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Abstract 
 
This thesis presents Genetic Programming methodologies to find successful and 

understandable technical trading rules for financial markets. The methods when 

applied to the S&P500 consistently beat the buy-and-hold strategy over a 12-year 

period, even when considering transaction costs. Some of the methods described 

discover rules that beat the S&P500 with 99% significance.  

The work describes the use of a complexity-penalizing factor to avoid overfitting and 

improve comprehensibility of the rules produced by GPs. The effect of this factor on 

the returns for this domain area is studied and the results indicated that it increased 

the predictive ability of the rules. A restricted set of operators and domain knowledge 

were used to improve comprehensibility. In particular, arithmetic operators were 

eliminated and a number of technical indicators in addition to the widely used moving 

averages, such as trend lines and local maxima and minima were added. A new 

evaluation function that tests for consistency of returns in addition to total returns is 

introduced. Different cooperative coevolutionary genetic programming strategies for 

improving returns are studied and the results analyzed. We find that paired 

collaborator coevolution has the best results.                             .                              
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1 Introduction 

The last few years have seen the increasing application of Genetic Programming to 

computational finance. A lot of this work has been in the area of financial trading and 

prediction. This has been especially true in the area of stock price and foreign 

exchange rate prediction. Attempts have been made at mining financial time series 

data for patterns that may be applied to the future. The development of Genetic 

Programming over the last decade, its inherent parallelism and its ability to quickly 

find near-perfect solutions quickly for NP-hard problems, has encouraged the 

application of its techniques to this area. In particular, technical analysis is such an 

area that offers a set of building blocks for pattern detection and is utilized by 

investors in attempts to forecast the market and codify trading decisions. 

 

Most studies however have suffered from being either unable to beat the buy-and-

hold strategy and more seriously the lack of simple, understandable technical trading 

rule patterns.  The inherent randomness of the Genetic Programming procedure also 

creates problems in the variability of returns and methods that return consistent 

performance are sought. 

 

This study attempts to solve these problems through different choices made for the 

Genetic Program and apply the techniques of co-evolution to further improve on work 

already done. 
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The remainder of the thesis is organized as follows. Chapter 2 introduces Genetic 

Programming and Technical Analysis and details related work in those areas. Chapter 

3 lists the improvements suggested over previous work and describes experiments to 

test them. Chapter 4 tabulates the results of the study and Chapter 5 concludes with 

observations on the results.
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2 Background 

This chapter gives a basic overview to Genetic Programming and the problem domain 

(Technical Analysis). It lists various technical indicators that are used by technical 

analysts and describes their usage. Previous studies on technical analysis are studied 

and work on generating technical trading rules by Genetic Programming is discussed. 

The problems with these previous approaches that we will attempt to address are 

identified and various solutions to address them are discussed. 

2.1 Genetic Programming 

Evolutionary algorithms are computer-based problem solving systems that are based 

on biological evolution as key elements of their design and implementation. They can 

be further classified into Genetic Algorithms, Evolutionary Programming, Evolution 

Strategies, Classifier Systems and Genetic Programming. Of these Genetic 

Algorithms (GAs) and Genetic Programming (GP) are closely related.  

2.1.1 Introduction to Genetic algorithms 

GAs were invented by Holland [1] in the 1960s as a method to study evolution. GAs 

mimic the biological evolution of organisms by following the “survival of the fittest” 

paradigm. Initial solutions are generated randomly and their fitness tested. This 

fitness is evaluated by a fitness measure called an objective function that numerically 

indicates how well a solution satisfies the problem. The fittest solutions are chosen 
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for mating in proportion to their fitness. In the reproduction process, the components 

of the solution are swapped and those children are also evaluated.  A small percentage 

of solutions are also subjected to mutation to maintain diversity in the gene pool. 

Then the fittest among all these are chosen and form the next generation where the 

steps are repeated. At the end of a number of generations, the fittest organism is 

chosen as the answer. This sort of population-based algorithm with crossovers and 

mutations was a major innovation. 

As a simple example of genetic algorithm consider the problem of finding the 

positive roots of an equation [x^3 + 3x^2 + 3x +1]. The GA designer might decide to 

represent the solution in the form of an 8-bit array. Therefore the representation of the 

solution to the problem would be 

0000 0001 1 

where the number to the left is the binary representation of the number to the right. 

Initially the GA would start out with a population of random bit strings. For example 

1010 1000 168 

0000 1111 15 

… 

1111 0101 245 

Then it would measure the fitness of each of these organisms. In this case a valid 

fitness measure would be to minimize the distance between 0 and the value of the 
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expression for the particular organism/genome. Therefore the fitness evaluations 

would be 

1010 1000 -168 

0000 1111 -15 

… 

1111 0101 -245 

The next step would be to choose the fittest individuals and mate them. This would 

mean crossing over 168 and 15, by choosing a random point for crossover. For 

example if we chose 4 left bits and 4 right bits we would have  

1010 1000 x 0000 1111 = {1010 1111, 0000 1000}  

as can be seen this generates  0000 1000  which is closer to the solution than 245 and 

will replace it. In this manner proceeding along, generation after generation we will 

hopefully get to the right answer.  The GA algorithm is depicted in Fig.1 and outlined 

in the algorithm below 

1 Initialize a population of randomly created individuals 

2 Until an individual is evolved whose fitness meets some pre-established criterion: 

2.1 Assign each individual in the population a fitness, based on some domain-

specific fitness function. 

2.2 Set the "child population" to the empty set. 

2.3 Until the size of the child population equals that of the parent population: 

2.3.1 Select two members of the parent population, with the probability 

of a member being selected being proportionate to its fitness (the 

same member may be selected twice). 
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2.3.2 Breed these two members using a crossover operation to produce a 

child. 

2.3.3 (Possibly) mutate the child, according to some pre-specified 

probability. 

2.3.4 Add the new child to the child population. 

2.4 Replace the parent population with the child population. 

 

 

 

Figure 1: Flowchart for GA algorithm 

 

Because the best parts of the solution are carried over from generation to generation, 

the near optimal solutions tend to be found. Because the solutions are evaluated in 

parallel, GAs are used for NP-hard problems where they can find approximations to 

the best solution pretty quickly.  The theoretical foundations of this process lie in The 
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Schema Theorem [1]. A schema is a set of chromosomes that share certain values. 

The schema theorem relates the fitness of members of a schema to the expected 

number of schema members in the next generation. Members of schemas that have 

successful characteristics tend to increase in number. GAs have been successfully 

used in different areas including schedule optimization [2]. 

2.1.2 Introduction to Genetic Programming 

GP is different from genetic algorithms in that the forms of the organisms/genes are 

trees. The idea was first introduced by John Koza [3] to evolve LISP programs where 

the tree was the program syntax tree.  For example a genome for a genetic program to 

evolve an expression might look like Fig. 2. 

 

 

 

 

 

 

 

 

Figure 2: Example of a GP genome 

This particular tree represents the expression x^2+2x+1. As a genome it can be used 

for curve fitting where the evaluation function might be the inverse of the sum of 

absolute differences between the tree value and the actual value. For crossover 

x x * 1 

+* 

+

2 x 
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operations one could replace a random sub tree of one tree with another as illustrated 

in  Fig.3. For mutation one could destroy the sub tree, or change a node to another 

node. This is a very powerful structure that has been used in a wide number of areas.  

