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Abstract

The research conducted in this dissertation is divided into two main parts. The first part provides

further improvements in power system state estimation and the second part implements Contin-

gency Constrained Optimal Power Flow (CCOPF) in a stochastic multiple contingency framework.

As a real-time application in modern power systems, the existing Newton-QR state estimation

algorithms are too slow and too fragile numerically. This dissertation presents a new and more

robust method that is based on trust region techniques. A faster method was found among the

class of Krylov subspace iterative methods, a robust implementation of the conjugate gradient

method, called the LSQR method.

Both algorithms have been tested against the widely used Newton-QR state estimator on the

standard IEEE test networks. The trust region method-based state estimator was found to be

very reliable under severe conditions (bad data, topological and parameter errors). This enhanced

reliability justifies the additional time and computational effort required for its execution. The

numerical simulations indicate that the iterative Newton-LSQR method is competitive in robustness

with classical direct Newton-QR. The gain in computational efficiency has not come at the cost of

solution reliability.

The second part of the dissertation combines Sequential Quadratic Programming (SQP)-based

CCOPF with Monte Carlo importance sampling to estimate the operating cost of multiple contin-

gencies. We also developed an LP-based formulation for the CCOPF that can efficiently calculate

Locational Marginal Prices (LMPs) under multiple contingencies. Based on Monte Carlo importance

sampling idea, the proposed algorithm can stochastically assess the impact of multiple contingencies

on LMP-congestion prices.
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Chapter 1

Introduction

1.1 Challenges in Power Systems Computation Applications

Large-scale electric power systems are extremely complex, and have been designed and operated

conservatively through the years. At the present time, many power systems throughout the world are

undergoing fundamental operational changes. Under open-access regulations, transmission owners

are required to open their systems to use by other entities, including many non-utility players.

What was once intended as a bridge between generation and the distribution system, transmission

system became an electricity market trading floor. Many players in the game are now more oriented

towards commercial goals rather than the technical. With that respect, the power grid faces many

challenges that it was not designed and engineered to handle. Among challenges that modern power

system computer applications have to solve are:

• new and unanticipated conditions

• atypical power flow (quick changes due to unusual modes of energy trades, such as wheeling)

• congestion

• multiple contingencies (requiring redefined reliability criteria)

• out-of-date modeling and parameter data

Computation is now heavily used in all aspects of power networks. The new restructured envi-

ronment places more engineering and financial demands to operate reliably, robustly and efficiently.

The market participants would also like to have dynamic information about the physical system
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state, past, present, and forecast. A key challenge is to have a real-time model so that power net-

work computations are performed on a model that resembles the current situation. When we say

a real-time model we mean a “snapshot” of the system that contains redundant measurements of

quantities of interest, the correct topology from which measurements are derived and accurate pa-

rameters of the elements in the model. An Energy Management System (EMS) provides a variety of

measured data and computer applications for monitoring and control of the power network. When

we refer to computer applications we mean the following two:

• State estimator (an on-line application)

• Contingency constrained OPF (an off-line application)

Started as engineering tool, the power system state estimator became the key data processing

tool in modern EMS systems, and evolved in today’s industry as a very important application for

Locational Marginal Pricing algorithms for charging congestion in power networks.

Monitoring and control of power system assets is conducted through the supervisory control

and data acquisition (SCADA) system. In the early days, it was believed that the real-time data

base provided by SCADA could provide an operator with an accurate system view. Very soon,

the deficiencies of SCADA were realized. To mention a few: hard to assure availability of all mea-

surements at all times, measurements prone to errors, etc. A more powerful tool was needed to

process collected measurements and to filter bad ones. A central master station, located at the

control center, gathers information through the SCADA system. The SCADA system collects mea-

surement data in real time from remote terminal units (RTUs) installed in substations across the

power system. Typical RTU measurements include power flows (both active and reactive), power

injections, voltage magnitude, phase angles and current magnitude.

While there is not much to be said that is not already known about active and reactive power

and voltage magnitude measurements, voltage angle measurements are relatively new in practice.

Direct measurement of voltage phase angle was impossible for a long time. In order to be valid,

those measurements should be synchronized, i.e. a time reference should be provided. The global

positioning system (GPS) signal made synchronization possible with accuracy better than 1 µs.

