Eric first creates poses that serve as the basis for

most of the animations. Usually, at least an “idle pose” is created and stored for the character.

When creating a new animation, usually the idle pose is used for the first frame, and the

character transitions into the major poses from them.

Next, Eric uses Blender’s tools to create animations for the model. In Blender, specific

animations are broken into “actions,” each action containing the key frames for the animation.

 Eric creates animations for a model first by defining the key frames for the major poses

of the action and timing out each pose over approximately how much time the animation should

take. Some animations are precisely defined in their timing (like jumping and landing animations

for enemies, which follow a template) while others allow for more flexibility. After major

motions are defined, windup and recoil frames are added, and frames are adjusted to account for

overlapping action.

Figure 103: The pose and key frames used in the "idle" animation for Xeero

Xeero Anumba, Acito, Sessa 87

 Animations are usually tested in-game one at a time as they are completed. The model

and its animations are exported, imported into Xeero’s engine, and tested.

4.7.3. Debris Model

 Some objects in Xeero are destructible, and after they are destroyed, they crumble into

rubble. Each piece of rubble is created

as a separate model, and each piece is

loaded into the game to replace the

destroyed object.

 Each debris model is created from

another finished model. The model is

divided along where the breaks occur, and new faces

and texturing seams are added to fill the volume of the

object. Each debris piece is UV unwrapped, and

textured to match the original texture of the object.

Then each piece is exported and loaded into the engine.

4.8. Style - 2D
Two-dimensional art plays a supplementary

role in Xeero, reserved mostly for icons, GUI elements, and particles. Nevertheless, 2D art

follows the themes of “stylized art” used for 3D models.

Building the aesthetic for 2D art in the game was simple after the 3D style was cemented,

helped by the fact that the 3D art style was originally conceived to mimic 2D art. Most 2D

elements used vibrant, solid colors with thick black borders.

Figure 104: A pile of rubble a block left behind

Figure 105: The individual pieces of block
debris

Xeero Anumba, Acito, Sessa 88

Figure 106: A 2D icon and its 3D counterpart

Two-dimensional art was created in both Adobe Illustrator and Photoshop in equal

measure. Illustrator’s vector art was used to create most of the icons for in-game objects, and

Photoshop was used for bitmap effects and particles

Most fonts used in the game were sourced externally, using the open licenses of some

fonts (like Raph Levein’s Inconsolata and Typodermic’s Quadrangle). Some fonts in the game

used effects that required additional processing on the original OpenType or TrueType font files.

In Microsoft XNA, the framework used to create the Xeero’s engine (see section Technical

Development - Frameworks and Platforms), fonts can be turned into game assets directly from

font files or by loading in a texture containing all of the characters used in the font. Leveraging

this feature, Eric used a tool called SpriteFont 2, created by Nubik, allowing him to recreate any

(open license) TrueType or OpenType font as an image. Then, Eric could use Photoshop to

process the fonts and add additional effects, like borders.

Xeero Anumba, Acito, Sessa 89

Figure 107: A font texture generated by Spritefont 2 and modified in Photoshop

Additional consideration was also needed for certain types of particle effects. Some

effects, like the firewall that extends below the world and Purge Gates that can stretch to cover

an arbitrary area (both pictured below), required special textures that could be both be tiled and

dynamically processed.

Figure 108: Effects in Xeero requiring special, tile-able textures

For both of these textures, Eric created a program to generate procedural textures using

different equations.

Xeero Anumba, Acito, Sessa 90

 This program creates tile-able textures using either the “Cell,”

“Clouds,” or “Leaves” equations. Each equation can be tweaked,

changing the resolution, density, or other properties of the generated

image. Different textures generated by the program are below.

4.9. Environment

 Inspiration for the general

tone of the world of Xeero was

drawn from several independent

artists, among them, Joou

Chiyanmon, Justice Von Brandt,

and TypoCity from DeviantArt.

These artists had created “cyberspace-”themed art that inspired the use of blacks with splashes of

vibrant color for backgrounds in Xeero. Cyberspace is often depicted as a “void,” with little

populating the space except objects of interest.

 These inspirations are clear in the levels and skyboxes used in Xeero. As mentioned in

the Level Editor section, levels are built modularly out of specific, gameplay-altering modules

Figure 109: The interface of the
procedural texture generator

Figure 110: Some sample textures generated by
the procedural texture generator

Figure 111: "Cyberspace" by TypoCity

Xeero Anumba, Acito, Sessa 91

allowing for minimal set pieces. The player, standing on

one platform surrounded by only a few others, appears to

be standing in a void.

 In all of the levels of the first hub, backgrounds

are black and gray clouds. Lining the background like

pieces of a massive cylinder are dozens of large, glowing,

slowly rotating hexagons; the colors of the hexagon

change with the level, picking randomly from blue, green, or yellow. As the player approaches

bugs in each level, the hexagons glow a deep red and spin faster. Below depicts the skybox used

in Xeero and one of the images that inspired it.

The theme of the first hub is “debris,” and the player is allowed to view the damage the

Alpha Virus does to the system. The hub is made of several shattered islands and an abundance

of swirling debris. This structure is inspired by the depiction of ruins by independent artists like

Ninjatic and Joel Faber of DeviantArt. In the image shown below, these desolate worlds are

composed of individual, broken islands.

Figure 112: "Cyberspace" by Justice Von Brandt

Figure 113: The skybox in Xeero Figure 114: "Cyberspace Move" by Joou
Chiyanmon

Xeero Anumba, Acito, Sessa 92

Figure 115: Floating Ruins by Ninjatic

4.10. Objects

 The following section describes the specific motivations for some of the gameplay

objects (see Design - Objects) used in the game.

 The objects in the game are designed to give form to the abstract elements “inside of a

computer.” For some objects without a direct analog to a piece of hardware or software (like

Platforms, Blocks, and Leap Targets), determining how to represent them was a challenge.

 For Blocks and other reusable objects, Eric chose a specific type of “material.” The

objects have an abstract, “technological” appearance, using hard edges, dark colors, and angular,

irregular shapes. Each digitizable object has an associated color (e.g. blocks are blue, bombs are

red): the color appears on the model and all particle effects using that object are tinted to match.

Additionally, all digitizable objects have prominent “tech lines” (see Style 3D - Texturing).

Xeero Anumba, Acito, Sessa 93

For other objects, a theme quickly emerged, one using actual computer hardware to

inspire the creation of game objects.

Figure 117: Some hardware-inspired objects in Xeero

Among others, on-off switches were used to inspire Hit Switches, power buttons were

the basis for Buttons, and PCI-E connectors and wires were used to create portals to other

programs.

Other objects were based on icons and symbols used in software. Breakpoints, which act

like checkpoints for players, are based on breakpoints--which stop the execution of a program

wherever the breakpoint is located--used in several integrated development environments used

by computer programmers. Archives and Big Archives, which act like treasure chests the player

can open, are based on icons traditionally used to represent databases--structures containing

Figure 116: Different digitizable objects and their colors (block are blue, bombs are red, unstable blocks are a mix
between the two)

Xeero Anumba, Acito, Sessa 94

organized data. Representing objects using actual hardware or iconography was a strategy

designed to make it easier for players to determine what game objects would do.

With other objects, the intention was

to use the computer motif to create a “digital

redesign” of familiar items. The portal used

to transport the player to the boss fight

(pictured right) is based on other large

gateways or portals seen in fantasy settings,

but it has designed with PCI-E connectors,

pipes, and the types of hard edges and

angular shapes used with digitizable objects.

Similarly, Bit Slicers, a platforming

obstacle for the player, are based on familiar

bladed traps.

4.11. Promotional Artwork

 While Eric created the visual art used within the game, the team collaborated and sourced

help from another student to create promotional artwork for Xeero. Within the team, Anthony

created a series of trailers for the game (see Production Management - Trailer). Externally,

Kedong Ma, an IMGD art student, was contacted to create promotional artwork for Xeero. Ma

collaborated with the team, sharing game assets and iterations on artwork. Over the course of

seven weeks, Ma created an animated 3D logo and poster for the game (see Appendix B).

Figure 118: The boss door, a digital redesign of a large
portal

Xeero Anumba, Acito, Sessa 95

5. Audio

5.1. Sound Effects

 In the following section, we will discuss the design process and implementation of sound

effects in Xeero. We will go into details on the different programs that Dan utilized, how he

found source materials, and his editing process. We will then discuss the steps he took in order to

implement the sounds into the game.

 The first thing Dan needed to start designing the audio was a list of the different sound

effects that would be needed for the game. During their first semester on the project, Eric walked

Dan through the game, identifying everything that was needed audio cues, including animations,

user interface cues, ambient sounds, and particle effects.

 Dan added to the list all of the sound names (see Appendix C). This sound asset list

would act as a vital reference for the remainder of the project, helping Dan and Eric monitor each

sound cue name, whether the sound should loop, if the file had been created, and if the file had

been inserted into the game engine.

 For most of the sound cues, Eric gave Dan a general idea of what type of sound he had in

mind for different sources. For other sounds it was up to Dan to come up with an original idea.

Dan kept a separate list of requests and suggestions from Eric for when he would design the

sounds. This reference guide would help Dan to focus in on a single sound effect.

 Dan developed a color-coding system for the list to rank the importance and priority of

how quickly the sounds needed to be made. Green cells had high importance, as they were for

sounds that still needed to be created and were very common in gameplay, such as character

movements and primary mechanics. Dark green cells had not been made yet, but were of low

importance. Yellow cells were for sounds that had been made already, but still needed some

Xeero Anumba, Acito, Sessa 96

minor adjustments. Red cells were for sounds that had not been made, and still needed to be

discussed between Dan and Eric. Clear cells were for sounds that were finished, polished and

had been given Eric’s seal of approval. Finally, blue cells were for sounds that Dan had made,

but still needed Eric’s approval.

 Now Dan was ready to begin the actual designing. Since Dan had very little experience

with recording, he did not have a very large sound library to utilize. This gave him few source

materials for the different sound effects. Since the game’s setting is a digital domain, most of the

sounds would be heavily computer oriented. Dan posited that it wouldn’t make sense to do much

recording, as the sounds would come off as too organic. This still did not solve the problem of

how he would obtain source materials.

