
XEM: XML Evolution Management

by

Diane Kramer

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

by

May 2001

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor Micha Hofri, Head of Department

Professor Isabel Cruz, Thesis Reader

Abstract

As information on the World Wide Web continues to proliferate at an astounding rate,

the Extensible Markup Language (XML) has been emerging as a standard format for data

representation on the web. In many application domains, specific document type defini-

tions (DTDs) are designed to enforce a semantically agreed-upon structure of the XML

documents. In XML context, these structural definitions serve as schemata. However,

both the data and the structure (schema) of XML documents tend to change over time for

a multitude of reasons, including to correct design errors in the DTD, to allow expansion

of the application scope over time, or to account for the merging of several businesses

into one. Most of the current software tools that enable the use of XML do not provide

explicit support for such data or schema changes. Using these tools in a changing envi-

ronment entails making manual edits to DTDs and XML data and reloading them from

scratch. In this vein, we put forth the first solution framework, called XML Evolution

Manager (XEM), to manage the evolution of DTDs and XML documents. XEM provides

a minimal yet complete taxonomy of basic change primitives. These primitives, clas-

sified as either data or schema changes, are consistency-preserving. For a data change,

they ensure that the modified XML document conforms to its DTD both in structure and

constraints. For a schema change, they ensure that the new DTD is well-formed, and all

existing XML documents are transformed also to conform to the modified DTD. We prove

both the completeness of our evolution taxonomy, as well as its consistency-preserving

nature. To verify the feasibility of our XEM approach we have implemented a working

prototype system in Java, using the XML4J parser from IBM and PSE Pro as our backend

storage system. We present an experimental study run on this system where we compare

the relative efficiencies of the primitive operations in terms of their execution times. We

then contrast these execution times against the time to reload the data, which would be

required in a manual system. Based on the results of these experiments we conclude that

our approach improves upon the previous method of making manual changes and reload-

ing data from scratch by providing automated evolution management facilities for DTDs

and XML documents.

Acknowledgments

I would like to express my gratitude to my advisor, Professor Elke Rundensteiner, who

guided me through the process of completing my thesis for my Master’s degree, and to

my reader, Professor Isabel Cruz, who also provided valuable input.

My thanks are also due to members of the Database Systems Research Group (DSRG)

and other students of Computer Science at WPI for their help in the design and imple-

mentation of my thesis project. In particular, thanks to Kajal Claypool and Lily Chen for

their work on the SERF project, and to Hong Su for her hard work and tremendous help

with XEM. Also, thanks to Keiji Oenoki for his work on the Java class loader, and to Bin

Liu for his help with some data change primitives.

I must also express my appreciation to my friends and family, who have given me

support and encouragement over the past several years, for their patience during the times

when I should have been paying attention to them, but instead was absorbed in my studies.

They never doubted my ability to achieve this important milestone.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Example of XML Changes . 2

1.3 Problems with XML Management Systems 4

1.4 XML Evolution Manager (XEM) Approach 5

1.5 Outline of Thesis . 6

2 Background 7

2.1 Introduction to XML . 7

2.2 The XML Data Model . 8

2.3 Invariants for the XML Data Model . 11

2.4 The DTD Data Model . 12

2.5 Relationships Between DTD Graphs and XML Data Trees 16

3 Taxonomy and Semantics of Evolution Primitives 19

3.1 Introduction . 19

3.2 Notation Conventions . 21

3.3 Details of Change Primitives . 23

3.3.1 Changes to the Document Definition 24

3.3.2 Changes to an Element Type Definition 27

ii

3.3.3 Changes to the XML Data . 43

3.4 Completeness of DTD Change Operations 49

3.5 Soundness of Change Primitives . 51

3.5.1 Well-formedness . 52

3.5.2 Validity . 54

3.5.3 Consistency . 55

3.5.4 Summary of Soundness . 56

4 XEM Prototype System Design and Implementation 58

4.1 Introduction . 58

4.2 Exemplar Architecture . 59

4.3 System Dictionary and the DTD-Mapper 60

4.4 Application Classes and the XML-Loader 61

4.5 Mapping Model . 62

4.5.1 Create System Dictionary Objects 64

4.5.2 Create Application Classes . 65

4.5.3 Instantiate and Populate Application Classes 66

4.6 Implementation Details . 68

4.6.1 Development Environment . 68

4.6.2 SERF System . 69

4.6.3 Missing Functionality . 71

4.6.4 Primitive Operations . 71

4.6.5 Indexing Algorithm . 74

5 Experiments 76

5.1 Experimental Setup . 76

5.1.1 Introduction . 76

iii

5.1.2 Execution Platform . 77

5.1.3 Data Set Statistics . 78

5.2 Experimental Results . 79

5.2.1 Exemplar System Initialization 79

5.2.2 Compare Two Schema Change Operations 82

5.2.3 Compare Two Data Change Operations 87

5.2.4 Explore Time Efficiency of Primitives 88

5.3 Discussion . 93

6 Related Work 96

6.1 XML Management Tools . 96

6.2 Schema Evolution . 97

6.3 XML and Database Systems . 98

7 Conclusions 99

7.1 Future Work . 99

7.2 Summary . 101

iv

List of Figures

1.1 Article.dtd . 3

1.2 One Valid Sample XML Document Conforming to Article.dtd 3

2.1 Tree Representation of XML Document from Figure 1.2 Conforming to

Article.dtd of Figure 1.1. 11

2.2 Graph Representation of Article.dtd of Figure 1.1 16

3.1 Results of createDTDElement Primitive Operation 25

3.2 Results of destroyDTDElement Primitive Operation 27

3.3 Results of insertDTDElement Primitive Operation 29

3.4 Results of removeDTDElement Primitive Operation 30

3.5 Results of changeQuant Primitive Operation 34

3.6 Results of convertToGroup Primitive Operation 36

3.7 Results of flattenGroup Primitive Operation 37

3.8 Results of changeGroupQuant Primitive Operation 40

3.9 Results of addDTDAttr Primitive Operation 41

3.10 Results of destroyDTDAttr Primitive Operation 43

3.11 Results of addDataAttr Primitive Operation 45

3.12 Results of destroyDataAttr Primitive Operation 46

3.13 Results of addDataElement Primitive Operation 48

v

3.14 Results of destroyDataElement Primitive Operation 49

4.1 Architecture of Exemplar System . 60

4.2 System Dictionary Class Hierarchy . 61

4.3 Application Classes Which Represent XML Data 62

4.4 Contents of Article.dtd File, repeated here from Figure 1.1 64

4.5 Graph Representation of Article.dtd, repeated here from Figure 2.2 64

4.6 Contents of Sample.xml File, repeated here from Figure 1.2 67

4.7 Tree Representation of Sample.xml, repeated here from Figure 2.1 67

5.1 Low End Times for System Initialization 80

5.2 High End Times for System Initialization 81

5.3 Total Times for System Initialization . 81

5.4 System Initialization Time per Element 82

5.5 Executing Incremental Data Set Updates Using insertDTDSubelement

Vs. Complete Reload of Data . 84

5.6 Executing Incremental Data Set Updates Using addDTDAttr Vs. Com-

plete Reload of Data . 84

5.7 Number of Objects Loaded Vs. Number of Objects Changed 85

5.8 Compare Average Load and Primitive Execution Times per Element . . . 85

5.9 Time to Execute addElement Primitive 87

5.10 Time to Execute destroyElement Primitive 87

5.11 Time to Execute addElement Vs. destroyElement 88

5.12 Execution Times for Each Primitive Operation 89

vi

List of Tables

2.1 Functions Used to Define Invariants . 12

3.1 Taxonomy of DTD and XML Data Change Primitives 20

3.2 Notation Conventions used in Taxonomy of Primitives 21

3.3 The DTD Graph Operations. 50

3.4 Required DTD Changes for changeQuant Primitive Operation 53

4.1 Mapping the DTD to System Dictionary Objects 63

4.2 Application Classes Created by DTD-Mapper 66

4.3 Indexing a Content Particle in a DTD Element Definition 75

vii

Chapter 1

Introduction

1.1 Motivation

When the World Wide Web was “invented” between 1989 and 1990, its primary purpose

was the sharing of documents between people, mostly in the scientific and scholarly com-

munities [BL89]. It is well known that the amount of data on the Web has exploded over

the past decade, and increasingly, the information therein is not just for people anymore;

the intended audience is often a computer. Thus, the need for an information interchange

standard has been increasing, as the amount of data grows to the point where humans

have become incapable of processing it all. Fortunately, XML, the Extensible Markup

Language, has emerged to fill this gap [W3C98].

Although XML data is considered to be “self-describing”, most application domains

tend to use Document Type Definitions (DTDs) to specify and enforce the structure of

XML documents within their systems. A DTD defines, for example, which tags are per-

missible in an XML document, in addition to the order in which such tags must appear.

DTDs thus assume a similar role as types in programming languages and schemata in

database systems.

1

Many database vendors, such as Oracle 8i [Net00], IBM DB2 [IBM00a] and Excelon

[Obj99], have recently started to enhance their existing database technologies to accom-

modate XML data by means of storage, retrieval and traversal of XML documents. Many

of them [Net00] assume that a DTD is provided in advance and will not change over

the life of the XML documents. They hence utilize the given DTD to construct a fixed

relational [IBM00a] (or object-relational [Net00]) schema which then can serve as the

structure on which to populate the XML documents that conform to this DTD.

However, change is a fundamental aspect of persistent information and data-centric

systems [Sjo93]. Information over a period of time often needs to be modified to reflect

perhaps a change in the real world, a change in the user’s requirements, mistakes in the

initial design or to allow for incremental maintenance. While these changes are inevitable

during the life of an XML repository, most of the current XML management systems

unfortunately do not provide enough (if any) support for these changes.

1.2 Example of XML Changes

Here we present an example to illustrate changes in XML documents and the related man-

agement issues. Figure 1.1 depicts an example DTD on publications, called Article.dtd

and Figure 1.2 shows a sample XML document conforming to this DTD. We omit the

header information normally found at the top of the XML file as it is not pertinent here.

These sample documents are used for running examples hence forth. Below we discuss

two types of changes. The first is a data update and the second is a schema update.

An example of a data update is the deletion of the editor information, i.e., removal of

� editor name = “Won Kim” � from the XML document. In this case, an XML change

support system would have to determine whether this is indeed a valid change that will

result in an XML document still conforming to the given DTD. The element definition

2

�����������	��
����������	����������������������� "!���#������"��������$�%�&�'
�����������	��
�(�������)�+*�,	-�.�/��0/1&�'
�����������	��
�������� 	!	�2��3	��4"�5&0'

���6/�������7�8��������� 	!��9��$:70.:*�;��	<�=�7�;���."'
�����������	��
�>3���4"�)��?����	@��A�����	@��5&0'
�����������	��
�B?�����@��C�+*�,	-�.�/��0/1&�'
�����������	��
�D���"@��C�+*�,�-�.�/���/1&0'
�����������	��
�9��������	��$��E4!�3	!�F	����G	 5&�H�'
�����������	��
�I4!�3�!�F"����G	 C�J����������K��$���	!	��&0'
�����������	��
�>��$���	!	�I���",	��L"'

���6/�������7�8��>��$���	!��(3���4"��-�.�/���/M*	7N�	,���70��.'

Figure 1.1: Article.dtd

<article>����������	'�O���(��P"!	�������!�3I����3���F��	���Q0�������	'
�������� "!�����$>RTSN$�UAS0'
��3���4"�	'
�?�����@��"'�.�����3����"Q�?�����@��"'
�"���	@��'�V"����4"�"���"Q����	@��'

�"Q�3	��4"�	'
�"Q������� 	!���'
�������� "!�����$>RTSN�"��S0'
��3���4"�	'
�?�����@��"'�����U��	�"Q�?�����@��'
�"���	@��'�;��	3�$���3"@������3��"���"Q����	@��'

�"Q�3	��4"�	'
�"Q������� 	!���'
�����"��������$	'
��4!�3�!�F	����G	 '
���������	'0��!�$��"��3(."���	��W�	@��D8�X@�����4�@��"Q���������	'
����$"���"!��(3���4�>RTSZY!�3(V��K4[S0'��"Q���$"���	!	��'

�"QN4�!�3�!�F"����G" "'
�"Q����"��������$"'

</article>

Figure 1.2: One Valid Sample XML
Document Conforming to Article.dtd

for monograph shows that the editor subelement is REQUIRED to occur exactly once in

the parent element.

<!ELEMENT monograph (title,editor)>

If the editor subelement had a “*” or “?” symbol next to it, this would indicate that

it is optional, but it does not. Since editor is a REQUIRED element in the specified

DTD, this data update should likely be rejected. If such a change were allowed, then the

resulting XML document would no longer conform to the DTD, and a validating parser

would return an error when trying to parse that document [IBM00b].

Next, consider the DTD change where the definition of the element monograph, which

must have an editor subelement, is relaxed such that it is optional to have the editor

subelement. This would be accomplished by inserting either a “*” (meaning zero or

more occurrences) or a “?” (meaning zero or one occurrences) after the word editor in

the definition of monograph. For any such DTD change, an evolution support system

would need to verify that the suggested change leads to (1) a new well-formed DTD and

(2) corresponding changes are propagated to all old XML documents to conform to the

changed DTD. In our example, the constraint we are changing from means “exactly one

3

occurrence”. The single occurrence of the editor subelement in the XML data would still

conform to a new DTD definition with either “*” or “?”. Therefore this leads to a DTD

change requiring no changes to the underlying XML data.

1.3 Problems with XML Management Systems

XML management systems attempt to expose a virtual XML document-view indepen-

dent of the underlying storage system, be it relational, object-based or some special-

ized XML data structure. However in most current XML data management systems

[Net00, IBM00a], evolution support, if any, is still inherently tied to the underlying stor-

age system, to its data model and its change specification mechanism. For example, in

Oracle 8i, if the structured XML documents are stored as object-relational instances, the

user has to write SQL code to perform any type of updates. This requires users to be aware

of the underlying storage system, its data model, and the mapping mechanism between

XML, DTD and the underlying storage model. It prevents users from expressing desired

transformations independent of the underlying data management system. It is likely to

result in errors in terms of mismatches between desired XML transformations and what

actually changes in the system. In addition, the specification of transformations required

in a system may induce extensive re-engineering work either for migration to another

system or integration of several systems. In short, the development of a standard XML

change specification and support system is necessary.

Moreover, as illustrated above, structural inconsistency may arise in the XML data

management system. Hence, it is critical to detect in advance whether an update is a valid

operation that preserves the structural consistency of both XML documents and DTDs

[ALP91, FS00, LC00, Ler00]. However, this problem is ignored in most existing XML

data management systems and is not directly treated by the tools [Gro, Inf00] specially

4

designed for transforming XML documents from one format to another.

1.4 XML Evolution Manager (XEM) Approach

In this work we propose a general XML evolution management system that provides uni-

form XML-centric data and schema evolution facilities. To the best of our knowledge,

XEM is the first effort to provide such uniform evolution management for XML docu-

ments. A preliminary version of this thesis was published in [SKC
�

01]. In brief the

contributions of our work are:

1. We identify the lack of generic support for change in current XML data manage-

ment systems such as [Net00, IBM00a, Obj99].

2. We propose a taxonomy of XML evolution primitives that provides a system inde-

pendent way to specify changes both at the DTD and XML document level.

3. We identify three forms of system integrity which must be maintained during evo-

lution in order for the change support system to be sound: well-formed DTDs and

XML documents which conform to the XML language specification; consistent

XML documents which conform to the invariants in the data model; and valid XML

documents which conform to the constraints specified in the associated DTD.

4. We analyze the semantics of evolution operations and introduce the notion of pre-

and post-conditions to ensure that the above forms of system integrity are indeed

maintained during evolution. We use pre-conditions to determine whether a change

should be vetoed because it would violate some form of system integrity, and we

use post-conditions to assure that after any change is made to the DTD, appropriate

data changes are also propagated to the XML documents so that they conform to

the changed DTD.

5. We show that our proposed change taxonomy is complete and sound.

5

6. We develop a working XML Evolution Management prototype system using a Java

object server (PSE Pro, by Object Design, Inc.) to verify the feasibility of our

approach.

7. We conduct experimental studies to assess the relative costs associated with differ-

ent change operations, and analyze the dependency between specific implementa-

tion choices made and the resulting impact on change performance.

1.5 Outline of Thesis

The remainder of this thesis proceeds as follows. Chapter 2 provides background infor-

mation on XML documents and DTDs, and shows how we model these constructs in our

system. In Chapter 3 we present our taxonomy of evolution primitives, and provide proofs

showing that the taxonomy is both complete and sound. Chapter 4 reviews our prototype

design and implementation. In Chapter 5 we present our experimental studies, including

tests run on our prototype system and the results from those tests. Chapter 6 discusses

other related research upon which we base our work. And finally, in Chapter 7 we present

our conclusions, including future areas of study that could be taken up to continue this

research, and a summary of the main contributions of this thesis.

6

Chapter 2

Background

2.1 Introduction to XML

The Extensible Markup Language (XML) is a subset of the Standard Generalized Markup

Language (SGML), first published as a recommendation by the World Wide Web Consor-

tium in February 1998 [W3C98], and that continues to be updated to this day. The most

recent version of the XML language recommendation is described in [W3C00].

Definition 1 A well-formed XML document is one which syntactically conforms to the

XML language specification as defined in [W3C00].

In order to define the structure, content and semantics of an XML document, the

document may be accompanied by either an XML Schema [W3C01b] or a Document

Type Definition (DTD), the format of which is also described in [W3C00]. Either of these

may be used to specify constraints on an XML document, such as which element and

attribute types are allowed, whether the elements and attributes are required or optional,

and the types of values the elements and attributes may take on.

Definition 2 A valid XML document is one which conforms to the constraints specified

in either an XML Schema or a DTD.

7

XML Schemas provide more powerful features for defining the structure and content

of an XML document than do DTDs. For example, an XML Schema can specify ranges

of acceptable values for an attribute, i.e., a domain, whereas a DTD cannot. However, the

format of an XML Schema is still in the preliminary stages of a proposed recommenda-

tion, while the format of a DTD is a more stable, better defined standard, being derived

directly from SGML, which dates back to 1986 [Gol91]. For this thesis, therefore, we

chose to focus on DTDs for specifying constraints on XML documents, rather than XML

Schemas. However, our results should be transferable to XML Schemas, possibly requir-

ing some extensions to also handle the more specific data types and value domains which

are possible to specify in an XML Schema.

According to the syntax defined in [W3C00], an XML document specifies its corre-

sponding DTD either “in place” at the top of the XML document, or as a reference to an

external resource. In this latter case, the DTD is contained in a separate document file, and

referenced in the XML file by a URI - Uniform Resource Identifier. Our XML Evolution

Management system assumes that we are operating on a well-formed XML document (or

a set of them), which is also valid, meaning it conforms to its corresponding DTD.

In the remainder of this chapter we describe our data models for capturing XML

documents and DTDs. We first review each of these constructs, defining the constraints

which the models must represent, and then show how the two models relate to each other.

2.2 The XML Data Model

XML is inherently an ordered tree-structured representation format, where XML docu-

ments are composed of nested tagged elements. Each tagged element has a sequence of

zero or more attribute/value pairs, and an ordered sequence of zero or more sub-elements.

These sub-elements may themselves be tagged elements, or they may be “tag-less” seg-

8

ments of text data. A well-formed document may have an associated schema, derived

from one or more XML Schema documents; it may have an associated DTD; or it may

have no schema, then called “schema-less”. In our work we assume that all XML docu-

ments have an associated DTD.

An instance of the XML data model represents a single complete XML document. The

model is a node-labeled, ordered tree-structured representation that includes the concept

of node identities. Multiple XML documents are represented by multiple instances of the

model. We use the following notation to describe our model of an XML data tree.

Definition 3 An XML data tree
�

is a three tuple with
���������
	���������
�����������������

, where
�

is the set of labeled nodes in the tree,
	���������
���

is a function which returns the direct

descendents of a node in an ordered sequence,
	��������� �!�#"$�&%('

, where
'

is a sequence

of nodes from
�

; and
���)�����

is the labeling function which returns the node’s identity,
����������"$��%+*

, where
*

is the set of node identities.

According to [W3C01a], the basic concept in the XML data model is a Node, which

has one of eight possible identities: document, element, attribute, value, namespace, pro-

cessing instruction, comment or information item. A node is thus defined as the disjoint

union of these eight types. In this thesis we focus on the following subset of node types

which make up the set
*

.

Definition 4 The set of possible node identities
*

is defined as:
*

= , DocNode - ElemNode - AttrNode - ValueNode . 1

An XML document is represented by a unique DocNode node. We use the function

getDocNode to obtain this node from the XML tree, getDocNode : T
% /

, where

T is the XML data tree, and
/

is the unique DocNode in the set of nodes N such that
1U1 0 U2 denotes the disjoint union of values with types U1, U2.

9

��������� � / � �
DocNode. A DocNode contains a URI reference value to the corresponding

DTD and a non-empty ordered sequence of children nodes. The function getURI returns

the string value corresponding to the DTD reference from the DocNode, getURI :
/ %

�
	��� /��
, and the sequence of children nodes returned by the function children(

/
) must

contain exactly one reference to an ElemNode.

An ElemNode contains a tag value for the element’s name, an ordered sequence of

children nodes, and a reference to the node’s type (DTD element definition). The function

getTag returns the element’s name, getTag : N
% ��	��� /��

, and the ElemNode’s

children is an ordered sequence of ElemNode, AttrNode and ValueNode nodes.

We use the function typeOf to map an ElemNode to its DTD definition, typeOf :

N
% � �����������

, where
� �����������

is the set of DTD element definitions described in

Section 2.4.

An AttrNode contains a name and a single ValueNode child, along with a ref-

erence to the node’s type (DTD attribute definition). We use the function getName to

return the attribute’s name, getName : N
% �
	��� /��

. The function typeOf maps an

AttrNode to its DTD definition, typeOf : N
% � 	�	�� �����

, where
� 	�	�� �����

is the set

of DTD attribute definitions described in Section 2.4.

A ValueNode may be a child of either an ElemNode or an AttrNode node, and

the function getValue returns the actual string value stored in the ValueNode, get-

Value : N
% �
	��� /��

.