A phasor measurement unit (PMU) equipped with a GPS receiver allows for synchronization of

measurements, yielding accurately measured and time-stamped voltage phase angles. A study of

impact of PMU measurements on state estimation and optimal placement of PMUs is given in [72].

The general conclusion is that PMUs have greatly improved observability and accuracy of voltage
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angle estimates. Despite some opinions to the contrary, PMUs will not make state estimation

obsolete even if they are available at every bus in the system. As we know, measurements are not

perfect; thus a redundant set of measurements will still be needed in order to identify bad data.

All of these measurements can be considered dynamic since snapshots are performed every few

seconds. The status of the assets (line status, breaker status etc.) as well as network parameters can

be considered as static measurements. The network topology processor in Fig. 1.1 determines the

topology of the network from the telemetered status of circuit breakers. Having an observable set

of measurements is a necessary, although not sufficient condition, for EMS computer applications.

While it is desired, coordination across the network quite often does not happen in real-time. The

reasons for not heaving real time-model are varied. While many control and monitoring functions

are computer based, there are still functions handled by telephone calls between the system operator

and utility control centers. It is a well known fact that control room technology is behind today’s

state-of-the-art in the IT world.
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Figure 1.1: State Estimation block diagram

In particularly, equipment status from plant level to substation level is usually managed manu-

ally. Many current power systems are not capable of acquiring change of status automatically the

way that, for instance, a computer operating system does. Unfortunately, it is hard to have an accu-

rate network model in real-time. Simulations are performed frequently, whether the network model

is correct or not. That means that many times simulations are performed on a network model that
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does not reflect the correct network topology. While it would be nice to have a power system with

the ability to auto-detect equipment status the way that computers detect plugging/unplugging

external devices, it is not likely to happen soon. Situations with topology errors are common and

we have to find algorithms which will successfully cope with them. That is, algorithms with the

ability to detect topology errors.

One of the key EMS applications is power system state estimation. The block diagram showing

the components of a modern state estimator is shown on Fig. 1.1.

To maintain a valid computer model it is essential to coordinate the computer model with the

situation in the field at all times. There are situations when this objective is hard to fulfill, especially

during emergencies. In those cases it is crucial to have the capability to overcome those difficulties

reliably. Our work will focus on how to meet these challenges.

These improvements in power system monitoring and control are motivated by

• economics of the new market

• blackout prevention

• reliability improvement

1.1.1 Blackout Lessons

Power grids around the world have experienced a number of severe blackouts in the recent

past. One is the August 2003 blackout that originated in the Midwest and affected much of the

Northeastern and Midwestern United States and southern Canada. Each major blackout gives the

electric power industry added attention and proves how fragile the interconnected power system

really is. As in the case of the 1965 Northeast blackout, a team of national experts from the U.S.

and Canada was brought together to study reasons for the blackout.

In the view of the U.S.-Canada Power System Outage Task Force, who investigated causes of

the August 2003 Northeast blackout, the list of actors to blame is not that short. The impression is

that the Task Force report [91] opened a Pandora’s box of electric utility problems. The main factor

that contributed to the blackout was the lack of tree trimming by the utility as reported by the Task

Force. The well known scenario of a hot summer day, overloaded overhead lines that sagged more

than usual, and ended up in vegetation that was not well maintained. Rolling outages propagated

through the system and caused the blackout. To make the situation even worse, the power system

monitoring tools did not work properly. The operator was unable to capture the escalating crisis at
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an early stage so that affected part of the system could have been properly isolated. One of the key

power system monitoring tools is the state estimator. The Midwest Independent System Operator’s

(MISO) state estimator at that time was not working.

The blackout did not occur instantaneously. Successive line trippings spanned an hour of agony.

The critical role of computer applications in making decisions and control under blackout conditions

was emphasized by Ilić et al. in [44].

Had the operator had a reliable and fast state estimator it is likely that widespread outage

could have been avoided. Only robust state estimators that converge accurately and rapidly could

be useful in these extreme situations, so that critical parts of the network could be detected and

proper remedial actions taken (like shedding load) in order to prevent rolling outages. It is to be

expected that such a scenario could appear more frequently in the situations when the power grid

is operated near its limit.

