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Abstract 
 

Intelligent tutoring systems rely on student modeling to understand student behavior. The result 

of student modeling can provide assessment for student knowledge, estimation of student‟s 

current affective states (ie boredom, confusion, concentration, frustration, etc), prediction of 

student performance, and suggestion of the next tutoring steps. 

There are three focuses of this dissertation. The first focus is on better predicting student 

performance by adding more information, such as student identity and information about how 

many assistance students needed. The second focus is to analyze different performance and 

feature set for modeling student short-term knowledge and longer-term knowledge. The third 

focus is on improving the affect detectors by adding more features. 

In this dissertation I make contributions to the field of data mining as well as educational research. 

I demonstrate novel Bayesian networks for student modeling, and also compared them with each 

other. This work contributes to educational research by broadening the task of analyzing student 

knowledge to student knowledge retention, which is a much more important and interesting 

question for researchers to look at. Additionally, I showed a set of new useful features as well as 

how to effectively use these features in real models. For instance, in Chapter 5, I showed that the 

feature of the number of different days a students has worked on a skill is a more predictive 

feature for knowledge retention. These features themselves are not a contribution to data mining 

so much as they are to education research more broadly, which can used by other educational 

researchers or tutoring systems. 
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Chapter 1: Introduction 
 

In this dissertation, several analysis and models that I have tried to improve student modeling are 

described. The main question is how various factors influence student performance. In Intelligent 

Tutoring Systems, the most common information that is gathered from students is student 

performances, student identity, skill identity. In my work, I used various modeling techniques to 

analyze the influence of different aspects of this information. Bayesian Networks, as a major 

method, is optimal in capture the temporal nature when modeling changing student knowledge. 

Other methods I used include regression models, which are good at integrating different factors to 

make predictions; tabling models, which are great in terms of time efficiency. The tutoring 

system we gathering our data is the ASSISTments platform, in which middle schools students 

practicing math problems in an environment that multiple hints and attempts might be allowed. 

 This dissertation is organized into eight chapters. Chapter 2 and 3 shows different 

attempts in improving student models by utilizing new factors: student identity and the assistance 

information. The assessments of models were done by compare the predicting accuracy of student 

performances. Most of the models made the assumption that there is an unobservable variable 

(latent) that affects performance: student knowledge, and that the accuracy of predicting student 

performance indicates the accuracy of estimate student knowledge. Chapter 4 broadening the task 

of estimate student current knowledge and look into the question of estimate student long term 

knowledge. Regression models were used to quickly grab the features that might be important. 

Chapter 5, is the experiments and analysis about affect detectors, focuses on improving current 

model to estimate another usually unobservable variable: student affective states. 
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Chapter 2: Individualization for Modeling Student Knowledge 
 

2.1 The Student Skill model 

One of the most popular methods for modeling students‟ knowledge is Corbett and Anderson‟s 

Bayesian Knowledge Tracing (KT) model (Corbett & Anderson, 1995). The original Knowledge 

Tracing model does not allow for individualization. Recently, Pardos and Heffernan (Pardos & 

Heffernan, Modeling Individualization in a Bayesian Networks Implementation of Knowledge 

Tracing, 2010) showed that more information about students‟ prior knowledge can help build a 

better fitting model and provide a more accurate prediction of student data. Our goal was to 

further explore the individualization of student parameters in order to allow the Bayesian network 

to keep track of each of the four parameters per student: prior knowledge, guess, slip and learning. 

We proposed a new Bayesian network model called the Student Skill model (SS), and evaluated it 

in comparison with the traditional knowledge tracing model in both simulated and real world 

experiments. The new model predicts student responses better than the standard knowledge 

tracing model when the number of students and the number of skills are large. 

This chapter has been published as a short paper at the following venue: 

Wang, Y. & Heffernan, N. (2012). The Student Skill Model. In Proceedings of the 11th 

International Conference on Intelligent Tutoring Systems. Springer. pp 399-404. (Wang & 

Heffernan, 2012) 

Introduction 

One of the most popular methods for modeling students‟ knowledge is Corbett and Anderson‟s 

(Corbett & Anderson, 1995) Bayesian Knowledge Tracing model. The original Knowledge 

Tracing model does not allow for individualization. Several researchers have tried to show the 

power of individualization. Corbett and Andersen presented a method to individualize students‟ 
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parameters with a two phase process and reported mixed results (Corbett & Bhatnagar, 1997). 

Recently, Pardos and Heffernan (Pardos & Heffernan, Modeling Individualization in a Bayesian 

Networks Implementation of Knowledge Tracing, 2010) showed that by a single process 

Bayesian network model: the prior per student model, more information about students‟ prior 

knowledge can help better fit model and provide more accurate prediction of student data. The 

result is inspiring; however, the author only looked into the students‟ prior knowledge and didn‟t 

extend the individualization to the other aspects of student knowledge, such as guess rate or 

learning rate. Pardos and Heffernan (Pardos & Heffernan, 2011) also tried a method where they 

trained all four parameters per student in a pre-process, then took those values and put them into a 

per skill model to learn how the user parameters interacted with the skill. This method requires a 

two phase data process, which is complicated to use in real-world. 

Our goal was to further explore the individualization of student parameters in order to allow the 

Bayesian network to keep track of all our parameters per student as well as skill specific 

parameters simultaneously. We proposed a new Bayesian network model called the Student Skill 

model (SS), and evaluated it in comparison to the traditional Knowledge Tracing model (KT) in 

both simulation and real data experiments. The new model predicts student responses better than 

standard knowledge tracing model when the number of students and the number of skills are large. 

The Student Skill Model 

The Knowledge Tracing model assumes that all students have the same probability of knowing a 

particular skill at their first opportunity, or guess/slip in one skill, or learning a particular skill 

even though students seem likely differ in these aspects. Our goal was to add individualization 

into the original Knowledge Tracing model. 
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The new model we proposed in this paper is called the Student Skill model. It can learn four 

student parameters and four skill parameters simultaneously in a single phase process. The model 

is shown in Fig. 2.1.1. 

 

 

Fig. 2.1.1. The Student Skill model 

The lowest two levels of this model are the same as the original Knowledge Tracing model 

(nodes K1~Kn and Q1~Qn in Fig. 2.1.1). The Student Skill model adds upper levels to represent 

the student and skill information and their interaction. We used two multinomial nodes to 

represent the identity of each student (node St in Fig.2.1.1) and each skill (node Sk in Fig. 2.1.1). 

Instead of pointing the student identity and the skill identity nodes directly to the knowledge 
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nodes, which would result in a huge number of parameters, we added a level of nodes to represent 

the four student parameters (node StP, StG, StS and StL in Fig. 2.1.1) and the four skill 

parameters (node SkP, SkG, SkS and SkL in Fig. 2.1.1). Those parameter nodes are binary nodes 

that represent the high/low level of the corresponding parameters. For example, if the StP node is 

1 for a student, then the student has high level of prior knowledge, and if the StP node is 0 for a 

student, means the student has low level of prior knowledge. The next level uses conditional 

probability tables to combines the influence of the student parameters and the skill parameters 

and generates the four standard Knowledge Tracing parameters (node P, G, S and L in Fig. 2.1.1) 

to be used in the lowest two levels. 

The number of parameters in this model for n students and m skills can be computed as:    

     , while the number of parameters in the Knowledge Tracing model is:   . The cost of 

individualization is the additional       parameters. 

Model Evaluation 

The model is evaluated in both simulated and real data experiments. In our experiments, we used 

the Bayes Net Toolbox for Matlab developed by Murphy (Murphy, 2001) to implement the 

Bayesian network student models and the Expectation Maximization (EM) algorithm to fit the 

model parameters to the dataset. We choose initial parameters for each skill in Knowledge 

Tracing as follows: initial knowledge = 0.5, learning = 0.1, guess = 0.1, slip = 0.1. 

Simulation Experiments 

Methodology.  

To evaluate the ability of the Student Skill model to function properly, in this experiment, we 

generated data from the Student Skill model and compared the prediction accuracy with the 

Knowledge Tracing model. The data records generated in the simulation represent student 
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performances, with 1 representing correct and 0 representing incorrect. To simulate the random 

noise in the real data, we randomly flipped over 1% of the student performance data. 

To split the training and testing data set, for each student, we randomly selected half of the skills 

data and put them into a training set. The remaining data went to the testing set. Both the 

Knowledge Tracing model and Student Skill model were trained and tested on the same dataset. 

A sequence of performances of given students and skills were predicted by both of these models. 

Results.  

Prediction accuracy is the selected metric for evaluating the results. In one simulation, the number 

of skills was set at 30 while the number of students was changed from 5 to 100 to observe the 

influence the number of student had on SS and KT respectively. Similarly, in another simulation, 

the number of students was set to be 30 while the number of skills was changed. 

We observed that, in situations with a small number of students as well as those with a small 

number of skills, the Knowledge Tracing model outperformed the Student Skill model. However, 

when the number of students and the number of skills were increased, the performance of the 

Student Skill model improved and eventually exceeded the Knowledge Tracing model. The 

reason for this trend could be the fact that the Student Skill model contains more parameters than 

the Knowledge Tracing model, and with fewer data points, the model behaves less reliably. 

We also compared the Student Skill model and the Knowledge Tracing model under different 

student parameter variance. The number of students and the number of skills were both set to 40, 

and the number of data points per student per skill was set to 10. The student variance was 

controlled by the real parameters used to generate simulated data. When the student variance was 

0, all students shared the same parameters. We observed that the Student Skill model performs 

worse when there is no variance in student parameters. When the students are highly diverse, the 

Student Skill model outperformed the Knowledge Tracing model.  
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Real Data Experiments 

One of the dangers of relying on simulation experiments is that the dataset may not reflect real-

world conditions. Without evaluation using real data, the success of the new model during 

simulation could simply be caused by the data being generated from this model. To further 

evaluate the Student Skill model, we applied it to real datasets and again compared its 

performance with the Knowledge Tracing model. 

Dataset.  

The data used in the analysis presented here came from the ASSISTments platform, a freely 

available web-based tutoring system for 4th through 10th grade mathematics. We randomly 

pulled out the data of one hundred 12-14 year old 8th grade students and fifty skills from 

September 2010 to September 2011 school year. There are 53,450 total problem logs in the 

dataset. 

Methodology.  

The dataset was randomly split into four bins by student and skill in order to perform a four-fold 

cross-validation of the predictions and increase the reliability of the results. For each student, we 

made a list of the skills the student had seen and split that list randomly into four bins, placing all 

data for that student and that skill into the respective bin. There were four rounds of training and 

testing, during each round a different bin served as the test set, and the data from the remaining 

three bins served as the training set. Again, both the Knowledge Tracing model and the Student 

Skill model were trained and tested on the same dataset. A sequence of performances of the given 

students and skills were predicted by both of these models. 

Results.  
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The accuracy of the prediction was evaluated in terms of the Root Mean Squared Error (RMSE). 

A lower value means higher accuracy. The cross-validation results are shown in Table 2.1.1. 

Table 2.1.1. RMSE results of KT vs SS. 

Fold ID SS KT P value Student Level p value 

Fold1 0.4017 0.4055 0.0432 0.0404 

Fold2 0.4194 0.4385 0.0459 0.0365 

Fold3 0.4144 0.4348 0.0477 0.0451 

Fold4 0.4441 0.4538 0.0420 0.0406 

average 0.4199 0.4331 -- -- 

 

To test the reliability of the four folds experiment, we did a paired T test for each fold as well as 

the result of all the folds. The p value that compares the final RMSE of the SS model and the KT 

model of the four folds is 0.0439. The p value for each individual fold is shown in the fourth 

column. Our experiment shows that the difference between SS and KT is statistically significant, 

and the average RMSE shows that SS is more accurate than KT under our experimental 

conditions. We also did reliability analysis by computing RMSE for each student to account for 

the non-independence of actions within each student‟s dataset, and then compared each pair of 

models using a two tailed paired t-test. The Student Level p values are reported in the last column. 

All the results are statistically reliable. 

Discussion and Future work 

In this paper, we built a new Bayesian network model for modeling individual student parameters 

called the Student Skill model and compared it with the knowledge tracing model in both 

simulation and real data experiments.  

In our experiments, we found that the Student Skill model is not always better than the 

Knowledge Tracing model. Under simulated conditions, we found that the new model is 



9 
 

generally more accurate when the amount of students and skills are large. We are interested in 

other features that can indicate which model works better under what situations, in the hope that 

these two models can be combined in order to utilize both models‟ advantages. 

Contribution 

Several researchers have tried to show the power of individualization. Corbett and Anderson 

presented a method to individualize students‟ parameters with a two phase process: first run 

Knowledge Tracing on all the students and then run a separate regression to learn a set of slip, 

guess, learning and prior parameters per students. Pardos and Heffernan (Pardos & Heffernan, 

Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing, 2010) 

explored the individualized student prior, but did not learn all of the student parameters and skill 

parameters in one single model. We presented the SS model, which is elegant in accounting for 

individual differences (of learning rate, prior knowledge and guess and slip rates). Our simulation 

showed that we could reliably fit such a model. The simulation showed plausible results, such as 

that the SS model is better if more variation per student. 

Our contribution is in presenting a model that allows us to use EM to learn parameters 

individualized to each student, while at the same time learn parameters for each skill. We 

presented simulation and real data experiments that showed this method can provide meaningful 

results. Knowledge Tracing is a special case of this model and can be derived by fixing the 

student parameters of the Student Skill model to the same values. In a practical sense, researchers 

need to figure out when the SS model can start to be used, as our simulation showed that SS is 

better than KT when 1) the number of skills a student has learned is high, and 2) the number of 

students is high. 
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2.2 Compare with Previous Method  

One of the most popular methods for modeling students‟ knowledge is Corbett and Anderson‟s 

(Corbett & Anderson, 1995) Bayesian Knowledge Tracing (KT) model. The original Knowledge 

Tracing model does not allow for individualization. In this work, we focus on comparing two 

different individualized models: the Student Skill model and the two-phase model, to find out 

which is the best for formulating the individualization problem within a Bayesian networks 

framework. 

This chapter has been published as a short paper at the following venue: 

Wang, Y., & Heffernan, N. T. (2013) A Comparison of Two Different Method to Individualize 

Students and Skills. In Proceedings of the 16th International Conference on Artificial Intelligence 

in Education. pp. 836-840. (Wang & Heffernan, A Comparison of Two Different Method to 

Individualize Students and Skills, 2013) 

Introduction 

One of the most popular methods for modeling student knowledge is Corbett and Anderson‟s 

(Corbett & Anderson, 1995) Bayesian Knowledge Tracing model. The original Knowledge 

Tracing model does not allow for individualization. Recently, Pardos and Heffernan (Pardos & 

Heffernan, Modeling Individualization in a Bayesian Networks Implementation of Knowledge 

Tracing, 2010) built a two phase individualization method where they trained four parameters per 

student at a pre-process, then took those values and put into a per skill model to learn how the 

user parameters interacted with the skill. This model is part of the final model that won the 2010 

KDD Cup on educational data mining. The assumption this model made, which is we can learn 

student parameters first without any knowledge of skills seems unreasonable. Wang and 

Heffernan‟s work (Wang & Heffernan, The Student Skill Model, 2012) further explored the 

individualization of student parameters to allow the Bayesian network to keep track of four 
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student parameters and four skill parameters simultaneously in one step in a model called the 

Student Skill model (SS), which seems more appealing to our desire for elegance. The goal of this 

paper is to answer two questions that this new individualization model raised. First, is this 

approach better than the two phase model that won the KDD Cup? And second, under what 

circumstances is it better?  

Two Individualization Models 

Fig.2.2.1. shows Pardos and Heffernan‟s two phased model. To train this model, the first step was 

to learn student parameters by using the Prior Per Student (Pardos & Heffernan, Modeling 

Individualization in a Bayesian Networks Implementation of Knowledge Tracing, 2010) model 

by training on all skill data for an individual student one at a time. The second step was to include 

all of the student specific parameter information into a model, shown in Fig. 2.2.1 to learn skill 

related parameters. 

 

Fig. 2.2.1. The Two Phase Model. Pardos &Heffernan (Pardos & Heffernan, 2011) 
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The second model that allows for individualization is called the Student Skill (SS) model (Wang 

& Heffernan, 2012). It can learn four student parameters and four skill parameters simultaneously 

in a single phase process. The model is shown in Fig. 2.2.2. 

 

Fig. 2.2.2. The Student Skill model 

Experiments 

The two models were compared in both simulated and real data experiments. Only the real data 

result is reported here, simulation result is similar. 

The data used in the analysis came from the ASSISTments platform, a freely available web-based 

tutoring system for 4th through 10th grade mathematics. We randomly pulled out data of one 

hundred 12-14 year old 8th grade students and fifty skills from the school year September 2010 to 

September 2011. There are in total 53,450 problem logs in the dataset. The dataset was randomly 

split into four bins in order to perform a four-fold cross-validation. For each student, we made a 

list of the skills the student had seen and split that list of skills randomly into four bins, placing all 

the data for that student for that skill into the respective bin. There were four rounds of training 
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and testing where at each round a different bin served as the test set, and the data from the 

remaining three bins served as the training set. Both models were trained and tested on the same 

dataset. 

The accuracy of the prediction was evaluated in terms of the Root Mean Squared Error (RMSE). 

Lower value means higher accuracy. 

General Data Experiment 

The purpose of the general data experiment was to determine which of the two individualization 

models works better in a real world Intelligent Tutoring System datasets. The cross-validation 

results are shown in Table 2.2.1. 

Table 2.2.1. RMSE of SS vs 2-phase 

Fold ID 
SS 2-phase 

Fold 1 0.447 0.452 

Fold 2 0.438 0.451 

Fold 3 0.422 0.420 

Fold 4 0.445 0.446 

 

The average RMSE of the Student Skill model is 0.438, which is better than the Two Phase 

model 0.442. However, paired t-test result has p > 0.05, which indicates that the result is not 

statistically reliable. 

Filtered Data Experiment 

The assumption we tried to verify in this experiment is that, in the first phase of the two phase 

model, when the model tries to determine which are the student parameters without knowing the 

skill information, the students that have done only easy skills will be more likely to get “better” 

parameters (better here means indicating he/she is a good student) than the students who have 
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done only hard skills, and this inaccuracy in estimating student parameters would affect the Two 

Phase model‟s results, and causes a difference in model performance compared to the Student 

Skill model.   

We filtered our dataset according to our assumption through the following steps and then 

compared the two models again on this filtered dataset. 

a) Group skills to hard/medium/easy using percent correctness, in order to ensure that skills 

are very different, we threw out the medium group and kept only the hard and easy group skills;  

b) Find student group A that contains students who have done both hard and easy skills;  

c) Find student group B who have done only hard skills;  

d) Find student group C who have done only easy skills;  

e) Randomly select equal numbers of students from all three groups and use the data logs 

that are from only the hard and easy skills to build the dataset. 

The cross-validation results are shown in Table 2.2.2. 

Table 2.2.2. RMSE result of SS vs 2-phase in Filtered Real Data Experiment 

Fold ID SS 2-phase 

Fold 1 0.423 0.428 

Fold 2 0.425 0.423 

Fold 3 0.419 0.427 

Fold 4 0.423 0.423 

 

The average RMSE of the Student Skill model is 0.423, which is better than the Two Phase 

model 0.426. The paired t-test on the prediction residual of all of the data points has p < 0.05, 

which indicates that the two models do perform differently when we filtered the data. 



15 
 

Conclusion 

In this paper, we were able to show that the two different individualized Knowledge Tracing 

models perform similarly in general, yet different under certain circumstances. 
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2.3 The Most Important Parameter to Individualize 

The intelligent tutoring system field is concerned with ways of personalizing to the student. The 

current best work coming out of personalization is the Student Skill model. They compared their 

model to the state-of-the-art Knowledge Tracing model, and achieved a reliable improvement 

over standard Knowledge Tracing. One limitation of their work is that they only investigated one 

particular way of personalizing, which individualizes all four standard Knowledge Tracing 

parameters: Prior, Learn, Guess and Slip simultaneously. But are all four of these parameters 

equally good at predicting student learning? It may be better if we just use some of the parameters 

to personalize the model. More generally, we wanted to address the research question: What are 

the most important features to personalize? In this work, we first attacked several issues with the 

Student Skill model and made reliable improvements. On top of that, we systematically explored 

all possible ways of incorporating student features into the model. We found that prior and slip 

are the two most important features, and the best model is the one with all four parameters 

individualized. Additionally, the one parameter that can be dropped without any hurt to 

performance is guess. 