Figure 2.1 illustrates an XML data tree which represents the XML document of Figure

1.2. Although we omit numbers on the edges to simplify the diagram, the order of the

nodes is captured in the model via the children function.

10

article

title author author

�����
Evolution
Manager

id idname name

dk er

first last first last

related

monograph

title editor

name
�����
	���

Database
Systems

Won Kim

Diane Kramer Elke Rundensteiner

ElemNode

AttrNode

ValueNode

����������� ������� � !"���#� �$� � %���&'��� (

Document

DocNode

Figure 2.1: Tree Representation of XML Document from Figure 1.2 Conforming to Arti-
cle.dtd of Figure 1.1.

2.3 Invariants for the XML Data Model

In addition to the constraints specified in an XML Schema or DTD, the XML Query Data

Model [W3C01a] defines a set of invariants which must also be satisfied in order for an

XML document to be valid.

Definition 5 A consistent XML document is one which satisfies all invariants of the XML

Data Model.

Here in Table 2.1 we first define a set of functions for the XML data tree needed to

describe the invariants, and then we summarize the set of invariants for the XML Data

Model defined in [W3C01a].
) Node Identity: The function ref is one-to-one and onto, i.e., ref equal (ref(n *),

ref(n +)) = TRUE holds if and only if n * and n + are the same node.

11

Function Name Mapping Description
ref(n) N � N Reference to a node n which uniquely identi-

fies the node
ref equal(n � ,n �) N,N � Boolean Boolean function which returns TRUE only if

n � and n � are the same node
parent(n) N � N Inverse of children function, returns the

parent of the node n
attributes(n) N ��� Specialized children function which returns

only those children of type AttrNode

Table 2.1: Functions Used to Define Invariants

) Unique Parent: The parent accessor, parent(n), is a many-to-one function, i.e.,

a node has exactly one parent but many nodes may share one parent.

) Parent-child Relationships: Given two ElemNode references ref(p) and ref(n),

ref equal(parent(n),ref(p)) = TRUE holds if and only if ref(n) is

in children(p). Similarly, given a DocNode reference ref(d) and a node

reference ref(n), ref equal(parent(n),ref(d)) = TRUE holds if and

only if ref(n) is in children(d). Finally, given a AttrNode reference

ref(a) and a node reference ref(n), ref equal(parent(a),ref(n))

= TRUE holds if and only if ref(a) is in attributes(n).

) Duplicate-free list of Children: Given a node n and any two node references r *

and r + at distinct positions in the sequence children(n), ref equal (r * ,

r +) = FALSE must hold, i.e., the ordered list of children nodes is duplicate free.

2.4 The DTD Data Model

In order to enforce constraints on XML elements and attributes and on the structure char-

acterizing how instance elements in an XML document relate to each other, we assume

that all XML documents have an associated DTD [W3C00]. A DTD allows properties or

constraints to be defined on XML elements and attributes. In order to distinguish an ele-

12

ment specification in a DTD from an element instance in an XML document, we use the

term “element definition” to refer to a DTD element, as opposed to “element instance”

in an XML document. Similarly, “attribute definition” refers to a DTD attribute spec-

ification, as opposed to “attribute instance” in an XML document. In a DTD, element

definitions indicate the tag names to be used in a conforming XML document. Element

definitions can in turn contain subelement definitions or attribute definitions or be empty.

The structure of an element definition is defined via a content-model built out of op-

erators applied to its content particles. Content particles are either simple subelement

definitions or groups of subelement definitions. Groups may be sequences indicated by

“,”, such as (a,b) or choices indicated by “ - ”, such as (a - b). For every content particle, the

content-model can specify its occurrence in its parent content particle using regular ex-

pression operators such as
� ��� ���

. The semantics of these operators are defined below in

the description of the Quantifier node. Particular cases of the content-model have the fol-

lowing names: EMPTY for an element with no content particles; PCDATA for an element

that can contain only text; COMPLEX for an element that contains children subelements;

and ANY for an element that can contain any of the above content particles. When the ele-

ment can contain content particles together with text, the content-model is called MIXED

for mixed content.

A DTD can be modeled as a directed ordered graph with nodes and edges. The direc-

tion of an edge is from a parent node to a sequence of zero or more children. We use the

following notation to describe our model of a DTD graph.

Definition 6 A DTD graph � is a three-tuple � � ��� ��	��������� �!�������)� �!���
, where

�
is the set

of nodes in the graph,
	�� ���� �
�!�

is the edge function which returns an ordered sequence of

direct descendent nodes,
	�� ���� �
�!� " � % '

, where
'

is a sequence of
�

; and
���)� �!�

is

the labeling function representing a node’s properties, such as its name,
���)����� "$� % �

,

where
�

is the set of properties a node can take on.

13

In addition to the children function above which returns a sequence of nodes, we

define another edge function to return a single node. childAt(pNode,pos) returns

the single child node in the children sequence of the parent node pNode at position pos,

childAt : (N, pos)
%

N.

Since a node’s label represents a set of properties, the unqualified labeling function

returns a set of key-value pairs which could be iterated over to access the various proper-

ties and their corresponding values. To refer to a specific property, we use a qualification

on the label function. For example, we use the qualified notation label(
/
).Name to

denote the Name property (key) of node
/

, where this function returns
/

’s name (value).

Each node
/ � N is guaranteed to contain an identity as one of its properties. The set

of possible identities includes ElemDef, AttrDef, GroupDef, Quantifier, Root, and Prim-

itive data type nodes. We group these identities into three high-level categories below,

and indicate which properties (in addition to the identity) are available from the labeling

function for that node.

1. Tag nodes:

(a) ElemDef: Each element definition node e represents an element type. label(e)= �

� � ��� ������� �
� where

� � ���
is the unique tag name for element definition e,

and
����� �

is the content type, such as EMPTY, COMPLEX, ANY, PCDATA

or MIXED.

(b) AttrDef: Each attribute definition node a represents an attribute type. label(a)= �

� � ��� ������� � � ����� ����� � � �����	� ���
� where

� � ���
is attribute a’s name,

����� �

is a’s content type, i.e., CDATA, ID, IDREF, IDREFS, ENUMERATION etc.,
� ��� ����� �

is a’s default type, e.g., #REQUIRED, #IMPLIED or #FIXED, and
� ���	� ���

is a’s default value, if any.

2. Constraint nodes:

14

(a) GroupDef: Each group definition node g contains a group of children content

particles. label(g)= � ����� �
� , where

����� �
indicates how g’s direct chil-

dren are grouped together, that is, by sequence (i.e., label(g).Type= �

� ���
�) or by choice (i.e., label(g).Type= � � - � �).

(b) Quantifier node: Each quantifier node q has only one child. The node q

indicates how many times that child can occur in its parent, that is, the parent

of the node q. label(q)= � ����� �
� , where

����� �
can be *, + or ?, with the

following semantics:

i. label(q).Type= � � ���
� : child is repeatable but not required

ii. label(q).Type= � � ���
� : child is repeatable and required

iii. label(q).Type= � � � �
� : child is neither repeatable nor required

The set of nodes with identities including ElemDef nodes, GroupDef nodes and

Quantifer nodes are all called content particle nodes. In a DTD, the absence of a

quantifier means the content particle must appear exactly once. Correspondingly

in the DTD graph, the absence of a quantifier node between two non-quantified

content particle nodes means the child node must appear exactly once in the parent.

3. Built-in nodes:

(a) Root node: The dtdRtNode node is the entry for the DTD graph. All the

nodes in a DTD graph can be reached by traversing the graph starting from

this node. A dtdRtNode node has no label properties other than its identity.

(b) Primitive data type node: A PCDATA node p represents a textual value.

label(p)= � � �������
� . The parent of a PCDATA node must be an element

definition node, indicating a content type of ANY, PCDATA or MIXED.

Figure 2.2 illustrates a DTD graph representing the Article.dtd document of Figure

1.1.

15

article

related-work

title

author

firstname

name

lastname

monograph

dtdRtNode

,

+ ?

#PCDATA

editor

*

name

,

title

,

built-in data node element node

virtual element

attribute node

parent/child relationship

constraint node

id
Id

REQUIRED

CDATA

IMPLIED

Figure 2.2: Graph Representation of Article.dtd of Figure 1.1

2.5 Relationships Between DTD Graphs and XML Data

Trees

An XML data tree is related to the DTD graph of the DTD to which the XML data

conforms by the URI in the DocNode of the XML tree. The function related(
�

)

= � defines this relationship where
�

is the DTD graph and � is the set of XML data

trees which correspond to that graph
�

. Each element and attribute node in the XML tree

corresponds to a definition for that element/attribute in the DTD graph. In order to ensure

that the XML data does not violate any constraints indicated in the corresponding DTD,

when operating on an element or attribute instance in the XML data, we need a way to

refer back to the definition of the corresponding content particle in the DTD. In this sense,

16

the DTD content particle definition provides typing information which is needed during

transformation of the XML data. Similarly, when operating on an element or attribute

definition in the DTD, we need a way to refer to the corresponding data instances in the

XML tree(s). We therefore define two relationships between the XML data tree nodes

and the DTD graph nodes for this purpose.

First, to find the node in the DTD graph
�

which contains the DTD definition for

a data node instance in the XML tree, we define the function typeOf(dataN)=def,

which provides a mapping from a node in an XML data tree
� � � to a node in the

DTD graph
�

, typeOf :
� � % � �

, where
� �

is the set of nodes in the XML tree
�

, and
� �

is the set of nodes in the DTD graph
�

. Here dataN denotes the data

node instance in the XML tree, and def refers to the corresponding DTD type definition.

dataN can either be an element or attribute data node instance in
�

. In the former

case, def is an element type definition in
�

, while in the latter case, def denotes the

corresponding attribute type definition in
�

. The function typeOf is undefined for other

types of nodes in the XML tree. In Section 2.2 where we discuss our XML data model, we

define both ElemNodes and AttrNodes as containing a reference to the node’s type.

This provides the mechanism by which we can retrieve the DTD definition for a given

data node instance.

Second, to find all data node instances which correspond to a given DTD definition,

we define the function ext(def)=dataNodes, which provides the reverse mapping:

from a node in the DTD graph
�

to a set of nodes in the XML data tree(s), ext :
� � %

� �
, where

� �
is the set of nodes in the DTD graph

�
and

� �
is the set of nodes

in the XML data tree
�

. Here def denotes a type definition in the DTD graph
�

, and

dataNodes is the set of all instance nodes in the XML data tree
�

(with
� � �) of

type def. As above, def may denote either an element or an attribute type definition in

the DTD graph
�

. In the former case, dataNodes is the set of all element data instance

17

nodes in the XML data tree
�

corresponding to that element type, whereas in the latter

case, dataNodes is the set of all data attribute nodes in
�

which correspond to the

DTD attribute definition. The function ext is undefined for other types of nodes in the

DTD graph. Again, the reference to the node’s type in the XML data tree(s) provides the

mechanism for this mapping.

18

Chapter 3

Taxonomy and Semantics of Evolution

Primitives

3.1 Introduction

In this section we present our proposed taxonomy of evolution primitives and define their

semantics. The primitives fall into two categories: those pertaining to the DTD, and those

pertaining to the XML data. Since our primitive operations are intended to manage evolu-

tion of DTDs and XML data, we do not provide explicit operations to create a new DTD

graph or XML data tree. Rather, we assume that the management system is initialized

with a valid XML document (or a set of them), from which we find and load the asso-

ciated DTD. The DTD graph is thus created during system initialization as is the initial

XML data tree (or trees). Our evolution primitives then operate on that loaded data. In

particular, the DTD primitives operate on the DTD graph, while the XML data primi-

tives operate on the XML data trees. Our goal is to provide a set of primitives with the

following characteristics:

19

) Complete: While we aim for a minimal set of primitives, at the very least all

valid changes to manipulate DTDs and XML data can be specified by one or by a

sequence of our primitives.

) Sound: Every primitive is guaranteed to maintain system integrity in terms of well-

formedness of both DTD and XML data, and validity in terms of consistency be-

tween DTD and XML data. We ensure that the execution of primitives violates

neither the invariants nor the constraints in the content model.

We list our complete taxonomy of primitives for DTD and XML data changes in Table

3.1. We then give a more detailed explanation of the primitives and provide examples of

their use.

DTD Operation Description
createDTDElement(e, t) Create element with name e and content type t
destroyDTDElement(e) Destroy element with name e
insertDTDElement(E,i,q,d) Add element E at position i to parent element with quantifier q

and default value d
removeDTDElement(E,i) Remove sub-element at position i in parent E
changeQuant(E,i,q,d) Change quantifier of element E at position i in parent to quanti-

fier q with default value d
convertToGroup(start,end,gt) Group sub-elements from position start to position end in parent

into a group of type gt
flattenGroup(i) Flatten group at position i in parent element, converting children

to simple sub-elements
changeGroupQuant(i,q) Change quantifier of group at position i in parent element to q
addDTDAttr(a,at,dt,dv) Add attribute with name a to parent element with type at, default

type dt, and default value dv
destroyDTDAttr(a) Destroy attribute with name a from parent element

XML Data Operation Description
addDataAttr(a, av) Add an attribute with name a and value av to parent
destroyDataAttr(a) Destroy attribute with name a
addDataElement(de, i) Add element de at position i
destroyDataElement(de, i) Destroy element de at position i

Table 3.1: Taxonomy of DTD and XML Data Change Primitives

20

3.2 Notation Conventions

Since the DTD and XML data models are similar, we require some notation conventions

to distinguish between various aspects of the model under consideration. In the back-

ground section in Chapter 2, in keeping with current trends in the literature, the data

model for an XML tree uses the term nodes, while in descriptions of the DTD graph it

is natural to refer to parts of the graph using the term nodes as well. To avoid confusion

here, we continue to refer to nodes in the DTD graph as nodes, while we use the term

vertices to refer to nodes in the XML data trees. We provide Table 3.2 as a guide to the

notation used in the remainder of this chapter.

Notation Description
G Generic DTD graph
N Set of nodes in DTD graph
n � N Single node in DTD graph
children(n) = C Function returning ordered sequence of children of node n in DTD graph
childAt(n,pos) = c Function returning single child of node n in DTD graph at position pos
numCh(n) = i Function returning number (i) of children of node n in DTD graph
label(n) Function returning set of key-value pairs of node n in DTD graph
dtdRtNode Root node of DTD graph
e DTD Element name (string) used as function parameter
E Node in DTD graph referring to an Element definition
a DTD Attribute name (string) used as function parameter
A Node in DTD graph referring to an Attribute definition
Grp Node in DTD graph referring to a Group definition

�
= related(G) Set of XML data trees corresponding to DTD graph G

T Single instance of XML tree
V Set of vertices in XML tree
v � V Single vertex in XML tree
children(v) = C Function returning ordered sequence of children of vertex v in XML tree
childAt(v,pos) = c Function returning single child of vertex v at position pos
numCh(v) = i Function returning number (i) of children of vertex v in XML tree
label(v) Function returning label of vertex v in XML tree
DE = ext(E) Set of element vertices corresponding to DTD element definition E
DA = ext(A) Set of attribute vertices corresponding to DTD attribute definition A
de Single vertex corresponding to instance of data element
da Single vertex corresponding to instance of data attribute

Table 3.2: Notation Conventions used in Taxonomy of Primitives

21

While we distinguish between nodes in a DTD graph and vertices in an XML data tree,

the functions applicable to the various data types have the same names. For example, we

use children, childAt and label, both in terms of nodes in the DTD graph and vertices in

the XML trees. The reasoning behind this is that the functionality for these operations

is the same. In both cases, the children function returns an ordered sequence of either

nodes or vertices. The childAt function returns either a single node or a single vertex.

And the label function returns properties which can be used to identify the node or vertex.

We assume that there will be no confusion here, as the meaning of the particular function

should be clear within the context in which it is used.

We use standard set notation for items in a set, such as nodes in the DTD graph and

vertices in the XML tree. We introduce here notation needed for the ordered sequences of

children. We use angled brackets “ � � ” to denote a sequence, and we apply the following

operations to sequences:

) “ � C � + n” means add item n to the end of sequence C. Assume p is the parent

node (or vertex) containing the children sequence C. We use the function numCh(p)

= i to determine the number of current children of p in the sequence C, and then we

add n to position i+1.

) “ � C � + (n, pos)” means add item n at position pos to sequence C. All other items

in the sequence C in positions greater than pos will have their positions incremented

by one.

) “ � C � - n” means remove the first occurrence of item n from wherever it is found

in sequence C. We iterate over the items in the sequence C until we find n, and then

remove only that occurrence of n from C. If any other items remain in the sequence

in positions after n, those items will each have their positions decremented by one.

) “ � C � - (n, pos)” means remove item n at position pos from the sequence C. All

22

other items in the sequence C in positions greater than pos will have their positions

decremented by one.

) “ � C � + (� N � ,pos)” means insert each item in the sequence N into the sequence

C, starting at position pos. For each n in the sequence N, this operation functions

the same as “ � C � + (n,pos+i)”, where i starts at zero for the first n and increments

for each additional item n in the sequence N.

) “ � C � - � N � ” means remove each item in the sequence N from the sequence C.

For each n in the sequence N, this operation functions the same as “ � C � - n”.

These operations may be applied sequentially to the same sequence, where the prece-

dence is from left to right, i.e., “ � C � - n * + n + ” means we first remove n * from � C �

producing � C * � as an intermediate result. Then we insert n + into � C * � , producing

� C + � as the end result. Finally, we use standard set notation on sequences only to de-

termine membership, i.e., “n � � C � ” means that the item n exists as a member of the

sequence C at some position at least once, and “n
�� � C � ” means the item n does not

exist at all as a member of the sequence C.

3.3 Details of Change Primitives

In this section, we define the precise syntax and semantics of each DTD and XML change

primitive. We assume that the input DTD graph G * and input XML data trees � * are well-

formed, valid and consistent to begin with. To ensure that the targeted output DTD graph

G + and XML data trees � + remain well-formed, valid and consistent after the applica-

tion of our primitive operations, pre- and post-conditions are enforced on each change

primitive. This means that the primitive will not be executed unless the corresponding

pre-conditions are satisfied, and changes will not be committed unless the corresponding

23

post-conditions are accomplished. Post-conditions are given in the descriptions below in

terms of resulting DTD and XML data changes that are necessary in order to maintain

system integrity for the given change operation.

In the following descriptions, change primitives are applied to the input DTD graph

G * = (N * , children * , label *) and produce the DTD graph G + = (N + , children + , label +)

as output. When a DTD change requires some change to the XML data, we apply the

changes to the set of XML data trees � = related(G), which correspond to the DTD

graph G using the related function defined in Section 2.5. For the XML data trees,

change primitives are applied to the input set of XML trees � * , where each tree in the set

T * � � � * = (V * � , children * � , label * �) and produce a new set of XML trees � + , with T + � � � +

= (V + � , children + � , label + �) as output.

3.3.1 Changes to the Document Definition

Primitive 1: createDTDElement

Syntax: G.createDTDElement(String e, ElemType t)

Semantics: Create a new DTD element definition node named
�

with content type
	

for

the DTD graph
�

.

Preconditions: No existing element definition node with name
�

has been defined in the

DTD graph
�

, i.e.,
� / � �

*
� ��� � ���

*
� / ��� � ����� �� �

. ElemType
	

must be either
����� �	�

or
��
 � � � �

.

Resulting DTD Changes: A new DTD element definition node
�

with name
�

will

be created with content type
	
, and will be added to the end of the sequence of chil-

dren of the root node. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ����� ���

+
�

where
�

+
�

�
*�� �

,
��� ��� � � /

+
� � 	 ��� 	 ��� ��� �

=
��� ��� � � /

*
� � 	 ��� 	 ��� ��� �

+
�

,
��� � ���

+
� � ��� � � ��� � �

,

and
����� ���

+
� � ��� ��� � � � 	

.
� / � �

*�� � 	 ��� 	 ��� ��� ���� ��� � � /
+
� /�� ����� ��� � � /

*
� / �

, and
��� � �

* ,
����� ���

+
� � � � ���������

*
� � �

.

24

Resulting Data Changes: Since this primitive only creates a top-level DTD element

definition node, and the element is not (yet) a subelement of any other element, we call

this a “dangling” top-level element. At this point instances of
�

cannot exist in the data,

i.e.,
� � 	 � � � ���

, until it is assigned as a child subelement to some other element in the

DTD graph. Therefore, this primitive causes no changes to the XML data, that is, � + =

� * .

Example 1 We add a DTD element definition to represent the concept of an author’s

middle initial as follows:

document.createDTDElement("middle", EMPTY);

Execution of this primitive operation has the effect of adding a new dangling top-level

element definition for the middle initial, as shown in Figure 3.1 on the Article DTD of

Figure 1.1.

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* �,�-�	�
�
�	�
��.8��+9����-C
�"�	D&�E�&�"�	D&�F)+*
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* L�M�N	O
N�P�N
Q�RTS�U�V�V	W
XYN�P�Z�R
[�\
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*
�,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*

a ��b�c"?�� 5�b��
�"?

Figure 3.1: Results of createDTDElement Primitive Operation

Primitive 2: destroyDTDElement

Syntax: G.destroyDTDElement(String e)

Semantics: Destroy the element definition node named
�

from the DTD graph
�

.

Preconditions: An element definition node named
�

must exist in the DTD graph
�

:
d � � �

* such that
� ��� ���

*
� � ��� � ����� � �

. The element definition node
�

named
�

in
�

must be a non-nested element node whose content model is either EMPTY or composed

of only PCDATA, i.e.,
����� ���

*
� � ��� ��� � � � ����� �	�

or
����� ���

*
� � ��� ��� � � ����
 � ��� �

.

25

The element definition node
�

must also be a “top-level” element, meaning it cannot exist

as a child of any node other than the root:
� / � �

* -
� 	 � � 	 � � ���

,
� �� ��� ��� � � /

*
� / �

.

Resulting DTD Changes: The element definition node
�

with name
�

will be removed

from the root node of the DTD graph
�

. We get a graph
�

+ = (
�

+ ,
��� ��� � � /

+ ,
����� ���

+)

where
�

+ =
�

* -
�

,
��� ��� � � /

+ (
� 	 ��� 	 ��� ���

) =
��� ��� � � /

* (
� 	 � � 	 � � ���

) -
�

, and
� / � �

*

-
� 	 � � 	 � � ���

,
��� ��� � � /

+
� / �

=
��� ��� � � /

*
� / �

.
��� � �

* -
�

,
����� ���

+
� � �

=
���������

*
� � �

.