 Dan decided to look for most of his source materials from free sound libraries. Under

Creative Commons, these sources files were royalty free, and Dan was free to edit and customize

the different sounds as he saw fit. Using the few sounds Dan had in his own library, and the

different sounds he found in the online libraries, he was ready to actually begin the editing

process.

 The sound editing program that Dan had the most experience with was Pro Tools, but

having access to this program was out of his budget. During this time, Dan was acting as

teaching assistant to Keith Zizza, a Professor of Practice for game audio in the IMGD

department. Zizza was having his students utilize Reaper, a digital audio workstation (DAW)

released by Cockos.

 The advantages of using Reaper in the classroom setting was that it was free to download,

and had a simple user interface. Students could download the DAW on their home machine and

could continue to easily work on assignments both on and off campus. Zizza recommended to

Xeero Anumba, Acito, Sessa 97

Dan that he should take the time to learn Reaper, as it not only worked very similarly to Pro

Tools, but also fit well into Dan’s budget.

 Dan downloaded the software onto his home machine and began to familiarize himself

with the interface, as well as take in some tips from the online user manual (Francis, 2014). Just

as Zizza had stated, there were many similarities between Reaper and Pro Tools. This allowed

for many of Dan’s editing skills to be transferred over to this new program.

Figure 119: Screenshot of the main Reaper interface

 The initial goal for Dan was to work through the sound asset list as quickly as possible.

Each sound cue would be filled with a temporary sound, insuring that the game was always in a

presentable state. Later in the project, Dan would go through and replace these sounds with more

polished and finalized versions. Dan’s intent was to make each sound as close to perfect as

possible, with hopes that the sound might not have to be changed later in the project.

Xeero Anumba, Acito, Sessa 98

Much of the design process was experimental. Since most of the sounds Xeero needed

were fictional, there weren’t many real-world objects to use for reference. The goal of each of

Dan’s work sessions was to make something that sounded as artificial as possible, but that meant

working without a specific sound in mind.

 Often, Dan would insert a source file into Reaper and then mess around with the different

available plug-ins. During these sessions, Dan often wouldn’t have a set sound cue in mind. He

would just mess around in the workstation until something struck him as interesting, and then

would look through the asset list to see if it would fit anywhere in the game. This method

encouraged Dan to experiment more with the Reaper interface, though it was not the most

efficient method of production.

 Occasionally, sounds Dan would design would be decent for sound cues that weren’t the

highest priority. While all of the sounds would need to be designed at some point, some of the

more important cues were being pushed further back into production.

 When experimentation wasn’t enough, Dan could go by the list of suggestions that Eric

had provided for him. Since the list had some generic directions on them, Dan could just find a

suitable source file, and tweak it to Eric’s specifications.

In terms of plug-ins, the pitch modifiers often provided the most interesting results. By

shifting the octaves up and down, it would often distort the source sounds well enough so they

would fit with the theme of the game. Reaper also has a tool that raises the playback speed of the

sound, but does not alter the pitch. This compression allowed for Dan to easily shorten sound

cues that could fit in time to the different animations in the game.

Xeero Anumba, Acito, Sessa 99

Figure 120: Screenshot of Reaper, using the Pitch modifier plug-in and volume modulation

Any sounds that had extraneous noise or frequencies could be altered using equalization.

Using this process, Dan could make it so only specific frequencies of the sound could be heard.

Since some of the source files were not of very high quality, it helped to eliminate extraneous

sounds.

Figure 121: Screenshot of Reaper, where the sound speed has been compressed and
higher frequencies have been attenuated.

Xeero Anumba, Acito, Sessa 100

After the sounds were edited, they were ready to be exported. The sounds would be

rendered to 16-bit wav files, with a 44,100k sampling rate. After listening to the finished files a

few times, Dan could now import the sounds into the audio engine.

 Since Eric was building Xeero using the Microsoft XNA engine, the XACT audio engine

was necessary for integrating the sounds into the game. Dan had never worked with XACT

before, so he needed to do some research to become familiar with the interface. This would also

involve reading through the formal XACT user documentation (Microsoft, 2015)

Figure 122: Screenshot of the XACT interface, showing the collection of wav files and the list of sound cues

 Overall the user interface was fairly simple to use. All Dan had to do was insert the sound

files into the engine, and then link them to sound cue names that Eric’s code could recognize.

Once the sounds were in the engine, Dan could manipulate different XACT variables to further

alter the sounds. For example, footstep sounds could have their volume and pitch randomized, so

that a slightly altered sound would be played each time the player character walked. This allowed

for more realistic footstep sounds. XACT could also keep track of the distance a player was to a

Xeero Anumba, Acito, Sessa 101

sound source, allowing for realistic attenuation. This ensured sounds would only play if the

player was somewhat near where the sound source was in game, as opposed to all of the time.

 Sounds that were supposed to be looped continuously simply needed to have a checkbox

flagged, telling the engine to repeat the sound over and over again. If a sound was too

overbearing in the game, there were volume modifiers that brought the sound down so that it

would blend better with the rest of the sounds. The advantage of this was that Dan did not have

to reimport a new .wav file with a softer volume, as the engine could take care of that for him.

 As more and more sounds were added to the engine, it became increasingly more difficult

to keep track of them. This stemmed from an initial lack of a standardized naming convention for

audio files. Dan tended to name the sounds based on onomatopoeia, or what the files sounded

like. This was a huge mistake, as it started to become unclear which files were linked to which

sound cues, which would make future editing quite difficult.

Eventually Dan went back and renamed all of his sound files. He chose to mirror the

names of them to match more closely to the sound cues that they would be linked to. Another

thing that Dan failed to notice when learning how to use XACT was that there was a way to

categorize the sound bank. By grouping different sound cues by categories, such as the HUD,

and particle effects, it would become much easier to sort through the list of sounds as it became

longer.

Obviously all of these organization methods should have been done from the very

beginning, so having to stop and reorganize was an unfortunate, albeit necessary waste of time.

Thankfully, by setting up the naming standards early on, it became a lot easier to keep track of

the sounds in the engine the further Dan progressed.

Xeero Anumba, Acito, Sessa 102

In order to test the sounds in the game itself, Eric gave Dan access to his level editor.

Using this editor, Dan could quickly put together mini levels featuring the sound sources that he

needed to look at or listen for. It was much quicker to have one small level with an enemy for

testing sounds, than have to traverse one of Eric’s actual levels until Dan found an enemy. The

advantages of this method was that there was quick turnaround. If a sound was supposed to loop

and wasn’t, Dan simply needed to flag the sound cue in XACT. If a sound was much too quiet,

Dan could go back to the engine and increase the volume of the sound.

 In general, actual testing sessions were fairly short. Dan would listen to any of the new

sounds that he had recently added to the engine, and see how they meshed with the rest of the

environment. It quickly became clear whether or not a sound fit well or not. Some sounds simply

did not work well in their intended use. Others were not timed well to an animation. In these

instances, Dan needed to change the source sound file entirely, whether he needed to shorten or

lengthen the sound, or simply replace it altogether.

 In other instances, it worked as bug testing for Eric, as sometimes the sound cue was not

hooked into the code properly. If no sound played at all, it meant that there was an error

somewhere in the code that Eric would need to address. Another advantage of giving Dan access

to the levels was that he would sometimes find additional bugs completely unrelated to the audio.

It allowed the two to identify possible issues early in the development stage.

 Once the majority of the sound effects from the asset list had been incorporated into the

sound engine, Eric and Dan needed to go down the list and discuss which sounds needed to be

improved. Many of the sounds worked well in the game, and Eric felt that they didn’t need much

altering, while others were in dire need of improvement. The pair went down the asset list,

listening to each sound file individually. If the two agreed that the sound was fine the way it is,

Xeero Anumba, Acito, Sessa 103

they would mark the sound as complete on the asset list. If either thought that a sound needed to

be improved, Dan would make a note of it.

 The tasks of updating sounds were kept track of on an issue tracker through Bitbucket.

Using the issue tracker, we could flag different tasks with priority on how soon they should be

addressed. When Dan would begin to work on the final versions of the sound effects, he could

start with the most important tasks first. This would include sounds that were more commonly

heard throughout gameplay, or sounds that needed to be completely different than the original

temp sound.

Figure 123: Screenshot of Bitbucket Issue Tracker, listing tasks that Dan needs to address

For many of the polished sounds, it was simply a matter of adjusting volumes or editing

the sound file so that it fit better with an animation. Other sounds needed to be completely

redone. As before, Dan would find some sort of source sound to use as a starting point, and then

would proceed to edit it using Reaper. When Dan thought that the sound was finished, he would

Xeero Anumba, Acito, Sessa 104

audition it to Eric for approval. Once they both agreed on the sound, Dan would mark it off as

completed on the asset list.

 The last step, once all of the sounds were in the engine, was to do a final pass through

each file in XACT. Once all of the music was introduced (see section on music), this would

ensure that all of the sounds were perfectly blended together.

 Editing and integrating the sound effects into the game was certainly a lengthy task, but

Dan’s goals were all met. Xeero was now full of audio cues that dramatically improved the

quality of the game, adding to the sense of immersion and providing more direct feedback. As

Eric continues to add more content to the game, this process will repeat itself as new objects and

animations will need new sounds to accompany them; furthermore, there will always be room for

improvement as Dan continues to hone his audio editing skills.

5.2. Music

The following section will look at Dan’s second job for this project, which was to write

and record the music that would serve as the soundtrack for Xeero. We will discuss the steps that

Dan took to prepare for this task, including obtaining the appropriate hardware and software.

Next we will discuss how Dan came up with the concepts for the music, as well as his actual

development process. Finally we look into how the music was integrated into Xeero, and the

different obstacles Dan faced along the way.

 In terms of software, Dan was most familiar with Logic Pro for music production. Having

taken several courses during his undergraduate studies relating to music using Logic, it was

easily the best choice. Dan did not have Logic at the time, but was willing to invest in the

software. It was the 10th iteration of the program, where Dan was most familiar with earlier

versions; therefore, it took Dan several days to become accustomed to the program.

Xeero Anumba, Acito, Sessa 105

 In terms of how Dan would orchestrate the music, the best option was for Dan to make it

himself. Logic provided a lot of unique virtual instruments, many of which would be ideal for the

digital domain that Xeero took place in. Logic has a feature that mapped Dan’s laptop keys to

that of a musical keyboard. The problem was that this did not quite feel right to Dan, and it was

also incredibly inefficient.

