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Abstract

Combination of p-values from multiple independent tests has been widely studied

since 1930’s. To find the optimal combination methods, various combiners such as

Fisher’s method, inverse normal transformation, maximal p-value, minimal p-value,

etc. have been compared by different criteria. In this work, we focus on the crite-

rion of Bahadur efficiency, and compare various methods under the TFisher. As a

recently developed general family of combiners, TFisher cover Fisher’s method, the

rank truncated product method (RTP), the truncation product method (TPM, or

the hard-thresholding method), soft-thresholding method, minimal p-value method,

etc. Through the Bahadur asymptotics, we better understand the relative per-

formance of these methods. In particular, through calculating the Bahadur exact

slopes for the problem of detecting sparse signals, we reveal the relative advantages

of truncation versus non-truncation, hard-thresholding versus soft-thresholding. As

a result, the soft thresholding method is shown superior when signal strength is rel-

atively weak and the ratio between the sample size of each p-value and the number

of combining p-values is small.

Keywords: p-value combination methods, signal detection, TFisher, Bahadur

efficiency.
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Chapter 1

Introduction

Combination of p-values is a common practical tool for combining information across

a group of hypothesis tests. In 1934, Fisher firstly presented the idea of combina-

tion of p-values with log transformation (Fisher, 1934). In 1971, Littell and Fork

compared the exact slopes for fisher’s method, mean of the normal transforms of

the significance levels, the maximum significance level and the minimum significance

level and they concluded the fisher’s method enjoys the highest exact slope among

these four methods (Littell and Folks, 1971). In 1973, they further proved that

fisher’s method is optimal among all combination methods, when finite p-values are

considered and the combiner T (T1, ..., Tn) is a nondecreasing function of T1, ..., Tn

(Littell and Folks, 1973).

With different assumptions and perspectives, researchers got different conclu-

sions about optimal combination methods. Abu-Dayyeh, Al-Momani and Muttlak

showed that for simple random sample (SRS) from normal distribution, the inverse

normal method shares the highest exact slope as θ approaches to zero (under the

alternative H1 : θ > 0). For SRS from logistics distribution, the sum of p-values has

the highest exact slope as θ approaches to zero (under the alternative H1 : θ > 0)
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(Abu-Dayyeh et al., 2003). M. C. Whitlock concluded that the weighted inverse

normal method is superior to Fisher’s combination method for normal distribution

data (Whitlock, 2005). Heard proposed a rule-of-thumb for choosing p-value combi-

nation methods, based on different data sets and hypothesis tests via power (Heard

and Rubin-Delanchy, 2017).

In this paper, we study a group of hypothesis test from the perspective of com-

bination of truncated p-values, which could increase the Bahadur exact slope in

some cases. We focus on log transformation and inverse normal transformation of

p-values and compute the exact slopes for these transformations.

1.1 Background on Bahadur Theory

Bahadur efficiency is an important tool for choosing a efficient test statistics of large

sample study. The concept of Bahaduar efficiency is firstly introduced by R. R.

Bahadur in 1967, which is based on the relative rate of decreasing p-value when the

sample size for each individual test goes to infinity under the alternative hypothesis.

The definition of Bahadur efficiency is given here: Let the null hypothesis H0 be

H0 : θ ∈ Θ0 ⊂ Θ and the alternative H1 be H1 : θ ∈ Θ1,where Θ1 = Θ − Θ0. For

any individual test statistic Tm(x1, x2, ..., xm), the significance level or p-value of the

hypothesis test is Pm(t) = supθ∈Θ0{1 − F (Tm < t)}. If there exists a nonrandom

positive function c(θ), then c(θ) is called the Bahadur exact slope or in short exact

slope, such that − 2
m

logPm(t) → c(θ),m → ∞ with probability one for θ ∈ Θ1.

The higher the exact slope is, the faster the p-values converges to zero under the

alternative.

The exact slope c(θ) is positive in the original definition provided by Bahadur

1967. In theorem 1, we could further show that the exact slope c(θ) could be
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nonnegative:

The exact slope could be calculated by the following theorem by (Nikitin, 1995):

Theorem 1 (Bahadur). For a sequence {Tm}, let the following two conditions be

fulfilled:

Tm → b(θ), θ ∈ Θ1,

where −∞ < b(θ) <∞;

lim
m→∞

m−1 logPm(t) = −f(t),

for each t from an open interval I on which f is continuous and {b(θ), θ ∈ Θ1} ⊂ I.

Then limm→∞m
−1 logPm = −1

2c(θ) is valid and, moreover, for any θ ∈ Θ1,

c(θ) = 2f(b(θ)).

Note that applying a strictly monotone increasing function ψ(.) to Tm can sim-

plify the calculation for some cases, where T ′m = ψ(Tm) also satisfies these conditions

in theorem 1. For example, let Tm be Tm = Xm1 +Xm2 + ...+Xmn , where n is the

number of test statistics and mi is the sample size of each test, a strictly monotone

increasing function ψ(x) = x
m

could be applied to Tm. Then for θ ∈ Θ1, Tm
m
→ b(θ).

Further, for θ ∈ Θ0, limm→∞m
−1 log [1− Fm(Tm < mt)] = −f(t) and the exact

slope would still be c(θ) = 2f(b(θ)).

Theorem 2. Let Pm(t) is the significance level for any a hypothesis test and the

subscript m denotes the sample size for the test, for θ ∈ Θ1, the Bahadur exact slope

includes zero, i.e. − 2
m

logPm(t)→ c(θ) = 0 when m→∞.

Proof. The proof follows the same idea for theorem 1 in Nikitin’s book page 7

(Nikitin, 1995). Assume limm→∞m
−1 logPm = −f(t), with f being continuous on
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an open set I that include 0. Assume Tm →P b(θ) = 0 under H1 : θ ∈ Θ1. Fix an

arbitrary θ ∈ Θ1, there exists an ε > 0 such that (b− ε, b+ ε) = (−ε, ε) ⊂ I.

Since F is monotone, G(t) ≡ inf{F (t; θ) : θ ∈ Θ0} is also monotone,

G(−ε; θ) ≤ G(Tm(s); θ) ≤ G(+ε; θ),

1−G(+ε) ≤ Pm(t) ≤ 1−G(−ε).

Taking logarithms and passing to the limit as m→∞, we obtain that:

−f(+ε) ≤ lim
m→∞

m−1 logPm(t) ≤ lim
m→∞

m−1lnPm(t) ≤ −f(−ε).

By the continuity of f and ε being arbitrarily small, we obtain

lim
m→∞

m−1 logPm(t) = −f(0).

Thus, if f(0) = 0, we have c(θ) = 0.

1.2 Models of Hypothesis for Signal Detection Prob-

lem

Define the null hypothesis

H0 : θ ∈ Θ0 (1.1)

and the alternative hypothesis

H1 : θ ∈ Θ1 = Θ−Θ0 (1.2)
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We further specify the alternative for the signal detection problem. The first

alternative is that there is only one signal in a group of hypotheses, where i ∈ [1, n]

is the index for each Bahadur exact slopes( to be studied in section 2):

H
(1)
1 : c1(θ) > 0 and ci(θ) = 0 for i = 2, ..., n. (1.3)

The second alternative, which is to be studied in section 4 and 5, considers the case

of k ≥ 2 signals:

H
(2)
1 : ci(θ) > 0 for i = 1, ..., k and ci(θ) = 0 for i = k + 1, ..., n. (1.4)

1.3 P-value Combination Methods

Let the input statistics Tm1 , ..., Tmn be independent and identically distributed ran-

dom variables, where mi is the sample size for each individual test and i is to index

tests, i ∈ [1, n]. Define m be the average sample size for each individual test and n

is the number of tests, i.e. mn = m1 + ...+mn. Recall that the definition of p-value

of the hypothesis test is

Pmi(t) = sup
θ∈Θ0

{1− F (Tmi < t)}

The order statistics of the p-values are P(1) ≤ ... ≤ P(n).

The general formula of a test statistic for combining these p-values is simply a

multiple-to-one function of these p-values:

T = f(Pm1 , ..., Pmn),
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or equivalently a function of a monotone transformation of these p-values:

T = g(F̄−1(Pm1), ..., F̄−1(Pmn)).