Resulting Data Changes: In order for the preconditions above to be satisfied, there must

be no instances of element
�

in the XML data trees, i.e.,
� � 	 � � ��� �

. Since
�

cannot

exist in the DTD graph
�

as a child of any node other than the root, there are only two

possibilities for the relationship between
�

in the DTD graph and instances of
�

in the

XML data trees � . First, the element definition node
�

in
�

could correspond to the

only child of the top-level DocNode in the XML trees � * . In our running example,
�

would correspond to the article node in Figure 2.2, and instances of
�

in the XML data

trees would correspond to the single child of the DocNode as shown in Figure 2.1. In

this case destroying the element definition node
�

would cause the DTD graph G to be

empty, triggering the removal of all corresponding XML data trees for that graph, i.e., � +

=
�
. Second, the element definition node

�
could be a “dangling” top-level element in

the DTD graph other than the one corresponding to the single child of the DocNode. In

this case, since it is not a child subelement of any other node, instances of
�

cannot exist

in the data. Therefore this primitive would cause no changes to the XML data, that is, � +

= � * .

Example 2 We destroy the dangling top-level element definition representing the concept

of an author’s middle initial, which was created above in Example 1 as follows:

document.destroyDTDElement("middle");

Execution of this primitive operations has the effect of restoring the Article DTD of Ex-

ample 1 to the original form of Figure 1.1.

26

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* �,�-�	�
�
�	�
��.8��+9����-C
�"�	D&�E�&�"�	D&�F)+*
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
L M1N	O
N�P�N�Q�RTS�U�V�V	W
X � N�P�Z�R�[��&\ �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�*
a ��b�c"?�� 5�b��
�"?

Figure 3.2: Results of destroyDTDElement Primitive Operation

3.3.2 Changes to an Element Type Definition

Primitive 3: insertDTDElement

Syntax: p.insertDTDElement(Elem E, int pos, QuantType q,

String d)

Semantics: Insert the element definition node
�

into the children sequence of the parent

node
�

at position
� ���

, with quantifier � , and default value
�
.

Preconditions: An element definition node
�

must already exist in the DTD graph
�

which contains the parent node
�

:
d � � �

* . The quantifier � must have one of the

following values: , STAR - PLUS - QMARK - NONE . . See Section 2.4 for the definitions

of these constraint values. If the quantifier � signifies a required constraint and
�

is a

PCDATA element, i.e.,
���������

*
� � ��� ��� � � � ��
 � � � �

, then the default value
�

must not

be null.

Resulting DTD Changes: An existing element definition node
�

will be added to the

children sequence of the parent element node
�

at position
� ���

. We get a graph
�

+ =
� �

+ ,
��� ��� � � /

+ ,
� ��� ���

+
�

where
�

+
� �

* , and
��� ��� � � /

+
� � �

=
��� ��� � � /

*
� � � ��� � � � ��� �

.
� / � �

* � �
,
��� ��� � � /

+
� /�� ����� ��� � � /

*
� /��

, and
��� � �

* ,
��� � ���

+
� � � � � ��� ���

*
� � �

.

Resulting Data Changes: If � signifies a required constraint
� ���������

*
�
�
��� � � � � � , STAR,

NONE .), then a new data element vertex
���

will be created with default value
�

for each

instance of the parent element definition node
�

. We find the extent of the parent node
�

,

27

� � � � � 	 � � � , and then for each vertex
� � � � �

, we add a new vertex
���

to the children

sequence of
� �

at position
� ���

. We find the set of input XML data trees corresponding to

the DTD graph G using � * = related(
�

). For each
�

* � � � * , we get a new tree
�

+ � =

(
�

+ � , ��� ��� � � / + � , ����� ��� + �) where
�

+ � � �
* � � ��� , and

���������
+ � � � � � �

ElemNode. For each

parent vertex
� � � � �

,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � +
� ��� � � ��� �

.
� � � �

* � � � �
,

��� ��� � � /
+ � � � � =

��� ��� � � /
* � � � � , and

��� � �
* � , ��������� + � � � �

=
� ��� ���

* � � � �
.

Example 3 First we create the middle initial element, as was done above in Example 1,

except this time we use type PCDATA, rather than EMPTY.

document.createDTDElement("middle", PCDATA);

We then use the insertDTDElement operation to insert the middle initial element into the

parent name element.

name.insertDTDElement("middle", 1, QMARK, null);

Since a middle initial is not normally required, we pass QMARK as the quantifier value

which represents an optional constraint, and null for the default value. As a result,

no data changes are required for this operation. However, after these operations have

been completed, appropriate individual middle initial values could then be inserted into

the data when so desired. Execution of these operations has the effect of first creating

a new top-level element definition for the middle element, and then inserting that as a

subelement into the name parent element definition. This effect is illustrated in Figure

3.3 on the Article DTD of Figure 1.1.

28

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* L�M�N	O
N�P�N
Q�R ��� S�X ��� U����
	�� S�U�V�V�W�X���+W � �
	 �&\
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* L�M�N	O
N�P�N
Q�RTS�U�V�V	W
X ��� Z����
��R�� �&\
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*
�,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*

a ��b�c"?�� 5�b��
�"?

Figure 3.3: Results of insertDTDElement Primitive Operation

Primitive 4: removeDTDElement

Syntax: p.removeDTDElement(String e, int pos)

Semantics: Remove the element definition node
�

with name
�

from the children se-

quence in the parent element definition node
�

at position
� ���

.

Preconditions: An element definition node named
�

must exist in the DTD graph G

which contains the parent definition node
�

:
d � � �

* such that
����� ���

*
� � ��� � � ��� � �

.

The parent element definition
�

must contain the subelement
�

in its children sequence

at position
� ���

, i.e.,
��� ��� � 	 � � � � ��� � � �

. The element
�

must be a non-nested element

node, meaning it may not have any children subelements of its own:
��� ��� � � /

*
� � � � �

.

Resulting DTD Changes: The element definition node
�

is removed from position
� ���

in

the children sequence of the parent node
�

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* and
��� ��� � � /

+
� � � ����� ��� � � /

*
� � � � � � � � ��� �

.
� / � �

*�� � ,
��� ��� � � /

+
� /�� �

��� ��� � � /
*
� / �

, and
��� � �

* ,
����� ���

+
� � �

=
���������

*
� � �

.

Resulting Data Changes: All the instance vertices of element
�

,
� � � � � 	 � � �

, are

removed from instances of the parent element definition node
�

. We find the extent of the

parent node
�

,
� � � � � 	 � � � , and then for each vertex

� � � � �
, we remove the vertex

��� � � �
from the children sequence of

� �
at position

� ���
. For each input XML data tree

�
* � � � * , we get a new tree

�
+ � = (

�
+ � , ��� ��� � � / + � , ����� ��� + �) where

�
+ � =

�
* � � � �

. For each

parent vertex
� � � � �

,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � -
� ��� � � ��� �

.
� � � �

* � � � �
,

29

��� ��� � � /
+ � � � � =

��� ��� � � /
* � � � � , and

��� � �
* � � � �

,
����� ���

+ � � � �
=
��� � ���

* � � � �
.

Example 4 To illustrate use of this primitive operation, we remove the subelement ed-

itor from the parent element monograph (the second child subelement) as follows.

monograph.removeDTDElement("editor", 2);

Execution of this primitive operation causes the editor subelement to be removed from

the parent monograph element, as illustrated in Figure 3.4 on the Article DTD of Figure

1.1 and XML data of Figure 1.2.

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* �,�-�	�
�
�	�
��.8��+9����-C
�"�	D&�E�&�"�	D&�F)+*
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
L M1N	O
N�P�N�Q�RTS � ����� � ����� � 	�U 	�W�X � X�V�U
	 � � �&\ L�M�N	O
N�P�N
Q�RTS � ����� � ����� � 	�U 	�W
X � \
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*
a ��b�c"?�� 5�b��
�"?

���"�
���"�	���	* ���������
�	�
��*
�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*
����!���#	$��=�
'����+'���� * �"�
!"��#�$"�=�
'���� '���� *

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
4��"�
8��	��
"C"�
��D&�	* ��C
�"�	D&��*�4��"��8	����
�C
�"�	D&��*
���"�	D&��*����"� 9�������

�"�	D&��* �	�
��D ��*��	��� 9��	�"��
"�
��D ��*

��
&8	� 9��	* �
&8��+9���*
��
��
!��"#�$"��* �

��!���#	$��"*
����!���#	$��=�
'����+����� * �"�
!"��#�$"�=�
'���� �	��� *

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
����������
�C
�"�	D&��* ��C
�"�	D&��*������"�	�
�C"�
��D ��*
���"�	D&��*�?�!"8	'��
8�D&�����&8	�	�"��

�"��D ��* �	�
��D ��*
?"!�8	'"�"8�D&�	�	��8��	���
"�
��D&�	*

��
&8	� 9��	* �
&8��+9���*
��
��
!��"#�$"��* �

��!���#	$��"*
���
���"���	�"'	* �"�"�	�"�
����'�*

� 9�$�8�$
I	��� J�#	* �+9�$
8	$"I����&J	#�*
�����&���
��*&��$"'����
8='	����������D&�BD���D �	�&9ED
�
&���&�����	* �
�������
�	* ��$"'"�	��8G'��
�	�����	D��>D���D&���&9FD���
 �������
��*
L
X�V	U 	 � � ��� S�X���� � � �"! U S#�+\"L$�X�V	U 	 � �	\ �
 9�$�8�$
I	��� J�#�*

��
 9�$
8	$"I	�"�&J	#�* �

�
���"���	�"'	*
��
��"���
�
����'	* ��

�"�
���"�	���	*

</article> a ��b�c"?�� 5�b��
�"?

Figure 3.4: Results of removeDTDElement Primitive Operation

Primitive 5: changeQuant

Syntax: p.changeQuant(Elem E, int pos, QuantType q, String d)

Semantics: Change the quantifier constraint for the element definition node
�

in the

children sequence of parent element node
�

at position
� ���

to type � , with default value
�
.

30

Preconditions: The element definition node
�

must exist in the DTD graph G which

contains the parent definition node
�

:
d � � �

* . The parent element definition
�

must

contain the node
�

in its children sequence at position
� ���

, i.e.,
��� ��� � 	 � ��� � ��� � � �

.

The QuantType � must have one of the following values: , STAR - PLUS - QMARK -
NONE . . See Section 2.4 for the definitions of these constraint values. If the quantifier �

signifies a required constraint, the default value
�

must not be null.

Resulting DTD Changes: There are three possibilities which will determine what changes

are required to the DTD graph G for this operation. First, if the original element defini-

tion node
�

was not previously quantified and the QuantType � is not NONE, then a new

quantifier node must be created and inserted into the DTD graph. Second, if the original

element definition node
�

was previously quantified and the QuantType � is NONE, then

the old quantifier node must be removed from the DTD graph. Third, if the original ele-

ment definition node
�

was previously quantified and the QuantType � is not NONE, then

we simply need to change the quantifier node’s type to � . The fourth possibility would be

that original element definition node
�

was not previously quantified and the QuantType

� is NONE. In this case we are not actually changing the quantifier of the node
�

, so no

DTD changes would be required. We now show the resulting DTD changes for each of

the three possibilities which require changes to the DTD graph.

1. First we remove the node
�

from the children sequence in the parent node
�

at

position
� ���

. Next we create a new quantifier node
�

with type � and insert
�

into the children sequence of the parent node
�

at position
� ���

. Finally, we insert

the node
�

into the children sequence of the quantifier node
�

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* � �
,
��� ��� � � /

+
� � �

=
��� ��� � � /

*
� � �

- (
� � � ���

) + (
� � � ���

), and
����� ���

+
� � �

.
� � � �

= � .
� / � �

* � �
,
��� ��� � � /

+
� / �#�

��� ��� � � /
*
� / �

, and
��� � �

* ,
����� ���

+
� � �

=
����� ���

*
� � �

.

31

2. First we remove the quantifier node
�

from the children sequence in the parent

node
�

at position
� ���

. We then find the node
�

in the children sequence of the

node
�

, and insert
�

into the children sequence in the parent node
�

at position
� ���

. Finally we destroy the quantifier node
�

which is no longer needed. We get

a graph
�

+
� � �

+
���� ��� � � /

+
� ��� � ���

+
�

where
�

+
� �

* � �
and

��� ��� � � /
+
� � �

=
��� ��� � � /

*
� � �

- (
� � � ���

) + (
� � � ���

).
� / � �

* � �
,
��� ��� � � /

+
� /�� � ��� ��� � � /

*
� /��

,

and
��� � �

* � �
,
���������

+
� � �

=
��� � ���

*
� � �

.

3. In the simplest case, we need only change the quantifier node
�

’s type to � in the

children sequence of the parent node
�

at position
� ���

. We get a graph
�

+
�

� �
+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* and
���������

+
� � �

.
����� �

= � .
� / � �

* ,
��� ��� � � /

+
� / �

=
��� ��� � � /

*
� /��

, and
��� � �

* � �
,
���������

+
� � � � ��� � ���

*
� � �

.

Resulting Data Changes: The XML data changes required for this primitive depend on

the old and new quantifier values. These changes can be summarized using the following

two rules:

1. If the old quantifier represented a repeatable constraint and the new quantifier does

not, we find all the instance vertices of element
�

,
� �

* =
� � 	 � � �

, and remove all

but the first occurrence,
� �

+ =
� �

* - the first
� � � � �

* , from instances of the

parent element node
�

. We find the extent of the parent node
�

,
� � � � � 	 � � � , and

then for each vertex
� � � � �

, we remove each vertex
� � � � �

+ from the children

sequence of
� �

. For each input XML data tree
�

* � � � * , we get a new tree
�

+ �

= (
�

+ � , ��� ��� � � / + � , ����� ��� + �) where
�

+ � =
�

* � � � �
+ . For each parent vertex

� � �

� �
,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � -
� � �

+
�
.
� � � �

* � � � �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � � � �
+ ,
� ��� ���

+ � � � �
=
����� ���

* � � � �
.

2. If the new quantifier represents a required constraint and the old quantifier did not,

for each instance of the parent node
�

which did not contain any instance of the child

32

element node
�

, we must create a new instance vertex
���

of element
�

with default

value
�

and insert
� �

into instances of the parent node
�

. We find the extent of the

parent node
�

,
� �(� � � 	 � � � , and then for each vertex

� � � � �
we first check

whether a
���

exists at position
� ���

. If not, then we insert
���

into
� �

at position
� ���

.

Let
� �

be this set of newly created and inserted instances of
� �

. For each input

XML data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ��������� + �) where
�

+ � =
�

* � � � �
. For each vertex

� � � � �
,
����� ���

+ � � ��� � �
ElemNode, and for each

parent vertex
� � � � �

,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � +
� � � � � ��� �

, wherever
���

did not exist at position
� ���

before.
� � � �

* � � � �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � ,
and

��� � �
* � � � �

,
���������

+ � � � �
=
� ��� ���

* � � � � .

The remaining combinations of old and new quantifiers such as not repeatable becomes

repeatable, or required becomes not required, cause no changes to the XML data.

Example 5 We change the author subelement’s quantifier in the parent article el-

ement from repeatable (PLUS) to a non-repeatable constraint (NONE) as follows:

article.changeQuant(author, 2, NONE, null);

Execution of this primitive operation, in addition to changing the quantifier in the DTD

element definition, also causes the removal of multiple author elements found in the

data (all but the first occurrence are removed). The effect on the Article DTD, the first

line of which is all that changes, of Figure 1.1 and XML data of Figure 1.2 is illustrated

in Figure 3.5.

33

�����	�
�
��������������
�	�
�����������
��� author+ �&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
��� author,related?)>
����� �1�"��D&�>�	DT��#��>D
� 9��E) ����� �1�
��D&�>��D �"#	�>D
�+9���)

���"�
���"�	���	* ���������
�	�
��*
�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*
����!���#	$��=�
'����+'���� * �"�
!"��#�$"�=�
'���� '���� *

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
4��"�
8��	��
"C"�
��D&�	* ��C
�"�	D&��*�4��"��8	����
�C
�"�	D&��*
���"�	D&��*����"� 9�������

�"�	D&��* �	�
��D ��*��	��� 9��	�"��
"�
��D ��*

��
&8	� 9��	* �
&8��+9���*
��
��
!��"#�$"��* �

��!���#	$��"*
L ��� 	 �� �=U
V ��� X ��� \ �"�"�	�"�
����'�*
<name> �+9�$
8	$"I����&J	#�*
<first>Elke</first> �
�������
�	* ��$"'"�	��8G'��
�	�����	D��>D���D&���&9FD���
 �������
��*
<last>Rundensteiner</last> �"�"'��&��$��.8��+9���������$
8"��� 9#� *"��
&��'��&��$"��*

</name> �
 9�$�8�$
I	��� J�#�*
</author> �

�
���"���	�"'	*
���
���"���	�"'	* ��

�"�
���"�	���	*

� 9�$�8�$
I	��� J�#	*
�����&���
��*&��$"'����
8='	����������D&�BD���D �	�&9ED
�
&���&�����	*
�
��'	����$"�.8�� 9��"������$
8"���+9#�+*��
�'��&��$"��*

��
 9�$
8	$"I	�"�&J	#�*
��
��"���
�
����'	*

</article> a ��b�c"?�� 5�b��
�"?

Figure 3.5: Results of changeQuant Primitive Operation

Primitive 6: convertToGroup

Syntax: p.convertToGroup(int start, int end, GroupType gt)

Semantics: Group together a sequence of children subelement definition nodes, whose

positions range from
� 	 � ��	

to
� / �

in the children sequence of the parent element
�

, with

group type
� 	

.

Preconditions: The position variables
� 	 � ��	

and
� / �

must be valid positions in the chil-

dren sequence of the parent node
�

, i.e., numCh(p)
� � 	 � ��	

and numCh(p)
� � / �

must

both hold. These variables must also be valid relative to each other, meaning
� 	 � ��	
	 � / �

must hold. To convert a single child subelement into a group of one,
� 	 � ��	

must equal
� / �

. All the content particles falling within the range
� � 	 � ��	 � � / � �

must share the same

parent, meaning they cannot already be contained in different groups.
� 	

must have one

of the following values: , LIST - CHOICE . . If the content particles within the range
� � 	 � ��	 � � / � �

are already contained in a group, that existing group must have the same

group type as
� 	

.

Resulting DTD Changes: All the content particles that range from position
� 	 � ��	

to
� / �

in the children sequence of the parent node
�

are converted into a group of type
� 	

.

34

First we create a new group definition node
� � �

. We then iterate over the children se-

quence of
�

, removing children nodes within the range
� � 	 � ��	 � � / � �

, and inserting them

in the same order into the children sequence of
� � �

. Let

��

be this sequence of chil-

dren nodes. Finally, we insert
� � �

into the children sequence of the parent node
�

at

position
� 	 � ��	

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ����� ���

+
�

where
�

+
� �

* � � � �
,

��� ��� � � /
+
� � � � ��� ��� � � /

*
� � � � �
�� � � � � � � ��� 	 � ��	 �

and
����� ���

+
� � � � ��� ��� � � � � 	

.
� / � �

* � �
,
��� ��� � � /

+
� /�� ����� ��� � � /

*
� /��

, and
��� � �

* ,
��� � ���

+
� � �

=
� ��� ���

*
� � �

.

Resulting Data Changes: Since this primitive does not allow creating a nested group of

a different type from the parent group, this primitive causes no changes to the XML data,

as groups are for hierarchical organization purposes only. In a DTD element definition, a

children sequence does not change semantically when a new set of parentheses is added.

We illustrate with an example, where the following two DTD element definitions for the

parent node � have the same meaning in terms of the corresponding XML data. Thus, � +

= � * .

<!ELEMENT x (a, b, c, d, e)>

<!ELEMENT x (a, (b, c), d, e)>

The same argument holds if both the new nested group and the old parent group are of type

CHOICE, as illustrated with the following example where both DTD element definitions

have the same semantics in terms of the XML data.

<!ELEMENT x (a | b | c | d | e)>

<!ELEMENT x (a | (b | c) | d | e)>

Example 6 This operation is performed on a parent element, in order to convert a range

of its subelements into a group. To illustrate, we create a LIST group of one, for the

single author subelement in the parent article element as follows:

article.convertToGroup(2, 2, "LIST");

35

Execution of this primitive operation has the effect of converting the second subele-

ment (author) in the article parent element to a group of one. The effect on the first

line of the Article DTD of Figure 1.1 is shown in Figure 3.6. There are no other changes

to the DTD, and no data changes are required as a result of this primitive operation.

�����	�
�
��������������
�	�
�����������
��� author+ �&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
��� (author+),related?)>
����� �1�"��D&�>�	DT��#��>D
� 9��E) ����� �1�
��D&�>��D �"#	�>D
�+9���)

a ��b�c"?�� 5�b��
�"?

Figure 3.6: Results of convertToGroup Primitive Operation

Primitive 7: flattenGroup

Syntax: p.flattenGroup(int pos)

Semantics: Convert a group of content particles at position
� ���

in the children sequence

of the parent node
�

into simple subelements, i.e., remove the group node containing those

subelements.

Preconditions: The content particle at position
� ���

in the children sequence of the

parent node
�

must be a group definition node, i.e.,
� ��� ��� � ��� ��� � 	 � ��� � ��� � ��� ��� / 	� 	 � �

� � � � � �����
.

Resulting DTD Changes: First the group definition node at position
� ���

in the children

sequence of the parent node
�

,
� � � � ��� ��� � 	 � � � � ��� �

, is removed from
�

. Then all

of the content particles which were contained in the children sequence of that group,
� � � ��� ��� � � / � � � � �

, become direct descendents of the parent node
�

. We iterate

over the children nodes
� � � � �

, inserting the first into
�

at position
� ���

, the second

at position
� ��� � �

, the third at position
� ��� ���

, and so on. We get a graph
�

+ =
� �

+
���� ��� � � /

+
� ��� � ���

+
�

where
�

+
� �

*	� � � �
and

��� ��� � � /
+
� � � � ��� ��� � � /

*
� � � �

� � � � � � ��� � � � � � � � ��� �
.
� / � �

* � �
,
��� ��� � � /

+
� / � � ��� ��� � � /

*
� /��

, and
��� � �

* ,
���������

+
� � �

=
���������

*
� � �

.