 The musical typing functionality was impractical as it overlaid the rest of the audio

workstation, so often information that Dan would need to look at would be misconstrued. Clearly

the best option for Dan would be to use an external piece of equipment.

 One thing that Dan had access to was his old keyboard controller for the musical game

Rock Band. This controller has a MIDI output port on the side that enables the controller to be

used as a MIDI keyboard. While this was certainly not the most advanced of MIDI controllers, it

did have a feel that was more similar to that of a piano. This would make it much easier for Dan

to perform music, and was a more comfortable fit.

 Dan simply needed a MIDI cable that could connect this controller to his laptop. Not

having a cable handy, Dan ordered one to be delivered to his apartment. When the cable arrived

however, it did not function properly. Dan’s computer could not recognize the MIDI device.

Dan decided to seek Keith Zizza again for help and recommendations. Zizza could not

diagnose why the cable Dan had obtained did not work, but he did offer Dan another solution.

Zizza loaned Dan a couple of his own MIDI cables, as well an external audio interface that

would allow Dan to connect his keyboard through his laptop's USB port. This would greatly aid

in the mixing quality and improve the sound of the music. Now that Dan had all the materials he

needed to get started, he was now ready to begin writing and recording.

Xeero Anumba, Acito, Sessa 106

Dan had a lot of ideas for what he wanted to do with the music, but he wanted Eric’s

input first before Dan would actually start the work. Dan asked Eric to provide him some sample

songs that were of a similar style to what Eric wanted for Xeero. Eric gathered a few songs from

some of his favorite video games and sent them to Dan. These works included composers Yoko

Shimomura for her work on the Kingdom Hearts series, and Carlo Castellano for the game

Invaders: Corruption.

 Shimomura composed her songs as orchestral arrangements designed to be intense and

suspenseful. Castellano’s music was more digitally oriented, but was arranged to be upbeat fast-

paced. Combining these two styles would be the approach that Dan would take for creating the

music for Xeero.

 Eric and Dan determined that roughly 4 to 5 songs were necessary for the first installment

of Xeero. There would need to be a theme for the actual levels, enemy combat, the final boss, the

overarching world hub, and one for the title menu. Generally the tunes were to be fairly upbeat

and action-like. Eric professed a liking for classical instrumentation, with a blend of more digital

sounding instruments. This is the direction that Dan would take when arranging the different

pieces of music for Xeero.

 When Dan began to work on the first music piece, he did not really have a use for it in

mind. His ultimate goal of this piece was to make sure he was completely re-familiarized with

the Logic interface, as well as to experiment with the different virtual software instruments in

Logic. This first session would help Dan to find multiple instruments for the different layers that

each song would have.

 In terms of the development process, Dan liked to start with one track, and then add on

more layers as he went. Typically he would start with either the bass, or the rhythm tracks. After

Xeero Anumba, Acito, Sessa 107

finding an interesting sounding instrument, he would play around on the keyboard controller to

see if he liked how the different notes or beats flowed together. Many drum kits had lots of

different percussion instruments to choose from. A bass drum would be mapped to the low C

note on a keyboard, and then the keys would progress to the snares, cymbals, and toms.

 Typically all of the songs Dan wrote followed a standard ABA format. Under this

arrangement, the ‘A’ was one section of the music, the ‘B’ was a second section, typically a

bridge, and the second A was a variation of the first section. This kept the songs very simple, but

not too repetitive.

 The easiest way for Dan to sample the instruments was to make a short 4 or 8 bar set, and

then make the section loop seamlessly. If the drum beat flowed well, this loop could be utilized

for most of the song. As more layers were added, Dan would add some variance to the beat and

add some drum fills to the different verse transitions.

Once a stable drum beat was set, the next layer that Dan would work on would be the

bass. This would set up the chord progression that Dan wanted for the song, and help keep a

consistent timing for when the melody was to be added. Bass was slightly trickier than the drums

because the keys were a lot more sensitive to velocity, or how fast the key was pressed, for

stringed instruments.

Xeero Anumba, Acito, Sessa 108

Figure 124: Screenshot of the Logic Pro X Interface

It would often take several takes before Dan could get the notes to all sound similar.

Writing and performing the melody was always the most difficult part for Dan when it came to

arranging the music. The melodies did not have to be too complex, as Dan did not want to music

to take too much of the player’s attention. Dan would write the melodies to be simple enough to

loop, but interesting enough so that one could enjoy listening to it.

One of the biggest issues of using MIDI was that the notes performed would not match

well to an actual music score. Dan would often use the score editor function in Logic to tweak

minor changes to the music. This would include changing an individual note’s pitch, deleting a

note, or even duplicating a note. The hassle with this process is that musically, the notes would

sometimes not play on the correct beat, despite the note being correct on the music staff.

Generally, all notes on the staff in the score editor would play around a ⅛ of a measure

late. To compensate for this, Dan would have to consider this delay any time he needed to make

minor adjustments using the score editor. While the process worked, it was rather tedious and

inefficient.

Xeero Anumba, Acito, Sessa 109

Figure 125: Screenshot of the Score Editor function in Logic Pro X

 Once the main melody was in place, Dan would work on the bridge, or ‘B’ section.

Generally this section had its own unique melody, and would often remove some of the other

voices from the previous verse of the music. Typically there would be no percussion, and the

music would be somewhat soft. Dan’s motivation was to use this bridge as build up to the next

section, which would be a variation of the main melody.

The next verse would sound very similar to the first. Typically Dan would copy the music

data to the new measure and logic and then play around with the notes to add some variation. It

could be something simple such as adding or removing a few notes, or changing the octave that

the music was playing in. The overall structure and chord progressions would stay the same. The

idea was not to change too much, but alter the melody slightly to keep the music interesting.

Once the basic structure of a piece was set, Dan would work on adding additional

textures and layers. These could include occasional ambient noise, various chords, or just

Xeero Anumba, Acito, Sessa 110

interesting instrumentation that added more depth to the music. The additional textures helped to

round out the sound so that the music was much fuller.

The ambient sound also would fit well with the in-game environment, since the setting is often

mysterious and ominous.

The last step of the music arranging was to go through the mastering process. This would

entail making sure each of the track layers blended well with one another. One way that this was

accomplished was through volume automation. Use the automation tool in Logic, the volume for

each layer could seamless be altered throughout the whole song.

Figure 126: Screenshot of the volume automation function in Logic Pro X.

This would ensure less important layers would be brought down in volume so that the

more important ones could be heard, and vice versa. It also made it much easier to have more

seamless music transitions through crossfading.

Lastly the different layers would be quantized. This would restrict the notes to a more

rigid format, and automatically correct the timing of the different audio regions. While Dan

Xeero Anumba, Acito, Sessa 111

timed the notes the best he could, the quantization process ensured that each region would be

timed perfectly.

Eric told Dan that due to how the engine streamed audio from disk, the audio would not

initially need to be compressed. This allowed Dan to render the music in .wav format, so that it

would have a much higher quality. This would also ensure continuity with all audio in the game

and the audio engine.

Once the music tracks were mastered and rendered, Dan would need to add these files to

the audio engine. A separate sound bank was created specifically for music to stream. This

would help so that the large files would not take up too much computer memory during

gameplay. As with the sound effects, the music was linked to a sound cue that Eric’s code would

recognize.

 Once the music had been inserted into the audio engine, it was clear that some things

would need to be adjusted. The biggest and perhaps most noticeable issue was that the tracks

were not designed to loop. Each song had a unique intro and outro which did not seamlessly

connect if the song was to repeat itself. This would create a rather jarring jump in the music, and

could easily break player immersion.

 To make up for this, Dan would need to go back into Logic and repurpose the music to

better fit into the game. The music files would be cut into three different sections: an

introduction, an ending, and a mid-section. This mid-section would be arranged so that it would

seamlessly loop. The introduction would play once at the beginning of the stream, and from

there, the mid-section would play through the rest of gameplay. The outro would not be heard in

game.

Xeero Anumba, Acito, Sessa 112

 The last step was making sure that all of the sounds and the music blended well together.

If there were any overlapping frequencies, the sound would become distorted and jarring.

Thankfully, for the most part, there weren’t too many frequencies that needed adjusting. The

main thing to do was to balance the volume between the audio cues and the music stream. The

music was actually much quieter than the audio cues, so Dan needed to increase the volume on

the music stream slightly. Once this was accomplished, the game audio was complete.

 The music development task was very long, but certainly very rewarding. Dan was able

to arrange several pieces of music that fit quite well into the game. The process certainly helped

Dan to improve his musical abilities, as well as gave him a perfect chance to practice his editing

techniques. Future levels of the game would ideally have their own unique music, so Dan would

need to repeat this process again for any future development.

Xeero Anumba, Acito, Sessa 113

6. Technical Development
Eric was responsible for the technical development of Xeero. The following section

describes the technology used in the development of the game and some of the major systems

created in development.

6.1. Framework and Platforms

 Xeero is built with Microsoft XNA Framework, specifically for Windows. The game, as

mentioned in the Concept Origin section, was originally built as a final project for an XNA

game programming class, making the choice of framework a necessity for this project.

 Microsoft XNA was built to release games on various Windows platforms: Windows

PCs, Xbox 360, and Windows Phone 7. However, as of April 1, 2014, Microsoft officially

discontinued the platform (Hruska). While the framework can still be used develop games for

Windows using DirectX 9, XNA cannot specifically target later generations of Windows

products.

 However, the library MonoGame, originally created by José Antonio Leal de Farias, was

developed as an open source implementation of the XNA framework (Stolpe). As of March

2015, MonoGame extends the platforms supported by XNA, including Windows 8.1, Mac OS,

Linux, iOS, Android, Windows Phone 8, and Ouya, as well as major consoles like Microsoft

Xbox One and Sony PlayStation 4 (Jackson). MonoGame and XNA framework share a nearly

identical API, designed to allow developers to easily port XNA games into MonoGame.

 The game is designed for Windows, with gamepad support. Through the underlying

architecture of the game, it can be easily ported to the Xbox 360, and releases for Linux, Mac,

PlayStation 4, and the Xbox One are possible with relatively few changes to the codebase.

Xeero Anumba, Acito, Sessa 114

 Xeero is designed to be released initially for Windows PCs, but will switch to

MonoGame to target multiple platforms.