The point of our research is not to give an optimal recommendation regarding tree trimming but

to try to explore the ways of improving reliability of monitoring tools, particularly state estimator

software.

The state estimator (SE) computes the static state of the system (voltage magnitude and phase

angle) by monitoring available measurements. The SE has to be modeled in such a way so as to

ensure that the system is monitored reliably not only in day-to-day operations, but also under

the most likely conditions of system stress. The question is how to improve SE and make it more

reliable, so that is more likely to capture situations like the August 14, 2003, blackout and identify

critical nodes in the network.

A more robust state estimator is an essential need in the years to come. Successful SE solution

relies heavily on the numerical technique used to perform the estimation. Current numerical algo-

rithms too frequently fail to provide a successful solution. The first part in our research was to apply

globalization techniques that are more reliable but cost more computationally. A subsequent part

was to explore ways of reducing the computational cost of such robust SE algorithms by employing

efficient modern iterative methods.

1.1.2 Reliability criteria

Electric utilities in today’s market are facing many challenges and sometimes conflicting re-

quirements. The task of maintaining reliability has been greatly complicated by the introduction

of wholesale electricity markets. All players now depend on the reliability of the power grid, and
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all are at risk if the grid is not reliably operated. On the one hand, the planning and operation

reliability criterion is still “N − 1” (the system must be able to withstand any single contingency

event) and on the other economic forces put pressure for providing higher standards of reliability.

Security constrained optimization applications at the current stage ensure that voltage magni-

tude and other state and control variables are under their operating limits after the first contingency.

It has been found that traditional “N − 1” reliability criteria for transmission and operation

planning is inadequate in new (deregulated) competitive energy markets. Not just engineering

(planning and operation) reliability criteria should be revisited in order to go beyond “N − 1” but

also the economic implications of such criteria must be assessed accordingly. The question is open

as to who is going to pay for the higher reliability standards. Reformulating reliability policies and

criteria that meet engineering, economic and regulatory needs is not an easy task.

Innovative strategies at a reasonable computational cost are required to cope with challenges

that new markets impose. Reliability of the power system can be assessed either on a deterministic

or a probabilistic basis. It is clear that a deterministic approach to the assessment of multiple

contingencies is computationally expensive. Although it is impossible to improve reliability without

additional investment, in our case computational investment, we will try to keep that investment

reasonable.

After the first outage, subsequent outages are more likely to occur. Screening and ranking multi-

ple contingencies very easily becomes a complicated task. A computational tool capable of multiple

contingency modeling has two names: contingency constrained optimal power flow (CCOPF) or

security constrained optimal power flow (SCOPF).

Today’s market faces many new challenges. New analytical methods and algorithms should be

capable of assessment of:

• multiple contingencies

• cost merits of applying more rigorous reliability criteria

• value to the customer for providing that service

• need for more rigorous security/reliability assessment
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1.2 Historical Notes and Background

1.2.1 Power System State Estimation

Numerical formulation

In this section we review the current state estimation formulation and solution methods and

provide motivation for further improvement. Several excellent review papers [11], [100] cover this

topic in detail. When we say power system state estimation we mean the original and most widely

used problem definition in practice. That is, an over determined system of nonlinear equations

solved as an unconstrained weighted least-squares (WLS) problem. The WLS estimator minimizes

the weighted sum of the squares of the residuals.

min
x∈Rn

J(x) =
1
2

(z − h(x))T R−1 (z − h(x))

where: x is the state vector; z is the measurement vector and h(x) is the nonlinear vector function

relating measurements to states and R is a diagonal matrix whose elements are the variances of

the measurement error.

The first order necessary conditions for a minimum are that

∂J(x)
∂x

= −H(x)T R−1 [z − h(x)] = 0

where H(x) is the measurement Jacobian matrix of dimension (m× n)

H(x) =
∂h(x)

∂x

Once the nonlinear measurement function h(x) is linearized

h(x + ∆x) ≈ h(x) + H(x)∆x

the following iterative process is obtained1

(
HT R−1H

)
∆x = HT R−1 [z − h(x)] (1.1)

xk+1 = xk + ∆x

The symmetric matrix HT R−1H ∈ Rn×n is called the gain or information matrix. Equations (1.1)

are the so-called normal equations of the least-squares method and the iteration step ∆x can be

found only when the gain matrix is nonsingular.
1For simplicity, we will write H(x) as H whenever clear from context
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Fred Schweppe introduced WLS power system state estimation in 1969 in his classic papers [77],

[76], [74]. Since then power system state estimation has been a very active research area. Besides

the WLS algorithm, other state estimation methods such as decoupled WLS and Least Absolute

Value (LAV) estimation were developed, but WLS is dominant in practical implementations. The

overall state estimation process consists of the following steps:

1. data acquisition;

2. network topology processing;

3. observability analysis;

4. estimation of the state vector;

5. detection/identification of bad data.