Resulting Data Changes: Since group nodes are not represented in the XML data, the

36

children instance vertices are already children of the correct parent instance vertices.

Therefore, this primitive causes no changes to the XML data, i.e., � + = � * .

Example 7 This operation is performed on a parent element definition node in order to

flatten a group of subelements. To illustrate, we use the newly created group from Example

6 directly above, where flattening the group of one for the single author subelement in

the parent article element, restores the article definition to its original state as

follows:

article.flattenGroup(2);

Execution of this primitive operation has the effect of reverting the first line of the

Article DTD from the previous example to its original state. There are no other changes

to the DTD, and no data changes are required as a result of this primitive operation.

�����	�
�
��������������
�	�
�����������
��� (author+) � �"�	�"�
����'�() * �����	�
�
��������������"���
�����������
��� author+,related?)>
����� �1�"��D&�>�	DT��#��>D
� 9��E) ����� �1�
��D&�>��D �"#	�>D
�+9���)

a ��b�c"?�� 5�b��
�"?

Figure 3.7: Results of flattenGroup Primitive Operation

Primitive 8: changeGroupQuant

Syntax: p.changeGroupQuant(int pos, QuantType q)

Semantics: Change the quantifier constraint for the group definition node at position
� ���

in the children sequence of the parent definition node
�

to type � .

Preconditions: The content particle at position
� ���

in the children sequence of the

parent node
�

must be a group definition node, i.e.,
� ��� ��� � ��� ��� � 	 � ��� � ��� � ��� ��� / 	� 	 � �

� � � � � �����
. The quantifier � must have one of the following values: , STAR - PLUS -

QMARK - NONE . . However, we do not allow the new quantifier � to represent a required

constraint if the old quantifier did not because it would be difficult to specify appropriate

default values for an entire group of elements to assign to their data instances in cases

where the group does not already exist in the data.

37

Resulting DTD Changes: The changes we describe here are the same as those for prim-

itive 5 above, with the simple replacement of
� � �

for
�

, since we are now dealing with a

group definition node rather than an element definition node. There are three possibilities

which will determine what changes are required to the DTD graph G for this operation.

First, if the original group definition node
� � �

was not previously quantified and the

QuantType � is not NONE, then a new quantifier node must be created and inserted into

the DTD graph. Second, if the original group definition node
� � �

was previously quanti-

fied and the QuantType � is NONE, then the old quantifier node must be removed from the

DTD graph. Third, if the original group definition node
� � �

was previously quantified

and the QuantType � is not NONE, then we simply need to change the quantifier node’s

type to � . The fourth possibility would be that original group definition node
� � �

was

not previously quantified and the QuantType � is NONE. In this case we are not actually

changing the quantifier of the node
� � �

, so no DTD changes would be required. We now

show the resulting DTD changes for each of the three possibilities which require changes

to the DTD graph.

1. First we remove the node
� � �

from the children sequence in the parent node
�

at

position
� ���

. Next we create a new quantifier node
�

with type � and insert
�

into the children sequence of the parent node
�

at position
� ���

. Finally, we insert

the node
� � �

into the children sequence of the quantifier node
�

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* � �
,
��� ��� � � /

+
� � �

=
��� ��� � � /

*
� � �

- (
� � � � � ���

) + (
� � � ���

), and
� ��� ���

+
� � �

.
����� �

= � .
� / � �

* � �
,
��� ��� � � /

+
� / � �

��� ��� � � /
*
� / �

, and
��� � �

* ,
����� ���

+
� � �

=
����� ���

*
� � �

.

2. First we remove the quantifier node
�

from the children sequence in the parent

node
�

at position
� ���

. We then find the node
� � �

in the children sequence of the

node
�

, and insert
� � �

into the children sequence in the parent node
�

at position

38

� ���
. Finally we destroy the quantifier node

�
which is no longer needed. We get

a graph
�

+
� � �

+
���� ��� � � /

+
� ��� � ���

+
�

where
�

+
� �

* � �
and

��� ��� � � /
+
� � �

=
��� ��� � � /

*
� � �

- (
� � � ���

) + (
� � � � � ���

).
� / � �

* � � ,
��� ��� � � /

+
� / � ����� ��� � � /

*
� /��

,

and
��� � �

* � �
,
���������

+
� � �

=
��� � ���

*
� � �

.

3. In the simplest case, we need only change the quantifier node
�

’s type to � in the

children sequence of the parent node
�

at position
� ���

. We get a graph
�

+
�

� �
+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* and
���������

+
� � �

.
����� �

= � .
� / � �

* ,
��� ��� � � /

+
� / �

=
��� ��� � � /

*
� /��

, and
��� � �

* � �
,
���������

+
� � � � ��� � ���

*
� � �

.

Resulting Data Changes: Similar to the resulting data changes for Primitive 5 above,

if the old quantifier represented a repeatable constraint and the new quantifier does not,

we find all the instance vertices of the group
� � �

,
� �

* =
� � 	 � � � � �

, and remove all but

the first occurrence,
� �

+ =
� �

* - the first
� � � � �

* , from instances of the parent

node
�

. We find the extent of the parent node
�

,
� � � � � 	 � � � , and then for each vertex

� � � � �
, we remove each vertex

� � � � �
+ from the children sequence of

� �
. For each

input XML data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ��������� + �) where
�

+ � =
�

* � � � �
+ . For each parent vertex

� � � � �
,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � -
� � �

+
�
.
� � � �

* � � � �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � � � �
+ ,
����� ���

+ � � � �
=
��� � ���

* � � � �

Example 8 This operation is performed on a parent element to change the quantifier of a

group subelement node. To illustrate, we change the quantifier on the monograph group

node in the parent related element definition from repeatable but not required (“*”)

to not repeatable and not required (“?”) as follows:

related.changeGroupQuant(1, "?");

Execution of this primitive operation causes a change to the quantifier on the mono-

graph group node in the parent related element definition. Since the XML data only

39

contains a single instance of the monograph content particle, no data changes are re-

quired as a result of this primitive. The effect on the Article DTD of Figure 1.1 is shown

in Figure 3.8.

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* �,�-�	�
�
�	�
��.8��+9����-C
�"�	D&�E�&�"�	D&�F)+*
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
L M1N	O
N�P�N�Q�R �"X	W � 		X�V � S � ���� � ���� � � \ L�M�N	O
N�P�N
Q�R �"X	W � 		X�V � S � ���� � ���� � �\
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*
a ��b�c"?�� 5�b��
�"?

Figure 3.8: Results of changeGroupQuant Primitive Operation

Primitive 9: addDTDAttr

Syntax: p.addDTDAttr(String a, AttrType at, DefType dt,

String dv)

Semantics: A new attribute definition node with name
�
, attribute type

� 	
, default type

� 	
, and default value

� � will be created and added to the children sequence of the parent

node
�

.

Preconditions: No attribute with name
�

has been defined in the parent element definition
�

, i.e.,
� / � ��� ��� � � / � � �

where
��� � ��� � /���� ��� / 	� 	 � � � 	�	�� �����

,
����� ��� � / ��� � � ��� �� �

.

The attribute type
� 	

must have one of the following values: , CDATA - CHOICE - HREF -
ID - IDREF - IDREFS - NMTOKEN . . The default type

� 	
must have one of the following

values: , #REQUIRED - #IMPLIED - #FIXED - #DEFAULT . . If the default type
� 	

is

anything other than #IMPLIED, the default value
� � must not be null.

Resulting DTD Changes: A new attribute definition node
�

will be created with name
�
,

attribute type
� 	

, default type
� 	

, and if
� � �� �

, default value
� � .

�
will then be added to

the children sequence of the parent node
�

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ���������

+
�

where
�

+
� �

* � � ,
��� ��� � � /

+
� � �

=
��� ��� � � /

*
� � �

+
�

,
����� ���

+
��� ��� � �����

=
�
,
����� ���

+
� � �

.
����� �

40

=
� 	

,
� ��� ���

+
� � ��� ����� ��� � �

=
� 	

, and
����� ���

+
��� ��� �����	� ���

=
� � .

� / � �
* � � ,

��� ��� � � /
+
� /��

=
��� ��� � � /

*
� / �

, and
��� � �

* ,
���������

+
� � �

=
��� � ���

*
� � �

.

Resulting Data Changes: If the default type
� 	

= #REQUIRED, then a new data attribute

vertex
� �

will be created with default value
� � for each instance of the parent element

definition node
�

. We find the extent of the parent node
�

,
� � � � � 	 � � � , and then for

each vertex
� � � � �

, we add a new vertex
���

to the children sequence of
� �

. For

each input XML data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ����� ��� + �)
where

�
+ � =

�
* � � � �

, and
����� ���

+ � � ��� � �
AttrNode. For each parent vertex

� � � � �
,

��� ��� � � /
+ � � � � � =

��� ��� � � /
* � � � � � +

���
.
� � � �

* � � � �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � ,
and

��� � �
* � , � ��� ��� + � � � �

=
����� ���

* � � � �
.

Example 9 This operation is performed on a parent element to add a new attribute defini-

tion. To illustrate, we add a published attribute to the article element definition to

indicate whether this article has been published or not. We pass CDATA as the attribute

type, #REQUIRED as the default type, meaning each instance of the article element

in the data must have this new attribute, and TRUE for the default value as follows:

article.addDTDAttr("published", CDATA, #REQUIRED,

TRUE);

Execution of this primitive operation causes a new line to be added after the first line of

the Article DTD of Figure 1.1, and the rest of the DTD remains the same. Since there is

only one instance of the article content particle in the data, only the first line of the

XML data from Figure 1.2 changes, as shown in Figure 3.9.

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �����	�
�
��������������"���
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* <!ATTLIST article published CDATA #REQUIRED>�����	�
�
������.���&���
���10�2	3
4�5�� 5,)+*

����� �1�
��D �B��D �"#	�>D
�+9���) ����� �:�"��D �>�	DT��#��BD�� 9��E)
L � � 	�U � W�X�\ L � � 	�U � W
X � ��� W"U�� � X�V����+R�����N � \

�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*

����� �1�
��D �B��D �"#	�>D
�+9���) ����� �:�"��D �>�	DT��#��BD�� 9��E)
a ��b�c"?�� 5�b��
�"?

Figure 3.9: Results of addDTDAttr Primitive Operation

41

Primitive 10: destroyDTDAttr

Syntax: p.destroyDTDAttr(String a)

Semantics: The attribute definition node with name
�

will be removed from the children

sequence in the parent node
�

.

Preconditions: An attribute definition node with name
�

must already exist in the chil-

dren sequence of the parent node
�

, i.e.,
d / � ��� ��� � � / � � �

such that
� ��� ��� � /���� ��� / 	� 	 � �

� 	�	�� �����
and

��� � ��� � /���� � � ���
=
�
.

Resulting DTD Changes: The attribute definition node
�

with name
�

will be removed

from the children sequence of the parent node
�

. We get a graph
�

+
� � �

+
���� ��� � � /

+
� ��� � ���

+
�

where
�

+
� �

* � �
and

��� ��� � � /
+
� � �

=
��� ��� � � /

*
� � �

-
�

.
� / � �

* � �
,
��� ��� � � /

+
� /��

=
��� ��� � � /

*
� / �

, and
��� � �

* � �
,
���������

+
� � �

=
��� � ���

*
� � �

.

Resulting Data Changes: All the instance vertices of attribute
�

,
� � � � � 	 ��� �

are

removed from instances of the parent element definition node
�

. We find the extent of the

parent node
�

,
� � � � � 	 � � � , and then for each vertex

� � � � �
, we remove the vertex

��� � � �
from the children sequence of

� �
. For each input XML data tree

�
* � � � * ,

we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ����� ��� + �) where
�

+ � =
�

* � � � �
. For each parent

vertex
� � � � �

,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � -
���

.
� � � �

* � � � �
,
��� ��� � � /

+ � � � �
=
��� ��� � � /

* � � � � , and
��� � �

* � � � �
,
���������

+ � � � �
=
� ��� ���

* � � � �
.

Example 10 This operation is performed on a parent element to remove an existing at-

tribute. To illustrate, we remove the published attribute from the article element

which was added in Example 9 above as follows:

article.destroyDTDAttr("published");

Execution of this primitive operation causes the new line which was added in the

previous example to be removed, while the rest of the DTD remains the same. Since there

is only one instance of the article content particle in the data, only the first line of the

XML data from the example above changes. The result after execution of this primitive is

42

to restore both the DTD and the XML data to its original form of Figures 1.1 and 1.2 as

shown in Figure 3.10.

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �����	�"������������
���"���
��������������� �
!��"#�$"��%�� �"�	�"�
����'�() *
L�M ��R"R"O ��� R � � 	�U � W
X � ��� W"U�� � X�V � � ��R�� � ��N���� � ��N���\ �����	�"��������.�������
����0&2	3
4�5��+5,)+*

�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+*

����� �1�
��D �B��D �"#	�>D
�+9���) ����� �:�"��D �>�	DT��#��BD�� 9��E)
L � � 	�U � W�X � ��� W�U � � X"V��� R����	N �+\ L � � 	�U � W
X	\

�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*

����� �1�
��D �B��D �"#	�>D
�+9���) ����� �:�"��D �>�	DT��#��BD�� 9��E)
a ��b�c"?�� 5�b��
�"?

Figure 3.10: Results of destroyDTDAttr Primitive Operation

3.3.3 Changes to the XML Data

Primitive 11: addDataAttr

Syntax: de.addDataAttr(String a, String av)

Semantics: A data attribute instance
���

will be created with name
�

and value
� � , and

will be added to the children sequence of the data element vertex
���

.

Preconditions: An attribute definition
�

for the attribute instance vertex
���

must ex-

ist in the DTD graph, i.e.,
d �

such that
	 � � ��� � � ��� � � �

. If the default type of the

attribute definition node
�

is required, i.e.,
��������� ��� ��� ����� ��� � � �

#REQUIRED, then

this attribute must already exist in the data, so the addDataAttr primitive is not valid

for such an attribute. If the default type of the attribute definition node
�

is fixed, i.e.,
��������� ��� ��� ����� ��� � � �

#FIXED, then the value
� � must be null since the fixed value is

already specified in the DTD attribute definition
�

, and a fixed value may not be changed.

Resulting DTD Changes: This is an XML data change primitive operation. Therefore

there are no resulting changes to the DTD graph, i.e.,
�

+ =
�

* .

Resulting Data Changes: An instance
���

of the attribute named
�

will be added to the

children sequence of the data element vertex
���

. If
� � �� �

, the value
� � will be assigned to

the data attribute vertex
���

. Otherwise, if the default type of the DTD attribute definition

43

node
�

is fixed, i.e.,
� ��� ��� � � ��� ����� ����� � �

#FIXED, then the fixed value declared in

the attribute definition,
� ��� ��� � � ��� �����	� ���

will be assigned to the data attribute instance
���

. For each input XML data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � ,
���������

+ �) where
�

+ � =
�

* � � � �
,
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � ��� � +
� �

, and
��� � ���

+ � � ��� � =

AttrNode.
� � � �

* � � ���
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � , ��� � ��� + � � � �
=

���������
* � � � �

.

Example 11 To illustrate use of this primitive operation, we first add a new attribute

definition called “primary” to the author element in the DTD to indicate whether an

author is the primary author of an article or not, using #IMPLIED for the default type.

We then use the addDataAttr primitive to assign values to the two authors of the article

in the example. This operation is performed on an instance of an element in the data. To

address such an instance, we use the XPath notation, as defined in [W3C99] as follows:

�
!��"#�$�� � �
'�'"4	�
4&5����	� � � J����+9��������"�]3"4&5��+56�.;+�	2	��; ��4��]8"!�����) �
�
!��"#�$���� � C
��8�'"4����������
� 9��
8�� � � �"�
���
�	����������
��
!��"#�$"����������) �
�
!��"#�$���� � �"'�'
4������ 5����	� � � J����+9��"�����"�T�
?
A	�F) �
�
!��"#�$��
	 � C
��8�'"4����������
� 9��
8�� � � �"�
���
�	����������
��
!��"#�$"����	�����) �
�
!��"#�$��
	 � �"'�'
4������ 5����	� � � J����+9��"�����"� b�5���<��E) �

Execution of these primitive operations first causes a new line to be added to the DTD

for the primary attribute in the author element definition. Then data instances of the

attribute are added to the two author element instances in the XML data with appropri-

ate values. The effect on the Article DTD of Figure 1.1 and the XML data of Figure 1.2 is

shown in Figure 3.11.

44

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
�����	�
�
������.8��+9����-C
�"��D �E�&�"��D �F)+* L�M ��R�R"O ��� R ��� 	 �� � � ��U S � � � � � ��R�� � � P�Z	O � N ��\
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.8��+9����-C
�"�	D&�E�&�"�	D&�F)+*
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*
�,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*

���"�
���"�	���	* ���������
�	�
��*
�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*
L ��� 	 �� �=U
V ��� V�� � \ L � � 	 ��� �=U
V ��� V������ � �	U+S � � � ��� R����	N �+\

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
4��"�
8��	��
"C"�
��D&�	* ��C
�"�	D&��*�4��"��8	����
�C
�"�	D&��*
���"�	D&��*����"� 9�������

�"�	D&��* �	�
��D ��*��	��� 9��	�"��
"�
��D ��*

��
&8	� 9��	* �
&8��+9���*
��
��
!��"#�$"��* �

��!���#	$��"*
L ��� 	 �� �=U
V ��� X ��� \ L � � 	 ��� �=U
V ��� X������ � �	U+S � � � ����� ��O � N � \

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
����������
�C
�"�	D&��* ��C
�"�	D&��*������"�	�
�C"�
��D ��*
���"�	D&��*�?�!"8	'��
8�D&�����&8	�	�"��

�"��D ��* �	�
��D ��*
?"!�8	'"�"8�D&�	�	��8��	���
"�
��D&�	*

��
&8	� 9��	* �
&8��+9���*
��
��
!��"#�$"��* �

��!���#	$��"*
���
���"���	�"'	* �"�"�	�"�
����'�*

� 9�$�8�$
I	��� J�#	* �+9�$
8	$"I����&J	#�*
�����&���
��*&��$"'����
8='	����������D&�BD���D �	�&9ED
�
&���&�����	* �
�������
�	* ��$"'"�	��8G'��
�	�����	D��>D���D&���&9FD���
 �������
��*
�
��'	����$"�.8�� 9��"������$
8"���+9#�+*��
���'	���	$���* �"�"'��&��$��.8��+9���������$
8"��� 9#� *"��
&��'��&��$"��*

��
 9�$
8	$"I	�"�&J	#�* �
 9�$�8�$
I	��� J�#�*
��
��"���
�
����'	* �

�
���"���	�"'	*

��
��������"���
��* ��

�"�
���"�	���	*
a ��b�c"?�� 5�b��
�"?

Figure 3.11: Results of addDataAttr Primitive Operation

Primitive 12: destroyDataAttr

Syntax: de.destroyDataAttr(String a)

Semantics: The data attribute instance
���

with name
�

will be removed from children

sequence of the data element vertex
���

.

Preconditions: An attribute definition
�

for the attribute instance vertex
� �

must exist

in the DTD graph, i.e.,
d �

, such that
	 ��� ��� � � ��� � � �

. The default type of the attribute

definition node
�

must not be required, i.e.,
����� ��� ��� ��� ����� � � � � ��

#REQUIRED, since

a required attribute may not be removed. The data element vertex
� �

must contain the

attribute
���

named
�

in its children sequence, i.e.,
��� � ��� ��� � � / � ��� �

.

Resulting DTD Changes: This is an XML data change primitive operation. Therefore

there are no resulting changes to the DTD graph, i.e.,
�

+ =
�

* .

Resulting Data Changes: The instance
���

of the attribute named
�

will be removed

45

from the children sequence of the data element vertex
���

. For each input XML data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ��������� + �) where
�

+ � =
�

* � � ���
and

��� ��� � � /
+ � � ��� � =

��� ��� � � /
* � � ��� � -

���
.
� � � �

* � � ��� , ��� ��� � � / + � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � , ����� ��� + � � � �
=
��� � ���

* � � � �
.

Example 12 We illustrate use of this primitive operation by destroying the “primary” at-

tribute introduced in Example 11 above, from the second instance of the author element

as follows:

������ 	!	� � RB?���3�$�."���	�������4��3�� � SK�	������	����������Q������� "!���� � ��S�&	�
������ 	!	� ��
 $��"@��"��!�X�.	���"�0/"���� � S G����04����X5S�&��

Execution of this primitive only changes the second instance of the author element in

the data. There are no changes to the DTD, and no other changes to the XML data from

Example 11 above. The effect is shown in Figure 3.12.

L � � 	 ��� �GU�V���� X���� � � �	U S � � � ����� ��O � N � \ L ��� 	 �� �=U
V ��� X ��� \
�
8	� 9��	* �
8��+9��	*

��C
�"��D ��*
�����"�	��
"C"�
��D&�	* �	C"�"�	D&�	*
����������
�C
�"�	D&��*
�	�
��D&�	*
?�!"8	'"�"8�D �	�	��8	�����
"�"�	D&�	* ���"��D ��*�?�!�8�'��
8�D&�����&8	�	�"��

�"��D ��*

��
 8��+9��	* ��
&8	� 9���*
�

�
!"��#	$���* ��
��
!��"#�$��"*

a ��b�c"?�� 5�b�����?

Figure 3.12: Results of destroyDataAttr Primitive Operation

Primitive 13: addDataElement

Syntax: dp.addDataElement(ElemNode de, int pos)

Semantics: Insert the data element instance
���

into the children sequence of the parent

data element vertex
� �

at position
� ���

.

Preconditions: An element definition node
�

for the vertex
���

must exist in the DTD

graph, i.e.,
d �

such that
	 � � ��� � � ��� �

=
�

. An element definition node
�

for the parent

vertex
� �

must also exist in the DTD graph, i.e.,
d �

such that
	 � � ��� � � � � �

=
�

. The

element definition node
�

must be allowed in the children sequence of the parent node
�

at position
� ���

, i.e.,
��� ��� � 	 � � � � ��� � � �

.