6.2. Building the Engine

 Microsoft XNA is a framework that serves as an analog to their DirectX API, and

contains functionality to render 2D and 3D graphics, play audio, and load game assets. XNA is

designed to be used with the Microsoft .NET language C#. Many of the features discussed in this

section use the C# implementation of object-oriented programming, like inheritance and

polymorphism through classes and interfaces.

Eric developed a custom game engine to run Xeero using the underlying features

provided by XNA. The engine provides a renderer, a physics engine, a particle system, an audio

player, an asynchronous content manager, GUI management, animation, AI, and a level editor.

 The following sections describe some of the major systems and notable features

implemented for Xeero.

6.2.1. WorldObjects
 The foundation of the engine is built around “WorldObjects.” These represent every

element of a level, from the player and enemies to level geometry and invisible triggers. These

provide generic functionality that can be specialized by creating derived classes.

WorldObjects provide basic information about an object. At its core, every WorldObject

is a physics object and has a transform, defining its position and orientation in space, and a

collision volume, which determines how much space in the world the object takes. Each

WorldObject also contains inheritable functions that are automatically called over the lifecycle of

an object in a level, letting the programmer process the object when it is added to or removed

from a level, when it is supposed to draw itself, update its physics, or respond to collisions.

Xeero Anumba, Acito, Sessa 115

WorldObjects also allow the designer of levels to define relationships between these

objects. Each object supports “linking” to another object, to denote that these objects are related.

Based on the type of the object and the behaviors it implements (see Behaviors), these

relationships can behave differently. Most commonly, these links can be used to denote

“switch/receiver” relationships to, for example, allow a Button to be linked to a Gate object,

allowing the gate to be opened when the player stands on the button. Links are directional

relationships (so a button linked to a gate has different meaning than a gate linked to a button),

and any WorldObject can be linked to any arbitrary number of other objects, allowing complex

WorldObject interactions. Child WorldObject classes can also restrict the types of objects to

which they can be linked, disallowing the designer of levels from linking arbitrary objects whose

relationships are undefined.

WorldObjects allow most of their customization through inheritance; the program can

derive a class from WorldObjects, implement specific functionality to run over the lifecycle of

the object, and add those objects to levels. Additionally, WorldObjects allow Behaviors,

Interfaces, and Animators to be added to or implemented through them to give the objects

preset functionality and to interact with other WorldObjects in different ways.

Behaviors
Behaviors are the most flexible elements that can be added to WorldObjects; these

discrete objects can entirely define the functionality of an object. WorldObjects of different types

allow these behaviors to be added to them to give them common properties. Behaviors have

access to all of the lifecycle methods of WorldObjects and can force the WorldObject to react to

different events in different ways.

For example, a FirewallFizzler behavior, when hooked to a WorldObject, will

automatically destroy the object and release a particle effect when the WorldObject touches the

Xeero Anumba, Acito, Sessa 116

firewall at the bottom of every level. This is a behavior that is very common among

WorldObjects, but isn’t specific to any specific game element. This allows objects of different

types, like Enemies and Archives, to have the same, standardized behavior.

 Behaviors can be used to define gameplay interactions between objects, like the

BrokenFaller behavior that causes an object to shudder and fall when the player stands on it, or

they can provide engine-level functionality, like the ModelRenderer behavior that allows the

object to set a model to be drawn on the screen.

Behaviors are designed to implement standardized actions among WorldObjects and

reduce the amount of redundant code that would otherwise need to be written. Behaviors answer

the question of how a WorldObject behaves.

Interfaces
 Alternatively, interfaces determine what a WorldObject does. WorldObjects use

interfaces, the object-oriented programming concept, to understand different types of objects and

to understand how different objects are allowed to interact.

For example, objects that implement the IHitTarget interface advertise that these object

can be struck by weapons. When the player is attacking, if their weapon collides with an

IHitTarget object, the weapon then gives information to the object about the type of hit, like the

position of impact, the source of the attack, and how much damage the attack would do, without

any regard to how the hit target would respond to the attack. Most interaction between objects

therefore do not occur at the per-object level, instead checking against specific interfaces. This

allows objects like the Compressor to detect motion of all attackable objects, rather than just the

player, to allow the player to attempt to use the compressor in combat to defeat enemies,

expressing one of the “moments” of gameplay Xeero attempts to create the “combined

interaction of game mechanics.”

Xeero Anumba, Acito, Sessa 117

Animators
 While behaviors give WorldObjects specific reactions to different events and interfaces

give WorldObjects a generalized way to interact with each other, animators are used within

WorldObjects to create standardized animated motion across different objects as a result of

different stimuli. For example, a ShakeAnimator, when triggered, will “vibrate” an object for a

short amount of time. Some objects that implement the IHitTarget interface will use a

ShakeAnimator to vibrate themselves in a standardized way when they are struck. Many objects,

like BitBucks and Health Data that populate levels, float slowly up and down while they are in

a level, and, as such, use the functionality provided by FloatAnimators.

6.2.2. GameWorlds

 WorldObjects are grouped together through GameWorlds. These are the levels that create

the hubs and programs. GameWorlds can be saved to and loaded from files, to facilitate level

loading for the level editor (see section Level Editor). GameWorlds save each WorldObject that

inhabits the world and the links between them. GameWorlds also manage physics and rendering

of the WorldObjects.

Physics Engine
 Originally, Eric built a custom physics system to work with Xeero. This allowed for basic

control over objects using dynamics and collision detection. While functional, the system was

problematic.

The system could handle and resolve collision between basic collision shapes, like axis-

aligned bounding boxes and bounding spheres, but the system could not resolve oriented

bounding boxes, and thus entirely ignored orientation, rotational velocity, and rotational

acceleration. The system also used rudimentary grid-based space partitioning, and suffered from

severe performance dips when relatively few objects existed in proximity.

Xeero Anumba, Acito, Sessa 118

Mid-way through development, Eric researched third-party physics engines to integrate

into the game that satisfied the constraints of the project: the engine needed to be high

performance and designed for real-time applications, free and open licensed, and built for the

Microsoft .Net platform.

After investigating engines like Havok, Jitter, Farseer, and BepuPhysics, Bullet Physics

was chosen. Bullet Physics, a high performance physics engine, satisfied most of the

requirements of the project, but the engine was originally built to be used with unmanaged C++.

However, programmer Andres Traks created BulletSharp, a wrapper for the Bullet Physics

library. Not only was BulletSharp designed to work both with the .NET platform, but it also

contains separate builds to integrate the API with XNA, MonoGame, and other game

development frameworks.

Bullet Physics was integrated into Xeero’s engine using BulletSharp, and the source code

of Bullet Physics was modified to allow the physics engine to cooperate with the specific

requirements of the game.

Rendering Engine
 The rendering engine, while it has undergone several iterations and improvements, did

not incur as dramatic a redesign as the physics engine did.

 The bulk of rendering time in Xeero is devoted to rendering hundreds of discrete models

used in the modular elements that make up GameWorlds, so the rendering engine was designed

to optimize rendering performance. The engine optimizes rendering in two major ways:

hardware instancing and object culling.

 In any given level, the majority of models used in the level are repeated; for example, the

Platform is a standard building block of a level, and a level could contain hundreds of them.

Xeero leverages DirectX 9’s hardware instancing implementation to reduce the overhead of

Xeero Anumba, Acito, Sessa 119

drawing hundreds of discrete instances. Using hardware instancing, a model is stored once in

buffers in video memory, and all of the instances that use that model are also stored in a buffer

on the GPU, requiring the engine only make a single call to the GPU to draw multiple instances

of an object. Using this technique, most of the objects in the game are instanced, reducing the

bottleneck of communication between the CPU and GPU.

Additionally, the engine attempts to cull as many full objects from the scene to be

rendered as it can. Levels in Xeero, being large, open, and reminiscent of a void (see Visual Art

- Environment), allow the players to see most of the objects that are in the level. This can cause

high overhead for the GPU to render every object in a level each frame. So, the engine attempts

to cull as many instances of objects as it can before calling the GPU. Most objects are culled

using frustum culling: objects outside the camera’s frustum cannot be seen and are therefore not

drawn. Other objects can be culled based on their visibility and transparency settings.

6.2.3. Content Management
Early in Xeero’s development, loading game assets was handled simply: every asset in

the game was loaded all at once before the game started, and were used as needed. Working

under these assumptions, content in-game was always considered present when it was needed,

and the code was written accordingly.

Predictably, this system became problematic; when the number of assets needed for the

game grew, load times grew longer, resulting in delays of nearly a minute before the game would

start. Using so many assets had a high memory footprint, running the risk of the game running

out of memory before the application even started.

Thus, an improved content system was developed. This system allowed the code to treat

game assets as if they were constantly present and allowed the game to “lazily” load content, or

only load game content as it was needed.

Xeero Anumba, Acito, Sessa 120

Content in the game was modified, so rather than directly handle assets, WorldObjects

handled lightweight “tags” to assets. These WorldObjects could treat the tags as the assets

themselves, and these tags would only be translated into assets when the asset was needed for

rendering; if the asset wasn’t loaded, the renderer wouldn’t attempt to draw the asset.

Each tag, when used, would send a notification to the content loading system that an asset

was requested, and a separate thread would load the asset while the game runs. This system also

allowed for flexible control over groups of assets. Each asset would be tagged for its usage, from

general purposes like “game levels” or “splash screen,” to more specific object tags like “block

objects,” or “compressor objects.” The system allows groups of assets to be loaded or unloaded

based on those tags. Assets could also be given priority, so when a cluster of assets are required

at once, the content loading thread would prioritize and load the more important assets first, so

the model for a critical gameplay object would be loaded before an asset for a supplementary

visual effect.

This system allowed for any number of assets to be loaded before the game starts, and the

remainder of the assets are only loaded as they are needed. Asset loading can also be modified by

the programmer, to load only a partial list of assets during loading screens to help reduce loading

times.

6.2.4. Animation Controllers

 As mentioned in the Animation section of Visual Art - Style - 3D chapter, character

animations needed to smoothly transition from one to another to facilitate the player quickly

performing a series of actions in succession. To both reduce the number of transitional animation

that would be required to make and allow animations to be interrupted, an animation blending

Xeero Anumba, Acito, Sessa 121

system was developed. The animation controller is a “behavior” the programmer can hook into a

WorldObject.