This chapter is the longer version of a poster that has been published at the following venue: 

Gu, J., Wang, Y. & Heffernan, N. T. (2014). Personalizing Knowledge Tracing: Should We 

Individualize Slip, Guess, Prior or Learn rate? In Proceedings of the 12th International 

Conference on Intelligent Tutoring Systems. pp 647-648. (Gu, Wang, & Heffernan, 2014) 

Introduction 

The traditional way of modeling student knowledge is Corbett and Anderson‟s Knowledge 

Tracing (KT) model (Corbett & Anderson, 1995). Pardos and Heffernan (Pardos & Heffernan, 

Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing, 2010) 

proposed the Prior Per Student model, which learns a parameter that represents student prior 
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knowledge for each student. By allowing a single parameter per student in this way, they allowed 

their model to be “individualized” on student prior knowledge. They reported that this model was 

better than KT in both predictive accuracy and convergence properties. That work led to Wang 

and Heffernan‟s idea that if we individualize all four of the standard KT parameters (Prior, Learn, 

Guess and Slip), we might get an even better performance. They introduced the Student Skill (SS) 

model (Wang & Heffernan, 2012) and showed that it was better than both KT and Pardos and 

Heffernan‟s model. The largest limitation of their work is they only investigated one particular 

way of personalizing, which personalized all the four student features simultaneously, and their 

model ignored the constraints of data sparsity. It‟s always going to be the case that if you have 

lots of data per student, the benefit of individualization will be good. But that leaves open the 

question: if you have a small amount of data per student, what should you attempt to 

individualize first? If you have even more data, what should you individualize secondly? And 

more generally, is individualization always going to be good, or is it the case that for best 

performance, it‟s better to individualize just a subset of the four parameters? So our research 

questions are RQ1: What is the one single parameter that is best to individualize upon? RQ2: 

Which parameter can be dropped without hurt to the performance? RQ3: What the best model if 

we individualize two of the parameters? Finally, we want to answer the critical research question: 

what are the most important features to personalize? Furthermore, if not all the parameters are 

essential, by reducing the number of parameters in the model, the complexity of the model fitting 

procedure can also be dramatically reduced. The practice of this work is that, as MOOCs and 

other large providers of educational data are making predictions upon log data, we suggest that 

they personalize their system based upon our work.  

Model 

The Knowledge Tracing model is one of the most popular ways of modeling student knowledge, 

which is based on two knowledge parameters: learning rate and prior knowledge, and two 
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performance parameters: guess rate and slip rate. The Student Skill model adds student 

individualization into the original Knowledge Tracing model. In Wang & Heffernan (Wang & 

Heffernan, 2012), they said, “Knowledge Tracing is a special case of this model and can be 

derived by fixing the student parameters of the Student Skill model to the same values.” While 

this is roughly true, but it does not give the exact procedure and there are extra parameters learned 

that have no equivalent in the traditional way of doing Knowledge Tracing. In detail, it used four 

interaction nodes to reduce the number of parameters in the Conditional Probability Table (CPT). 

As a result, the CPTs of the knowledge nodes were set to fixed functions of the learning node and 

the knowledge node at the previous time step. Although it significantly reduces the number of 

parameters, the performance could also be compromised. 

To overcome the shortcomings of the original SS model, we extended the number of the 

interaction node and the number of each student and skill feature node to the number of time 

slices. The structure of the improved SS model is shown in Fig. 2.3.1. The parameters of 

knowledge nodes and performance nodes become fixed functions of their parent interaction nodes. 

For example, the CPT of the learning node is set to [0, 1], where the probability of learning is 

directly derived from the interaction learning node. The CPTs of the four interaction nodes, which 

can have one or two parent nodes, are the only CPTs that change for different structures we 

explored. If the interaction node has only one parent node, its CPT is set to [0, 1], and it just 

passes the same parameters of the student/skill features. If the interaction node has two parent 

nodes, its CPT is set to [0, 0.5, 0.5, 1], where the second and third parameters are learned to 

differentiate the weights for student and skill features.  
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Methodology 

The goal of our experiment is to search the best structures of the SS model. In the SS model 

structure, both the student and the skill node have four feature nodes (prior, learning, guess and 

slip). The interaction nodes combine the feature nodes for student and skill. If we want to exclude 

one feature from the student or the skill node, we can simply remove the link from the feature 

node to its corresponding interaction node in the Bayesian Network. Thus, by employing different 

combinations of links from the feature nodes to the interaction nodes, the models we want to 

examine can be constructed. Our first hypothesis is that, as the traditional way of constructing the 

Knowledge Tracing model is to fit each KT model for each skill, all the four features for skill 

should always be included. Thus, we tried all of the 16 possible ways of selecting the student 

features with all four skill features incorporated. The model with all four features from student is 

the original SS model, and the one with no features from student is the counterpart of the KT 

model. Furthermore, we also suspected that for each parameter we might want to choose between 

skill and student rather than take both. Therefore, we also tried another 16 ways of selecting 

Fig.2.3.1. Student Skill model. 

 

SkP 
SkL 
SkS 
SkG 
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either one of the features from student or skill. In total, we tried 32 different ways of 

incorporating features from student and skill and validated the 8 best structures using a larger 

dataset. 

Dataset 

The dataset we considered come from the 2009-2010 school year of ASSISTments, which is a 

free online platform developed at Worcester Polytechnic Institute. In the system, a student 

attempts a number of problems while working through an assignment. We select those student-

skill sequences with less than or equal to 10 attempted opportunities. To explore all the structures, 

we selected a dataset (D1) with 81 distinct students and 78 distinct skills with 113,672 data points. 

To further validate the result, we selected another larger dataset (D2) with 1775 distinct students, 

123 distinct skills and 695,732 data points. For all the experiments, we used Expectation 

Maximization (EM) as the model fitting procedure. To insure the reliability of the results, a five-

fold cross validation was performed for each experiment. Considering that a missing student or 

skill in either the training data or the test data would compromise the performance, we had to 

make sure both datasets contain proportionate number of students and skills. The approach we 

used is: for each skill, we assign different students into 5 folds. 

The measures of performance we used are Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Area Under the Curve (AUC) and R Squared (R2). Larger AUC, larger R2, smaller 

RMSE, and smaller MAE indicate better performance. After doing cross validations, we also did 

a t-test for each of the measures between every two of the models.  

Results 

Performance of the improved SS model  
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To validate that the SS model has a reliably better performance, we compared the predictive 

performance of the improved SS model to those of the original SS model, the Skill model (The 

SS model with no student parameter individualized, which is just another way of doing KT), and 

the original KT model. Table 2.3.1 shows the results in terms of Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and Area Under the Curve (AUC). We observed that the 

improved SS model has remarkably better performance in RMSE and AUC compare to the KT 

model, which confirmed the fact that the SS model is significantly better than the original KT 

model. Surprisingly, although the Skill model is just the counterpart of KT, it also showed 

reliably better performance than KT. The Student Skill model structure in some way might be 

better than the standard way of doing KT. Additionally, the improved SS model also showed 

better performance than the original one, which indicates that our way of individualizing is 

indeed beneficial.  

Table 2.3.1. Performance of KT model 

 
RMSE MAE AUC 

KT 0.452 0.325 0.707 

Improved SS 0.426 0.358 0.736 

Skill 0.427 0.365 0.737 

Original SS 0.434 0.370 0.715 

 

RQ1: What is the one single parameter that is best to individualize upon?  

First, we listed all the models with only one feature individualized at the student level. Table 

2.3.2 shows the predictive performance of the models. The models are showed in ascending order 

by their RMSE values. According to the results, if we only want to individualize one feature, we 

probably should individualize prior, as it has the best RMSE, MAE, AUC and R2 values among 

all the four models. Besides prior, slip is also an important feature, whose corresponding model 
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only has slightly worse AUC and R2 values compare to the model with prior. According to this 

result alone, we think prior and slip are the two most important features for personalizing. 

Table 2.3.2. Performance of models with only one parameter individualized (P: Prior; L: 

Learn; G: Guess; S: Slip; St: the parameter was individualized at the student level) 

RMSE MAE AUC R2 P L G S 

0.433 0.370 0.692 0.102 St 
   

0.433 0.370 0.694 0.100 
   

St 

0.435 0.370 0.685 0.092 
 

St 
  

0.435 0.372 0.685 0.092 
  

St 
 

 

RQ2: Which parameters can be dropped without hurt to the performance?  

We then tested all four models with only one feature missing from student. The model with the 

best performance is the one without the guess parameter individualized, which indicates that per 

student guess information is the least valuable. On the other hand, the model without prior and the 

model without slip are the two worst models in this case, which again indicates that slip and prior 

are the two most important features. This time, slip is slightly more important than prior as the 

model without slip is worse in terms of MAE, AUC and R2.  

Table 2.3.3. Performance of models with three parameters individualized (P: Prior; L: 

Learn; G: Guess; S: Slip; St: the parameter was individualized at the student level) 

RMSE MAE AUC R2 P L G S 

0.431 0.368 0.699 0.107 St St 
 

St 

0.432 0.370 0.696 0.103 St 
 

St St 

0.432 0.370 0.695 0.103 
 

St St St 

0.432 0.369 0.692 0.102 St St St 
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RQ3: What the best model if we individualize two of the parameters? 

As shown in Table 2.3.4, if we only want to individualize two parameters, prior and slip would be 

the choice. Again, this is consistent with the previous two results, that prior and slip are the two 

most important features. Additionally, we noticed that the best models always had slip feature 

individualized, which seemingly indicates that slip is even more important than prior. 

Table 2.3.4. Performance of models with two parameters individualized (P: Prior; L: Learn; 

G: Guess; S: Slip; St: the parameter was individualized at the student level) 

RMSE MAE AUC R2 P L G S 

0.4312 0.3681 0.6987 0.1069 St 
  

St 

0.4323 0.3698 0.6955 0.1023 
  

St St 

0.4325 0.3695 0.6946 0.1014 
 

St 
 

St 

0.4326 0.3699 0.6930 0.1010 St 
 

St 
 

0.4329 0.3692 0.6921 0.0998 St St 
  

0.4343 0.3709 0.6863 0.0942 
 

St St 
 

 

Validation of the top models 

The differences between the best models and the SS model with all four parameters 

individualized in previous experiments are not statistically reliable. We selected the best models, 

and validated their performance using a much larger dataset containing 1755 students. We want 

to check if there‟s enough data for each student, whether or not the results still hold. As we can 

observe from Table 2.3.5, the fully individualized SS model is ranked first in the table, indicating 

that if we have enough data for each student, in order to gain a better performance, we should 

always individualize all four parameters for student.  
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Table 2.3.5. Performance of the best models (P: Prior; L: Learn; G: Guess; S: Slip; St: the 

parameter was individualized at the student level) 

Model  
Index 

RMSE MAE AUC R  P L G S 

1 0.426 0.358 0.736 0.166 St St St St 

2 0.426 0.358 0.736 0.165 St St 
 

St 

3 0.426 0.360 0.735 0.162 St 
 

St St 

4 0.427 0.360 0.734 0.160 St 
  

St 

5 0.430 0.366 0.727 0.150 
 

St St St 

6 0.434 0.370 0.715 0.133 
    

 

Furthermore, we did a t-test between every pair of the top models, and reported the ones that were 

reliably different (p value < 0.05) in Table 2.3.6, where the model indexes are the same as in 

Table 2.3.5. As we can see, model 1 (the fully connected SS model) and model 2 (the one only 

without student guess parameter), model 1 and model 3 (the one only without student learn 

parameter) were not reliably different in some of the metrics, which indicates that guess and learn 

are the two parameters not important to personalize. This, again, implies that slip and prior are 

more important. Overall, it is hard to distinguish if one model is better than its adjacent models in 

the table. However, the difference is palpable if we compare the models on the top to the models 

on the bottom. 

Table 2.3.6. t-tests among the best models (R: reliably different in RMSE; A: reliably 

different in AUC; M: reliably different in MAE; r: reliably different in R2 All: reliably 

different in all four measures) 

Model Index 2 4 5 3 1 

6 All All All All All 

2 
 

R M r All R M r A r 

4 
  

All R M r All 

5 
   

All All 

3 
    

R M r 

 

From the results, we can see if we only individualize one feature for student, prior or slip would 
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be the most important feature to personalize. Comparably, slip is even more important than prior, 

because almost all the models with slip individualized at both skill and student level has 

significantly better RMSE, MAE and AUC values than those of other models. Also, the feature 

slip can capture the ceiling effect of student knowledge, so it is possible that different students 

have different upper bounds of knowledge. Furthermore, of all these models evaluated, the best 

model was not reliably different with the one with prior, learn and slip individualized at the 

student level. The result indicates that students‟ guessing abilities do not differ a lot. 

Models with complimentary features for student and skill 

Finally, we also tested the performances of the models containing features individualized at either 

the student or the skill level. The total number of models is 16 as both student and skill have four 

features. According to our results, the model with only individualized slip for student is 

marginally superior to the baseline model, although not reliably different, which again indicates 

that student slip is indeed a very important feature to personalize. As expected, the baseline 

model ranked second among all the models and is significantly better in R2 value than the one 

that individualized all four features at student level. 

Contributions 

In this paper, we investigated the research question: which features of student are most important 

to individualize in a Bayesian Knowledge Tracing framework. The paper makes several 

contributions to large-scale student modeling. 

Many researchers have shown the effect of personalization, but no one in the ITS field has looked 

at what parameters are most important to individualize. For example, the Student Skill model has 

shown significantly better performance than the standard KT model, but was only personalized in 

one particular way: personalized all four student features simultaneously. We extended the work 

by exploring more structures of the model and searched for the best way of personalization. The 
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results show that if we only individualize one feature for student, the most valuable feature would 

be slip or prior. It is reasonable that students‟ prior knowledge differ greatly. Since slip represents 

the probability of a wrong answer given the student knows the skill, teachers or tutoring systems 

may need to pay attention to the students with large slip rates to check if they lose interest after 

mastering a skill or if they are still confused with some aspect in the skill while already mastered 

the major part of it, and take different actions accordingly. 

Secondly, the single best model is the one with all four parameters personalized for student, but is 

not reliably different than the one without student guess, which also means guess is dispensable if 

we don‟t want to individualize all four parameters because of lack of information of students.  

In addition, by attacking several problems with the original Student Skill model, we also made 

reliable improvement to the model. And interestingly, we found that the SS model without any 

individualization at the student level, which should be just KT, is actually reliably better than the 

normal KT model. This indicates that our way of modeling student learning is successful. 

Future Work 

Our finding that prior and slip are so important is a novel contribution. But we did not answer the 

question, why is this so? What is it about prior and slip that gives this extra boost in precision? 

This raises new question about what might be better ways to individualize. 

The largest limitation of this work is that it has only been evaluated on one large dataset from 

ASSISTments. It is possible that the results may differ when using data from other tutoring 

systems. Furthermore, the fitting procedure of the SS model takes a long time and cannot be used 

in real time. Considering that the reliably better performance of the SS model is still worthwhile, 

the tradeoff between number of parameters in individualization and the time cost of the model 

fitting procedure is worth further exploration. Finally, we are also considering individualize the 
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parameters at school, class and teacher level instead of just student, because we suppose that 

some features like the prior knowledge may differ more between different classes and schools. 

In our scheme of individualization, it is an all or nothing approach: either each student is 

individualized on a parameter or not. But this of course is unwise, and if you had an algorithm 

that worked in real time, you would want to start out by using skill level parameters only; slowly 

over time as you accumulate more data on students‟ prior and slip rates, you would want to start 

to use individualized parameters. Fundamentally, the goal of individualization in real time is the 

Holy Grail of individualization, and our field needs a lot of work to be able to come up with an 

algorithm that will work in real time to better model student knowledge. 
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2.4 Class vs. Student in the Student Skill model 

For decades, intelligent tutoring systems researchers have been developing various methods of 

student modeling. Most of the models, including two of the most popular approaches: Knowledge 

Tracing model and Performance Factor Analysis, all have similar assumption: the information 

needed to model the student is the student‟s performance. However, there are other sources of 

information that are not utilized, such as the performance on other students in same class. This 

chapter extends the Student-Skill extension of Knowledge Tracing, to take into account the class 

information, and learns four parameters: prior knowledge, learn, guess and slip for each class of 

students enrolled in the system. The paper then compares the accuracy using the four parameters 

for each class versus the four parameters for each student to find out which parameter set works 

better in predicting student performance. The result shows that modeling at coarser grain sizes 

can actually result in higher predictive accuracy, and data about classmates‟ performance is 

results in a higher predictive accuracy on unseen test data. 

This chapter has been published at the following venue: 

Wang, Y., Beck, J.E. (2013) Class vs. Student in a Bayesian Network Student Model. In 

Proceedings of the 16th International Conference on Artificial Intelligence in Education. pp. 151-

160. (Wang & Beck, 2013) 

Introduction 

Student modeling is crucial for Intelligent Tutoring Systems (ITS) to improve and to provide 

better tutoring for students. For decades, researchers in ITS have been developing various 

methods of modeling students. Two of the most popular approaches are Bayesian Knowledge 

Tracing (KT) (Corbett & Anderson, 1995), which uses a dynamic Bayesian Network to model 

student learning, and Performance Factor Analysis (PFA) (Pavlik, Cen, & Koedinger, 2009), 
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which uses a logistic regression to predict student performance. Both techniques have a similar 

underlying assumption that two things are needed to model the student: one component concerns 

the domain, such as skill information in KT and PFA models, or item information in the PFA 

model; the other component is the student‟s problem solving performance on the skill. 

However, there are other sources of knowledge that are not utilized, such as the performance of 

other students in the same class.  Instead, only this student‟s previous performances are taken into 

account. Imagine there is a class of 20 students, 19 of whom get the first item on a skill wrong, 

and you want to predict the performance of the 20th student‟s first item on the skill. Intuitively, 

predicting that this student would also respond incorrectly seems like a safe bet. However, current 

student models such as KT and PFA will not be affected by those 19 incorrect responses, as they 

were all made by other students. What would the effect on predictive accuracy be if which class a 

student is currently in was factored into student models? Our intuition is that class perhaps 

contains important information such as the student‟s prior knowledge about a skill. Since all 

students in a class share a common teacher, curriculum, and assigned homework problems, we 

should expect similarities in performance. Our goal is to capitalize on this dependency to improve 

student modeling. 

In fact, the US Institute for Educational Sciences requires grant proposals‟ power analyses to 

discount the sample size if there are multiple students in the same classroom, due to their lack of 

independence from each other (most statistical tests require each sample to be independent).  

Given that we know this dependence effect exists statistically, why not make use of it?  In this 

paper, we are focusing on utilizing the class information to improve student modeling and trying 

to determine under which circumstances, using other students‟ information could be more 

beneficial than using current student‟s individual information. 

Approach 
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This section briefly introduces the Student Skill model and the modification of it in order to allow 

class level individualization. The modified model also allows us to run experiments on various 

combinations of student and class information to determine whether or not the class information 

is better than the student information for each parameter. 

Model 

Knowledge Tracing is one of the most popular methods for modeling student knowledge.  The 

original Knowledge Tracing model do not allow for individualization, and assumes that all 

students have the same probability of knowing a particular skill at their first opportunity, or 

slipping (making a careless mistake) on a skill, or learning a particular skill.  This assumption is 

almost certainly invalid, as students are likely to differ in these aspects. Several researchers have 

tried to show the power of individualization (Wang & Heffernan, 2012) (Pardos & Heffernan, 

Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing, 

2010). The model we use in this work is built upon one of the individualization model called the 

Student Skill model (Wang & Heffernan, 2012). The idea of the Student Skill model is that rather 

than estimating a learning rate for each skill, instead view learning rate as being a function of the 

skill and of this individual learner. Perhaps some skills are learned more quickly or slowly than 

others, and perhaps some students learn more quickly or slowly than others. By combining both 

effects, it is possible to more accurately model the student.   