They have been used to classify one-dimensional two-state cellular automata [4], in 

which they have performed better than all human generated rules and other automated 

rule generation approaches in the classifying of one-dimensional two-state cellular 

automata and also for near-minimum-time control of a spacecraft’s altitude 

maneuvers [5].  In addition, of the nodes of the tree are operators and the data is 

stored in the nodes the tree can represent a rule. These have been used in 

reinforcement learning as in [6] to develop rules of the solution by reinforcement. 
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Figure 3: Crossover for GP trees 

 

Crossover 
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2.2 Coevolution 

The concept of biological systems has been further extended as in [7] to 

simultaneously co-evolve two different species that depend on each other to achieve a 

solution. According to geneticists Futuyuma & Slatkin [8] following Jansen [9], “a 

rigorous definition of coevolution requires that a trait in one species has evolved in 

response to a trait of another species, which trait was itself evolved in response to the 

first species.” This more closely represents natural evolution where species evolve 

characteristics in response to other organisms and not just independently of them. In a 

way it is equivalent to having a constantly changing environment instead of a stable 

one where the environment consists of the same factors as in single evolution but now 

includes other species. The most familiar example of co-evolution is parasitism and 

symbiosis. Another example is the evolution of deer and lions where both need to 

learn to run faster. The lions need to run faster to catch their prey and the deer need to 

get away from them. The slowest lions fail to catch their prey and will stand a greater 

chance of going hungry. This would mean that the faster lions have a better chance of 

reproducing and passing on their genes. Similarly the slowest deer would be preyed 

on thus reducing their ability to pass on their genes. The faster ones on the other hand 

bear children and the average ability to run faster of the overall population of deer 

improves. 

 

This is an example of competitive coevolution. When applied to genetic programming 

it would start out with two or more populations, each randomly created. Then the 

algorithm proceeds as detailed above in genetic algorithms but with the change that 



 17

the evaluation function of each species consists of testing the performance of each 

individual with each individual (or a sampling) from the other populations. No 

organism has therefore an absolute fitness measure but only one that depends on the 

organisms it is evaluated against. This ensures an “arms race” [Angeline and 

Pollack10] between the populations with each one getting better and better. These are 

known as “coupled fitness landscapes “ [11] because the fitness curve of each 

population is affected by the organisms in the other population. There have been very 

interesting applications of this idea as in Hillis’ [12] sorters vs. sequences where the 

sorting networks evolve as one population and the other population consists of sorting 

problems which evolve to get more difficult.  

 

Coevolution introduces the credit assignment problem. In competitive coevolution 

credit is easy to assign. The score for one organism is the complement for the 

organism it is evaluated with. For cooperative co-evolution however, because many 

parts make up the solution, and they have to be evolved separately, thought must be 

given to how the credit for a successful solution is passed down to its components. 

For example, Holland [13] describes a bucket brigade system for a classifier system 

in which the co-evolving organisms are classifier rules. 

 

Coevolution also forces one to consider the collaborators to use for evaluation. Potter 

& De Jong[14] describe an architecture for cooperative coevolution, in which 

individuals in one species are evaluated by using collaborators from each of the other 

coevolving species. There exist a number of possibilities for choosing collaborators. 
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All individuals of each of the other species [15] can be used for evaluations but this is 

time-consuming and can lead to combinatorial explosion if there are many species. 

To reduce the number of evaluations and pairings considered, it might be possible to 

use the best individuals from each of the other species as collaborators. This has been 

tried by [16].  In some cases randomly drawn individuals of each of the other species 

in the same generation as in  [17] and [18] have been experimented with. [13] reports 

work done on choosing fixed partners from the other species of the same generation.  

 

 

Figure 4: Possible choices of collaborators 

Fig.4 above succinctly outlines the various combinations that can be exploited in 

choosing collaborators. 
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2.3 Comprehensibility and Overfitting 

Trees evolved by GP can be very large. For example, Allen and Karjalainen[19] find 

rules that vary from 9 to 94 nodes and with a minimum depth of 5. Consider the tree 

they describe in their paper (Fig. 5). This tree represents the rule  

price * minimum (price) – 0.0688 * price > 0.893 

 

Figure 5: Technical trading rule from Allen and Karjalainen’s paper 
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There are a few problems with trying to understand this rule.  

1. Non-intuitive nature of the rule: The meaning of the rule is not immediately 

obvious by looking at the tree. On noting that this is one of the smaller trees 

the problem becomes more serious. 

2. Redundancy: The papers discusses the structure of the trees and notes that 

there are a lot of redundant sub trees in the rules and even sub trees that are 

never visited during evaluation. 

3. The size of the tree. This is one of the smaller trees. As the trees get larger, 

they become more difficult to understand and they become more prone to over 

fit training data. 

These problems are discussed in more detail below. 

2.3.1 Comprehensibility 

Consider the structure of a technical trading rule that is to be used in a genetic 

program for discovering technical trading rules. Neely [20] uses the following 

operations 

1. Arithmetic operations: plus, minus, times, divide, norm, average, max, min, 

lag 

2. Boolean operations: and, or, not, greater than, less than. 

3. Conditional operations: if-then, if-then-else 

4. Numerical constants 

5. Boolean constants: true, false. 
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These operators are very powerful and can be combined to form effective rules. In 

addition Allen[21] restricts the depth of the trees to size 10. Neely also imposes a 

limit of depth 10 and size 100. As noted in the paper the trees generated have some 

redundant expressions. In addition it might be argued that the trees generated are 

difficult to understand. The issue of comprehensibility is important in that for 

significant insight to be gained into the rules that work, the GP must produce easily 

understandable rules. Understanding the rules is also important for people who use 

the rules. Money managers, for example, would have more confidence in using rules 

that they can understand.  .  

 

Extensive work has been done the issue of comprehensibility for decision trees. To 

certain extent one can equate comprehensibility with the simplicity or conciseness of 

the model, but consistency with the domain knowledge of the users who must 

comprehend the model is also an important factor [21]. If a user were to possess a 

chunk ([22], [23]) corresponding to a significant portion of the model, the 

comprehensibility of the model would be better than if the model contained the same 

‘size’ portion for which the user had no corresponding chunk. For expression trees the 

possibility of simplification via subsumption relationships is also exists. While doing 

this by hand may not be practical for large complex trees, building domain-specific 

simplifier or using Mathematica or Maple to simplify equations would also be 

possible. 
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In addition, a number of studies ([24], [25]) it is argued that deeper trees are less 

comprehensible especially if they are binary. A complete binary tree of depth 10 

would have 1024 nodes and would call for a lot of effort to extract meaning from it. It 

is important to note that the comprehensibility of a tree is also related to the returns it 

generates. Any additional complexity in the rule must generate equivalent increase in 

returns. 

2.3.2 Overfitting avoidance 

Another problem that is encountered in many machine learning and data mining 

techniques, including GP is overfitting. This can occur when the learned or evolved 

model fits the particulars of the training data overly well and consequently does not 

generalize to new unseen examples. There are basically 3 approaches to avoiding 

overfitting 

1. Penalizing complexity or biasing towards simplicity 

2. Limiting the number of models used 

3. Using a validation data set 

Penalizing complexity or biasing toward simplicity may involve post-pruning of 

models or generating and hypothesizing models in the order from simple to complex 

or searching in the space of solutions from general to specific and using some 

stopping criterion.  

 

There have been a number of studies ([26], [27], [28]) where accuracy has not been 

reduced or has even been improved as a result of simplifying trees by pruning. There 
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have also been theoretical arguments in favor of what has sometimes been referred to 

as Occam’s Razor, namely that simpler models have greater predictive power and 

lead to less generalization error ([29], [30]).  

 

However, Domingos[31] argues against these theoretical arguments and cites 

numerous recent empirical studies where simpler models have underperformed. 

Following Jensen & Cohen [32], Domingos regards the number of models considered 

rather than the complexity of the models as leading to overfitting.  

 

For GP, overfitting is often avoided by limiting the number of generations, and 

limiting the size of the population would also result in reducing the number of models 

considered. A validation data set can be used to directly test generalization errors and 

thus directly decide between different models. It can be used to cutoff search thus 

limiting the number of models considered. Such a cutoff can also prevent complexity 

when the search is biased from simple to complex. 