In this thesis, we consider two particular types of function g(.) , which are summation

with potentially truncations and maximum:

T =
k∑
i=1

F̄−1(Pmi) and T = max F̄−1(Pmi), where k ≤ n.

There are different test statistics for combining these p-values:

1. Under log transformation, the Fisher’s P-value combination statistics and the

minimal P-value methods are:

TF =
n∑
i=1
−2logPmi . (1.5)

TFmax = max(−2 logPmi). (1.6)

2. The inverse normal transformation method (Stouffer’s method):

Let Zi = Φ̄−1(Pi), the test statistic is:

TN =
n∑
i=1

Zmi . (1.7)

3. The general transformation method: Let Tmi = F̄−1
0 (Pmi) and m = cn, the

test statistics are:

Tm =
n∑
i=1

Tmi . (1.8)

Tmmax = max Tmi , (1.9)

where F (.) satisfies 1−F (∑n
i=1 Tmi <

√
mt) = O(mc(1− (F (Tmi <

√
mt))n)).

6



4. The rank truncated product method (RTP) (Dudbridge and Koeleman, 2003):

WR =
k∗∏
i=1

P(i), for 1 ≤ k∗ ≤ n. (1.10)

Applying a monotone transformation, we obtain the test statistic TR:

TR = −2logWR =
k∗∑
i=1
−2logP(i). (1.11)

5. We also consider a recent family of statistics called “TFisher” TS, which is

analogous to RTP formula (Zhang et al., 2018):

WS =
n∏
i=1

(
Pmi
τ2

)I(Pmi≤τ1)
. (1.12)

When τ1 = τ2 = τ , it becomes the soft-thresholding:

Ws =
n∏
i=1

(
Pmi
τ

)I(Pmi≤τ)
. (1.13)

When τ1 = τ and τ2 = 1, the test statistic called the hard-thresholding:

Wh =
n∏
i=1

Pmi
I(Pmi≤τ), (1.14)

which is also called the TPM statistic Dudbridge and Koeleman (2003).
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Chapter 2

Exact Slopes for One Signal

In this chapter, we study the exact slopes for log transformation and inverse normal

transformation of p-value combination for the case of one signal defined in (1.3):

2.1 The Exact Slope for Log Transformation

We firstly introduce a lemma for deducing the exact slope of fisher’s log transformed

statistic:

Lemma 1. Let t > 0, n = o(m) and m→∞. Then, for the sequence xi = (mt/2)i−1

(i−1)! ,

i ∈ [1, n], we have

xn �
n−1∑
i=1

xi.

Proof. Consider the ratio of ith to (i − 1)th term in this sequence is xi
xi−1

= mt/2
i−1 .

Since i is the index from 1 to n such that n = o(m), the ratio of two consecutive terms

goes to infinity, as m→∞, i.e. xi−1 = o(xi). Similarly, we have xi−2 = o(o(xi)). In

this case, the summation of first n− 1th term ∑n−1
i=0 xi = o(xn). So, xn �

n−1∑
i=1

xi.
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Intuitively speaking, when a series includes the ratio of power function of a value

approaching infinity to a factorial of a positive integer, the nth item could represent

the summation of this series, since the summation of terms from the first to (n−1)th

is dominated.

However, when the increasing rate of n and m are same, i.e. m = cn, the Lemma

1 may not be true. The reasons are as follow:

For the case of m = cn, the ratio of nth term and (n− 1)th term is a constant,

xn
xn−1

= (nct/2)n−1

(n− 1)!

/
(nct/2)n−2

(n− 2)! = ct

2 , as n,m→∞

while the ratio of 2nd and 1nd term goes to infinty,

x2

x1
= (nct/2)1

1!

/
1 = nct

2 →∞, as n,m→∞.

Thus, the ratio of any term to previous term is decreasing, and when n,m→∞

the ratio of two consecutive terms is a constant. Therefore, Lemma 1 is not valid

when m = cn. However, we could still approximate the value of log
n∑
i=1

xi by xn, as

n,m→∞. The following lemma says that although the summation of first (n−1)th

terms could not be dominated when m = cn, after transformation of logarithm, the

summation could still be represented by the last term.

Lemma 2. Let m = cn → ∞ and t > 0. Then for the sequence xi = (mt/2)i−1

(i−1)! ,

i ∈ [1, n], we have

1.

log
n∑
i=1

xi ∼ log xn.
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2.

− 1
m

log
n∑
i=1

xi → −
1
c

[
log (ct/2) + 1

]
, as n→∞.

Proof. Because the ratio of any term to the previous term is not less than the

constant value ct/2. We have

log xn ≤ log
n∑
i=1

xi ≤ log nxn,

lim
n→∞

log nxn
log xn

= lim
n→∞

log xn + log n
log xn

= 1 + lim
n→∞

log n
log xn

. (2.1)

Further, by L’Hopital rule, we obtain

lim
n→∞

log n
log xn

= lim
n→∞

1
n log′ xn

,

where

log′ xn = d

dn
log (cnt/2)n−1

(n− 1)! = ((cnt/2)n−1)′
(cnt/2)n−1 −

(n− 1)!′
(n− 1)! . (2.2)

The first term in the right hand side of equation (2.2) is

((cnt/2)n−1)′
(cnt/2)n−1 = (cnt/2)n−1(log cnt/2 + 1)

(cnt/2)n−1 = log (cnt/2) + 1.

By stirling’s approximation, i.e. n! ∼
√

2πn(n
e
)n, the second term in the right hand

side of equation (2.2) is

(n− 1)!′
(n− 1)! =

√
2πe1−n(n− 1)n− 1

2 log(n− 1) + n− 1
2

n−1 − 1
√

2πe1−n(n− 1)n− 1
2

= log(n− 1) +
n− 1

2
n− 1 − 1 = log(n− 1)→∞, as n→∞.
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Then, follow the equation (2.2), we have

lim
n→∞

log′ xn = lim
n→∞

log (cnt/2)/(n− 1) + 1 = log (ct/2) + 1. (2.3)

Continue with equation (2.1),

lim
n→∞

log nxn
log xn

= 1.

So,

log
n∑
i=1

xi ∼ log xn.

Thus, the logarithm of summation could asymptotically equal to the logarithm of

the biggest term in this series.

To prove the second part in this lemma, apply the result of the first part in the

lemma and equation (2.3),

− 1
m

log
n∑
i=1

xi ∼ −
1
m

log xn = − 1
cn

log (cnt/2)n−1

(n− 1)! = −1
c

[
log (ct/2) + 1

]
,

as n→∞.

Next, we provide the Bahadur exact slope of fisher’s log transformation method:

Theorem 3. Under the alternative (1.3), the exact slope of the Fisher’s P-value

combination statistic (1.5) is

cF (θ) =


c1(θ), when n is finite and m→∞

c1(θ)− 2
c

[
log (c1(θ)c/2) + 1

]
, when m = cn→∞.
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Proof. Under the alternative (1.3),

TF
m

=
n∑
i=1

−2 logPmi
m

→ c1(θ).

Note that under H0, TF follows chi-square distribution with 2n degrees of freedom

and its cumulative distribution function is FF (x) = γ(2n/2,x/2)
Γ(2n/2) , where γ(.) is the

lower incomplete gamma function and a general series representation is γ(n, z) =

(n− 1)!(1− e−z(
n−1∑
i=0

zi

i! ))(Koziol and Tuckwell, 1999).

When n is finite, n = o(m), under the null hypothesis,

− 1
m

log [1− FF (mt)] = − 1
m

log [e−mt/2(
n−1∑
i=0

(mt/2)i
i! )],m→∞

= − 1
m
× (−mt2 )− 1

m
log [(mt/2)n−1

(n− 1)! +
n−2∑
i=0

(mt/2)i
i! ]

By lemma 1,

− 1
m

log [1− FF (mt)] ∼ 1
2t−

1
m

log (mt/2)n−1

(n− 1)! ,m→∞

By L’Hospital’s rule,

lim
m→∞

− 1
m

log [1− FF (mt)] = lim
m→∞

1
2t−

n− 1
m

= 1
2t.