This system gives the programmer flexibility over which animations are played for a

single animated model. A single animation is considered a “blend state” for the model. The

model can play a single blend state, but, before the animation is completed, a new animation can

start. This animation is allowed to “blend” together, to transition from fully using the old

animation to fully using the new animation over time. This system allows blend states to

transition from one to another, but also allows any arbitrary number of animations to be blending

at one time. For example, if the player starts to run, the run animation begins to blend from the

idle animation. But before the animation completely blends, the player can press the jump

button, causing the jump animation to start playing. In this case, while the animation is blending

from “idle” to “running,” the resultant pose is then blended from that into the “jump” animation.

If the player then decides to attack before those animations have finished blending, then those

resultant poses will be blended into the “attack” animation.

The animation system also allowed more complex animation combinations through

“layers.” Each layer contains a stack of blend states blending as described above. But each layer

can also be blended together in a similar manner. And these layers can also be triggered to only

manipulate certain bones on the model. For example, the player could be blocking, and the

blocking animation is playing. If the player is in mid-air, and suddenly lands on the ground, a

new animation layer is created only for the legs of the player. This layer then plays the landing

animation, while the player’s arms are still following the blocking animation.

Even further, the programmer has more precise control over specific animations used in

blend states. The programmer can determine how the animation loops, how far into the

Xeero Anumba, Acito, Sessa 122

animation to start playing, and even edit the motion of bone in the animation, allowing, for

example, the Xeero to move his arm and head to point at the object he is digitizing, even if the

object is above or below the preset location of the arm and head in the animation.

This control created a robust, flexible animation system that could be used to control the

player, enemies, and even various props.

6.2.5. Lua Scripting
 The engine also allowed moderate control over the object within levels through Lua

scripting. A Lua engine is instantiated and can be controlled through commands issued with the

console that opens in debug versions of the game’s executable. The scripting commands allow

the creation and destruction of WorldObjects within levels, moving objects, editing save data,

and changing game settings, all while the game is running.

6.2.6. Play Recording

 The engine also allows for lightweight play session recording. The game can capture data

as players play the game and save the data into lightweight “move data” files. These files can be

loaded into the engine, and the play session can be recreated, showing the position and actions of

the player character and the movement of camera by the player as Xeero moves through levels.

 Rather than saving video frame data, the move files store the GameWorld the move file is

recording, the position and animations of the player character, the position of the camera as

controlled by the player, and the position and states of any relevant object each frame. This data

can then be stored compactly to be replayed when needed.

 Play recording is a valuable tool when playtesting the game, allowing Eric to re-watch

players playing the game and see how these players react to different sections of the levels. This

also allows move data to be separated, and allows, for example, only the player character

Xeero Anumba, Acito, Sessa 123

position and animation data to be extracted to show players a “ghost” of their previous play-

throughs of a level while they play.

6.2.7. Level Editor

 As mentioned in the Design - Level Editor section, a level editor, Programmer, was

created to facilitate the creation of GameWorlds. This level editor needed to be powerful enough

to allowed diverse levels to be created with dozens of different types of objects populating the

level. Additionally, new objects and game elements were being built over the entire lifecycle of

the project, and many of those objects were required to be present in the level editor. The objects

themselves each had properties that the designer of levels can

change. The level editor also needed to be flexible enough to

not require any maintenance to the editor to add new objects

or change the properties of those objects, so the focus could

be given to creating new gameplay, not ensuring the level

editor catches up with the new objects.

 To facilitate this, the level editor in Xeero relies

heavily on reflection and letting the definition of

WorldObjects themselves be the maintenance required to add

them to the level editor. To determine which objects should

be entered in the editor, the level editor looks for a specific

“Editor Entry” C# attribute that is specified in the definition of the class. This attribute, which

Figure 127: A argument selector for Hit
Switches, pulled directly from the

constructor

Figure 128: The constructor for a HitSwitch, which is used in the argument
selector in the level editor

Xeero Anumba, Acito, Sessa 124

also contains a directory in which to store the object, tells the level editor to allow that type to be

created from the editor. It also looks for an “Editor Constructor” attribute on a constructor for the

class, so the editor can use the constructor for the object to directly construct the object from

designer input. The editor understands basic data types like integers, floating-point numbers,

strings, and enumerations, and is able to give the designer the appropriate GUI controls to allow

them to enter the data for the object’s constructor.

 One of the inheritable methods WorldObjects share are “editor metadata methods.” These

allow WorldObjects to specify what kinds of data to use when displaying the object in the editor.

The object can specify models, particles, and wireframe information to be rendered.

Xeero Anumba, Acito, Sessa 125

7. Project Management
Anthony was responsible for handling all things project management. This section will

discuss every facet of the project management process for Xeero. Meetings, milestones,

promotion, and any other tasks that were undertaken to move the project along will be dissected

and talked about here.

7.1. Production
Since he came onto the project in the middle of the development process, Anthony had to

alter his approach slightly compared to his MQP. With his senior project, Anthony had to budget

time for the concept stage. Xeero was past that stage by the time he joined and development was

well underway. As a result, Anthony was responsible for guiding the project through the alpha

and beta stages. Since this was the case, more time could be worked into the schedule for

festivals and playtesting. As one of the goals of this project is to eventually release it for public

purchase, any extra time that can be spent testing it and putting in front of others is a huge

advantage.

7.2. Scheduling/Team Meetings
In order to facilitate the completion of tasks and move the development of Xeero along,

Anthony scheduled multiple meetings between team members of the course of development (see

Appendix D for an example Gantt chart detailing work to accomplish over the semester). The

following three meeting types were scheduled each week:

7.2.1. Team
In these meetings, the team reviewed the tasks that were accomplished over the past week

and laid out the tasks that would be undertaken for the upcoming week. These meetings lasted

anywhere from 30 to 60 minutes (see Appendix E for an example of minutes created for a

meeting).

Xeero Anumba, Acito, Sessa 126

7.2.2. Prep

These quick meetings occurred just before Advisor meetings and provided the team the

opportunity to sync up one last time before meeting with project advisors. These meetings

typically lasted anywhere between 15 and 30 minutes.

7.2.3. Advisor
 These meetings occurred each Monday with Professor Moriarty. Over the course of an

hour, the team provided Professor Moriarty an update on the development of the project and

what the team hoped to accomplish over the next week. Upcoming events such as open houses or

festivals were discussed as well.

7.3. Festivals
Since Xeero is an indie title, getting public exposure is more difficult when compared to a

AAA title. As such, festivals were a key resource that the development team took advantage of to

get the game in front of players. Anthony was responsible for registering Xeero and the team for

these festivals and coordinating the logistics for attendance. A spreadsheet was created and

updated over the course of development that provided information on all of the upcoming

festivals and conferences that the team wanted Xeero to be a part of. PAX East, Made in Mass,

and Boston Mini-Fig were just a few of the festivals that Xeero made it to.

At the time of this writing, Xeero has been shown at the WPI booth at PAX East as one

of the four student projects as well as at its own table at the annual Made in Mass party at the

Microsoft NERD center. Gamers got a chance to try out the first couple of levels as well as

provide suggestions and feedback on what they saw. Eric, Dan, and Anthony were on hand at

both events to help facilitate the play sessions. Future festivals that the team plans on attending

include E3, Boston FIG, IndieCade, and the RPI Game Fest (see Appendix F for a larger list).

Xeero Anumba, Acito, Sessa 127

7.4. Playtesting
As with any piece of software, adequate testing is required in order to ensure the game

works properly and that it is enjoyable to players. Anthony was responsible for coordinating and

setting up playtesting sessions for Xeero.

Playtesting in Xeero unfolded in two iterations. First, the tutorial level was demoed to a

class of 25 game design students. These students played the tutorial, then answered a brief post-

play survey Eric created (see Appendix G).

Then, as an assignment for a game production class in which Dan, Eric, and Anthony

were enrolled, a more formal testing protocol was developed for the game (see Appendix H).

This protocol involved running both an in-game and a post-play survey. While testers played the

game, a test proctor would observe the session and ask players questions from the in-game

survey (see Appendix I). Then, after the tester completed the suite of levels, they would fill out a

post-play survey (see Appendix J).

With the help of playtesters, various bugs and glitches were discovered in the levels that

had been completed and were promptly fixed. One example that stands out involves some of the

doors towards the end of the second level. The doors are programmed to activate once a certain

number of switches are triggered. On rare occasions, upon triggering the switches, the door

geometry would become garbled and the door wouldn’t open. This particular level had been

played through multiple times by Eric, Dan, and Anthony on many occasions but the issue did

not surface until the game was put in the hands of testers. With a game as large in scope as

Xeero, no amount of playtesting is ever enough.

7.5. Trailers
In order to get people interested in Xeero, they have to be introduced to it and see it in

action beforehand. Trailers accomplish just that. Anthony was responsible for creating multiple

Xeero Anumba, Acito, Sessa 128

trailers over the course of development to show off at the various festivals and open houses that

Xeero was a part of. Eric captured gameplay videos using Camtasia and Anthony edited the

content together using iMovie.

At first, the early iterations of the trailer were too long. Originally, they clocked in at

around 80 seconds and contained gameplay clips that were either too long, too repetitive or dull.

Professor Moriarty provided feedback on each version of the trailer and it was tightened up and

refined into a much more polished video. By the time the project was completed, the trailer had

gone through four iterations based on the feedback and the availability of new gameplay videos.

The video ended up with a final running time of just under one minute. Trimming the fat off the

trailer so to speak really aided in creating an exciting video for gamers to watch.

Xeero Anumba, Acito, Sessa 129

8. Postmortem

 In this section, we will reflect about our individual experiences with the project. We will

discuss what worked well for us and the methods that we found were most successful.

Additionally, we will discuss some of the issues that we ran into: what went wrong and poor

decisions that we might have made. Finally, we will wrap up by discussing what we might have

done differently and what we took away from this experience.

8.1. What Went Right

8.1.1. Eric Anumba
Testing and iterative refinement were a boon for the project; by developing, testing, and

refining gameplay in Xeero, the team is able to create a game focused around the experience of

the players. During testing, we encouraged the players to be vocal about their intentions as they

played, to better understand both what the players thought they could as well as what they

wanted to do. Focusing first around managing expectations and granting affordances the players

believed they should have helped create a positive experience for players playing Xeero.