2.4 Technical Analysis 

Several centuries ago, traders of rice in Japan developed a method to track the price 

of the produce [33]. This took the form of marking different levels on a page as the 

prices rose and fell and was a primitive form of technical analysis. Modern technical 

analysis has added many more technical trading tools that are available to the analyst 

in his quest for price direction. In contrast to fundamental analysts who study the 

intrinsic reasons for the stock’s rise or fall – profits, earning per share, market share, 
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recent news, etc to establish where they think a stock is headed, technical analyst use 

only historical price and volume information. They believe that all news, fundamental 

factors and market psychology are reflected in the price value. The technical analyst 

therefore uses historical price charts to make his decisions of when to get in and out 

of the stock. It is commonly referred to as market timing or charting. 

2.4.1 Different types of indicators 

As a quick tutorial of technical analysis we will introduce some technical analysis 

tools that we will be using in this study and some sample analysis.  

2.4.1.1 Candlesticks 
 
Figure 6. shows the monthly stock prices for approximately the past 6 years of the 

S&P500 index. Each stick represents the opening, closing, high and low price of the 

day. The bottom of the thin line represents the low price of the day, the top represents 

the high and the rectangle is formed using the opening and closing prices. A green 

rectangle means the closing price was higher than the opening and a red rectangle 

implies the closing was lower than opening. These lend themselves to a host of 

interesting patterns used by the technical analyst. For example the reversals in 

October 2000 was indicated by a ‘star’ pattern. This pattern, signified by a opening 

price that is close or equal to the opening price and there is considerable difference in 

the high and low prices indicates a reversal or indecision. There are more than 30 

patterns that are based on combinations of the candlesticks alone. 
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Figure 6: Technical Analysis Indicators – Volume and Japanese Candles 
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2.4.1.2 Moving Averages 
 
More modern and one of the most commonly used tools by modern analysts is the 

moving average. For example in the graph below for IBM, the black line is the 

closing price for the month and the red and blue lines indicate the 3 month and 9 

month moving average respectively. Moving averages are derived by averaging the 

price over past prices. The 3-month moving average in the chart below (Fig. 7) is the 

average of the current month and the past 2 months. Moving averages tend to smooth 

out the price curve and help visualize the long-term trend. For this reason they are 

often used in pairs, one to indicate much longer terms and another to indicate shorter 

term movements. They have the disadvantage of being a trend following signal 

instead of a trend predicting one and are often too late to be of use for short term 

signaling. Moving averages signal turnarounds when the price crosses over the 

moving average or if 2 moving averages of different periods intersect. If the moving 

average value is less than the price, it indicates that the market is bullish. The 9-

month moving average (blue) is below the price level for the bullish period from 1994 

to 200. Conversely the period from 2002 –2003 is identified as bearish by the price 

being below the moving average. Shorter term moving averages can be used to signal 

quicker movements (the period between March 1999 to January 2000). 
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Moving averages
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Figure 7: Technical Analysis Indicators – Moving Averages 

2.4.1.3 Trend Lines 
 
There is perhaps only one more technical tool that is easier and more widely used 

than the moving average. The trend line is visually appealing and easy to interpret.  

Trend lines are constructed by joining local maxima by a straight line and extending it 

to the present day. Such lines are upper resistance levels. Similar lower resistance 

levels can be drawn by connecting the local minima. In the above graph of IBM 

monthly prices (Fig. 8), 4 trend lines have been identified. The 2 blue lines identify 

lower resistance levels and the red and orange lines are upper resistance levels. As 

can be seen, prices face resistance at these levels and tend to move by oscillating in 

the channels created. Any breakout is followed by a large movement in the direction 
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of the breakout. It is therefore profitable to identify such breakouts. It can also be 

noted that after the breakout, resistance lines may become support lines  (the red line) 

and vice-versa. 
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Figure 8: Technical Analysis Indicators – Trend Lines 

 

2.4.1.4 Rate of Change 
 
The rate of change is a momentum indicator, so called because it indicates the change 

in sentiment of the stock. The graph above (Fig. 9) compares the stock price with the 

3-month (blue) and the 12-month (red) rate-of-change (ROC) indicator. The value for 

ROC is given by 

 

 ROCn = Close (current)-Close (current-n+1)*100/Close (current-n+1) 
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This gives the percentage change in the price for the period specified.  The ROC is 

used to indicate overbought/undersold times in the market. For example, in July 93 

the red line is at the lowest point indicating that a change in direction is soon to occur. 

Similarly the high of August 1999, is indicated by the consequent downtrend in the 

ROC. Most analysts use 2 ROC indicators, one for the short term and another for the 

longer term.  
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Figure 9: Technical Analysis Indicators – Rate of Change Indicators 
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2.4.1.5 Volume 
 
Volume indicates the number of shares of a stock that have been traded. The strength 

of a trend is validated by the volume. In addition, periods of low volume may indicate 

uncertainty and a possible change in trend. Fig. 10 charts out the volume with the 

relation to the price. The peak in volume during Oct-1999 during the short fall of the 

price indicates sharp selling pressure and uncertainty in the new levels the stock price 

has reached. 
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Figure 10 : Technical Analysis Indicators – Price and Volume 
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2.4.2 Work on technical analysis 

There has been quite some work on technical analysis, the path breaking paper being  

[34] which shows that the profits generated by Dow Theory (the forerunner of 

technical analysis) are worse than buy and hold. This work has recently been 

challenged by [35] Brown et al. who show that the Dow Theory may have some merit 

after all. Fama [36] concludes that the statistical evidence for random walk over 

charting is overwhelming. Dennis [37] makes similar conclusions. Treynor and 

Ferguson[38] suggest that the value of technical analysis is in the efficient 

exploitation of non-price information. Their work is further discussed in [39]. In 

addition [40] Brown and Jennings make the case that technical analysis has value in 

markets where traders are looking for short-term gains. Franket and Froot [41] add a 

new dimension by suggesting that the market has periods in which it follows 

technical analysts and periods in which fundamental analysis has more weight. Neftci  

[42] uses moving averages to successfully trade on the Dow Jones Industrial. The 

existence of long term temporal dependencies is shown by Goetzamann [43]. 

 

As can be seen, there is no definite conclusion on whether technical analysis is 

profitable or to which markets it is applicable. Economists continue to believe in the 

efficient stock market hypothesis but are now considering different models that lead 

to price equilibrium. The technical analysts, on the other hand are still around Wall 

Street and the foreign exchange markets and large investment houses use their skills. 
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Is summary, most opponents of technical analysis and market timing make the 

following points 

1. It is extremely difficult to do (if possible) and the competing buy-and-hold 

strategy is easier to use.  

2. The transaction costs that accompany market-timing strategies must be made up. 

3. All current knowledge of the stock is quickly and completely incorporated into 

the current price (the efficient market hypothesis) 

 

Technical analysts on the other hand believe that 

1. The prices reflect not just the fundamentals of a stock but also the psychology of 

the investors. 

2. Market information is not as readily factored into the price as it is thought too. 

3. Past prices give indications of future trends. 

 

2.5 GP In Finance 

Over the last 10 years there have been various publications of GA in finance but it is 

only since 1994 that GPs were beginning to be used for financial applications. A lot 

of this work has been in the area of forecasting and trading, which are closely related. 

The use of technical analysis has also been studied for forecasting. Technical analysis 

has been used to quite an extent for foreign exchange trading. This is partially 

because of the number of factors that affect the exchange rate and make it difficult to 

forecast well by conventional methods. Technical analysis provides a simpler 
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alternative. Neely [22] reports strong evidence of out-of-sample excess returns for 

technical trading rules over 6 exchange rates and ability to detect patterns that are not 

recognized by standard statistical models. There has also been work on the 

forecasting and trading of stock indices. The most important work here is Allen and 

Karjalainen’s [21] who discover that the rules do not have consistent excess returns 

over a simple buy –and-hold strategy in the out-of-sample periods.  

 

Allen and Karjalainen implement the GP with using the language described below 

1. Arithmetic operations: plus, minus, times, divide, norm, average, max, min, lag 

2. Boolean operations: and, or, not, greater than, less than. 

3. Conditional operations: if-then, if-then-else 

4. Numerical constants 

5. Boolean constants: true, false. 

 

Their fitness function calculates the excess return on the data over the buy-and-hold. 