The Student Skill model structure is shown in Fig. 2.4.1. The goal of the Student Skill model is to 

add individualization into the original Knowledge Tracing model. It can learn four student 

parameters and four skill parameters simultaneously. The lowest two levels of this model are the 

same as the original Knowledge Tracing model (nodes K1…Kn and Q1…Qn in Fig. 2.4.1). The 

Student Skill model adds upper levels to represent the student and skill information and their 

interaction. Two multinomial nodes are used to represent the identity of each student (node St in 
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Fig. 2.4.1) and each skill (node Sk in Fig. 2.4.1). Instead of pointing the student identity and the 

skill identity nodes directly to the knowledge nodes, which will result in an exponentially 

increasing number of parameters, we instead added a level of nodes to represent the four student 

parameters (node StP, StG, StS and StL in Fig. 2.4.1) and the four skill parameters (node SkP, 

SkG, SkS and SkL in Fig. 2.4.1). Those parameter nodes are binary nodes which represents the 

high/low level of the corresponding parameters. For example, if the StP node is 1 for a student, 

means the student has high level of prior knowledge, and if the StP node is 0 for a student, means 

the student has low level of prior knowledge. Then the next level combines the influence of the 

student parameters and the skill parameters and generated four standard Knowledge Tracing 

parameters (node P, G, S and L in Fig. 2.4.1) to be used in the lowest two levels.  In this way, we 

generate a knowledge tracing model that is custom-fit to each learner and for each skill. 

 

Fig. 2.4.1. The Student Skill model 

St 

StG StS StL StP SkP 

Sk 

SkG SkS SkL 

G S L P 

K2 K1 

Q1 

Kn 

Q2 
Qn 

  … 
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One drawback of the Student Skill model is that it requires a large number of parameters. In 

addition to estimating four parameters per skill, it must also estimate four parameters per student. 

Given that many datasets have considerably more users than skills, this inflation in the number of 

parameters is a large concern. Therefore, we considered methods for reducing the number of 

parameters in our model, to enable them to better generalize to unseen data. One approach is, 

rather than modeling the students as individuals, to instead model which mathematics class the 

student is enrolled in. Students within the same class have the same teacher, textbook, homework, 

and may even be grouped by ability in the subject. Given that, in our datasets, there are typically 

about 24 students per class, modeling class-level effects has 24 times as much data to estimate 

parameters. In addition, if we only model class parameters, we only have to estimate 1 set of 

parameters for each class of students, rather than 1 set for each individual students. Thus, the use 

of class information can be seen as a coarser grain-size individualization compared to the Student 

Skill model. We demonstrate the Class Skill model in figure 2.4.2, and the nodes are identified as 

follows: 

─ St: A multinomial node represents each student‟s identity, observable. 

─ Sk: A multinomial node represents each skill‟s identity, observable. 

─ StP: Student Prior Knowledge, binary node, latent. 

─ StG: Student Guess rate, binary node, latent. 

─ StS: Student Slip rate, binary node, latent. 

─ StL: Student Learning rate, binary node, latent. 

─ SkP: Skill Prior Knowledge, binary node, latent. 

─ SkG: Skill Guess rate, binary node, latent. 

─ SkS: Skill Slip rate, binary node, latent. 

─ SkL: Skill Learning rate, binary node, latent. 

─ P: Prior Knowledge of a particular student and a particular skill, binary node, latent. 

─ G: Guess rate of a particular student and a particular skill, binary node, latent. 
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─ S: Slip rate of a particular student and a particular skill, binary node, latent. 

─ L: Learning of a particular student and a particular skill, binary node, latent. 

─ K1~Kn: Knowledge, binary node, latent.  

─ Q1~Qn: Question performance, binary node, latent. 

The Student Skill model can easily be changed to consider the class information rather than the 

student information by replacing the St node to be a class node (Cl), and the parameters StP, StG, 

StS and StL will be turned into class prior (ClP), class guess (ClG), class slip (ClS) and class 

learning rate (ClL). 

Instead of simply using class information to replace the student information, which is still 

considering only one resource of information, this paper combines these two models together to 

explore whether knowing which class a student is in is a better predictor than knowing which 

student, for each parameter in the model. For example, perhaps slip rate is best modeled at the 

individual student level, while learning rate is best estimated at the class level? Therefore, we 

have run experiments with different ways of combine the two resources of information trying to 

determine which parameter is best modeled using which source of information. 

As shown in Fig. 2.4.2, the model is almost the same as the Student Skill model in Fig. 2.4.1. The 

only difference is the addition of the class (Cl) node, which is a multinomial node, represents 

which class a student is in. Nodes StP, StG, StS, StL turns into StP/ClP, StG/ClG, StS/ClS, 

StL/ClL, which means the nodes can either be a student level parameter or a class level parameter. 

The dash line between node Cl and node StP/ClP is a potential relationship in the model, as well 

as the dash line between node St and node Stp/ClP. If we choose one of these two dash lines, the 

other one will be ignored as if it does not exist. For example, if we choose to use class 

information for prior knowledge, the dash line between St and node StP/ClP is ignored, and the 

node StP/ClP only contains the class prior (ClP). The same assumption is hold for all the other 

dash lines and parameters of class and student: StS/ClS, StG/ClG, StL/ClL. 



34 
 

Based on this model, by choosing different dash lines, we can test the best combination of class 

and student parameters and find the variability. 

In our experiment, we used the Bayes Net Toolbox for Matlab developed by Murphy (Murphy, 

2001) to implement the Bayesian network student models and the Expectation Maximization (EM) 

algorithm to fit the model parameters to the dataset. The EM algorithm finds a set of parameters 

that maximize the likelihood of the data by iteratively running an expectation step to calculate 

expected likelihood given student performance data and a maximization step to compute the 

parameters that maximize that expected likelihood. 

 

Fig. 2.4.2. Combination of Class Skill model and Student Skill model 

Data and Model-fitting 

The data used in the analysis presented here came from the ASSISTments platform 

(www.assistments.org), a freely available web-based tutoring system for 4th through 10th grade 

… 
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mathematics. The performance of a question is marked as wrong if the first response is incorrect, 

or if the student asks for help. 

We randomly sampled data of one hundred 12-14 year old 8th grade students from 4 classes and 

fifty skills from the school year September 2010 to September 2011. There are in total 53,450 

problem solved in the dataset. 

To make sure there were sufficient data in the training set to estimate parameters for students and 

skills, we divide the dataset into a training set and a test set using the following strategy: for each 

student, for every skill that she was practicing we flipped a coin and assigned this student-skill 

pair into either the training set or into the testing set. This process enables us to have a broad 

coverage of students and skills in the training set, to enable generalization to the testing set. 

However, we do not have data for the same student-skill pair in both the training and in the 

testing data. In this way, we maintain a relatively independent test set, but still enable our 

approach to see enough types of data to estimate all of the required parameters. 

In the experiment, we estimate each knowledge tracing parameter using data about the skill, and 

either data about this student‟s or the student‟s classmates‟ performance on this skill. Thus, for 

each parameter we tried two ways of estimating its value. We examined each combination of 

settings for all four knowledge tracing parameters (P, G, S, L) To simplify the problem, we group 

the performance parameters, guess and slip, together. This leaves us in total 2
3
= 8 different 

combinations in parameters. The models and experimental results are shown in the next section. 

Results 

The accuracy of the predictions was evaluated in terms of the Root Mean Squared Error (RMSE), 

with lower values meaning higher accuracy. We compared different models to analyze the best 

individualization level for prior Knowledge (K0), learning rate (L) and Guess and Slip (G/S) 

respectively. That is, for each of the parameters (K0, L, G/S), we choose Class level 
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individualization or Student level individualization, there are in total 8 possible combinations. 

The different combination models and their RMSE results on the test set are shown in Table 2.4.1.  

The first column shows which parameter is chosen for the prior knowledge, the second column 

shows which parameter is chosen for the learning rate, the third column shows which parameter is 

chosen for the performance parameters (guess and slip), the fourth column shows the RMSE 

result of each model on the test dataset. We order the rows in this table based on the RMSE on 

the test set, with the top rows representing higher accuracy on the test set. 

Table 2.4.1. RMSE result on test and training data 

K0 L G/S RMSE 

Class Student Class 0.413 

Class Class Class 0.415 

Class Student Student 0.417 

Class Class Student 0.419 

Student Student Student 0.421 

Student Student Class 0.423 

Student Class Class 0.424 

Student Class Student 0.425 

 

For comparison, the standard Knowledge Tracing model produces an RMSE of 0.428 on the test 

data, which is less accurate than all of the models we experimented with in Table 2.4.1.  

Therefore, it appears that both of the class level and the student level individualization can help 

improve Knowledge Tracing‟s predictive accuracy. 

A second point of comparison is our baseline Student Skill model, represented in the 5
th
 row in 

this table (underlined), which represents estimating all of the parameters using information about 

each student. Thus, each student has a customized estimate of prior knowledge (K0), learning (L), 

and guess (G) and slip (S), as they are derived from the student node. In this case, model in Fig. 
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2.4.2 degenerates to be the same as the Student Skill model in Fig. 2.4.1. The fact that this model 

is only at the middle of the table shows that, it is not as strong as other methods of estimating 

parameters. 

In other words, sometimes it is better to use the class information rather than using individual 

student information. This result could occur if students within a class do not vary very much on a 

particular parameters. In that case, it would be better to estimate that parameter for the entire class 

to take advantage of the larger quantity of data. For example, the fact that the 4
th
 row, which has 

prior and learning comes from class information, and guess and slip comes from the student 

information results in lower RMSE value on the test data than the 5
th
 row, indicates that the prior 

knowledge and learning rate may be better estimated through the class information rather than 

estimated from completely individualization of student. Back to the example at the beginning of 

this paper, this means that for prior knowledge, and guess and slip rate, knowing the information 

of all of the other students in the class may be slightly more beneficial than only knowing the 

information of the current student. If all of the other students in the class do not know a skill 

initially, it is more likely the current student do not know the skill either, no matter how good the 

student is on other skills. 

Among all of these models, the best mode (the first row in the table) is the one with prior 

knowledge (K0) and performance parameters (guess and slip) derived from the class information, 

and the learning rate (L) is derived from individual student information. The result seems 

plausible because all students in a class normally get the same instruction, thus might have similar 

prior knowledge (K0) about a particular skill, and some students learn faster than others, thus the 

learning rate (L) would be beneficial from individual student information. To be clear, we are not 

asserting that all students have the same prior knowledge, as some students will not complete 

homework or might not pay attention in class. However, within a class, prior knowledge varies 
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less than the other parameters, and, at least in this instance, the potential benefit of customizing 

K0 to each student is not worth the additional parameters. 

Besides finding the best combination of grain-sizes for estimating various parameters, there are 

also some interesting general trends visible in Table 2.4.1. The most interesting one is that prior 

knowledge (K0) is always better modeled at the class level: the top 4 rows are all with class 

information used to estimate the K0 parameter. This result confirms our intuition that all students 

in a class tend to have similar prior knowledge, which could be caused by the fact that they are 

going through similar instructions, or the fact that similar students are tend to be assigned to the 

same classroom.  

The trend in learning rate (L) is the opposite as the trend for prior knowledge. Since the bottom 

two rows both have class information as the resource for learning rate, student information seems 

to be a more powerful resource. Therefore, within a class, students‟ ability to learn mathematics 

appears to vary more than their prior knowledge. However, these differences appear to be rather 

small: comparing the first and second lines results in a difference in RMSE of 0.002; similarly, 

comparing the third and fourth lines also results in a difference in RMSE of 0.002.  This 

difference is rather small, so estimating learning rate at the class level or at the student level 

works approximately equally well. 

As for the performance parameters (guess and slip), there seems to be a general advantage to 

modeling these effects at the class level, but the trend is not completely clear. We expected guess 

and slip behaviors to vary considerably within a class, and to be better modeled at the student 

level. Therefore, we found this result somewhat surprising. 

Contributions, future work, and conclusions 
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This paper makes three main contributions. Philosophically, it considers the learner‟s classmates 

as a viable source of information for predicting the learner‟s behavior. This source of information 

seems to have been overlooked by the ITS community. 

The second contribution this paper makes computational, as it extends the Bayesian knowledge 

tracing framework to take into account the class information. Our model structure enables us to 

model parameters at the class- or student-level, and to mix and match grain sizes within an 

experiment. In a similar effort, a PFA-like model was modified to account for class-level 

information (Xiong, Beck, & Li, 2013). 

The third contribution this paper makes is empirical. Our results suggest that initial knowledge of 

a skill is probably best modeled at the class level. Prior work either assumed the initial knowledge 

is determined either by the skill itself or a combination of the student and skill. This paper‟s 

experimental results suggest that student modelers should consider additional sources of power 

for understanding learners. 

Currently, the way we utilize the student and class information is to consider using either class 

parameters or student parameters. That is, each of the models we compared considered using one 

source of power for each of the parameters, but not both. It is possible that we can look at both 

sources information simultaneously and even take into account the fact that a student is a member 

of a class, to build a hierarchically structured model that blends the two sources of information 

together. In this model, class could be the parent node of different students. The model is easy for 

people to understand and interpret, yet we are not sure if a complex Bayesian Network 

representation of this model can be properly built and learn back the expected parameters. Both 

experiments with real and simulated data will be helpful for evaluating such approaches. It is also 

unclear if the model will be practical given the large number of parameters required. 
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One issue that we have not yet addressed is whether the performance parameters (guess and slip) 

should be grouped together. In this paper, we group the performance parameters together to 

simplify the experiments based on the assumption that these two parameters are both related to 

performance and should have similar properties with respect to the best grain size for modeling. 

Yet, it is likely that guess and slip behaves very differently at the class level compared to the 

student level. For example, some type of instruction may cause all students in the class very likely 

to guess the correct answer for some skills, even though the students do not fully understand the 

skill. We suspect that slip is best modeled at the individual level. The mixed result in the 

performance parameters could perhaps become clearer if we run more experiments with separate 

guess and slip parameters. 

Another question that we are interested in exploring is whether the results about class-level 

parameters transfer across years? Currently, our evaluation looks at only one year‟s data and 

generates the test and training set from that year. This approach has the normal cold start problem, 

that if it is the start of a new school year and we have no information about the class yet, what 

would be a reasonable information to use to build the student model? One possible solution that 

we are interested in is to use the class information of previous school years. If we can find a class 

that we have data from previous years that is similar to a current class, we might be able to use 

the information from that class to start building the model for the current class. How to define 

similarity of different classes, however, is a challenging question. We could look at the teacher or 

use the very first performance of each student in the class as an estimate of prior knowledge. We 

could also choose a set of similar previous classes and use the average of their parameters instead 

of choose only one from all. Or, we could use whichever prior class has the highest predictive 

accuracy for this student, as in (Gong, Beck, & and Ruiz, 2012). 

Finally, from a broader perspective, class can be seen as a group of students, thus is a natural way 

of clustering students. There are literatures that focus on clustering in student modeling such as 
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(Trivedi, Pardos, & Heffernan, 2011) (Song, Sarkozy, Trivedi, Wang, & Heffernan, 2013). What 

are the differences and connections between using class and using other clustering methods? 

Class could be an effect of the teacher or ability grouping; in this case, using clustering 

algorithms on features such as teacher and student ability could result in similar clusters as 

classes. There are also other levels of abstraction and natural clustering, such as which grade or 

school a student is in, exploring models that utilizing these new sources of information is also 

new and interesting. 

In summary, this paper introduces a framework for using a dynamic Bayesian network to model 

parameters as a combination of student-skill effects, or class-skill effects. We have found that 

using either source of knowledge is more accurate than a standard knowledge tracing model. By 

selectively estimating some parameters at a coarser grain size, we are able to improve accuracy a 

bit over the class-skill model. 
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Chapter 3: The Predictive Power of the Assistance Information 
 

3.1 Partial credit 

Both Knowledge Tracing and Performance Factors Analysis, are examples of student modeling 

frameworks commonly used in AIED systems (i.e., Intelligent Tutoring Systems). Both of them 

use student correctness as a binary input, but student performance on a question might better be 

represented with a continuous value representing a type of partial credit. Intuitively, a student 

who has to make more attempts, or has to ask for more hints, deserves a score closer to zero, 

while students who asks for no hints and just needs to make a second attempt on a question 

should get a score close to one. In this work, we present a simple change to the Knowledge 

Tracing model and a simple (non-optimized) method for assigning partial credit. We report our 

real data experiment result in which we compared the original Knowledge Tracing (OKT) model 

with this new Knowledge Tracing model that uses partial credit as input (KTPC). The new model 

outperforms the traditional model reliably. The practical implication of this work is that this new 

technique can be widely used easily, as it is a small change from the traditional way of fitting KT 

models. 

This chapter has been published at the following venue: 

Wang, Y. & Heffernan, N. (2013). Extending Knowledge Tracing to allow Partial Credit: Using 

Continuous versus Binary Nodes. In Proceedings of the 16th International Conference on 

Artificial Intelligence in Education. pp. 181-188. (Wang & Heffernan, Extending Knowledge 

Tracing to allow Partial Credit: Using Continuous versus Binary Nodes, 2013) 

Introduction 

In many important student models, such as the Knowledge Tracing model and the Performance 

Factor Analysis (Pavlik, Cen, & Koedinger, 2009), student performance is presented as a binary 
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value of correct or incorrect. The amount of assistance a student needed to eventually get a 

problem correct is ignored in these models. Feng and Heffernan (Feng & Heffernan, 2010) 

showed that we can predict student performance better by accounting for amount of assistance 

they received, but they did not provide the field with a model that could be used in “run time” to 

predict individual responses. Arroyo, et al. (Arroyo, Cooper, Burleson, & Woolf, 2010) showed 

how to use this information to predict learning gains. Their work suggests that using hints and 

attempts to model student behavior online could be effective. 

There is good work in the psychometric literature on using partial credit, which goes back 30 

years. Psychometricians have shown that different multiple choice answers might worth different 

credits (Masters, 1982) (Tang, 1996). For instance, choice A might be totally wrong but choice B 

is close, choice C is the correct answer. 

More recently, a new type of partial credit is coming online. For instance, Attila and Powers 

(Attali & Powers, 2010) at the Educational Testing Service showed they could better predict 

student GRE scores if they let students make multiple attempts. Their score on a question would 

go down by a third for each attempt (students could only make three attempts). Our work 

generalizes their work in two ways. First, we show how to incorporate the partial credit score into 

a model with learning (i.e., Knowledge Tracing) as their model did not model learning. Second, 

we show how to incorporate penalties for each hint student request.  

In our previous work (Wang, Heffernan, & Beck, 2010), we presented a naïve algorithm to assign 

partial credit, and showed it accounts for some variance in student knowledge. But in that work, 

we did not present a model that could do this task. In this paper we want to see if we can improve 

one of the dominant methods of student modeling (i.e., the Knowledge Tracing model) by 

relaxing the assumption of binary correctness: replacing the discrete performance node with 

continuous partial credit node.  



44 
 

Approach 

Knowledge Tracing with Continuous Performance Node 

The Knowledge Tracing model shown in Fig. 3.1.1 has been widely used in ITS to model student 

knowledge and learning over time. It has become the dominant method of student modeling and 

many variants have been developed to improve its performance (Baker, et al., 2010) (Pardos & 

Heffernan, Modeling Individualization in a Bayesian Networks Implementation of Knowledge 

Tracing, 2010). Knowledge Tracing uses one latent and one observable dynamic Bayesian 

network to model student learning. As shown in Fig. 3.1.1, four parameters are used for each skill, 

with two for student knowledge (initial knowledge and probability of learning the skill) and the 

other two for student performance (the probability of guessing correctly when the student doesn‟t 

know the skill and the probability of slipping when the student does know the skill). 

The structure of the Knowledge Tracing model with a continuous performance node is the same 

as the original Knowledge Tracing model. The only difference is how we set up the “Student 

Performance” node. The idea is straight forward, yet there has never been positive result reported 

in this field. Some other Intelligent Tutoring System groups, such as LISTEN 

(http://www.cs.cmu.edu/~listen/) tried this approach before but failed for unknown reasons. 

In this model, instead of assign the “Guess” and “Slip” parameters in a CPT table as the original 

Knowledge Tracing model, we assigned two Gaussian distributions for “Guess” and “Slip” with 

given standard deviations. Four parameters: guess_mu, guess_sigma, slip_mu, slip_sigma, are 

used to describe the two Gaussian distributions. 

Similarly, when we predict student performance, we also get a Gaussian distribution with a mean 

value and a standard deviation value, in which the mean value will be the prediction and the 

standard deviation contains the information of how good the prediction is. In this work, we are 



45 
 

not using the standard deviation of the prediction, but it has potential to be useful in the future to 

determine how confident we are in our prediction. 

 

Fig. 3.1.1. Knowledge Tracing model 

In our experiment, we used the Bayes Net Toolbox for Matlab developed by Murphy (2001) to 

implement Knowledge Tracing and the Expectation Maximization (EM) algorithm. The EM 

algorithm finds a set of parameters that maximizes the likelihood of the data. Since EM can be 

sensitive to initial conditions (Pardos & Heffernan, Navigating the parameter space of Bayesian 

Knowledge Tracing models: Visualization of the convergence of the Expectation Maximization 

algorithm, 2010), we report the initial settings. We used initial knowledge = 0.5, learning = 0.1, 

guess_mu = 0.1, guess_sigma = 0.02, slip_mu = 0.1, slip_sigma = 0.02 for the KTPC model, and 

knowledge = 0.5, learning = 0.1, guess = 0.1, slip = 0.1 for the OKT model. 