Communication between Eric and Dan was vital for developing art assets that contributed

to the cohesive whole of the game. By discussing new features, mechanics, and objects, and the

motivations behind them, the two were able to collaborate in the design of the audio experience

of Xeero.

Working in a small group also fostered a cohesive creative vision for the game. Eric, with

hands in both code and art, was able to create a game that displays a unified vision in character,

prop, and environment design. The foundational mechanics of the game -- platforming,

digitizing, and combat -- are iterated and combined over the course of the game to create new

mechanics in a way that relates to the overall experience of the game.

Xeero Anumba, Acito, Sessa 130

8.1.2. Dan Acito
Overall the group worked together really well. We were always good about

communicating with each other and making sure everyone knew where everyone else was in

terms of work. Whenever Dan would finish up some of the sound effects, he would push them

into the repository so that Eric could make sure that the sound cues were hooked into the code.

The same applied the other way around as well.

Whenever Eric added a new obstacle or mechanic to the game, he would demo it to Dan,

and would describe the general functionality and intention of his new addition. This would help

Dan get a sense of what kind of sound effect he should make, and how to time it appropriately.

These meetings helped keep the two in sync throughout the project, which ultimately increased

productivity.

8.1.3. Anthony Sessa
Despite joining the project later in development, getting up to speed on what was already

accomplished as well as what still had to be done was simple. The repository had all of the

pertinent information readily available, and anything that had to be clarified was done so by Eric

or Dan. The team worked very well together. Meetings were loose and laid back, and figuring

out logistics for the various showcases for Xeero was effortless. Having previous experience

producing a student project really helped Anthony in terms of how to go about creating timelines

and moving the project along. Most importantly, he got more experience working in a production

role and several pieces of production material he could use in the future in a portfolio for

potential employers.

Xeero Anumba, Acito, Sessa 131

8.2. What Went Wrong

8.2.1. Eric Anumba
 Overall, the project suffered from many of the issues that student projects tend to face:

improper planning and issues defining scope. Eric designed the features he wanted to implement

within the game, but it was quickly apparent that the scope of the game was larger than what the

team could reasonably complete. Eric and Dan created an approximate monthly schedule early in

their collaboration, but quickly the project missed milestones, and several times over the course

of the project, the game had to be re-scoped to be completed within the time frame of the

Master’s Project.

 Additionally, the plans the team created did not account for the time required to prepare

festivals and exhibitions. Many times over the project, development plans were foregone to

prepare for the exhibitions at which Xeero was shown.

 The initial choice of framework for the game and its engine, Microsoft XNA, played to

the disadvantage of the project. By the start of the project’s creation, Microsoft had announced

that they would discontinue the framework, and the framework was officially dropped while the

Master’s Project was in-progress. Eric had researched replacement technology, focusing on

MonoGame to allow the game to reach multiple platforms, but even the two frameworks, sharing

a nearly identical, will incur a high time cost to switch between them. Through Eric’s

preliminary tests, the framework MonoGame misses some features vital to the performance of

the game (like hardware instancing), while other large, complex parts of engine (like the shaders

used to create the game’s aesthetic) would need to be rewritten.

8.2.2. Dan Acito
The biggest mistake that Dan made throughout the development process was not being

fully organized from the beginning. By not following a strict naming convention with his .wav

Xeero Anumba, Acito, Sessa 132

files, and not categorizing the sound bank, it became difficult to keep track of information. While

this issue was remedied before too much progress had been made, it still ended up costing Dan

valuable time by having to go through and rename all of the sound files.

 For the music, Dan was severely limited by his hardware choices. Even though the Rock

Band keyboard functioned well at what it was needed to do, it fell far behind in terms of what a

professional quality MIDI controller could do. Due to the fact that it wasn’t explicitly designed

for music production, the interface was a little confusing. Certain buttons on the controller could

control many different things such as octave or velocity, but it wasn’t clear which button did

what unless Dan guessed. Since the controller is designed specifically for gameplay, the buttons

weren’t labelled for production, resulting in Dan doing a lot of guess work. While Dan was still

successful in utilizing these tools, the extra effort needed to figure out the interface was slightly

inefficient.

8.2.3. Anthony Sessa
As Eric mentioned, planning for the festivals that Xeero was showcased at often took

priority over development. The team was so focused on getting the game in front of the public

that priorities often got shifted. In addition, meetings often had to be scheduled for later at night,

as Anthony had a typical 9-5 full time job that took up a large amount of time. Meetings

occasionally had to be conducted via Skype which didn’t offer the same advantages that in

person meetings would have. Anthony also ran into trouble getting the game entered into the

PAX booth at first since the booth runners were reluctant to include Xeero two years in a row.

Xeero Anumba, Acito, Sessa 133

8.3. What we would do differently

8.3.1. Eric Anumba
 From the onset, the design and production of the game should follow a more rigid

methodology. Most of the design of Xeero occurred after much of the core functionality and

visual style was implemented, restricting the potential gameplay and story options, and forcing

the design of the game around the “computer” motif. Initially, the game’s experience goals and

target audience should be more clearly defined, and the game should be more thoroughly

designed and more lightly prototyped to allow for experimentation in finding mechanics that

would fulfill the aforementioned goals and meet the needs of the audience.

Over the development of the game, several features were implemented that eventually did

not make an appearance in the first installment of the game (like other digitizable objects, bombs

and unstable blocks). In later projects, the production of the game should follow a formal

methodology to define features to implement and milestones to reach to help minimize

unnecessary development and prioritize important functionality.

8.3.2. Dan Acito
If within the budget, Dan would have invested in some better hardware to utilize for the

music production. While the cables and audio interface that Dan borrowed were in pristine

condition, they did not do justice to the low quality keyboard controller that Dan was using.

Given Dan’s limitations, the music quality turned out quite good, but it easily could have been

much better with higher quality tools.

Now that Dan has had some experience using asset lists for sound design, he knows that

organization is extremely important. In future projects, not only will he follow recognizable

naming conventions, but he also will separate sounds into different categories so that they are

easier to keep track of.

Xeero Anumba, Acito, Sessa 134

8.3.3. Anthony Sessa
Anthony would have liked to have gotten into contact with Eric and Dan a little earlier in

the summer than he did. This would have allowed him to get up to speed a little earlier and make

the first couple of weeks planning out the first semester a little easier. In addition, while

OpenProj (a free to use application similar to Microsoft Project) was suitable for planning out

production schedules, Anthony would have liked to have gotten his hands on a license for

Microsoft Project since the far majority of companies in the industry use it in one form or

another and being able to show that on his resume would have been a huge plus. Finally,

Anthony wanted to budget more time for the team to prepare a Xeero presentation for the

MassDigi Game Challenge in Boston. The team was so focused on furthering the development of

the game and adding content that the deadline for the contest snuck up. The game was just a

couple of extra days away from being ready to show at the contest and being able to get in there

would have been a nice accolade for the team.

Xeero Anumba, Acito, Sessa 135

9. Conclusion
For this project, three team members, Eric Anumba, Daniel Acito, and Anthony Sessa,

worked to refine the game Xeero as their IMGD Master’s Project. The game, an action-puzzle-

platformer developed for the PC, will eventually be commercially released in episodic

installments, and has been exhibited at PAX East and other local Massachusetts conventions.

The game is designed for fans of 3D action and platforming games, and seeks to evoke a sense of

satisfaction of the player through two essential moments of gameplay: acquiring new, exciting

abilities and the experiencing the interplay of different of game mechanics to deftly accomplish a

goal.

In developing Xeero, a game engine was developed that implements functionality for

required the core of the game: rendering, physics, audio, content management, particle systems,

and GUI creation, and also contains a level editor. Additionally, an art style, design strategy, and

audio creation methodology was created for Xeero. These foundations can be used to rapidly

develop new content for the game.

The game is broken into six planned parts, and this Master’s Project is designed to build

and refine the first episode. For the future, the remaining installments need to be developed,

tested, and released.

Xeero Anumba, Acito, Sessa 136

Works Cited
Acev. "Review: Tales of Symphonia (GCN)." Business in Mayhem. 30 July 2012. Web. 27 Apr.

2015. <http://dowase.net/blog/?p=374>.

Bastion. Warner Bros. Interactive Entertainment. 20 Jul. 2011. Video game.

Bayonetta. Nintendo. 5 Jan. 2010. Video game.

Birkhead, Mike. "Depth vs Breadth in Combat Design: An Interactive Visualization." Flark

Design. 25 May 2011. Web. <http://www.flarkminator.com/2011/05/25/depth-vs-

breadth-in-combat-design-an-interactive-visualization/>.

Birkhead, Mike. "Opinion: What Makes Combat Fun." Opinion: What Makes Combat Fun.

Gamasutra, 21 Sept. 2011. Web.

<http://www.gamasutra.com/view/news/37356/Opinion_What_Makes_Combat_Fun.php

>.

C., Radford. "Bastion Review (Xbox, PC) - Page 2 of 2 - Lazy Tech Guys." Lazy Tech Guys. 22

Aug. 2011. Web.<http://lazytechguys.com/reviews/bastion-review-xbox-pc/2>.

Chambers. "Dust: An Elysian Tail on PS4 Is... Adequate." Dust: An Elysian Tail. Game Skinny,

29 Oct. 2014. Web. 27 Apr. 2015. <http://www.gameskinny.com/7qz3d/dust-an-elysian-

tail-on-ps4-is-adequate>.

Darksiders. Nordic Games. 5 Jan. 2010. Video game.

Dust: An Elysian Tail. Microsoft Studios. 15 Aug. 2012. Video game.

Francis, Geoffrey. Cockos. Reaper User Guide v. 4.76. Dec 2014. Web.

<http://dl.reaper.fm/userguide/ReaperUserGuide476C.pdf>

"Getting Started with XACT." Getting Started with XACT. Microsoft Corporation. Web.

<https://msdn.microsoft.com/en-us/library/ff827592.aspx>.

God of War. Sony Computer Entertainment. 22 Mar. 2005. Video game.

Hruska, Joel. "Microsoft Kills Xbox 360/PC Cross-platform Development, Declares DirectX “no

Longer Evolving” | ExtremeTech." ExtremeTech. 1 Feb. 2013. Web.

<http://www.extremetech.com/gaming/147289-microsoft-kills-xbox-360pc-cross-

platform-development-declares-directx-no-longer-evolving>.

