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Abstract

Diseases associated with amyloid aggregation have been a growing focus of medical

research in recent years. Altered conformations of amyloidogenic peptides assemble to

form soluble aggregates that deposit into the brain and spleen causing disorders such

as Alzheimer’s disease and Type II diabetes. Emergent theories predict that fibrils

may not be the toxic form of amyloidogenic structures and that smaller oligomer and

protofibril aggregates may be the primary source of cellular function damage.

Studies show that these amyloidogenic aggregates are characterized by an in-

creased number of poorly dehydrated hydrogen backbones and large surface densities

of patches of bulk like water which favor protein association. When proteins aggre-

gate to form larger structures, there is a redistribution of water surrounding these

proteins. The water dynamics of amyloidogenic aggregation is different than the

monomeric form and has a decrease in the number of patches occupied by molecules

with bulk-like water behavior. We demonstrate that the redistribution of water dur-

ing amyloid aggregation is reflected in a change in the dielectric relaxation signal of

protein-solvent mixtures.

We use dielectric relaxation spectroscopy (DRS) as a tool for studying the dy-

namics of amyloidogenic peptides—amyloid beta (Aβ1−42) and human islet amyloid

polypeptide (hIAPP)—during self-assembly and aggregation. Non-amyloidogenic

analogs—scrambled Aβ42−1 and rat islet amyloid polypeptide (rIAPP)—were used

as controls. We first present studies of amyloidogenic peptides in a deionized water

buffer at room temperature as a function of concentration and incubation time. From

this we were able to determine differences in amyloidogenic and non-amyloidogenic

peptides through the dielectric modulus. We next present the same analytes in a

deionized water-glycerol buffer to facilitate the study of the dielectric permittivity

at sub-freezing temperatures and model the kinetics of the α-and β-relaxation pro-

cesses. We conclude our work by studying the peptides in a bovine serum albumin
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(BSA) and glycerol buffer to demonstrate dielectric spectroscopy as a sensitive tool

for measuring amyloidogenic peptides in an in vivo-like condition.
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Chapter 1

Introduction

1.1 Motivation for the Studies of Amyloidogenic

Peptides

Improved patient care coupled with higher standards of living has nearly doubled

the average life span of a person over the past century [1]. Furthermore, the leading

edge of the ”baby boom” generation is now approaching the midlife mark causing an

influx of aged persons. The result of an increasingly older population is a record high

incidence of aging-related diseases that is projected to triple over the next 40 years

[2].

Many of these diseases are attributed to misfolded, aggregated proteins known as

amyloids. Amyloids collect in the tissues and organs such as the brain, pancreas, and

spleen causing debilitating diseases such as Alzheimer’s and Type II Diabetes Mellitus.

Each disease is associated with a particular protein responsible for the pathologic

effects of amyloidogenic diseases, or amyloidoses. Although there have been several

attempts to develop diagnostic methods based on the detection of amyloidogenic

oligomers, there is an absence of a widely-accepted and deterministic approach.
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Alzheimer’s disease

Alzheimer’s Disease (AD) is the most common cause of senile dementia. AD is an

age-associated neurodegenerative disorder that causes loss of memory and language

skills, damaged cognitive function, and altered behavior. AD typically affects people

over the age of 65, but can start as early as people in their 30s [3].

It is estimated that 5.4 million Americans are living with AD, including approxi-

mately 200,000 age 65 years or younger with the aging of the baby boom generation

projected to result in an additional 10 million people with AD in the near future. By

2050, there is expected to be nearly a million new cases per year, and AD prevalence

is projected to be 11 to 16 million [4].

AD is the sixth leading cause of death in the United States and the fifth leading

cause of death in Americans age ≥65 years. Although the proportions of deaths due

to other major causes of death have decreased in the last several years, the proportion

of deaths due to AD has risen significantly by a staggering 66% [4].

In 2011, more than 15 million family members and other unpaid caregivers pro-

vided an estimated 17.4 billion hours of care to people with AD and other dementias.

In 2012, payments for health care, long-term care, and hospice services for people

age ≥65 years with AD and other dementias are expected to be $200 billion. An

estimated 800,000 people with AD (one in seven) live alone, and up to half of them

do not have an identifiable caregiver [4].

Diabetes mellitus

Diabetes mellitus is the most common endocrine disease, characterized by high glucose

levels, or hyperglycemia. The source of hyperglycemia may be due to either reduced

insulin secretion or inaction by the body to properly use insulin. Common symptoms

of diabetes are polyuria, polydypsia, polyphagia, weight loss, fatigue, blurred vision,

and numbness [5].
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There are four main types of diabetic disorders: Type I, Type II, gestational, and

diabetes induced from other illnesses, such as pancreatic cancer or liver disfunction.

Type I diabetes is also known as insulin-dependent or juvenile onset diabetes and

occurs due to a loss of insulin-producing pancreatic β-cells. Type II diabetes is also

known as non-insulin depended or adult onset diabetes. Type II diabetes occurs due

to an insulin resistance and decreased production of insulin by pancreatic β-cells.

In Type II diabetic patients, the muscles, liver, and fat cells cannot use the insulin

produced in the body which leads to high levels of insulin [5].

Diabetes mellitus affects 25.8 million people of all ages-approximately 8.3 % of the

U.S. population. Among U.S. residents ages 65 years and older, 10.9 million, or 26.9

%, had diabetes in 2010. About 1.9 million people ages 20 years or older were newly

diagnosed with diabetes in 2010 in the United States. A study in 2005-2008 found

that 35 % of U.S. adults ages 20 years or older and 50 % of adults ages 65 years or

older had signs of prediabetes [6].

Diabetes is the leading cause of kidney failure, nontraumatic lower-limb amputa-

tions, and new cases of blindness among adults in the United States. It is also one of

the major causes of heart disease and stroke and the seventh leading cause of death

in the United States [6].

Direct medical costs are estimated at $116 billion in 2010. Average medical ex-

penditures among people with diagnosed diabetes were 2.3 times higher than what

expenditures would be in the absence of diabetes. Indirect costs such as disability,

work loss, premature mortality are estimated at $58 billion [6].

1.1.1 Pathogenesis of amyloidogenic diseases

Amyloidosis is a pathological condition that refers to a number of diseases charac-

terized by the formation of insoluble amyloid deposits in tissues and organs, such

as liver, spleen, kidneys, and brain [7]. The deposits are caused by the misfolding
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and aggregation of amyloidogenic peptides into organized, fibrillar structures. Exam-

ples of the most common amyloid-related diseases are Alzheimer’s disease, Type II

diabetes, Huntington’s disease, Parkinson’s disease, Creutzfeldt-Jakob disease, and

even transmissible diseases, such as spongiform encephalopathies [8]. Each disease

has its own characteristic amyloidogenic peptide responsible for tissue and organ de-

struction. Although the etiology is varied (Genetic, sporadic, and infectious) [9], all

present the characteristic amyloid plaque deposits in tissues that can be imaged ex

vivo via histopathologic staining.

Historically, the amyloid hypothesis implicated amyloid plaques as the primary

cause of amyloidogenic diseases [10, 11]. Recent evidence shows that organ and tissue

disruption begins with aggregation of soluble, pre-fibrillar oligomers [12, 13, 14, 15].

Soluble amyloidogenic peptides have been found in cerebral spinal fluid (CSF) [16],

urine [17], and blood [18], but currently there is no diagnostic method. Early detection

of pre-fibrillar oligomers in any of these media is the motivation of our research.

Pathology of Alzheimer’s disease

Alois Alzheimer first observed fibrils in the port-mortem brains of patients who suf-

fered from a form of dementia now known as Alzheimer’s disease (AD) [19]. Two

physiological abnormalities are present in the brains of patients whom suffered from

AD: intracellular neurofibrillary tangles (NFT) and extracellular amyloid desposits

[20]. NFTs are paired helical filaments of hyperphosphorylated tau protein aggregates

that are commonly found in the brains of patients with neurological disorders [20].

The amyloid deposits between neurons consist mainly of the polypeptides β-amyloid

Aβ1−40 and Aβ1−42 and contrary to NFTs, are only found in patients with AD. Amy-

loid plaques and NFTs collect in the cerebral cortex and hippocampus regions of the

brain[21]. Recent discovery of a pathogenic mutation in the amyloid precursor protein

(APP) suggest that β-amyloid deposition is the primary cause of AD and may cas-
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cade the formation of hyperphosphorylated tau tangles and eventual neuronal death

[22].

The β-amyloids originate from proteolytic cleavage (hydrolysis of the peptide

bond) of the transmembrane amyloid precursor protein (APP). In a healthy brain,

APP is cleaved by α- then γ-secretase between the lysine (16) and leucine (17) residues

located in the hydrophobic KLVFF (16-20) region [11]. Cleavage of the hydrophobic

region inhibits β-amyloid aggregation and the resulting chain is Aβ17−40 or Aβ17−42,

also known as 3p [23, 11]. In pathogenic proteolytic processing of APP, the chain is

first cleaved by β-secretase, not α-, which results in a longer chain of Aβ1−40 or Aβ1−42,

as depicted in Figure 1.1. Enzymatic processes regulate and destroy pathogenic Aβ,

preventing fibril formation in non-Alzheimer’s patients [24].

β-secretase γ-secretase 

APP Aβ (1-40) or (1-42) 

711 or 713 671 1 770 

COOH NH2 

α-secretase γ-secretase 

APP p3 

687 711 or 713 1 770 

COOH NH2 

(a) 

(b) 

Figure 1.1: Non-pathogenic (a) and pathogenic (b) proteolytic processing of APP by
α- or β-secretase, followed by γ-secretase cleavage. Adapted from [11].

Early theories about the pathogenesis of β-amyloid suggested that amyloid fibrils

and plaques caused cell damage and death [25]. It is now believed that the oligomer

and protofibril conformations are in fact more toxic because of their pore-forming

capabilities [26, 16]. The molecular mechanism for toxicity is believed due to amyloid-
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β disruption of the calcium channels at the membrane lipid bilayer through pore

formation [26, 27].

Forms of soluble β-amyloid has been found in a number of fluids in both clinical

AD and non-clinical AD individuals, including cerebral spinal fluid (CSF), blood

plasma, and urine [18, 28]. Therefore, the development of a novel detection method

of the soluble, intermediate oligomeric forms of β-amyloid in one or all of these fluids

is a central focus of our studies.

Pathology of Type II diabetes

Amyloid deposits of human Islet Amyloid Polypeptide (IAPP), also known as amylin,

have been found post-mortem in the pancreatic beta cells of more than 90% of pa-

tients with Type II diabetes [29]. Amylin is co-secreted with insulin by the pancreatic

β-cells in the islets of Langerhans as a regulator of glucose uptake and gastric empty-

ing. The 37 residue polypeptide amylin is soluble and non-toxic in its natural form.

Environmental conditions and genetic predisposition cause amylin to aggregate and

form toxic amyloid fibrils [30]. The amyloid deposits cause death of the pancreatic

β-cells leading to reduced production of insulin and eventually Type II diabetes [31].

Amylin has been found to be amyloidogenic in humans, monkeys, and cats but

not amyloidogenic in hamsters, mice, and rats [32, 33]. The variations in amino acid

sequencies between species points to a theory that specific hydrophobic regions are

responsible for amyloid formation. For example, in human IAPP, sequence 20-29 has

been shown in vivo as a source for amyloid fibril formation [33, 31].

Recent theory suggest that cell membrane toxicity by IAPP is caused by pore-like

disruption by oligomer and protofibril species [12]. The oligomers form ion channels

in the lipid bilayers on the pancreatic β-cell membrane. These small pores allow cell

contents to pass through, causing destabilization and cell death [34]. A cascading

effect then follows where amylin aggregation destroys β-cells leading to decreased
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insulin. The remaining β-cells try to compensate by releasing more insulin and thus,

more amylin which leads to further destruction of β-cells [35]. It is known that

resulting basal amylin serum concentration is abnormal in patients with Type II

diabetes [36], though the structure of the amylin (i.e. monomers, dimers, oligomers,

etc.) is not classified. Novel detection of the oligomer and protofibril forms of amylin

in blood serum is a central focus of our studies.

1.2 Protein Structure and Amyloidogenic Disease

1.2.1 Protein composition and structure

Proteins are a class of biological polymers responsible for a variety of essential biolog-

ical functions in living systems; they act as reaction catalysts, transport and storage

mechanisms, support immune function, transmit nerve impulses, and control growth

and differentiation[37]. Each protein has a unique structure tailored to serve a specific

biological role [38].

Proteins are comprised of primary building blocks called amino acids. Amino acids

consist of a central carbon atom (α-carbon), amino group, carboxylic acid group,

hydrogen atom, and a side chain (R group). The properties of proteins are mainly

dependent on the characteristics of their composing animo acids, such as capacity to

polymerize, acid-base properties, structure and chirality, and chemical functionality.

Nearly all proteins found in all living organisms are constructed from the same 20

amino acids [37].

Proteins are linear chains of amino acids formed by linking the carboxyl group of

one amino acid to the amine group of the next by a covalent link called a peptide bond

(Figure 1.2). The bond releases a water molecule with the carboxyl group supplying

the oxygen and the amine group supplying the two hydrogens. A series of amino acid

comprising of less than 50 residues is referred to as a polypeptide and is named in the
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order from amine-terminal (N-terminal) to the carboxyl-terminal (C-terminal) [37]1.

The repeating sequence of N − Cα − CO called the main chain or backbone, where

the N is the amide nitrogen, the Cα is the α-carbon of the amino acid, and the CO

is the carbonyl carbon [38].

R4

CCCCC NNN

CCCC NN

H

C

HH

HHH

OO

OOO

HH

HH

R5R3

R2

R1

Figure 1.2: The linear structure of a polypeptide chain showing the links between
carboxyl and amino groups of sequential amino acids.

The structure of the peptide bond prevents rotation about the N −CO atoms and

is thus considered to have double-bond strength [38]. Since the resulting peptide bond

is uncharged, this allows for tight packing of globular structures [37]. Conversely, the

intra-amino acid covalent bonds between N −Cα, Cα−CO, and side chains allow for

the rigid peptide units to rotate and fold across these points in the chain. These two

important features of the polypeptide chain provide the basis for higher order protein

structure and function [38]

The polypeptide backbone is inherently polar. The amide nitrogen presents a

protonated (positive) charged form and the carbonyl oxygen becomes deprotonated

(negatively) charged [38]. The result at normal pH is that the backbone possesses a

permanent dipole, represented in Figure 1.3.

Proteins are one or more polypeptide chains, typically on the order of 50-2000

residues. They usually take either a fibreous, globular, or membrane conformations.

Fibreous proteins have a simple, linear structure, characteristically insoluble in water,

and often serve a structural role, such as fibrinogen and collagen. Globular proteins

1a peptide or polypeptide may also refer to synthetically prepared proteins, unnatural chain
lengths, or mutations
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COO- NH3
+ 

C 

H R 

dipole moment 

Figure 1.3: Amino acids and consequently, the polypeptide backbone consists of one
positively charged and one negatively charged end. This produces a permanent dipole
moment.

take an approximate spherical shape and are soluble in water. Most enzymes and

myoglobin are examples of globular proteins. Membrane proteins have hydropho-

bic side chains oriented outward so that they can interact with the non-polar phase

within membranes. Membrane proteins are insoluble in water but often soluble in

detergents and other non-polar compounds. The light-absorbing proton pump, bac-

teriorhodopsin is an example of a typical membrane protein [38].

Proteins are classified into a structural hierarchy by their composition and con-

formation. The simplest form is the primary structure, or linear polypeptide chain.

The secondary structure of proteins represents a three-dimensional arrangement of

polypeptides formed by hydrogen bonding between amino acids that are in spatial

proximity, but not necessarily neighboring. Secondary structure proteins may take the

form of either a twisted α-helix or pleated β-strand that extends along one-dimension.

Diagrammatic representations of both conformations are shown in Figure 1.4. The

tertiary structure is characterized by a compact three-dimensional arrangement by

bending or folding of the polypeptide chains. Globular proteins are organized by a

tertiary structure. The tertiary structure may be stabilized by the formation of co-

valent bonds, such as ionic, disulfide and salt bridges, or non-covalent bonds, such as

van der Waals forces and hydrogen bonds. The quaternary structure is a combina-
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tion of two or more interacting tertiary structures. Each subunit of the quaternary

structure acts cooperatively in the protein’s function [37, 38].

α-helix β-strand 

Figure 1.4: The two forms of protein secondary structure are shown here: the α-helix
and the β-strand. An atomic model as well as a shorthand cartoon model for each
conformation is depicted. Adapted from [37]

1.2.2 Protein folding and aggregation

When proteins are exposed to aqueous environments, they cluster to form tightly-

packed structures with non-polar cores. The ordering of solvent, known as the hy-

drophobic effect, is an important driving force in protein aggregation and folding. The

hydrophobic effect is a process in which non-polar groups cluster in order to mini-

mize surface interactions with water [39]. Amphiphilic molecules, such as β-amyloid,

consisting of strongly polar and non-polar groups exhibit, this behavior. Amphiphilic
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molecules form micelles in which the non-polar ends combine to form a hydrophobic

domain of hydrocarbon tails while polar ends have ionic interactions with the sol-

vent [37]. Figure 1.5 shows the burying of internal hydrophobic regions in micelle

formation.

hydrophilic head 

hydrophobic tail 

micelle 

Figure 1.5: Hydrophobic tails bury in the interior during micelle formation as hy-
drophilic regions interact with polar solvents.

The immediate layers of water molecules surrounding the protein is known as the

hydration shell. When a protein is placed in water, the hydration shell is disturbed.

The water competes with the hydrogen bonding in the hydrophobic domain of the

protein causing a reordering of the bound water. The bound water is then released

and the hydrophobic regions begin to cluster. This is driven by a thermodynamically

favorable event where the movement of bound, ordered water, moves to free, bulk-like

water in the direction of increased entropy [37]. When a protein folds, the hydropho-

bic and hydrophilic regions combine via non-covalent interactions to form secondary

structures, such as α-helices and β-sheets. The α-helix is formed by hydrogen bonds

between NH and CO groups of the main chain. Figure 1.6 shows the β-sheet con-

formation is formed by either parallel or anti-parallel stacking between polypeptide

strands [37, 38].
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Figure 1.6: β-strands may stack in parallel or anti-parallel β-sheets. Hydrogen bonds
form between the NH and CO groups of adjacent strands. Adapted from [37]
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1.3 Amyloids and Amyloidogenic Diseases

Although proper protein folding is necessary for biological function, alterations from

standard conformations of proteins are attributed as the source for a number of dis-

eases. A summary of the most common pathologies is outlined in Table 1.1 [8, 15,

40, 41, 42, 43]. Protein misfolding is commonly formed into β-sheets [44, 45, 46, 47].