Make the Correctness Continuous: Partial Credit 

Partial credit can be assigned in different ways. In our experiment, we are using the algorithm that 

was mentioned in our previous poster (Wang, Heffernan, & Beck, 2010) to make the correctness 

to be continuous. Since we never introduce the algorithm completely, it is described in this 

section in detail. 
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In a model with binary performance, a student would get a „1‟ if he/she answered the problem 

correctly on the attempt without asking for a hint and „0‟ otherwise.  For the purpose of this paper 

we created a scoring method that would give students a score between „0‟ and „1‟ according to 

how many attempts and how many hints they required to answer a question correctly based on 

intuition. We are well aware that this method could be optimized in lots of ways, for example, 

should each hint cost the same, or should the first hint cost less? As shown in our result, this 

simple method is effective and we leave to others different ways to optimize it. 

Intuitively, the more hints that are asked for, the less likely it is that the student understands the 

skill, so we penalize a student for each hint asked for by what we call the hint penalty, which is 1 

divided by the total number of hints available. For example, if there are 4 hints possible and a 

student asks for three of them and then gets the problem correct he/she would get a .25 score. In a 

similar manner, more attempts indicate a lower possibility of understanding the required skill, and 

we penalize each attempt. The size of the penalty depends upon whether the question type is 

“multiple choice” or “Fill in the Blank”. In our data set, we have about 80% questions that are 

“Fill in the Blank” questions, for which we picked a penalty 0.1 for each wrong attempt. For 

multiple choice questions with x choices, the penalty was computed by one over the number of 

remaining multiple choice options minus one. So a true false question will have a penalty of one 

if a student guessed wrong. If there were 4 choices, a student‟s first wrong attempt would get a 

penalty of 1/3, a second wrong attempt would get a penalty of ½, and a third wrong attempt 

would get a penalty of 1. 

After computing hint penalty (phint) for each hint and attempt penalty (pattempt) for each attempt, 

we add them together to compute the total hint penalty (total_phint) and the total attempt penalty 

(total_pattempt) for this problem. If the number is less than zero we make it zero. The last 

column of Table 3.1.2 shows two examples of formula doing this calculation. 
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Table 3.1.1 shows the details of computing partial credit for scaffolding questions. 

Table 3.1.1. The algorithm of computing partial credit. 

function pc = partial_credit(problem){ 

if first attempt correct then  

return pc = 1 

else if problem has no scaffold then 

pc = 1 - #hint * phint – total_pattempt 

if pc<0 then return pc = 0 

return pc 

else 

for each scaffold question i in the problem do 

pc_scaffold(i)  =  partial_credit(scaffold(i)) 

end for 

pc = 0.9 * average(pc_scaffold(i)) 

return pc 

} 

 

Our dataset has a special type of feedback called scaffolding. Since it‟s only a small amount of 

our data this detail might not be that important. But for completeness, we wanted to describe this. 

For those problems with scaffolding questions, if a student gets the original question wrong, the 

system will give the student a series of questions we call “scaffolding” that walk the student 

through the steps. Each of these scaffolding questions has hints and so can be scored with this 

partial credit function just like normal questions. The only question left is how to score the 

“original question”. If a student gets a question wrong and is given three scaffolding questions, 

the total credit of the whole problem is computed by averaging the partial credit scores of the 

three scaffolding questions and penalized by 10% for answering the original question incorrectly. 

If a student got the original question wrong but then got all the scaffolding questions correct, 
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he/she should get a score close to 1, which in our method would be 0.9. Again these parameters 

such as 0.9 are not optimized and could be learned from data in future work. 

The algorithm is used only for testing the effect of relaxing the assumption of binary correctness 

in a Knowledge Tracing model. 

Evaluation 

The Tutoring System and Dataset 

Our dataset consisted of student responses from ASSISTments, a web based tutoring system for 

7th-12th grade students that provides preparation for the state standardized test by using released 

math items from previous years‟ tests as questions. The tutorial helps the student learn the 

required knowledge by breaking the problem into sub questions called scaffolding or giving the 

student hints on how to solve the question. 

 

Fig. 3.1.2. Assistance  in ASSISTment 
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Fig. 3.1.2. shows an example of a hint. A second type of assistance is presented if the student 

clicks on (or types in) an incorrect answer, at which point the student is given feedback that 

he/she answered incorrectly (sometimes, but by no means always, the student will get a context-

sensitive message called “buggy message”). 

The data consisted of 52,529 log records during the period Jan 2009-Feb 2009 where each log 

record is similar to one row in Table 3.1.2, which shows the details of one problem done by one 

student. We use the same data format as the KDD Cup 2010: Educational Data Mining Challenge 

(https://pslcdatashop.web.cmu.edu/KDDCup/FAQ/#data-format).  Table 3.1.2 shows an example 

of the type of data we used.  

Table 3.1.2. An example of a few rows of data, showing how we calculate partial credit 

1.Row 2.Student 3.Problem 4.Step 5.Incorrects 6.Hints 
7.Error 
Rate 

1 S01 WATERING_VEGGIES (WATERED-AREA Q1) 0 0 0 

2 S01 WATERING_VEGGIES (TOTAL-GARDEN Q1) 2 1 1 

 

8.Knowledge 
component 

9.Opportunity 
Count 

10.Number of Choices (If 
Multiple Choice) 

11.Total 
Hints 
Available 

12.Partial Credit 

Circle-Area 1 4 Choice Multiple Choice 2 1 

Rectangle-Area 1 Fill in the Blank 3 1-2*0.1-1*1/3=0.46 

 

There are in total 12 columns, the first 9 columns in the table are straight from the KDD Cup data 

format (https://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp), and we added three 

extra columns, which are used for partial credit. In particular, column 10 “Number of Choices (if 

Multiple Choice)” was added to describe if the problem is multiple choice problem or not, and 

how many choices there are. Total number of hints available for the problem is put in column 11, 

to help compute the partial penalty per hint. The last hint always gives away the answer, so if a 

student asked for all of the hints, their score should be zero. This column allows us to give a 
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bigger penalty for hints if the number of total available hints is small. Column 12 is for showing 

how we compute the partial credit score, a continuous value between 0 and 1 that the student 

would get given the data log. Note that the original KT model will only use the 7th column, 

“Error Rate”, as model input; while the KT with partial credit model will only use the 12th 

column, “Partial Credit”. The 7th column is generated as 1 if the student answered the problem 

correctly, otherwise 0. 

Results 

To evaluate how well the new model fits the data, we used the Root Mean Squared Error (RMSE) 

to examine the predictive performance on an unseen test set. Lower values for RMSE indicate 

better model fitting. There were randomly 2,313 student data in the test set and 3,297 students in 

the training set. 

Table 3.1.3 shows the result of the comparison of the two different models, the original 

Knowledge Tracing(OKT) model and the Knowledge Tracing with partial credit(KTPC) model. 

Table 3.1.3. original KT (OKT) vs KT with partial credit (KTPC) 

Model RMSE

Partial 

Credit 

Binary 

Performance OKT 0.4128 0.4637 

KTPC 0.2824 0.4572 

 

We compared the RMSE in predicting the partial credit performance and in predicting the 

traditional binary performance respectively. The Knowledge Tracing with partial credit model has 

lower RMSE value in both situations. The lower left column shows that KTPC does a great job in 

predicting partial credit scores, which is expected. The top left cell shows that OKT can do some 
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reasonable job of predicting partial credit scores. The more interesting result is the right column, 

which shows that OKT has higher RMSE than the KTPC in predicting binary performances. 

We determined whether the difference between these two models is statistically reliable by 

computing the RMSE value for each student to account for the non-independence of student 

actions, and then compared these two models using a two tailed paired t-test. 

The t-test p value of the RMSE between using the original Knowledge Tracing model and the 

Knowledge Tracing with partial credit model to predict the partial credit is 0. The p value 

between using the original Knowledge Tracing model and the Knowledge Tracing with partial 

credit model to predict the binary performance is p < .001. The degree of freedom of the t-test is 

2,312 (since we are doing a student level t-test, the degree of freedom is the same as the number 

of students in the test set). Thus, the Knowledge Tracing with partial credit model is statistically 

reliably better at predicting student performance than the original Knowledge Tracing model. 

Conclusions and Future Work 

In this paper, we extended Bayesian Network student modeling to include continuous 

performance node. The effectiveness is demonstrated by incorporating a partial credit algorithm 

that assigns continuous performance given detailed student responses. Experiment results show 

that relaxing the assumption of binary correctness in student modeling can help improve 

predictions of student performance. This also proves that our intuition based heuristic for partial 

credit might be broadly applicable. 

One topic we are interested in exploring is other partial credit schemes, for example, a method to 

refine the algorithm to generate partial credits that can better fit student data and more accurately 

infer student knowledge. Also, since we observed some abnormal parameters in the performance 

parameters (guess/slip), we are interested in finding out why the parameters are so different 

compare to normal Knowledge Tracing model. 
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Contributions 

Moving from binary performance to continuous performance could make Intelligent Tutoring 

Systems more flexible. In this paper, on one hand, we extended the Knowledge Tracing 

framework to include a continuous performance node. This allows the Knowledge Tracing model 

to combine with all possible continuous performances such as essay score, speech recognition 

score. On the other hand, we presented an understandable and easy to refine algorithm to assign 

partial credit according to detailed student responses. This algorithm is one of many possible 

ways to convert student detailed responses into a continuous value. 

The model presented in this paper enhanced student model accuracy by improving upon the 

classic Knowledge Tracing model. The result shows that the new model makes statistical reliably 

improvement in predicting both students‟ partial credit performances and binary performances. 

Also, freely available code is shared online, which could be useful for researchers that are trying 

to do the same task. 
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3.2 The Assistance Model 

An important aspect of Intelligent Tutoring Systems is providing assistance to students as well as 

assessing them. The standard state-of-the-art algorithms (Knowledge Tracing and Performance 

Factor Analysis) for tracking student knowledge, however, only look at the correctness of student 

first response and ignore the amount of assistance students needed to eventually answer the 

question correctly. In this chapter, we propose the Assistance Model (AM) for predicting student 

performance using information about the number of hints and attempts a student needed to 

answer the previous question. We built ensemble models that combine the state-of-the-art 

algorithms and the Assistance Model together to see if the Assistance Model brings 

improvements. We used an ASSISTments dataset of 200 students answering a total of 4,142 

questions generated from 207 question templates. Our results showed that the Assistance Model 

did in fact reliably increase predictive accuracy when combined with the state-of-the-art 

algorithms. 

This chapter has been published at the following venue: 

Wang, Y. & Heffernan, N. (2011). The "Assistance" Model: Leveraging How Many Hints and 

Attempts a Student Needs. In Proceedings of the 24th International FLAIRS Conference. (Wang 

& Heffernan, 2011) 

Introduction  

Understanding student behavior is crucial for Intelligent Tutoring Systems to improve and to 

provide better tutoring for students. For decades, researchers in ITS have been developing various 

methods of modeling student behavior using their performance as observations. One example is 

the Knowledge Tracing model (Corbett & Anderson, 1995), which uses a dynamic Bayesian 

network to model student learning. A second, called Performance Factor Analysis (Pavlik, Cen, 

& Koedinger, 2009), has recently been outperforming Knowledge Tracing (Gong, Beck, & 
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Heffernan, 2010) by using a logistic regression to predict student performance. In these models, 

however, the amount of assistance a student requires to answer a question correctly is not utilized. 

Only the student‟s first attempt is taken into account, and if a hint is requested, the question is 

marked wrong. But what would the effect on predictive accuracy be if the number of hints and 

attempts requested was factored into the model? Presumably, students that require more hints or 

attempts have lower knowledge (even though there are rare instances where this generalization 

does not hold; see (Shih, Koedinger, & Scheines, 2008). We use the term “assistance” to refer to 

the two quantities: the number of hints and the number of attempts required by a student to 

answer a question. For those not familiar with ITS, most will not let a student progress to the next 

question until they have answered the current question correctly; thus, all students eventually get 

each question right. Our intuition is that low knowledge students are perhaps more likely to 

require additional hints and attempts.  

Feng and Heffernan (Feng & Heffernan, 2010) showed that they could use this sort of 

information to better predict a state test score (i.e. the Massachusetts Comprehensive Assessment 

Systems math test). However, they did not give a model that would function “online” as students 

are working; they limited themselves to only predicting state test scores. Arroyo, Cooper, etc. 

(Arroyo, Cooper, Burleson, & Woolf, 2010) showed how to use this information to predict 

learning gains. Their work suggests that using hints and attempts to model student behavior 

online could be effective. Furthermore, in our previous work (Wang, Heffernan, & Beck, 2010) 

we found even more evidence that the number of hints and attempts contain more predictive 

power than binary performance, and have the potential to enhance current student modeling 

techniques. 

In this paper, we continue to explore the possibility of utilizing assistance information in tutoring 

systems to better model student behavior and better predict student performance. 
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The Tutoring System and Dataset 

The data used in the analysis presented here came from the ASSISTments system, a freely 

available web-based tutoring system for 4th through 10th grade mathematics. The system gives 

tutorial assistance if a student makes a wrong attempt or asks for help. Fig. 3.2.1. shows an 

example of a hint, which is one type of assistance. A second type of assistance is presented if they 

click on (or type in) an incorrect answer, at which point the student is given feedback that they 

answered incorrectly (sometimes, but by no means always, students will get a context-sensitive 

message we call a “buggy message”). 

 

 

 

 

 

 

 

Fig. 3.2.1. Assistance  in ASSISTment 

We used data from four Mastery Learning classes conducted in 2009. Mastery Learning is a 

strategy that requires students to continually work on a problem set until they have achieved a 

criterion (typically three consecutive correct answers). Questions in each problem set are 

generated randomly from several templates and there is no problem-selection algorithm used to 

choose the next question. We assume the difficulty of each question is dependent on its template 

(even though in theory, some randomly generated numbers might be easier than others). Two 
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hundred 12-14 year old 8th grade students participated in these classes and generated 17,776 

problem logs from 93 problem sets. Each problem set was generated from an average of 2.2 

templates. The correctness of each answer was logged, as well as the number of hints required 

and the number of attempts made to answer each question. We only used data from a problem set 

for a given student if they had reached the mastery criterion. This data was collected in a 

suburban middle school in central Massachusetts. Students worked on these problems in a special 

“math lab” period, which was held in addition to their normal math class. 

Specific Tested Models 

We chose two popular yet very different models: KT and PFA for comparison when exploring the 

probability of adding assistance information into currently successful student models. We then 

developed an Assistance Model to infer the probability of a correct response to a given question 

based on previous assistance information. 

KT 

In our experiment, we used the Bayes Net Toolbox for Matlab developed by Murphy (Murphy, 

2001) to implement Knowledge Tracing, and the Expectation Maximization (EM) algorithm to fit 

the model to the dataset. The EM algorithm finds a set of parameters that maximize the likelihood 

of the data by iteratively running an expectation step to calculate expected likelihood given 

student performance data and a maximization step to compute the parameters that maximize that 

expected likelihood. There have been reported issues of local maxima when using the EM 

algorithm. Pardos and Heffernan (Pardos & Heffernan, Navigating the parameter space of 

Bayesian Knowledge Tracing models: Visualization of the convergence of the Expectation 

Maximization algorithm, 2010) concluded, based on a simulation study, that with the initial 

parameters of this algorithm in a reasonable range (the sum of initial guess and slip value is 

smaller than 0.5), the algorithm will always converge to a point near the true parameter value. In 
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our experiments, we choose initial parameters for each skill as follows: initial knowledge = 0.5, 

learning = 0.1, guess = 0.1, slip = 0.1. 

PFA 

Another model we used in our experiments is Performance Factor Analysis. PFA is a more 

recently proposed student modeling approach which has been shown to be superior to Knowledge 

Tracing in several papers (Pavlik, Cen, & Koedinger, 2009) (Gong, Beck, & Heffernan, 2010). 

The model uses a logistic regression with student performance as the dependent variable, question 

identities as factors and the same skill practicing matrix used in Learning Factor Analysis (Cen, 

Koedinger, & Junker, 2006) as independent variables. The skill practicing matrix contains the 

number of prior successes and the number of prior failures for each skill at each point (question) 

in the problem set. After training, the model gains a parameter for each question representing its 

difficulty and two parameters for each skill representing the impact of previous successes and 

previous failures on this question. 

Due to the fact that questions are randomly generated as a student progresses through a problem 

set, we used question template identity as factors rather than question identity in the logistic 

regression model. Moreover, we did not bound the PFA parameters to prevent negative learning 

rate.  

Assistance Model 

Our previous work on using assistance information (Wang, Heffernan, & Beck, 2010) was based 

on the intuition that the more assistance a student requires in answering a question, the lower the 

probability that student possesses the knowledge. In this study we develop a purely data driven 

model which makes no assumptions about how assistance information reflects student knowledge. 

The motivation behind building this model is to see directly from the data what the connection is 
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between requiring assistance with a question and the probability of getting the next question right. 

To do so, we build a parameter table in which row indices represent the number of attempts a 

student required in the previous question and column indices represent the number of hints the 

student asked. Each cell contains the probability that the student will answer the current question 

correctly. For this value, we simply use the percentage of students who answered the current 

question correct when the previous question satisfies the row and column. 

Statistically, using percent correct as a representation of the probability of correctness requires a 

large amount of data. In order to ensure each cell in the parameter table contains a sufficient 

number of data points while still preserving the granularity needed for distinguishing different 

assistance requirements, we separated the possible number of attempts into 3 interpretable bins: 

 • One attempt: the student only tried once to get the correct answer. 

 • Small amount of attempts: the student tried a reasonably small number (set to 2~5 in our 

experiments) of times. 

 • Large amount of attempts: the student tried 6 or more times to get the correct answer. It 

is likely that the student had difficulties in solving the problem, or was gaming the system.  

Most responses that fall into the third bin come from fill in questions due to the fact that there are 

only a small amount of choices in multi-choice questions. 

We also separated the possible number of hints into 4 different bins. To normalize the difference 

in the number of hints contained in each question, we used the percentage of total hints as a 

measurement rather than the raw number of hints. 

 • No hint: the student didn‟t ask for any hint; 
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 • Small amount of hints: the hint percentage the student requested is in the range of (0, 

50%]; 

 • Large amount of hints: the hint percentage the student requested is in the range of 

[50%~100%); 

 • To the bottom hint: the student asked for all of the hints. 

Table 3.2.1 shows an example of parameter table we computed from the training data. We can 

observe that in general, the more attempts or hints a student requires, the lower the probability 

that the student can answer the next question correctly. This confirms our intuition about 

assistance information: students requiring more assistance to solve a problem probably have less 

corresponding knowledge. Another interesting observation that can be made is that the lowest 

probability in the table occurs when students required all of the hints and then attempted only 

once to get the previous question right. This indicates that an alternating behavior of asking for a 

hint and then attempting to answer could be a more effective pattern of learning. 

Table 3.2.1. Parameter table in AM 

 attempt=1 1<attempt<6 attempt>=6 

hint_percent=0 0.7376 0.7169 0.6328 

0<hint_percent<=.5 0.6454 0.6926 0.6528 

.5<hint_percent<1 0.6269 0.6058 0.5409 

hint_percent=1 0.3929 0.4835 0.4382 

 

The Assistance Model has only 12 parameters that inform the relationship between different 

assistance patterns and the probability of a correct response to the next question. It does not take 

into account any skill, student or question information and does not model student learning since 

it only looks into one previous question to make a prediction. The model utilizes assistance 
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information exclusively. The computational cost of the model is extremely low, which makes it a 

good complement to other models that do not take into account assistance information. 

Model Combination 

In explaining student behavior and predicting student performance, Knowledge Tracing, 

Performance Factor Analysis and the Assistance Model will give very different results due to the 

different pieces of information they use and the different assumptions they make to build the 

models. By combining the Assistance Model with Knowledge Tracing and Performance Factor 

Analysis models, we add assistance information into these algorithms, which we believe will give 

us better prediction results than these models alone. In this section, we explored two different 

methods of combining models. 