A population of 500 trees is used in a 50-generation GP. The data is the S&P500 

index daily prices. They guard against overfitting by using a validation data set which 

they obtain by splitting the data into 3 periods: a training period (5 years), a validation 

period (2 years) and a test period (the remainder). They train the data on the first 

period and after each generation apply the fittest rule (the one that has the largest 

excess return) on the validation period. If this rule does better on the validation period 

than any other rule so far encountered, it is saved as the best found so far. 
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Because of the nature of GPs, they end up with rules from about 5 to 10 levels deep 

that contain redundant sub trees and sub trees that are never processed. The choice of 

operators also renders the tree difficult to human interpretation and they lack an 

intuitive feel for the underlying significance. In order to measure the complexity of 

the rule generated, they compare the return of the rules generated to the returns 

generated by simpler rules formed of  

1. Comparison operators (‘<’,’>’) 

2. A varying time window 

3. An operator on the time window: max, min and average. 

4. Comparing normalized prices to a constant. 

 

They conclude that the results obtained do not earn excess returns over a simple buy-

and-hold strategy in the out of sample period if transaction costs are considered. 
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3 Innovations and Experimental Design 

This chapter describes changes from previous work, especially Allen and Karjalainen 

[21]. We suggest changes and describe the experimental design and details for the 

experiments to test these changes. Details of the genome design, technical indicators 

used and data used are described. 

3.1 Proposed Changes to the Allen and Karjalainen 

approach 

To address the problems of overfitting and comprehensibility mentioned in chapter 2, 

four changes are proposed 

3.1.1 Using a Complexity Penalizing Factor 

We use a complexity-penalizing factor that reduces the fitness level of the tree as the 

complexity of the tree increases. It is possible to equate roughly the comprehensibility 

of the tree with its depth or its size. If there is, therefore, a small tree with the same 

return as a larger tree, the smaller tree is declared more fit. This has 2 effects – by 

restricting the growth of the tree to what is essential to increase return, we increase 

comprehensibility. Also the smaller tree has fewer nodes and is less likely to over fit 

the training data. By not restricting the size of the tree to an absolute value, and only 

encouraging it to be smaller, it is hoped that the gene pool remains rich and large. It 

also admits the possibility of finding a very profitable tree that is larger than the size 
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we are looking for. Such increased profitability would be of a nature that would allow 

a compromise to the comprehensibility of the tree.  

 

There are also a number of different ways the factor can be constructed. [44] 

describes one of them. In the search for factors, it is important to note that the factor 

should be of a general nature. As an example, a subtractive factor was found to work 

well, but was not general enough to be used at different scales and was rejected. 

Finally a multiplicative scaling factor of the form 

Corrected fitness = actual fitness * desired-depth/max(actual-depth,desired-depth) 

was used. 

As discussed above, reducing complexity of models has sometimes led to fewer and 

sometimes to more generalization errors. We therefore compare the performance of 

the models generated by GP with vs. without the complexity-penalizing factor. 

3.1.2 Technical Trading Rule Expression Language 

Most previous studies have used moving average crossovers, moving averages and 

trading range breakouts as the main technical indicators. It was decided to extend this 

set by using rate of change as volatility indicators, trend lines and support levels. The 

details of these indicators are discussed below. By using these indicators we are 

biasing the search, but are adding a large amount of comprehensibility because these 

blocks are well recognized and understood by the technical analyst. Of particular note 

are the trend line constructions. 
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Arithmetic operators such as (+, -, *, /) make the rule difficult to understand. For 

example in initial trial runs it was found that we obtain rules that contain sub-trees 

such as the one shown below (Fig. 11) that represents the rule 

MA3*MA3 < Price*MA6 

Such a rule that might be profitable does not indicate very well what the rule is trying 

to do. 

 

 

 

 

 

 

 

Figure 11:  A rule that is difficult to comprehend 

 
It was therefore decided to do away with arithmetic operators and leave only the 

following types of operators 

a. Boolean operators: And, Or, Not 

b. Comparison operators: <, > 

c. Technical Analysis indicators (prices, moving averages, etc.) that give a number. 

This reduces the number of operators and makes the structure less powerful, but it is 

hoped that with the judicious choice of technical indicators, this can be overcome. We 

have also done away with the usual constructs of “if-then-else” and the boolean 

constants true and false. 
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3.1.3 Fitness functions 

A common fitness function for technical trading rule generation uses past return over 

the entire training period as the fitness function. In certain situations, this might result 

in the GP produced rule producing large returns but only over a small period of the 

training period. Such a rule would not generate consistent annual returns over a large 

period but erratic periods of high and low returns. In a desire to avoid this, we 

propose a fitness function that measures the number of years that the annual return is 

greater than or equal to the minimum of the risk free return and the stock market 

return for that year. We would expect such a function to provide more consistent 

returns over a longer period. 

3.1.4 Co-evolution: Using Distinct Buy and Sell Rules 

The problem of having a single rule decide when to get in and out of the market may 

perhaps be better solved by having 2 rules – one to decide when to get in and another 

to decide when to get out. This would result in specialization of buying and selling 

rules. These rules then would have to developed and paired together. This can be 

accomplished by coevolving the rules together. Essentially the structure and nodes 

comprising the tree remain the same and only the function assigned to each tree 

changes by this arrangement. Also because the rules are working together to attain a 

common goal (maximization of the number of positive periods or total return), the 

coevolution is of a cooperative nature. 
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As mentioned above in Chapter 2, this leads to issues with choosing collaborators and 

credit assignment. The credit assignment for this cooperative coevolution problem is 

easily solved by assigning the return generated by the pair to each. Equal credit is 

given to the buy and sell tree that worked together to generate the return. 

 

The choosing of collaborators is a more complicated issue. We experiment with the 

different possible variations outlined above. 

3.2 Data 

3.2.1 Choice of data series 

For data, historical monthly prices for the S&P 500 index were used. This index was 

chosen for the following reasons 

1. It is the most commonly used benchmark used by investment professionals to 

measure the performance of their portfolios. Portfolios are evaluated by their ability 

to beat the S&P 500’s return. It is therefore easy and meaningful to make 

comparisons to the profits generated by the rules. 

2. The S&P 500 indicates the overall trend of the market and the economic climate. 

The companies included in this index fund are chosen to be representative of the 

important industries within the U.S. economy. This is borne out by the fact that the 

S&P 500 index is used by the U.S Department of Commerce as 1 of 11 leading 

economic indicators to signal potential turning points in the national economy. It 
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stands to reason that there has been more long term sustained interest in predicting the 

ups and downs of the S&P 500 than in most other stocks and funds 

3. Splits and other capital corrections do not affect the continuity of the index. The 

index measures the amount of investment by taking the product of the price of a stock 

and the number of outstanding stocks. The sum is then related to the standard 1941-

43 base, which is given a value of 10. This has the effect of ensuring continuity of the 

index and avoiding distortions introduced by splits and rights. Continuity helps the 

technical analyst a great deal by providing him a direct comparison to previous 

movements and values. We have however ignored the changes that might be 

introduced by reinvesting dividends. 

4. Most previous research has been conducted on the S&P 500. It is easiest to make 

comparisons to these works if we used this index. 

5. It is readily available and has a large amount of historical data that is easily 

available (for example http://finance.yahoo.com has quotes from at least 1955 

onwards). This provides for a large amount of training data that is essential for 

machine learning techniques. Ready availability also makes it easier for other 

researchers to use. 

3.2.2 Risk Free Interest Rates 

Even though it would be possible to consider just the value of the scrip for training 

and comparison, it would not by itself be an accurate measure. The tradeoff between 

perceived risk/volatility and return is the defining factor that pushes investment in and 

out of the equity markets. As a measure of comparison, the risk free interest rates 
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available by buying government bonds and treasury bills form an important base 

level. In common with other researchers we have used the 3-month government 

treasury bills rates available at (http://research.stlouisfed.org/fred/data/irates/tb3ms).  