If correctly folded, amino acids with hydrophobic side chains, such as valine, leucine,

and isoleucine, are buried within the core yielding a soluble structure. Commonly, se-

quence errors or mutations cause a polypeptide to become misfolded. The hydropho-

bic regions are then exposed and will combine with structures of similar surfaces

forming highly-ordered, insoluble structures [48, 49, 50]. The formation of fibrilar

aggregates from misfolded hydrophobic combinations are known as amyloids.

Disease Peptide Responsible

Alzheimer’s disease β-amyloid
Type II diabetes amylin (IAPP)
Huntington’s disease huntingtin
Amyotrophic Lateral Sclerosis (ALS) superoxide dismutase
Parkinson’s disease α-synuclein
Creutzfeldt-Jakob disease prion protein
familial amyloidoses transthyretin

Table 1.1: Various diseases caused by amyloid formation and their associated
pathogenic peptide

All amyloids, though different in composition, share common structural character-

istics. The terminal state of amyloidogenic peptide aggregates is an amyloid fibril; a

long fibrillar structure with a diameter 6-10 nm and may have length of many microns

[51, 52]. The amyloid fibril is formed by parallel or anti-parallel stacking of β-sheets

perpendicular to the fibril axis [37].

Amyloid self-assembly and aggregation by the hydrophobic effect is linked to spe-

cific sequences of amino acids [53]. The specific size and location of hydrophobic

amino acid regions determine whether a misfolded or mutated polypeptide will ag-
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gregate to form the β-sheet structure and ultimately, amyloid fibrils. Hydrophobic

regions that are normally hidden in a properly folded protein are exposed to favor fib-

ril formation by the surrounding solvent. Electrostatic and hydrophobic interactions

cause these hydrophobic regions to combine into higher ordered structures.

Fibril formation begins with monomers, dimers, and small oligomers combining

to form a pre-fibrilar oligomer nucleus. Once the nucleus is formed, monomers attach

longitudinally to the core to create elongated protofibril strands (Figure 1.7) [54,

55]. Hydrogen bonds between elongated protofibrils then stack together laterally

in parallel combinations to form fibril strands, as shown in Figure 1.8 [56]. The

hydrogen bond network of the cross-β spine between β-strands creates insoluble and

extremely stable fibrils [55].

Aβ monomers 
amyloid oligomer 

nucleus 

amyloid protofibril amyloid fibril 

Figure 1.7: Nucleation starts with oligomer formation of β-amyloid fragments.
Monomers then attach longitudinally to the oligomeric nucleus.
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Figure 1.8: Ribbon representation viewed down the fibril axis showing protofilament
structure. Each Aβ polypeptide molecule contains two β-strands (red and blue) that
form parallel stacked β-sheets. Adapted from [56].

15



1.4 The Role of Biological Water

Water plays a crucial role in protein hydration dynamics. Proteins are not static

structures, but rather undergo a variety of fluctuations such as vibrations and rota-

tions [57]. Recent theories suggest that water controls large-scale motions and shape

changes as well as control internal motions necessary for function [58, 59, 57, 60, 61,

62]. Water mediated motions in proteins can be studied by modeling the α and β

fluctuations that are traditionally observed in glass-forming materials [63, 59].

The dynamics of water interactions vary in regards to the location with respect to

a protein. Biological water can be classified into three main groups: bulk-like or free

water, surface or bound water, and internal or caged water [64]. Figure 1.9 shows

the distribution of the three types of biological water at the protein-water interface

using Aβ1−42 structure as an example (obtained from Protein Data Bank ID: 1IYT

[65]). Each classification of biological water plays a role in the dynamics and function

of proteins.

Bulk-like water is located in the region beyond the first few molecules of the

protein surface. It resembles pure water in structure, properties, and function. Bulk

water plays a role in large-scale motions and shape changing as described by the α

fluctuations of a hydrated protein solution [59]. We hypothesize that during amyloid

aggregation, changes to the α fluctuations can be observed in the dielectric spectra.

Bound water is located at the surface of proteins where their hydrogen bond net-

works can interact with amino acid side chains and other surface water molecules

[66]. The diversity of protein composition and structure present varying and unique

forms of bound water. Chemical composition, hydrophobicity, size, and shape of a

protein will determine the behavior of bound water. Bound water at the hydration

layer of proteins is described by internal motions and protein function, known as β

fluctuations [59]. Our hypothesis is that changes to the surface properties of pro-
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Bulk-like water 

surface water 
buried water 

Figure 1.9: Representation of the hydration profile for Aβ1−42 shows the three types
of biological water at various regions in and around the protein. The confinement of
water by a protein causes restricted rotations and other motions of water molecules
resulting in attenuated relaxation times. The blue portions of the ribbon are hy-
drophilic and the red are hydrophobic. The Aβ1−42 structure was obtained from
PDB ID: 1IYT

teins through aggregation can be observed through changes of the β fluctuations in

dielectric spectra.

Internal water is located in the interior of proteins [67]. Internal packing of the

caged form of water greatly limits the molecular movements, yet it is crucial for protein

stability and function [68]. Internal water hydrophobically interacts with the buried

amino acid side chains, contributing to the protein’s overall structure. Any change

to the amino acid packing within a protein changes the structure and ultimately

function of the protein. Internal water is not observable by dielectric spectroscopy

but has been well studied by x-ray diffraction and NMR [67, 69].
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1.5 Dielectric Spectroscopy as a Tool for Studying

Amyloidogenic Peptides

Dielectric relaxation spectroscopy (DRS) is an effective technique for the study and

characterization of biological materials and systems. The non-invasive nature of the

technique allows for in situ monitoring of processes in a variety of environments. For

decades, DRS has been using to study the dynamics of water at protein interfaces

[70, 71, 72, 73]. Water structure near the surfaces of proteins is subject to hydrogen

bonding of water molecules to proteins and electrostatic interactions due to the large

dipole moment [74]. Studies of relaxation processes give us insight into structural and

dynamical properties of biomaterials.

DRS allows the study of thermal fluctuations of supercooled liquids and glasses

by relaxation measurements. Fluctuations and relaxations are interconnected by the

fluctuation-dissipation theorem, which states that the same phenomena, observed un-

der small perturbations, must also occur at equilibrium. Meaning that, observations

of relaxation dynamics are representative of equilibrium fluctuations. Since protein

structure and function are slaved to solvent behavior [58], this has great significance

in the study of protein dynamics [75]. Application of an external electric field to

a material provides the thermodynamical disturbance that can then be studying by

relaxation spectroscopy.

The studies presented in this thesis probe the dynamics of proteins over a wide

range of temperatures. The glass-forming cryoprotectant, glycerol is used as a buffer

to study processes at supercooled temperatures. In many glass forming materials,

a number of relaxation processes will present as peaks in dielectric loss, ε′′ over a

broadband of frequencies. They are typically termed in order of increasing frequency,

α-, β-, δ-, and γ-relaxations [63]. It is important to note that the observed relax-
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ation processes do not originate in the protein itself, but in the bulk solvent and the

hydration shell [59].

α-relaxation

The α-relaxation occurs at low frequency, 101 − 105 Hz. The α process describes

structural fluctuations, as described by the mechanical Maxwell relation [59],

kα(T ) = G0/η(T ) (1.1)

where kα(T ) is the rate coefficient for the α fluctuations to the viscosity η(T ) and

the infinite-frequency shear modulus G0. At low temperature where the material

acts as a solid, the viscosity is extremely large and therefore the α-fluctuations are

essentially absent. The rate coefficient of α fluctuations typically follow the Vogel-

Fulcher-Tammann relation [63].

β-relaxation

The β-relaxation occurs in the radio frequency, 105 − 107 Hz. β processes in super-

cooled liquids and glasses are essentially independent of viscosity and will exist even

at glassy states where we expect α fluctuations to disappear [76, 77, 59]. The β fluctu-

ations take two forms in molecular liquids [78, 79, 80]. The Johari-Goldstein fluctua-

tions are intertwined with the α fluctuations, and at high temperature (>300K), they

merge[81]. Another form of β fluctuations occur as a non-cooperative process that

does not merge with the α process. In contrast, this β process is at lower frequency

than the α process above a crossing temperature [59]. This later form of the βh

relaxation, where h denotes hydration is observed in our studies of protein-solvent in-

teractions. The rate coefficient of β fluctuations typically follow an Arrhenius relation

[63].

19



δ-relaxation

The δ-relaxation occurs in the radio-microwave frequency, 108 − 1010 Hz. The δ

process may possibly be representative of the dynamics of water near a biomolecule

as an exchange between free and bound water states [82, 83, 74]. This process is out

of the range of our measurement apparatus and will not be explored in this thesis.

γ-relaxation

The γ-relaxation occurs in the microwave frequency, 1010−1012 Hz. This frequency is

typical of the relaxation of bulk or free water [74, 84] at distances of many molecules

from the protein surface. This process is out of the range of our measurement appa-

ratus and will not be explored in this thesis.

1.6 A Review of Methods for Studying Amyloido-

genic Peptides

Studies of amyloids in vitro have been effective models for in vivo phenomena [85,

18]. Researchers have been able to observe mechanisms of fibril formation, structure,

and kinetics though a variety of approaches, each with their own advantages and

limitations. Table 1.2 outlines a summary of methods used in the studies of amyloid

structure and aggregation that have provided a baseline for our work. Our goal is to

show that dielectric spectroscopy is an effective tool for early detection of pre-amyloid

structures.

Broadband dielectric relaxation spectroscopy (BDS or DRS) has not been exten-

sively used in the studies of amyloidogenic peptides. One published study on amyloid

fibril formation by DRS was done in non-in vivo-like conditions and lacks a non-

amyloidogenic peptide control [86]. The full capabilities of DRS as an analysis tool of
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amyloidogenic structures has yet to be explored. The α and β fluctuations due to the

protein and the solvent can be observed through modulation of the dielectric signal.
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Method Characteristics Limitations References

Microscopy Oldest method for studying
amyloids in tissue. Congo
red binds to all amyloid struc-
tures and displays birefrin-
gence under cross polarized
light. More recently, fluores-
cent microscopy and thioflavin
T has been used to study ki-
netics.

Limited to fibrils: cannot be
used to quantitatively deter-
mine the presence of smaller
structures or observe fibril for-
mation at the molecular level

[87, 88,
89, 90,
91, 92]

Dynamic
light scatter-
ing (DLS)

Study the kinetics of fibril for-
mation, similar to methods us-
ing thioflavin T.

No insight on structure or de-
tection. Signal is greatly af-
fected by structures found in
blood and plasma and thus is
an unrealistic choice for a di-
agnostic tool

[93, 94,
95, 96]

Electron
microscopy
(SEM/STM)

First method for direct imag-
ing of amyloid fibril ultrastruc-
ture and their morphology. In-
formation about the size and
3D shape of amyloid aggre-
gates at different stages of fib-
ril formation

Limited to ex situ studies
of dried samples at cryogenic
temperatures.

[97, 98,
99, 100]

X-ray diffrac-
tion

Directly image fibril structure
and the cross-β spine of amy-
loidogenic structures

Limited to protein crystals and
therefore can not be used to
monitor fibril formation or as
a quantitative measurement of
oligomers.

[51, 101,
102, 103,
104]

Atomic force
microscopy
(AFM)

in situ monitoring of fibril for-
mation and thermal and chem-
ical stability. Probe the me-
chanical and structural proper-
ties of amyloids at the molecu-
lar level

Samples must be adsorbed to a
surface: measurements in bulk
fluid are not possible. Hard-
ware not suitable in a medical
diagnostics environment.

[105, 106,
107, 108]

Nuclear
magnetic
resonance
(NMR)

in situ monitoring of fibril for-
mation. 3D structure of amy-
loids

limited to measurements at
specific relaxation times of sol-
vent molecules. Lacks infor-
mation about hydration layers
and β fluctuations

[109, 110,
111]

Table 1.2: Summary of methods used in the studies of amyloid structure and aggre-
gation.
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1.7 Thesis Scope and Outline

Recent theories suggest that protein function and dynamics are connected to solvent

interaction and hydration [59]. Protein structure and the hydration profile can be

observed by measuring α and β fluctuations of the solvent-protein solution. Our

hypothesis is that changes in the dielectric permittivity of protein-solvent relaxations

can be observed during amyloid aggregation and fibril formation using the method

of dielectric relaxation spectroscopy (DRS). We expect that the oligomeric form of

amyloid aggregates will display a unique dielectric profile from that of monomers

and fibrils. Characteristics such as space-charge polarization, dipole moment, and

dielectric loss are used to profile the aggregation stages of the peptides.

We discuss the experimental portion in Chapter 3 with the studies of amyloido-

genic peptides in a deionized water buffer at room temperature. The amyloidogenic

human IAPP and β-amyloid and their non-amyloidogenic analogs, rat IAPP and

scrambled β-amyloid are measured by DRS over time and with three concentrations.

The dielectric modulus representation is used to present the conductivity and space-

charge polarization effects measured over seven days of incubation.

We continue in Chapter 4 by studying the same peptides in a 50-50% by weight

deionized water and glycerol buffer. The use of glycerol allows us to study the dielec-

tric signal at sub-freezing temperatures and model the temperature evolution of the

various peptides at different incubation times. Each time point represents a different

fraction of monomers, oligomers, and fibrils. Analysis of the dielectric spectra pro-

vides information about activation energies (enthalpy) and glass-forming fragility for

each time point in an effort to characterize the phase of aggregation. The dielectric

strength for each time and temperature point give information about the dipole mo-

ment of the protein-solvent solutions to determine the structure, whether parallel or

anti-parallel β-sheets.
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We conclude the experimental portion in Chapter 5 by measuring the peptides

in an in vivo-like condition using serum. The peptides are first diluted in a bovine

serum albumin (BSA) buffer and then diluted in 50-50% by weight glycerol mixture.

Again, the peptide solutions are measured at low temperature and as a function of

time. Activation energies and fragilities are determined and an attempt to classify the

conformations of the peptides is made. The dielectric strength is used to determine

the structural nature of the peptides in the BSA buffer.

We summarize in Chapter 6 the general conclusions of these studies of amyloido-

genic peptides by dielectric relaxation spectroscopy. A direction for future work is

presented for continuation beyond the scope of this thesis.
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Chapter 2

Materials and Methods

2.1 Introduction to Dielectric Relaxation Spec-

troscopy

The study of the propagation of electric fields in matter is of great interest to physi-

cists, chemists, biologist, and engineers. Not all matter responds to electric fields

in a consistent manner, yet most can be classified into two groups–conductors and

insulators (or dielectrics). Conductors can be considered as possessing an unlimited

amount of charge carriers that are free to move about a material. The electrons in a

conductor are not bound to a particular nucleus but will transfer between molecules

of the substance. By contrast, the electrons of an insulator or dielectric will remain

with the nucleus as a bound ensemble within an atom or molecule [112]. However,

when placed in an electric field the atom or molecule may deform or reorient based on

a mechanism known as polarization. In the dynamic regime, there exists a lag phase

between when the electric field is switched on and when the polarization attains a

steady-state value. The time for a material to reach the maximum polarization is

denoted the relaxation time in the physical phenomena, dielectric relaxation. We ob-

serve a number of polarization mechanisms in dielectric relaxation over a broadband
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of frequencies, each of which are summarized below [113] and can be seen in Figure

2.1.

Electron polarization

Electron polarization is the deformation of the atomic electrons in the presence of an

electric field. This process occurs at high (optical) frequencies, near 1015 Hz.

Atomic polarization

Atomic polarization is the displacement of atoms or groups of atoms relative to one

another within a molecule in the presence of an electric field. This process occurs at

high (microwave to optical) frequencies, at approximately 1012 - 1014 Hz.

Orientation polarization

Orientation polarization, also known as dipole relaxation, is the rotation and ori-

entation of a molecule in the presence of an electric field. Only polar molecules

with permanent dipole moments will exhibit orientation polarization. This rotation

is impeded by thermal motion and viscosity and this, the relaxation time is highly

dependent on the frequency of the applied electric field, temperature, and pressure.

The frequency range is typically in the radio frequencies (MHz) and below.

Ionic polarization

Ionic polarization is the displacement of positive ions in the direction of an applied

electric field with negative electrons in the opposing direction in an ionic lattice. The

result is a net dipole moment to the entire structure. Ionic polarization is predom-

inately at very low (DC) frequencies and only has a weak temperature dependence.

Commonly referred to as DC conductivity, it only presents dielectric losses to the

system.
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Electrode polarization

Electrode polarization is an impedance of the mobility of charge carriers at the in-

terface of ionic materials and a metal conductor [114]. Electrode polarization may

introduce a large dielectric response at low frequencies.
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Figure 2.1: Schematic representation of the polarization processes in a broadband
dielectric spectrum for the real (ε′) and imaginary (ε′′) parts of the permittivity.
Adapted from [115].

2.1.1 Polarization and the static field

Polarization occurs when dielectric materials are placed in and electric field. The

molecular and atomic dipoles align in proportion with the strength of that field. In

the presence of a constant (DC) electric field, the polarization, P of a material can
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be represented in terms of the electric susceptibility, χe and the electric field, E by

P = ε0χeE (2.1)

where ε0 = 8.854 × 10−12 C2/N·m2 is the permittivity of free space.

Gauss’s law in linear media facilitates the description of dielectric materials by

means of the free charge density, ρfree

∇ · (ε0E + P) = ρfree (2.2)

The separation of electric charges in a dielectric can be represented as the electric

displacement, D defined as

D ≡ ε0E + P (2.3)

Using the definition of polarization we introduce ε as the permittivity of a material.