An extensive bibliography of the first two decades (1968-1989) of power system state estimation

was prepared by Coutto, Silva and Falcão [21]. Comprehensive treatment of modern power system

state estimation can be found in books first by by Monticelli [57] in 1999 and then by Abur and

Gómez Expósito in 2004 [1]. Beginning with the role of the state estimator in a security framework as

one of the key modern Energy Management System (EMS) applications, they covers all parts of the

state estimation process starting with power flow, problem formulation, basic solution techniques,

observability, detection and identification of bad data, and robust state estimation procedures. An

overview paper by Bose and Clements [11] covers the overall role of the SE in the power system

control centers starting from topology processing, then goes through an overview of state estimation

numerical algorithms, network observability, and bad data detection.

The subject of state estimation is vast, and we have chosen to review only those topics that are

directly relevant to the rest of our dissertation. It will be hard to cover almost 40 years of active

research in theory and practice of power system state estimation, and the list of contributors is

long. There are many aspects of the overall state estimation process, but since the focus of this

work is numerical methods for the solution of power system state estimation, at this point we will

present an overview and discuss specifics as they are needed in the dissertation. Each chapter will

have a background and bibliography review for the related topic.

The first approach to solving state estimation problems was the normal equation approach. More

precisely, Cholesky decomposition was proposed to factor the gain matrix G (G = HT R−1H) in the

normal equation. Then the solution is obtained by forward/backward substitution. The difficulty
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with this approach was that gain matrix may be ill-conditioned, in which case the solution may fail

to converge which was a major reason that other methods were sought.

The condition number (which represents the degree of system ill-conditioning) of the gain matrix

in the normal equation is equal to the square of the condition number of the Jacobian (H). When

H is not well conditioned, G is very ill-conditioned. Therefore, in general, squaring the Jacobian is

not a good idea. The main reasons for the deteriorated condition number of the normal equation

that have been cited in the literature [1] are:

• very accurate measurements (virtual measurements);

• large number of injection measurements;

• connection of very long transmission line (large impedance) with very short transmission line

(short impedance).

Virtual measurements are measurements that do not require metering. One example is a zero

injection at a switching station. Since they represent “perfect” measurements, they are character-

ized with very small weighting factor. In the normal equation approach, huge discrepancies between

the weights renders the problem ill-conditioned. The impact of a large number of injection mea-

surements on numerical conditioning was first observed by Gu et al. in [36]. Also a recent paper by

Ebrahimian and Baldick [28] covers condition number analysis.

The next stage in the research was to try methods that prevent computing the gain matrix.

A solution based on orthogonal transformation was first proposed by Simões-Costa and Quintana.

Their first idea was based on column-wise Householder transformation [81] and the second on row-

wise Givens rotations [80]. Orthogonal factorization, also known as QR factorization, of an m× n

matrix H is given by

H = QR

where R ∈ Rm×n is an upper trapezoidal matrix and Q ∈ Rm×m is orthogonal. Orthogonal matrices

satisfies QT Q = QQT = I. Discussion of the orthogonal factorization method is left for Chapter 2

where this method will be treated in detail. While one problem of ill-conditioning was solved with

orthogonal transformation, other problem of fill-ins appeared. The phenomenon of turning a zero

element of a sparse matrix into a nonzero element during a factorization is called fill-in. Originally

extensive fill-ins in the process of orthogonal transformation prevent the method from being widely

used. The problem of fill-ins remains to be solved.
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As mentioned above Gu et al. studied sources of ill-conditioning and offered an alternative - the

method of Peters and Wilkinson [36]. The Peters and Wilkinson method factors H and thus avoids

forming HT R−1H. This factorization has the form

P1HP2 = LDU

where: P1 and P2 are permutation matrices used for enhancing numerical stability and preserving

sparsity, L is an m× n lower unit trapezoidal matrix, D is diagonal matrix and U is n× n upper

triangular matrix. The transformed normal equation is:

LT R−1LUs = LT R−1 (z − h(x))

The above equation is solved in two stages. In the first stage Cholesky factorization of LT R−1L is

used resulting in

LT R−1L = L̄D̄Ū

where L̄ is a n×n unit lower triangular matrix and D̄ is n×n diagonal matrix. In the second stage,

above system is solved in terms of auxiliary variable y from L̄T L̄y = L̄T r, then s is computed from

Ūs = y via backward substitution. Although computationally more expensive than the normal

equation method, the method of Peters and Wilkinson is a tradeoff between speed and stability.

Improvement in conditioning of LT L compared with HT H in the normal-equation approach has

been shown.

So far state the estimation problem was formulated as an unconstrained minimization problem.

Extending it to a constrained optimization problem started with the work of Aschmoneit et al.

[8]. There are buses in the network that have neither load nor generation. They are zero injection

power buses. Also these measurements are so-called virtual measurements, as mentioned earlier.

The idea is to use this very accurate information in order to enhance the accuracy of the estimates.

Aschmoneit treated those measurement separately from the telemetered measurements and imposed

them as additional constraints to the WLS problem

min J(x) =
1
2

(z − h(x))T R−1 (z − h(x))

subject to: c(x) = 0

The constrained minimization problem was then solved by the method of Lagrange multipliers.

The Lagrangian (L) is formed as:

L(r, x, λ) =
1
2

(z − h(x))T R−1 (z − h(x)) + λT c(x)
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where λ is the vector of Lagrangian multipliers. The first order necessary conditions for the optimum

states that derivatives of the Lagrangian with respect to x and λ must vanish

∂L(x, λ)
∂x

= −HT R−1 [z − h(x)] + CT λ = 0

∂L(x, λ)
∂λ

= c(x) = 0

By applying Newton’s method to the above system of nonlinear equations, the following set of

linear equations is solved iteratively

 HT (xk)R−1H(xk) CT (xk)

C(xk) 0





 sk+1

λk+1


 =


 HT (xk)R−1r(xk)

−c(xk)




where C(x) is the constraint equation Jacobian matrix C(x) = ∂c(x)/∂x and r(x) = z− h(x). The

coefficient matrix above is indefinite; therefore row ordering must be employed in order to preserve

numerical stability.

A similar constrained weighted least-squares problem formulation was presented by Gjelsvik,

Aam and Holten in [32]. Regular measurements are imposed as constraints in the formulation where

the explicit optimization variables are the measurements residuals. The method is known as the

sparse tableau method or Hachtel’s method:

min J(x) =
1
2
rT R−1r

subject to: r = z − h(x)

The Lagrangian function for this problem can be written as:

L(r, x, λ) =
1
2
rT R−1r − λT (r − z + h(x))

The necessary conditions for a minimum are given by:

∂L(r, x, λ)
∂r

= R−1r − λ = 0

∂L(r, x, λ)
∂x

= HT λ = 0

∂L(r, x, λ)
∂λ

= z − h(x)− r = 0

After elimination of r and application of Newton’s method, we obtain the iterative linear system

 R H(xk)

HT (xk) 0





 λk+1

sk+1


 =


 r(xk)

0



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In this formulation ordering is required, since the coefficient matrix is again indefinite. Gjelsvik et

al. presented numerically stable results obtained using the sparse tableau method.

Holten et al. compared performance of different methods (normal equations, orthogonal trans-

formation, normal equations with constraints and Hachtels’ method) for power system state es-

timation [40]. It has been found that orthogonal transformation (QR decomposition) is the most

stable method although it has the highest computational requirements. Also it has been reported

that Hachtel’s method is comparable in numerical stability with orthogonal transformations.

Although numerically stable, Givens rotations can produce excessive fill-ins and therefore addi-

tional computational burden. Vempati, Slutsker and Tinney in [93] improved efficiency by employing

ordering to preserve sparsity and minimize the number of intermediate fill-ins. Although there are

three different ordering schemes, the most widely used is the Tinney 2 ordering scheme which em-

ploys column ordering and then uses row ordering according to the minimum column index of the

row. In this form, Givens rotation establish itself as the method of choice; and it began to be used

widely.