Averaging 

Pardos & Heffernan (Pardos & Heffernan, 2011) demonstrated that a simple averaging technique 

can lead to higher prediction accuracy than either of the two methods that they were comparing 

by themselves. Similarly, we decided to average the Assistance Model and Knowledge 

Tracing/Performance Factor Analysis models together. Presumably, if a group of models have 

high accuracies and uncorrelated errors, we can get lower error by averaging them. 

Regression 

Using averaging to combine the predictions of different models makes the assumption that the 

different models‟ predictions should have the same weight, which may not necessarily be the case. 

To address this problem in our experiments, we also constructed a linear regression model with 

student performance as the dependent variable and prediction results from the Assistance Model 

and other models as independent variables, in order to find the best weights for the models we 
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intend to combine. If one of the models is more useful than the other, this regression will allow us 

to learn which model should be weighted more heavily in making a prediction. 

Results 

In order to evaluate the Assistance Model and test the model combination methods, we ran 

experiments on the dataset with random 80% of students‟ data in each skill used as training data 

and random 20 % unseen students‟ data as test data. 

Specific tested model results 

To evaluate how well each of the specific tested models fit the data, we used three metrics to 

examine the predictive performance on the unseen test set: Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE) and AUC (Area Under ROC Curve). Lower values for MAE and 

RMSE indicate better model fit while higher values for AUC reflect a better fit. The number of 

parameters in each model is also reported for comparison purposes. 

Table 3.2.2. Accuracy results of three specific tested models. 

 MAE RMSE AUC # of 

params Baseline 0.4231 0.4600 0.5000 1 

AM 0.3894 0.4449 0.6116 12 

PFA 0.3797 0.4435 0.7004 393 

KT 0.3535 0.4254 0.7329 372 

 

Table 3.2.2 shows the results of the comparison for the three metrics. We used a method that 

always predicts the mean value as the baseline. In all of the three evaluation metrics, the 

performance of KT is better than the performance of PFA, which is better than AM. The fact that 

AM has the lowest predicting accuracy is reasonable considering the small number of total 

parameters in the model. 
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In the Mastery Learning dataset, each problem set contains questions of a single skill, and no 

multi-skill questions are considered; thus, the number of parameters in PFA = 2*# of problem 

sets + # of question templates = 2*93+207, while the number of parameters in KT = 4*# of 

problem sets = 4*93. 

We determine whether the difference between two models is statistically significant by 

computing each evaluation metric‟s value for each student to account for the non-independence 

of their actions, then comparing each pair of specific tested models using a two tailed paired t-test. 

The results are shown in Table 3.2.3. We compute the p value of all three metrics between pairs 

such as (AM, PFA) to see if the models are reliably different from each other. The bold values in 

Table 3.2.3 show the statistically significant differences between corresponding pairs and metrics. 

As shown in the table, the differences in RMSE and AUC between AM and PFA, and the 

difference in AUC between KT and PFA are not significant. Other than those, most of the metric 

values of the different models in Table 3.2.2 are significantly different from each other. 

Table 3.2.3. Reliability of difference between two specific tested models. 

 MAE RMSE AUC 

(AM, Baseline) 0.0000 0.0000 0.0209 

(KT, AM) 0.0000 0.0000 0.4903 

(PFA, AM) 0.0365 0.5717 0.2049 

(KT, PFA) 0.0000 0.0000 0.3618 

 

Our result showing PFA having a lower accuracy than KT is inconsistent with some other works 

comparing PFA with KT. The difference may have been caused by a certain property of our 

experimental dataset. Because PFA uses 1 parameter per question and two parameters per skill 

while KT uses 4 parameters per skill, it is possible that KT works better in a dataset where skill 

differences are greater than question variety. Mastery Learning data contains data from different 
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skills, and questions of a particular skill are of similar difficulty levels in order to serve the 

purpose of random selection. 

The accuracy of AM is lower than both that of PFA and KT, yet significantly higher than the 

baseline. This indicates that although applying AM alone may lead to worse prediction due to a 

lack of complexity in the model, it still contains valuable information that has the potential to 

help improve other models‟ results. 

Combined model results 

In order to answer the question of whether or not adding the assistance information into an 

existing model could lead to a more accurate student performance prediction, we still use MAE, 

RMSE and AUC as evaluation metrics and continue to report the number of parameters in the 

final model as measurement of model complexity.  

The result is shown in Table 3.2.4. For comparison, we also computed the accuracy of combining 

PFA and KT. 

Table 3.2.4. Accuracy results of four combined models. 

 MAE RMSE AUC # of params 

AVG(AM,PFA) 0.3845 0.4304 0.7191 405 

LR(AM,PFA) 0.3732 0.4303 0.718 407 

AVG(AM,KT) 0.3714 0.4261 0.7358 384 

LR(AM,KT) 0.3515 0.4216 0.7369 386 

AVG(PFA,KT) 0.3666 0.4246 0.7381 765 

LR(PFA,KT) 0.3532 0.4236 0.7396 767 

 

In Table 3.2.4, AVG represents the averaging combining method and LR represents the linear 

regression combining method. The number of parameters used in averaging combining method is 

equal to the sum of the parameter numbers of each individual method, while the linear regression 
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combining method requires two additional parameters to indicate the impact of each model with 

respect to the final prediction. 

In the linear regression combining method, the regression model is trained on a training dataset. 

The resulting formula for combining PFA and AM on our dataset is:  

 -0.3052+0.8241*AM_prediction+0.6003*PFA_predicion; 

The formula for combing KT and AM is: 

 -0.1026+0.2078*AM_prediction+0.9373*KT_prediction; 

The formula for combing KT and PFA is: 

 -0.0600+0.1689*PFA_prediction+0.9145*KT_prediction. 

The parameters indicate that in the LR(AM, PFA) model, AM is the main influencer of the final 

prediction, while in the LR(AM, KT) and LR(PFA, KT) model, KT is the main influencer. 

Comparing Table 3.2.4 and Table 3.2.3, we find that LR(AM, PFA) is better than PFA and 

LR(AM, KT) and LR(PFA, KT) are better than KT in all metrics. The averaging combining 

method, on the other hand, does not demonstrate such clear trends of improvement. 

We also did reliability analysis by computing metric values for each student to account for the 

non-independence of actions within each student‟s dataset, and then compared each pair of 

models using a two tailed paired t-test. The p values are reported in Table 3.2.5, in which bold 

values indicate the differences are statistically significant. 

From Table 3.2.5 we can see that using the linear regression method to combine the AM model 

with PFA or KT will reliably increase the accuracy of PFA or KT respectively in all metrics. The 

fact that the accuracy of using linear regression to combine PFA and KT is not reliably different 

with KT alone could be caused by the low coefficient PFA has in the regression formula. 
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Table 3.2.5. Reliability of difference between combined models and specific tested models. 

 MAE RMSE AUC 

AVG(AM, PFA), PFA 0.0365 0.0000 0.8788 

LR(AM, PFA), PFA 0.0406 0.0000 0.0145 

AVG(AM, KT), KT 0.0000 0.0420 0.8398 

LR(AM, KT), KT 0.0009 0.0013 0.0095 

AVG(PFA, KT), KT 0.0000 0.0042 0.0251 

LR(PFA, KT), KT 0.5536 0.4456 0.7725 

 

We also want to know when combine KT and AM, whether or not we could save a student‟s 

practice time by detecting he/she master a skill sooner. Unfortunately the answer is no. We 

looked at when combine KT and AM, the difference in the number of questions students need to 

do in order to master a skill compare to the original KT model. We used the probability of 

answering a question correct > 0.9 as mastery threshold and computed the number of questions 

students need to do for AM and KT combination and KT model alone respectively for the test 

dataset. The real world mastery threshold in our dataset is three correct answers in a row. In this 

analysis, we discarded all the data points when students reached real world mastery before KT 

and AM combination or KT model consider them mastery. For the remaining 839 data points, the 

result is shown in Fig. 3.2.2. x-axis represents how many more questions KT model would 

require students do than KT and AM combined model, i.e. a “-1” shows KT model would require 

1 less question than KT and AM combined model. y-axis shows the percentage of the count of 

such instances. 

As we can see from Fig. 3.2.2., in 53% of the time, students need the same number of questions 

to be considered mastery, and in 47% of the time, when combine with AM model, more practice 

is needed for students to be considered mastery. 
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Fig. 3.2.2. Difference of the number of questions students need to do 

Discussion and Future Work 

The model we proposed in this paper is a simple and fast method of utilizing assistance 

information. Experiments show this model alone doesn‟t provide better performance prediction 

than other more complicated models; however, combining this model with other models will 

reliably improve the predictive accuracy of that model. 

This work is the beginning of an attempting to utilize assistance information in intelligent tutoring 

systems in order to better predict student performance. There are several questions that we are 

interested in exploring. 

One question is how to improve the Assistance Model by adding more parameters. Currently we 

use only 12 parameters for all of the data, which assumes that all of the skills and all of the 

students share the same parameters given a certain assistance pattern. Skill identity parameters 

and student individualizing parameters can be easily added into the Assistance Model by 

computing parameter tables for each skill or each student separately. The resulting model will 

contain much more information than the Assistance Model currently has, thus theoretically 
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resulting in better predictive accuracy. Although this modification will significantly increase the 

number of parameters in the model, the cost will remain low due to the fact that the Assistance 

Model is a table querying method, which requires no complex computation. The Assistance 

Model could also be extended to take into account the learning curve by building a parameter 

table using assistance information from a sequence of problems rather than only the previous 

problem. All of these modifications will face the problem that the data points for computing each 

table‟s parameters may become sparse and may not contain enough information. Thus analysis of 

parameter table reliability is required. 

Another question worth exploring is the development of a more interpretable combining method 

of different models. We would like to know if there are rules which can guide us to choose one 

model over another given different circumstances. 

Contribution 

For many years, most assessment work inside Intelligent Tutoring Systems has looked only at 

student first response and ignored the amount of assistance a student needed to eventually get a 

problem correct. While we could have lived to have figure out an elegant way to invariable this 

information into a Bayesian network, in this work, we took a much simpler approach, and simply 

predicted student correctness on questions by “tabulating” up the number of times students got 

the next question correct, broken out by the number of hints and attempts the student had to make. 

This method ignores everything the student did other than the assistance they get on the previous 

question. Therefore, it makes senses that when coupled (i.e, ensemble) with Knowledge Tracing 

or Performance Factor Analysis, it does better than either model alone. We encourage the field to 

look at other ways of modeling the multiple different sources of information. There clearly is a lot 

of information in the number of hints and attempts. 
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The method can be easily applied to any current student models. All they have to do is tabulate 

the percentage change a student get a problem correct, broken out by the number of hints and 

attempts used on the previous problem. 
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3.3 Assistance Model Extension: The Sequence of Action Model 

Intelligent Tutoring Systems (ITS) have been proven to be efficient in providing student 

assistance and assessing their performance when they do their homework. Many research projects 

have been done to analyze how students‟ knowledge grows and to predict their performance from 

within intelligent tutoring system. Most of them focus on using correctness of the previous 

question or the number of hints and attempts students need to predict their future performance, 

but ignore the sequence of hints and attempts. In this research work, we build a Sequence of 

Actions (SOA) model taking advantage of the sequence of hints and attempts a student needed for 

the previous question to predict students‟ performance. A two-step modeling methodology is put 

forward in the work, which is a combination of Tabling method and the Logistic Regression. We 

compared SOA with Knowledge Tracing (KT) and Assistance Model (AM) and combinations of 

SOA/AM and KT. The experimental results showed that the Sequence of Action model has 

reliably better predictive accuracy than KT and AM and its performance of prediction is 

improved after combining with KT. 

This chapter has been published at the following venue: 

Zhu, L., Wang, Y., & Heffernan, N. T. (2014). The Sequence of Action Model: Leveraging the 

Sequence of Attempts and Hints. BKT20y Workshop of Educational Data Mining. (Zhu, Wang, & 

Heffernan, 2014) 

Introduction 

Not too much attention is paid to the interaction data generated when students interacts with 

computer tutors. Shih et al (Shih, Koedinger, & Scheines, 2010) utilized Hidden Markov Model 

clustering to discover different strategies students used while working on an ITS and predicted 

learning outcomes based on these strategies. Their work was based on data set consists of a series 

of transactions and each transaction is a <Student, Step, Action, Duration> tuple. This model 



70 
 

takes into account both students‟ action, attempt or help request, and action duration. The 

experimental result of their Stepwise-HMM-Cluster model shows that persistent attempts lead to 

better performance than hint-scaffolding strategy. Some papers have shown the value of using the 

raw number of attempts and hints. The National Educational Technology Plan cited Feng, 

Heffernan and Koedinger‟s work (Feng, Heffernan, & Koedinger, 2006) and the User Modeling 

community gave it an award for best paper for showing that the raw number of hints and attempts 

is informative in predicting state test scores. Wang and Heffernan (Wang & Heffernan, 2011) 

built an Assistance Model (AM) and generated a performance table based on students‟ behavior 

of doing the previous question. Hawkins et. al. (Hawkins W. , Heffernan, Wang, & Baker, 2013) 

extended AM by looking at students‟ behavior for the two previous questions.  

These educational data mining models that utilize the number of assistance students request and 

the number of attempts they make to predict students‟ performance have ignored the sequencing 

of students‟ interaction with ITS. Consider a thought experiment. Suppose you know that Bob 

Smith asked for one of the three hints and makes one wrong answer before eventually getting the 

question correct. What if someone told you that Bob first made an attempt then had to ask for a 

hint compared to he first requested a hint and then made a wrong attempt. Would this information 

(whether he started with an attempt or a hint) add value to your ability to predict whether Bob 

will get the next question correct? We suspected that a student who first makes an attempt tends 

to learn by himself and has higher probability to master the knowledge and answer the next same 

question correct.  

In this paper, we present the SOA model and compare it to the KT model and the Assistance 

model, as well as the combined models to see if knowing sequence of action information could 

improve upon a standard Knowledge Tracing model, or even upon knowing number of hints and 

number of attempts. 
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The Tutoring System and Dataset 

The data we were using comes from the ASSISTments platform, which is an online tutoring 

system for K12 students that gives immediate feedback to teachers, students and parents. The 

ASSISTments gives tutorial assistance if a student makes a wrong attempt or asks for help. Fig. 

3.3.1 shows an example of a hint, which is one type of assistance. Other types of assistance 

include scaffolding questions and context-sensitive feedback messages, known as “buggy 

messages”. 

 

Fig. 3.3.1 shows a student who asked for a hint (shown in yellow and also indicated by the button 

says “Show hint 2 of 4”), but it also shows that the student typed in eight and got feedback that 

that was wrong. Though Fig. 3.3.1 shows the number of hints and attempts, but interestingly, you 

cannot tell whether the student asked a hint first or made an attempt first. This papers argument is 

that this information is very important. 

Fig. 3.3.1. Assistance in ASSISTments. Which is first: 

asking for a hint or make an attempt? 
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ASSISTments records all the details about how a student does his/her homework and tests, from 

which scientists can get valuable material to investigate students‟ behavior and their learning 

process. These records include the start time and end time of a student does a problem, the time 

interval between a student makes an attempt and he/she asks for a hint, the number of attempts a 

student makes and the number of hints a student asks, as well as the answer and result for each 

attempt a student makes. 

Fig. 3.3.2 shows an example of a detailed sequence of action recorded by the system. A row in 

blue means that the answer is correct; a row in red means that the answer is wrong; and a row in 

orange means that the student asks for a hint. We can see that this student answered the first 

question PRAQM5U correctly on his first attempt. The sequence of action is „a‟ („a‟ represents an 

attempt). For the second problem PRAQM2W, he/she asked 3 hints before making the correct 

answer. The sequence of action is „hhha‟ („h‟ represents a hint). For the third question PRAQM2F, 

he/she alternatively asked for hints and made attempts. The sequence of action is „hahaha‟. For 

the last question PRAQZPN, he/she made 1 wrong attempt before making the correct answer. The 

action sequencing is „aa‟. 

 

  

 

 

 

 

 
Figure 2. Students’ action records in ASSISTments 
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We used data from one Mastery Learning classes. Mastery Learning is a strategy that requires 

students to continually work on a problem set until they have achieved a preset criterion 

(typically three consecutive correct answers). Questions in each problem set are generated 

randomly from several templates and there is no problem-selection algorithm used to choose the 

next question.  

Sixty-six 12-14 year-old, 8th grade students participated in these classes and generated 34,973 

problem logs. We only used data from a problem set for a given student if they had reached the 

mastery criterion. This data was collected in a suburban middle school in central Massachusetts. 

Students worked on these problems in a special “math lab” period, which was held in addition to 

their normal math class. 

If a problem only has one hint, the hint is the answer of the problem and is called the bottom hint. 

After a student asks for a bottom hint, any other attempt is meaningless because he or she already 

knows the answer. In the experiment, we only consider the problem logs that have at least two 

hints. And the answer will be marked as incorrect if students ask for a hint or the first attempt is 

incorrect. Moreover, we excluded these problem logs: 1) students quit the system immediately 

after they saw the question so that the action logs were blank or 2) after students requested hints, 

no attempt was made.  

We equally split 66 students into six groups, 11 students in each, to run 6-fold cross validation. 

We trained the SOA model and the KT model on the data from five of the groups and then 

computed the prediction accuracy on the sixth group. We did this for all six groups.  

Specific Tested Models 

KT 
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Knowledge Tracing (KT) (Corbett & Anderson, 1995) is one of the most common methods that 

are used to model the process of student‟s knowledge gaining and to predict students‟ 

performance. KT is a Hidden Markov Model (HMM) with a hidden node (student knowledge 

node) and an observed node (student performance node). It assumes that a skill has 4 parameters; 

two knowledge parameters: prior and learn, and two performance parameters: guess and slip. The 

goal of KT is to estimate the student knowledge from his/her observed actions. 

Assistance Model 

Motivated by the intuition that students who need more assistance have lower probability 

possessing the knowledge, Wang and Heffernan (Wang & Heffernan, 2011) built a pure data 

driven “Assistance” model to disclose the relationship between assistance information and 

students‟ knowledge. 

As described in section 3.2, the Assistance Model builds a parameter table, in which row indices 

represent the number of attempts a student required, column indices represent the number of hints 

the student asked, and each cell contains the probability that the student will answer the next 

question correctly. Table 3.3.1 is the parameter table gained from our dataset. Similar with Wang 

and Heffernan‟s experimental results, this parameter table confirms that students requiring more 

assistance to solve a problem probably have less corresponding knowledge. 

Table 3.3.1. Assistance Model parameter table, average across six folds 

 
attempt= 1 1<attempt<6 attempt>=6 

hint_percent = 0 0.8410 0.7963 0.7808 

0<hint_percent<=.5 0.6286 0.6933 0.6741 

.5<hint_percent<1 0.4494 0.6290 0.6522 

hint_percent = 1 0.4293 0.6147 0.6218 
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The Sequence of Action Model 

The Sequence of Action (SOA) model we present takes advantage of the order information about 

how students make attempts and ask for hints. Different students have different sequence of 

actions. Some students answered correctly only after one attempt and some students kept trying 

many times. Some students asked for hints and made attempts alternatively, which could indicate 

that they were learning by themselves. In this data, there are 217 different sequences of actions. 

Intuitively, students‟ actions reflect their study attitude, which determines their performance. 

Based on the assumption that students who make more attempts are tend to master knowledge 

better than students who ask for more hints, we divided them into five categories or bins: (1) One 

Attempt: the student correctly answered the question after one attempt; (2) All Attempts: the 

student made many attempts before finally get the question correct; (3) All Hints: the student only 

asked for hints without any attempts at all; (4) Alternative, Attempt First: the students asked for 

hints and made attempts alternatively and made an attempt at first; (5) Alternative, Hint First: the 

students asked for hint and made attempts alternatively and asked for a hint first. Table 3.3.2 

shows some examples of the action sequences in each category.  

Table 3.3.2. Sequence of Action Category and Examples 

Sequence of Action Category/ Bin Name Examples 

One Attempt/Bin ‘a’ a 

All Attempts/Bin ‘a+’ aa, aaa,..., aaaaaaaaaaaa 

All Hints/Bin ‘h+’ ha, hha,..., hhhhhhha 

Alternative, Attempt First/Bin ‘a-mix’ aha, aahaaha,..., aahhhaaa 

Alternative, Hint First/Bin ‘h-mix’ haa, haha,..., hhhhaha 

 

All sequences end with an attempt, because in ASSISTments a student cannot continue to next 

question unless he/she fills in the right answer of the current problem. In Table 3.3.2, „a‟ stands 
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for answer and „h‟ stands for hint. An action sequence “ahha” means that a student makes an 

attempt and then asks for two hints before he/she types the correct answer and move on to the 

next question. 