D = εE (2.4)

ε ≡ ε0(1 + χe) (2.5)

2.1.2 Time-dependent fields

In the case of a time-dependent (AC) electric field applied to a dielectric material,

frequency-dependent charge displacements are observed. The polarization of the ma-

terial will not reach the static value immediately, but will approach it gradually with

a lag phase from when the electric field is applied and when the dipoles orient (see

Figure 2.2). The rate at which the media is polarized can be represented as the

exponential law [116]

P (t) = P0(1− e−t/τ ) (2.6)
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Analogous to the static case, a time-dependent complex polarization P* can be

time 

P(t) 

P0 

𝜀𝑠 − 1

4𝜋
𝐄 

𝜀∞ − 1

4𝜋
𝐄 

induced polarization 

orientational polarization 

t0 

Figure 2.2: Time-dependence of the polarization P of a dielectric material when an
electric field is applied. Adapted from [63].

expressed in terms of the complex electric susceptibility and the electric field,

P∗ = ε0χ
∗
eE
∗ (2.7)

or

P∗(ω) = ε0(ε
∗ − 1)E∗(ω) (2.8)

where

ε∗(ω) = ε′(ω)− iε′′(ω) (2.9)

is the complex dielectric function in the presence of a time-dependant electric field,

E(t) = E0e
−iωt (2.10)

The real part of the dielectric function ε′(ω) is proportional to the energy stored in

the system and is commonly referred to as the absorption. The imaginary part ε′′(ω)

is proportional to the energy dissipated in the system and is commonly referred to as
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the dielectric dispersion or loss [63]. The real and imaginary parts of the dielectric

function are related by the Kramers-Kronig relations [117, 63] such that

ε′(ω) = ε∞ +
2

π

∫ ∞
0

ξε′′(ξ)

ξ2 − ω2
dξ (2.11)

ε′′(ω) = −2ω

π

∫ ∞
0

ε′(ξ)− ε∞
ξ2 − ω2

dξ (2.12)

where ξ is a dummy variable of integration. This relation has great significance in

practice in that the absorbtion process can be derived by observation of the disper-

sion phenomena. Application of a Laplace transformation of the polarization decay

function yields the Debye relations for dielectric relaxation [118]

ε′(ω) = ε∞ +
∆ε

1 + ω2τ 2
(2.13)

ε′′(ω) =
∆εωτ

1 + ω2τ 2
(2.14)

ε∗(ω) = ε∞ +
∆ε

1 + iωτ
(2.15)

where τ is the relaxation time found in P (t) = P0(1− e−t/τ ). The dielectric strength

∆ε = εs−ε∞ is introduced with the boundary conditions εs as the static permittivity

and ε∞ as the permittivity high high frequency such that

εs = ε′(0) (2.16)

ε∞ = ε′(∞) (2.17)

2.1.3 Non-Debye relaxation processes

The Debye relaxation equations assume the dielectric material is isotropic and the

decay of the polarization follows the model exponential function. Often in the case
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of polymers and biological materials, the relaxation time is better modeled by a

non-Debye distribution. Kenneth S. Cole and Robert H. Cole first introduced a

modification of the Debye distribution with symmetric broadening of the dielectric

loss peak [119]

ε∗CC(ω) = ε∞ +
∆ε

1 + (iωτ
CC

)β
(2.18)

where β is the broadening parameter from 0< β ≤1 and τ
CC

is the Cole-Cole re-

laxation time. Note that when β=1, the Debye function is recovered. The maximal

dielectric loss occurs at ωmax=2πνmax=1/τ
CC

.

Liquids and low molecular glass-forming materials typically exhibit dielectric spec-

tra with asymmetric broadening [63]. The asymmetric broadening parameter γ,

0< γ ≤1 arises in the Davidson-Cole formalism [120, 121]

ε∗DC(ω) = ε∞ +
∆ε

(1 + iωτ
DC

)γ
(2.19)

with τ
DC

as the Davidson-Cole relaxation time and again, with γ=1 the Debye equa-

tions are recovered. Since the Davidson-Cole function is asymmetrical, the relaxation

time τ
DC

is not at the frequency of maximal dielectric loss, but rather dependent on

the shape parameters, given by [63]

ωmax =
1

τ
DC

tan

[
π

2γ + 2

]
(2.20)

Havriliak and Negami introduced a more general, empirical form for the relaxation

distribution to account for both symmetric and asymmetric broadening of the dielec-

tric loss [122, 123]

ε∗HN(ω) = ε∞ +
∆ε

(1 + (iωτ
HN

)β)γ
(2.21)

with τ
HN

as the Havriliak-Negami relaxation time. The versatility of the Havriliak-

Negami function proves to be quite useful in the analysis of anisotropic systems
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such as polymers and biopolymers. Similar to the Davidson-Cole function, since the

Havriliak-Negami function is asymmetrical, the relaxation time τ
HN

is dependent on

the shape parameters, given by [63, 124]

ωmax =
1

τ
HN

[
sin

βπ

2γ + 2

]1/β [
sin

βγπ

2γ + 2

]−1/β
(2.22)

At low frequency, dielectric spectra are often dominated by DC conductivity due

to free ions in the solution. The conductivity only introduces dielectric loss and is

modeled by the power law

σ(ω) = −i
(
σ0
ε0ω

)N
(2.23)

where σ0 is the DC conductivity and N is the exponent of the frequency dependence

of the conductivity. In the analysis of dielectric spectra, the conductivity term is

added to a number (n) of relaxation processes such that the total dielectric function

is

ε∗(ω) = −i
(
σ0
ε0ω

)N
+

n∑
k=1

[
ε∞,k +

∆εk
(1 + (iωτk)βk)γk

]
(2.24)

2.1.4 Dielectric modulus

Ionic materials, such as the case of protein-solvent mixtures, often display a highly

conductive component. In low frequency domain is often dominated by the conduc-

tivity in the region where dipole relaxation processes would be typically observed.

The dielectric modulus, M∗ is a useful parameter for analyzing the dielectric spec-

tra when ionic conductors are present [125, 126, 127, 128]. The complex modulus is

defined as:

M∗ = M ′ + iM ′′ =
1

ε∗
=

ε′

ε′2 + ε′′2
+ i

ε′′

ε′2 + ε′′2
(2.25)
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where analogous to the permittivity, M ′ is the dielectric modulus absorbtion and M ′′

is the loss. One advantage of the dielectric modulus is that it transforms the con-

ductivity into a relaxation peak, which allows low frequency orientational relaxation

modes to be more easily studied [129].

Cole and Cole suggested a model-free method of analyzing dielectric data by plot-

ting ε′′ vs. ε′ in the complex plane [119]. Not to be confused with the Cole-Cole

dielectric function, a Cole-Cole plot can be used in the analysis of any dielectric

spectra. In the case of Debye relaxation, a perfect semicircle is obtained. Defor-

mations of the semicircle can be best modeled by the Havriliak-Negami function as

seen in Figure 2.3 where the angles of tilt are defined by the shape parameters of

the Havriliak-Negami function [63]. Each relaxation process will contribute its own

semicircle in a Cole-Cole plot and often the semicircles will overlap. Similarly in

the modulus formalism, a modulus Cole-Cole plot can be created by plotting M ′′

vs. M ′. The modulus Cole-Cole plot is particularly useful in the case of ionic liq-

uids [126, 127, 130] where the conductivity will dominate at low frequencies. Since

the conductivity appears in both M ′′ and M ′, a new semicircle for the conductivity

appears in the modulus Cole-Cole plot that is not present in the permittivity.
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Figure 2.3: Schematic representation of the Cole-Cole plot for a Havriliak-Negami
function where β, γ, and ∆ε are the shape parameters of the H-N function.
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2.1.5 Relaxation kinetics

As previously stated, thermal motions of dipole orientation are highly dependent on

temperature and viscosity. Energy barriers between initial and final states in relax-

ation processes follow similar behavior to empirical formulas developed for reaction

rate theory. The Arrhenius law [131] describes the temperature dependence of a

reaction rate, k(T ) in terms of the activation energy Ea and Boltzmann constant

kB = 1.381× 10−23J/K

k(T ) = Ae

(
−Ea
kBT

)
(2.26)

In the analysis of dipole relaxation rates, A denotes the relaxation rate at the high

temperature limit. The physical representation of the activation energy can be seen

in Figure 2.4; a model system of double-minimum potential. In the steady-state,

thermal fluctuations will allow equal transitions between the two potentials. When

an external electric field is applied, the dipoles orient in a manner that differentiates

the potentials [63]. The minimum energy required to transfer from the lower to higher

energy level is the activation energy of the process.
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Figure 2.4: Model of a double-minimum potential (a) in a steady-state and (b) in the
presence of an applied electric field. The application of an electric field causes a shift
in the potentials such that an energy barrier is created.

The relaxation rates of supercooled liquids and glasses can not always be best-

described by Arrhenius behavior. The Vogel-Fulcher-Tammann (VFT) equation [132,
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133, 134] is a useful empirical formula that demonstrates a deviation from the Ar-

rhenius behavior. Similar to the Arrhenius equation but with the addition of TV , the

VFT temperature or ideal glass transition temperature [63]

ν(T ) = ν∞e
−DTV
T−TV (2.27)

The VFT parameter D, quantitatively characterizes the fragility of glass forming

materials. Materials that deviate greatly from Arrhenius-type behavior are called

”fragile” glass formers [135, 136] as seen in Figure 2.5.
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Figure 2.5: The fragility of glass forming materials can be visualized diagrammatically
by the deviation from Arrhenius-type behavior.

2.2 Broadband Dielectric Spectroscopy

2.2.1 Instrumentation

The complex dielectric function, ε∗ can be experimentally measured using the broad-

band dielectric relaxation spectroscopy (BDS or DRS) technique. DRS may span fre-

quencies of 10−6 − 1012 Hz, using a combination of electrical impedance (10−6 − 107)

36



and optical measurement 107 − 1012 techniques [63]. Our measurements are limited

to electrical impedance in which the sample is treated as a parallel or serial circuit of

an ideal capacitor and ohmic resistor.

In DRS, a capacitive sample cell made of two conducting parallel plates is place

under a probing AC field with a fixed frequency, V0. When a dielectric sample is

placed between the two plates, the capacitance increases over that of the empty

cell. The dielectric permittivity can be directly measured by relating the empty cell

capacitance to the capacitance in the presence of a sample. When a voltage is applied

to a dielectric sample, the dipoles will align as in Figure 2.6.
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Figure 2.6: Material dipoles are typically in a random orientation. When placed
inside an electric field, the dipoles align between the capacitive plates.

The applied voltage results in an induced current, I0 at the same frequency with

a phase shift, ϕ shown in Figure 2.7.

For a capacitor filled with a sample, the complex dielectric permittivity, ε∗ is

defined as the ratio,

ε∗ = ε′(ω)− iε′′(ω) =
C∗

C0

(2.28)

where C∗(ω) is the complex capacitance and C0 is the empty cell (vacuum) capaci-

tance [63]. When an oscillating AC field, V ∗(ω) = V0e
iωt, the dielectric function can
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Figure 2.7: In dielectric relaxation spectroscopy (DRS), complex impedance is calcu-
lated from the ratio of the applied voltage and induced current with a phase shift.

be determined by measuring the complex impedance of the sample

Z∗(ω) = Z ′ + iZ ′′ =
V ∗(ω)

I∗(ω)
(2.29)

which is connected to the complex permittivity by [63]

ε∗(ω) =
1

iωε0Z∗(ω)C0

(2.30)

Our DRS analyzer is setup to collect data in gain phase measurement mode in

which two voltage channels are used to compute the permittivity. The input voltage

(V1) amplitude and phase is measured directly from the analyzer through Channel

1. The output current, Is is first converted to a voltage using a variable resistor and

operational amplifier and collected via Channel 2 as pictured in Figure 2.8. The

value of Rx is chosen so that V2 is in a measurable range. A protective resistor, R0

is used to limit the current if the sample impedance Zs is too low [137]. Ideally, the
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sample current is defined by

Is =
−V2
Rx

(2.31)

such that the sample impedance is

Zs =
V1
Is

=
−V1
V2

Rx (2.32)

signal 
generator 

voltage 
analyzer 1 

voltage 
analyzer 2 

capacitor sample 

+ 

- 

current to 
voltage 
converter 

R0 
Rx 

Is 

Zs 

Figure 2.8: A schematic diagram of DRS gain phase measurement. Two probing
voltages are used to compute the complex permittivity.

Dielectric relaxation measurements were taken using Alpha-A Analyzer and Qua-

tro Cryosystem turnkey systems from Novocontrol Technologies. A block diagram of

the complete DRS setup is depicted in Figure 2.9.

The Alpha-A mainframe contains a frequency response analyzer with a sine wave

and DC-bias generator and two AC voltage input channels. The analyzer can measure

samples in the frequency range from 3 · 10−5 to 4 · 107 Hz, impedance from 10−3 to

1015 Ω, and capacitance down to 1 fF (10−15). In addition, the mainframe contains

the power supplies, analog and digital control lines and the firmware for operation of

the test interfaces.

The Quatro Cryosystem provides fully automatic temperature control for DRS

measurements. The main parts of the system are the cryostat, gas heating mod-
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evaporator 

vaporizing module 

Gas heating 
module 

Figure 2.9: Block diagram of the Novocontrol Broadband Dielectric/Impedance Spec-
trometer apparatus with the Alpha-A analyzer and Quatro Cryosystem.

ule, pressurizer module, vacuum system, liquid nitrogen dewar, controller and power

supply. The Quatro controller has four circuits controlling sample temperature, gas

temperature, liquid nitrogen temperature in the dewar, and pressure in the dewar.

The temperature control range is from −160◦C to 400◦C with 0.01◦C temperature

stability.

2.2.2 Sample cells

The Novocontrol BDS 1309 and 1307 sample cells were used to obtain DRS mea-

surements. The BDS 1309 cylindrical gold-plated cell is optimal for use with liquids

of high permittivity and ion DC conductivity. The cell geometry is designed such

that electrode spacing is unusually wide and approximately equal to the electrode

diameter. This seeks to combat high sample capacity and low frequency electrode
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polarization. The BDS 1309 was used for the collection of room temperature data.

The BDS 1307 cylindrical stainless steel sample cell was used for collection of low tem-

perature data. This particular cell is advantageous when analyzing dielectric spectra

of liquids at subfreezing temperatures. The design is such that the cell does not

need to be completely full and thus reduces the effects of thermal expansion and fluid

leakage [138]. This geometry keeps the same amount of fluid between the capacitive

plates over a wide range of temperatures. A schematic of both sample cells can be

seen in Figure 2.10.

top 
electrode 

bottom electrode 

sample 

filling hole inner 
electrode 

Teflon 
liquid 

sample 

outer 
electrode 

guard 
electrode 

ground 
connection 

Teflon 
spacers 

Teflon cap 

hole with 
spring 

(a) (b) 

Figure 2.10: Cross-section views of the two sample cells used for collecting permit-
tivity data. (a) The BDS 1309 sample cell was used for room temperature data.
The approximate volume is 0.5mL.(b) The BDS 1307 sample cell was used for low
temperature data. The approximate volume is 1.8mL.

Extensive cleaning to the sample cell is needed prior to each analysis. Any previous

sample must first be flushed out of the cell using deionized water. The sample cell

components are then set in a bath of acetone and placed in an ultrasonic cleaner for

three minutes. The components are then flushed with deionized water, placed in a

both of isopropyl alcohol and again placed in an ultrasonic cleaner for three minutes.

The isopropyl alcohol is then rinsed off using deionized water and the components

are subjected to a final sonication in a deionized water bath. The components are
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rinsed a final time in deionized water. The stainless steel pieces are placed in an oven

at 350◦F for approximately five minutes and the Teflon pieces are set on the bench

to air dry. The parts are allowed to cool to room temperature prior to placing any

sample in the cell.

2.3 Data Analysis Methods

The data was collected using a PC and the Novocontrol WinDETA software pack-

age. WinDETA is a system control package for experimental setup, data evaluation

and graphical representation in two or three dimensional diagrams. The measured

impedance data is used to calculate basic dielectric and impedance parameters, such

as complex dielectric function, modulus, and conductivity. The calibration procedure

for the sample cells is done automatically using a set of input parameters provided

by Novocontrol. Worklists are created to collect data as a function of frequency and

temperature. ASCII files for each measurement can be exported for external analysis

of the impedance data.

Data analysis and curve fitting was done using the WinFIT program from Novo-

control. In the frequency domain, WinFIT is used to optimize best-fit curves of di-

electric data using Debye, Cole-Cole, Cole-Davidson, and Havriliak-Negami functions

and conductivity. Up to three relaxation processes can be simultaneously optimized.

In the temperature domain, the peak relaxation times can be modeled using the

Vogel-Fulcher-Tammann (VFT) function and displayed in an Arrhenius plot. Activa-

tion energies and glass-forming fragilities for each relaxation process are determined

by fits to the VFT or Arrhenius plots.

Further curve fitting and plotting was done using Igor Pro 6 from WaveMet-

rics. Igor Pro can perform mean square deviation (MSD) minimization of user-
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defined curve fitting functions. General text files of dielectric data was exported

using WinDETA, then imported into Igor Pro for additional analysis and plotting.

Fitting procedure

Curve fitting of the dielectric permittivity data was done in the frequency domain

using the WinFIT program. Two Havriliak-Negami functions with a conductivity tail

were chosen as fit functions to analyze the imaginary part of the permittivity, ε′′ in a

log-log representation. Figure 2.11 shows an example total fit with the deconvolution

of the three fit functions and experimental data.

The fitting procedure begins with a visual estimate of the conductivity, τ , and

∆ε parameters. A least squares fit is then done by WinFIT to optimize the conduc-

tivity, then τ and ∆ε for both Havriliak-Negami functions, simultaneously. Often

the onductivity must then be re-optimized once the τ and ∆ε have been fixed. The

spread parameters of the Havriliak-Negami function, β and γ are then optimized, if

symmetric or asymmetric broadening are observed. The high frequency permittivity

limit, ε∞ can then be optimized by analyzing the real part of the permittivity, ε′,

though this parameter is not needed for further analysis. This process is repeated

to fit dielectric spectra for each temperature point. At temperatures below approxi-

mately 200K, a linear-log plot of ε′′ versus frequency is also used for optimization of

Havriliak-Negami parameters.

The activation energies and glass-forming fragilities can be modeled by utilizing

the fits to the permittivity data over a broad range of temperatures. The maximum

frequency for each relaxation process, fmax is plotted versus inverse temperature,

1000/T as shown in Figure 2.12. The maximum frequency of each relaxation process

is related to the relaxation time by τmax = 1/(2πfmax). The log fmax vs. 1000/T plot

for each relaxation process is then fitted using either an Arrhenius (linear) or VFT

(curved) fit function.
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2.4 Peptides

2.4.1 β-amyloid

Amyloid deposits of polypeptides β-amyloid Aβ1−42 and Aβ1−40 are hallmark char-

acteristics of patients who have suffered from Alzheimer’s disease [11, 10]. Approx-

imately 90% of β-amyloid peptides are Aβ1−40 and 10% is Aβ1−42, but the Aβ1−42

chain is the faster amyloid aggregate former and comprises of the majority of amyloid

deposits in the brain [139]. Both β-amyloid chains are amphiphilic molecules con-

taining a hydrophilic N- and hydrophobic C-terminus with a hydrophobic region at

residues KLVFF (16-20) [16].

We selected the amyloidogenic polypeptide, β-amyloid Aβ1−42 and scrambled

Aβ42−1 as a non-amyloidogenic analog. The synthesized peptides were supplied from

Anaspec, Inc. as a lyophilized powder and kept frozen until use. Both Aβ1−42 and

scrambled Aβ42−1) are identical in amino acid composition and molecular weight of

4514.1 Da, but with different sequence order as shown in Figure 2.13. The scrambled

sequence was developed such that amyloid-forming hydrophobic clustering interac-

tions should not occur.