3.2.3 Indicators Derived and Used from the S&P 500 

The historical data we collected from the S&P 500 consists of  

1. Opening price of the month 

2. Closing price of the month 

3. Highest price of the month 

4. Lowest price of the month 

We then went ahead to derive some technical indicators from this data. The choice of 

these indicators was based on 2 considerations. Firstly, that they be commonly used 

by technical analysts and easily understandable. Secondly there exist some previous 

work that indicates their usefulness. These criteria allowed us to choose 

1. Moving averages and  

2. Previous Maxima and Minima 

3. Trend Lines or trading ranges 

as focus areas. All 3 have been validated in previous studies [44]. For good measure 

we added 2 indicators that are widely used but not studied as well 

1. Volatility represented by the Rate-of-Change or ROC indicator 

2. Breakout gaps derived by including the previous month’s close. 

 

 



 42

3.2.4 Moving Averages 

We decided to use a combination of long-term, mid-term and short-term simple 

moving averages as advocated by most technical analysts. We spread it out as 10 

month, 6 month, and 3 month averages. In preliminary runs we discovered that the 

short-term indicator could be shortened further without generating false signals and 

improving greatly the responsiveness of the rules. We therefore added a 2-month 

average as well. These were pre-calculated from the closing price of the months to 

avoid expensive re-computation every time they were needed. 

 

MAn(X) = [Close (X)+Close(X-1)+Close(X-2)+…+Close(X-n)]/n 

3.2.5 Previous Maxima and Minima 

Local maxima and minima can be identified for months previous to the current. 

Because we are looking for significant resistance levels, minima and maxima are 

identified from the moving average values. This helps to weed out erratic price 

movements and smoothes out the curve to obtain values that are more significant. In 

order to draw a trend line for the trading range, we need at least 2 previous values of 

the maxima and/or minima. Consequently we find the previous maxima and the 

maxima prior to it and repeat the process for the minima 

3.2.6 Trend Lines or trading ranges 

Trend lines are one of the analyst’s most used tools. They are drawn by connecting up 

2 or more local minima or maxima. This results in support levels and resistance levels 
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respectively. It is possible to approximate this process by connecting the 2 previous 

minima/maxima. One obtains significantly better resistance levels by using the short 

term moving average to draw them instead of vanilla price values. Therefore the 2-

month moving average values were used. It must be noted that using a number of 

different moving averages can generate a number of resistance levels and trend lines 

that might be useful. Longer term moving averages can result in longer term support 

and resistance values.  

3.2.7 Rate of Change 

As with the moving averages we use a short-term and a long-term measure of 

volatility – 3 month and 12 month. The values are pre-computed for computational 

efficiency. 

 ROCn (X)=[Close (X)-Close (X- (n-1)]*100/Close (X- (n-1)) 

3.2.8 Partitioning the Data 

The need for a 10-month moving average and a 12-month ROC value means the first 

year of the data is unusable for training. In addition we want the minima and maxima 

to be defined at all points, so we start the training period effectively at 1960. The data 

from 1960 to 2002 has to therefore be divided up into a training and test period. For 

the training to be significant we want the in-sample period to be at least twice as long 

as the out-of-sample period. We therefore decided to allocate 1960-1990 as the in 

sample and 1991-2002 as the out-of-sample period. Fig. 12 is the price chart for the 

monthly prices for this period. 
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Figure 12: Price chart of monthly closing values from 1960-1990 
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3.3 Details of the Genome Structure 

The operators we use for the genome have been discussed above. Here we take a look 

at the details of the tree representation. 

 

Most technical analysts use comparisons between two indicators to decide on 

interesting points in the market rather than a mathematical formula. Volatility 

indicators are sometimes an exception to this. They identify overbought/oversold 

values on a comparison to past values but also to some extent on the level of the 

indicator. 

 

Consider the indicators we are using 

1. Moving averages 

2. Previous maxima and minima 

3. Trend lines 

4. Last month’s price data. 

5. Rate of change indicator 

6. Volume of current month and previous month 

 

With the exception of rate of change and volume, all the other indicators give us 

values that are comparable to the current price or on the same scale. This means they 

can all be compared to each other. This is very much what the chartist does. He 
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compares moving averages, maxima/minima, trend lines, last month’s data and then 

takes into consideration a separate graph of the rate of change and another graph of 

the volume. For the first set of indicators the comparisons made are mostly of the 

nature of crossovers. They wait for 2 values to crossover, for example the current 

price is compared to the trendline that currently exists. If the price goes through 

trendline (crossover) it signals an important point in the market. This is why we hope 

that using just the comparison operators and avoiding arithmetic operators should 

prove useful. 

 

For the volume and rate of change indicators, we again take recourse to the 

comparison operators, but here the patterns are not as easy to discover. For example 

one could use moving averages of the volume for crossovers and for the rate of 

change indicators, it might be worthwhile using 2 different periods and looking for 

crossovers thought admittedly this is a rather poor way of using these 2 indicators. 

We therefore just restrict ourselves to the ROC-3 months, ROC – 12 months. And use 

this month’s volume and last month’s volume. One might argue that the volume 

increase is used to substantiate a price movement and for this purpose, comparison of 

the current month’s volume to the previous month’s should serve the purpose. 

 

Having decided therefore to use only comparison operators, the basic structure of the 

rules becomes evident. For comparison operators, we use the < and > operators. The 

simplest tree/rule would therefore be of the form of Fig.13 
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Figure 13: The simplest tree 

where TI-1 and TI-2 indicate 2 technical indicators. For example TI-1 could be MA3 

and TI-2 could be MA6. In that case, the rule would be 

MA3 < MA6 

Of course, if TI-1 were this month’s volume (V) then TI-2 must be last month’s 

volume (v). Similarly if ROC12 is TI-1 or TI-2, the other TI must be ROC3. 

Now, to generate more complex trading rules, we need to combine these simple rules 

using boolean operators such as AND, OR and NOT. For example we could have two 

rules (P > MA6) and (MA3 < MA6) put together with either an AND (below) or an 

OR. The resulting structure would look like Fig.14 

 

 

 

 

 

 

Figure 14: How the Boolean operator fits in 
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This structure can be extended by using more boolean operators to create more 

complicated structures as in Fig. 15. 

 

 

 

 

 

 

 

 

 

 

Figure 15: A larger tree 

 

This results in trees in which the 2 leaf nodes and the node connecting it form a 

simple rule and all the nodes above it put them together. These 3 nodes process real 

number values and return boolean (true/false) results that are further combined by the 

nodes above it. The entire tree therefore always returns a True or False value for a 

particular month. 
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3.4 Genetic Program Parameters 

3.4.1 Types of Nodes 

As defined above, the nodes are implemented as a class hierarchy of different node 

types, identified by the types of children they can have and the parents that can have 

them 

 

 

 

 

 

 

 

Child None, Parent Comparison: Technical Indicators 

Child Numeric, Parent Boolean: <, > 

Child Comparison, Parent Boolean: AND, OR, NOT 

Figure 16: Hierarchy of nodes 

 

This relationship is described graphically in Fig. 16. The dotted lines indicate the 

child  parent relationship. 

 

 

 

Basic Node 

Child None, Parent 
Comparison 

Child Numeric, 
Parent Boolean 

Child Comparison, 
Parent Boolean 
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3.4.2 Random Tree Initialization 

The initial random trees are generated such that they have a maximum depth of 10. A 

depth-first recursive initialization function is used. The algorithm is as follows and is 

started by calling the function with a depth 0. 