Sequence of Action Tabling 

After divide all of sequence of actions into five categories, we use a tabling method, which 

computes the correctness percentage of the next question from the training data. For each fold, a 

separate table is generated by counting the total number and the correct number of the next 

question of each bin. After counting, a next correct percent is calculated by dividing Next Correct 

Count by Total Count. 

Table 3.3.3. Next correct percent table of training group of fold 1 

Bin Total Count Next Correct Count Next Correct Percent 

 ‘a’ 22964 19157 0.834 

‘a+’ 3538 2690 0.760 

‘h+’ 335 172 0.513 

‘a-mix’ 2030 1318 0.649 

‘h-mix’ 72 37 0.513 

 

Table 3.3.3 shows the table computed for fold 1. Tables for other folds are similar. From Table 

3.3.3, we can see that the percent of next-question-correct is highest among students only using 

one attempt since they master the skill the best. They can correctly answer the next question with 

the same skill. For students in „a+‟ bin, they are more self-learning oriented, they try to learn the 

skill by making attempts over and over again. So they get the second highest next-question-

correct percent. But for students in the „h+‟ category, they do the homework only relying on the 

hints. It is reasonable that they don‟t master the skill well or they don‟t even want to learn, so 

their next-question-correct percent is very low. 
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The alternative sequence of action reflects students‟ learning process. Intuitively, these students 

have positive attitude for study. They want to get some information from the hint, based on which 

they try to solve the problem. But the results for the two alternative categories are very interesting. 

Though students in these two categories alternatively ask for hints and make attempts, the first 

action can somewhat decide their learning altitude and final results. For students who make an 

attempt first, if they get the question wrong, they try to learn it by asking for hints. But for 

students who ask for a hint first, they seem to have less confidence in their knowledge. Although 

they also make some attempts, from the statistics of action sequence, they tend to ask for more 

hints than making attempts. The shortage of knowledge or the negative study attitude makes their 

performance as bad as the students asking exclusively for hints first. 

Logistic Regression 

The second part of the SOA model makes use of a logistic regression model and information we 

get from the first part of SOA, i.e. tabling method. 

Although the next correct percentage we get from the tabling method can reflect the trend of next 

correct percentage, the table is very rough. So we use it as a feature in our logistic regression 

prediction model.  

The dependent variable Next Correct of the logistic regression model has two states: correct and 

incorrect. The independent variables are Skill_ID and Credit (the next correct percentage 

generated by the tabling method). Skill_ID was treated as a categorical factor, while Credit was 

treated as a continuous factor. There are in total 51 skills. As mentioned before, there are six folds 

and each fold has its own next correct percentage table.  

We used Binary Logistic Regression in SPSS to train the model. Logistic coefficients are fitted 

through Expectation Maximization of at most 20 steps. Some of the coefficients of the first fold 

are shown in Table 3.3.4. 
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Table 3.3.4. Coefficients of logistic regression model of fold 1 

Parameters Value 

β (Intercept) -1.679 

β (skill_id 16) 0.322 

β (skill_id 17) -0.007 

β (skill_id 24) 20.168 

... ... 

β (skill_id 371) 0.470 

β (Credit) 3.286 

 

Model Combination 

Since the SOA model uses completely different information from KT, we expected a potential 

improvement from combing SOA results with the predictions from KT. We combined models 

using two different methods. 

The first method was simply average the SOA and KT predictions. Presumably, if a group of 

models have high accuracies and uncorrelated errors, we can get lower error by averaging them. 

To compare with the combination of AM model and KT model, we also computed the average of 

these two models. 

The second method was a linear regression model with student performance as the dependent 

variable. This method takes into account the fact that different models‟ predictions may have 

different weight in the final prediction. If one of the models is more useful than the other, this 

method will allow us to learn which model should be weighted more heavily. SPSS was used to 

train linear regression models. The function for KT and AM is:  

 -0.322+0.639*AM_prediction+0.769*KT_prediction; 

The function for KT and SOA is: 
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  -0. 004+0. 687*SOA_prediction+0. 321*KT_prediction;   

We did not combine AM and SOA, because both of them use information about hints and 

attempts. From the functions, we can tell that SOA weights heavier than KT, which indicates that 

SOA  is  more  useful  than  KT in making a prediction. 

Experimental Results 

Compare AM, SOA and KT 

To evaluate how well each of the specific tested models (SOA, AM, KT) and the combined 

models fit the data, we used three metrics on unseen test fold: Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE) and Area Under the Curve (AUC). Lower values for MAE and 

RMSE and higher values for AUC indicate better model fit. 

Table 3.3.5 shows values of the three metrics of the six-fold across validation, which are 

calculated by averaging corresponding numbers obtained from each validation.  

Table 3.3.5. Prediction accuracy of KT, SOA, AM and Ensemble 

 MAE RMSE AUC 

AM 0.3007 0.3844 0.5795 

SOA 0.2871 0.3767 0.6786 

KT 0.2939 0.3790 0.6735 

LR(AM, KT) 0.2874 0.3759 0.6824 

LR(SOA, KT) 0.2878 0.3762 0.6813 

AVG(SOA, KT) 0.2876 0.3757 0.6836 

 

Similar with Wang and Heffernan‟s results (Wang & Heffernan, 2011), the performance of linear 

regression combination of AM and KT, named as LR(AM, KT) is better than KT itself, which 

indicates information about the number of hints and attempts improves the prediction of KT 
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model. Overall, the combinations of any two models have higher prediction accuracy, especially 

the average ensemble of SOA and KT, named as AVG(SOA, KT), which has better accuracy than 

other combinations. Also, the linear regression of AM and KT has better prediction accuracy than 

linear regression of SOA and KT. However, from the 2- tailed paired t-test results in Table 3.3.6, 

the difference between any two model combinations are not significant. 

Table 3.3.6. Reliability when compare KT, SOA, AM, and Ensemble 

 MAE RMSE AUC 

AM vs SOA 0.000 0.000 0.000 

AM vs KT 0.000 0.000 0.000 

AM vs LG(AM, KT) 0.000 0.000 0.000 

AM vs LR(SOA, KT) 0.000 0.000 0.000 

AM vs AVG(SOA, KT) 0.000 0.000 0.000 

SOA vs KT 0.000 0.000 0.037 

SOA vs LG(AM, KT) 0.298 0.030 0.083 

SOA vs LR(SOA, KT) 0.000 0.001 0.006 

SOA vs AVG(SOA, KT) 0.020 0.000 0.003 

KT vs LR(AM, KT) 0.000 0.000 0.000 

KT vs LR(SOA, KT) 0.000 0.000 0.000 

KT vs AVG(SOA, KT) 0.000 0.000 0.000 

LR(AM, KT) vs LR(SOA, KT) 0.265 0.296 0.469 

LR(AM, KT) vs AVG(SOA, KT) 0.271 0.138 0.079 

LR(SOA, KT)vs AVG(SOA, KT) 0.258 0.001 0.010 

 

To examine whether there is significant difference between these models, we did a 2-tailed paired 

t-test. The p values are shown in table 3.3.6. We observe that most of the differences between two 

models are reliable, except for the difference between AM and KT combination and SOA and KT 

combination. This could be caused by that both SOA and AM use the information about students‟ 

actions of hints and attempts. 
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Further Analysis for SOA and KT 

From previous results, we observed that the best model is AVG(SOA,KT). In order to better 

investigate this combination, we ran student level and skill level analysis. 

Table 3.3.7 and 3.3.8 are the student level results across 66 students to account for the non-

independence of their actions. Take MAE as an example, for each student, a MAE is calculated 

based on all data available for that student. Then an average value for MAE is computed based on 

MAE of all students. Table 3.3.8 shows the t-test p value for each pair of these three models, 

where the remaining degrees of freedom on all of the tests is 65. 

Table 3.3.7. Student Level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.2939 0.3790 0.6738 

SOA 0.2871 0.3767 0.6786 

AVG(KT, SOA) 0.2905 0.3765 0.6811 

 

Table 3.3.8. Student level reliability of difference of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0000 0.0551 

KT vs AVG 0.0000 0.0000 0.0000 

SOA vs AVG 0.0000 0.0698 0.0698 

 

Table 3.3.9 and 3.3.10 are the skill level results across all 51 skills. From table 3.3.9, we observe 

that the AUC value for all of the models are very low, which indicates these models do not make 

a good classification at the skill level. The t-test p value with remaining degrees of freedom 50 is 

shown in table 3.3.10. 
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Table 3.3.9. Skill level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.3064 0.3762 0.4675 

SOA 0.2942 0.3713 0.4769 

AVG(KT, SOA) 0.3003 0.3710 0.492 

 

Table 3.3.10. Skill Level reliability of difference of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0136 0.3492 

KT vs AVG 0.0000 0.0002 0.0003 

SOA vs AVG 0.0000 0.3982 0.0059 

 

The student and skill level analysis generate similar conclusions, that SOA and KT ensemble 

outperform KT in all of the three metrics. When compare the ensemble model with SOA alone, 

the result is not so clear. 

Discussion and Future Work 

In this paper, we put forward a Sequence of Action (SOA) model which makes use of the clicking 

sequence of students making attempts and asking for hints. We conducted six-fold cross 

validation experiments. The experimental result shows that SOA has reliably higher prediction 

accuracy than Knowledge Tracing and Assistance Model. The average combination of the SOA 

and KT has the highest prediction accuracy. In sum, the sequence of students‟ action provides 

important information in predicting students‟ performance.  

This work is the beginning of utilizing the sequence of asking for hints and making attempts 

recorded by intelligent tutoring systems to better predict student performance. There are many 
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open spaces for us to explore. For example, the experiment data we used comes from 

ASSISTments, does SOA model still make a big difference if use data from other intelligent tutor 

systems? How much can the performance of SOA model be improved after combined with other 

prediction models such as PFA (Pavlik, Cen, & Koedinger, 2009)? What is the SOA model‟s 

performance if we use a student action sequence of several previous question when train the 

model? How does SOA perform after individualization? 

Contribution 

Predicting student performance is an important part of the student modeling task in Intelligent 

Tutoring Systems. A large portion of papers at EDM have focused on this. Many models and 

techniques have been used to model and investigate students‟ performance. However, little 

attention has been paid to the temporally sequential actions of students when interacting with the 

tutoring systems. To our knowledge we are the first to use the temporal sequencing of hints and 

attempts. It turns out that by paying attention to this we can better predict student performance. In 

this paper, we introduce the Sequence of Action model which makes use of the click-stream data 

of the sequence of making attempts and asking for hints when students do their homework using 

an Intelligent Tutoring System. Students‟ actions can be very different from each other, but we 

found there are some useful patterns. 

According to our six-fold cross validation experiments and paired two tailed t-test, both on 

student level and skill level, Sequence of Action model has reliably higher prediction accuracy 

than KT and AM, the later uses the number of hints students ask and the number of attempts 

students make. Furthermore, we combine SOA and KT using average and linear regression 

methods, and the ensemble model‟s performance is better than SOA, KT and the ensemble model 

of AM and KT. This indicates that the sequential information of student action does contain more 

information about students‟ learning than the count information of student action. 
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Chapter 4: Analysis about Knowledge Retention 
 

4.1 Incorporating Factors Influencing Knowledge Retention 

The goal of predicting student behavior on the immediate next action has been investigated by 

researchers for many years. However, a fair question is whether this research question is worth all 

of the attention it has received. This chapter investigates predicting student performance after a 

delay of 5 to 10 days, to determine whether, and when, the student will retain the material seen.  

Although this change in focus sounds minor, two aspects make it interesting. First, the factors 

influencing retention are different than those influencing short-term performance. Specifically, 

we found that the number of student correct and incorrect responses were not reliable predictors 

of long-term performance. This result is in contrast to most student-modeling efforts on 

predicting performance on the next response. Second, we argue that answering the question of 

whether a student will retain a skill is more useful for guiding decision making of intelligent 

tutoring systems (ITS) than predicting correctness of next response. We introduce an architecture 

that identifies two research topics that are meaningful for ITS decision making. Our experiments 

found one feature in particular that was relevant for student retention: the number of distinct days 

in which a student practiced a skill. This result provides additional evidence for the spaced 

practice effect, and suggests our models need to be aware of features known to impact retention. 

This chapter has been published as a short paper at the following venue: 

Wang, Y., Beck, J.E. (2012). Incorporating Factors Influencing Knowledge Retention into a 

Student Model. In Proceedings of the 5th International Conference on Educational Data Mining. 

pp. 201-203. (Wang & Beck, 2012) 
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Introduction 

The field of the educational data mining (EDM) has been focusing on predict correctness of the 

next student response for many years, e.g. (Beck, 2003). Very little work has been done with 

respect to longer-term prediction. Two common approaches for student modeling are knowledge 

tracing (Corbett & Anderson, 1995) and performance factors analysis (Pavlik, Cen, & Koedinger, 

2009). Both of these approaches focus on examining past student performances, and predicting 

whether the student‟s next response will be correct or incorrect. The source of power for both of 

these techniques is the student‟s pattern of correct and incorrect responses. In fact, that input is 

the only piece of information knowledge tracing (KT) uses (beyond which skill the problem is 

associated with). KT observes whether the student responds correctly or not, and uses its 

performance parameters, guess and slip, to update its estimate of the student‟s knowledge. KT 

takes the form of a dynamic Bayesian network, where each time slice represents an item the 

student is working on. 

Performance factors analysis (PFA) works similarly, and keeps track of the number of correct and 

incorrect responses the student has made of in this skill. In addition, some versions of PFA also 

make use of an item difficulty parameter to account for item complexity. PFA takes the form of a 

logistic regression model, predicts whether the student will respond to an item correctly, and 

estimates coefficients for the number of correct and incorrect responses that maximize predictive 

accuracy. 

A connection with student modeling is mastery learning. In a mastery learning framework, a 

student continues to practice a skill until it is “mastered.” The exact definition of mastery varies, 

but typically involves recent student performance. For example, the KT framework suggests that 

the probability a student knows a skill exceeds 0.95, then the student has mastered the skill.  The 
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ASSISTments project (www.assistments.org) uses a simpler heuristic of three consecutive correct 

responses to indicate mastery. 

However, there is evidence that strictly local measures of student correctness are not sufficient.  

Specifically, students do not always retain what they have learned. Aside from the psychology 

literature, e.g. (Anderson, 1993) (Ebbinghaus, 1885) (George & John, 1994), there has been work 

within student modeling that demonstrated students were likely to forget some material after a 

delay. Qiu et al. (Qiu, Qi, Lu, Pardos, & Heffernan, 2011) extended the Knowledge Tracing 

model, to take into account that students exhibit forgetting when a day elapses between problems 

in the tutor. 

Researchers in the ITS field are currently using short-term retention as an indicator for mastery 

learning. However, for a cumulative subject like mathematics, we are more concerned with the 

ability of the students to remember the knowledge they learned for a long period of time. Pavlik 

and Anderson (Pavlik & Anderson, 2005) studied alternative models of practice and forgetting, 

and confirmed the standard spacing effect in various conditions and showed that wide spacing of 

practice provides increasing benefit as practice accumulates, and less forgetting afterwards as 

well, which is consistent with classic cognitive science results (Cain & Willey, 1939). 

Problem and Approach 

Although the fields of student modeling and EDM have focused on short-term student 

performance, there is nothing inherent in student modeling or in EDM that requires such a focus.  

Conceptually, it is possible to construct models that predict other constructs of interest, such as 

whether the student will remember a skill after a period of time. Why would we want to construct 

such a model? We argue that whether a student will not only respond correctly on an item right 

away, the mastery approach used by KT, but whether the student will remember enough to 

respond correctly, after taking a break from working with the tutor, is a better definition of 

http://www.assistments.org/
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mastery. At best, it is unclear how to apply a short-term model such as KT or PFA for such a 

decision-making task. However, if we could build such a detector, we could deploy it in a 

computer tutor and use it to decide when to stop presenting items to students. Perhaps a student 

who gets several items correct in a row, and masters the skill by traditional definition, will be 

predicted to not retain the skill and should receive additional practice. 

The approach we use is straightforward: rather than attempting to predict every next student 

performance, instead we focus on student performances that occur after a long delay. In this way, 

even though we are not explicitly modeling the forgetting process, our student modeling approach 

captures aspects of performance that relate to student long-term retention of the material. It is 

reasonable that the field of student modeling did not start with long-term retention, as only a 

small minority of student practice opportunities takes place after a long delay. Therefore, such 

restrictions would result in a too-small data set to train the student model parameters. However, 

with the advent of large educational sets, such restrictions become less relevant. 

The data used in this analysis came from the ASSISTments system, a freely available web-based 

tutoring system for 4th through 10th grade mathematics (approximately 9 through 16 years of 

age). The system is mainly used in urban school districts of the Northeast United States. Students 

use it in lab classes that they attend periodically, or for doing homework at night. 

We collected data from school year September 2010 to September 2011, which consisted of 

15,931 students who solved at least 20 problems within ASSISTments. We filtered out skills that 

have fewer than 50 students. As a result, we have 2,363,982 data records. Each data record is 

recorded right after a student answered a problem, and logged relevant information including the 

identity of the student, the problem identity and skills required to solve it, the correctness of the 

student‟s first response to this problem, the duration the student spent on this problem, and the 

timestamp when the student start and finish solving this problem. 
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For this task, we defined a student as retaining a skill if he was able to respond correctly after 

approximately a week. We instantiated a week as any duration between 5 and 10 days, and 

choose the time interval of 5-10 days as our objects to analyze. We randomly selected one fourth 

of the students as training data, which result in 27,468 final data records.  Note that less than 5% 

of the data are relevant for training a model of student retention. Thus, this problem requires large 

data sets.   

Student Retention Analysis 

RQ1: Is student retention predictable? 

To answer this question, we built a logistic regression model, using the 27,468 data points with 

delayed practice opportunities described previously. The dependent variable is whether the 

student responded correctly on this delayed outcome. We used user identity (user_id) and skill 

identity (skill_id) as factors (fixed effets) in this model. We used the following features as 

covariates, treating incorrect responses as a 0 and correct responses as a 1: 

 n_correct: the number of prior student correct responses on this skill; This feature along 

with n_incorrect, the number of prior incorrect responses on this skill are both used in 

PFA models; 

 n_day_seen: the number of distinct days on which students practiced this skill. This 

feature distinguishes the students who practiced more days with fewer opportunities each 

day from those who practiced fewer days but more intensely, and allow us to evaluate the 

difference between these two situations. This feature was designed to capture certain 

spaced practice effect in students data; 

 e_mean_performance: the exponential moving mean of students‟ previous performances, 

using a decay of 0.7. For a given student and a given skill, use opp to represent the 
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opportunity count the student has on this skill, we compute the exponential moving mean 

of students‟ previous performance using formula: e_mean_performance(opp) = 

e_mean_performance(opp-1)*0.7 + correctness(opp)*0.3. The exponential moving mean 

method allows us to examine current status with a decaying memory of history data. The 

number 0.7 is selected based on experimenting with different values.   

 e_mean_time: the exponential moving mean of students‟ previous response time, using a 

decay of 0.7. Similar with e_mean_performance, for a given student and a given skill, the 

formula of the exponential moving mean of students‟ previous response time is: 

e_mean_time(opp) = e_mean_time(opp-1)*0.7 + response_time(opp)*0.3; 

 slope_3: the slope of students‟ most recent three performances. The slope information 

helps capture the influence of recent trends of student performance; 

 delay_since_last: the number of days since the student last saw the skill. This feature was 

designed to account for a gradual forgetting of information by the student;  

 problem_difficulty: the difficulty of the problem. The problem_difficulty term is actually 

the problem easiness in our model, since it is represented using the percent correct for 

this problem across all students. The higher this value is, the more likely the problem can 

be answered correctly. 

It is important to note that the features were computed across all of the data, not just the items on 

which the student had not practiced the skill for 5 to 10 days. For example, the n_correct feature 

is computed across all of the student practices on the skill, not just those practices with a 5 to 10 

day delay interval. However, we only create a row in our data set for such delayed retention items 

(thus there are 27,468 rows). After training the model on the ASSISTments data, we got a R
2
 of 

0.25. Since this model fit represents training-data fit, it is optimistic. But the model fit is at least 

strong enough to conclude that student retention appears to be predictable.   



90 
 

The Beta coefficient values and p-values for each covariate are shown in Table 4.1.1. 