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

hydrophilic head β turn hydrophobic tail

(a)

AIAEGDSHVLKEGAYMEIFDVQGHVFGGKIFRVVDLGSHNVA

(b)

Figure 2.13: Amino acid sequences of (a) Aβ1−42 and (b) scrambled Aβ42−1. The
hydrophobic amino acids are shown in red. The sequence found in native Aβ1−42
possesses a hydrophilic head, hydrophobic tail, and a hydrophobic region in the middle
that causes the β turn in the secondary structure.
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2.4.2 Islet Amyloid Polypeptide (IAPP)

Amyloid deposits of human Islet Amyloid Polypeptide (hIAPP) or amylin have been

found post-mortem in the pancreatic beta cells of more than 90% of patients with

Type II diabetes [29]. The 37 residue polypeptide amylin is soluble and non-toxic

in its natural form but environmental conditions and genetic predisposition cause

amylin to aggregate and form toxic amyloid fibrils [30]. In human IAPP, sequence

20-29 has been shown as a source for amyloid fibril formation [33, 31]. The sequence

and composition of IAPP varies between species resulting in a chain that may or may

not aggregate to form amyloid fibrils. For example, in the 37 residue sequence, only

six amino acids differ between rat and human, five of which are located in sequence

20-29 [140].

We selected the amyloidogenic polypeptide, human hIAPP22−27 and rat

rIAPP20−29 as a non-amyloidogenic analog. The synthesized peptides were sup-

plied from Anaspec, Inc. as a lyophilized powder and kept frozen until use. The

hIAPP22−27 has a molecular weight of 633.8 Da and the rIAPP20−29 has a weight of

1007.2 Da. The proline substitutions in rIAPP (see Figure 2.14) almost completely

inhibits hydrophobic clustering and amyloid fibril formation [140].

SN-NLGPVL-PP

(b)(a)

NFGAIL

Figure 2.14: Amino acid sequences of (a) human hIAPP22−27 and (b) rat rIAPP20−29.
The hydrophobic amino acids are shown in red. The arrow points to a proline sub-
stitution at amino acid position 25 that prevents β-sheet formation in rat amylin.
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2.5 Buffers

Experiments were performed using a deionized water or bovine serum albumin (BSA)

buffer. The deionized water, 18.2MΩ·cm minimum, was supplied using a Millipore

Direct-Q water purification system. The BSA was purchased from Sigma, cata-

logue #B8655 with a protein concentration of 45-75 mg/mL and containing 0.01%

thimerosal as a preservative. The serum was kept frozen until use. Glycerol, 99%

minimum (Sigma, #G5516) was used as a cryoprotectant for experiments under sub-

freezing temperatures.
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Chapter 3

Dielectric Studies of

Amyloidogenic Peptides at Room

Temperature as a Function of

Concentration and Incubation

Time

3.1 Overview

Amyloidogenic peptides characteristically aggregate to form higher-ordered structures

from dimers, trimers, and oliogomers, to protofibrils and fibrillar plaques [44, 45, 46,

47]. Aggregation and changes to the surface landscape of amyloid structures produces

a redistribution of mobile charge carriers and molecular dipoles. This redistribution

is reflected in a changing dielectric response over time during the fibrillation process.

The aim of our work was to characterize the dielectric relaxation response for two

amyloidogenic peptides and their non-amyloidogenic analogs. Amyloidogenic pep-
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tides Aβ1−42 and human islet amyloid polypeptide, hIAPP22−27 were used as mod-

els for studying protein aggregation and beta sheet formation at room temperature.

Their non-amyloidogenic analogs, scrambled Aβ42−1 and rat islet amyloid polypep-

tide, rIAPP20−29 were selected as control materials. Dielectric measurements at room

temperature of conductive, heterogeneous materials, such as proteins, are dominated

by conductivity and polarization effects [127, 126]. Here, we explore changes to con-

ductivity and space-charge polarization as amyloidogenic peptides combine to form

higher-ordered structures.

3.2 Sample Preparation and Data Collection

Lyophilized peptides of Aβ1−42, scrambled Aβ42−1, hIAPP22−27, rIAPP20−29 were ob-

tained from AnaSpec, Inc in quantities of 0.5 mg and 1.0 mg. The vials were stored at

approximately -20◦C until the time of reconstitution. The Aβ1−42 was first rehydrated

using 35µL 1% NH4OH added to 0.5mg of protein to ensure that the solution was first

driven to a monomeric state. Deionized water, 18.2MΩ·cm minimum, was used to

dilute and rehydrate the peptides to concentrations of 5µM, 50µM, and 100µM. Each

solution was stored in sterile vials. The samples were then mixed by repeated inver-

sion of the vials and set to incubate for 0-168 hours at room temperature. The same

sample preparation was used for each time point. The samples were again mixed by

repeated inversion of the vials, then placed in the Novocontrol BDS 1309 cylindrical

gold-plated sample cell.

Data were collected using the Novocontrol Alpha-A Analyzer and Quatro Cryosys-

tem in gain phase measurement mode with an AC probing voltage of 1.000 VRMS.

Measurements were taken at room temperature of approximately 295 K. We selected

60 data points in a frequency range from 1.00× 107 − 4.78× 10−2 Hz, spaced evenly

in a logarithmic scale.
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3.3 Results and Discussions

3.3.1 Studies of Aβ1−42 and Scrambled Aβ42−1

The dielectric spectra of Aβ1−42 and scrambled Aβ42−1 at concentrations of 5µM,

50µM, and 100µM are presented at various incubation times in Figures 3.2 - 3.4.

Dielectric spectra are typically represented using the permittivity formalism, however

interfacial polarization and DC conductivity dominate the spectra in the case of highly

conductive materials. The interfacial polarization occurs due to the space-charge ac-

cumulation at macroscopic interfaces as a result of the differences in conductivities

and permittivities in heterogenous materials [126]. The dielectric modulus is an alter-

native formalism used to study the conductivity and relaxation spectra of materials

in the presence of interfacial polarization [125, 126, 127, 128]. Figure 3.1 shows the

relationship between M ′′, ε′, and ε′′. When plotted together, the intersection of ε′

and ε′′ occurs at the peak loss modulus, M ′′ for the conductivity. The region of ε′

with zero slope is the conductivity and the region of negative slope is polarization

effects. In the following, we present the dielectric spectra using the dielectric loss

modulus, M ′′ as a function of frequency to show the changes in the conductivity

process throughout fibril formation.
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Figure 3.2: Dielectric modulus (M ′′) as a function of frequency for Aβ1−42
and Aβ42−1 at concentrations of 5µM, 50µM and 100µM after 1 hour and
4 hours of incubation time. There is an immediate shift in peak frequency for
Aβ1−42 for all concentrations after just 1 hour. The peak shift for Aβ42−1 is only a
half decade or less for both 1 and 4 hours for all concentrations. Note that after 4
hours of incubation, the shift for 5µM Aβ1−42 is more than twice the shift for any
concentration of Aβ42−1.
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Figure 3.3: Dielectric modulus (M ′′) as a function of frequency for Aβ1−42
and Aβ42−1 at concentrations of 5µM, 50µM and 100µM after 8 hours and
24 hours of incubation time. The shift for Aβ42−1 is approximately twice the shift
of Aβ42−1 for each concentration at 8 and 24 hours of incubation. The frequency shifts
for Aβ1−42 and Aβ42−1 indicates that there is some aggregation with both peptides,
but the process is composition and concentration dependent. We note a large increase
in the magnitude of M ′′ for only 50µM Aβ1−42 at 24 hours, though the peak frequency
follows the trend.
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Figure 3.4: Dielectric modulus (M ′′) as a function of frequency for Aβ1−42
and Aβ42−1 at concentrations of 5µM, 50µM and 100µM after 72 hours and
144 hours of incubation time. The shift for Aβ42−1 is approximately 1.5 times
the shift of Aβ42−1 for each concentration at 72 and 144 hours of incubation. We note
a large increase in the magnitude of M ′′ for 100µM Aβ1−42 at 72 hours, though the
peak frequency follows the trend to higher frequency. Data was not collected beyond
72 hours for Aβ1−42.
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The time evolution of Aβ1−42 and scrambled Aβ42−1 shows that both shift towards

higher frequency with increasing concentrations of 5µM, 50µM, and 100µM at each

time point. The frequency shift for Aβ1−42 is approximately twice that of Aβ42−1

for each concentration and time point. Figures 3.5 - 3.7 show the progression of

dielectric modulus shifts for each concentration of Aβ1−42 and Aβ42−1 as compared to

the solvent on two different time scales.

The 5µM Aβ1−42 has an initial shift towards high frequency of half of a decade

and continues to shift up to a decade at 8 hours. Beyond 8 hours, there is only a

small shift towards high frequency. The 5µM Aβ42−1 does not shift for the first two

hours, then up to half of a decade at 8 hours. The shift continues gradually up to a

decade after 7 days.

The 50µM Aβ1−42 has an initial shift towards high frequency of +1.4 decades

and continues to shift up to +1.5 decades at 8 hours. Beyond 8 hours, there is a

continuing shift of up to +1.7 decades. The 50µM Aβ42−1 has a small initial shift of

+0.4 decade, then up to +0.7 decade at 8 hours. The shift continues gradually up to

+1.5 decades after 7 days.

The 100µM Aβ1−42 has an initial shift towards high frequency of +2 decades and

continues to shift up to +2.5 decades at 8 hours. Beyond 8 hours, there is a continuing

shift of more than +2 decades, but it is above the measured frequency. The 100µM

Aβ42−1 has a small initial shift of +0.4 decade, then up to +1.5 decades at 8 hours.

The shift continues gradually up to +1.5 decades after 7 days.
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Figure 3.5: Time evolution for 5 µM Aβ1−42 and Aβ42−1 for 0-8 hours and
1-168 hours (7 days). The Aβ1−42 has an initial jump in peak frequency of approx-
imately 1 decade at the first measurement, then continues for another half decade.
There is no shift in Aβ24−1 for the first two hours, then steady shift throughout 168
hours. The peak frequencies of Aβ1−42 and Aβ42−1 are very close after 168 hours of
incubation.
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Figure 3.6: Time evolution for 50 µM Aβ1−42 and Aβ42−1 for 0-8 hours and
1-168 hours (7 days). The Aβ1−42 has an initial jump in peak frequency of approx-
imately 1.5 decades at the first measurement, then continues with small increases.
There is a small shift in Aβ24−1 of a half decade, then steady shift throughout 168
hours. The peak frequency of Aβ1−42 is approximately a half decade above Aβ42−1
after 168 hours of incubation. The large increase in the magnitude of Aβ1−42 at 0 and
24 hours could be the result of an evolving surface landscape during fibril formation.
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Figure 3.7: Time evolution for 100 µM Aβ1−42 and Aβ42−1 for 0-8 hours and
1-168 hours (7 days). No data was collected for Aβ1−42 after 72 hours. The
Aβ1−42 has an initial jump in peak frequency of approximately 2 decades at the first
measurement, then continues with small increases. Data was not collected beyond
72 hours. There is a small shift in Aβ24−1 of a half decade, then steady shift to 1.5
decades throughout 168 hours. The peak frequency of Aβ1−42 is more than a half
decade above Aβ42−1 for all time points. The large increase in the magnitude of
Aβ1−42 at 72 hours could be the result of an evolving surface landscape during fibril
formation.
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The dielectric loss modulus, M ′′ was fit in the frequency domain using a general-

ized susceptibility model function in the form [141, 142]

M ′′(ω) =
M ′′

p

(1−C)
a+b

[b(ω/ωp)−a + a(ω/ωp)b] + C
(3.1)

where ω = 2πf is the angular frequency. The parameters M ′′
p and ωp describe the

height and position of the modulus loss peak at its maximum. The parameters a and

b are the slopes of the low and high frequency side of the peak and the C parameter

describes the broadening. Sample fits using this susceptibility model for the solvent,

Aβ1−42, and scrambled Aβ42−1 are shown in Figure 3.8.

10
2

10
3

10
4

10
5

10
6

frequency

10
2

10
3

10
4

10
5

10
6

8x10
-3

6

4

2

0

M
"

10
2

10
3

10
4

10
5

10
6

solvent Aβ1-42 Aβ42-1

Figure 3.8: Example of the curve fitting analysis performed for the determination of
fmax in the modulus M” versus frequency plots for the solvent, Aβ1−42, and Aβ42−1.

Plots of fmax versus time for Aβ1−42 and scrambled Aβ42−1 display distinct behav-

ior in two regimes: 0-8 hours and 24-168 hours for each concentration. Each regime

was empirically fit to a power law in the form

f(t) = C + Atk (3.2)

and are shown in Figure 3.9 and tabulated in Table 3.1. It is interesting to note

that two clearly different behaviors for the short-term and long-term were observed
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for each concentration. Both Aβ1−42 and Aβ42−1 show a rapid shift towards higher

frequency for each concentration in the time frame from 0-8 hours. The Aβ1−42 then

appears to not shift after little change beyond 24 hours. Peak modulus determination

for the 100µM Aβ1−42 because it has shifted above the measured frequency range.

The scrambled Aβ42−1 however continues a steady shift towards higher frequency

throughout the 168 hour testing period.

The dielectric modulus loss peaks displayed in the spectra are dominated by inter-

facial polarization effects. Changes in the magnitude of M ′′ and the peak frequency

may be an indication of peptide conformational changes. As the peptides aggre-

gate, charged and uncharged amino acids will reorganize and produce a differentiated

space-charge organization, depicted as the change in modulus signal. The observation

that Aβ1−42 experiences a rapid shift in frequency in the first 8 hours, then virtually

no shift afterwards may be an indication of organized aggregation and beta sheet

formation. It is possible that fibril formation has completed after the 8 hours with

no further assembly for Aβ1−42. The scrambled Aβ42−1 may also be aggregating, but

possibly not as fast or towards a final, organized state.

Aβ1−42 Aβ42−1
XM C (105) A (104) k XM C (105) A (104) k

0-8
5µM 3.92 4.79 0.93 5µM 0.70 0.54 1.57
50µM 23.4 11.5 0.86 50µM 1.53 2.27 1.08

hours 100µM 55.6 14.4 1.38 100µM 1.13 9.49 0.68

24-168
5µM 0.13 74.5 0.01 5µM 1.75 0.10 1.23
50µM 3.93 181 0.18 50µM 4.84 0.03 1.50

hours 100µM – – – 100µM 8.70 0.14 1.24

Table 3.1: Parameters of the power law fits to the fmax versus time for M ′′ in the
form f(t) = C + Atk at concentrations XM = 5µM, 50µM, and 100µM for Aβ1−42
and Aβ42−1.
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Figure 3.9: Plots of fmax of M” versus time for Aβ1−42 and Aβ42−1 at 5µM,
50µM, and 100µM concentrations. For each concentration, fmax has two distinct
regions (0-8 hours and 24-168 hours). Modulus peak determination for the Aβ1−42
after 6 hours was not possible because the peaks have shifted to frequencies above
the measurement limits.
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3.3.2 Studies of Human and Rat Islet Amyloid Polypeptide

The dielectric spectra of human (hIAPP) and rat (rIAPP) islet amyloid polypeptide

at concentrations of 5µM, 50µM, and 100µM are presented at various incubation

times in Figures 3.11 - 3.13. Similar to the measurements performed on Aβ1−42,

the dielectric spectra is dominated by interfacial polarization and DC conductivity

due to the heterogeneity and highly conductive nature of the peptides. Figure 3.10

shows the relationship between M ′′, ε′, and ε′′ for hIAPP, rIAPP, and the solvent.

When plotted together, the intersection of ε′ and ε′′ occurs at the peak loss modulus,

M ′′ for the conductivity. The region of ε′ with zero slope represents the conductivity

and the region of slope of approximately -1 is polarization effects. Here, we present

the data using the dielectric loss modulus, M ′′ as a function of frequency to show the

changes in the conductivity process throughout fibril formation.
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Figure 3.10: The relationship between M ′′, ε′, and ε′′ for hIAPP, rIAPP, and the
solvent. The intersection of ε′ and ε′′ occurs at the peak loss modulus, M ′′ for the
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Figure 3.11: Dielectric modulus (M ′′) as a function of frequency for hIAPP
and rIAPP at concentrations of 5µM, 50µM and 100µM after 1 hour and
4 hours of incubation time. Both hIAPP and rIAPP show an initial shift to lower
frequency for low concentrations of protein (5µM). The peak frequency increases with
increasing concentration for both hIAPP and rIAPP from 5-100µM. After 4 hours of
incubation, only hIAPP shows a positive shift in peak frequency at 5µM. Also, there
is an increase in peak magnitude. The jump in peak magnitude at 1 hour for 50µM
and 4 hours for 5µM hIAPP is indicative of a changing surface landscape of charges.
This may have occurred with 100µM prior to our first measurement. We note that
after 4 hours, hIAPP 100µM has shifted to lower frequency than 50µM.
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Figure 3.12: Dielectric modulus (M ′′) as a function of frequency for hIAPP
and rIAPP at concentrations of 5µM, 50µM and 100µM after 6 hours and
24 hours of incubation time. After 24 hours of incubation, the rIAPP 5µM shows
a small positive shift in frequency for the first time, but is less than half that of the
hIAPP. The hIAPP and rIAPP 50µM solutions display similar peak frequency shifts.
The increase in magnitude of 50µM and decrease in magnitude of 100µM at 6 hours
indicates surface changes due to fibril formation. We note that the hIAPP 100µM is
at lower frequency than 50µM.
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Figure 3.13: Dielectric modulus (M ′′) as a function of frequency for hIAPP
and rIAPP at concentrations of 5µM, 50µM and 100µM after 72 hours
and 144 hours of incubation time. After 72 hours of incubation, the hIAPP
and rIAPP 5µM and 50µM solutions display similar peak frequency shifts. The
increase in magnitude of hIAPP 50µM at 72 hours indicates surface changes due to
fibril formation. A decrease in magnitude of rIAPP 100µM at 72 hours and rIAPP
at 50µM at 144 hours is observed. We note that the hIAPP 100µM is at lower
frequency than 50µM for both time points and similarly for rIAPP at 144 hours.
Trends of rIAPP appear to follow hIAPP after much longer timescales indicating
that aggregation occurs for both peptides, but at different rates.
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The time evolution of both hIAPP and rIAPP shows a shift towards higher fre-

quency with increasing concentrations of 5µM, 50µM, and 100µM at each time point.

Figures 3.14 - 3.16 show the progression of dielectric modulus shifts for 5µM, 50µM,

and 100µM hIAPP and rIAPP as compared to the solvent on two different time scales.

The 5µM hIAPP has an initial shift towards lower frequency of -0.2 decade and

then continues to shift up to +0.3 decade at 6 hours. Beyond 6 hours, there is a

continuing shift up to +0.7 decade after 144 hours. The rIAPP also has an initial

shift towards lower frequency of -0.2 decade, then continues to shift towards the same

frequency as the solvent after 6 hours. The shift continues gradually up to +0.4

decade after 144 hours.

The 50µM hIAPP has an initial shift towards high frequency of half of a decade

and continues to shift up to a decade at 6 hours. At 144 hours, there is only a small

shift. The 50µM rIAPP has a small initial shift of half of a decade, then up to +0.6

decade at 6 hours, and continues gradually up to a decade after 144 hours.