To guarantee the right hand side 1
2ci(θ) −

n−1
m
≥ 0, n cannot be too big. That is,

n ≤ c1(θ)m
2 + 1 when this condition is satisfied by Theorem 1. The exact slope of

(1.5) is

cF (θ) = c1(θ).
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When m = cn, by lemma 2,

lim
m→∞

− 1
m

log [1− FF (mt)] = 1
2t−

1
c

[
log (ct/2) + 1

]
,

Thus, by Theorem 1

cF (θ) = c1(θ)− 2
c

[
log (c1(θ)c/2) + 1

]
.

Then, consider the case of making a log transformation of the minimum p-value

or equivalently the maximum −2 logPmi :

Theorem 4. Under the alternative (1.3), the exact slope of minimal P-value statistic

(1.6) is

cFmax(θ) = c1(θ) when n ≤ cm and c is a constant.

Proof. For the maximum of random variables:

TFmax = −2 log minPmi = max(−2 logPmi)

Under the alternative,
TFmax
m

→ c1(θ)

Under the null hypothesis, −2 logPmi follows chi-square distribution with 2 degrees

13



of freedom, which is exponential with parameter λ = 1
2 .

1− FFmax(mt) = 1− P (max(−2 logPmi) < mt)

= 1− (P (−2 logPmi < mt))n

= 1− (1− e− 1
2mt)n

= 1− (1− ne− 1
2mt + o(e−mt))

= ne−
1
2mt

and

− 1
m

log ne− 1
2mt = − 1

m
(log n− 1

2mt) = 1
2t−

log n
m

,m→∞.

To guarantee the right hand side 1
2ci(θ) −

logn
m

, n cannot be too big. That is,

n ≤ e
1
2 c1(θ)m (note we replace t by c1(θ)). As − logn

m
→ 0, the exact slope is

cFmax(θ) = c1(θ)− 2logn
m

= c1(θ),when n ≤ cm and c is a constant.

The maximum and summation perform equally, since they share the same exact

slope when the number of hypothesis tests n is finite. However, when m = cn→∞,

the truncated method with fisher’s log-transformation could have a larger exact

slope than the non-truncated method when c1(θ)c ≥ 2 log( c1(θ)c
2 ) + 2.

2.2 The Exact Slopes for Inverse Normal Trans-

formation

Besides log transformation, inverse normal transformation is also commonly used in

practice. In this section, our purpose is to get the exact slopes from inverse normal
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transformation with and without truncation.

Theorem 5. Under the alternative (1.3), the exact slope of (1.7) is cN = c1(θ)
n

.

Proof. Assume mi = m, i = 1, ..., n. Since 1
m

[Zmi ]2 → ci(θ) with probability one

(Littell and Folks, 1971), we have

TN√
m
→

n∑
i=0

√
ci(θ) =

√
c1(θ),

where c1(θ) > 0 and ci(θ) = 0 for i = 2, ..., n.

Under H0,

1− FN(
√
mt) = 1− P (TN <

√
mt) = 1− P ( TN√

n
<

√
mt√
n

) = Φ̄(
√
mt√
n

)

By Mill’s ratio,

Φ̄(
√
mt√
n

) ∼
φ(
√
mt√
n

)
√
mt√
n

=
√
n√

2πmt
e−

mt2
2n ∼ e−

mt2
2n , as m→∞ and n = o(m).

So,

− 2
m
loge−

mt2
2n = t2

n
.

Thus, c(N)
m = c1(θ)

n
. When n→∞, c(N)

m = 0.

Theorem 6. Under the alternative (1.3), the exact slope for maximum is cNmax =

c1(θ).

Proof. Assume mi = m, i = 1, ..., n. Under alternative (1.3), we have

TNmax√
m

= maxZmi√
m

→ max(
√
ci(θ)) =

√
c1(θ)

15



Under H0, by Mill’s ratio,

1− FNmax(
√
mt) = 1− P (TNmax <

√
mt) = 1− (P (Zmi <

√
mt))n

= 1− (1− Φ̄(
√
mt))n = 1− (1− 1√

2π
e−

mt2
2

1√
mt

)n = n√
2πmt

e−
mt2

2 ∼ e−
mt2

2 .

So,

− 2
m
loge−

mt2
2 = t2 = c1(θ).

Thus, cNmax = c1(θ), for any n ≤ cm.

Based on Theorem 5 and 6, we have the following conclusion: The maximum

and sum of p-values with inverse normal transformation do not share the same tail

distribution. Moreover, the the exact slope of maximum Zi, where i is from 1 to

n, is higher than the one of summation. Thus, the truncated normal distribution

method has a higher slope than the original non-truncated normal-transformation

method.

2.3 More General Transformations

Here we give a sufficient condition such that summation based statistic has the same

Bahardur slope as the maximum based statistic, when the number of tests n is finite.

We consider a more general type of transformation F̄−1(), where F is a cumu-

lative density function and F̄ = 1 − F is the survival funcation. Tmi is defined by

Tmi = F̄−1(Pmi). The summation based statistic:

Tm = Tm1 + ...+ Tmn

The maximum based statistics:
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Tmax = max Tmi

Under the alternative (1.3), as with the case of summation, we have

Assume under the alternative (1.3),

Tm
m

= Tmax
m
→ b(θ), θ ∈ Θ1

Under H0,

− 1
m
log(1− F (Tm < mt))→ f(t), (2.4)

and

− 1
m
log(1− F (Tmi < mt)n)→ f(t) (2.5)

If F (∑Tmi < mt) ∼ (F (Tmi < mt))n i.e., Tmi follows a so-called subexponential

distribution (Pitman, 1980; Goldie and Klüppelberg, 1998), the maximum and the

sum based on statistics share the same right-tail rate. Then, the maximum and the

sum based statistics also share the same exact slope.

Further, because we are comparing the ratio of the log tail probability, we still

get the same slope if there exists a constant c such that 1 − F (∑Tmi < mt) =

O(mc(1− (F (Tmi < mt))n)) holds.

Due to the fact that the family of statistics with fisher’s log transformation

follow Chi-square distribution, which is not such a subexponential distribution( The

proof for this statement is in Appendix A.1.), but satisfies 1 − F (∑Tmi < mt) =

O(mc(1 − (F (Tmi < mt))n)), and thus has the same slope. In this case, generalize

the transformation F̄−1(.) to inverse exponential and inverse gamma transformation

(under traditional definition).

Theorem 7. Under the alternative (1.3), if the cumulative distribution function
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satisfies

1− F (
∑

Tmi <
√
mt) = O(mc(1− (F (Tmi <

√
mt))n)), (2.6)

the maximum and summation of Tmi share the same exact slope, where c is a con-

stant.

Proof. Continue the previous results (2.4) and (2.5). When 1−F (∑Tmi <
√
mt) =

O(mc(1− (F (Tmi <
√
mt))n)) holds, and m→∞, we obtain

− 1
m

log(1− F (
∑

Tmi)) ∼ −
1
m

log(mc(1− F (Tmi))n)→ f(t).

That is under the null, − 1
m

log(1 − F (∑Tmi)) ∼ − 1
m

log(1 − F (max Tmi)). Also,

under the alternative (1.3), the maximum and summation based statistics converge

to the same value. Overall, the maximum and summation of Tmi share the same

exact slope.

Corollary 1. When the number of test statistics n is finite, summation and maxi-

mum with inverse exponential transformation or inverse gamma transformation of

significance levels share the same exact slope under the alternative (1.3).

Proof. Assume Tmi follows exponential distribution with parameter λ under H0,

the test statistics (1.8) follows Gamma(n, λ). Then, the probability of max Tmi and∑
Tmi are:

(P (Tmi < mt))n = (1− e−λmt)n ∼ 1− ne−λmt,

and

P (
∑

Tmi < mt) = 1− e−λmt
n−1∑
i=0

(λmt)i
i! .

The value of (λmt)i
i! largely increases as n increases and m → ∞. Similarly,∑n−1

i=0
(λmt)i
i! ∼ (λmt)n−1

(n−1)! .
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P (
∑

Tmi < mt) ∼ 1− e−λmt (λmt)
n−1

(n− 1)!

Thus, the maximum and summation with inverse exponential transformation satis-

fies the formula (2.6).