Another way of treating a virtual measurement is as a very accurate measurement with a

corresponding very small variance. In other words zero injections have been modeled as measure-

ments rather than constraints. This approach applied to the normal equation method created an

ill-conditioning problem, and did not always work well in practice. Since the QR method is a nu-

merically reliable method, it did not have any problems handling equality constraints as accurate

measurements.

The power system community gained interest in interior point methods (IPM) for the solution

of constrained optimization problems in early 90’s. The first to apply IPM to SE problems were

Clements, Davis and Frey. They explicitly included inequality constraints and solved with the IPM,

first Weighted Least Absolute Value (WLAV) estimation in [17], while modeling inequality con-

straints in WLS SE and solving the problem with IPM started with paper [18]. They recognized

that generator Var limits and transformer turns ratio constraints may be violated once state esti-

mates were found. In order to prevent such violations, inequality constraints were added as in the
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problem formulation:

min J(x) =
1
2
rT R−1r

subject to: f(x) + s = 0

g(x) = 0

r − z + h(x) = 0

s ≥ 0

In the IPM, the inequality constraint on the slack variable s are treated by appending a logarithmic

barrier function to the Lagrangian function

Lµ =
1
2
rT R−1r − µ

p∑

k=1

ln sk − λT (f(x) + s)− ρT g(x)− πT (r − z + h(x))

The next step is to form the Karush-Kuhn-Tucker (KKT) first order necessary conditions. The

nonlinear system of KKT conditions can be solved iteratively using Newton’s method. The interior

point method produce iterates that are interior to the feasible region, by forcing the barrier param-

eter µ > 0 to decrease towards zero as iterates progress. The computational experiences with the

IPM method were reported and were found encouraging.

An approach to generalized state estimation that enhances robustness has been proposed by

Alsaç, Vempati, Stott and Monticelli in [6]. The idea behind this formulation is to expand conven-

tional state estimation to include topology status and network parameters as state variables. Then

integrated estimation of states, status and parameters is performed. In order to be able to perform

generalized state estimation a model that requires explicit representation of switching devices is

needed. The authors report that generalized estimation is a more robust approach to process topol-

ogy errors. A larger state vector imposes a higher computational burden on the estimator. Since

parameter and status estimation are not needed at every run of an estimator, the authors suggest

that its “generalized function” should be invoked only as needed.

State Estimation in practice

While it is important to follow the state-of-the-art in numerical analysis and to continually

improve state estimator algorithms, it is equally important to follow how SE is implemented in

practice, and what kind of infrastructural problems it is facing. A state estimator can generate an

extensive amount information of the system state that is well beyond what a SCADA system is able
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to do. That is a major motivation that should drive electric utility industry towards SE successful

practical implementation.

The whole process of state estimation is a very large and complex hardware-software system

and today is usually based in an Independent System Operator (ISO) control center. Real-time

implementation and practical experience have been reported in a few papers describing how SE

performs in practice on day-to-day operations. Dy Liacco in [27] stressed experiences with state

estimators in EMS control centers and covers limitations like critical measurements, topology errors

etc. The panel discussion at the 2005 IEEE PES General Meeting addressed some of the challenges

faced by the SE in practice and stressed why SE still did not achieve its expected role in the electric

utility industry. Among these papers was [2] by Allemong, who emphasized the importance of three

basic categories needed for successful implementation. They are:

1. A redundant, reliable and accurate measurement set

2. Accurate network topology, constructed from the real-time status of switching elements

3. Accurate parameters for the network elements

Practitioners agreed that some issues that hinder state estimation in operation are:

• Incorrect topology or topology errors in the model (changes in topology occur continuously)

• Incorrect model parameters

• Inadequate or faulty telemetry

• Inconsistent phase metering

• Meter placement errors (inconsistency between meter placement in the field and in the com-

puter model)

A typical problem is the incorrect assignment of a flow measurement to a piece of equipment. Many

times a flow measurement is actually the sum of flows on two (or more) pieces of equipment. It is

discouraging to see that the problems SE has been facing since its early implementation still exist

and even today are not resolved. None of the above issues are related to the SE algorithm itself;

they are rather related to the infrastructure for state estimation. Although the above problems

deserve serious attention, besides recommendations, researchers cannot do much. What researchers

can do is to follow the state-of-the-art in robust numerical analysis algorithms and apply them to
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the SE problem in hopes of overcoming infrastructural weaknesses. Also, economic requirements of

the electricity market may make these deficiencies less tolerable.