The 100µM hIAPP has an initial shift towards high frequency of +0.8 decade,

then a shift towards lower frequency at +0.6 decade after 6 hours. The peak then

continues to shift back towards higher frequency of +0.8 decade after 144 hours. The

100µM rIAPP has a similar initial shift of +0.7 decade, then continues to shift to

+0.8 decade for 6 hours and beyond.
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Figure 3.14: Time evolution for 5µM rIAPP and hIAPP for 0-24 hours and
1-144 hours (6 days). The hIAPP solution displays a larger frequency shift than
rIAPP in the first 24 hours and a spike in the magnitude of M ′′ at 4 hours. Both
hIAPP and rIAPP display similar behavior beyond 24 hours.
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Figure 3.15: Time evolution for 50µM rIAPP and hIAPP for 0-24 hours and
1-144 hours (6 days). The hIAPP and rIAPP solutions display similar frequency
shifts for both incubation time scales. However, the hIAPP shows a spike in magni-
tude at 1 and 6 hours. A smaller, yet significant spike is seen with rIAPP at 4 and
72 hours.
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Figure 3.16: Time evolution for 100µM hIAPP and rIAPP for 0-24 hours
and 1-144 hours (6 days). The hIAPP frequency shift is less than that of the
rIAPP in the first 24 hours of incubation. The hIAPP shifts to lower frequency in the
first 24 hours with a spike in magnitude at 24 hours. The rIAPP does not significantly
change in the first 24 hours with a spike in magnitude at 4 hours. There is little change
over time for the peak frequency for both hIAPP and rIAPP at 100µM.
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The dielectric loss modulus, M ′′ was fit in the frequency domain using the same

generalized susceptibility model function noted in the fits for Aβ. Sample fits for the

solvent, hIAPP, and rIAPP are shown in Figure 3.17.
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Figure 3.17: Example of the curve fitting analysis performed for the determination of
fmax in the modulus M” versus frequency plots for the solvent, hIAPP, and rIAPP.

Plots of fmax versus time for hIAPP and rIAPP display distinct behavior in two

regimes: 0-8 hours and 24-168 hours for each concentration. Each regime was em-

pirically fit to a power law and is shown in Figure 3.18 and tabulated in Table 3.2.

As with Aβ1−42 and Aβ42−1, we observe two clearly different trends for each time

scale and concentration. Both hIAPP and rIAPP show a rapid shift towards higher

frequency for each concentration in the time frame from 0-8 hours, except for hIAPP

100 µM which has an initial shift, then trends downward. Both hIAPP and rIAPP at

5µM concentrations continue to shift towards higher frequencies over the entire mea-

sured time period with the hIAPP always at higher frequency at every time point.

The hIAPP 50µM, rIAPP 50µM, and rIAPP 100µM all display a similar behavior

beyond 24 hours with virtually no shift and at approximately the same frequency. We

note that the hIAPP 100µM has a slight trend towards high frequency, but occurs at

lower frequency than 50µM.
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As with Aβ, the dielectric modulus loss peaks displayed in the IAPP spectra are

dominated by interfacial polarization effects. The observation that the behavior of

rIAPP and hIAPP follow similar trends at low concentration (5µM) may be due to

a critical concentration required for beta sheet formation. At 100µM, the shift of

hIAPP to a lower frequency than that of 50µM hIAPP may be an indication that

the beta sheet formation at high concentrations has caused a shift in the interfacial

polarization signal that is not observed in rIAPP at the same concentrations.

The time evolution of the modulus loss peak in the first 24 hours is of particular

interest. A closer look at the 50µM and 100µM shows that hIAPP first shifts to

high frequency, then towards lower frequency after 24 hours. Conversely, rIAPP at

the same concentrations continues with a slight increase in frequency. The back-and-

forth shifting of the hIAPP interfacial polarization is expected due to protein surface

modulation during oligomerization and fibril formation.
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50µM, and 100µM concentrations. Each concentration is fit to two power law
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hIAPP rIAPP
XM C (105) A (105) k XM C (105) A (105) k

0-8
5µM 2.79 -23.0 -0.30 5µM 0.55 0.15 1.43
50µM -25.2 278 0.02 50µM 1.77 5.22 0.52

hours 100µM 2.59 20.5 -0.41 100µM 3.87 1.16 1.36

24-168
5µM 1.12 0.41 0.85 5µM 0.83 0.11 0.97
50µM 6.08 0.02 1.32 50µM 6.02 0.00 3.16

hours 100µM 3.39 0.00 2.04 100µM 10.1 -438 -0.66

Table 3.2: Parameters of the power law fits to the fmax versus time for M ′′ in the
form f(t) = C + Atk at concentrations XM = 5µM, 50µM, and 100µM for hIAPP
and rIAPP.
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3.4 Conclusions

Studies of these peptides at room temperature reveal that there is a large contribu-

tion to the conductivity and space-charge polarization due to the heterogeneity of the

peptide-solvent mixture. In the presence of strong space-charge polarization effects,

the dielectric modulus is often the preferred parameter for probing dielectric proper-

ties. The dielectric modulus reveals a conductivity relaxation peak that changes with

concentration and incubation time.

Both the Aβ1−42 and scrambled Aβ42−1 display a positive shift in frequency of

the conductivity relaxation peak. However, the Aβ1−42 displays an instant shift and

a much more rapid change in the first 8 hours of measurement than that of the

scrambled Aβ42−1. The shifts are larger and faster with increasing concentration

from 5µM to 100µM. The Aβ1−42 appears to reach a final state after the first day of

measurements, where the scrambled Aβ42−1 continues to gradually shift over the 7

days. This may be an indication that both the Aβ1−42 and scrambled Aβ42−1 undergo

some form of aggregation, but the process with the Aβ1−42 is faster and with a larger

frequency shift. The conformation differences in Aβ1−42 versus Aβ42−1 is observed in

the conductivity relaxation. A higher organized, tightly packed β-sheet should give

rise to more ordering in the space-charge polarization.

Measurements of the hIAPP and rIAPP also show a positive shift in frequency

for all concentrations, except the hIAPP at 100µM which shifts to lower frequency.

The trends observed in the measurements of IAPP indicates that the aggregation

behavior may be dependant on the peptide concentration. At 5µM, the hIAPP and

rIAPP follow similar trends, though a fast and larger shift is observed with hIAPP.

At 50µM, the hIAPP against shifts faster and to higher frequency, but does not

shift after 24 hours, where rIAPP continues to shift. At 100µM, hIAPP shifts to

lower frequency in the first 24 hours, then does not shift for the remaining incubation

time. The rIAPP shifts to higher frequencies and continues to shift over time. It is

73



also notable that the hIAPP 100µM shifts to lower frequency than hIAPP 50 µM,

where rIAPP is similar for 50µM and 100µM. One possibility is that 5µM is below

some critical concentration necessary for fibril formation, or it requires a much longer

incubation time, hence the continuation of the frequency shift. The 50µM follows a

similar trend observed for Aβ1−42 and scrambled Aβ42−1. The behavior of hIAPP and

rIAPP at 100µM would be interesting for further examination.

Trends in the maximum amplitude of the dielectric loss modulus, M ′′, are noted

in Figures 3.2 - 3.4 and 3.11 - 3.13. The amyloidogenic peptides Aβ1−42 and hIAPP

demonstrate spikes of increased magnitude of M ′′ at several timepoints and concentra-

tions. No spikes were observed for the non-amyloidogenic analogs. The intermittent

spikes in M ′′ are representative of a high fraction of oligomer structures in the ensem-

ble. During nucleation and oligomer formation, hydrophobic and hydrophilic regions

of amyloidogenic peptides reorganize in conformations that favor β-sheet formation

[48, 49, 50]. This results in an increase to the number of accessible mobile charge car-

riers in the solution, as reflected in an increase of the magnitude of M ′′. The charges

carriers are then restricted upon the formation of fibrils, resulting in a change in mag-

nitude of M ′′ towards that of the solvent. The non-amyloidogenic peptides do not

display these spikes because they are not expected to form intermediary oligomeric

structures and fibrils. However, they may aggregate in other conformations that

would explain the increase in frequency of M ′′, but not magnitude.
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Chapter 4

Dielectric Studies of

Amyloidogenic Peptides in

Deionized Water Buffer at Low

Temperature

4.1 Overview

Protein association and aggregation causes a redistribution of biological water

molecules at the protein-water interface [143, 144]. Studies show that amyloidogenic

aggregates are characterized by an increased number of poorly dehydrated hydrogen

backbones and large surface densities of patches of bulk like water which favor protein

association [145, 144]. The water dynamics in the vicinity of the amyloidogenic ag-

gregates is different than the monomeric form and thus there is an increase of patches

which are occupied by molecules with bulk-like water behavior (i.e. no translations

or rotations). The change on the surface depends on how many patches of structural

defects remain after the formation of dimers, tetramers, oligomers, and protofibrils
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[143]. We hypothesize that this change in the long-lived water structures provides

the change in the dielectric relaxation signal of the structure. Our theoretical model

suggests that measurement over a wide range of frequencies produces a differentiated

signal for the different configurations of protein-water interface.

In this chapter, dielectric spectroscopy data and analysis are presented for two

amyloidogenic peptides and their non-amyloidogenic analogs. Amyloidogenic pep-

tides Aβ1−42 and human islet amyloid polypeptide, hIAPP22−27 were used as models

for studying protein aggregation in a deionized water buffer. Deionized water was

chosen as a buffer to first study the peptides in the absence of any other biological

fluids and proteins. Their non-amyloidogenic analogs, scrambled Aβ42−1 and rat islet

amyloid polypeptide, rIAPP20−29 were selected as control materials. Measurements

were performed from room temperature down to cryogenic temperature in order to

study the relaxation kinetics. Trends of dielectric spectra as a function of incubation

time and temperature are explored within.

4.2 Sample Preparation and Data Collection

Lyophilized peptides were obtained from AnaSpec, Inc in quantities of 0.5 mg and 1.0

mg. The vials were stored at approximately -20◦C until the time of reconstitution.

Both the Aβ1−42 and Aβ42−1 were first rehydrated using 35µL 1% NH4OH added

to 0.5mg of protein to ensure that the solution was first driven to a monomeric

state. Deionized water, 18.2MΩ·cm minimum, was used to dilute and rehydrate the

peptides to a concentration of approximately 100µM and stored in a sterile vial. A

separate sample was prepared for each time point. The samples were then mixed by

repeated inversion of the vials and set to incubate for 0, 8, 24, 48, or 120 hours at

room temperature. Using turbidimetric measurements, Jarrett et al. showed that

Aβ1−42 in a concentration of 20µM began immediate oligomerization and reached
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a final state at approximately 20 hours [146]. Rhodes et al. showed that hIAPP

in a concentration of 20µM began oligomerization after approximately 40 hours of

incubation and reached a final state at approximately 100 hours [147]. Glycerol,

99% minimum from Sigma was then added to a final concentration of 50µM peptide

in 50%-50% by weight DI H2O-glycerol solvent. The samples were again mixed by

repeated inversion of the vials. The samples were then placed in the Novocontrol

BDS 1307 stainless steel sample cell.

Data were collected using the Novocontrol Alpha-A Analyzer and Quatro Cryosys-

tem in gain phase measurement mode with an AC probing voltage of 1.000 VRMS. A

liquid nitrogen cryostat was used to control temperature from 283K down to 133K

at 5K intervals. We selected 60 data points in a frequency range from 2.00 × 107 −

4.78 × 10−2 Hz, spaced evenly in a logarithmic scale. Data for each temperature

point was collected in duplicate. The first of the duplicates were during temperature

stabilization and were discarded from analysis.

4.3 Results and Discussions

4.3.1 Studies of Aβ1−42 and Scrambled Aβ42−1

The dielectric spectra of Aβ1−42, scrambled Aβ42−1, and the solvent shows two relax-

ation processes (α and β) and low-frequency DC conductivity below 228K, depicted

in Figure 4.1. At temperatures above 228K, the relaxation processes are either at

frequencies above the range of the Alpha-A Analyzer or the conductivity dominates

the spectra. The fast, α-relaxation process is clearly observed at 228K at a frequency

of approximately 107 Hz in both the real and imaginary parts of the permittivity.

The slower β-relaxation process is clearly observed at approximately 104 Hz at 228K.

With decreasing temperature the peaks of the α- and β-relaxation processes shift

towards lower frequency. The α-process shifts faster than the β-process causing the
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Figure 4.1: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, Aβ1−42, and Aβ42−1 from 228K to
213K. Two relaxation processes for the real (ε′) and imaginary (ε′′) parts of the
permittivity for the solvent, Aβ1−42, and scrambled Aβ42−1 are observed.

two processes to merge below 203K and eventually cross at approximately 193K as

shown in Figure 4.2. The α-process continues to shift to very low frequencies with

decreasing temperature. At around 163K the α-process shifts to frequency out of our

measured frequency range. After the crossing of the two processes, the β-relaxation

process dominates the dielectric spectra and shifts to approximately 10−1 Hz at 133K

(Figure 4.3). Below 153K, the DC conductivity has decreased in magnitude and also

shifted to frequency below the measured range.
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Figure 4.2: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, Aβ1−42, and Aβ42−1 from 198K to
168K. The α-relaxation process rapidly shifts to lower frequency with decreasing
temperature. In the range of 198K to 188K the two processes cross where the α-
relaxation is at lower frequency than the β-relaxation process at temperatures of
183K and below.
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Permittivity data for Aβ1−42 and scrambled Aβ42−1 were plotted against the sol-

vent to compare the time-evolution of dielectric signal. Data were collected after 0,

8, and 24 hours of incubation at room temperature. The dielectric loss of Aβ1−42 and

Aβ42−1 as compared to the solvent over the observable temperature range 228K-133K

is shown in Figures 4.4 - 4.13.

The magnitude of the dielectric loss peaks of the scrambled Aβ42−1 shifts over

time towards the signal of the solvent. Figure 4.5 above the α-β relaxation crossing

temperature of 193K, we observe that the magnitude of α-process peak of Aβ42−1

is similar to the solvent after 0 and 8 hours but is lower than the solvent after 24

hours. The β-relaxation process in the same temperature range is the same for 0

and 24 hours, but is the same as the solvent after 8 hours. In the crossing region of

193K - 183K where the processes occur at similar frequency, Figures 4.7 and 4.9

show that the dielectric signal of Aβ42−1 in both frequency and magnitude are nearly

overlapping with the solvent for all time points. At temperatures of 168K and below

where the β-process dominates the spectra, the magnitude of Aβ42−1 begins lower

than that of the solvent at 0 hours, then above for 8 and 24 hours as seen in Figures

4.11 - 4.13. In that same region, the peak frequency of the beta process of Aβ42−1

begins higher than the solvent at 0 hours, then steadily decreases and lies below the

solvent for 8 and 24 hours.

The magnitude of the dielectric loss peaks of the Aβ1−42 follows a different trend

than the Aβ42−1. Above the α-β relaxation crossing temperature of 193K, the magni-

tude of α-relaxation peak of Aβ1−42 is slightly below the solvent and does not change

much from 0-24 hours, as seen in Figure 4.4. The β-relaxation process in the same

temperature range is higher in magnitude than the solvent at 0 hours and trends

downward towards the solvent at 8 and 24 hours. This follows the trend of the de-

crease in DC conductivity over time. In the crossing region of 193K - 183K where

the processes occur at similar frequency, Figures 4.6 and 4.8 show that the relax-
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ation processes of Aβ1−42 nearly overlaps with the solvent and the DC conductivity

decreased in magnitude towards that of the solvent. At temperatures of 168K and

below where the β-process dominates the spectra, the magnitude of Aβ1−42 first de-

creases after 8 hours and then increases after 24 hours, but always remains larger

than the solvent as shown in Figures 4.10 - 4.12. Additionally, the peak frequency

of the beta process of Aβ1−42 starts below the solvent, then shifts above the solvent

after 8 hours, then back to lower frequency than the solvent after 24 hours.
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Dielectric permittivity data for Aβ1−42, and Aβ42−1, and the solvent were modeled

using the WinFIT program for each temperature from 223K to 133K and at incu-

bation time points 0, 8, and 24 hours. The model functions include a power law for

conductivity and the Havriliak-Negami function for each relaxation process given by

ε∗(ω) = −i
(
σ0
ε0ω

)N
+

2∑
k=1

[
ε∞,k +

∆εk
(1 + (iωτk)βk)γk

]
(4.1)

The β-relaxation process demonstrates symmetric broadening but no asymmetric

broadening over the measured temperature range. This reduces the Havriliak-Negami

function to a Cole-Davidson with γ = 1 and β < 1. The symmetric broadening pa-

rameter, β remains relatively constant over the entire temperature range at approxi-

mately 0.8. The α-relaxation process demonstrates both symmetric and asymmetric

broadening over the observed temperature range. Both β and γ spreading parameters

change with temperature. Data were fit using a least-squares minimization and the

root-mean-squared-deviation (RMSD) is reported for goodness of fit.

The α-relaxation process is observed from 228K to 168K, though in the crossing

temperatures of 198K to 183K, it overlaps with the β-process. During this tempera-

ture range, the β-relaxation process dominates. The β-relaxation process is observed

between approximately 228K down to the lowest temperature, 133K. At tempera-

tures above 208K, the DC conductivity dominates the spectra in the region of the

β-relaxation. Examples of curve fitting performed at representative temperatures are

shown in Figures 4.14 - 4.17.

Figure 4.17 shows a clear β-relaxation process with a high-frequency excess wing.

The excess wing is known to exist in certain glass-forming liquids such as glycerol [63].

The wing may exist at all temperatures but is most pronounced at low temperatures,

particularly below the glass transition. Despite efforts to characterize the excess

wing, there is no common explanation to its physical origin and thus it is treated
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as an empirical phenomenon [63, 148]. It is possible to fit the wing with another

empirical function, but this is not necessary in determining the peak position and

shape parameters for the β-relaxation process.
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Figure 4.14: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 223K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 104 Hz is fit with a Cole-Davidson function and the α-relaxation process
at around 107 Hz is fit with a Havriliak-Negami function. The root-mean-square
deviation (RMSD) of the fits are 0.018, 0.012, and 0.013, respectively.
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Figure 4.15: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 208K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process at
around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process at
around 105 Hz is fit with a Havriliak-Negami function. The RMSD of the fits are
0.045, 0.009, and 0.013, respectively.
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Figure 4.16: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 188K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process
at around 101 Hz is fit with a Havriliak-Negami function. Here, the α process has
crossed over to slower than β relaxation times. The RMSD of the fits are 0.008, 0.011,
and 0.013, respectively.
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Figure 4.17: Curve fitting of the imaginary part of the permittivity data
using the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 133K. A
small, very low frequency DC conductivity is fit with a power law. The β-relaxation
process at around 1 Hz is fit with a Cole-Davidson function and the α-relaxation
process is not observed. The RMSD of the fits are 0.092, 0.123, and 0.082, respectively.
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The maximum frequency, fmax of ε′′ of both the α- and β-relaxation processes

were determined from the model function curve fitting of the permittivity data at

all temperatures. Arrhenius plots of fmax versus inverse temperature, 1000/T were

created for each process. The β-relaxation process follows a linear, or Arrhenius

behavior throughout the temperature range. The α-relaxation process follows a slight

non-linear Vogel-Fulcher-Tammann (VFT)-type behavior that is expected in glass-

forming solvents such as glycerol (Figures 4.18 and 4.19). Activation energies for

the β process and glass-forming fragilities for the α process were determined from the

Arrhenius and VFT analysis and tabulated in Tables 4.1 and 4.2. The activation

energies for Aβ1−42 are close to the value of 23 kJ/mol obtained by Kusumoto et al.

from measurements of Aβ1−40 using the quasi-electric light scattering (QLS) method

[149].