Next, assume Tmi follows a gamma distribution Gamma(α, λ), the test statistic

(1.8) follows a Gamma(nα, λ). Then, the probability of maxTmi and ∑Tmi are:

(P (Tmi < mt))n = [
(α− 1)!(1− e−λmt∑α−1

i=0
(λmt)i
i! )

Γ(α) ]n

= (1− e−λmt
α−1∑
i=0

(λmt)i
i! )n

∼ 1− ne−λmt
α−1∑
i=0

(λmt)i
i!

∼ 1− ne−λmt (λmt)
α−1

(α− 1)! ,

and

P (
∑

Tmi <
√
mt) =

(nα− 1)!(1− e−λmt∑nα−1
i=0

(λmt)i
i! )

Γ(nα)

= 1− e−λmt
nα−1∑
i=0

(λmt)i
i!

∼ 1− e−λmt (λmt)
nα−1

(nα− 1)! ,

Thus, the summation and maximum with inverse gamma transformation also sat-

isfies the formula (2.6). We can conclude that the summation and maximum with

inverse exponential and gamma transformation share the same exact slope for one

signal case.
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Chapter 3

Exact Slopes for k Signals

In this chapter, we further extend the the number of signals from one to k. The

Bahadur exact slopes of RTP and TFisher are given in the section 3.1 and section

3.2.

3.1 Rank Truncated Product(RTP)

In this section, we study the Bahadur slope for rank truncated product based on

Fisher’s log transformation.

Following the result of RTP test (Dudbridge and Koeleman, 2003), the exact

distribution of WR in (1.10) is

P (WR ≤ w) =
(

n

k∗ + 1

)
(k∗ + 1)

∫ 1

v0
(1− v)n−k∗−1A(w, v)dv, (3.1)

where

A(w, v0) =


w
∑k∗−1
s=0

(k∗lnv0−lnw)s
s! , when w ≤ vk

∗
0

vk
∗

0 , otherwise
(3.2)

After applying log-transformation, TR = −2logWR = ∑k∗

i=1−2logP(i), we obtain the
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cumulative density function of TR :

P (TR ≥ mt) = P (−2logWR ≥ mt) = P (logWR ≤ −
m

2 t) = P (WR ≤ e−
m
2 t),

P (TR ≥ mt) =
(

n

k∗ + 1

)
(k∗ + 1)e−m2 t

∫ 1

v0
(1− v)n−k∗−1

k∗−1∑
s=0

(k∗ log v − log e−m2 t)s
s! dv,

(3.3)

when w ≤ vk
∗

0 .

Now, we intend to derive the exact slope of RTP. Before the deduction, a useful

lemma used in the proof of exact slope of RTP is introduced as following:

Lemma 3. By mathematical induction, (m2 t+k
∗lnv)(k∗−1)

(k∗−1)! � ∑k∗−2
s=0

(m2 t+k
∗lnv)s
s! , for

constant k∗ ≥ 2, v ∈ (0, 1) and m→∞.

Proof. When s = 1, k∗lnv+m
2 t� 1. Show that if (k∗lnv+m

2 t)
k∗−2

(k∗−2)! � ∑k∗−3
s=0

(k∗lnv+m
2 t)

s

s!

holds, (k∗lnv+m
2 t)

(k∗−1)

(k∗−1)! � ∑k∗−2
s=0

(k∗lnv+m
2 t)

s

s! holds.

k∗lnv + m

2 t� 2k∗ − 2

(k∗lnv + m
2 t)

k∗−1

(k∗ − 1)! � 2
(k∗lnv + m

2 t)
k∗−2

(k∗ − 2)!
(k∗lnv + m

2 t)
(k∗−1)

(k∗ − 1)! �
(k∗lnv + m

2 t)
k∗−2

(k∗ − 2)! +
k∗−3∑
s=0

(k∗lnv + m
2 t)

s

s!

Then, we provide the Bahadur exact slope for RTP:

Theorem 8. Under the alternative hypothesis (1.4), the exact slope of RTP based

on Fisher’s log transformation (1.11) is ∑k∧k∗
i=1 ci(θ), where k∗ is a constant in [1, n].

Proof. Under the alternative hypothesis,

When k∗ > k,
TR
m
→

k∑
i=1

ci(θ).
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Since the smallest noise p-value is bigger than−2 logU(1), where U(1) = min1≤i≤n−k∗ Ui.

−2 logU(1)
D= max{X2

i + Y 2
i , i = 1, ..., n} ≤ X2

(n) + Y 2
(n) ∼ 2(

√
2 log n)2 � m,

where Xi and Yi are iid N(0, 1). The exact slope of the smallest noise p-value is

− 2
m

logU(1) ≤ 1
m

(X2
(n) + Y 2

(n)) ∼ 2
m

(
√

2 log n)2 → 0. Moreover, since the smallest

noise p-value has zero exact slope, the K − k smallest noise p-values are all zero

exact slope. Compared with the exact slopes of signal p-values, the ones of noise

p-values could be ignored.

When k∗ ≤ k,
TR
m
→

k∗∑
i=1

ci(θ).

Under the null hypothesis, when m → ∞ and w = e−mt/2 ≤ vk
∗

0 , the another

case is given latter in the note of this proof.

− 1
m
log(1− F (mt))

= − 1
m
logP (WR ≤ e−

m
2 t)

= − 1
m
log
[( n

k∗ + 1

)
(k∗ + 1)

∫ 1

v0
(1− v)n−k∗−1e−

m
2 t

k∗−1∑
s=0

(k∗lnv − lne−
m
2 t)s

s! dv
]

= − 1
m
log
[( n

k∗ + 1

)
(k∗ + 1)e−

m
2 t
∫ 1

v0
(1− v)n−k∗−1

k∗−1∑
s=0

(k∗lnv + m
2 t)

s

s! dv
]

= − 1
m

[
log

(
n

k∗ + 1

)
(k∗ + 1)− m

2 t+ log

∫ 1

v0
(1− v)n−k∗−1

k∗−1∑
s=0

(k∗lnv + m
2 t)

s

s! dv
]

= 1
2 t−

1
m
log

∫ 1

v0
(1− v)n−k∗−1

k∗−1∑
s=0

(k∗lnv + m
2 t)

s

s! dv
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According by lemma 3,

− 1
m
log(1− F (mt))

∼ 1
2t−

1
m
log

1
(k∗ − 1)! −

1
m
log

∫ 1

v
(1− v)n−k∗−1(k∗lnv + m

2 t)
(k∗−1)dv

∼ 1
2t−

1
m
log

∫ 1

v0
(1− v)n−k∗−1(k∗lnv + m

2 t)
k∗−1dv

Since (1− v)n−k∗−1(k∗lnv + m
2 t)

k∗−1 ∼ (m2 t)
k∗−1(1− v)n−k∗−1,

∫ 1

v0
(1− v)n−k∗−1(k∗lnv + m

2 t)
k∗−1dv ∼

∫ 1

v0
(m2 t)

k∗−1(1− v)n−k∗−1dv

∼ −
(m2 t)

k∗−1

n− k∗
(1− v)n−k∗

∣∣∣1
v

∼
(m2 t)

k∗−1

n− k∗
(1− v)n−k∗

Further, limm→∞
1
m
log

(m2 t)
k∗−1

n−k∗ (1− v)n−k∗ = k∗−1
m
→ 0.

We have − 2
m
log(1−F (mt)) ∼ t. Thus, the exact slope of RTP based on Fisher’s

log transformation is ∑k∧k∗
i=1 ci(θ). Note that when w ≥ vk

∗
0 and k∗ is a constant,

− 1
m

log(1− F (mt)) = − 1
m

log
(

n
k∗+1

)
(k∗ + 1)

∫ 1
v0

(1− v)n−k∗−1vk
∗
dv = 0. In this case,

the exact slope is 0.

The exact slope of rank truncated product is depended on the choice of trun-

cation k∗. If k∗ is less than the number of nonzero signals, the exact slope is the

summation of ci(θ), where i = 1, ..., k∗; otherwise, the exact slope is the summation

of ci(θ), where i = 1, ..., k.
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3.2 TFisher

In this section, we study a more general test statistic with weight and truncation

called “TFisher” in (1.12) under the alternative hypothesis (1.4). We derive the

lower bounds and upper bounds Bahadur exact slope for “TFisher”, based on the

relationship of the number of tests n and the sample size m. Then, we compare the

Bahadur exact slopes from different combination of τ1 and τ2.