 

Initialize Tree (depth, Type_of_parent_node) 

1. If (depth==0) OR (parent node == Boolean) 

a.  Randomly choose comparison or boolean operator as first node 

Else if (depth==10) /*max depth*/ OR (parent node == comparison) 

a. Choose a technical indicator 

2. Call Initialize Tree for left node (depth+1, current node) 

3. If (Boolean operator! = NOT)  

a. Call Initialize Tree for right node (depth+1,current node) 

3.4.3 Mutation Operator 

For the mutation operation we have a few choices that are detailed in the GALib[45] 

package, written by Matthew Wall at the Massachusetts Institute of Technology that 

we used. 

1. Sub-tree Swap Mutation:  We could take a sub tree and graft it elsewhere in the 

tree 
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Figure 17: Sub tree swap mutation 

 

This cannot be used in this case because as can be seen, it violates the parent-child 

node definitions. Specifically, it would end up with the left hand side dark node with 

a hanging boolean/comparison operator and would give the right hand side dark node 

(which is a technical indicator and cannot have children) children. 

 

2. Tree Node Swap Mutation: Here we swap 2 nodes. The same problem as above 

exists. Of course here we can check the nodes swapped to ensure that they are of the 

same type before we do it. 

  

Figure 18 : Tree Node Swap Mutation 

 

3. Sub-Tree Destructive Mutation: This method destroys the sub tree of a random 

tree node. This again has the same problem as the sub-tree swap mutation, 

resulting in hanging boolean/comparison operators. 
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Figure 19 : Sub Tree Destructive Mutation 

 

4. We use a fourth option. We choose a random node in the tree and then replace it 

with a similar node of a different type. For example if the node we chose was a 

boolean operator, say AND, we could change it to OR. Similarly, ‘<’ could be 

changed to ‘>’. Technical indicators like MA3 can be changed to MA6. We must 

ensure however that for nodes like Rate-of-Change we don’t change the node to 

Price or Volume that makes the comparison meaningless. 

3.4.4 Crossover Operation 

The crossover operation is rather straightforward and easy to implement. As shown in 

the figure below, a random node is chosen from one of the 2 parents (say mom) and a 

random node is chosen from dad. These sub trees are then swapped.  

 

 

Figure 20: Single Point Crossover 
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Here as well, one must watch out for the types of nodes chosen. They must be of the 

same type for meaningful offspring. The algorithm is as follows 

1. Choose mom, dad on the basis of fitness 

2. For mom, choose a random node and identify the type 

3. For dad choose a random node and identify the type. 

4. If the node types are different go back to 2. 

5. Perform the crossover. 

3.4.5 The Objective Function 

The objective function uses the technical trading rule to carry out trades to achieve 

the required objective. Initially, we start out by attempting to maximize the total 

return over the training period on a 1000$ investment. The algorithm is 

1. Initialize  

a. Month = 1. Year = 1960.  

b. Buy = true.  

c. InTheMarket = false 

d. Amount =1000 

2. While period is not over 

a. If (Buy==true && not (InTheMarket)) buy into the market 

b. Else if (Buy==false && InTheMarket) sell  

c. If (Not (InTheMarket)) increment Amount by risk-free interest rate. 

3. Return the final Amount. 
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The action matrix for the tree can be described as in the following table 

Table 1: Action matrix for single rule tree 

 True False 

In the market Do Nothing Sell 

Out of the market Buy Do Nothing 

 

 

Transaction costs are used for each transaction (buy/sell). The standard transaction 

costs of 0.5% and 0.25% are used. 

3.5 Experiments 

In this section we describe the hypotheses to be tested and the experiments suggested 

to test them. These tests include the effect of the complexity penalizing factor, the 

effect of choosing a different evaluation function and different co-evolution 

strategies. 

 

3.5.1 Experiment – I (Effect of complexity-penalizing factor) 

As mentioned in Chapter 2, there have been some results suggesting that reducing the 

size of the tree may or may not decrease the performance of the tree. Our first 

experiment is therefore to measure the effect of the complexity-penalizing factor on 

performance. 
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We therefore run the GP, with the factor and without and study the results. We use 

the following parameters  

1. Steady – state GP  

2. Number of generations: 100 

3. Population size: 150 trees 

4. Crossover rate: 0.8 

5. Mutation rate: 0.1 

6. Half the population is replaced at each generation. The half replaced represents 

the worst half. 

7. Training data: Jan 1960 – Dec 1990 

8. Test data: Jan 1991 – Dec 2002 

9. Objective function 

a. Value = Total return on initial investment 

b. Transaction cost = 0.5% 

c. Risk-free Interest rate = 3 Month T-bill 

10. Factor used in one set of runs: objective score *  (5/(max (TreeDepth, 5)) 

 

The best tree at the end of the run is saved and run on the out of sample data. We run 

this tree on the out-of-sample data. A total of 10 runs, each starting with a different 

seed is made. This ensures that the initial populations of both sets of runs are the 

same. 
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3.5.2 Experiment – II (Different Evaluation function) 

From the results of Experiment –I it was noted that some of the rules generated 

smaller returns on the test period as the returns on the training period improved. It 

was thought that this might be because of a tendency to extract maximum profit from 

the training period but not necessarily in a consistent manner throughout the period. 

Also, an inordinate amount of weight is given to initial years in the training period 

because the returns generated there are carried over to investments in the latter part of 

the training period and even though rules may do well at the end of the period, they 

may not make enough back to compensate for rules that do well at the start. 

 

Therefore a different evaluation function was proposed. This function would work 

similarly to the one of Experiment – I but with a couple of changes 

1. The amount in hand or in the market is reset to 1000 at the end of the year 

2. The fitness value is defined not as the return but as the number of years in which 

the rule gave returns that were better or equal to both the buy and hold strategy 

return for that year and the risk free interest return for that year. 

 

To verify the hypothesis that this function yields better and more consistently 

performing trees, we ran 10 runs of each and compared the results. The parameters 

for the run were: 

1. Steady – state GP  

2. Number of generations: 150 

3. Population size: 150 trees 
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4. Crossover rate: 0.8 

5. Mutation rate: 0.1 

6. Half the population is replaced at each generation. The half replaced represents 

the worst half. 

7. Training data: Jan 1960 – Dec 1990 

8. Test data: Jan 1991 – Dec 2002 

9. Objective function 

a. Value  

i. Total return on initial investment for one set 

ii. Number of years the return is greater/equal to the maximum of 

risk-free and buy and hold strategies. 

b. Transaction cost = 0.5% 

c. Risk-free Interest rate = 3 Month T-bill 

10. Factor used in both sets of runs: objective score * (5/(max (TreeDepth, 5)) 

 

The best tree at the end of the run is saved and run on the out of sample data. We run 

this tree on the out-of-sample data. A total of 10 runs, each starting with a different 

seed is made. This ensures that the initial populations of both sets of runs are the 

same. 
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3.5.3 Experiment – III (Using Paired buy and sell rules) 

In order to test whether using two trees – one specialized for buying and one for 

selling improves performance we decided to use 2 trees. For this purpose we used 

paired buy-sell pairs as the population. Each species (buy and sell) evolves separately. 

This affects the crossover operator. Crossovers can now only be carried out between 

two similar sub trees (buy-to-buy, sell-to-sell). This ensures that the 2 sub trees have 

different gene pools that encourage their respective functions. 

The tree structure remains the same as for Experiment-I but a for a small change. We 

introduce a combination node at the root that combines the two sub trees below it as 

shown in Fig.21. The left sub tree is designated as the buy tree and the right sub tree 

as the sell tree. The combination node can be designed to work in a couple of ways. 