EA EA
time A B (kJ/mol) time A B (kJ/mol)

Aβ1−42

0hr 10.4 1.491 28.5
Aβ42−1

0hr 9.64 1.341 25.7
8hr 9.07 1.360 26.0 8hr 10.2 1.458 28.3
24hr 9.99 1.421 27.2 24hr 10.4 1.473 28.2

solvent 9.87 1.394 26.7 solvent 9.87 1.394 26.7

Table 4.1: Parameters of the linear fits to the β-relaxation measurements of
log(fmax(T )) of the form A+BT .

time logf∞ D T0 (K) time logf∞ D T0 (K)

Aβ1−42

0hr 20 20 88
Aβ42−1

0hr 20 20 89
8hr 20 21 87 8hr 20 19 90
24hr 20 20 90 24hr 20 21 86

solvent 20 21 88 solvent 20 21 88

Table 4.2: Parameters of the VFT fits to the α-relaxation measurements of fmax(T )
of the form log(fmax) = log(f∞(T ))− DT0

T−T0
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Figure 4.18: Arrhenius plots of fmax versus inverse temperature for Aβ1−42
over time. The α-relaxation process follows a VFT behavior whereas the β-
relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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departs from the VFT curvature at low temperature.
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Onsager described the enhancement of permanent dipoles by polarization of the

environment, or reaction field [150]. Here, the dielectric strength (∆ε) is related to

the dipole moment (µ) by:

∆ε =
1

3ε0
F

µ2

kBT

N

V
(4.2)

where N/V is the volume density of dipoles and F is a correction for the reaction

field. Kirkwood and Fröhlich further extended the theory for interacting dipoles by

introducing a factor, g with g<1 for anti-parallel dipoles and g>1 for parallel dipoles:

∆ε =
1

3ε0
Fg

µ2

kBT

N

V
(4.3)

From this equation, it is evident that the dielectric strength is proportional to the

dipole moment squared.

The macroscopic resulting dipole moment of a protein solution can present struc-

tural information about the aggregates. The α-helix and random coils will give a

significant contribution to the dipole moment [151, 130]. If β-sheets form, the dipole

moment should decrease for anti-parallel conformations and remain relatively strong

for parallel arrangements. Figure 4.20 shows that over time, Aβ1−42 first has an in-

crease, then decreases in the dielectric strength as fibril formation progresses, whereas

the non-amyloidogenic Aβ42−1 does not change over time. Studies using FTIR have

indicated that the structure of the Aβ1−42 displays an anti-parallel β-sheet [152, 153].

This is in agreement with our results showing a decrease in the dielectric strength,

and thus, the dipole moment as fibrils form. The initial increase in dipole moment

could be an indication of a high concentration of oligomers, which are known to form

circular micelles [154]. A circular form round present an alignment of dipoles that

would have additive dipole moments.
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Figure 4.20: Dielectric strength, ∆ε of the β-relaxation for Aβ1−42 and Aβ42−1
versus inverse temperature. The dielectric strength for the Aβ1−42 solution first
increases, then deceases to values less than the solvent. The dielectric strength of
Aβ42−1 continued to increase over time. The decrease in dielectric strength indicates
that the Aβ1−42 displays an anti-parallel β-sheet conformation.

4.3.2 Studies of Human and Rat Islet Amyloid Polypeptide

The dielectric spectra of human (hIAPP) and rat (rIAPP) islet amyloid polypep-

tide and the solvent show two relaxation processes (α and β) and low-frequency DC

conductivity below 228K, depicted in Figure 4.21. At temperatures above 228K,

the relaxation processes are at frequencies above the range of the Alpha-A Analyzer

and the conductivity dominates the spectra. The fast, α-relaxation process is clearly

observed at 228K at a frequency of approximately 107 Hz in both the real and imag-

inary parts of the permittivity. The slower β-relaxation process is easily observed at

approximately 104 Hz at 228K.

With decreasing temperature the peaks of the α- and β-relaxation processes shift

towards lower frequency. The α-process shifts faster than the β-process causing the

two processes to merge below 203K and eventually cross at approximately 193K as
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Figure 4.21: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, hIAPP, and rIAPP from 228K to
203K. Two relaxation processes for the real (ε′) and imaginary (ε′′) parts of the
permittivity for the solvent, hIAPP, and rIAPP are observed.

shown in Figure 4.22. The α-process continues to shift to very low frequencies

with decreasing temperature. At around 168K the α-process is out of our measured

range. After the crossing of the two processes, the β-relaxation process dominates

the dielectric spectra and shifts to approximately 10−2-100 Hz at 133K, depending

on the analyte (Figure 4.23). The DC conductivity has decreased in magnitude and

also shifted to low frequency below the measured range at temperatures under 158K.
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temperature. In the range of 198K to 188K the two processes cross to where the
α-relaxation is at lower frequency than the β-relaxation process at temperatures of
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Permittivity data for hIAPP and rIAPP were plotted against the solvent to com-

pare the time-evolution of dielectric signal. Data were collected after 0, 24, 48, and

120 hours of incubation at room temperature. The dielectric loss of hIAPP and rI-

APP as compared to the solvent over the observable temperature range 228K-133K

is shown in Figures 4.24 - 4.33.

The magnitude of the dielectric loss peaks of the rIAPP shifts over time towards

the signal of the solvent. Above the α-β relaxation crossing temperature of 193K

where the α-process dominates the spectra, the magnitude of rIAPP steadily increases

towards the solvent as seen in Figure 4.25. In the crossing region of 193K - 183K

where the processes occur at similar frequency, Figures 4.27 and 4.29 show that the

dielectric signal of rIAPP in both frequency and magnitude are nearly overlapping

with the solvent after 120 hours. At temperatures of 168K and below where the β-

process dominates the spectra, the magnitude and peak frequency of rIAPP continues

to move toward the signal of the solvent. Figures 4.31 - 4.33 show that the peak

frequency of the beta process of rIAPP increases over time for each temperature below

178K.

The magnitude of the dielectric loss peaks of the hIAPP follows a different trend

than the rIAPP. Above the α-β relaxation crossing temperature of 193K where the

α-process dominates the spectra, the magnitude of hIAPP starts near the solvent but

then steadily decreases as seen in Figure 4.24. In the crossing region of 193K - 183K

where the processes occur at similar frequency, Figures 4.26 and 4.28 show that the

dielectric signal of hIAPP in both frequency and magnitude are nearly overlapping

from 0-48 hours, but the permittivity at 120 hours is much less than that of the

solvent. Figures 4.30 - 4.32 that at 168K and below where the β-process dominates

the spectra, the magnitude of hIAPP increase over time as compared to the solvent.

Additionally, the peak frequency of the beta process of hIAPP decreases over time.
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Figure 4.24: Dielectric loss ε′′ as a function of frequency for hIAPP in the
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Figure 4.25: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 228K-213K and incubation periods of 0, 24, 48, and 120 hours. The
arrows show the trend of increasing conductivity over time. This was not observed
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Figure 4.26: Dielectric loss ε′′ as a function of frequency for hIAPP in the
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Figure 4.27: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 208K-193K and incubation periods of 0, 24, 48, and 120 hours.
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Figure 4.28: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 183K-168K and incubation periods of 0, 24, 48, and 120 hours.
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with the processes.
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Figure 4.29: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 188K-173K and incubation periods of 0, 24, 48, and 120 hours.
The α-process has shifted to a lower frequency than the β-process. The arrows show
the trend of increasing conductivity over time. This was not observed with hIAPP.
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Figure 4.30: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 168K-153K and incubation periods of 0, 24, 48, and 120 hours.
Only the β-process is observed at temperatures below 168K. The peaks of hIAPP
have increased in frequency by more than a decade as compared to the solvent. The
peaks have shifted to lower magnitude and frequency over time.
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Figure 4.31: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 168K-153K and incubation periods of 0, 24, 48, and 120 hours.
Only the β-process is observed at temperatures below 158K. The arrows show that
the conductivity increases and the β-process peaks shift to higher magnitude over
time. This opposite the behavior of hIAPP in the same temperature range. There is
no increase in frequency at t = 0hr, where hIAPP displayed a decade shift. The shift
in peak position at 168K and 163K may be due to conductivity.
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Figure 4.32: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 148K-133K and incubation periods of 0, 24, 48, and 120 hours.
The arrows depict that the β-process of hIAPP shifts to lower frequency and lower
magnitude over time.
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Figure 4.33: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 148K-133K and incubation periods of 0, 24, 48, and 120 hours.
The arrows depict that the β-process of rIAPP shifts to lower frequency and higher
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Dielectric permittivity data for hIAPP, rIAPP, and the solvent were modeled us-

ing the WinFIT program for each temperature from 223K to 133K and at incubation

time points 0, 24, 48, and 120 hours. The β-relaxation process was best fit to a

Cole-Davidson function with the β fit parameter remaining relatively constant over

the entire temperature range at approximately 0.8. The α-relaxation process demon-

strates both symmetric and asymmetric broadening over the observed temperature

range with both β and γ spreading parameters changing with temperature.

The α-relaxation process is observed from 223K to 168K, though in the crossing

temperatures of 198K to 183K, it overlaps with the β-process. During this tempera-

ture range, the β-relaxation process dominates. The β-relaxation process is observed

between approximately 208K down to the lowest temperature, 133K. At tempera-

tures above 208K, the DC conductivity dominates the spectra in the region of the

β-relaxation. Examples of curve fitting performed at representative temperatures are

shown in Figures 4.34 - 4.37.
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Figure 4.34: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 223K. A large,
low frequency DC conductivity is fit with a power law. The α-relaxation process at
around 107 Hz is fit with a Havriliak-Negami function and the β-relaxation function
is not observed. The RMSD of the fits are 0.015, 0.005, and 0.016, respectively.
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Figure 4.35: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 208K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process at
around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process at
around 105 Hz is fit with a Havriliak-Negami function. The RMSD of the fits are
0.027, 0.013, and 0.010, respectively.
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Figure 4.36: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 188K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process
at around 101 Hz is fit with a Havriliak-Negami function. Here, the α process has
crossed over to slower than β relaxation times. The RMSD of the fits are 0.012, 0.004,
and 0.043, respectively.
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Figure 4.37: Curve fitting of the imaginary part of the permittivity data
using the WinFIT program of the solvent, hIAPP, rIAPP at 133K. A small,
very low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 1 Hz is fit with a Cole-Davidson function and the α-relaxation process is
not observed. The RMSD of the fits are 0.169, 0.080, and 0.054, respectively.
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The maximum frequency, fmax of ε′′ of both the α- and β-relaxation processes

were determined from the model function curve fitting of the permittivity data at

all temperatures. Arrhenius plots of fmax versus inverse temperature, 1000/T were

created for each process. The β-relaxation process follows a linear, or Arrhenius

behavior throughout the temperature range. The α-relaxation process follows a slight

non-linear Vogel-Fulcher-Tammann (VFT)-type behavior that is expected in glass-

forming solvents such as glycerol (Figures 4.38 - 4.40). Activation energies for the

β process and glass-forming fragilities for the α process were determined from the

Arrhenius and VFT analysis and displayed in Tables 4.3 and 4.4. The activation

energies for hIAPP matches the value of 24.4 kJ/mol obtained by Knowles et al. from

measurements using the quartz crystal microbalance (QCM) method [155].
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Figure 4.38: Arrhenius plots of fmax versus inverse temperature for sol-
vent over time. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior.

The structure of hIAPP has been shown by FTIR and NMR to display both

parallel and anti-parallel β-sheets [156, 157]. Figure 4.41 shows that over time,

hIAPP displayed a series of increases and decreases in the dielectric strength as fibril
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Figure 4.39: Arrhenius plots of fmax versus inverse temperature for hIAPP
from 0-120 hours. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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Figure 4.40: Arrhenius plots of fmax versus inverse temperature for rIAPP
from 0-120 hours. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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EA EA
time A B (kJ/mol) time A B (kJ/mol)

hIAPP

0hr 9.25 1.269 24.3

rIAPP

0hr 10.62 1.541 29.5
24hr 9.09 1.229 23.5 24hr 11.3 1.658 31.7
48hr 9.29 1.273 24.4 48hr 11.4 1.696 32.4
120hr 9.28 1.266 24.2 120hr 11.3 1.680 32.2

solvent 11.2 1.646 31.5 solvent 11.2 1.646 31.5

Table 4.3: Parameters of the linear fits to the β-relaxation measurements of
log(fmax(T )) of the form A+BT .

time logf∞ D T0 (K) time logf∞ D T0 (K)

hIAPP

0hr 22 30 75

rIAPP

0hr 22 36 67
24hr 22 36 67 24hr 22 37 66
48hr 22 33 71 48hr 22 37 66
120hr 22 34 70 120hr 22 37 67

solvent 22 33 70 solvent 22 33 70

Table 4.4: Parameters of the VFT fits to the α-relaxation measurements of fmax(T )
of the form log(fmax) = log(f∞(T ))− DT0

T−T0

formation progresses, whereas the non-amyloidogenic rIAPP increased consistently

over time. The increase and decrease cycles for hIAPP may be due to a mixture of

both parallel and anti-parallel β-sheet conformations dominating at different phases

of the aggregation process. The continuing increase of dipole moment for random-coil

aggregation is an explanation for the increasing dielectric strength in rIAPP.
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Figure 4.41: Dielectric strength, ∆ε of the β-relaxation for hIAPP and rI-
APP versus inverse temperature. The dielectric strength for the hIAPP solution
first increases, then deceases to values less than the solvent. The dielectric strength
of rIAPP continued to increase over time. This indicates a mixed grouping of parallel
and anti-parallel β-sheets in hIAPP and random-coil aggregation in rIAPP.
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4.4 Conclusions

We have demonstrated the dielectric response of Aβ1−42, scrambled Aβ42−1, hIAPP,

and rIAPP in the presence of a deionized water-glycerol solvent. The spectra re-

veal that these amyloidogenic peptides in their in purified form can be detected and

differentiated from their non-amyloidogenic analogs using dielectric relaxation spec-

troscopy.

Studies at low temperature reveal that the β-process displays a decrease in the

dielectric loss, ε′′ for both amyloidogenic Aβ1−42 and hIAPP and an increase for

non-amyloidogenic Aβ42−1 and rIAPP. This may point to an increase in fraction of

structured water over time associated with the amyloidogenic peptides during β-

sheet formation. The trend observed in the non-amyloidogenic peptides reflects that

a random aggregation lacks the large fraction of structured water that is contained

in a organized β-sheet.

It is notable that the scrambled Aβ42−1 increased in ε′′ beyond the solvent. This

may be a result of the dissociated ions from the NH4OH solution contributing to the

overall dielectric strength. This would probably also be the case with Aβ1−42, which

may be the cause of such a small shift in ε′′ compared to the other peptides. This

may also be the reason why there is only a small frequency shift with Aβ1−42 where

the shift in hIAPP is quite large (2 decades) as compared to the solvent and rIAPP.

To demonstrate agreement with the measurement method and the fitting func-

tions, data analyses of pure glycerol and 50% by weight glycerol-water are presented

in Figure 4.43 in comparison with results from the literature. The α-relaxation times

of pure glycerol is in agreement with data from Sudo et al. [158] and Kremer [63].

Relaxation times of both α- and β-relaxations for glycerol-water mixtures of 45%

(Jansson) [142] and 47% (Hayashi) [78] are in close agreement with our data for 50%

glycerol.
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Figure 4.42: Plots of the β-relaxation peak shift at 143K for Aβ1−42/Aβ42−1 and
hIAPP/rIAPP as compared to the solvent.
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[63, 158, 142, 78]. The glycerol-water mixtures display both α- and β-relaxation
processes. Only the α process appears in pure glycerol.
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In Table 4.5, we present activation energies from a selection of small, aggregating

peptides in solution. These include silk fibroin [130], Aβ1−40 [149], chymotrypsin

inhibitor 2 (CI2) [149, 159], phage λ repressor [149, 160, 161], SH3 domain of spectrin

[149, 162, 163], the C-terminal fragment(4156) from protein GB1 [149, 164], and

insulin [155]. Interestingly, the activation energies for these peptides are within the

same order of magnitude, yet each have a distinctive value.

peptide EA (kJ/mol) structure

silk fibroin 27 α,β
Aβ1−40 23 β
CI2 31.2 α,β
λ repressor 16.1 α
SH3 9.5 β
GB1 11.6 β-hairpin
insulin 24.4 β

Table 4.5: Activation energies for various small, aggregating peptides

Studies of the dielectric strength over a range of temperatures and incubation

times show that determination of β-sheet conformation by dielectric spectroscopy is

in agreement with previous studies done using FTIR and solid state NMR. The Aβ1−42

displayed anti-parallel characteristics and the hIAPP displayed both parallel and anti-

parallel signatures. The non-amyloidogenic peptides produced dipole moments that

would be consistent with random coil or non-aggregating proteins.

The use of deionized water as a buffer is informative in that the amount of interfer-

ing substances is kept at a minimum. However, deionized water is not representative

of native fluids that harbor amyloidogenic peptides. A continuation of this work in

bovine serum albumin (BSA) will aid in simulation of more in vivo-like conditions.

This also may provide a more favorable environment for aggregation and bring the

analysis closer to realistic, diagnostic conditions. Additionally, exclusion of NH4OH

in the study of Aβ1−42 and scrambled Aβ42−1 should be explored.
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Chapter 5

Dielectric Studies of

Amyloidogenic Peptides in BSA

Buffer at Low Temperature

5.1 Overview

In the previous chapter we demonstrated that amyloidogenic peptides Aβ1−42 and

hIAPP have differentiating dielectric response than that of their non-amyloidogenic

analogs in the presence of deionized water-glycerol buffer. Amyloidogenic peptides

in vivo are naturally found suspended in biological fluids, such as serum. Complex

biologic fluids, such as serum contain a number of substances including proteins,

electrolytes, hormones, and antibodies that will each have their own interaction with

a dielectric signal.