 Jackson, Simon. "XNA Is No More, as the Phoenix Rises from the Ashes." Dark Genesis. 17

Mar. 2015. Web. 27 Apr. 2015. <http://darkgenesis.zenithmoon.com/xna-is-no-more-as-

the-phoenix-rises-from-the-ashes/>.

Xeero Anumba, Acito, Sessa 137

JoouChiyanmon. Cyberspace Move. Digital image. DeviantArt. Web.

JusticeVonBrandt. Cyberspace. Digital image. DeviantArt. Web. Levin, Raph. “Inconsolata.”

Web.

Kingdom Hearts II. Square Enix. 22 Dec. 2005. Video game.

Ninjatic. Floating Ruins. Digital image. DeviantArt. Web.

Northernlion. “Let's Play - Bastion - Episode 1 [The Rippling Walls]” Online video

clip. YouTube. Google, 9 Dec. 2011. Web.

Nubik. "Spritefont 2 Texture Tool." Web.

Portal. Valve Corporation. 9 Oct. 2007. Video game.

"Portal 2 Puzzle Maker: Reflection Cube." Valve Developer Community. Valve Corporation.

Web.

<https://developer.valvesoftware.com/wiki/Portal_2_Puzzle_Maker/Reflection_Cube>.

"Real-Time Physics Simulation." Bullet Physics Library. RealTime Physics Simulation. Web.

<http://bulletphysics.org/>.

RENMIRI. "Final Fantasy X - Spira's Tales." Final Fantasy X - Spira's Tales. 20 Jan. 2006.

Web. 27 Apr. 2015. <http://spirablog.blogspot.com/2006/01/quidditch-versus-

blitzball.html>.

Stolpe, Philip. "About." About. MonoGame. Web. <http://www.monogame.net/about/>.

Tales of Symphonia. Namco. 29 Aug. 2003. Video game. Thomas, Frank, and Ollie

Johnston. The Illusion of Life: Disney Animation. New York: Disney Editions, 1995.

Print.

Traks, Andres. "BulletSharp." BulletSharp. Web. 27 Apr. 2015.

<http://andrestraks.github.io/BulletSharp/>.

Trine. Nobilis. 3 Jul. 2009. Video game.

TypoCity. Cyberspace. Digital image. DeviantArt. Web.

Typodermic Fonts. “Quadrangle.” Web.

venomblade891. “PCSX2- Kingdom Hearts II Final Mix (English Patched) Lingering Sentiment

Battle [Terra's Armor].” Online video clip. YouTube. Google, 11 Sep. 2011. Web.

WastedMeerkat. “Kingdom Hearts II - Final Form Training Route” Online video clip. YouTube.

Google, 25 Sep. 2011. Web.

Xeero Anumba, Acito, Sessa 138

Yablonski, Kirby. "Darksiders II (Wii U) Review." Canadian Online Gamers Darksiders II Wii

U Review Comments. Canadian Online Gamers Network. Web. 27 Apr. 2015.

<http://canadianonlinegamers.com/review/darksiders-ii-wii-u-review/>.

Xeero Anumba, Acito, Sessa 139

Appendix A: Initial Game Metrics
Debugger is a platformer and is focused around moving the character, D, around the world, so
every object in the game must be built around D’s size.

D Unit
Every object in the game is sized
with the “D Unit,” a size directly
related to D’s proportions. The
character is about 1 unit wide and
deep, and 2 units tall.

Maps
Maps in this game are broken up into nodes
(LevelNode) that contain the various objects that D
can interact with.
Each LevelNode is 3x3x4 D units (four units tall), and
each node is flush with each of its adjacent nodes.

Node Positioning
For map building, there are specific areas of the node
assigned to specific types of objects. This area is
represented by the NodePositioning enumeration that
is present in all WorldObjects.

Xeero Anumba, Acito, Sessa 140

NodePositioning can either take on “Floor,” “Center,” or “Other.”

An object using Floor Positioning takes up the bottom nine
square blocks of a node. Floor Positioning is used mostly
by Platform objects, but isn’t restricted to just those
objects (we may want to include an obstacle object that is
placed where platforms usually go).

An object using Center Positioning

takes the remainder of the node; Center Positioning is used
sporadically by DigitizableObjects, Obstacles, and
Miscellaneous objects.

Objects using “Other” don’t take up any space on the node,
and there can be as many of these types of objects on a
node as needed.

Other Positioning is used mostly by objects that don’t have anything physical appear in the
world, like checkpoints, finish points, or DO Spawn Points, or objects that don’t use any kind of
collision detection, like scenery objects.
Objects using either of these positioning schemes do not need to take up all of their allotted
space, and this information is not used for collision detection. This is solely used for map
building, so the level parser knows the limit of objects in a node, and can throw errors as
needed.

Movement Metrics
The player is assumed to be able to jump up at least as high as the top of the Block DO (so it
can be used to move up a level), and can clear three empty nodes space. The player can also
double jump, so the player must be able to jump 1.75 units up and 5.25 units across.
The two things that affect these distances are jump velocity (which relies entirely on gravity) and
run speed. If we fix a desired run speed (like 2-3 units/second), then the world’s gravity
becomes a function of the run speed, jump height, and jump distance.

Map Coordinates
When maps are being built, the parser reads each object in Node coordinates, where each point
(x,y,z) refers to a node to address in a 3D grid. X, Y, Z are integers, and a node at (0,0,0) is
directly adjacent to (1,0,0).
Up is defined as <0,1,0>, and the game uses the right-hand coordinate system.

Xeero Anumba, Acito, Sessa 141

Appendix B: Xeero Promotional Poster

Xeero Anumba, Acito, Sessa 142

Appendix C: Sound List

Xeero Anumba, Acito, Sessa 143

Xeero Anumba, Acito, Sessa 144

Xeero Anumba, Acito, Sessa 145

Appendix D: Sample Gantt Chart

Xeero Anumba, Acito, Sessa 146

Appendix E: Sample Meeting Minutes

Xeero Anumba, Acito, Sessa 147

Appendix F: Festival Schedule

Xeero Anumba, Acito, Sessa 148

Appendix G: Xeero Test Protocol #1 – Post-Play Survey

Xeero Anumba, Acito, Sessa 149

Xeero Anumba, Acito, Sessa 150

Appendix H: Xeero Test Protocol #2 – Overview
Testing Protocol for Xeero
Iteration 3
IMGD 5400
Eric Anumba, Anthony Sessa, Dan Acito, Dan Manzo, Caitlin Malone

Testing summary
These tests are designed for the 3D action-puzzle-platformer Xeero in order to evaluate

the clarity of instruction, pacing of levels, and overall difficulty. These tests are to be conducted
using playtesters who are new to the game in order to evaluate their initial reactions and their
ability to complete the first few levels.

The following further details the aspect of the game are to be tested:

Instruction

• How clear are instructions/tutorial messages?
• Can they describe how mechanics work after they have been presented with the

instruction?
• When does it click/what would they have liked to have seen when they were learning it?
• Are objectives within levels clear? Do they find themselves getting stuck anywhere?

Level Pacing
• Are levels too long? Do they feel like they need breaks within levels?
• How do they find the length of individual encounters? Any particular encounters that feel

too long or short?
Difficulty

• Do they find themselves retrying jumps “too often?”
• Do they find themselves frequently retrying combat encounters?
• Are the checkpoints spaced close enough so players can quickly get back to retrying the

area at which they failed?

Protocol Details
Materials Needed & Controls

• In-game questionnaire: This is to be filled out by a data collector who watched the
players move through the levels and asked questions as they reached key points in the
level to gauge their impressions about specific game details.

• Post-play survey: This is to be filled out by the player after the complete the game to
gauge their overall impressions with the game.

• Post-play video data: As the players play the game, the game will collect stats and record
a video of the player moving through the levels to be reviewed after the test has
concluded.

• Location: All test players will play in the IMGD Zoo lab.
• Testing machines: The computers needed are already present in the Zoo lab, and are

Windows 7 machines. No outside software will be used during our tests. The players
have the option of using a keyboard and mouse for input, or an Xbox controller
(connected to the machine by USB). Note: We had access to only one Xbox controller. In

Xeero Anumba, Acito, Sessa 151

addition, we did not have access to headphones and the computers in the Zoo lab do not
have speakers, so sound was not evaluated.

• Build: All playtesters are provided the same build of the game.
• Food: All playtesters will be rewarded with pizza.
• People: Testing can’t be conducted without playtesters.

Game Content

This protocol tests the tutorial level (Program 1-1), the Hub (an overworld level), and the
second level (Program 1-2), comprising about 40-60 minutes of gameplay.

Test Walkthrough

1. Launch game build on lab machine
2. Playtester chooses control scheme (keyboard or gamepad)
3. Playtester plays through Program 1-1, the Hub, and Program 1-2

a. A team member administers the in-game questionnaire as the playtester plays
4. Playtester fills out post-play survey (scale and short answer)

 . A team member points the tester to the survey upon completion of the test
5. Playtester eats free food
6. Team reviews gameplay videos

 . The game build records all play sessions so further review can be conducted later on

In-Game Questionnaire
 Levels are broken up based on the discrete obstacles they contain. At key points, data
collectors observing the players will ask questions about a specific mechanic, combat sequence,
or puzzle. Some general types of questions asked include:

• Can players describe the objective of a particular puzzle?
• Can players describe the purpose of a game mechanic?
• Did the puzzle or combat section seem too long, too short, too hard, or too easy?

Post-Play Survey questions
 Likert/scaled answers (6 degrees)

1. Combat - How often did you find yourself retrying combat encounters? / How often did
you complete combat encounters on the first try?

2. Puzzle solving - Are objectives within levels clear to you?
3. Instruction Clarity - How clear were instructions/tutorial messages?

a. Agree/disagree: Tutorial messages were helpful. / Instructions were clear.
4. Level Duration - How would you rate the duration of the level?

 Open questions
1. What is your favorite genre of games?
2. How would you describe the game to someone who has never played before?
3. Platforming - Did you find yourself retrying to jump “too often?”
4. Puzzle Solving - Did you find yourself getting stuck anywhere?