Here, the test statistic we considered is:

WS =
n∏
i=1

(
Pi
τ2

)I(Pi≤τ1)
.

Taking a logarithm of WS, we have

TS = 2Klogτ2 − 2
K∑
i=1

logP(i), (3.4)

where random variable K = #{Pi ≤ τ1}. Under the null, K ∼ Binomial(n, τ1),

so the mean is E(K) = nτ1 ≡ k. Based on deductions in Zhang et al. (2018) for

p-value calculation, since the density of W is derived from Chi-square distribution,

when t0 + 2k log(τ1/τ2) ≥ 0, the density of W is

P (TS ≥ t0) = (1− τ1)nI{t0≤0} + e−t0/2
n∑
k=1

k−1∑
j=0

(
n

k

)
τ k2 (1− τ1)n−k (t0 + 2k log(τ1/τ2))j

2jj! ;

(3.5)

3.2.1 Convergence of TS/m for TFisher

In this subsection, we provide the convergency in probability for TS/m. Two parts

are showed as follow: first, study the convergence of the first term in TS/m, 2K
m
logτ2,

which is provided in Lemma 4 and then study the convergence of − 2
m

∑K
i=1 logP(i)
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provided in Lemma 5.

Lemma 4. Let k be the number of signals and K be the number of Pi, where Pi ≤ τ1

under H0. If the ratio of the number of tests and the average sample size for each

individual test , n
m

, converges to zero as m→∞, i.e. n = o(m), then 2K
m

log τ2 → 0;

If n
m

converges to a constant c as m→∞, i.e. m = cn, then 2K
m

log τ2 → 2τ1
c

log τ2.

Proof. When n = cm as m→∞, by Chebyshev’s inequality, for any ε > 0,

P (|K
n
− τ1| ≥ ε) ≤ τ1(1− τ1)

nε2
→ 0, n→∞

Thus, we have K/n → τ1. Then, we have 2K
m
logτ2 → 2τ1

c
logτ2. When n

m
→ 0,

2K
m
logτ2 → 0.

Lemma 5. If the ratio of the average sample size for each individual test and the

number of tests, n
m

, converges to zero as m→∞, i.e. n = o(m), then:

a. P (K < k)→ 0.

b. − 2
m

∑K
i=1 logP(i) →

∑k
i=1 ci, when K ≥ k.

If the ratio of the average sample size for each individual test and the number of

tests, n
m

, converges to a constant c as m→∞, then:

a. P (K < k)→ 0.

b. − 2
m

∑K
i=1 logP(i) →

∑k
i=1 ci+2τ1

c
+C, when K ≥ k and fixed C ∈ ( τ1(1−τ1)

c
, 1−τ1

c
).

Proof. First, consider the case of K < k and we can show that P (K < k) → 0.

Assume Pi, i = 1, .., k, are nonzero signals, for any ε, such that |Pi − 0| < ε, i =

1, ..., k. Besides, K is the number of Pi < τ1, where τ1 is a nonzero fixed number. If

K < k, we obtain |Pi − 0| < τ1 < ε. Yet, a nonzero constant could not less than an

arbitrary ε. Thus, P (K < k)→ 0.
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Furthermore, consider the case of K = k, which means the number of Pi < τ1 is

the same as the number of nonnegative signals. We can show that

− 2
m

k∑
i=1

logP(i) = − 2
m

k∑
i=1

logP(i) →
k∑
i=1

ci(θ), as m→∞. (3.6)

Let X be − 2
m

∑k
i=1 logP(i), Y be − 2

m

∑k
i=1 logPi, Z be ∑k

i=1 ci(θ) and A be {X = Y }.

For any ε > 0,

P (| − 2
m

k∑
i=1

logP(i) + 2
m

k∑
i=1

logPi| > ε) = P ((− 2
m

k∑
i=1

logP(i) + 2
m

k∑
i=1

logPi)2 > ε2)

≤
4E(−∑k

i=1 logP(i) +∑k
i=1 logPi)2

m2ε2

Since − 2
m
logPi → ci(θ) > 0, Pi → 0, m → ∞ for i = 1, ..., k. Then, the first

k ordered p-values have {P(i), i = 1, ...k} = {Pi, i = 1, ...k} and ∑k
i=1 logP(i) =∑k

i=1 logPi. The expectation of square of difference of X and Y convergence to 0.

So,

P (| − 2
m

k∑
i=1

logP(i) + 2
m

k∑
i=1

logPi| > ε)→ 0, i.e.P (A)→ 1.

Next,

P (|X − Z| ≥ ε) = P (|X − Z| ≥ ε|A)P (A) + P (|X − Z| ≥ ε|Ā)P (Ā)

= P (|Y − Z| ≥ ε)

→ 0

Above all, we have − 2
m

∑k
i=1 logP(i) →

∑k
i=1 ci.

Now, consider the case of K > k that K could cover k nonzero signals under

the alternative and also include noises Pi, i = k+ 1, ..., n under the null. we rewrite
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these ordered p-values into two parts:

− 2
m

K∑
i=1

logP(i) = − 2
m

k∑
i=1

logPi −
2
m

K−k∑
i=1

logU(i)

where U(i), i = 1, ..., K − k is ordered statistics from n − k iid random variables of

Unif(0, 1).

With high probability, we already have − 2
m

∑k
i=1 logPi →

∑k
i=1 ci(θ). Now, focus

on the convergence of − 2
m

∑K−k
i=1 logU(i). Since k is a fixed constant and n → ∞,

the total number of noise n − k can be approximated by n for simplicity. Then,

calculate the convergence of− 2
m

∑K−k
i=1 logU(i). Here, we employ the expected value of∏K−k

i=1 U(i): Note that any uniform order statistics U(i) is represented as the product

of powers of independent uniformly distributed random variables,

U(i) = W
1/i
i W

1/i+1
i+1 ...W 1/n

n , i = 1, 2, ..., n.

where Wi is independent uniformly distributed on [0,1] random variables(Ahsanullah

et al., 2013). Then, define a random variable Y = −2 log(∏K−k
i=1 U(i))/m, and by the

representative of uniform random variable,

Y = −2 log(W1...WK−kW
K−k/K−k+1
K−k+1 ...WK−k/n

n )/m.

Let X1 = −2 logW1
m

, ..., XK−k = −2 logWK−k
m

, XK−k+1 = −2(K−k) logWK−k+1
m(K−k+1) , ..., Xn =

−2(K−k) logWn

mn
are independent random variables, we have another expression of Y =

X1 +X2 + ...+Xn.

In order to get the convergence of Y , we firstly derive the expected value and
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variance of Y :

E(Y ) = E(X1 +X2 + ...+Xn)

= E(−2 logW1
m

+ ...+ −2 logWK−k
m

+ −2(K − k) logWK−k+1
m(K − k + 1) + ...+ −2(K − k) logWn

mn
)

= E(−2 logWi

m
)E(K − k + K − k

K − k + 1 + ...+ K − k
n

)

= 2E(K − k
m

+ 1
m

K − k
K − k + 1 + ...+ 1

m

K − k
n

)

(3.7)

Except for the first term in the parentheses of the above formula, the lower bound

and upper bound for the rest terms are:

(n(1− τ1))E( 1
m

K − k
K − k + 1) = n(1− τ1)

m

n∑
k′=k

k′ − k
k′ − k + 1

(
n

k′

)
τ k
′

1 (1− τ1)n−k′

<
n(1− τ1)

m

n∑
k′=k

(
n

k′

)
τ k
′

1 (1− τ1)n−k′ < 1− τ1

c

(3.8)

(n(1− τ1))E( 1
m

K − k
n

) = n(1− τ1)(nτ1 − k)
mn

≈ τ1(1− τ1)
c

(3.9)

Thus,

E(Y ) =


2nτ1−k

m
→ 0, when n = o(m)

2nτ1−k
m
→ 2τ1

c
+ C, when m = cn, C ∈ ( τ1(1−τ1)

c
, 1−τ1

c
.)