46

Resulting DTD Changes: This is an XML data change primitive operation. Therefore

there are no resulting changes to the DTD graph, i.e.,
�

+ =
�

* .

Resulting Data Changes: The data element instance
���

will be added to the children

sequence of the parent element vertex
� �

at position
� ���

. For each input XML data

tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ��� � ��� + �) where
�

+ � =
�

* � � ���
,

��� ��� � � /
+ � � � � � =

��� ��� � � /
* � � � � � + (

��� � � ���
), and

���������
+ � � � � � = ElemNode.

� � � �
* � �

� �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � , ��������� + � � � �
=
� ��� ���

* � � � �
.

Example 13 To illustrate use of this primitive, we first add the middle initial element to

the DTD as was done above in Section 3.3.1. We then add a data instance of the middle

initial subelement to the first instance of the author element as follows:
$!�����4��3��
 ������������.	��.������4��3�� � SZ4A��$�$"���AS�� ,�-�.�/��0/ &��
3	��4"�
 ��3"@��	����.	��.�������4��3�� �ZSZ4���$�$"���AS�� �	�9S�%�S�� 3������&	�
G�������3���R:?���3�$�.	���	��������4"��3�� �ZSK�������������� � ��Q������� 	!	��� � ��Q�3���4"�AS�&��
�� ����$�R�3�� � �����4�
!�$�� � S 4���$�$"���5S���S�8S�&	�
G�������3��
 ��$�$�."���	��������4��3�� �+�� ����$�� � &��

Execution of these primitive operations has the effect of first creating the middle DTD

element definition, then inserting that into the parent name element definition, and finally

adding an instance of the middle element to the data. The effect on the Article DTD and

XML data of Figures 1.1 and 1.2 is shown in Figure 3.13.

47

�����	�
�
��������������
�	�
�����������
��� �
!"��#�$"��%��&�"�	�"���	��'�()+* �,�-�	�
�
�	�
����������
�	�
��� �������
���&�
!"��#	$���%��&�
���"���	�"'�()+*
�����	�
�
������.���&�����/�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��.���&�����/�10�2�3"4�5�� 56) *
�����	�
�
��������
!"��#	$��7��8��+9���) * �,�-�	�
�
�	�
����
!"��#	$��7��8	� 9���) *

�,�:5��"�"��;"<"����!���#	$��=�
'>;&4>0&?���@
A�; ?���4	* �,�:5����"��;"<"����!���#	$��=�
'>; 4B0&?��"@"A�; ?��"4�*
L M1N	O
N�P�N�Q�R ��� S�X ��� U���� 	�� W � � 	�� \ L�M�N	O
N�P�N
Q�R ��� S�X ��� U����
	�� S�U�V�V�W�X���+W � �
	 �&\
�����	�
�
������GC"�
��D �H�10�2	3
4�5�� 5,)+* �,�-�	�
�
�	�
��GC"�
��D �H�10�2�3"4�5�� 56) *
�����	�
�
������=�"�	D&�/��0&2	3"4&5��+5,) * �,�-�	�
�
�	�
��=�"�	D&�/��0&2	3
4�5��+5,)+*
�����	�
�
��������"�	�"���	��'�� 9�$
8	$"I	�"�&J	#F)�K�* L�M�N	O
N�P�N
Q�RTS�U�V�V	W
X ��� Z����
��R�� �&\
�����	�
�
������]9�$�8�$
I	��� J�#/�������������+��'��&��$"��) * �,�-�	�
�
�	�
����"�	�"���	��'�� 9�$
8	$"I����&J	#F)&K
*
�����	�
�
������Y��'	���	$��.�
��2	�
^	* �,�-�	�
�
�	�
��]9�$�8�$
I	��� J�#/���������
���+��'	����$"��)+*

�,�:5��"�"��;"<"�Y�"'����	$��.8��+9���3"4&5�� 5_0�;+��2���; ��4�* �,�-�	�
�
�	�
��Y��'	���	$��.�
�	2��
^	*
�,�:5����"��;"<"�Y�"'����	$��.8��+9���3"4&5��+5`0�;+�	2	��; ��4	*

���"�
���"�	���	* ���������
�	�
��*
�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*
����!���#	$��=�
'����+'���� * �"�
!"��#�$"�=�
'���� '���� *

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
4��"�
8��	��
"C"�
��D&�	* ��C
�"�	D&��*�4��"��8	����
�C
�"�	D&��*
���"�	D&��*����"� 9�������

�"�	D&��* <middle>S</middle>��
&8	� 9��	* �	�
��D ��*��	��� 9��	�"��
"�
��D ��*

��
��
!��"#�$"��* �
&8��+9���*
�

��!���#	$��"*

����� �:�"��D&�>�	DT��#��BD�� 9��E) ����� �1�"��D&�>�	DT�"#	�>D
�+9��E)
a ��b�c"?�� 5�b��
�"?

Figure 3.13: Results of addDataElement Primitive Operation

Primitive 14: destroyDataElement

Syntax: dp.destroyDataElement(ElemNode de, int pos)

Semantics: Remove the data element instance
���

from the children sequence of the parent

data element vertex
� �

at position
� ���

.

Preconditions: An element definition node
�

for the vertex
���

must exist in the DTD

graph, i.e.,
d �

such that
	 � � ��� � � ��� �

=
�

. An element definition node
�

for the parent

vertex
� �

must also exist in the DTD graph, i.e.,
d �

such that
	 � � ��� � � � � �

=
�

. The

element definition node
�

must be an optional child subelement in the parent definition
�

,

meaning
�

has either quantifier QMARK or quantifier STAR to be allowed to be removed.

Resulting DTD Changes: This is an XML data change primitive operation. Therefore

there are no resulting changes to the DTD graph, i.e.,
�

+ =
�

* .

Resulting Data Changes: The data element instance
� �

will be removed from the chil-

dren sequence of the parent element vertex
� �

at position
� ���

. For each input XML

data tree
�

* � � � * , we get a new tree
�

+ � = (
�

+ � , ��� ��� � � / + � , ��������� + �) where
�

+ � =
�

* �

-
���

and
��� ��� � � /

+ � � � � � =
��� ��� � � /

* � � � � � - (
��� � � ���

).
� � � �

* � � � �
,
��� ��� � � /

+ � � � � =
��� ��� � � /

* � � � � , and
��� � �

* � , ��� � ��� + � � � �
=
����� ���

* � � � �
.

48

Example 14 To illustrate use of this primitive, we remove the middle initial element

which was added in Example 13 above as follows:

G�������3���R:?���3�$�.	���	��������4"��3�� �ZSK�������������� � ��Q������� 	!	��� � ��Q�3���4"�AS�&��
G�������3��
 $��"@����!�X�."���	�������4��3�� � SZ4A��$�$"���AS�� � &	�

Execution of these primitive operations causes no changes to the DTD, but has the effect

of restoring the XML data from the previous example to its original form of Figure 1.2:

���"�
���"�	���	* ���������
�	�
��*
�
���������	*��"���Y��	�$	�&!����
$
8.����8��
I��	�"��
 �������
��* �����&���
��*��
���Y��	�$���!"���"$�8.���
8	�"I"�	���
&���������	*
����!���#	$��=�
'����+'���� * �"�
!"��#�$"�=�
'���� '���� *

�
8��+9���* ��8�� 9��	*
�	C"�
��D&�	*
4��"�
8��	��
"C"�
��D&�	* ��C
�"�	D&��*�4��"��8	����
�C
�"�	D&��*
<middle>S</middle> �	�
��D ��*��	��� 9��	�"��
"�
��D ��*
���"�	D&��*����"� 9�������

�"�	D&��* �
&8��+9���*

��
&8	� 9��	* �

��!���#	$��"*
��
��
!��"#�$"��*

����� �:�"��D �>�	DT��#	�>D�� 9���) ����� �:�"��D&�>�	DT��#��BD�� 9��E)
a ��b�c"?�� 5�b�����?

Figure 3.14: Results of destroyDataElement Primitive Operation

3.4 Completeness of DTD Change Operations

The taxonomy in Section 3.3 intuitively captures all changes needed to manipulate a DTD.

We have taken care to define minimal semantics as well as a minimal set of primitives,

i.e., no primitive defined in the taxonomy subsumes the functionality of another primitive

defined in the taxonomy. In this section we show that this set of changes indeed provides

for every possible type of DTD change (completeness criteria). The proof given here has

its basis on the completeness proof for the evolution taxonomy of Orion [BKKK87].

With the DTD graph we focus primarily on manipulations of nodes and of the directed

edges between parent and children nodes. Towards that end we define seven operations

from those which we have defined for a DTD in Table 3.1 in Section 3.3, mapping our

primitives to ones which correspond to the “essential schema changes” in the Orion tax-

onomy. We prove that every legal DTD graph operation is achievable using this set of

seven operations. The proof is based on the concept of a single-rooted, directed acyclic

49

graph, from hereon referred to as a DAG, to which our DTD graph model conforms. The

set of operations and its basic semantics for the DTD graph are given in Table 3.3. 1

Notation Operation Description Taxonomy
Equivalent

op1 add-attribute Adds new attribute to node 3.3.2.9
op2 delete-attribute Deletes new attribute from node (element) 3.3.2.10
op3 remove-node-edge Removes the edge from parent to node 3.3.2.4
op4 add-node-edge Adds an edge between the parent and node 3.3.2.3
op5 create-nonattr-node Creates a new node; default is no parent 3.3.1.1
op6 delete-nonattr-node Deletes a leaf node 3.3.1.2
op7 add-root Adds a given node to the root set R 3.3.1.1

Table 3.3: The DTD Graph Operations.

Lemma 1 For any given DTD graph G, there is a finite sequence of , op6 . that can

reduce the DTD graph G to another DTD graph G
�

with only one root node.

Proof: It is apparent that if we repeatedly apply the operation op6 which removes a

non-nested element node n, we can after a finite number of applications reduce any given

DTD graph G to a new DTD graph G
�

which only has the root node.

Lemma 2 There is a finite sequence of operations , op1, op4, op5, op7 . that gen-

erates any desired DTD graph G from a DTD graph G
�

with only a root node.

Proof: Let G be a DAG with a finite number of nodes, edges and roots and G
�

be a

DAG with only a root node, i.e., the document root is a single element. We can observe

the following construction pattern, a finite sequence of operations listed above in Lemma

2, and transform the DAG G
�

to become identical to the DAG G.

Traverse DAG G in a breadth-first order and perform the following for each node n

visited:

) For every node n in G, add a corresponding node n
�

to DAG G
�

using the operation

op5.
1We disregard at this point constraints such as #REQUIREDwhich are a semantic extension to the graph

model that could be fairly easily addressed as an extension to the proofs sketched here.

50

) Add all attributes of n to the new node n
�

in G
�

using the operation op1.

) For each incoming edge into the node n add a corresponding incoming edge to the

node n
�

in G
�

using the operation op4.

) Let R be the set of nodes directly descended from the root. If the node n exists in

the root set R, add the equivalent node n
�

to the root set R
�

in G
�

using the operation

op7.

The resultant DAG G
�

will be equivalent to the initial DAG G as they will have the

same set of nodes N, edges E and roots R.

Theorem 1 Given two arbitrary DTD graphs G and G
�

, there is a finite sequence M of

, op1, op4, op5, op7 . , such that M(G)
�
G

�

.

Proof: We can prove this by first reducing the DTD graph G to an intermediate DTD

graph G1 using Lemma 1. The DTD graph G1 can then be converted to the DAG G
�

using

Lemma 2.

Theorem 2 Given two arbitrary DTD graphs G and G
�

, there is a finite sequence of

DTD graph operations N of , op1, op2, op3, op4, op5, op6, op7 . , such

that N(G)
�
G

�

.

Proof: The set of operations , op1, op4, op5, op7 . is a subset of the oper-

ations , op1, op2, op3, op4, op5, op6, op7 . . Hence the completeness of

this set of operations is given from Theorem 1.

3.5 Soundness of Change Primitives

A taxonomy of XML and DTD change primitives is sound if the following properties

hold true:

51

) Every operation on a well-formed input DTD graph produces a well-formed output

DTD graph, and every operation on a well-formed input XML tree produces a well-

formed output XML tree (well-formedness criteria).

) Every operation on a valid set of input XML trees produces a new valid set of output

XML trees (validity criteria).

) Every operation on an input DTD graph which corresponds to a valid set of input

XML trees produces a valid set of output XML trees which are consistent with the

output DTD graph (consistency criteria).

A formal proof of soundness would be rather laborious, requiring proof steps to

demonstrate that each of the above properties holds for each defined primitive. Instead,

we therefore investigate individual primitive operations for each of the above properties

to summarize the soundness proof.

3.5.1 Well-formedness

The soundness criteria under consideration here is to determine whether an operation ap-

plied to the input DTD graph or the input XML trees produces an output DTD graph or

output XML trees respectively which syntactically conform to the XML language speci-

fication as defined in [W3C00]. We choose to look at the changeQuant primitive, an

operation which makes a syntactic change to the DTD.

Prior to executing this primitive, we first ensure that the pre-conditions are satisfied.

Among numerous pre-condition checked at the onset of this primitive operation, the one

which ensures the well-formedness criteria is the one which checks the input QuantType

� . According to the syntax specification in [W3C00], the possible values which are al-

lowed in this context are , STAR - PLUS - QMARK - NONE . . Checking that this pre-

condition is satisfied ensures that we will not introduce any notation into the DTD graph

which is not syntactically permissible.

52

Once we have ensured that the pre-conditions are satisfied, we proceed to perform the

appropriate operation on the DTD graph. In this case, we must first explore the semantics

of the requested change. We find that there are four possibilities which will determine

what changes are required to the DTD graph in executing this operation. We summarize

these possibilities in Table 3.4.

Input
Quantified

Output
Quantified

DTD Change Required

TRUE TRUE Change quantifier node’s type to �

TRUE FALSE Remove old quantifier node
FALSE TRUE Add new quantifier node
FALSE FALSE None

Table 3.4: Required DTD Changes for changeQuant Primitive Operation

The first column of Table 3.4 contains the options for the state of the input DTD

element definition before execution of the changeQuant primitive, while the second

column shows the requested state after the change is made. The third column indicates

the action which is required to get from the input state to the output state. We assume that

we start with a well-formed input DTD graph to begin with.

We have already determined via the pre-conditions that a change to the quantifier

node’s type to � will produce a well-formed output DTD graph. If we remove a quantifier

node, we will still have a well-formed output DTD graph since a quantifier is not required

on an element definition. If we add a new quantifier node, we will still have a well-formed

output DTD graph since a quantifier is permissible on an element definition. Finally, if we

make no changes to the DTD graph, we are guaranteed to produce a well-formed output

DTD graph. Since Table 3.4 indicates all possible outcomes of this primitive operation,

where each row in the table corresponds to a change which creates a well-formed output

DTD graph from a well-formed input DTD graph, and the primitive operation takes pre-

cisely the action indicated in third column based on the states in the first two, we conclude

53

that the changeQuant operation maintains the well-formedness criteria.

3.5.2 Validity

The soundness criteria under consideration here is to determine whether an operation

applied to the input XML trees produces an output set of XML trees which are still valid

with respect to the associated DTD graph. We assume that the input set of XML trees

is valid to begin with. We choose here to look at the addDataElement primitive, an

operation which makes a change to an XML data tree.

Prior to executing this primitive, we first ensure that the pre-conditions are satisfied.

These include: checking that a DTD element definition exists for the element instance be-

ing added, checking that a DTD element definition exists for the parent element instance

being added to, and checking that the element instance being added is valid at the re-

quested position within the parent element instance. By not allowing an element instance

for which there is no corresponding DTD element definition to be added, we prevent

producing an invalid output XML data tree. By not allowing an element instance to be

added to a parent instance for which there is no corresponding DTD element definition,

we again prevent producing an invalid output XML data tree. Finally, by not allowing a

child instance to be added to a parent instance where such a child is not permissible, we

prevent producing an invalid output XML data tree.

Once we have ensured that the pre-conditions are satisfied, we proceed to perform the

appropriate operation on the XML tree. In this case, we add a data element instance to

the parent element instance in the position indicated by the input parameters. Again, we

have already determined via the pre-conditions that it is valid to insert this new element

instance into the parent at the requested position. We therefore conclude that after the

insertion of the child data element instance into the parent instance, we are left with a

valid output XML tree.

54

3.5.3 Consistency

The soundness criteria under consideration here is to determine whether an operation

applied to the input DTD graph also makes whatever changes are necessary to ensure that

the corresponding XML data trees remain valid and consistent with respect to the output

DTD graph. We choose to look at the removeDTDElement primitive, an operation

which causes changes to both the DTD and the XML data.

Prior to executing this primitive, we first ensure that the pre-conditions are satisfied.

These include: checking that the element definition (
�
) we are removing actually exists

in the DTD, checking that the parent element definition from which we are removing
�

actually contains
�

as a subelement, and checking that
�

does not contain any children

subelements of its own. We obviously could not remove a DTD element that does not

exist, nor could we remove a child subelement from a parent which does not contain

that child. Finally, removing an element which contains subelements of its own could

potentially violate the consistency criteria.

Once we have ensured that the pre-conditions are satisfied, we proceed to perform the

appropriate operation on the DTD graph. In this case, we remove the subelement
�

from

the children sequence of the parent element definition. If we stopped at this point, we

would have a well-formed DTD graph and well-formed XML trees, but the XML trees

would no longer be consistent with the output DTD graph. We therefore continue at this

point to make appropriate changes to the XML trees.

Once we have removed the DTD element definition for the node
�

from its parent, we

must now remove all corresponding instances of the node
�

from the XML data trees in

order to maintain consistency with the output DTD graph. To do this, we find all instances

of the parent in the XML trees, and remove instances of the child element
�

from those

parent instances. Assuming we had a valid and consistent set of input XML trees to

begin with, and by ensuring that the DTD element definition for the node
�

did not have

55

any children subelements of its own, we determine that the only places in the XML data

trees where instances of subelement
�

must be removed are those found within the parent

instances. We therefore conclude that after removal of the children instances from the

parent instances in the XML data, we are left with a valid set of output XML trees which

are consistent with the output DTD graph.

3.5.4 Summary of Soundness

In the sections above we have taken various example primitive operations and explored

their implications in terms of the three soundness properties. While we acknowledge that

this summary does not formally and completely prove the soundness of our primitive tax-

onomy, we believe that such a proof would be possible were we to look at each operation

individually with respect to the three soundness properties in a manner similar to that

which we use for the examples above.

Prior to the execution of each primitive operation, we check that the pre-conditions

are satisfied. Any DTD or XML constraints and invariants can be expressed in terms of

pre-conditions, and checking these first ensures that an operation will not be performed

under conditions which might lead to a violation of those constraints or invariants.

Definition 3 in Section 2.2 shows how we model the XML data in terms of a tree

construct. Each primitive definition in Section 3.3 indicates what the effects of the prim-

itive operation are in terms of this model. Since we begin with a valid XML tree which

is consistent with the corresponding DTD and we could demonstrate one by one that all

changes to the XML tree produce a valid XML tree as output which is still consistent with

the corresponding DTD, we conclude that the XML data operations are sound.

Definition 6 in Section 2.4 shows how we model the DTD data in terms of a graph

construct. Each primitive definition in Section 3.3 indicates what the effects of the primi-

tive operation are in terms of this graph model. Since we begin with a valid DTD and we

56

could demonstrate one by one that all changes to the DTD graph produce a valid DTD

graph as output, we conclude that the DTD change operations are sound.

Finally, the primitive definitions in Section 3.3 specify precisely when a change to a

DTD also requires a change to the XML data in order to maintain consistency via post-

conditions. Since any given change will either be rejected due to the pre-conditions not

being satisfied, or will occur in both the DTD and the XML data when required, and since

we could demonstrate one by one that all of our operations fulfill these requirements, we

conclude that our taxonomy of combined DTD and XML change primitives is sound.

57

Chapter 4

XEM Prototype System Design and

Implementation

4.1 Introduction

To verify the feasibility of our approach, we have realized the ideas presented in this thesis

in a functioning prototype system for XML evolution management1, called Exemplar. In

this chapter we first give some general background upon which we base our implementa-

tion. Then we present our system design, including overall architecture, system dictionary

and application classes. Next we discuss our mapping model, and finally provide some

implementation details. In particular, we show how the primitive operations introduced

in Section 3.3 were implemented in Exemplar.

In our background research for this thesis, we found some other projects underway

to map DTDs and XML data to relational database structures [LMZ00, FK99, Koe99].

To distinguish our work, we therefore decided to use an Object Oriented (OO) approach

for Exemplar. In our prototype implementation we use Excelon Inc.’s PSE Pro [Obj93], a
1The preliminary prototype system, ReWeb [RCC

�

00] has been demonstrated at ACM SIGMOD 2000.

58

lightweight object database system repository, as the underlying persistent storage system

for DTDs and XML documents. We require that the DTDs with which the incoming XML

documents comply be entered first into the system. PSE Pro’s schema repository has been

enhanced to not only manage traditional OO schemata but also DTDs as meta-data, since

in an XML management system, a DTD serves the purpose of a schema. The DTD-

OO schema mapper generates an OO schema according to the DTD meta-data. Then

we load the XML documents into the just prepared schema. The mapping and loading

details are given below. Comparison of the performance of using our primitives to achieve

incremental change versus reloading from scratch can be found in Chapter 5.

4.2 Exemplar Architecture

Figure 4.1 depicts the architecture of the XML Evolution Management Prototype system

(Exemplar), which provides the facilities to describe desired DTD and XML transforma-

tions via combining the change primitives. Exemplar utilizes functionality provided by

the SERF system [CJR98b], which interacts directly with the database to store and access

the Schema and Object repositories, and also provides the basis for schema evolution.

The main modules of the Exemplar system architecture include the following:

) The DTD-Mapper parses the input DTD and interacts with the System Dictionary

Manager, as described below in Section 4.3.

) The XML-Loader parses the input XML documents and interacts with the Appli-

cation Classes Manager, as described below in Section 4.4.

) The XML-Dumper also interacts with the Application Classes Manager to extract

the XML data stored in the database, and then it writes the results to a new XML

file.