 

 

 

 

 

 

 

 

 

 

Figure 21: Structure of a paired tree 
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Consider for example the following action table 

Table 2: Action matrix for paired rule - 1 

MARKET BUY RULE SELL RULE ACTION 

In True True Do Nothing 

In True False Do Nothing 

In False True SELL 

In False False Do Nothing 

Out True True Do Nothing 

Out True False BUY 

Out False True Do Nothing 

Out False False Do Nothing 

 

This represents the condition that the stock is bought only when 

1. Buy rule is true and Sell rule is false 

And the stock is sold only when 

2. Buy rule is false and Sell rule is true 

 

For this rule the combination node would work as an XOR node. So 

Buy  (Buy rule XOR Sell rule) AND (Buy rule = true) 

Sell  (Buy rule XOR Sell rule) AND (Sell rule = true) 

This method has the advantage of obtaining a very clear signal and confirmation from 

both rules for action. On the other hand it is difficult to generate successful rules 

because the buy rule has to know about the sell rule and vice versa to develop 
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effectively. In a way this is also equivalent to a voting scheme of 2 rules that can be 

developed from this pair by inverting the truth-value of the sell rule. Therefore we use 

an alternate arrangement where we just consider the buy rule for buying decisions and 

the sell rule for the selling decisions. Effectively we decide which one to consult 

depending on the current state and ignore the other tree at that time. 

 

Table 3: Action matrix for paired rule - 2 

MARKET BUY RULE SELL RULE ACTION 

In X True SELL 

In X False Do Nothing 

Out True X Buy 

Out False X Do Nothing 

 

In order to compare the performance of the co-evolved tree with the single rule tree 

we need to run both GPs and compare the results. From the results of Experiment-I, 

we know that the complexity-penalizing factor works and so we use the factor in the 

paired configuration and the single rule tree. 

 

Once again we set the parameters as pretty much the same as above and  

1. Steady – state GP  

2. Number of generations: 150 

3. Population size: 150 trees 

4. Crossover rate: 0.8 
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5. Mutation rate: 0.1 

6. Half the population is replaced at each generation. The half replaced represents 

the worst half. 

7. Training data: Jan 1960 – Dec 1990 

8. Test data: Jan 1991 – Dec 2002 

9. Objective function 

d. Value = Number of years the return is greater/equal to the maximum of risk-

free and buy and hold strategies. 

e.  Transaction cost = 0.5% 

f. Risk-free Interest rate = 3 Month T-bill 

10. Factor used in both: objective score * (5/(max (TreeDepth, 5)) 

 

The best tree at the end of the run is saved and run on the out of sample data. We run 

this tree on the out-of-sample data. A total of 10 runs, each starting with a different 

seed is made. In this case the initial trees produced are not the same. 

 

3.5.4 Experiment – IV (Different types of co-evolution) 

Experiment IV was conducted to evaluate different co-evolution strategies and 

compare them to the paired tree. Section 2.2 describes the different ways 

collaborators can be chosen from the other species. Consider Fig. 22 below: 
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Figure 22: Overview of co-evolution strategies 

 

 

In Experiment – III we compared the results of the Single Rule and the Buy-Sell 

Paired. Now we consider separately evolving populations of buy and sell rules where 

collaborators have to be chosen for evaluating the performance of the trees. Of the 

various possibilities mentioned we use the following 2 schemes 

1. Choosing the 5 best collaborators from the other species 

2. Choosing 5 random collaborators from the other species 

 

For example, for evaluating the buy trees, we choose the best 5 sell trees based on the 

evaluation function.  For the first generation, when fitness values have not yet been 

assigned we choose random collaborators. Then each buy tree is evaluated with all 
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the 5 sell trees and the average value is assigned to it. The process is repeated for the 

sell trees. Evaluating the trees with different collaborators may help in isolating a tree 

from the ill effects of a bad collaborator. For example, in a paired configuration a 

well performing buy tree may be paired with an ill –performing sell tree and will not 

get a chance to get credit for its ‘goodness’. Choosing a variety of collaborators may 

minimize this effect. 

 

In addition because trees that are similar to each other tend to have the same fitness 

levels, choosing the best 5 may result in similar trees. To avoid this we have also 

tested choosing random collaborators. Another variation to avoid this crowding is to 

replace all the trees except one instead of just half the population at every step. 

 

The hypothesis is therefore, that the unpaired co-evolving trees are better than the 

paired trees. This is tested by running 3 sets:  

 

1. Best 5 co-evolved 

2. Random 5 co-evolved 

3. Paired buy-sell. 

 

The parameters are: 

1. Steady – state GP  

2. Number of generations: 150 

3. Population size: 150 trees 
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4. Crossover rate: 0.8 

5. Mutation rate: 0.1 

6. Population replacement 

a. Half the population is replaced at each generation for the paired trees. The half 

replaced represents the worst half. 

b. All but one replaced for both species in separately coevolving GP. The ones 

replaced are the ones with the worst fitness. 

7. Training data: Jan 1960 – Dec 1990 

8. Test data: Jan 1991 – Dec 2002 

9. Objective function 

a. Value = Number of years the return is greater/equal to the maximum of risk-

free and buy and hold strategies. 

b.  Transaction cost = 0.5% 

c. Risk-free Interest rate = 3 Month T-bill 

10 Factor used in both: objective score * (5/(max (TreeDepth, 5)) 

 

The best tree at the end of the run is saved and run on the out of sample data. We run 

this tree on the out-of-sample data. A total of 10 runs, each starting with a different 

seed is made. In this case the initial trees produced are the same for the BEST5 and 

RANDOM5 runs. 
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4 Results 

This chapter describes the results of the experiments described in chapter 3. The 

results are grouped by experiment number and the conclusions of each experiment are 

indicated. Conclusions are described in greater detail in Chapter 5. 

4.1.1 Experiment-I (Effect of complexity-penalizing factor) 

The 10 runs without the factor yielded the following results  
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Table 4: Results for experiment I -1 

Without Factor 

Size Depth 1960-1990 1991-2002 

224 19 15195 3491 

542 88 13856 3300 

530 45 20265 1469 

41 11 16832 2023 

200 38 12818 1835 

967 87 14984 1834 

178 28 19605 1626 

45 11 16367 1977 

111 20 17637 1764 

596 68 23702 2089 

343 42 17126 2141 
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In comparison to the buy-and-hold strategy 

Table 5: Result for Buy and hold strategy 

  1960-1990 1991-2002 

Buy&Hold 5457 2638 

 

The entries in green indicate the values that beat the buy-and-hold. The last line of 

Table 4 indicates the average of the size, depth, in-sample return and the out-of-

sample return respectively.  

 

It is easily seen that the complexity of the tree is indeed a problem. The smallest tree 

has a depth of 11 and size 41 and the largest are almost a 1000 nodes large with a 

depth of approximately 90. This also has an effect on predictive performance. Even 

though the trees perform on average about 3 times as well on the in-sample data. This 

does not carry over to the out-of-sample data where the performance is worse than 

buy-and-hold. In fact, only 2 of the rules discovered beat the buy-and-hold in the out-

of-sample data. 
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The results for the runs with the complexity-penalizing factor are 

Table 6: Results for experiment I - 2 

With Factor 

Size Depth 1960-1990 1991-2002 

15 5 10976 3128 

15 5 13690 2006 

3 2 8762 3377 

15 5 13981 2003 

3 2 8762 3377 

12 5 14788 1685 

15 4 15078 2096 

3 2 8762 3377 

15 5 9128 3697 

3 2 8762 3377 

10 4 11269 2812 

 

Once again, the last row indicates the average of the column. Compared to Table 4, 

the results seem much more promising. The average for the in sample data is only 

twice as much as buy-and-hold but is indicative of the fact that it has not over fit the 

data. This is evident from the out-of-sample average that beats the buy-and-hold 

indicating that the main trends in the data have been identified and overfitting has 
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been considerably reduced. The results are significant to about 96%. The average size 

and depth also indicate very clearly that the rule is much more comprehensible. Of 

the 10 runs, 6 result in rules that beat the buy-and-hold.  

 

These results clearly bear out the hypothesis that the addition of a complexity-

penalizing factor increases both, the comprehensibility and reduce overfitting.  

 

 

4.1.2 Experiment-II (Different Evaluation function) 

In this section we study the results of running the GP with the newly proposed 

evaluation function that measures the number of years the GP produced rule beats the 

buy-and-hold and the risk-free return. 
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The 10 runs with the new evaluation function return the following values 

Table 7 Results for experiment 2 

New evaluation fn. 