Also, we study the variance of Y :

V ar(Y ) = V (X1 +X2 + ...+Xn)

= V ar(−2 logW1
m

+ ...+ −2 logWK−k
m

+ −2(K − k) logWK−k+1
m(K − k + 1) + ...+ −2(K − k) logWn

mn
)

= V ar(−2 logWi

m
(K − k)) + V ar(−2 logWi

m
( K − k
K − k + 1)) + ...+ V ar(−2 logWi

m
(K − k

n
))

(3.10)
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Since random variable Wi and K are independent,

V ar(−2 logWi

m
(K − k))

=V (−2 logWi

m
)V (K − k)+E2(−2 logWi

m
)V (K − k)+V (−2 logWi

m
)E2(K − k)

= 4
m2nτ1(1− τ1) + 4

m2nτ1(1− τ1) + 4
m2 (nτ1 − k)2 ≈ 4

m2 (nτ1 − k)2

(3.11)

Similarly, for the second term in the formula of V ar(Y ):

V ar(−2 logWi

m

K − k
K − k + 1)

= V (−2 logWi

m
)V ( K − k

K − k + 1) + E2(−2 logWi

m
)V ( K − k

K − k + 1) + V (−2 logWi

m
)E2( K − k

K − k + 1)

<
4
m2 + 4

m2 + 4
m2 ≈ 0

(3.12)

With general weak law of large number in (Resnick, 1998) on page 205,

Theorem 9 (General weak law of large numbers). Suppose{Xn, n ≥ 1} are inde-

pendent random variables and define Sn = ∑n
j=1Xj. If

n∑
j=1

P [|Xj| > n]→ 0

1
n2

n∑
j=1

EX2
j 1[|Xj |≤n] → 0

then if we define

an =
n∑
j=1

E(Xj1[|Xj≤n|])

we get
Sn − an

n
→ 0.

Since Xi are independent random variables, |Xi| < n, i = 1, ..., n, then
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∑n
i=1 P (|Xi| > n) = 0.

Also, 1
n2
∑n
i=1EX

2
i I|Xj |≤n = 1

n2
∑n
i=1EX

2
i = 1

n2 = 1
n2
∑n
i=1(V (Xi) + E2(Xi)),

In (3.8), (3.9), (3.11) and (3.12), we have V (Xi) + E2(Xi) → 0. Then,
1
n2
∑n
i=1EX

2
i I|Xj |≤n → 0.

By theorem 9,

Y = − 2
m

K−k∑
i=1

logU(i) → E(Y ).

Above all, under the alternative,

− 2
m

K∑
i=1

logP(i) →


∑k
i=1 ci(θ),when n = o(m)

∑k
i=1 ci(θ) + 2τ1

c
+ C,when m = cn and fixed C ∈ ( τ1(1−τ1)

c
, 1−τ1

c
).

Based on lemma 4 and 5, we have:

Theorem 10. Under the alternative(1.4), the convergence of TS/m for TFisher

(3.4) is

TS
m

= − 2
m

K∑
i=1

logP(i) + 2K
m

log τ2 →



∑k
i=1 ci(θ),when n = o(m)

∑k
i=1 ci(θ) + 2τ1

c
+ 2τ1

c
log τ2 + C,

when m = cn and C ∈ ( τ1(1−τ1)
c

, 1−τ1
c

).
(3.13)

Note that according to the definition of Bahadur exact slope that the slopes are

nonnegative, τ2 need to satisfy τ2 ≥ e
−1+

∑k

i=1
logPi
τ1n .

3.2.2 Bahadur Exact Slope for TFisher

We firstly introduce a lemma for deducing the exact slope of TFisher:
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Lemma 6. The binomial coefficient
(
n
i

)
τ i2(1 − τ1)n−i gets the biggest value when

i0 = (n+1)τ2
τ2−τ1+1 .

Proof. The binomial coefficient gets the biggest value when the ratio of ind and

(i− 1)nd term equals to one. That is,

(
n
i

)
τ i2(1− τ1)n−i(

n
i−1

)
τ i−1

2 (1− τ1)n−i+1
= τ2(n− i+ 1)

(1− τ1)i = 1,

i = (n+ 1)τ2

τ2 − τ1 + 1 .

Here, the lower and upper bounds of Bahadur exact slope for TFisher are given

as follows:

Theorem 11. When n = o(m), the exact slope of TFisher is

k∑
i=1

ci(θ);

When m = cn, c is a positive constant and n→∞, the lower and upper bounds for

the exact slope of TFisher are 2fl(t) and 2fu(t), respectively, where

t =
k∑
i=1

ci(θ) + 2τ1

c
+ 2τ1

c
log τ2 + C and fixed C ∈ (τ1(1− τ1)

c
,
1− τ1

c
), (3.14)

fl(t) = 1
2t−

1
c

[log(ct2 + log τ1

τ2
) + 1]− 1

c
log (τ2 − τ1 + 1), (3.15)

and

fu(t) =


1
2t−

1
c
[log( ct+log(τ1/τ2)

2 ) + 1]− 1
c

log (−τ1 + 1), −τ1 + 1 < τ2

1
2t−

1
c
[log( ct+log(τ1/τ2)

2 ) + 1]− 1
c

log τ2, otherwise
. (3.16)
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Proof. Under the null hypothesis,

− 1
m
log(1− F (mt))

= − 1
m
logP (TS ≥ mt) by (3.5)

= − 1
m
log
(
(1− τ1)nI{mt≤0} + e−

mt
2

n∑
i=1

i−1∑
j=0

(mt+ 2ilog(τ1/τ2))j

2jj!

(
n

i

)
τ i2(1− τ1)n−i

)
= 1

2 t−
1
m
log
( n∑
i=1

i−1∑
j=0

(mt+ 2ilog(τ1/τ2))j

2jj!

(
n

i

)
τ i2(1− τ1)n−i

)

Since t0 = mt and t (3.13) is the nonnegative convergence value for Tm
m

under H1,

the indicator function equals to zero. Then,

− 1
m
log(1− F (mt)) = 1

2t−
1
m

log
( n∑
i=1

(mt+ 2ilog(τ1/τ2))i−1

2i−1(i− 1)!

(
n

i

)
τ i2(1− τ1)n−i

)

Because the binomial coefficient
(
n
i

)
τ i2(1 − τ1)n−i gets the biggest value when

i0 = (n+1)τ2
τ2−τ1+1 in Lemma 6, we have

n∑
i=1

(mt+ 2ilog(τ1/τ2))i−1

2i−1(i− 1)!

(
n

i

)
τ i2(1−τ1)n−i ≤

n∑
i=1

((mt+ 2ilog(τ1/τ2))i−1

2i−1(i− 1)!
)(n
i0

)
τ i02 (1−τ1)n−i0

The lower bound of f function is

− 1
m
log(1−F (mt)) ≥ 1

2 t−
1
m

log
n∑
i=1

((mt+ 2ilog(τ1/τ2))i−1

2i−1(i− 1)!

)
− 1
m

log
(
n

i0

)
τ i02 (1−τ1)n−i0

(3.17)

Then, by lemma 2, the second term in the right hand side of equation (3.17) is

− 1
m

log
n∑
i=1

((mt+ 2ilog(τ1/τ2))i−1

2i−1(i− 1)!
)
→


−1
c
(log(ct/2 + log(τ1/τ2)) + 1), n = cm

0, n = o(m)
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And the last term in the right hand side of equation (3.17) is

− 1
m

log
(
n

i0

)
τ i02 (1− τ1)n−i0 →


−1
c

log (τ2 − τ1 + 1), n = cm

0, n = o(m)

The specific calculations for the above equation are shown below:

By Stirling’s approximation,

− 1
m

log
(
n

i0

)

= −1
c

[logn− τ2
τ2 − τ1 + 1 log (n+ 1)τ2

τ2 − τ1 + 1 − (1− τ2
τ2 − τ1 + 1) log(n− (n+ 1)τ2

τ2 − τ1 + 1)]

= −1
c

[ τ2
τ2 − τ1 + 1 log τ2 − τ1 + 1

τ2
+ (1− τ2

τ2 − τ1 + 1) log τ2 − τ1 + 1
1− τ1

]

= 1
c

τ2
τ2 − τ1 + 1 log τ2

τ2 − τ1 + 1 + 1
c

(1− τ2
τ2 − τ1 + 1) log( 1− τ1

τ2 − τ1 + 1)

Also,

− 1
m

log τ i02 (1− τ1)n−i0 → −1
c

τ2

τ2 − τ1 + 1 log τ2 −
1
c

(1− τ2

τ2 − τ1 + 1) log(1− τ1)

Thus, the convergence of the largest binomial term is:

− 1
m

log
(
n

i0

)
τ i02 (1− τ1)n−i0

→ 1
c

τ2

τ2 − τ1 + 1 log 1
τ2 − τ1 + 1 + 1

c
(1− τ2

τ2 − τ1 + 1) log 1
τ2 − τ1 + 1

= 1
c

log 1
τ2 − τ1 + 1 .