In this chapter, dielectric spectroscopy data and analysis is presented for the same

two amyloidogenic peptides and their non-amyloidogenic analogs in a bovine serum

albumin (BSA) buffer. BSA was chosen as a buffer to demonstrate dielectric mea-

surements in the presence of heterogenous fluid that simulates in vivo-like conditions.
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Measurements were performed from room temperature down to cryogenic tempera-

ture in order to study relaxation kinetics. Trends of dielectric spectra as a function

of incubation time and temperature are explored within.

5.2 Sample Preparation and Data Collection

Lyophilized peptides were obtained from AnaSpec, Inc in quantities of 0.5 mg and

1.0 mg. The vials were stored at approximately -20◦C until the time of reconstitu-

tion. Bovine serum albumin (BSA) from Sigma was used to dilute and rehydrate the

peptides to a concentration of approximately 100µM. The samples were then mixed

by repeated inversion of the vials and set to incubate for 0, 8, 24, 48, or 120 hours

at room temperature in a 2mL sterile microconical tube. A separate sample was

prepared for each time point. Glycerol, 99% minimum from Sigma was then added

to a final concentration of 50µM peptide in 50%-50% by weight BSA-glycerol solvent.

The samples were again mixed by repeated inversion of the vials. Each sample was

then placed in the Novocontrol BDS 1307 stainless steel sample cell.

Data were collected using the Novocontrol Alpha-A Analyzer and Quatro Cryosys-

tem in gain phase measurement mode with an AC probing voltage of 1.000 VRMS. A

liquid nitrogen cryostat was used to control temperature from 283K down to 133K

at 5K intervals. We selected 60 data points in a frequency range from 2.00 × 107 −

4.78×10−2 Hz, spaced evenly in a logarithmic scale. Data for each temperature point

was collected in duplicate to ensure temperature stabilization and mitigate thermal

hysteresis. The second, temperature stabilized duplicates were used for analysis.
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5.3 Results and Discussions

5.3.1 Studies of Aβ1−42 and Scrambled Aβ42−1

The dielectric spectra of Aβ1−42, scrambled Aβ42−1, and the solvent shows two relax-

ation processes (α and β) and low-frequency DC conductivity below 223K, depicted

in Figure 5.1. At temperatures above 223K, the relaxation processes are either at

frequencies above the range of the Alpha-A Analyzer or the conductivity dominates

the spectra. The fast, α-relaxation process is clearly observed at 223K at a frequency

of approximately 107 Hz in both the real and imaginary parts of the permittivity.

The slower β-relaxation process is not easily observed until about 208K or 203K in

the imaginary part of the permittivity but can be seen in the real part at 223K. At

203K, we determine that the β-relaxation occurs at 103 Hz and we estimate that it

occurs at approximately 104 Hz at 223K.

With decreasing temperature the peaks of the α- and β-relaxation processes shift

towards lower frequency. The α-process shifts faster than the β-process causing the

two processes to merge below 203K and eventually cross at approximately 193K as

shown in Figure 5.2. The α-process continues to shift to very low frequencies with

decreasing temperature. At around 168K the α-process shifts to frequencies higher

than our measured range. After the crossing of the two processes, the β-relaxation

process dominates the dielectric spectra and shifts to approximately 1 Hz at 133K

(Figure 5.3). Below 158K, the DC conductivity has decreased in magnitude and also

shifted to frequency below the measured range.
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Figure 5.1: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, Aβ1−42, and Aβ42−1 from 223K to
198K. Two relaxation processes for the real (ε′) and imaginary (ε′′) parts of the
permittivity for the solvent, Aβ1−42, and scrambled Aβ42−1 are observed.
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Figure 5.2: Temperature evolution of the real and imaginary parts of the di-
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The α-relaxation process rapidly shifts to lower frequency with decreasing tempera-
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slow to under 1 Hz. The DC conductivity has reduced in magnitude to outside the
measured range below 158K.
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Permittivity data for Aβ1−42 and scrambled Aβ42−1 were plotted against the sol-

vent to compare the time-evolution of dielectric signal. Data were collected after 0,

8, and 24 hours of incubation at room temperature. The dielectric loss of Aβ1−42 and

Aβ42−1 as compared to the solvent over the observable temperature range 223K-133K

is shown in Figures 5.4 - 5.13.

Above the α-β relaxation crossing temperature of 193K where the α-process dom-

inates the spectra, the magnitude of the dielectric loss peaks of Aβ42−1 decreases over

time and is less than the solvent, as seen in Figure 5.5. In the crossing region of 193K

- 183K where the processes occur at similar frequency, Figures 5.7 and 5.9 show

that the trend continues with steady decreasing of the peak magnitude over time.

At temperatures of 168K and below where the β-process dominates the spectra, the

magnitude of Aβ42−1 starts above the solvent, then continues to decrease to a point

less than that of the solvent after 24 hours, as shown in Figures 5.9 - 5.13. The

peak frequency of the β-process has a slight increase over time towards the solvent in

temperatures less than 168K.

The magnitude of the dielectric loss peaks of the Aβ1−42 follows a different trend

than the Aβ42−1. Above the α-β relaxation crossing temperature of 193K where the

α-process dominates the spectra, the magnitude of Aβ1−42 starts near the solvent

from 0-8 hours but then jumps below that of the solvent at 24 hours as seen in Figure

5.4. In the crossing region of 193K - 183K where the processes occur at similar

frequency, Figures 5.6 and 5.8 show that the dielectric signal of Aβ1−42 is slightly

higher in magnitude from 0-8 hours, but again at 24 hours it is much less than that

of the solvent. At temperatures of 168K and below where the β-process dominates

the spectra, the magnitude of Aβ1−42 decreases over time as compared to the solvent

as shown in Figures 5.8 - 5.12. Additionally, the peak frequency of the beta process

of Aβ1−42 slightly increases towards the solvent over time.
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Figure 5.4: Dielectric loss ε′′ as a function of frequency for Aβ1−42 in the
range of 223K-208K and incubation periods of 0, 8, and 24 hours. At
temperatures above 208K, the β-relaxation process is masked by the conductivity, σ.
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Figure 5.6: Dielectric loss ε′′ as a function of frequency for Aβ1−42 in the
range of 203K-188K and incubation periods of 0, 8, and 24 hours. At 193K,
the α-process occurs at near the same frequency as the β-process but with lower
magnitude. The arrows show a shift in magnitude of ε′′ across the spectra due to the
conductivity, σ.
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Figure 5.7: Dielectric loss ε′′ as a function of frequency for scrambled Aβ42−1
in the range of 203K-188K and incubation periods of 0, 8, and 24 hours.
At 193K, the α-process occurs at near the same frequency as the β-process but with
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Figure 5.8: Dielectric loss ε′′ as a function of frequency for Aβ1−42 in the
range of 183K-168K and incubation periods of 0, 8, and 24 hours. In the
range of 183K-168K, there is significant mixing between σ, α-, and β-processes.
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Figure 5.10: Dielectric loss ε′′ as a function of frequency for Aβ1−42 in the
range of 163K-148K and incubation periods of 0, 8, and 24 hours. At 158K,
the conductivity, σ and the α-process are substantially separated from the β process.
At 158K and below, the β-relaxation peak in ε′′ trends to lower magnitude and lower
frequency over time.
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Figure 5.11: Dielectric loss ε′′ as a function of frequency for scrambled Aβ42−1
in the range of 163K-148K and incubation periods of 0, 8, and 24 hours.
At 163K, the conductivity, σ and the α-process are substantially separated from the
β process. At 158K and below, the β-relaxation peak in ε′′ trends to lower magnitude
but unlike Aβ1−42, the peak shifts towards higher frequency over time.
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Figure 5.12: Dielectric loss ε′′ as a function of frequency for Aβ1−42 in the
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β-relaxation peak in ε′′ trends to lower magnitude and lower frequency over time.
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Dielectric permittivity data for Aβ1−42, scrambled Aβ42−1, and the solvent were

modeled using the WinFIT program for each temperature from 223K to 133K and at

incubation time points 0, 8, and 24 hours. The β-relaxation process was best-fit us-

ing a Cole-Davidson function with the broadening parameter, β remaining relatively

constant over the entire temperature range at approximately 0.8. The α-relaxation

process demonstrates both symmetric and asymmetric broadening over the observed

temperature range with both β and γ spreading parameters changing with tempera-

ture.

The α-relaxation process is observed from 223K to 168K, though in the crossing

temperatures of 198K to 183K, it overlaps with the β-process. During this tempera-

ture range, the β-relaxation process dominates. The β-relaxation process is observed

between approximately 208K down to the lowest temperature, 133K. At tempera-

tures above 208K, the DC conductivity dominates the spectra in the region of the

β-relaxation. Examples of curve fitting performed at representative temperatures are

shown in Figures 5.14 - 5.17. Figure 5.17 shows a clear β-relaxation process with

a high-frequency excess wing for very low temperatures.
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Figure 5.14: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 223K. A large,
low frequency DC conductivity is fit with a power law. The α-relaxation process at
around 107 Hz is fit with a Havriliak-Negami function. The β-relaxation function is
not observed. The root-mean-square deviation (RMSD) of the fits are 0.015, 0.030,
and 0.088, respectively.
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Figure 5.15: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 208K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process at
around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process at
around 105 Hz is fit with a Havriliak-Negami function. The RMSD of the fits are
0.018, 0.005, and 0.012, respectively.
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Figure 5.16: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 188K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process
at around 101 Hz is fit with a Havriliak-Negami function. Here, the α process has
crossed over to slower than β relaxation times. The RMSD of the fits are 0.001, 0.019,
and 0.017, respectively.
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Figure 5.17: Curve fitting of the imaginary part of the permittivity data
using the WinFIT program of the solvent, Aβ1−42, and Aβ42−1 at 133K. A
small, very low frequency DC conductivity is fit with a power law. The β-relaxation
process at around 1 Hz is fit with a Cole-Davidson function and the α-relaxation
process is not observed. The RMSD of the fits are 0.073, 0.042, and 0.006, respectively.
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The maximum frequency, fmax of ε′′ of both the α- and β-relaxation processes

were determined from the model function curve fitting of the permittivity data at

all temperatures. Arrhenius plots of fmax versus inverse temperature, 1000/T were

created for each process. The β-relaxation process follows a linear, or Arrhenius

behavior throughout the temperature range. The α-relaxation process follows a slight

non-linear Vogel-Fulcher-Tammann (VFT)-type behavior that is expected in glass-

forming solvents such as glycerol (Figures 5.18 and 5.19). Activation energies for

the β process and glass-forming fragilities for the α process were determined from the

Arrhenius and VFT analysis and presented in Tables 5.1 and 5.2.

EA EA
time A B (kJ/mol) time A B (kJ/mol)

Aβ1−42

0hr 9.13 1.250 23.9
Aβ42−1

0hr 9.95 1.392 26.6
8hr 9.53 1.311 25.1 8hr 9.76 1.367 26.1
24hr 9.59 1.321 25.3 24hr 9.91 1.380 26.4

solvent 9.18 1.245 23.8 solvent 9.18 1.245 23.8

Table 5.1: Parameters of the linear fits to the β-relaxation measurements of
log(fmax(T )) of the form A+BT .

time logf∞ D T0 (K) time logf∞ D T0 (K)

Aβ1−42

0hr 22 35 68
Aβ42−1

0hr 22 30 74
8hr 22 30 75 8hr 22 29 77
24hr 22 25 83 24hr 22 27 80

solvent 22 31 74 solvent 22 31 74

Table 5.2: Parameters of the VFT fits to the α-relaxation measurements of fmax(T )
of the form log(fmax) = log(f∞(T ))− DT0

T−T0
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Figure 5.18: Arrhenius plots of fmax versus inverse temperature for Aβ1−42
over time. The α-relaxation process follows a VFT behavior whereas the β-
relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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The α-relaxation process for Aβ1−42, scrambled Aβ42−1, and the solvent display

VFT behavior down to 183K. Below 183K, the curvature of the VFT changes where

the temperature dependence of fmax would be better approximated by another VFT

or different empirical fit function. Studies have shown that two or more temperature-

dependent fit functions may be necessary to describe the behavior of the α-relaxation

of glass formers such as glycerol [63, 165]. The departure of the VFT behavior oc-

curs at approximately the glass transition of glycerol, indicating that the change in

temperature dependance may be due to the phase change. Whereas the α-relaxation

process is representative of large scale structural fluctuations in the solvent, it is

conceivable that a phase transition could change the temperature dependance of the

relaxation rate.
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Studies of the dielectric strength of Aβ1−42 and Aβ42−1 in serum confirm the stud-

ies done in deionized water. Figure 5.20 shows that over time, Aβ1−42 decreased in

the dielectric strength as fibril formation progressed. The non-amyloidogenic Aβ42−1

did not change over time. Unlike the deionized water buffer, the Aβ1−42 did not

show any increase in dielctric strength after 8 hours of incubation. Walton et al.

showed using immunochemistry that 50µM Aβ1−42 in a BSA buffer possesses signifi-

cant concentrations of oligomers and fibrils after just 3 hours of incubation at room

temperature [111]. The serum, which is closer to in vivo biological conditions, may

be causing a more rapid aggregation of the Aβ1−42. A study to look for intermediary

dielectric strength increases for shorter incubation times, such as 1, 2, or 4 hours may

help confirm this.
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Figure 5.20: Dielectric strength, ∆ε of the β-relaxation for Aβ1−42 and Aβ42−1
versus inverse temperature. The dielectric strength for the Aβ1−42 solution de-
ceases to values less than the solvent over time. The decrease in dielectric strength
indicates an anti-parallel β-sheet confirmation. The dielectric strength of Aβ42−1 does
not change and remains similar to the profile of the solvent.
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5.3.2 Human and Rat Islet Amyloid Polypeptide

The dielectric spectra of human (hIAPP) and rat (rIAPP) islet amyloid polypeptide

and the solvent show two relaxation processes (α and β) and low-frequency DC con-

ductivity below 223K, depicted in Figure 5.21. At temperatures above 223K, the

relaxation processes are either at frequencies above the range of the Alpha-A An-

alyzer or the conductivity dominates the spectra. The fast, α-relaxation process is

clearly observed at 223K at a frequency of approximately 107 Hz in both the real

and imaginary parts of the permittivity. The slower β-relaxation process is not easily

observed until about 208K or 203K in the imaginary part of the permittivity but can

be seen in the real part at 223K. At 203K, we determine that the β-relaxation occurs

at 103 Hz and we estimate that it occurs at approximately 104 Hz at 223K.

With decreasing temperature the peaks of the α- and β-relaxation processes shift

towards lower frequency. The α-process shifts faster than the β-process causing the

two processes to merge below 203K and eventually cross at approximately 193K as

shown in Figure 5.22. The α-process continues to shift to very low frequencies with

decreasing temperature. At around 168K the α-process shifts to frequencies higher

than our measured range. After the crossing of the two processes, the β-relaxation

process dominates the dielectric spectra and shifts to approximately 1 Hz at 133K

(Figure 5.23). Below 158K, the DC conductivity has decreased in magnitude and

also shifted to frequency below the measured range.
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Figure 5.21: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, hIAPP, and rIAPP from 223K to
198K. Two relaxation processes for the real (ε′) and imaginary (ε′′) parts of the
permittivity for the solvent, hIAPP, and rIAPP are observed.
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Figure 5.22: Temperature evolution of the real and imaginary parts of the
dielectric permittivity for the solvent, hIAPP, and rIAPP from 193K to
168K. The α-relaxation process rapidly shifts to lower frequency with decreasing
temperature. In the range of 193K to 188K the two processes cross to where the
α-relaxation is at lower frequency than the β-relaxation process at temperatures of
183K and below.
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Permittivity data for hIAPP and rIAPP were plotted against the solvent to com-

pare the time-evolution of dielectric signal. Data were collected after 0, 24, 48, and

120 hours of incubation at room temperature. The dielectric loss of hIAPP and rI-

APP as compared to the solvent over the observable temperature range 223K-133K

is shown in Figures 5.24 - 5.33.

The magnitude dielectric loss peaks of the rIAPP shifts over time towards the

signal of the solvent. Above the α-β relaxation crossing temperature of 193K where

the α-process dominates the spectra, the magnitude of the dielectric loss of rIAPP

steadily increases towards the solvent as seen in Figure 5.25. In the crossing region

of 193K - 183K where the processes occur at similar frequency, Figures 5.27 and

5.29 show that the dielectric signal of rIAPP in both frequency and magnitude are

nearly overlapping with the solvent after 120 hours. At temperatures of 168K and

below where the β-process dominates the spectra, the magnitude and peak frequency

of rIAPP continues to move toward the signal of the solvent. Figures 5.29 - 5.33

show that the peak frequency of the beta process of rIAPP increases over time for

each temperature below 178K.

The magnitude of the dielectric loss peaks of the hIAPP follows a different trend

than the rIAPP. Above the α-β relaxation crossing temperature of 193K where the

α-process dominates the spectra, the magnitude of hIAPP starts near the solvent but

then steadily decreases as seen in Figure 5.24. In the crossing region of 193K - 183K

where the processes occur at similar frequency, Figures 5.26 and 5.28 show that the

dielectric signal of hIAPP in both frequency and magnitude are nearly overlapping

from 0-48 hours, but the permittivity at 120 hours is much less than that of the

solvent. At temperatures of 168K and below where the β-process dominates the

spectra, the magnitude of hIAPP increase over time as compared to the solvent as

shown in Figures 5.28 - 5.32. Additionally, the peak frequency of the beta process

of hIAPP decreases over time.
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Figure 5.24: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 223K-208K and incubation periods of 0, 24, 48, and 120 hours.
At temperatures above 208K, the β-relaxation process is masked by the conductivity,
σ. The arrows depict a decrease in magnitude of ε′′, due to the decrease in σ over
time. The α-relaxation peak shows a shift at 223K and 218K at 0 hours, but does
not appear to follow a trend.
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Figure 5.25: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 223K-208K and incubation periods of 0, 24, 48, and 120 hours.
At temperatures above 208K, the β-relaxation process is masked by the conductivity,
σ. The arrows depict an apparent shift in the α-relaxation process first to lower mag-
nitude and frequency, then higher magnitude and frequency. This differs in behavior
to hIAPP in the same temperature range.
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Figure 5.26: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 203K-188K and incubation periods of 0, 24, 48, and 120 hours.
At 193K, the α-process occurs at near the same frequency as the β-process but with
lower magnitude. The arrows depict trends of the conductivity, σ to lower magnitude
at 203K and 198K, however trends in the permittivity at 193K and 188K appear to
be due to relaxation processes.
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Figure 5.27: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 203K-188K and incubation periods of 0, 24, 48, and 120 hours.
At 193K, the α-process occurs at near the same frequency as the β-process but with
lower magnitude. At 193K and 188K, there are some shifts in the the conductivity,
σ, but it does not appear to follow a trend over time.
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Figure 5.28: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 183K-168K and incubation periods of 0, 24, 48, and 120 hours. In
the range of 183K-168K, there is significant mixing between σ, α-, and β-processes.
Trends in this range are indeterminate.
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Figure 5.29: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 183K-168K and incubation periods of 0, 24, 48, and 120 hours. In
the range of 183K-168K, there is significant mixing between σ, α-, and β-processes.
Trends in this range are indeterminate.
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Figure 5.30: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 163K-148K and incubation periods of 0, 24, 48, and 120 hours. At
158K, the conductivity, σ and the α-process are substantially separated from the β
process. At 158K and below, the β-relaxation peak in ε′′ trends to higher magnitude
and lower frequency over time.
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Figure 5.31: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 163K-148K and incubation periods of 0, 24, 48, and 120 hours.
At 158K, the conductivity, σ and the α-process are substantially separated from the
β process. At 158K and below, the β-relaxation peak first shifts to lower frequency
and higher magnitude, then shifts to higher frequency and lower magnitude towards
the spectra of the solvent. This differs in behavior from that of hIAPP in the same
temperature range.
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Figure 5.32: Dielectric loss ε′′ as a function of frequency for hIAPP in the
range of 143K-133K and incubation periods of 0, 24, 48, and 120 hours.
The β-relaxation peak in ε′′ trends to higher magnitude and lower frequency over
time.
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Figure 5.33: Dielectric loss ε′′ as a function of frequency for rIAPP in the
range of 143K-133K and incubation periods of 0, 24, 48, and 120 hours.
The β-relaxation peak first shifts to lower frequency and higher magnitude, then shifts
to higher frequency and lower magnitude towards the spectra of the solvent. This
differs in behavior from that of hIAPP in the same temperature range.
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Dielectric permittivity data for hIAPP, rIAPP, and the solvent were modeled us-

ing the WinFIT program for each temperature from 223K to 133K and at incubation

time points 0, 24, 48, and 120 hours. The β-relaxation process is best-fit to a Cole-

Davidson with the symmetric broadening parameter, β remaining relatively constant

over the entire temperature range at approximately 0.8. The α-relaxation process

demonstrates both symmetric and asymmetric broadening over the observed temper-

ature range with both β and γ spreading parameters changing with temperature.