59

) The system management classes which interact with the SERF system include stor-

age, retrieval and maintenance of System Dictionary and Application classes, in

addition to providing the evolution primitive operations.

XML

XML

�����������	��
�

��������������
��

���������	���	
�

Schema
Repository

Object
Repository

������� �"!$#�%'&

SERF

DTD
SysDictManager

AppClassesManager

Evolution Primitives

Figure 4.1: Architecture of Exemplar System

4.3 System Dictionary and the DTD-Mapper

The DTD-Mapper module is responsible for parsing the DTD, creating system dictionary

objects that model the respective DTD semantics, and populating those objects with the

meta-data found in the DTD. The DTD-mapper then generates appropriate application

classes for each element definition, which are later instantiated by the XML-Loader class.

(See Section 4.4 below.) Figure 4.2 illustrates the system dictionary class hierarchy.

The DTDNode is an abstract base class from which all other DTD classes inherit.

The DocDef is responsible for document-wide concepts such as the unique DTD ID, the

60

DTDNode
������� �	��
��� �	� � �������
������� �	���	��� � ��� ��������

DocDef
� ������� �� �
����� � ���������

createDTDElement()
destroyDTDElement()
renameDTDElement()
findElemDef()

GroupDef
 ���!�"#��
�$�%�
��

ElemDef
����� � �����&�"��
 ���!�"#����&� �	��� $�%�
��
������� ��'��� ��� (�� ���

insertDTDSubElement()
removeDTDSubElement()
convertToGroup()
flattenGroup()
changeQuantifier()
addDTDAttr()
destroyDTDAttr()
findAttrDef()
changeAttrDefaultType()
changeAttrDefaultVal()
changeAttrFixedVal()

AttrDef
����� � �������	"��
 ��)!�"#��� �&� $�%�
��
 ��)!�"#����* $�%�
��
����� � ���+����* ���	�
����� � ���+*,� -��������.�

QuantNode
 ���!�"#/�$�%�
0�
12���	� ����+� ��/3!�� � �0�
12���	� ����+� ��
4����� ��5� �

qType:*,+,?,.

����* $�%)
��	6 �2��/	!�� � ���	7
� "�
� � ���	7�84� -����

grpType:choice,list

��� �&� $)%�
��6
������� �74� �	7
� �� ��*97�� �� ��* �7

enum

������ ��&� $�%�
��	6�
�������� �	7
"+� -����7'���"�
	� ��-	7
�	"�
�� %7'��&%

Figure 4.2: System Dictionary Class Hierarchy

URI for the DTD, and document-level methods that manage top-level element definitions.

A GroupDef object is created for each nested group defined within the DTD element

definitions, and QuantNodes are created whenever an element or group has quantifiers

“*”, “+”, or “?”. An ElemDef object is created for each element definition within the

DTD. Similarly, an AttrDef object is created for each attribute definition. The permissible

values for enumerated types are shown in the small boxes below the class diagrams above.

4.4 Application Classes and the XML-Loader

The XML-Loader module is responsible for parsing the XML document(s) which con-

form to a previously loaded DTD, and instantiating the application classes which were

created by the DTD-Mapper. The XML-Loader then populates the application classes

with data objects according to the XML document file(s). Figure 4.3 illustrates the pre-

61

defined application class hierarchy, and shows some sample application classes.

Figure 4.3: Application Classes Which Represent XML Data

Any is an abstract base class from which all application classes inherit. It contains a

reference to the corresponding DTD element definition found in the system dictionary, a

reference to the parent element, and a vector of children elements. The parent and children

variables are used to keep track of relationships among elements. For example, subele-

ments are stored as children of their parent element. In order to distinguish same-named

elements which come from different DTDs, the application classes are assigned a DTD

ID as part of their name. The element name as it is defined in the DTD is then appended

to this ID. For example, if a “Product” element is defined in two different DTDs, the first

might be named D1 Product, and the second D2 Product. Finally, the predefined

PcData class is used to store the values of XML data elements.

4.5 Mapping Model

Table 4.1 shows how the content types found in the DTD are mapped to corresponding

OO model representations in the system dictionary. Some constructs, such as Document

62

and Element, are represented by the various system dictionary objects described above,

while others, such as constraints, are stored as member variables of those objects.

DTD Content Types OO Model Representation

Document Document Definition object
Element Element Definition object
Element Quantifier Quantifier object
Element Content Constraint contentType member variable in Element object
Group Group Definition object
Group Content Constraint grpType member variable in Group object
Group Quantifier Quantifier object
Attribute Attribute Definition object
Attribute Default Constraint defaultType member variable in Attribute object
Attribute Type Constraint attrType member variable in Attribute object

Table 4.1: Mapping the DTD to System Dictionary Objects

Mapping from DTD and XML files into system dictionary and application classes

proceeds as follows. First, the DTD is parsed by the DTD-Mapper, and instances of the

system dictionary objects are created as indicated for the content types in Table 4.1 above.

Then the DTD-Mapper creates the application classes: one Java source file for each ele-

ment definition found in the DTD. On the application side, DTD attribute definitions are

just mapped to member variables in these Java files. Then subelements are later stored in

the children vector by the XML-Loader which instantiates and populates the application

classes with the XML data.

We illustrate with an example. Below we again show the Article.dtd from Figure 1.1,

along with the DTD graph from Figure 2.2 which models our internal representation of

this DTD once it is processed by the DTD-Mapper. We then describe the system dictio-

nary objects and application classes created by the DTD-Mapper. Finally, we indicate

how the application classes are instantiated and populated by the XML-Loader.

63

�����������	��
����������	����������������������� "!���#������"��������$�%�&�'
�����������	��
�(�������)�+*�,	-�.�/��0/1&�'
�����������	��
�������� 	!	�2��3	��4"�5&0'

���6/�������7�8��������� 	!��9��$:70.:*�;��	<�=�7�;���."'
�����������	��
�>3���4"�)��?����	@��A�����	@��5&0'
�����������	��
�B?�����@��C�+*�,	-�.�/��0/1&�'
�����������	��
�D���"@��C�+*�,�-�.�/���/1&0'
�����������	��
�9��������	��$��E4!�3	!�F	����G	 5&�H�'
�����������	��
�I4!�3�!�F"����G	 C�J����������K��$���	!	��&0'
�����������	��
�>��$���	!	�I���",	��L"'

���6/�������7�8��>��$���	!��(3���4"��-�.�/���/M*	7N�	,���70��.'

Figure 4.4: Contents of Article.dtd File,
repeated here from Figure 1.1

article

related-work

title

author

firstname

name

lastname

monograph

dtdRtNode

,

+ ?

#PCDATA

editor

*

name

,

title

,

built-in data node element node

virtual element

attribute node

parent/child relationship

constraint node

id
Id

REQUIRED

CDATA

IMPLIED

Figure 4.5: Graph Representation of Ar-
ticle.dtd, repeated here from Figure 2.2

4.5.1 Create System Dictionary Objects

First, a DocDef is created for the Article.dtd with a DTD ID of 1 (assuming this is the

first DTD to be entered into our system), and a URI which indicates the location of the

DTD file. Next, the DTD is parsed, and the system dictionary objects are created as

indicated in Table 4.1. The results of this process are shown below.

1. ElemDef objects are created for the following element definitions in the DTD:

article, title, author, name, first, last, related, monograph, and editor.

2. Element content constraints are stored as member variables in the ElemDef ob-

jects: PCDATA is the content constraint for elements title, first, and last; COMPLEX

is the content constraint for elements article, author, name, related and monograph,

meaning they contain subelements in their content; and EMPTY is the content con-

straint for element editor.

64

3. AttrDef objects are created for the two attribute definitions in the DTD: id (de-

fined in the DTD as an attribute of the author element) and name (defined in the

DTD as an attribute of the editor element).

4. Attribute default constraints are stored as member variables in the AttrDef ob-

jects: REQUIRED is the default constraint for the id attribute, and IMPLIED is the

default constraint for the name attribute.

5. Attribute type constraints are also stored as member variables in the AttrDef ob-

jects: ID is the type constraint for the id attribute, and CDATA is the type constraint

for the name attribute.

6. GroupDef objects are created for groups of more than one child subelement: we

create one GroupDef each for the children of elements article, name, and mono-

graph. There is no need to create GroupDef objects for groups of only one subele-

ment, as would be the case for the children of elements author and related.

7. Group constraints are stored as member variables in the GroupDef objects: LIST

is the constraint for all groups in this example.

8. QuantNode objects are created for each quantifier, in this case one for the “+” in

author+, one for the “?” in related?, and one for the “*” in (monograph)*.

4.5.2 Create Application Classes

The next task accomplished by the DTD-Mapper is to create application class definitions

for each element in the DTD. This is done by creating Java source files, named according

to the element name in the DTD, prepended by the DTD ID, adding member variables

for attributes where required, and then compiling the Java files to create the byte-codes.

Each of these Java classes inherits from the pre-defined application class “Any”. Table

4.2 shows the Java source files which get created by the DTD-Mapper when processing

65

the Article.dtd in our example, and the member variables (if any) associated with those

Java files.

Java Source File Name Member Variables
D1 article.java none
D1 title.java none
D1 author.java name=“id”, type=String
D1 name.java none
D1 first.java none
D1 last.java none
D1 related.java none
D1 monograph.java none
D1 editor.java name=“name”, type=String

Table 4.2: Application Classes Created by DTD-Mapper

4.5.3 Instantiate and Populate Application Classes

At this point the DTD-Mapper has finished its job, and the XML-Loader takes over. It

is the XML-Loader’s responsibility to instantiate the application classes just created by

the DTD-Mapper, and to populate them with the XML data. For our example, we again

present the XML file from Figure 1.2 which corresponds to the Article.dtd in Figure 1.1,

along with the XML tree from Figure 2.1 which models our internal representation of this

XML data once it is processed by the XML-Loader.

66

<article>���������	'�O��"�>��P!	��������!�3 ���3���F��"���"Q��������	'
�������� 	!��9��$�RTSN$�UAS�'
��3���4"�"'
�"?�����@��'�.����3����Q�?�����@��'
�	���"@��"'�V"����4"�	���Q����"@��"'

�Q�3���4�	'
�"Q������� 	!	��'
�������� 	!��9��$�RTSN�	��S�'
��3���4"�"'
�"?�����@��'����U����"Q�?����	@��"'
�	���"@��"'�;���3�$���3"@����"��3��	���"Q����"@��"'

�Q�3���4�	'
�"Q������� 	!	��'
�������������$	'
��4!�3�!�F	����G	 "'
���������"'0�!�$��	��3>.	���	��W��	@��B8�X"@�����4�@��"Q0��������	'
����$���	!	� 3	��4"��RMS Y!�3>V�K41S0'��Q���$"���	!���'

�QN4!�3	!�F	����G	 '
�"Q����"�����	��$	'

</article>

Figure 4.6: Contents of Sample.xml
File, repeated here from Figure 1.2

article

title author author

�����
Evolution
Manager

id idname name

dk er

first last first last

related

monograph

title editor

name
������	�
��

Database
Systems

Won Kim

Diane Kramer Elke Rundensteiner

ElemNode

AttrNode

ValueNode

���� ����� � ����� � ��� ��� �� � ���� ��� !

Document

DocNode

Figure 4.7: Tree Representation of Sam-
ple.xml, repeated here from Figure 2.1

To describe the objects created by the XML-Loader, we start with the leaf nodes at

the bottom of the tree, and work our way up. First, six instances of the pre-defined

application class “PcData” are created for the following text values, and the text is stored

in the “value” member variables, one per instance:

"$#&%('*),+(-*.(/10(2*3(.546'*754*7(8(9(:
; #&<*3(754*9
= #&>*:(75?*9(:
@$#&+*/(A(9
B$#&C(0(4*D(954*E52F9(354*9(:
G #&'*.(D(9(:546<F752*75H*7(E(96I5J*E52*95?*E

Next, two instances of D1 first are created, and each is assigned a single child in its

children vector: One for Diane, which gets assigned PcData instance number 2 above,

and one for Elke, which gets assigned PcData instance number 4 above. Similarly, two

instances of D1 last are created, and assigned instance numbers 3 and 5 above in their

respective children vectors. Two instances of D1 title are created next, and assigned in-

stance numbers 1 and 6 above in their respective children vectors. Then one instance of

D1 editor is created, and the “name” member variable is assigned the String value “Won

Kim”. Next, two instances of D1 name are created. The first of these is assigned the

67

two children, D1 first and D1 last, for Diane and Kramer. The second is assigned the

two children, D1 first and D1 last, for Elke and Rundensteiner. Next, one instance of

D1 monograph is created, and the instance of D1 title for number 6 above, plus the in-

stance of D1 editor are assigned to its children vector. Then two instances of D1 author

are created. The first of these is assigned the String value “dk” to its “id” member vari-

able, and the first instance of D1 name to its children vector. The second instance of

D1 author gets the String value “er” assigned to its “id” member variable, and the second

instance of D1 name to its children vector. Next, an instance of D1 related is created,

and the D1 monograph instance is assigned to its children vector. Finally, one instance of

D1 article is created, and assigned to its children vector are the instance of D1 title, the

two instances of D1 author, and the instance of D1 related.

4.6 Implementation Details

4.6.1 Development Environment

Goals for the Exemplar system include to provide Object-Oriented storage, manipulation

and retrieval of DTD and XML data, and to provide a platform-independent execution

environment. We therefore chose Excelon Inc’s PSE Pro [Obj93] for our database reposi-

tory, and the Java 2 programming language (JDK 1.3 from Sun Microsystems [Sun00]) for

our implementation. For the XML parser, we used XML4J/Xerces, version 3.0.1 (IBM’s

XML parser for Java [IBM00b]). Development was done on the Microsoft Windows NT

platform. In total, the implementation contains 54 Java class files, and over 10,000 lines

of code.

68

4.6.2 SERF System

Excelon’s PSE Pro is a rudimentary Java object store, which does not contain many of

the evolution facilities provided by traditional database management systems. On top of

PSE we have a base evolution support layer called SERF [CJR98b], which provides more

powerful mechanisms for Object-Oriented storage, maintenance and retrieval, including

schema evolution. SERF models OO classes by means of an object called MetaClass,

which we utilize in Exemplar to represent an XML element definition. An Attribute

is also represented in SERF, originally designed to model member variables in OO, and

used in Exemplar to represent an XML attribute definition. Each instance of MetaClass

contains a Java vector of attributes.

When an instance of an application class object is created in SERF (for example,

when we create an instance of D1 author, D1 title, etc.), that instance is added to the

extent of the corresponding MetaClass. This mechanism is used during schema evolution

to determine the set of objects which are affected by a change to an OO class (or in our

case, a change to an XML element definition). The schema evolution functions provided

by SERF include methods such as add attribute and delete attribute, which perform a

complicated set of activities in order to maintain consistency between the application

class objects and the schema repository. For example, the following steps are required in

order to execute an add attribute transaction on a Java class “A”:

1. Create a new Attribute object.

2. Update the MetaClass object for A to reflect the newly added attribute. This

entails the simple addition of a new object (attribute) to a collection (vector) in

Java.

3. Create a new temporary Java source file, A
�

, containing all of the code from the

original class file A, plus the additional new attribute.

69

4. Compile and post-process the temporary Java file, A
�

. Post-processing is a step

required by PSE, which annotates the compiled class file with mechanisms used

internally by the ObjectStore database.

5. For each instance of class A, create a new instance of class A
�

, copying the data

from the object of type A into the new object of type A
�

. During this step the newly

created objects are added to the extent of A
�

.

6. Swap the object identifiers (OID’s) for each pair of objects: original instance of A

and corresponding newly created instance of A
�

. This allows references, which used

to point to type A objects, to now refer to the new type A
�

objects.

7. Delete the old objects of type A, removing them from the extent of A, and delete the

old class file A. After completion of this step, the database is in a consistent state

with the newly added attribute, but the class file has the temporary name A
�

, and the

objects are of type A
�

.

8. Create a new Java file called A, containing all of the code from class file A
�

.

9. Compile and post-process the newly defined Java file A.

10. For each object in the extent of class A
�

, create an instance of the new class A,

copying the data from the object of type A
�

into the new object of type A. During

this step the newly created objects are added to the extent of A.

11. Swap the OID’s for each pair of objects: temporary instance of A
�

and newly created

instance of A.

12. Delete the temporary objects of type A
�

, removing them from the extent of A
�

, and

delete the temporary class file A
�

. After completion of this step, the database is in a

consistent state with the newly added attribute: the class file has the correct name

A, and the objects are of the correct type.

70

4.6.3 Missing Functionality

Although Exemplar requires all of the above functionality to be in place in order to prop-

erly perform the desired transformations on DTD and XML data, some of the steps above

were not implemented in SERF due to a complication in the Java Virtual Machine (JVM),

and had to be filled in by the developers of Exemplar. To be precise, steps 1 through 5

were implemented in SERF, providing the functionality for in-memory transformations

only, leaving the name of the class file and the object types in an inconsistent state. The

complication arose at the completion of step 9, because at this point there are two distinct

class files defined with the same name: the original class file called A, and the newly

defined class file with the additional attribute, also called A. Help was elicited from the

producers of PSE [Obj99] to implement the underlying functionality required to swap

OID’s in the database. But this functionality was not fully integrated into the SERF sys-

tem, nor tested, because of the above mentioned difficulty in the JVM.

A theoretical solution to the JVM problem was proposed in [LB98], work which de-

scribes dynamic class loading in Java. The paper provides a solution via a custom class

loader, which can load in a newly defined class with a pre-existing name. Using this

method, a Java class can no longer simply be referred to by its name, but must also be

qualified by its class loader. This solution was implemented in Exemplar [KSC
�

01]. Hav-

ing this functionality in place, the SERF system could then be augmented to include the

swapping of OID’s, completing the required functionality for schema evolution.

4.6.4 Primitive Operations

The following list of primitives were implemented in Exemplar:

1. Changes to the Document:
) createDTDElement
) destroyDTDElement

71

) renameDTDElement

2. Changes to DTD Element:
) insertDTDSubElement
) removeDTDSubElement
) changeQuantifier

3. Changes to DTD Group:
) changeQuantifier
) convertToGroup
) flattenGroup

4. Changes to DTD Attribute:
) addDTDAttr
) destroyDTDAttr
) changeAttrDefaultType
) changeAttrDefaultVal
) changeAttrFixedVal

5. Changes to XML data:
) changeAttribute
) addElement
) destroyElement
) changeElement

This list differs from the primitives described in Table 3.1 in the following ways:

) One goal in our original design of DTD and XML primitives was for the set to be

minimal, meaning no overlap of functionality among the operations. During our

implementation, however, we chose to remove this restriction and instead attempt

to achieve a set of primitives which are easy to use. We therefore added some prim-

itives which allow changes to be made to existing element and attribute definitions

in the DTD, as well as allowing changes to existing data elements.

72

For example, in the original set of primitives, we provide createDTDElement and

destroyDTDElement. These two primitives combined allow for any desired changes

to element definitions in the DTD. In our implementation, however, we additionally

supply a renameDTDElement primitive, which provides the combined functionality

of removing an element using destroyDTDElement and adding the same element

with a different name using createDTDElement. The renameDTDElement primi-

tive therefore allows for more ease of use by combining the two operations into one

method call.

) The original list of primitives in Table 3.1 includes one method called change-

Quant for changing the quantifier of an element, and another method called change-

GroupQuant for changing the quantifier of a group. Both of these two primitives

were implemented using a single method called changeQuantifier for two reasons.

One, it was determined that much of the functionality is the same, and two, it is not

difficult to determine inside the method which of the two types (element or group)

we are dealing with.

) The original list of primitives includes two data change methods called addDataAttr

and destroyDataAttr. Since an attribute is modeled by a member variable of a Java

class in our Exemplar system, it is not possible to add or remove a data instance

of an attribute. Adding or removing an attribute is effectively a schema evolution

operation, as described in Section 4.6.2. Therefore we have only implemented the

changeAttribute primitive, which changes the value of a data instance of an at-

tribute. This way it can be used to simulate the removal an instance of an attribute

which is not required by simply setting its value to null.

73

4.6.5 Indexing Algorithm

Of the many different algorithms used to implement Exemplar, one in particular deserves

mention. During the design phase of the evolution primitives, we knew that we would

need to refer to the subelements contained in a DTD element definition by position. This

can be seen in Table 3.1, where we refer to various subelements by position, for example,

in the insertDTDSubElement primitive. When it came to implementing these primitives,

we found that a simple integer index would be insufficient, since element definitions can

be nested within groups, and subelements can be repeated within a single definition. Ad-

ditionally, when it comes to an insert operation, we need a way to distinguish between

“insert before” and “insert after”. Plus, we need to refer to a nested group by position, in

addition to referring to a single element, in order to accomplish the flattenGroup primi-

tive, for example. We therefore devised the following mechanism for referring to “content

particles” (either an element or a group) which may appear in an element definition.

An index is represented as a linked list of integers, where the length of the list specifies

the depth of the index in the DTD graph (the number of nested groups). The number at

each level in the linked list specifies the ith child at the corresponding level in the DTD

graph. An index of 0 at the last level means “insert before”; any other number means

“insert after”. To illustrate, we use the following original DTD element definition: (a,

(b, c, (d, e))), and the insertDTDSubelement primitive. Table 4.3 shows the

format of our indexing notation in the first column, and the result of inserting a DTD

subelement into the above element definition using that index in the second column. The

dashes (-) in the index notation indicate the links in the linked list. In other words, an

index with notation 2-3-1 represents three integers in a linked list, where the first integer

is 2, linked to the second integer, 3, followed by a link to the final integer, 1.

74

Index DTD definition after in-
serting element “x”

0 (x, a, (b, c, (d, e)))
1 (a, x, (b, c, (d, e)))
2-0 (a, (x, b, c, (d, e)))
2-1 (a, (b, x, c, (d, e)))
2-2 (a, (b, c, x, (d, e)))
2-3-0 (a, (b, c, (x, d, e)))
2-3-1 (a, (b, c, (d, x, e)))
2-3-2 (a, (b, c, (d, e, x)))
2-4 (a, (b, c, (d, e), x))
2 (a, (b, c, (d, e)), x)

Table 4.3: Indexing a Content Particle in a DTD Element Definition

It is important to note that the indices discussed above are only used as parameters to

the method calls of the evolution primitives, and we do not store indices in the element

definitions themselves. If we did, this would introduce the complication of having to re-

index subelements when one is added or removed. Rather, we store subelements in the

children vector of the parent element definition. Therefore, when we add or remove a

subelement, the indices are automatically maintained internally by the Java vector class.