1960-1990 1991-2002

7705 2064 

7541 2166 

7143 2654 

7143 2654 

6916 2953 

7968 2982 

7131 3184 

7644 3437 

7110 3691 

8126 3983 

7442.7 2976.8 

 

Once again, the last row represents the averages. As can be seen, the average for the 

out-of-sample period has increased. More importantly, the results are consistently 

better. Only 2/10 of the rules have a performance worse than the buy-and-hold as 

compared to 4/10 in table 6.  
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We can conclude that this evaluation function does not do any worse than the first 

evaluation function. If anything it is only better. 

4.1.3 Experiment-III (Using Paired buy and sell rules) 

Here we compare the results of using a specialized buy and a specialized sell tree. 

The results for the 10 runs of the paired rule follow:  

Table 8: Results for experiment III 

Paired Rule 

1960-1990 1991-2002

10816 2807 

12374 2823 

11818 2837 

19861 2856 

12667 2911 

11530 3258 

22074 3434 

18467 3475 

14957 3476 

10646 3541 

14521 3141.8 
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Comparing the results with table 7 we see significant improvement in the average for 

the out-of-sample period and the in-sample period. In addition, we note that all the 

rules produced were consistently better than the buy-and-hold. The rule beats the buy-

and-hold with a statistical significance of 99%. 

 

We conclude that the specialization of function obtained by splitting the single rule 

into two rules certainly helped the predictive power and the data fitting capability. 

4.1.4 Experiment –IV (Different types of co-evolution) 

The results of Experiment-III suggested that we try other methods of coevolution, 

different from fixed pair coevolution. The results of the runs for using 5 random 

collaborators from the other species for coevolution are tabulated below 
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Table 9: Results for experiment IV - 1 

Buy + Sell 

Random 5 

1960-1990 1991-2002

12757 2438 

13832 2742 

12911 2807 

15243 2807 

14747 2837 

12077 2842 

16249 3059 

16117 3374 

17746 3376 

6233 3876 

13791.2 3015.8 

 

 

The average for the out-of-sample period beats the buy-and-hold and only one rule 

does worse than it. The results are statistically significant at 99% for beating the buy 
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and hold. In comparison with the paired rule results (Table 8), we don’t find much 

difference. 

 

For the runs with the Best 5, we have the following results 

 

Table 10: Results for experiment 1V –2  

Buy + Sell 

Best 5 

1960-1990 1991-2002

18898 2399 

18795 2527 

21525 2567 

14525 2807 

12893 2807 

14819 2837 

14809 2971 

14377 3036 

12893 3222 

13820 3256 

15735.4 2842.9 
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As can be seen, these perform somewhat better on the in sample. They still manage to 

beat the buy-and-hold on average but not as consistently. It might be conjectured that 

these rules are over fit to the training data. 
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5 Conclusions & Future Work 

This chapter outlines the conclusions from the results of the experiments and 

indicates directions for future work. 

5.1 Conclusions 

This thesis has shown that it certainly seems possible to beat the buy-and-hold 

strategy of the S&P500 consistently using GP even when considering the rather high 

transaction costs of 0.5%. This is at odds to previous work where the GP produced 

rules do not consistently beat the S&P500. This is significant because it suggests that 

the markets may not as efficient as they are thought to be and it proves that there is 

value in technical analysis.  

 

In addition, it has been shown that reducing the size of the produced rule does not 

affect performance adversely, but instead, by reducing overfitting actually enhances 

it. In other words, for this application domain at least, simplicity in the size of the 

description improves predictive ability. 

 

We have also successfully shown that it is indeed possible to generate 

comprehensible trading rules that outperform buy and hold strategies. This might be 

an indication that the use of arithmetic operators adds too much complexity to be 

helpful and that the choice of operators is an important consideration.  
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The choice of technical indicators was justified because a large number of generated 

rules used the trend line indicators, the moving averages and previous maxima and 

minima.  

 

We have also seen that the proposed annual evaluation function might be a better 

alternative to the usually used vanilla return maximization function. This function 

generates consistently better performance over a variety of different types of years. 

This is also important in building investor confidence. For example, a rule that made 

a large profit in a 10 year period but lost money consistently in the first 5 years would 

perhaps lose the investor’s trust in the first 5-year period and not be used over the 10-

year period to make up for the loss. Consistent and frequent positive returns are 

important in developing this trust. This is similar in some sense to the evaluation of 

money managers, whose performance is measured by how many years they have beat 

the market in the past. 

 

By separating the buy and sell rules and evolving them separately, we obtain much 

better and certainly more consistent performance. In the comparison between the 

paired rule, random 5 and best 5 methods, there was not much difference but the 

results seem to indicate that the paired rules perform the best. They beat the buy-and-

hold strategy with 99% significance. It appears that in the tradeoff between diversity 

of collaborators and the compatibility of a fixed (set of) collaborator(s), compatibility 

may be more important in this domain. This technique may be applicable to other 
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domains that are traditionally thought of as having a single undifferentiated solution. 

For such domains at least, one should consider using fixed collaborators from the 

other species for fitness evaluation. 

 

5.2 Future Work 

These results suggest various further directions for research:  

 

Staged Priming 

 In the co-evolution schemes, the initial trees we consider are random trees. Instead 

we might perhaps use the rules generated by one of the schemes to jump-start the 

other ones. For example we could use the rules generated by the paired rules 

initializing the evolution of the Best 5 or Random 5 schemes or vice versa. 

 

Combined Best +Random 

We have considered a couple of schemes for co-evolution where the choice of 

collaborators has been Best 5 and Random 5. It is possible to use a best-of both-

worlds strategy by using some best and some random trees as collaborators. This 

might improve performance and maintain diversity. 

 

Competitive Coevolution 

An intriguing possibility is to use competitive coevolution to evolve the technical 

trading rules. In a manner similar to Hillis’ [13] work on sorting networks we could 
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have two species: one of rules and the other consisting of a block of years from the 

training period. Then as the rules evolved to perform well on the set of years, the set 

of years would evolve to become more difficult to perform on. This would lead to a 

rule that did well on a variety of years and this might carry over to the unseen testing 

sample. 

 

Voting schemes 

As an alternative to choosing rules and as suggested by various studies, it might be 

profitable to attempt a voting scheme where different rules vote on the decision to be 

taken. This is in a sense similar to diversification of a portfolio of rules that reduces 

the risk involved. 
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Appendix 

 

Approximate Calculation of number of trees 

For depth=2 

There are 13 indicators apart from the rate-of-change and volume indicators that can 

be directly compared. Not counting the ROC and volume indicators, we have 13C2 

ways of choosing 2 operators and one of 2 comparison operators to choose (‘<’,’>’). 

Therefore for a tree of depth 2 we have at least 156 possible trees. 

 

For depth = n (> 2) 

For trees of depth > 2, the last 2 levels are made up of 2 technical indicators and a 

comparison operators. Also because there are 2^(n-2) such triples and 156 such 

possible triples. The last 2 levels contain 156 ^ (2^(n-2)). The nodes above them are 

made up of Boolean operators (AND, OR, NOT) and there are [2^(n-2)-1] such 

nodes. Ignoring NOT which has only one subtree, there are 2^[2^(n-2)-1] 

combinations for boolean nodes. The total number of combinations is therefore 

 

[156^(2^(n-2))] * [2^[2^(n-2)-1]] 

 

For the values of n=2 to 5 we have. 
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Depth Number of possible trees 

2 156 

3 48672 

4 4737927168 

5 44895907698545000000 

 

It must be noted that to find all trees with maximum depth 5 we have to sum all 

number of possible trees from n=2 to n=5. The large numbers of trees indicate clearly 

that GP will help find an efficient solution quickly and cheaply compared to 

enumeration. For example a GP of population 500 and 150 generations that replaces 

half the population at every generation has to calculate only 500*150/2 = 37500 trees. 
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