Above all, the f function when n = o(m) is

f(t) = 1
2t
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and

t =
k∑
i=1

ci(θ).

The fl(.) function when m = cn is

fl(t) = 1
2t−

1
c

[log(ct+ log(τ1/τ2)
2 ) + 1]− 1

c
log (τ2 − τ1 + 1)

and

t =
k∑
i=1

ci(θ) + 2τ1

c
+ 2τ1

c
log τ2.

Similarly, the smallest binomial coefficient
(
n
i

)
τ i2(1−τ1)n−i is (1−τ1)n, when−τ1+1 <

τ2; otherwise the smallest binomial coefficient is τn2 .

Thus, the convergence of the smallest binomial term is:

− 1
m

log
(
n

i0

)
τ i02 (1− τ1)n−i0 → −1

c
log(1− τ1), when − τ1 + 1 < τ2;

→ −1
c

log τ2, otherwise.

Thus,

fu(t) =


1
2t−

1
c
[log( ct+log(τ1/τ2)

2 ) + 1]− 1
c

log (−τ1 + 1), −τ1 + 1 < τ2

1
2t−

1
c
[log( ct+log(τ1/τ2)

2 ) + 1]− 1
c

log τ2, otherwise
.

Compared with the Bahadur exact slopes for RTP and fisher’s, the one for

TFisher performs as same as these methods when n = o(m). In this case, the

exact slopes when n,m→∞ are considered in theorem 11.

Note that when τ1 = τ2 = τ , the lower and upper bounds of Bahadur exact slope
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for soft-thresholding are 2fl(t) and 2fu(t):

t =
k∑
i=1

ci(θ) + 2τ
c

+ 2τ
c

log τ + C ,where fixed C ∈ (τ1(1− τ1)
c

,
1− τ1

c
), (3.18)

fl(t) = 1
2t−

1
c

[log(ct2 ) + 1], (3.19)

and

fu(t) = 1
2t−

1
c

[log(ct2 ) + 1]− 1
c

log τ2. (3.20)

We also could get the lower and upper bounds of Bahadur exact slope for hard-

thresholding

Th =
n∑
i=1

(−2 logPi)I(Pi ≤ τ),

when τ1 = τ and τ2 = 1,

fu(t) = 1
2t−

1
c

(log ct+ log τ
2 + 1)− 1

c
log(1− τ),

fl(t) = 1
2t−

1
c

(log ct+ log τ
2 + 1)− 1

c
log(2− τ).

The exact slope 2fl(t) ≤ c(θ) ≤ 2fu(t), where t = ∑k
i=1 ci(θ) + 2τ

c
.

Similarly, we could get the exact Bahadur slope for Fisher’s test statistics, since

f function does not contain the term − 1
m

log
(
n
i0

)
τ i02 (1 − τ1)n−i0 , when τ1 = τ2 = 1.

The slope for fisher’s is:

2f(t) = t− 2
c

(log ct2 + 1)

and

t = b(θ) =
k∑
i=1

ci(θ) + 2
c

+ C, where fixed C ∈ (τ1(1− τ1)
c

,
1− τ1

c
).
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Chapter 4

Discussion and Future Studies

In this chapter, we summarize the Bahadur exact slopes for one signal and k signals

and state the future study goals.

In figure 4.1, the fisher’s method, max fisher’s method and max inverse normal

method perform equally for the case of one signal. The inverse normal method has

a smaller slope than the others. Furthermore, when the number of tests n goes to

infinity, the exact slope of inverse normal method goes to zero.

Figure 4.1: Exact slope for one signal. n=100.
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Figure 4.2: Bahadur exact slope over τ2. Left panel: set c = 1000, t = 1 and τ1 = 0.1

and change τ2 from 0.01 to 2. Right panel: set c = 10, t = 0.6 and τ1 = 0.1 and

change τ2 from 0.01 to 2.

Based on the lower bound of Bahadur exact slope for TFisher, we further study

the choice of τ1 and τ2. There is no uniform rule for choosing τ2 for different com-

binations of cs, ts. In figure 4, for the left one, the Bahadur exact slope attains the

maximum when τ2 is around τ1 (i.e. soft-thresholding), while for the right one, the

Bahadur exact slope attains the maximum when τ2 = 1 (i.e. hard-thresholding).

Moreover, the bigger the constant c is, the smaller the difference between soft-

thresholding and hard-thresholding is, which is shown in the figure 4.3. Further,

the difference between the lower bounds of soft-thresholding and hard-thresholding

is smaller, when c gets bigger. When c → ∞, there is no difference among fisher’s

method, soft-thresholding and hard-thresholding as n = o(m), which is consistent

with Littell’s theory in 1973. Also, for p-combination methods such as fisher’s, soft-

thresholding and hard-thresholding, the bigger the c is, the higher the exact slope

is. This could be easily understood from the perspective of signal, denser signals

enjoy higher Bahadur exact slopes for fixed k signals. The conclusion could also be

verified by the cases of one signal, where the exact slope of finite n is higher than
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the exact slope of infinite n.

The figure 4.3 shows the different cases with different cs: When c = 1, which

means the sample size equals the number of tests, the soft-thresholding is superior

to fisher’s method when the slope of nonzero signals ∑ ci(θ) < 1.2. Because the

lower bound of soft-thresholding is higher than the fisher’s and hard-thresholding.

Also, when c=1, the exact slope of hard-thresholding is zero, i.e. − 2
m

logPm = 0,

since the condition t0 + 2k log( τ1
τ2

) > 0 does not be satisfied in (3.5) and the right

tail probability is 1. When c = 10, the differences among fisher’s, soft and hard-

thresholding become smaller. If 0 <
∑
ci(θ) < 0.61, the soft-thresholding is the

best among these three combination methods. If 0.61 < ∑
ci(θ) < 0.72, the hard-

thresholding is the best among the three. Otherwise, soft-thresholding or fisher’s

method are worth considering. When c = 20, the exact slope of soft-thresholding

could be superior to fisher’s method when ∑
ci(θ) < 0.2. The hard-thresholding

is only better than the others when 0.3 < t < 0.32, otherwise fisher’s and soft-

thresholding with equal τ1, τ2 would be better.
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Figure 4.3: Orange line: the upper and lower bounds of the exact slope for soft-

thresholding when τ1 = τ2 = 0.05. Black line: the exact slope for fisher’s method

when τ1 = τ2 = 1. Green line: the upper and lower bounds of the exact slope for

hard-thresholding when τ1 = 0.05, τ2 = 1. C gets the value τ1(1− τ1)/c.

Here, plot the Bahadur exact slopes when C = (1−τ1)/c in figure 4.4. From this

figure, when c = 1 and ∑
ci(θ) < 0.5, soft-thresholding is the best method, since

the lower bound of soft-thresholding is higher than Fisher’s and hard-thresholding.

Also, when c increases, the Bahadur exact slope decreasing and the difference among

Fisher’s, Soft-Thresholding and Hard-Thresholding become small.
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Figure 4.4: Orange line: the upper and lower bounds of the exact slope for soft-

thresholding when τ1 = τ2 = 0.05. Black line: the exact slope for fisher’s method

when τ1 = τ2 = 1. Green line: the upper and lower bounds of the exact slope for

hard-thresholding when τ1 = 0.05, τ2 = 1. C gets the value (1− τ1)/c.