The α-relaxation process is observed from 223K to 168K, though in the crossing

temperatures of 198K to 183K, it overlaps with the β-process. During this tempera-

ture range, the β-relaxation process dominates. The β-relaxation process is observed

between approximately 208K down to the lowest temperature, 133K. At tempera-

tures above 208K, the DC conductivity dominates the spectra in the region of the

β-relaxation. Examples of curve fitting performed at representative temperatures are

shown in Figures 5.34 - 5.37.
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Figure 5.34: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 223K. A large,
low frequency DC conductivity is fit with a power law. The α-relaxation process at
around 107 Hz is fit with a Havriliak-Negami function. The β-relaxation function is
not observed. The RMSD of the fits are 0.015, 0.016, and 0.034, respectively.
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Figure 5.35: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 208K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process at
around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process at
around 105 Hz is fit with a Havriliak-Negami function. The RMSD of the fits are
0.018, 0.007, and 0.020, respectively.
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Figure 5.36: Curve fitting of imaginary part of the permittivity data using
the WinFIT program of the solvent, hIAPP, and rIAPP at 188K. A large,
low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 103 Hz is fit with a Cole-Davidson function and the α-relaxation process
at around 101 Hz is fit with a Havriliak-Negami function. Here, the α process has
crossed over to slower than β relaxation times. The RMSD of the fits are 0.001, 0.006,
and 0.008, respectively.
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Figure 5.37: Curve fitting of the imaginary part of the permittivity data
using the WinFIT program of the solvent, hIAPP, rIAPP at 133K. A small,
very low frequency DC conductivity is fit with a power law. The β-relaxation process
at around 1 Hz is fit with a Cole-Davidson function and the α-relaxation process is
not observed. The RMSD of the fits are 0.073, 0.090, and 0.035, respectively.
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The maximum frequency, fmax of ε′′ of both the α- and β-relaxation processes

were determined from the model function curve fitting of the permittivity data at

all temperatures. Arrhenius plots of fmax versus inverse temperature, 1000/T were

created for each process. The β-relaxation process follows a linear, or Arrhenius

behavior throughout the temperature range. The α-relaxation process follows a slight

non-linear Vogel-Fulcher-Tammann (VFT)-type behavior that is expected in glass-

forming solvents such as glycerol (Figures 5.38 - 5.40). Activation energies for the

β process and glass-forming fragilities for the α process were determined from the

Arrhenius and VFT analysis and presented in Tables 5.3 and 5.4.
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Figure 5.38: Arrhenius plots of fmax versus inverse temperature for sol-
vent over time. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior.
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Figure 5.39: Arrhenius plots of fmax versus inverse temperature for hIAPP
from 0-120 hours. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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Figure 5.40: Arrhenius plots of fmax versus inverse temperature for rIAPP
from 0-120 hours. The α-relaxation process follows a VFT behavior whereas the
β-relaxation process follows an Arrhenius, or linear behavior. The α-process departs
from the VFT curvature at low temperature.
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EA EA
time A B (kJ/mol) time A B (kJ/mol)

hIAPP

0hr 9.02 1.216 23.3

rIAPP

0hr 10.0 1.412 27.0
24hr 9.44 1.289 24.7 24hr 10.6 1.540 29.5
48hr 9.10 1.237 23.7 48hr 10.5 1.494 28.6
120hr 9.97 1.373 26.3 120hr 9.70 1.338 25.6

solvent 9.18 1.245 23.8 solvent 9.18 1.245 23.8

Table 5.3: Parameters of the linear fits to the β-relaxation measurements of
log(fmax(T )) of the form A+BT .

time logf∞ D T0 (K) time logf∞ D T0 (K)

hIAPP

0hr 22 32 72

rIAPP

0hr 22 40 63
24hr 22 32 73 24hr 22 44 59
48hr 22 33 71 48hr 22 36 67
120hr 22 40 62 120hr 22 35 69

solvent 22 31 74 solvent 22 31 74

Table 5.4: Parameters of the VFT fits to the α-relaxation measurements of fmax(T )
of the form log(fmax) = log(f∞(T ))− DT0

T−T0
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The α-relaxation process for hIAPP, rIAPP, and the solvent display VFT behavior

down to 183K. Below 183K, the curvature of the VFT changes where the tempera-

ture dependance of fmax would be better approximated by another VFT or different

empirical fit function. Studies have shown that two or more temperature-dependent

fit functions may be necessary to describe the behavior of the α-relaxation of glass

formers such as glycerol [63, 165]. The departure of the VFT behavior occurs at

approximately the glass transition of glycerol, indicating that the change in tempera-

ture dependance may be due to the phase change. Whereas the α-relaxation process

is representative of large scale structural fluctuations in the solvent, it is conceivable

that a phase transition could change the temperature dependance of the relaxation

rate.

Studies of the dielectric strength of hIAPP and rIAPP in serum confirm the stud-

ies done in deionized water. Figure 5.41 shows that over time, hIAPP displayed

a series of increases and decreases in the dielectric strength as fibril formation pro-

gresses, with a final dielectric strength much less than the solvent at 120 hours. The

non-amyloidogenic rIAPP did not change over time. The increase and decrease cy-

cles for hIAPP may be due to a mixture of both parallel and anti-parallel β-sheet

conformations dominating at different phases of the aggregation process, but here we

see a final state that would appear to be anti-parallel in nature.
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Figure 5.41: Dielectric strength, ∆ε of the β-relaxation for hIAPP and rI-
APP versus inverse temperature. The dielectric strength for the hIAPP solution
remains relatively constant for the first 48 hours, then deceases to values less than the
solvent after 120 hours of incubation. This may be an indication that the final ag-
gregated state of hIAPP in serum is an anti-parallel β-sheet. The dielectric strength
of rIAPP was similar to the solvent for all time points. This is a similar ∆ε behavior
of Aβ1−42 and Aβ42− 1 observed for the same solvent.
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5.4 Conclusions

We have demonstrated the dielectric response of Aβ1−42, scrambled Aβ42−1, hIAPP,

and rIAPP in the presence of a BSA-glycerol solvent. The spectra reveal that

these amyloidogenic peptides can be detected and differentiated from their non-

amyloidogenic analogs in the presence of other proteins and biological substances,

similar to in vivo conditions. This is a crucial step in demonstrating the viability of

using dielectric relaxation spectroscopy as a tool for detecting amyloidogenic peptides

in biological fluids, such as blood serum.

Studies at low temperature reveal that the β-process displays a characteristic

”red-shift” in the permittivity in both Aβ1−42 and hIAPP that is not observed in

Aβ42−1 and rIAPP (see Figure 5.42). Theory predicts that this red-shift occurs due

to a hinderance of the rotational motion of molecular dipoles in structured, biological

water [64, 166]. This restructuring of the hydrogen bond network as a result of

hydrophobic interactions causes a reduction in the hydrogen bond exchange. We also

observed the red-shift in the hIAPP measurements in deionized water (see Figure

4.42) but not previously in Aβ1−42.

Studies of the dielectric strength over a range of temperatures and incubation

times show that determination of β-sheet conformation by dielectric spectroscopy is

in agreement with previous studies done using FTIR and solid state NMR. The Aβ1−42

displayed anti-parallel characteristics and the hIAPP displayed both parallel and anti-

parallel signatures. The non-amyloidogenic peptides produced dipole moments that

would be consistent with random coil or non-aggregating proteins.

The change in dielectric strength of the peptides in serum is a further extension

to the information presented in deionized water buffer. Both Aβ1−42 and hIAPP

displayed a decrease in the dielectric strength from start to final time points. The

Aβ1−42 displayed a larger decrease and in shorter time, indicating that Aβ1−42 may

form oligomers and fibrils faster than hIAPP. The lack of changing dielectric strength
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Figure 5.42: Plots of the β-relaxation peak shift at 143K for Aβ1−42/Aβ42−1
and hIAPP/rIAPP as compared to the solvent. The amyloidogenic peptides
demonstrate a characteristic ”red- shift” towards tower frequencies, indicating an
increase in structured water.

for both non-amyloidogenic peptides Aβ42−1 and rIAPP was expected for a random

aggregation of protein lacking a β-sheet.
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Chapter 6

Conclusion

6.1 General Conclusions

At present, there is no unequivocal method for the early detection for amyloid-related

diseases such as Alzheimer’s and Type II Diabetes. Although it was long believed that

amyloidogenic diseases were caused by highly organized fibrillar aggregates, recent

theory and experiment has shown that the soluble oligomer forms of these peptides

are the most toxic form. Amyloid oligomers circulate freely through bodily fluids

[18, 17, 16] and thus, detection of soluble amyloid aggregates might represent the best

strategy for early detection. Although there have been several attempts to develop

diagnostic methods based on the detection of amyloidogenic oligomers, there is an

absence of a widely-accepted and deterministic approach.

The work presented in this thesis has focussed on the studies of amyloidogenic

peptides using dielectric relaxation spectroscopy (DRS). Dielectric measurements per-

formed over a broadband of frequencies (10−2-107), temperature ranges from 133K-

300K, and incubation times up to 7 days has revealed patterns that may be used to

classify these peptides in various media.
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Amyloidogenic peptides amyloid beta (Aβ1−42) and human islet amyloid polypep-

tide (hIAPP) were used as analytes in these studies, with their non-amyloidogenic

analogs, scrambled Aβ42−1 and rat islet amyloid polypeptide (rIAPP) as controls.

These amyloidogenic peptides are known to aggregate into well-ordered fibrillar struc-

tures, namely the β-sheet conformation. Our hypothesis is that structural changes

during the fibrillization process causes a re-ordering of water molecules due to the

hydrophobicity of exposed amino acids. This re-ordering of water can be observed in

the protein-solvent relaxations using DRS.

Studies of the peptides at room temperature revealed that there is a large contribu-

tion to the conductivity and space-charge polarization due to the heterogeneity of the

peptide-solvent mixture. The dielectric modulus formalism was used to reveal changes

in the conductivity relaxation peaks between amyloidogenic and non-amyloidogenic

peptides over time.

The dielectric response of the peptides in a deionized water-glycerol solvent re-

vealed that amyloidogenic peptides in their in purified (non-in vivo-like) form can

be detected and differentiated from their non-amyloidogenic analogs. Studies at low

temperature revealed that the β-process displayed a decrease in the dielectric loss,

ε′′ for both amyloidogenic Aβ1−42 and hIAPP and an increase for non-amyloidogenic

Aβ42−1 and rIAPP. This may point to an increase in fraction of structured water over

time associated with the amyloidogenic peptides during β-sheet formation. The trend

observed in the non-amyloidogenic peptides reflects that a random aggregation lacks

the large fraction of structured water that is contained in a organized β-sheet.

The dielectric response of the peptides in the presence of a BSA-glycerol solvent

revealed that these amyloidogenic peptides can be detected and differentiated from

their non-amyloidogenic analogs in the presence of other proteins and biological sub-

stances, similar to in vivo conditions. This is a crucial step in demonstrating the

viability of using dielectric relaxation spectroscopy as a tool for detecting amyloido-
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genic peptides in biological fluids, such as blood serum. Studies at low temperature

revealed that the β-process displays a characteristic ”red-shift” in the permittivity in

both Aβ1−42 and hIAPP that is not observed in Aβ42−1 and rIAPP (see Figure 5.42).

Theory predicts that this red-shift occurs due to a hinderance of the rotational mo-

tion of molecular dipoles in structured, biological water [64, 166]. This restructuring

of the hydrogen bond network as a result of hydrophobic interactions causes a reduc-

tion in the hydrogen bond exchange. We also observed the red-shift in the hIAPP

measurements in deionized water (see Figure 4.42) but not previously in Aβ1−42.

Analysis of the dielectric strength showed that the macroscopic dipole moment of

the amyloidogenic protein-solvent solutions changed over time in a different manner

than the non-amyloidogenic peptides. The decreasing dipole moment upon fibril

formation of Aβ1−42 in both deionized water and serum buffers confirms the results

found by FTIR and solid state NMR that the structure is comprised of anti-parallel

β-sheets. The intermediate increase in dipole moment of Aβ1−42 in DI buffer may be

indicative of a high fraction of oligomers. Oligomers of Aβ1−42 form a reverse micelle

that should display a net increase in the dipole moment. The collective dipole moment

of Aβ1−42 at different incubation times could be used to determine the domination

aggregate species, whether monomer, oligomer, or fibril forms. The varying dipole

moment of hIAPP over time may be due to a mixture of both parallel and anti-

parallel sheets, as published in the literature from FTIR and NMR studies. The

non-amyloidogenic peptides either increased in collective dipole moment or did not

change at all. This would indicate that if any aggregation occurred, it may be α-helix

or random coil.

We note that the limits of sensitivity of DRS as a tool to study amyloidogenic

peptides has not yet been tested. Serum concentration of β-amyloid in Alzheimer’s

patients has been found on the order of 100 nM (nanomolar) [167] and concentrations

of IAPP in Type II Diabetes has been found on the order of 10pM (picomolar) [168].
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Future work to determine the detectable limit of amyloidogenic peptides using DRS

is an important examination.

Recent theory suggests that protein motions are slaved to solvent fluctuations

[58, 59]. Studies of solvent relaxation processes yield insight into protein fluctuations,

structure, and function. Measurements of the time evolution and relaxation kinetics

of α- and β-relaxation processes allow us to model dielectric permittivity to the

various phases of fibril formation. We demonstrated that amyloidogenic peptides,

in general, move towards lower activation energy, confirming that the fibrillar state

is thermodynamically favorable and stable. The observation that the amyloidogenic

peptides displayed a lower activation energy as compared to their non-amyloidogenic

analogs would indicate a higher fraction of structured water in the amyloid β-sheet.

6.2 Future Direction

This work demonstrates that studies of the time evolution of dielectric permittivity by

use of dielectric relaxation spectroscopy can reveal differences between amyloidogenic

peptides and their non-amyloidogenic analogs. The following is an outline a suggested

plan for further work to develop a method for using DRS as a tool for detecting toxic

pre-amyloid aggregates in patient samples.

6.2.1 Expansion of DRS Methods

Measurements we have performed thus far have only begun to explore the dielec-

tric properties of amyloidogenic peptides. Thermal studies to examine the dielectric

response during heating, as well as cooling would show if there are reversible pro-

cesses and any hysteresis effects. Additionally, thermal quenching techniques can be

implored to rapidly freeze the system to study particular phases. Other input pa-

rameters, such as the driving AC electric field, V0 for the DRS measurements can
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be varied to study a dependency on the strength of the field. A study of the dielec-

tric response as a function of the applied electric field could give further insight into

deformation polarization effects.

6.2.2 Miniaturized sample cell

Broadband dielectric relaxation spectroscopy is an important tool to study molecular

dynamics in broad temperature and frequency ranges. It has the additional advan-

tage that the sensitivity of the measurement increases with decrease sample thickness

[169]. Using nano-scale components, information about single molecules and molecu-

lar assemblies is an attainable goal [170]. For example, Kremer et al. used 10nm gap

sizes to probe the molecular dynamics of polymers and suggest this method as a tool

for studying nano-biophysics [169]. A continuation of this work using a sample cell

with micrometer or nanometer gap size may lead to additional information about the

dielectric behavior of amyloidogenic peptides by exploring their microscopic behavior.

6.2.3 Amyloid fibril inhibitors

Since detection of soluble, pre-fibrillar amyloid structures is the end-goal for a diag-

nostic test, there is a desire to definitively correlate the dielectric signal with various

stages of oligomerization and fibril growth. Several small molecules have been identi-

fied that inhibit the formation of amyloid fibrils from monomers [171, 172, 173, 174].

These inhibitors can be used in vitro to stop the aggregation process at the different

phases of fibril formation. From this, one can classify dielectric spectra with each

particular phase. Further insight into fibril formation rates and possibly quantitative

measurements of pre-amyloid oligomers may be possible by using these inhibitors.
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6.2.4 Complementary analysis tools

A number of measurement and analysis tools have been used in the study of amy-

loidogenic peptides and their aggregates (see Section 1.6). Electron microscopy (EM)

and atomic force microscopy (AFM) are possible choices for confirmatory tools to cor-

relate dielectric spectra with phases of fibril formation. EM can be used to show the

presence of pre-fibrillar oligomers at various concentrations, incubation times, and

buffers. Both EM and AFM can be used to image the size and shape of amyloid

fibrils to verify the end-point of fibril formation.

6.2.5 Serum studies

The studies we have performed thus far have been on purified peptides placed in a

solution of deionized water or bovine serum albumin (BSA). A continuation of this

work would be to obtain serum samples from transgenic mice models that are known

to have various stages of clinical Type II diabetes and Alzheimer’s disease. Use of the

pathogenic murine models and known controls can be used to correlate a quantitative

measurement of pre-amyloid oligomers in blood-serum media. A further continuation

would be to perform the same experiments using human serum of clinical and non-

clinical donors.
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