In this table, the positive B values mean the larger the covariate is, the more likely the student 

respond to this problem correctly. To our surprise, the influence of the n_correct and the 

n_incorrect features are not reliably different than 0. The features n_day_seen and 

e_mean_performance, on the contrary, are reliable predictors of student retention. In other words, 

for predicting long-term retention, the number of days on which the student practiced the skill is 

important, as is his recent performance. This result is consistent with cognitive “spaced practice 

effect” result (Perruchet, 1989). The raw number of correct and incorrect responses is not a 

meaningful predictor. We expected that response time would be relevant to retention, due to its 

connection to automaticity and mastery (Anderson, 1993). 

Table 4.1.1. Parameter table of covariates in Model1. 

Covariate B p-value 

n_correct -0.003 .330 

n_incorrect -0.005 .245 

n_day_seen 0.055 .000 

e_mean_performance 0.813 .000 

e_mean_time 0.073 .043 

slope_3 -0.033 .444 

delay_since_last -0.015 .182 

problem_difficulty 5.926 .000 

 

From the likelihood ratio tests of the training set, we found that the skill_id and user_id are also 

both important features in this model. This indicates that student performance on retention items 

varies by skill and by student. It is tempting to claim that retention varies by student, but this 

claim is premature as the user_id factor models student performance on retention items. However, 

such performance is composed of how well the student learned the material as well as how much 
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of that knowledge was retained. A student could have a strong memory, but if he never learned 

the material his user_id factor would be low. Therefore, user_id does not solely represent 

retention. 

To strengthen the results, we built test set to validate the model. Since the users of testing set are 

different from those of the training set, we cannot look up user parameters directly for users in the 

testing set. Instead, we use the mean value of user parameters of the model as an approximation 

of the user parameter in the testing set. We also did the same thing for the skills that only appear 

in the testing set. 

The R2 of this model on the testing set is 0.17, indicating a reasonable model fit in-line with other 

attempts at using PFA  

RQ2: Does forgetting vary by student? 

We would like to separate the impact of the user_id feature into student knowledge and student 

retention. To accomplish this task, first, we started from the logistic regression model that we 

used in section 0, removed the factor user_id and substituted a covariate non_1st_pcorrect. The 

feature non_1st_pcorrect is the percent of a student‟s non-first attempts of the day that are correct. 

The intuition is that a student‟s first attempt on a skill each day is the one that is most affected by 

retention. By considering the student‟s overall performance, but excluding these items, we are 

estimating the student‟s proficiency in the domain in a way that is less contaminated with 

forgetting, and is thus a purer estimate of the student‟s knowledge. We trained this model on the 

same data as the previous model. The feature non_1st_pcorrect has an estimated Beta coefficient 

of 3.878, with a p-value 0.000. We got an R
2
 of 0.210 on the data, which is a reasonable model fit.  

The difference in model fit is caused by the substituting the percent correct, on non-first 

encounters, for user_id.   
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We were curious as to the cause of this difference in model fits, and investigated the residuals 

from our model. The question is whether the residual was systematic, and could be predicted by 

user_id. We fit a general linear model with user_id as a random effect, and the residual as the 

dependent variable. The R
2
 of this model is 0.235. Thus, the residual in our model, after 

accounting for student overall percent correct in contexts where forgetting was minimal, does 

vary systematically by user_id. Thus it appears that there is some construct beyond performance, 

such as forgetting, that varies by student. 

Although it is tempting to claim this term represents student forgetting, it is necessary to validate 

the construct (Crocker & Algina, 1986) we have modeled. To test whether we have modeled 

retention, we first extracted the student random effects from our GLM. We then computed the 

correlation between that term, and each student‟s difference in performance between the first and 

second question on a skill that occurs each day. Our belief is that this difference in performance is 

related to student forgetting, since a large increase in performance from the first to the second 

item suggests the student is remembering old information. Unfortunately, the correlation between 

these terms was negligible, so we are still searching for what our per-student effect is actually 

modeling. 

CONTRIBUTIONS 

This paper makes three main contributions. First, the mastery learning notion is expanded to take 

into account the long-term effect of learning. In comparison to the traditional view that Corbett 

and Anderson brought up in their seminal work (Corbett & Anderson, 1995), which looks at only 

the immediate knowledge, this paper looks at broader notion of knowing a skill. 

The second contribution this paper makes is extending the PFA model (Pavlik, Cen, & Koedinger, 

2009) with features that are likely to be relevant for retention. Most prior work has focused on 

concepts such as item difficulty or amount of assistance required to solve a problem. However, 
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those features focus on student performance and properties of items, not on broad 

characterizations of performance. Our study confirmed that the long-term knowledge appears to 

vary by skill, and possibly by student. In addition, the number of days on which a student 

practiced a skill is relevant, and could be an important feature in directing ITS decision making to 

enhance retention. This result confirms the spaced practice effects in a larger scope; also we 

found that the number of correct responses seem to be not so important in predicting knowledge 

retention. 

The third contribution this paper makes is on discovering a new problem that is actionable by ITS.  

Previous student models focus on estimating student current knowledge, which is powerful for 

EDM, and an efficient use of data for testing a model, but provides limited guidance for tutorial 

decision making. This paper proposed a diagram of ITS action cycle that can be used to discover 

new problems in the EDM field that can lead to higher mastery learning rate in ITS systems. 

One goal of EDM is to address questions that are relevant for tutorial decision making of ITS. 

Currently, many ITS simply present a sequence of problems and evaluate student performance 

right after the student finished these problems to see if the student mastered the given skill. This 

process does not have the mechanism for the system to review students‟ knowledge after a time 

period, nor know about students‟ long term performance. It is dangerous for ITS to promote a 

student on the basis of short term performance. We propose the follows diagram shown in Fig. 

4.1.1, which allows ITS to aim for students long-term mastery learning. 
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Fig. 4.1.1. Enhanced ITS mastery learning cycle 

This paper focuses on the diamond on the left side, whether the student has mastered a skill.  

Rather than using local criteria to decide whether mastery has occurred, we trained a model to 

decide mastery based on predicted performance. Beyond this EDM work, some review 

mechanism for ITS seems warranted, as for cumulative domains, such as mathematics, ensuring 

that students have retained their knowledge is critical. Correspondingly, we have added a review 

mechanism to ASSISTments. 

Another interesting EDM problem is the diamond on the right: when is a student likely to fail to 

master a skill in a timely manner and (statistically) exhibit negative behaviors such as gaming?  

We have made progress on this problem as well, and dubbed the phenomenon “thrashing.” If a 
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student is unlikely to master a skill via problem solving, it is essential to do something else, such 

as peer tutoring, having the teacher intervene, or providing instruction within the ITS. 

What we like about both of these problems is that they are rich challenge problems for EDM, and 

provide actionable information for ITS to make use of in their decision making. If a student 

appears likely to retain a skill, it is probably not necessary to keep presenting items. If a student is 

likely to not master a skill, it is probably not productive to keep presenting problems. 

Future Work and Conclusions 

There are three questions that we are interested in exploring. First, do students vary in how 

quickly they forget? Our first attempt at teasing apart the user_id factor gave inconclusive results, 

but this area is important enough to warrant further study. Another issue that we are interested in 

addressing is what are additional features that relate to forgetting? The field of psychology is rich 

in ideas, but there has been little existing work in student modeling. 

Finally, we would like to deploy this model to a working ITS in the field. On one hand, this can 

help verify the model; on the other hand, this could be used to improve the ITS systems to help 

student achieving long-term mastery learning. 

This paper present an ITS mastery learning diagram, which brings up useful problems in EDM 

that needs more work. In this paper we concentrate on estimating student knowledge retention 

and discovered some useful features for this task. Also, we were able to conclude student long-

term performance is predictable, even when a student‟s ability to remember a skill comes in to 

play.  
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4.2 The Effect of Automatic Reassessment and Relearning 

Intelligent Tutoring Systems (ITS) give assessments to estimate a student‟s current knowledge. A 

great deal of work in the past years, (e.g. KDD Cup 2010) has focused on predict students 

immediate next performance, while what is important is will the student retain that knowledge for 

later use. Some previous studies have started to investigate this question by trying to predict 

student retention after a time interval of several days. We created a novel system that would 

automatically reassess and allow students to relearn the material to enhance a student‟s long-term 

knowledge. It is showed before that this intervention raised student learning, and now we are 

wondering if it also makes assessment of student long-term knowledge better (i.e, more predictive 

power). The result shows that the reassessment and relearning information is very useful in 

assessing student long-term knowledge. 

This chapter has been published as a short paper at the following venue: 

Wang, Y. & Heffernan, N. (2014). The Effect of Automatic Reassessment and Relearning on 

Assessing Student Long-term Knowledge in Mathematics. In Proceedings of the 12th 

International Conference on Intelligent Tutoring Systems. pp 490-495. (Wang & Heffernan, 2014) 

Introduction 

The ASSISTments project is premised on the notion our schools are asked to do too much testing. 

Every minute testing is a minute stolen from instruction. The solution is to use data from students 

learning for assessment purposes. Intelligent Tutoring Systems (ITS) give assessments to estimate 

student current knowledge and predicts student performance on the immediate next action has 

been investigated by many researchers. But what if our goal is not to ask “do they know this right 

now?” but “will they retain this knowledge later?”. This is a more important question because the 

purpose of education is to teach students so that they can retain it rather than immediately 

understand it but quickly forget. Some previous studies (Wang & Beck, 2012) (Xiong, Li, & 
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Beck, 2013) have investigated this question by trying to predict student performance after a 

several days interval. In this paper, instead, we are trying to predict student performance after a 

much longer – six months interval. 

Compared to traditional assessment, the dynamic assessment (Sternburg & Grigorenko, 2002) 

that we are conducted in this study utilizes the amount of assistance that students require to judge 

the depth of student knowledge. We would not be the first to show that letting students learn 

could help assessing. Different researchers showed that by offering increasingly more explicit 

prewritten hints in response to incorrect responses, better assessment can be achieved (Brown, 

Bryant, & Campione, 1983) (Campione & Brown, 1985) (Attali, 2011). ASSISTments itself has 

been used in the past along similar lines (Feng, Beck, Heffernan, & Koedinger, 2008) and has 

been shown that we can better predict students state test scores if we use the number of hints, 

their responses and other student data. 

We created a novel system that would automatically reassess and allow students to relearn the 

material to enhance students‟ long-term knowledge. We call it the Automatic Reassessment and 

Relearning System (ARRS). Details on how ARRS works can be found here (ARRS study). The 

ARRS system gives us an opportunity to investigate two interesting questions. First, do the 

models for assessing student knowledge retention several days later perform differently from 

those for assessing student knowledge retention after a longer time interval (six months)? Second, 

can we do better in assessing student knowledge retention after six months by utilizing the extra 

information gathered from the ARRS system? The main difference between this study and 

previous ones is that not only features of student learning behavior, but also features of student 

relearning behavior were investigated. 

Different logistic regression models were built and analyzed to address these two questions. The 

result showed that given the same feature set, higher accuracy can be achieved in assessing 
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shorter interval knowledge retention than the longer interval retention, which indicates that 

assessing longer interval retention could be a harder task. With the extra information of student 

reassessment and relearning, however, we were able to assess student longer interval retention 

even better than the shorter interval retention. This result suggests that reassessment and 

relearning information is very useful in assessing student long-term knowledge. 

Methods 

The Tutoring System and Dataset 

The data used here came from two ARRS experiment classes in the ASSISTments platform in 

school year 2010-2011. ARRS is a sub-system build in the ASSISTment platform, which 

automatically reassess student a week later, a month later, and then finally two months after a 

student originally masters a skill (master here means achieve a preset level -- typically three 

consecutive correct answers). If students fail the reassessment, they will be given an opportunity 

to relearn the topic until master it again. 

There were 128 students, 33 skills and 53,449 data instances in this experiment. Students were 

separated into groups 1 and 2, and skills were separated into groups A and B. At the beginning of 

the experiment, all students completed a first assignment of each skill. Then group 1 students did 

group A skills assignments in the ARRS while group 2 students did group B skills assignments in 

the ARRS. After six months, all students were given a one item per skill posttest. 

To simplify the analysis, in this study we focused on the first reassessment and relearning phase, 

that means only data from the first assignment (first phase) and the one week later reassessment 

and relearning assignment (second phase) were included in this study. We also excluded 29 

students since they missed either the first assignment or the posttest for some skills. We excluded 

student skill pairs in the ARRS condition where seven days later reassessment or relearning was 
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not finished. These data pre-processing result in 1,538 student skill pairs for the control condition 

and 1,587 student skill pairs for the ARRS condition. 

Models and Analysis 

Logistic regression models were built to assessing student long term knowledge. Features 

includes the prior knowledge firstp_pretest, information of student‟s original learning process: 

firstp_avg_correct, firstp_avg_phint, firstp_avg_attempt, firstp_nquestions, the prior knowledge 

at seven days later secondp_pretest, and information of student re-learning process: 

secondp_avg_correct, secondp_avg_phint, secondp_avg_attempt,  secondp_nquestions. Forward 

input stepwise procedure was conducted to eliminate useless features. 

We used The Root Mean Squared Error (RMSE) of predicting a posttest score as a measure of 

assessing accuracy. secondp_pretest was the target for assessing shorter term retention, and 

posttest was the target when assessing longer term retention. 

A 5- fold cross validation was done for all of the models. That is, we randomly separated all 

student skill pairs into five folds, and ran all the models five times. Each time the models were 

trained on four folds and tested on the remaining one fold. 

RQ1: Do the models for assessing student knowledge retention several days later perform 

differently from those for assessing student knowledge retention after a longer time interval? 

To answer this question, we built two comparable models as shown in Table 4.2.1. The Shorter-

term_Phase1_Model used features from the first assignment to predict student knowledge 

retention one week later, while the Longer-term_Phase1_Model used features from the first 

assignment to predict student knowledge retention six months later. To avoid the influence of the 

relearning in predicting the longer term knowledge retention, we used control group data to 
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evaluate the Longer-term_Phase1_Model. And we used ARRS group data to evaluate the Shorter-

term_Phase1_Model because there is no data on control group‟s shorter term knowledge retention. 

Table 4.2.1. Short-term_Phase1_Model (SP1) vs. Long-term_Phase1_Model (LP1) 

Model Dependent Data Feature Selected RMSE 

SP1 phase2_pretest ARRS firstp_avg_correct 

firstp_avg_attempt 

0.4049 

LP1 posttest Control firstp_avg_correct 

firstp_avg_phint 

firstp_avg_attempt 

0.4296 

 

Since both conditions had the same group of students, we were able to compute a student level 

paired t-test to determine whether the RMSE difference between these two models was 

statistically reliable. The result is statistically reliable, t(98) = 2.58, p = 0.01. The result suggests 

that the six months knowledge retention is harder to assess than the seven days knowledge 

retention is not surprising, and some may say it‟s trivial. However, the short term model helped 

us in setting up a baseline for the models of assessing longer term retention to compare with. 

RQ2: Can we do better in assessing student knowledge retention six months later by utilizing 

the extra information gathered from the ARRS system? 

Similar to RQ1, we built several logistic regression models as shown in Table 4.2.2. All these 

models predicted the posttest score using the ARRS group data. 

Phase1and2_Model used all the features from both the first assignment, and the ARRS 

assignment seven days later in a single stepwise logistic regression model. 

To improve upon the Phase1and2_Model, we considered the fact that some of the ARRS student 

skill pairs do not have relearning features because they answered their reassessment question 

correctly. This caused large amount of missing data when we use a single model to describe all 
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the ARRS data. We then built a model called Phase1and2_Combined_Model, which was the 

combination of two sub-models: Phase1and2_norelearning_Model, and 

Phase1and2_relearning_Model. The Phase1and2_norelearning_Model ran on the student skill 

pairs in which the students did not need to relearn the material for the skill, while the 

Phase1and2_relearning_Model ran on the student skill pairs in which the students needed and 

finished the relearning assignment. 

Table 4.2.2. Phase1and2_Model vs. Phase1and2_Combined_Model 

Model Data Feature Selected RMSE 

Phase1and2_Model ARRS 

firstp_avg_correct 

firstp_avg_phint 

secondp_avg_correct 

secondp_nquestions 

0.3886 

Phase1and2_Combined_Model ARRS 

-- 

 

0.3861 

Phase1and2_norelearning_Model 

ARRS  

no relearn 

firstp_avg_correct 

firstp_avg_phint 

-- 

Phase1and2_relearning_Model 

ARRS 

relearning 

 firstp_avg_correct 

secondp_avg_correct 

secondp_nquestions 

-- 

 

In Table 4.2.2, the feature column of Phase1and2_Combined_Model is empty, because it is the 

combination of two different models (Phase1and2_norelearning_Model and 

Phase1and2_relearning_Model). Also, the RMSE column for Phase1and2_norelearning_Model 

and Phase1and2_relearning_Model is empty, because the dataset of these two models are 
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different with other models in the table, thus the RMSEs of these two models are not comparable 

with other models‟. 

Until now, we could draw two conclusions. First, by comparing Longer-term_Phase1_Model in 

Table 4.2.1 and Phase1and2_Model in Table 4.2.2, we observed the extra features gathered from 

ARRS did improve the accuracy in assessing student long term knowledge. A student level paired 

t-test suggested this improvement was statistically reliable, t(98) = 4.61, p < .001. Compared to 

the short term model Shorter-term_phase1_Model, however, this new long term model has a 

better, but not reliably better, RMSE, t(98) = 1.82, p = 0.07. Second, by separating models 

according to whether or not a student needed relearning for one skill, we were able to further 

improve the model for assessing long term knowledge. Although the improvement between the 

Phase1and2_Model and the Phase1and2_Combined_Model was not reliable, t(98) = 1.05, p = 

0.30, amazingly, the Phase1and2_Combined_Model was able to reliably improve upon the short 

term model Shorter-term_Phase1_Model in Table 1, t(98) = 2.02, p < 0.05. This proved again the 

importance of the relearning features, especially the average correctness in the relearning phase 

and the number of questions students need to relearn a material. 

Discussion and Future Work 

In this paper, we compared model performance between assessing student shorter interval 

knowledge retention and longer interval knowledge retention. Results suggested that longer 

interval knowledge retention is harder to assess. We then investigated the effect of the extra 

features gathered from ARRS and concluded that relearning features are useful in assessing long-

term knowledge retention.  

One limitation of this work is the amount of data. The experiment was a pioneer study of ARRS, 

and has only several thousands of data instances. Verifying the result of this study in a larger 

dataset or a different tutoring system could be helpful.  



103 
 

Another limitation is that we only used the information from the one week later reassessment and 

relearning phase. Future study could further investigate the predicting power of data from the 

later phases of two weeks, one month, and two months later. 

Contributions 

This paper analyzed data gathered from a novel system, which automatically reassesses student 

knowledge and allows them to relearn the material, to evaluate its power in assessing student 

long-term knowledge and makes several contributions. 

First, assessing student current knowledge has been investigated by researchers in ITS for many 

years. Recently some researchers have discovered the difference between assessing current 

knowledge and knowledge retention several days later. We further explored this topic, and 

compared the model performance between assessing student shorter interval retention (seven days 

later) and longer interval retention (six months later). Results showed that the latter is a harder 

problem to address. We then concentrated on improving the assessing accuracy of the longer 

interval retention. 

Second, for the task of predict student knowledge six months later, compared to other dynamic 

testing methods, we not only looked at the assessment power of the features in student learning 

process, but also the assessment power of these features in student relearning process. To do so, 

instead of using data from a single session, we also used data from a second session at one week 

later. We built and analyzed different stepwise logistic regression models to see if number of 

problems (learning speed) and other features (hints and attempt) of the second session help the 

prediction. Result shows that having data from both the learning session and the relearning 

session lead to better prediction. More interestingly, it shows that tracking how much relearning 

(measured by the number of problems student need to finish before re-mastery a skill) students 
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need was a useful predict. This indicates that student relearning time is a useful indicator of the 

depth of student knowledge. 

Furthermore, we found that making separate models according to weather or not a student needs 

relearning for a skill gives better prediction, and surprisingly, even better than predicting students‟ 

shorter interval retention. 
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Chapter 5: Other Work Related to Student Modeling 
 

5.1 Attempts to Improve Affect Detectors 

The Baker et al affect detectors on boredom, frustration, confusion and engagement concentration 

with ASSIStments dataset have been greatly studied and were used to predict state tests scores, 

college enrollment, and even whether a student majors in a STEM field. In this section, we 

presented three attempts to improve upon current affect detectors. The first attempt analyzed the 

effect of missing skill tags in the dataset to the accuracy of the affect detectors. The result shows 

a small improvement on all of the four detectors after correctly tagged the missing skill values. 

The second attempt added four features that were related to student classes for feature selection. 