Throughout, the exact slopes for different case discussed before summarize in

the following table 4:

The truncated inverse normal transformation method is superior to the non-

truncated one for both finite and infinite number of hypothesis tests n, while it

perform equally with the truncated log transformation method, for the case of one

signal.
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Test Statistics H1 Assumption Exact Slope
TF =

n∑
i=1
−2logPmi (1.3) n is finite c1(θ)

TFmax =
max(−2 logPmi)

(1.3) n is finite c1(θ)

TF =
n∑
i=1
−2logPmi (1.3) m = cn→∞ c1(θ)− 2

c

[
log (c1(θ)c/2) + 1

]
TF =

n∑
i=1
−2logPmi (1.4) m = cn→∞ ∑k

i=1 ci(θ) + C −
2
c

[
log (∑k

i=1 c1(θ)(c+ C)/2)+
1
]

TFmax =
max(−2 logPmi)

(1.3) n → ∞ and n =
o(m)

c1(θ)

TN =
n∑
i=1

Zmi (1.3) n is finite c1(θ)
n

TN =
n∑
i=1

Zmi (1.3) n → ∞ and n =
o(m)

0

TNmax = maxZmi (1.3) for any n ≤ cm c1(θ)
TR = ∑k∗

i=1−2logP(i) (1.4) n is finite or n→
∞

∑k∧k∗
i=1 ci(θ),when e−mt/2 ≤

vk
∗ ; 0, otherwise

Th =
−2 log∏n

i=1 P
I(Pi≤τ)
i

(1.4) n → ∞ and n =
o(m)

∑k
i=1 ci(θ)

Th =
−2 log∏n

i=1 P
I(Pi≤τ)
i

(1.4) m = cn→∞ 2fl(t) = t −
2
c
[log (ct/2 + log τ) +

1] − 2
c

log(2 − τ),where t =∑k
i=1 ci(θ) + 2τ

c
+ C.

Ts =
−2 log∏n

i=1

(
Pi
τ

)I(Pi≤τ)
(1.4) n → ∞ and n =

o(m)

∑k
i=1 ci(θ)

Ts =
−2 log∏n

i=1

(
Pi
τ

)I(Pi≤τ)
(1.4) m = cn→∞ 2fl(θ) = t − 2

c

[
log (ct/2) +

1
]
, where t = ∑k

i=1 ci(θ) +
2τ
c

+ 2τ
c

log τ + C.

TS =
−2 log∏n

i=1

(
Pi
τ2

)I(Pi≤τ1)
(1.4) n → ∞ and n =

o(m)

∑k
i=1 ci(θ)

TS =
−2 log∏n

i=1

(
Pi
τ2

)I(Pi≤τ1)
(1.4) m = cn→∞ 2fl(θ) = t −

2
c
[log (ct/2 + log τ1

τ2
) + 1] −

2
c

log (τ2 − τ1 + 1),where t =∑k
i=1 ci(θ)+ 2τ1

c
+ 2τ1

c
log τ2 +

C.

Table 4.1: Summary of the exact slopes. Note that for the case of hard-thresholding
and soft-thresholding, the lower bounds of exact slope are used in the column Exact
Slope.
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For future studies, to be more accurate, we could further find the exact slopes

for log-transformation methods, for example TFisher. Also, the truncated inverse

normal transformation by threshold and rank should be studied from the perspective

of Bahadur exact slope. The relationship between Bahadur efficiency and power

could be studied further.
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Appendix A

Appendix

A.1 Sub-exponential Distribution

Definition 1. (Subexponential distribution function) Let Xi be iid postive rvs with

df F such that F (0) = 0, F (x) < 1 for all x > 0, F (∞) = 1. Denote

F̄ (x) = 1− F (x), x ≥ 0

the tail of F and

F̄ n∗(x) = 1− F n∗(x) = P (X1 +X2 + ...+Xn > x)

the tail of the n-fold convolution of F . F is a subexponential df (F ∈ S) if and only

if one of the following equivalent conditions holds:

(a) limx→∞
F̄n∗(x)
F̄ (x) = n for some(all) n ≥ 2,

(b) limx→∞
∫∞

0
F̄ (x−t)
F̄ (x) dF (t) = 1,

(c) limx→∞
P (X1+X2+...+Xn>x)
P (max(X1,...,Xn)>x) = 1 for some (all) n ≥ 2.

Conditions (a) and (c) were given by (Goldie and Klüppelberg, 1998); condition
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(b) was given by (Pitman, 1980). The three conditions are equivalent.

Corollary 2. Chi-square distribution is not included in the sub-exponential distri-

bution.

Proof. Let X1, X2
ind∼ χ2

2 and Y = X1 + X2 ∼ χ2
4, we have F̄X1(x) = e−

x
2 and

F̄Y (y) = e−
y
2

1∑
i=0

yi

i! .

When x = y →∞,

limx→∞

∫ x

0

F̄ (x− t)
F̄ (t)

dF (t) = limx→∞

∫ x

0

e−(x−t)/2

e−x/2
f(t)dt

= limx→∞

∫ x

0
et/2 · 1

2e
−t/2dt

6= 1

Besides, limy→∞,x=y

e−
y
2

1∑
i=0

yi

i!

2e−
x
2
6= 1.

Thus, chi-square distribution is not included in the sub-exponential class.

A.2 Some Deductions in Littell 1971

Here we give a clarification for the deduction of the fourth method in Littell 1971(Lit-

tell and Folks, 1971).

The overall test statistics is T (m)
n = − 2√

n
logminL(i)

ni
. Then

T (m)
n√
n

= − 2
n
logminL(i)

ni

= max(logL(i)
ni

)

→ maxλici(θ)

Under the null hypothesis, −2logL(i)
ni

follows a chi-square with 2 degress of free-
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dom, which is exponential with parameter λ = 1
2 .

− 1
n
log(1− F (m)

n (
√
nt)) = − 1

n
log(1− P (max(− 2√

n
logL(i)

ni
) <
√
nt))

= − 1
n
log(1− P (max(−2logL(i)

ni
) < nt))

= − 1
n
log(1− P (−2logL(i)

ni
) < nt)p)

= − 1
n
log(1− (1− e−nt2 )p)

→ − 1
n
logpe−

nt
2

→ t

2 .
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Charles M Goldie and Claudia Klüppelberg. Subexponential distributions. A prac-
tical guide to heavy tails: statistical techniques and applications, pages 435–459,
1998.

Nicholas A Heard and Patrick Rubin-Delanchy. Choosing between methods of com-
bining p-values. Biometrika, 2017.

James A Koziol and Henry C Tuckwell. A bayesian method for combining statistical
tests. Journal of statistical planning and inference, 78(1):317–323, 1999.

Ramon C Littell and J Leroy Folks. Asymptotic optimality of fisher’s method of
combining independent tests. Journal of the American Statistical Association, 66
(336), 1971.

Ramon C Littell and J Leroy Folks. Asymptotic optimality of fisher’s method of
combining independent tests ii. Journal of the American Statistical Association,
68(341):193–194, 1973.

Yakov Nikitin. Asymptotic Efficiency of Nonparametric Tests. Cambridge university
press, 1995.

EJG Pitman. Subexponential distribution functions. Journal of the Australian
Mathematical Society (Series A), 29(30)(337-347), 1980.

46



Sidney Resnick. A Probability Path. 1998.

Michael C Whitlock. Combining probability from independent tests: the weighted
z-method is superior to fisher’s approach. Journal of evolutionary biology, 18(5):
1368–1373, 2005.

Hong Zhang, Tiejun Tong, John E Landers, and Zheyang Wu. Tfisher tests:
Optimal and adaptive thresholding for combining p-values. arXiv preprint
arXiv:1801.04309, 2018.

47


	Introduction
	Background on Bahadur Theory
	Models of Hypothesis for Signal Detection Problem 
	P-value Combination Methods

	Exact Slopes for One Signal
	The Exact Slope for Log Transformation
	The Exact Slopes for Inverse Normal Transformation
	More General Transformations

	Exact Slopes for k Signals
	Rank Truncated Product(RTP) 
	TFisher
	Convergence of TS/m for TFisher
	Bahadur Exact Slope for TFisher


	Discussion and Future Studies
	Appendix
	Sub-exponential Distribution
	Some Deductions in Littell 1971