75

Chapter 5

Experiments

5.1 Experimental Setup

5.1.1 Introduction

Once the Exemplar implementation was complete, experiments were carried out to gauge

the relative efficiency of the primitive operations. The measure under consideration was

the time to complete the various operations. In Java, the system call currentTimeMillis()

was used before and after calls to the primitive operations in order to determine how

long a particular operation takes. Each experiment was run ten times, and the results we

present are the averages of the ten runs. Since some simple operations took less than one

millisecond, some measurements are approximate for small numbers. However, we knew

of no other method which would produce more accurate results.

The experimental results presented here come from our Exemplar system, and conse-

quently have performance characteristics specific to the choices made during our design

and implementation. For example, we chose an object-oriented approach, so our map-

ping model is quite distinct from one which might have been implemented on top of a

relational database. Our specific choices for using the Java programming environment

76

and other third-party tools also play a significant role in the results we achieved when

experimenting with Exemplar.

Due to the nature of PSE, the underlying database system, once a change has been

made to data in memory, it is necessary to “commit” the transaction. This has the effect of

writing the changes to disk, saving them in more permanent storage. While implementing

the XEM primitives, a decision was made not to include the commit operation within the

primitive itself in order to make the primitives more database-independent. This means

that the caller is responsible for starting a transaction before invoking a primitive, and

committing the transaction afterwards.

All primitive operations return a boolean result, allowing the caller to determine

whether the operation was successful. If any error occurs during the primitive execu-

tion, in addition to returning a boolean value of false, an exception is raised, indicating

precisely what went wrong. The decision not to include the commit inside a primitive op-

eration also provides more flexibility to the caller, since it allows one to “bundle” multiple

primitive operations into a single transaction. Since the time to commit a transaction is

dependent on the underlying database system, and not under the control of the Exemplar

developers, the experimental results do not include the time to commit a transaction. In

this way it was possible to examine purely the time to execute an evolution operation.

5.1.2 Execution Platform

All experiments were performed on the same machine in order to make proper com-

parisons. The execution platform is Microsoft Windows NT Enterprise Server Edition,

version 4.0, with service pack 6. The processor in the machine is an Intel Pentium II,

with an operating speed of 433 MHz. The amount of memory in the machine is 128

Megabytes. Although it is not possible to determine at all times all of the processes run-

ning on the machine due to system services and operating system activities that run in the

77

background, an attempt was made to minimize other processes running on the machine

while the experiments were executing. One step that was taken to ensure this was to close

all applications during the execution of the experiments, with the exception of the DOS

command window used to run the experiments.

5.1.3 Data Set Statistics

While testing the time that various primitive operations take, the primary variables which

can be altered for experimental purposes include the following:

) The number of element and/or attribute definitions in a DTD

) The level of nesting of subelements in the element definitions

) Which element or attribute to perform an operation on

) Which primitive operation to perform (schema or data changes, for example)

) The number of data elements in an XML file

) The number of XML files processed

In order to run the experiments it was necessary to have at least one DTD and prefer-

ably many XML files conforming to that DTD to work with. In preparing for the exper-

iments, one option considered was to manually create a synthetic DTD and some XML

files from scratch. But it was determined that a better option would be to find some “real

life” data files to work with. We thus selected the set of Shakespeare’s plays [Bos] for our

experiments. Some statistics about the Shakespeare files are as follows:

) 1 DTD with 21 element definitions

) 37 XML data files, one play per file

) Smallest data file is 141,345 bytes long, and contains 3133 Elements

78

) Largest data file is 288,735 bytes long, and contains 6600 Elements

) Average data file is 213,449 bytes long, and contains 4840 Elements.

Since the original Shakespeare DTD did not contain any attribute definitions, in or-

der to test our primitives that deal with attributes, we simply had to add some attributes

first. Once added, other manipulation operations became possible. All of the experi-

ments described below were executed on this set of Shakespeare XML data files and their

corresponding DTD.

5.2 Experimental Results

Below we show the results obtained from our experiments run on the Exemplar system.

For each experiment we plot the total execution times of various operations under con-

sideration. We also analyze the results in terms of the number of objects in the system

which are affected by an operation. In order to show the execution times in detail, some

of the results are broken out into separate charts with different time scales (seconds vs.

milliseconds).

5.2.1 Exemplar System Initialization

The purpose of the first experiment was to examine the Exemplar system initialization.

We used a fixed DTD and varied the amount of XML data to load. Eight different tests

were run, each time increasing the number of XML data files processed, and each test was

run ten times to get an accurate measure. The results presented are the averages of the ten

runs. We measured the time to map the DTD elements to system dictionary classes, plus

the time to load the XML data, plus the time to dump out the XML data. Also included in

the measurements is the time to initialize and shut down the database. The first two charts

79

below show the varying amounts of time to accomplish these tasks, separated into two

different charts because they are in different time scales. The third chart shows the total

execution time for all of the tasks combined, while the fourth chart compares the amount

of time to load versus the time to dump on a per-element basis.

�����������
	����� ����	����
��������	�������� � ��!

0.0

0.5

1.0

1.5

2.0

1 5 10 15 20 25 30 35"$#�%�& ')()*,+ - .0/1(2#,3045.04
67 8
9 :;
9<=
>? @ A B A CEDGF

create sys dictH5IEJ CED K0L B DGF

Figure 5.1: Low End Times for System Initialization

Figure 5.1 shows the fixed costs associated with initializing the database, creating the

system dictionary classes, and then shutting down the database. Although they are not

strictly straight lines, we consider these to be fixed costs because they do not vary by

much. If we had included these times in Figure 5.2, the next chart below, they would

indeed appear as straight lines relative to other higher costs, and they would all overlap

each other at the bottom of the chart. We separate them out here in order to “zoom in” and

see the detail of the results. Initializing and shutting down the database are understandably

fixed costs. In this experiment, creating the system dictionary classes is also a fixed cost

because we use the same single DTD for each test. Since all of the XML files conform to

this DTD, each test takes roughly the same amount of time to create the system dictionary

classes.

80

���������	��
����������
����	��������
������� �����

0
50

100
150
200
250
300
350

1 5 10 15 20 25 30 35 "!$#	%'&)(+*�, - .0/1(2!43652.65

78 9
: ;
< :=>
?@ A

gen app classesB C6DFEHG'I)J�K�L B MFN
EPO4Q�RSG�IHJSK�L B MFN

Figure 5.2: High End Times for System Initialization

Figure 5.2 shows the fixed time it takes to generate the application classes, and the

increasing times to load and dump out the XML files. Generation of application classes is

a fixed cost in this experiment, again because we use the same single DTD for each test.

This fixed cost is included in this chart rather than the previous chart because the time

scale is considerably different: close to 50 seconds, as opposed to one or two seconds. As

expected, the time to load and dump out the XML data increases as the amount of XML

data increases.

TVUHWYXHZ�[]\�^`_Ya�b�c�\�c�d]e�c�f�d]\�c�g�bih�j]k`l

0
100
200
300
400
500
600
700

1 5 10 15 20 25 30 35
mon6p'q`rVs1t�u v w2x+s�n�y{z�w2z

|} ~
� �
� ���
�� � Total

Processing
Time

��� ��� ���������� ���� �{�����2��� ���
- gen app classes��� �����2��� ��� � � ������������2��� ��� � � �����������������0�{���

Figure 5.3: Total Times for System Initialization

Figure 5.3 shows the combined times to initialize the Exemplar system, over vary-

ing amounts of XML data. The chart includes the time to initialize and shut down the

database, the time to create system dictionary classes and generate application classes,

plus the time to load and dump the XML data. This chart provides an overall picture of

the costs associated with Exemplar system initialization.

81

���������
	
������ ��� ��� ��� � ������� �����
�

1.4
1.5
1.6
1.7
1.8
1.9
2.0

6,
32

0

25
,2

55

51
,0

85

75
,1

56

99
,3

65

12
3,

28
8

14
7,

20
6

16
9,

90
8

�! �"$#&%('�)�*�+�, %-".%-/
0 132�')�4-%-1-1-%(5

67 8
9:;
7<<7 =
9>
?@
A =
B

Load Time per
Element
Dump Time per
Element

Figure 5.4: System Initialization Time per Element

Figure 5.4 analyzes the amount of time required to load and dump the XML data on a

per-element basis. We showed in Figure 5.2 that the total amount of time to load or dump

XML documents is dependent on the amount of data we are processing. As expected, the

time increases as the amount of data increases. This chart, however, shows that the load

and dump times are actually fixed, when viewed relative to each element. This chart also

has a different time scale from the other charts in this experiment. The previous three

charts plot time in seconds, whereas this one plots time in milliseconds in order to show

the results in more detail.

5.2.2 Compare Two Schema Change Operations

The purpose of the second experiment was to compare the execution times of two dif-

ferent schema change operations. We chose to compare the insertDTDSubElement and

addDTDAttr primitives because we feel these operations are likely to be commonly de-

sired by users of an XML evolution management system. In this section we first discuss

the differences between the two operations in terms of the specific implementation details.

We then show the effects of each of these operations separately. Finally, we compare the

two operations in terms of the number of objects affected and the average execution times

per element. Since we chose similar data to operate on in each case, the percentage of

data affected by each operation is the same. Approximately 17.5% of the total amount of

82

data loaded is affected on average by the execution of each primitive operation.

Both the insertDTDSubElement and addDTDAttr primitives operate on the DTD.

Thus in XML context, they are both schema changes. As is often the case with a schema

change, both operations require an “implied” data change, described in more detail below.

On the surface, the operations appear to be similar. However, due to our implementation,

what happens in each case is quite distinct.

The first operation, insertDTDSubElement, requires a simple change to the structure

of the DTD: an existing element is added to the children of some parent element definition.

The children vector itself does not change, only the contents change. This operation also

implies a data change: for any instance of that parent element in the data, an instance of

the child must also be created and inserted.

The second operation, addDTDAttr, also requires a change to the structure of the

DTD, but this one is not so simple. As described in Section 4.6.2, when a new attribute

definition is created and added to some element definition, this requires making a change

to the Java file which represents that element. Once a change to a Java file is introduced,

the process becomes complicated by the need to create temporary files, copy objects, swap

OID’s, etc. Hence this second primitive operation is expected to take more time than the

first. This expectation is indeed verified by the experiments, as shown in the charts below.

Figure 5.5 shows the initial results of testing the insertDTDSubElement primitive,

while Figure 5.6 shows those of the addDTDAttr primitive. As was done in the first ex-

periment involving system initialization, eight different tests were run for each primitive,

increasing the number of XML data files processed, and again, each test was run ten times

for accuracy. Both charts in Figures 5.5 and 5.6 compare the total time to load all of the

XML data from scratch against the time to execute one of the two primitives. It is clear

from these two that the addDTDAttr operation takes longer than the insertDTDSubele-

ment operation.

83

���������
	������������������������	�����������	������

0
50

100
150
200
250
300
350

1 5 10 15 20 25 30 35�! #"�$�%'&)(+*�,�-�./&+ +0�1+-�1

23 45
67 5
89
:; <

Primitive Execution=�>�?�@BA�?�C ?

Figure 5.5: Executing Incremental Data Set Updates Using insertDTDSubelement Vs.
Complete Reload of Data

D�E'E�F/G�F'H�IJILKNMNKPO�QRO ILO S�T

0

50

100

150

200

250

300

350

1 5 10 15 20 25 30 35
U�V�W�X�Y�Z\[�] ^ _+`�Z�V�acb�_cb

de f
g h
i gj
kl
m n

Primitive Executionocpcqcrtsuqcvwq

Figure 5.6: Executing Incremental Data Set Updates Using addDTDAttr Vs. Complete
Reload of Data

Due to the precise details of the operations chosen for these tests as described below,

the number of XML Element objects affected by the execution of the two primitives is the

same. In the first test we insert a subelement into the parent SPEECH element, while in

the second test we add an attribute to the same parent SPEECH element. So the number

of occurrences of the objects affected in the data is the same. However, the total number

of objects in the data files themselves is significantly higher, because not every element

in the data files is a SPEECH element. Therefore, below we examine the impact of the

primitive operations on a per-element basis.

84

Figure 5.7 compares the number of objects in the data set (and here reloaded from

scratch) with the number of objects affected by the operation of the primitives. The first

XML file contains 6,320 element objects, each of which is counted in the load time. But

the primitive operations only affect 1,174 objects, the number of SPEECH elements in

the data file. The first five XML data files combined contain 25,255 objects, but the

primitive operations only affect 4,633 objects, and so on. We look at these numbers in

preparation for the next chart, Figure 5.8, where we compare the average execution times

of the primitive operations vs. the average load time on a per-element basis.

���������	�
��������������� ��
����������� ����

6,320
25,255

51,085

75,156

99,365

123,288

147,206

169,908

4,6331,174
8,805 12,520 16,878 21,340 26,387 29,425

-50,000

0

50,000

100,000

150,000

200,000

1 5 10 15 20 25 30 35�"!$#�%'&)(+*�� � �� ,(�!�-�.���.
/ 0123
45
467
8 9:
4;7 <
=11 4;
7 4>

Objects Loaded
Objects Altered

Figure 5.7: Number of Objects Loaded Vs. Number of Objects Changed

?"@BADCBEGFIHJCLK�MONQPSR�TVU�CLEXWZYQC\[LFIHJCZ]^A_C`E,?Va C`HbCcK)M

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

87198dfefgDh ikjfgOlQmfnDo'prq gfs�t u'dfnvn gfs�t gfw

xy z
{ |
}y~~y �
{��
�� �

insertDTDSubelement�f���f����� ���Q�r�v�
addDTDAttr

15145 15145

Figure 5.8: Compare Average Load and Primitive Execution Times per Element

Figure 5.8 analyzes the impact of the two primitive operations on a per-element basis,

85

and compares this result with the average time to load all of the elements from the data set.

The numbers across the bottom of the chart along the X axis show the average number of

objects affected in each case. Here we sum the numbers from the lines plotted in the chart

of Figure 5.7, and divide the sums by 8 to come up with 15,145 and 87,198, the average

number of objects affected by the primitives vs. the average number of objects loaded

respectively. The numbers along the Y axis indicate the execution times in milliseconds,

and we determine the height of each bar by similarly averaging the load and primitive

execution times per element. We show averages in this chart rather than individual times

for each test because we determined that the cost in terms of execution time per object

is independent from the number of objects in the data set. From these numbers we also

calculate the percentage of objects affected by the primitive operations out of the total

number of data elements, which is approximately 17.5%.

From the chart in Figure 5.8 it can be seen that the first primitive, insertDTDSubele-

ment, is more efficient than reloading the data from scratch, as it takes less time per ele-

ment than loading does. But the addDTDAttr primitive takes too much time per element

to be efficient when compared to how long it takes to reload the same data. Therefore it

is possible to conclude that if the user chooses to add or remove attributes, s/he may be

better off editing the DTD and XML files manually and reloading the data from scratch.

However, this analysis does not consider the time for the user to make manual edits, and

there is still an argument to be made for the accuracy of automation. Even though the

Exemplar system is not terribly efficient when it comes to adding/removing attributes, a

single primitive method call will make the same change to potentially thousands of ele-

ments, while a human attempting to do this manually is more prone to making mistakes.

86

5.2.3 Compare Two Data Change Operations

Now that we have looked at the Exemplar system initialization and examined some schema

updates, we next investigate some pure data updates. In this experiment, rather than

changing the number of files processed, we change the number of operations performed.

These tests were all run on a fixed number of data files (five). Ten different tests were run,

each time increasing the number of operations performed, and each test was run ten times

to get an accurate measure. The results presented are the averages of the ten runs. The

first chart below, Figure 5.9, looks at the addElement primitive, while the second chart,

Figure 5.10, investigates the destroyElement primitive. The final chart for this experiment

examines the time to execute each of these two operations on a per-element basis.

��������� ��	
���������� ���������������
��� �
���
��� �"!$#�% � ���

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10&�')(�*,+.-)/)0.1�2,+3- 4.5 6 /)7)8�2)+.-)9;:�<>=,6 ? +

@A B
C D
EAFFA G
CHI
JK G

L.M3M�N.O N.P�N.QSR T

Figure 5.9: Time to Execute addEle-
ment Primitive

U�VXWZY3[\^]�_�` V>abVdc�Yfe�gXY gih�j)g>c)k^VXW
l�m^cb\fcbnpo
q rts^u ` VZW

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10vZw,xzy,{}|�~,�}�X��{.| �}� � ~,���^�,{}|,�����z��� � {

�� �
� �
����� �
���
�� �

destroy elements

Figure 5.10: Time to Execute de-
stroyElement Primitive

As can be seen in Figures 5.9 and 5.10 based on the time scales along the Y axes, the

destroyElement primitive is more efficient than the addElement, although what happens in

each case is nearly identical. An analysis of these results determined that the difference

comes from the underlying structure storing the data elements. We use a Java Vector

to store children subelements. In the case of addElement, the greatest amount of time

is spent on the Java call insertElementAt(Object obj, int index), while

in the case of destroyElement, the dominant amount of time is spent on the Java call

removeElementAt(int index). Both of these method calls operate on an instance

87

of a Java Vector, specifically, the childrenVector in class Any. Although it is unknown

precisely why removal is more efficient than insertion, one guess is that an insertion may

cause more memory to be allocated as the size of the Vector grows, whereas removal

does not actually reclaim the freed memory but rather garbage collection will occur at a

delayed time.

���������	��
����� ��� ��� ��
�����
	������� ���
� � ��
����
������
	��
����

1.0

2.0

3.0

4.0

5.0

6.0

5 10 15 20 25 30 35 40 45 50��� ��!�"$#�% &'")(")�*")+-, .�/'& & "'01, "12

34 5
6 7
84994 :
6;<
=> :

addElement

destroyElement

Figure 5.11: Time to Execute addElement Vs. destroyElement

Figure 5.11 examines the data change primitives on a per-element basis. Again, it

can be seen from this chart that the destroyElement primitive is more efficient than the

addElement (approximately 2 milliseconds as opposed to 5). However, as expected, the

time cost for each primitive is fixed, relative to the number of objects affected.

5.2.4 Explore Time Efficiency of Primitives

The final experiment for this thesis examines each of the evolution primitives individually.

The purpose of this experiment was to exercise all of the primitive operations to ensure

correct operation, and to compare their relative efficiencies. This experiment was run

on a fixed number of XML data files (fifteen), and each operation was run ten times for

accuracy. The results below show the averages of the ten runs for each operation. Due

to space limitations, we cannot show the XML files which resulted after the execution of

each primitive to illustrate that the changes were indeed correct. But the developers of

88

Exemplar conscientiously reviewed the output files between each evolution operation to

verify successful execution and correct results.

ID
���������	� ��
���������

Time ID
���������	� ��
���������

Time
1 createDTDElement 2.181 10 addDTDAttr 8.421
2 destroyDTDElement 0.063 11 changeAttrDefaultVal 0.002
3 renameDTDElement 0.009 12 changeAttrDefaultType 0.011
4 insertDTDSubElement 0.141 13 changeAttrFixedVal 0.0
5 removeDTDSubElement 0.122 14 destroyDTDAttr 7.014
6 �������������� �����!#"�$�"���%'&)(+*��-,+����!�. 0.004 15 changeAttribute 0.057
7 �������������� �����!#"�$�"���%'&�/�%�0� �12. 0.0 16 addElement 0.204
8 convertToGroup 0.006 17 destroyElement 0.052
9 flattenGroup 0.005 18 changeElement 0.057

3+4	5 675 895 :#;�<+=>;-?>@895 A�BDC�5 6E;>FHGJILK K M
N�A�O�P-4	5 89Q�6R5 ?�C�5 67;�S+?>P-KT;

0.000001

0.000100

0.010000

1.000000

100.000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

UV W
XY
Z X[\
]^ _
`

a�b c d2c e)c fhg�ikjhg�lhm�e)c no�p�c d2g�q

Figure 5.12: Execution Times for Each Primitive Operation

Figure 5.12 shows the results of this experiment. The table beneath the chart shows

the primitive operations that correspond to the ID numbers along the X axis of the chart,

and the individual execution times in seconds. The chart uses a logarithmic scale in order

to show all of the execution times in a single figure. If we had used a linear scale, some

of the results would not be visible. Two of the primitives in the chart, changeQuan-

tifier (Group) and changeAttrFixedVal, took less than one millisecond to

run. The results, therefore, for these two operations returned an execution time of zero.

It is unknown precisely how long these operations actually took, since the measuring

mechanism is not accurate enough to measure times of less than one millisecond.

The intention of this experiment was not to stress the Exemplar system by choosing

operations that would effect large amounts of data, because the previous two experiments

have already examined the effect of increasing the amount of data affected by certain

89

operations. Rather, the criteria used to choose what data to run this experiment on was to

find simple operations, in order to get close to “best case” results, while still performing

some amount of useful work. In other words, we do not attempt to remove an element

that does not exist, for example, as such an operation would not represent a particularly

useful activity.

Below we indicate the data that was chosen for each primitive and briefly describe

what happens during the operation. Most of the element names below (FM and PER-

SONAE, for example) come from the “play.dtd” file, the DTD for the Shakespeare XML

data files. Some, however are made up names, such as FOO and NewAttr1.

1. createDTDElement: Create new element definition named FOO. DTD change

only; no data changes.

2. destroyDTDElement: Destroy element definition named FOO created above.

DTD change only; no data changes.

3. renameDTDElement: Change name of element P, which occurs four times in

each data file. DTD change only; no data changes.

4. insertDTDSubelement: Insert existing FM subelement into parent PERSONAE

element, which occurs only once in each data file. DTD change plus data change

for one element per file.

5. removeDTDSubelement: Remove subelement FM from parent PERSONAE

element. DTD change plus data change for one element per file.

6. changeQuantifier (Element): Change quantifier on subelement LINE in

parent SPEECH element from NONE to STAR (“*”). DTD change only; no data

changes.