The third attempt added two features that described information about student common wrong 

answers for feature selection. Result showed that two out of the four detectors were improved by 

adding the new features. 

 This chapter has been published as a short paper at the following venue: 

Wang, Y., Heffernan, N. & Heffernan, C. (2015). Towards Better Affect Detectors: Effect of 

Missing Skills, Class Features and Common Wrong Answers. In Proceedings of the 5th 

International Learning Analytics & Knowledge Conference. pp 31-35. (Wang, Heffernan, & 

Heffernan, 2015) 

Introduction 

Affect detection in educational systems is important in understanding different student affect and 

their impacts. Correctly detect student affect could also potentially help guide interventions to 

improve student engagement, reduce student confusion, frustration or boredom. In recent years, 

sensor free affect detection (D‟Mello, Craig, Witherspoon, McDaniel, & Graesser, 2008) (Baker, 

et al., 2012) (Sabourin, Mott, & Lester, 2011) has gained more and more attention. This approach 
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can be easily applied to various real-world educational systems for students‟ affect detection 

without requirement of sensor systems which could be expensive and less robust to classroom 

conditions. 

Currently, the best sensor free affect detectors were built by Baker et al (Baker, et al., 2012) on 

the cognitive tutor dataset, which can be used detect student engaged concentration (Craig, 

Graesser, Sullins, & Gholson, 2004), confusion, frustration and boredom solely from students‟ 

log data that already exists inside current educational systems, including students‟ interactions 

within the interface. The detectors were then rebuilt using the ASSISTments platform dataset, and 

helped various of researches, including San Pedro et al‟s work on how affect is shaped by 

knowledge (San Pedro, Baker, Gowda, & Heffernan, 2013). Hawkins et al investigated how 

interface design influences affect (Hawkins, Heffernan, & Baker, 2013). Pardos et al (Pardos, 

Baker, San Pedro, Gowda, & Gowda, 2013) investigated how affect influences learning, and used 

affect states to predict state tests scores. San Pedro et al (San Pedro, Baker, Bowers, & Heffernan, 

2013) even used the affect detector to analyze how affect influences the eventual decision to 

attend college, including college enrollments and whether a student majors in a STEM field. 

The original sensor free affect detection method has produced detectors that are better than 

chance, but not substantially better. However, after three years since built, there is not much 

reporting about improvement upon the original sensor free affect detectors. In general, a feature 

based learning analytics model could be improved in three different ways: 1) generating more 

accurate features; 2) further features engineering; 3) search for alternate methods for aggregating 

data. In this paper, we tried three attempts in the first two ways to improve the detectors. 

The first attempt was correcting the missing skill tags in the ASSISTments dataset. We found that 

the model was based upon the ASSISTments data that included almost 1/4 of questions that were 

not tagged with any skill. We decided to run experiments to see if by tagging these questions with 
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correct skills the detectors could perform dramatically better. The result could tell us how 

sensitive these detectors are to missing skill values, and could potentially provide us with more 

accurate detectors. We refit all of the four affect detectors and reported our findings. Somewhat 

surprisingly, getting these questions retagged hardly increased our ability to predict affect state. 

This result suggests that it should be safe to use the affect detectors with certain amount of skill 

tags missing. 

The second attempt we tried was adding four features that describe information about student 

classes into the feature pool of the affect detectors for feature selection. Class is one of the most 

common objects that are studied in the educational field. However, when building student models 

such as models for predicting student performance or estimating student affective states, class 

level features are rarely considered. Wang et al (Wang & Beck, 2013) showed in a student model 

that class level parameters could be useful. In our experiments, result showed that class features 

also helped improve two out of the four affect detectors. 

Current Massive Open Online Courses (MOOCs) often collect features that the Learning 

Analytics community is already taking advantage of, such as the correctness of student 

performance; the total time students take in answering problems, the number of hints they ask for, 

or number of attempts they make. In this paper, however, we took a look at a novel feature: 

whether the student has made a common wrong answer. Previous research in our lab showed that 

the particular common wrong answers are predictive of “next problem correctness”. Also that the 

group of data logs in which all the answers are not common (namely uncommon wrong answer 

group) were more likely to be followed by a wrong attempt on the next problem for this particular 

student and skill. We could like to see in this study, whether or not common wrong answers could 

also help improve affect detectors. 
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We are not the first to think that common wrong answer is useful. Many researchers at ETS and 

others used this idea. But their work is only for multiple choice questions. In most of the MOOCs 

and tutoring platform such as ASSISTments, more generalized common wrong answers could be 

easily studied with the historical answering text data that could be relied upon. We 

operationalized a common wrong answer as one that at least 10% of those students that got the 

question wrong gave that answer. All answers that were not common were named “uncommon 

wrong answers”. The third attempt we tried to improve sensor free affect detectors was adding 

two features that describe information about how common the student answer was into the feature 

pool of the affect detectors for feature selection. Result suggested that common wrong answer 

was useful information in estimating student affects. 

Methodology 

Dataset and features 

The data used in the analysis presented here came from the ASSISTments system, a freely 

available web-based tutoring system for 4th through 10th grade mathematics. The system gives 

tutorial assistance if a student makes a wrong attempt or asks for help. Fig. 5.1.1. shows an 

example of a hint, which is one type of assistance. A second type of assistance is presented if they 

click on (or type in) an incorrect answer, at which point the student is given feedback that they 

answered incorrectly (sometimes, but by no means always, students will get a context-sensitive 

message we call a “buggy message”). 

Our dataset also provides a special type of assistance called scaffolding as in Fig. 5.1.2. For those 

problems with scaffolding questions, if a student gets the original question wrong, the system will 

give the student a series of questions we call “scaffolding” that walk the student through the steps 

of solving the original question. 
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Fig. 5.1.1. Hint and buggy message in ASSISTments 

 

Fig. 5.1.2. Scaffolding in ASSISTments 
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The students and features in this study was same as the previous studies of sensor free affect 

detectors of ASSISTments data (Ocumpaugh, Baker, Gowda, Heffernan, & Heffernan, 2014). 

Students in this study are drawn from middle schools in the Northeastern United States that 

represent three different populations: rural, suburban and urban students. The ground truth labels 

of student affect are obtained using quantitative field observations (QFOs) of educationally 

relevant affect categories. The QFOs were obtained using the Baker-Rodrigo Observation Method 

Protocol (Ocumpaugh, Baker, & Rodrigo, 2012). BROMP coders record the affective state of 

each student individually, in a predetermined order that is enforced by the Human Affect 

Recording Tool (HART) application (Baker, et al., 2012). The BROMP coding scheme and 

HART recording tool allowed us to accurately match each field observation window to the 20-

second clip of that student‟s interactions that are recorded in the software‟s log file. 

Same as in the original affect detection paper, student actions within the educational system were 

synchronized to the field observations according to the same internet-time server to distill 

features for affect detection. 58 features, including temporal features, skill-based features, 

features based on the number of errors, the number of correct answers and the number of hints 

requested, were developed using the action data during and prior to the twenty seconds prior to 

data entry by the observer. These 58 features were then aggregated using mean, min, max and 

sum aggregator across the action to generate a total of 232 features that were used in the 

development of the affect detectors. 

Examples of features can be seen in the result section. 

Classification methods and evaluation measures 

In order to classify all four affect states: boredom, engaging concentration, frustration and 

confusion, each affective state was predicted separately by applying standard data mining 

classification algorithms (including LinearRegression, decision trees, step regression, Naïve 
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Bayes, JRip, J48, REPTree, BayesianLogisticRegression, and K*) within RapidMiner 5 (Mierswa, 

Wurst, Klinkenberg, Scholz, & Euler, 2006), a software system that facilitates data mining 

analysis. This resulted in four detectors, one for boredom, confusion, engaged concentration, and 

frustration respectively. 

Each detector was evaluated using five-fold student-level cross validation. In this process, 

students are split randomly into five groups. Then, for each possible combination, a detector is 

developed  using  data  from  four groups  of students  before  being tested  on  the  fifth  “held  

out”  group  of  students. This method of cross validation insured that the detectors will be 

accurate for new students. 

For model selection and evaluation purpose, goodness metrics were used. Since no single metric 

fully captures every aspect of a model, two goodness metrics were used to determine which 

detectors were most effective: Cohen‟s Kappa (Cohen, 1960) and A‟ (Hanley & McNeil, 1982). 

Cohen‟s Kappa assesses the degree to which the detector is better than chance at identifying 

which clips involve a specific affective state. A Kappa of 0 indicates that the detector performs at 

chance, and a Kappa of 1 indicates that the detector performs perfectly. A Kappa of 0.2 would 

indicate that the detector is 20% better than chance. A‟ is the probability that the algorithm will 

correctly identify whether  a specific affective state is present or absent in a specific clip. A model 

with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs perfectly. In these 

analyses, both of the goodness metrics was applied at the level of the clip (the 20-second interval 

of the log file, which is the basic unit for our analysis). 

A forward selection feature selection process was conducted for each of the machine learning 

algorithms using cross-validated kappa on the original (e.g. non-re-sampled) data set as the 

goodness metric. In this process, the single feature that most improves model goodness is added 

into the final model  repeatedly until adding additional features no longer improves model 
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goodness. Prior to feature selection, all features with cross-validated kappa equal to or below zero 

in a single-feature model were omitted from consideration. 

Missing skill problem 

One of the biggest problems in “big-data” analysis is the missing data problem. In our dataset, we 

noticed that around 24% of the data has missing skill tags. All the logs that missed skill tags were 

treated as a single skill: “no-skill”. Since skill is one of the most important features in the 

educational dataset, we are intrigued to see how much improvement could be achieved if all the 

skills were tagged properly. 

To do so, we exported all 388 problems that had no skill tags in our dataset and manually tagged 

them with correct skills. We than regenerated all of the 232 features with the new dataset with 

more accurate skill tags and rebuilt all of the four affect detectors. The goal is to find out how 

much improvement, if any, can be achieved by generating more accurate skill related features and 

how sensitive the sensor free affect detectors were to missing skill tags. 

Class features 

Currently, all of the features that were used in the sensor free affect detectors were generated for 

each student independently. However, student affect could be influenced by the behavior of the 

class that they belonged to. Intuitively, a student could feel less frustrated when he/she was better 

than most of other students in his/her class. By the same token, a student was more likely to feel 

bored if we observed that most of the other students were bored. In order to capture some of the 

information related to student class, we developed four new features: 

 pCorrectClass: the percentage of correctness of all previous questions answered in the 

class; 
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 pCorrectStudentPercentileRank: the student percentile rank of average performance in 

the class so far for this student; 

 nClassData: number of previous data points for this class; 

 nClassStudent: number of students has been seen in this class so far; 

These four features can be seperated into two groups: pCorrectClass was designed to describe the 

average performance of the class that the student belonged to. This could potentially be useful for 

normalizing the effect of student performance on student affect. nClassData was designed to 

evaluate the robustness of the feature pCorrectClass. When the number of data points for this 

class was too small, we probably should trust less about the pCorrectClass feature.  

The pCorrectStudentPercentileRank feature was designed to describe how good the student did in 

compare to his/her peer classmates. nClassStudent and nClassData could be used together to 

imply how much we should trust the feature  pCorrectStudentPercentileRank. 

We evaluated the effect of these four class features by adding them into the original 232 feature 

sets. The same forward inputting features selection, multiple classification algorithms and 

evaluation measures were used to build and evaluate the new affect detectors with class features. 

To make sure the new detectors‟ performance can be directly compared with the original 

detectors. We used unique-id to ensure the data re-sampling and cross-validation folders were 

exactly the same between the new and old affect detectors.  

Common Wrong Answers 

As discussed in the introduction section, common wrong answer is a novel feature that has great 

potential in improving educational models. Intuitively, students that answered a common wrong 

answer could indicate certain misunderstanding and/or understanding of the problem. Previous 
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work in our lab discovered a huge difference in students‟ next performance between a common 

wrong answer and a non-common wrong answer. But the effect of common wrong answer on 

student affects has never been studied.  

We developed two different features that were related to the common wrong answers for the 

detectors to select from: 

 answerPercentage: the percentage of this particular answer among all logs that answered 

this problem; 

 commonWrongAnswer: a binary feature describes whether or not this answer is a 

common wrong answer; A common wrong answer was defined by answers that were 

given by at least 10% of the students that got the question wrong;  

We evaluated the effect of common wrong answer features using the same method as the class 

features. First, the two features that were related to common wrong answers were added into the 

original 232 features. Then unique-id was used to generate exactly the same re-sampling and 

cross-validation dataset. Finally the same classification and evaluation measures were used to 

build and evaluate the new affect detectors with common wrong answer features. 

Experimental Results 

Effect of missing skills 

After correcting missing skills, the detector performance was improved in all of the four detectors, 

but only for a small amount. This indicated that the sensor free affect detectors could be safely 

used on dataset with certain amount of missing skill tags, with only a small sacrifice of 

performance (less than 3% of average Kappa). This was good news for educational systems in 

which missing skill tags were inevitable (e.g. systems allowing teachers create their own 

problems without skill tags). 
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Effect of class features 

After adding four class features, detector performance was improved in two out of all four 

detectors. Full results are shown in Table 5.1.1. For engaged concentration, the best algorithm 

with class features was the same as the original detectors: J-Rip. The engaged concentration 

detector achieved an A‟ of 0.743 and a Kappa of 0.423. For boredom, the best algorithm with 

class features changed from J48 as in the original detectors to K*. The boredom detector achieved 

an A‟ of 0.671 and a Kappa of 0.260. 

The bold values in Table 5.1.1 showed the improved model results. For confusion and frustration 

detectors, the class features were not selected into the final models. Thus the algorithm and 

features for the confusion and frustration detectors were kept the same as the original detectors. 

Table 5.1.1. Effect of class features 

Detector 

Original With Class Features 

A’ Kappa A’ Kappa 

Engaged 

Concentration 
0.731 0.417 0.743 0.423 

Confusion 0.625 0.146 0.625 0.146 

Frustration 0.597 0.151 0.597 0.151 

Boredom 0.662 0.243 0.671 0.260 

Average 0.654 0.239 0.659 0.245 

 

For the two improved detectors: engaged concentration and boredom, features automatically 

selected for each of the detectors during machine learning are listed in table 4.  

The features for original engaged concentration detector involve actions where the student was 

more likely to have a history of more first responses but fewer errors and help requests on the 

skills in the clip. For the engaged concentration detector with class features, the percentage of 

correctness of the class and the number of data points in the class were selected in addition to the 
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number of main problems done. This could indicate that in modeling concentration, class 

performance is more important than student individual performance. 

The features for boredom detector indicated that bored students were more likely to work slowly 

but correctly. For the boredom detector with class features, the student percentile rank of average 

performance in the class and number of students were selected. These features replaced the 

performance feature that described how many incorrect answers the student answered before, 

while bring in new important features describing how many help students can get from the system, 

including whether or not the question is multiple choice question, and how many hints were asked. 

The result suggests that for boredom detector, student performance can be more effectively 

represented by students‟ correctness percentage rank. 

Table 5.1.2. The features in the final detectors with class features 

Engaged Concentration 

Original With Class Features 

Total first responses attempted 

in the tutor so far. 

The percentage of correctness of 
all the questions answered in 
the class so far 

The number of main problems seen 

in this 20 seconds  

Number of datapoints for this 
class so far 

The minimal number of first 

responses during school hours 

(between 7:00 am and 3:00 pm) 

The number of main problems seen 

in this 20 seconds 

The average time spent on first 
responses in answering 

scaffolding problems 

The average of the number of 
first responses during school 

hours (between 7:00 am and 3:00 

pm) 

The average correctness in this 

20 seconds 
 

The maximum number of previous 
incorrect actions and help 

requests for any skill in the 

clip 
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Boredom 

Original With Class Features 

The sum of the number of first 

responses during school hours 

(between 7:00 am and 3:00 pm) 

The sum of the number of first 

responses during school hours 

(between 7:00 am and 3:00 pm) 

Sum of wrong answers in the past 

8 problems 

The number of students has been 
seen in this class so far 

The average of response times 

for any skill in the clip 

The student percentile rank of 
average performance in the 
class so far for this student 

The average of the number of 

first responses during school 
hours (between 7:00 am and 3:00 

pm) 

The minimal number of multiple 
choice questions in this 20 

seconds  

Sum of wrong answers in the past 

5 problems 

The minimal number of hints in 

this 20 seconds 

 

The minimal number of questions 
that has a help request as the 

first response 

 

Effect of common wrong answers 

After adding two common wrong answer features, detector performance was again improved in 

two out of the four detectors. This improvement was the largest in our three attempts of 

improving affect detectors. Full results are shown in Table 5.1.3. The bold values showed the 

improved model results. For confusion and frustration, the common wrong answer features were 

not selected into the final models. Thus the algorithm, features and result for the confusion and 

frustration detectors were kept the same as the original detectors. 

The binary version of common wrong answer feature was selected into the engaged concentration 

detector, students that give common wrong answers are more likely to be effectively working. 

The more detailed version of common wrong answer features was selected into the boredom 

detector. Certain, but not all, common wrong answers are related to guessing, which is a common 

behavior of bored students. 



118 
 

Table 5.1.3. Effect of common wrong answers 

Detector 

Original 
With Common Wrong 

Answers 

A’ Kappa A’ Kappa 

Engaged 

Concentration 
0.731 0.417 0.753 0.436 

Confusion 0.625 0.146 0.625 0.146 

Frustration 0.597 0.151 0.597 0.151 

Boredom 0.662 0.243 0.675 0.263 

Average 0.654 0.239 0.663 0.249 

 

Effect of all three attempts 

We also tried all three attempts at the same time, and the results are shown in Table 5.1.4. The 

bold values showed the improved model results. 

Table 5.1.4. Effect of all three attempts 

Detector 

Original With corrected skills 

A’ Kappa A’ Kappa 

Engaged 

Concentration 
0.731 0.417 0.754 0.436 

Confusion 0.625 0.146 0.627 0.148 

Frustration 0.597 0.151 0.602 0.157 

Boredom 0.662 0.243 0.676 0.264 

Average 0.654 0.239 0.665 0.251 

 

Discussion and conclusions 

In this paper, we presented three attempts to improve current existing sensor free affect detectors 

with the ASSISTments dataset.  
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The first attempt analyzed the effect of missing skill tags in the dataset to the accuracy of the 

affect detectors. Not many researchers pay attention to the performance of models in dataset with 

missing values in the learning analytic field. The result shows only a small improvement in the 

detectors after correctly tagged the missing skill values. This suggests that it should be safe to use 

the affect detectors with certain amount of missing skills. 

The second attempt added four features that describe information about student classes into the 

feature pool for feature selection. Class is one of the common objects that are studied In learning 

analytics analyses. Result showed that class features helped improve the concentration and the 

boredom detectors by 3.5% on average Kappa. 

The third attempt added two features that describe information about how common the student 

answer was into the feature pool for feature selection. This approach achieved the best 

improvement. 

This work is still at the early stage. We see it as one of the incremental steps to build a useful tool 

for understanding and automatically adapting to differences in learner affect. There is still 

substantial room for improvement in compare with expert coders‟ Kappa values (around 0.6 or 

0.7). More features and different methods could be used to further improve the detectors. In the 

long-term, we could incorporate these detectors into the ASSISTments platform to help teachers 

to understand students‟ affective states or provide interventions aim for better learning outcomes. 
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Chapter 6: Discussion and Future Work 
 

In this dissertation, we applied various technologies to model different aspects in student learning 

and behavior and evaluated the models. Contributions include new advanced student models with 

novel features, and also some scientific conclusions in learning science. 

Currently, the models have only been evaluated on the ASSISTments dataset. Although most of 

the features in this dissertation could be easily generated by common intelligent tutoring systems, 

it is possible that the results may differ when using data from other tutoring systems. Verifying or 

comparing the results in different tutoring systems could be helpful. 

One issue that we have not yet addressed is how to effectively apply these models in real world. 

Some of the models we built are easy to compute, and can be used in real time tutoring systems 

with little effort. But some of them, such as the Student Skill model, take a long time to train. To 

use these models directly in tutoring systems, offline training needs to be scheduled. To make 

sure the parameters generated are both efficient and accurate, the amount of data used in offline 

training needs to be decided carefully for each of the models with experiments. After the models 

are used in real time tutoring systems, randomized control trial experiments would be useful in 

further evaluating the models. 

Another question that we are interested in exploring is the development of a combining method of 

different models. Each model has its own advantages and disadvantages. We would like to know 

if there are rules which can guide us to choose one model over another given certain 

circumstances. 
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