Xeero Anumba, Acito, Sessa 152

5. Combat - How did you find the length of individual encounters? Any particular ones that
felt too long or short?

6. Instruction Clarity - Any instructions you didn’t understand?
7. Instruction Clarity - Can you describe how mechanics work after you were presented

with the instructions?
8. Did you want to do something the game wouldn’t let you?

Xeero Anumba, Acito, Sessa 153

Appendix I: Xeero Test Protocol #2 – In-Game Survey

Xeero Playtest

● Encourage the players to talk out loud. What are they trying to do? What are their
impressions? Why are they making the decisions they’re making?

● The answer to some of these questions may be incredibly obvious to the players, but
we’re trying to gauge their comprehension.

● Remind them that “I don’t know” is an acceptable answer to any question.

Tutorial (Program 1-1)
The majority of the questions here are about gauging the player’s understanding for the rules of
the game, and to see how effective the tutorial messages are at explaining them.

First Breakpoint
After seeing the info page for the breakpoint and touching it, ask the player to explain the
purpose of the breakpoint. Can they describe how they think it works?

First Long Jump
How many attempts did they make before they crossed the long gap?

Ask the player to explain the process of crossing a large gap like that if they encounter it again?
(The purpose to ensure they understand why they made the jump. This part is designed to
teach them how to time the double jump for maximum distance)

Split Path
Which path did they attempt first? Path with the block or the path to the chip?

Xeero Anumba, Acito, Sessa 154

If they chose the block path, ask them why (after they reach the chip path). Did they not see the
other path or did they choose to ignore it?

Digitizing the Block
After gaining the DigitizeBlock() upgrade, ask the player to explain what they think the tutorial
prompt means.

After returning to the platform, ask the player to explain again how they think Digitizing works.
Ask them if the prompt helped their understanding of the mechanic.

Double Wide Gap
How many times did they attempt to cross the gap?

How many attempts before they placed the Block below them?

Facing Malware
Did they try to use dodging to avoid Malware?

After they escape the malware ask them: was it immediately obvious that they needed to run?

Xeero Anumba, Acito, Sessa 155

Dodging Turrets
How many attempts before they passed the turrets? Did they use dodging? Jumping?

Ask them how they would rate the difficulty of that section.

Too Easy 1 2 3 4 5 6 Too Difficult

Hub

Did they try going forward or backwards off of the first island? If backward, ask them why they
choose that path.

Did they go left or right? Ask them why.

Program 1-2
These questions are geared towards gauging the difficulty and pacing of the level.

Second Gate
As the approach the second gate, ask them to explain what they are trying to do? What is their
objective at that point?

How many attempts did it take them to complete the combat encounter?

Did they use any of the archives in combat?

Did they use the block object in combat?

Xeero Anumba, Acito, Sessa 156

How would they rate the difficulty of the encounter?

Too Easy 1 2 3 4 5 6 Too Difficult

How would they rate the length of the encounter?

Too Short 1 2 3 4 5 6 Too Long

Falling Platforms
How many attempts did they make to cross all of the platforms?

How difficult would they rate the section?

Too Easy 1 2 3 4 5 6 Too Difficult

Block Countering
How many attempts did they make at countering before they successfully countered?

Falling Platform Fight
 How many attempts did they make?

 How would they rate the difficulty of the encounter?

Too Easy 1 2 3 4 5 6 Too Difficult

How would they rate the length of the encounter?

Too Short 1 2 3 4 5 6 Too Long

Did they block or dodge during this encounter?

Xeero Anumba, Acito, Sessa 157

Did they counter any attacks?

Did they use the block object in combat during this encounter?

Blocking at the Gate
How many attempts did they make before they reached the side with the turrets?

How many times did they fail to counter an attack (by blocking too soon or too late and by being
hit)?

Did they attempt the combat encounter or skip it? Did they partially attempt the fight before
skipping it or did they die and then decide to skip it?

Linked Hit Switches
After they have activated the spawners, ask them to explain how these switches work. Do they
understand that the switches are linked?

Final Puzzle
Did they try going left (and up) or right (and across) first? Ask them why they chose the path
they did?

How many times did they attempt to Digitize the Block at the Falling Platform?

Xeero Anumba, Acito, Sessa 158

Before leaving, did they immediately try to get the block a second time? If so, ask them why.

How many deaths before they attempted to Digitize the Block below themselves at the second
switch?

How many deaths before they successfully hit the switch?

Before leaving, did they immediately try to get the Block a second time? If so, ask them why (if
they didn’t at the previous block).

How would they rate the difficulty of the final encounter?

Too Easy 1 2 3 4 5 6 Too Difficult

How would they rate the duration of the final encounter?

Too Short 1 2 3 4 5 6 Too Long

In combat, did they:

Block Counter Dodge Use the block object

How many times did they attempt the final encounter?

Ask them if they were developing a strategy to fight the enemies (like going after the bigger
ones first, mashing buttons, etc.)?

Extra Notes/Observations

Xeero Anumba, Acito, Sessa 159

Appendix J: Xeero Test Protocol #2 – Post-Play
Questionnaire

Xeero Anumba, Acito, Sessa 160

	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	2. Background
	2.1. Concept
	2.2. Experience Goal and Audience
	2.3. Concept Origin
	2.3.1. Origin at UK and Entering WPI
	2.3.2. Forming the Team - Dan and Audio
	2.3.3. Forming the Team - Anthony and Production

	3. Design
	3.1. Game Overview
	3.2. Inspirations
	3.3. Story
	3.3.1. Setting
	3.3.2. Characters
	Xeero
	(Currently Unnamed Program)
	The Alpha Virus

	3.3.3. Plot

	3.4. Level Structure
	3.4.1. Overview
	3.4.2. Programs
	3.4.3. Hubs
	3.4.4. Breakdown of Hub 1
	3.4.5. Boss Fights
	3.4.6. Boss Fight 1 - Beta Virus - Debris Construct

	3.5. Mechanics
	3.5.1. Motivations
	3.5.2. Running and Jumping
	3.5.3. Digitizing and Materializing
	3.5.4. Attacking and Defending
	3.5.5. Reaper
	Offensive Abilities
	Defensive Abilities
	Combat and Intentions

	3.6. Controls
	3.7. Objects
	3.7.1. Platforms
	3.7.2. Small Platforms
	3.7.3. Falling Platforms
	3.7.4. Fading Platforms
	3.7.5. Walls
	3.7.6. Breakpoints
	3.7.7. Leap Targets
	3.7.8. Digitizable Objects
	Blocks
	Upgrade Chips

	3.7.9. Hazards and Obstacles
	Gates
	Bit Slicers
	Motion-Sensing Compressors
	Corruption Walls
	Turrets
	Purge Gates

	3.7.10. Switches
	Hit Switch
	Timed Hit Switches
	Buttons
	Block Switches

	3.7.11. Corrupted Objects
	3.7.12. Enemies
	Spider Virus
	Soldier Virus

	3.7.13. Reward Objects
	BitBucks
	Health Data
	Archives
	Big Archives
	Vending Machines

	3.8. HUD
	3.8.1. Health Bar
	3.8.2. Low Health Indicator
	3.8.3. Character Portrait
	3.8.4. Digitize Slots
	3.8.5. Combo Meter
	3.8.6. BitBucks Display
	3.8.7. Enemy Health Bars

	3.9. Level Editor
	3.9.1. Motivations
	3.9.2. Programmer
	3.9.3. Linking
	3.9.4. Mockup Objects
	3.9.5. Level Sharing

	3.10. Tutorials and Help
	3.10.1. Tutorial Equations
	3.10.2. Info Pages
	3.10.3. Revamped Tutorial Tooltips
	3.10.4. Loading Tips

	4. Visual Art
	4.1. Introduction
	4.2. Style - 3D
	4.3. Modeling
	4.4. Color Schemes
	4.5. Lighting and Shading
	4.6. Animation
	4.7. Process - 3D
	4.7.1. Software Used
	4.7.2. Characters and Props
	Concept and Sketches
	Modeling
	Sculpting
	Texturing
	Rigging and Skinning
	Animation

	4.7.3. Debris Model

	4.8. Style - 2D
	4.9. Environment
	4.10. Objects
	4.11. Promotional Artwork

	5. Audio
	5.1. Sound Effects
	5.2. Music

	6. Technical Development
	6.1. Framework and Platforms
	6.2. Building the Engine
	6.2.1. WorldObjects
	Behaviors
	Interfaces
	Animators

	6.2.2. GameWorlds
	Physics Engine
	Rendering Engine

	6.2.3. Content Management
	6.2.4. Animation Controllers
	6.2.5. Lua Scripting
	6.2.6. Play Recording
	6.2.7. Level Editor

	7. Project Management
	7.1. Production
	7.2. Scheduling/Team Meetings
	7.2.1. Team
	7.2.2. Prep
	7.2.3. Advisor

	7.3. Festivals
	7.4. Playtesting
	7.5. Trailers

	8. Postmortem
	8.1. What Went Right
	8.1.1. Eric Anumba
	8.1.2. Dan Acito
	8.1.3. Anthony Sessa

	8.2. What Went Wrong
	8.2.1. Eric Anumba
	8.2.2. Dan Acito
	8.2.3. Anthony Sessa

	8.3. What we would do differently
	8.3.1. Eric Anumba
	8.3.2. Dan Acito
	8.3.3. Anthony Sessa

	9. Conclusion
	Works Cited
	Appendix A: Initial Game Metrics
	D Unit
	Maps
	Node Positioning
	Movement Metrics
	Map Coordinates
	Appendix B: Xeero Promotional Poster
	Appendix C: Sound List
	Appendix D: Sample Gantt Chart
	Appendix E: Sample Meeting Minutes
	Appendix F: Festival Schedule
	Appendix G: Xeero Test Protocol #1 – Post-Play Survey
	Appendix H: Xeero Test Protocol #2 – Overview
	Testing summary
	Protocol Details
	Appendix I: Xeero Test Protocol #2 – In-Game Survey
	Tutorial (Program 1-1)
	First Breakpoint
	First Long Jump
	Split Path
	Digitizing the Block
	Double Wide Gap
	Facing Malware
	Dodging Turrets

	Program 1-2
	Second Gate
	Falling Platforms
	Block Countering
	Falling Platform Fight
	Blocking at the Gate
	Linked Hit Switches
	Final Puzzle
	Extra Notes/Observations

	Appendix J: Xeero Test Protocol #2 – Post-Play Questionnaire