90

7. changeQuantifier (Group): Change quantifier on group inside PERSONAE

element from PLUS (“+”) to STAR (“*”). DTD change only; no data changes.

8. convertToGroup: Convert subelements 3 through 5 in parent ACT element

into a group. DTD change only; no data changes.

9. flattenGroup: Remove group node around subelements 3 through 5 in parent

ACT element. DTD change only; no data changes.

10. addDTDAttr: Create new attribute definition called “NewAttr1”, with IMPLIED

default type, and add to parent element PLAY, which occurs only once in each data

file. DTD change plus change to Java file for element PLAY; data change for one

element per file. The test method which adds “NewAttr1” also creates another

attribute “NewAttr2”, with REQUIRED default type, and adds it to parent element

TITLE, although this second call was not timed, and its execution time does not

appear in the chart. This second attribute was created for use in other primitives

mentioned below.

11. changeAttrDefaultVal: Change default value for “NewAttr1” created above.

DTD change only; no data changes.

12. changeAttrDefaultType: Change default type for “NewAttr1” from IM-

PLIED to FIXED, supplying a fixed value of “val1”. DTD change only; no data

changes.

13. changeAttrFixedVal: Change fixed value for “NewAttr1” to new fixed value

“val2”. DTD change only; no data changes.

14. destroyDTDAttr: Destroy attribute definition for “NewAttr1” and remove from

parent element PLAY, which occurs only once in each data file. DTD change plus

change to Java file for element PLAY; data change for one element per file.

91

15. changeAttribute: Change the value of “NewAttr2” in the first instance of the

TITLE element. Data change for one element per file; no DTD changes.

16. addElement: Find first instance of LINE element in first instance of SPEECH

element, and add LINE again to SPEECH. The result after this primitive executes is

that the first LINE in the first SPEECH is duplicated. Data change for one element

per file; no DTD changes.

17. destroyElement: Remove second instance of LINE element from first in-

stance of SPEECH element. This operation removes the duplication inserted above.

Data change for one element per file; no DTD changes.

18. changeElement: Change value of first instance of LINE element in first in-

stance of SPEECH element to “*** Line has been changed!”. Data change for one

element per file; no DTD changes.

In analyzing the results from this experiment, we find that the primitive operations

can be grouped into four categories based on the types of changes which occur. These

categories are defined as: (1) changes to only the XML data, (2) changes to only the

DTD, (3) changes to both the DTD and XML data which behave like pure data updates,

and (4) changes to both the DTD and XML data which behave like schema updates. The

distinction between categories (3) and (4) is due to our implementation choices, where

children subelements are stored in a Java Vector, while attributes are stored as member

variables in the associated Java files. In the former case, a change to an element’s children,

while affecting the DTD, is not technically a schema change, since we are not changing

the structure of an element, but only its contents. In the latter case, on the other hand,

a change which adds or removes an attribute does correspond to a schema change, since

we are truly changing the structure of an element. We group our primitive operations

according to these categories as follows.

92

1. XML data changes only:

changeAttribute

addElement

destroyElement

changeElement

2. DTD changes only:

createDTDElement

destroyDTDElement

renameDTDElement

changeQuantifier1

convertToGroup

flattenGroup

changeAttrDefaultVal

changeAttrDefaultType

changeAttrFixedVal

3. DTD and XML data changes (pure data update):

insertDTDSubelement

removeDTDSubelement

4. DTD and XML data changes (schema update):

addDTDAttr

destroyDTDAttr

5.3 Discussion

The results from the first experiment in Section 5.2.1 show that there are some fixed costs

associated with the Exemplar system initialization, and other costs which are dependent

on the data being operated on. Below is a breakdown of which tasks fit into which cate-

gories:

) Fixed Costs: Initializing and shutting down the database are fixed costs which will
1This operation would move to category (3) if the quantifier constraint changed from not required to

required, or from repeatable to not repeatable.

93

be incurred each time Exemplar is run. These costs are approximately 1.5 and 0.5

seconds respectively.

) DTD Related Costs: Creating the system dictionary classes is dependent on the

number of element, group, and attribute definitions in the DTD, plus the number

of quantifiers applied to elements and groups, because we create instances of the

system dictionary objects for each of these DTD items. Typically, the largest of

these costs is associated with the number of element definitions in the DTD, since

this number tends to overwhelm the others. If we divide the time to create the

system dictionary objects by the number of element definitions in the DTD, we find

this cost to be approximately 1.5 seconds per element. Generating the application

classes is also dependent on the number of element and attribute definitions in the

DTD(s), with the number of elements again being the dominant factor. We create

a new Java file for each element definition, and add a member variable to that file

for each attribute definition. When we divide the time to generate the application

classes by the number of element definitions in the DTD, we find this cost to be

approximately 2 seconds per element.

) XML Data Related Costs: Loading and dumping the XML data is obviously depen-

dent on the number of XML files to process and the number of instances of each

element in the data files. These costs per element are approximately 1.85 and 1.65

milliseconds respectively.

In our experiments we start each test from scratch, creating a new database, system

dictionary and application classes, and loading the data fresh each time. We also dump

out new XML files for the entire database each time a change is made, regardless of

what changed. In practical use, however, the Exemplar system need not be used in this

manner. The majority of the costs listed above might only be incurred once, because after

the database, system dictionary and application classes are created, Exemplar may be run

94

as many times as desired, executing various primitive operations to make changes to the

DTD/schema and/or data. In this more realistic scenario, the main cost which remains

a factor for each such Exemplar run is only the time to execute the primitive operations.

Dumping out new XML files after changes have been made also remains a factor, but this

can be done more discriminately, based on those files which have actually changed.

The results from the experiments in Sections 5.2.2 and 5.2.3 show, as expected, that

the total primitive execution times increase as the amount of data to process increases,

but that the individual operations are performed in a fixed amount of time when viewed

on a per-object basis. And finally, the results from our last experiment in Section 5.2.4

show that the amount of time to execute any given primitive varies, depending on the

data on which the operation is performed, and depending on the activities involved in

the particular operation. Although the addDTDAttr and destroyDTDAttr schema evolu-

tion primitives are the least efficient of the lot, the reasons for this are well understood

(described in Section 4.6.2), and otherwise the remaining primitive operations are very

efficient time-wise, considering the amount of work that may be performed. Based on

these results from our experimental study, we conclude that the Exemplar system would

prove useful to anyone desiring to maintain DTD and XML data which evolves over time,

as it automates changes which would otherwise need to be accomplished by hand, ensures

that changes are consistency preserving, and avoids having to reload data with each and

every change.

95

Chapter 6

Related Work

6.1 XML Management Tools

Since XML is primarily used as a data exchange format on the World Wide Web, many

research projects dealing with XML have focused on web site management [MMA99,

DFS99, FFK
�

97, CCR00]. These projects attempt to alleviate difficulties associated with

managing large amounts of data contained in web sites by representing web pages as

XML documents. Although our XEM work does not focus on web site management,

research into these projects proved useful in understanding storage and manipulation of

XML documents.

Other research on XML focuses on its semi-structured nature [CAW98, Cha99, FS00].

In dealing with semi-structured data, some projects either totally ignore the schema, or

just consider it implicated by the actual storage structure and hence to be a “second-class”

citizen. They therefore do not deal with schema evolution issues. For example, Object

Exchange Model [PMW95] represents semi-structured data, similar in nature to XML,

without any associated DTD definition. DOEM [CAW98] is further proposed as a model

to represent changes in semi-structured data via temporal annotations. However, it only

96

deals with the changes at the data level and is schema-blind. All versions of a data item

will be stored together over time. Hence it results in an ever-growing complex annotated

data structure.

Finally, some XML tools have focused on various language formats as a mechanism

for manipulating XML data. For example, Extensible Stylesheet Language Transforma-

tions (XSLT) [Gro] is a language designed for transforming individual XML documents.

It does not require any DTD and users can specify arbitrary XML data transformation

rules. Hence no schema constraints are enforced on the data or on the transformation.

Lexus (XML Update Language) [Inf00] is a declarative language proposed by an open

source group, Infozone, to update stored documents. However, its primitives also only

work on the document level without taking the DTD into account. So neither XSLT nor

Lexus can serve in scenarios where a schema or structure is required.

6.2 Schema Evolution

Many database projects have focused on the issue of schema evolution [BKKK87, BMO
�

89,

SZ86, CAW98, Zic91], where the main goal is to develop mechanisms to change not

only the schema but also the underlying objects such that they conform to the modified

schema. This issue was therefore a high priority in our XEM project. Most commer-

cial database systems today [Inc93, Tec94, Obj93, Tec92] provide support for the re-

structuring of the application schema by means of a fixed set of simple evolution primi-

tives, as does our XEM system. One issue which sets our project apart however, is that we

deal with constraints and invariants in order to preserve system integrity during schema

evolution. Recent work has been done to focus on the issues of supporting more com-

plex schema evolution operations [Bré96, Ler96]. These allow the user to string together

several primitives to form higher level yet still specific change transformations. Finally,

97

SERF [CJR98b, CJR98a] is a template-based, extensible schema evolution framework

that allows complex user-defined schema transformations in a flexible yet secure fashion.

6.3 XML and Database Systems

A number of projects and tools have emerged to map XML and similar semi-structured

data formats to traditional database systems. [FK99] looks at storing and querying XML

data using a relational database management system (RDBMS). Both [Koe99] and [MAG
�

97]

investigate semi-structured data in relational databases, while [CACS94] looks at SGML

(the predecessor of XML) storage in an object-oriented database management system

(OODBMS). Oracle’s XML SQL Utility (XSU) [Net00] and IBM’s DB2 XML Extender

[IBM00a] are well-known commercial relational database products extended with XML

support. They mainly provide two methods to manage XML data. The first option is to

store XML data as a blob while the second option is to decompose XML data to relational

instances. However, if there is any update to the external XML data, for the first storage

option, they need to reload the data, and for the second option, they have to first figure out

and then make the change on the relational schema level. In other words, the evolution

of the data inside or outside of the database are independent from each other. Hence the

change propagation from an external XML document to its internal relational storage or

schematic structure is not supported. In a related effort at WPI, we have developed the

Clock system [ZMLR01] that synchronizes internal relational storage with external XML

documents, but this system deals with basic data updates only and does not handle schema

changes.

98

Chapter 7

Conclusions

7.1 Future Work

During the course of our research on the XEM project, a number of issues arose which

we did not have time to address. Here we present a number of new research directions

which could be undertaken to continue this work.

) XML Schemas: The format of an XML Schema includes more powerful features

for defining the structure and content of an XML document than a DTD. Our XEM

mapping model is currently tied to DTD format, but could be updated to handle

XML Schemas instead.

) Model Mapping: Our Exemplar implementation is currently tied to the PSE Object

Store database. A more generic model mapping, including a database-independent

layer, with database-specific drivers would be a more flexible solution.

) Versioning: If the Exemplar system were modified such that changes were made to

a new copy of DTDs and XML documents, rather than “in place”, or if deltas were

stored which could be applied to old documents to produce new ones, our system

99

could be used to provide revision control and version management services.

) Scripting: Currently, calling a primitive in our Exemplar system requires writing

Java code, since the primitives are implemented as methods. If we integrated a

scripting language into XEM, such as an XML query language like XQL [RLS98]

for example, then the user could easily combine primitives into more complex trans-

formations, as most scripting languages are simpler than programming languages.

) Evolution Templates: Once we have some form of scripting language in place,

then parameterized evolution templates could be introduced, similar to those pro-

vided by SERF [CJR98b]. These would give XEM more powerful functionality as

users could develop templates for commonly used complex transformations, which

are flexible and reusable because their specific behavior in a given circumstance is

allowed to vary based on parameters.

) Web Site Management: A screen scraping facility which produces XML from

HTML would allow us to integrate XEM into a web site restructuring tool, where

XML documents represent web pages, and XEM can be used to manage the com-

plexity of data on a web site, since our system is already capable of producing

HTML as output via XSLT stylesheets [Gro].

) Other Applications: In any environment where data is stored in XML format,

applications could be built on top of XEM to provide various data management

services. For example, in an environment where DTDs and XML documents are

stored in a repository such as Arbortext’s Epic [Arb00], an XEM application could

be used to manage changes to that data.

100

7.2 Summary

In this thesis, we present the first of its kind - a taxonomy of XML evolution operations.

Using pre- and post-conditions, these primitives assure the integrity of an XML data man-

agement system, both when DTD changes are made and XML documents have to change

to maintain consistency with the new DTD; and also when individual XML documents

are changed to ensure that the changed documents still conform to the corresponding

DTD. Our research into XEM is generic for XML data management, independent of any

specific implementation.

In our work on the XEM project, we make a number of important contributions in

the area of XML data management, including the first approach for addressing evolution

in an XML context. We show the motivation behind the need for such support, while

identifying the lack of existing support in current XML data management systems. We

propose a taxonomy of XML evolution primitives which includes both schema and data

updates to fill this gap. We identify various forms of system integrity which a sound XML

management system must maintain during evolution. These include the well-formedness

of DTDs and XML documents, which must conform to the standard language format;

the consistency of XML documents in terms of their invariants; and the validity of XML

documents with respect to the constraints specified in the corresponding DTD. We show

that our proposed change taxonomy is complete in that all valid desired transformations

are possible using our primitives, and sound in its maintenance of system integrity.

We prove the feasibility of our approach via the functioning Exemplar prototype im-

plementation using the Java programming language and an underlying object-oriented

database, and we describe in this thesis the important aspects of that implementation. We

conduct experimental studies to verify correct execution of the primitive operations within

our prototype system, and present a performance analysis in the form of results from our

101

experiments. These results show that our prototype indeed provides automated XML evo-

lution management facilities which are superior to making manual edits and then having

to reload data from scratch, which would be necessary using other current XML manage-

ment tools. We conclude that our research into XEM was a fruitful endeavor, with many

beneficial contributions to the field of XML data management as a result.

102

Bibliography

[ALP91] J. Andany, M. Leonard, and C. Palisser. Management of schema evolution in
databases. In VLDB, pages 161–170, September 1991.

[Arb00] Arbortext. Epic E-Content Engine: http://www.arbortext.com/Products/Epic/epic.html,
November 2000.

[BKKK87] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and Implemen-
tation of Schema Evolution in Object-Oriented Databases. SIGMOD, pages
311–322, 1987.

[BL89] T. Berners-Lee. Information management: A proposal.
http://www.w3.org/History/1989/proposal.html, March 1989.

[BMO
�

89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,
and M. Williams. The GemStone Data Management System. In Object-
Oriented Concepts, Databases and Applications, pages 283–308. ACM Press,
1989.

[Bos] J. Bosak. Shakespeare’s Plays in XML Format, v2.00.
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip.

[Bré96] P. Bréche. Advanced Primitives for Changing Schemas of Object Databases.
In CAISE, pages 476–495, 1996.

[CACS94] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From Structured
Documents to Novel Query Facilities. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Minneapolis, pages 313–
324, June 1994.

[CAW98] S. Chawathe, S. Abiteboul, and J. Widom. Representing and Querying
Changes in Semistructured Data. In ICDE, pages 4–13, February 1998.

[CCR00] L. Chen, K. T. Claypool, and E. A. Rundensteiner. SERFing the Web: The
Re-Web Approach for Web Re-Structuring. WWW Journal - Special Issue on
Internet Data Management, Baltzer/ACM Publication, 2(1):33, 2000.

103

[Cha99] S. Chawathe. Describing and Manipulating XML Data. In IEEE Data Engi-
neering Bulletin 22(3), pages 3–9, 1999.

[CJR98a] K.T. Claypool, J. Jin, and E.A. Rundensteiner. OQL SERF: An ODMG Im-
plementation of the Template-Based Schema Evolution Framework. In Centre
for Advanced Studies Conference, pages 108–122, November 1998.

[CJR98b] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution
through an Extensible, Re-usable and Flexible Framework. In Int. Conf. on
Information and Knowledge Management, pages 314–321, November 1998.

[DFS99] A. Deutsch, M.F. Fernandez, and D. Suciu. Storing Semistructured Data with
STORED. In Proceedings of ACM SIGMOD International Conference on
Management of Data, pages 431–442, Philadephia, USA, June 1999.

[FFK
�

97] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. System Demon-
stration - Strudel: A Web-site Management System. In ACM SIGMOD Con-
ference on Management of Data, pages 549–552, 1997.

[FK99] D. Florescu and D. Kossmann. Storing and Querying XML Data using an
RDBMS. In IEEE Data Engineering Bulletin, pages 27–34, 1999.

[FS00] W. Fan and J. Simon. Integrity constraints for XML. In In Proceedings of
the Nineteenth ACM Symposium on Principles of Database Systems, pages
23–34. ACM Press, 2000.

[Gol91] C. F. Goldfarb. The SGML Handbook. IBM Almaden Research Center, San
Jose, California, 1991.

[Gro] W3C XSL Working Group. XSL Transformations (XSLT).
http://www.w3.org/TR/xslt/.

[IBM00a] IBM Software. DB2 XML Extender. http://www-4.ibm.com, 2000.

[IBM00b] IBM Software. XML Parser for Java:
http://www.alphaworks.ibm.com/aw.nsf/techmain/xml4j, 2000.

[Inc93] Itasca Systems Inc. Itasca Systems Technical Report. Technical Report TM-
92-001, OODBMS Feature Checklist. Rev 1.1, Itasca Systems, Inc., Decem-
ber 1993.

[Inf00] Infozone Group. Lexus. http://www.infozone-group.org/lexusDocs/html/wd-
lexus.html, 2000.

[Koe99] A. Koeller. Semi-Structured Data in Relational Databases. Technical report,
Worcester Polytechnic Institute, 1999.

104

[KSC
�

01] D. Kramer, H. Su, K. T. Claypool, L. Chen, K. Oenoki, and B. Liu. XML Evo-
lution Management Prototype System: http://davis.wpi.edu/dsrg/xem/code,
2001.

[LB98] S. Liang and G. Bracha. Dynamic Class Loading in the Java Virtual Machine.
In OOPSLA, pages 36–44, October 1998.

[LC00] D. Lee and W. Chu. Constraints-Preserving Transformation from XML Doc-
ument Type Definition to Relational Schema. In Proceedings of the 19th In-
ternational Conference on Conceptual Modeling (ER2000), pages 323–338,
2000.

[Ler96] B.S. Lerner. A Model for Compound Type Changes Encountered in Schema
Evolution. Technical Report UM-CS-96-044, University of Massachusetts,
Amherst, Computer Science Department, 1996.

[Ler00] B.S. Lerner. A Model for Compound Type Changes Encountered in Schema
Evolution. ACM Transactions on Database Systems, 25(1):83–127, 2000.

[LMZ00] W. Lee, G. Mitchell, and X. Zhang. Metadata-Driven Approach to Integrating
XML and Relational Data. In Technical Report, GTE Labs, Waltham, MA,
2000.

[MAG
�

97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A
Database Management System for Semistructured Data. In SIGMOD Record
26(3), pages 54–66, September 1997.

[MMA99] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the era of xml. In Bulletin
of the Technical Committee on Data Engineering, pages 19–26, September
1999.

[Net00] Oracle Technologies Network. Oracle8i.
http://www.oracle.com/database/oracle8i, 2000.

[Obj93] ObjectStore, Inc. ObjectStore Manual, 1993.

[Obj99] Object Design. Excelon Data Integration Server.
http://www.odi.com/excelon, 1999.

[PMW95] Y. Papakonstantinou, H. Garcia Molina, and J. Widom. Object Exchange
across Heterogeneous Information Sources. In Proceedings of the 11th Inter-
national Conference on Data Engineering, Taipei, Taiwan, pages 251–260,
March 1995.

[RCC
�

00] E. A. Rundensteiner, K. T. Claypool, L. Chen, H. Su, and K. Onoeki. SERF-
ing the Web: A Comprehensive Approach for Web Site Management. In
SIGMOD, page 585, May 2000.

105

[RLS98] J. Robie, J. Lapp, and D. Schach. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html, September 1998.

[Sjo93] D. Sjoberg. Quantifying Schema Evolution. Information and Software Tech-
nology, 35(1):35–54, January 1993.

[SKC
�

01] H. Su, D. Kramer, L. Chen, K. T. Claypool, and E. A. Rundensteiner. XEM:
Managing the Evolution of XML Documents. In Eleventh International Work-
shop on Research Issues in Data Engineering (RIDE), Heidelberg, Germany,
pages 103–110. IEEE Computer Society, April 2001.

[Sun00] Sun Microsystems. Java 2 SDK, Standard Edition, v1.3:
http://www.javasoft.com/j2se/1.3/, May 2000.

[SZ86] A. H. Skarra and S. B. Zdonik. The Management of Changing Types in an
Object-Oriented Databases. In Proc. 1st OOPSLA, pages 483–494, 1986.

[Tec92] Versant Object Technology. Versant User Manual. Versant Object Technol-
ogy, 1992.

[Tec94] O + Technology. O + Reference Manual, Version 4.5. O + Technology, Ver-
sailles, France, November 1994.

[W3C98] W3C. Extensible Markup Language (XML) 1.0 – W3C Recommendation 10-
February-1998. http://www.w3.org/TR/REC-xml, 1998.

[W3C99] W3C. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 1999.

[W3C00] W3C. Extensible Markup Language (XML) 1.0, 2nd Edition – W3C Recom-
mendation 6-October-2000. http://www.w3.org/TR/REC-xml, 2000.

[W3C01a] W3C. XML Query Data Model – W3C Working Draft, 15-February-2001.
http://www.w3.org/TR/query-datamodel, 2001.

[W3C01b] W3C. XML Schema – W3C Proposed Recommendation 2001-03-16.
http://www.w3.org/XML/Schema, 2001.

[Zic91] R. Zicari. A Framework for O + Schema Updates. In 7th IEEE Int. Conf. on
Data Engineering, pages 146–182, April 1991.

[ZMLR01] X. Zhang, G. Mitchell, W. Lee, and E. A. Rundensteiner. Clock: Synchroniz-
ing Internal Relational Storage with External XML Documents. In Eleventh
International Workshop on Research Issues in Data Engineering (RIDE), Hei-
delberg, Germany, pages 111–118. IEEE Computer Society, April 2001.

106