The Role of the State Estimator in Real-Time Energy Market

The primary driver behind deregulation and transmission system open access is the facilitation

of effective competition in the generation sector of the power system. Under the regulated electricity

market, it was the responsibility of the integrated utility to assure stable and secure grid operation.

After deregulation, the control function was separated from the utility and granted to an indepen-

dent entity. The Independent System Operator (ISO) is an independent, non-profit organization

that administers the deregulated electricity market and oversees the security of the electric power

grid.

The larger control area of the ISO has increased the need for computer systems to control the

interconnected transmission grid in order to assure its reliability and market efficiency. The nature of

the new real-time market monitoring is similar to the nature of system monitoring under a vertically

integrated system. It has been recognized for quite some time that currently employed numerical

algorithms in even the most advanced control centers are not fully adequate to ensure reliable and

efficient service. In today’s deregulated energy market, the state estimator becomes an increasingly

critical application. More and more power markets are moving from zonal to Locational Marginal

Price (LMP) based congestion management. A critical point in that move is having a reliable state

estimator as a part of the real-time market system. Not just LMP, but the accuracy of many other

applications like contingency analysis and dispatch depend on high quality estimates provided by

state estimator.

Doudna and Salem-Natarajan in [26] discuss issues facing the SE at the ISO/RTO organization

level in California (CAISO). One of the major challenges the ISO is facing is network modeling. The

ISO/RTO are in charge of monitoring the system; they do not own the transmission system. The

challenge that they are facing is that they must rely on the separate transmission owners to supply

the associated network models, measurements, and outage information necessary for successful

operation of the real-time state estimator.

Many parts of the network lack telemetry. In particular, the lack of real-time status measure-

ments present a problem in running the SE. An additional problem for CAISO is receiving data

from various entities. Many times the measurement sign convention is not consistent from one en-

tity to another. Doudna and Salem-Natarajan emphasize that improvement in real-time telemetry
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data and sign convention standards across the industry as a whole are essential elements to achieve

reliable SE solution.

1.2.2 State Estimation - our research direction

Considering the state of SE today, some issues require research and some of them just more

discipline in implementing the SE in practice. As far as the state of the research is concerned,

existing methods are improved and new methods are being proposed constantly. The good news

for researchers is that not all numerical techniques have been explored. Even though decades have

passed researchers are still seeking computationally reliable efficient state estimator.

Throughout this brief survey of existing methods and formulations one can notice a common

denominator for almost all of them. Once the first-order necessary conditions are imposed upon the

set of nonlinear equations, the resulting problem is solved via Newton’s method. Algorithms based

on Newton’s method have dominated the power system state estimation community for decades.

From the practical point of view, however, there are more efficient and robust methods. Those

methods lie in the family of trust-region methods (TRM) and recently have become very popular

in the optimization community. Development of the trust-region method has focused primarily on

the solution of unconstrained optimization problems such as the state estimation problem. TRM

is based on a globalization of Newton’s method which is very often the key to the success (finding

a global minimum) of the algorithm. The TRM has not been tested on the power system state

estimation problem prior to this research.

It is widely known that Newton’s method performs very well when the iterates are near the

solution. So in that region there is no reason to use anything else but Newton’s method. And that is

exactly what the trust-region method does. When Newton’s method performs well a step is chosen

according to it, as soon as a successful step can not be found, the trust-region iteration is employed.

The algorithm provides an automatic choice between the Newton and the trust region method.

We start Chapter 2 with a review of the state-of-the-art of the QR algorithm, and we give an

example under which this method in the presence of topology error does not perform reliably.

Our contribution is in trust region methods and further improvement with modern Krylov

iterative methods. Review of the the trust region literature will be left for chapter 2, and review of

the Krylov subspace methods will be left for Chapter 3.
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1.2.3 Optimal Power Flow (OPF) - problem formulation

The goal of the Optimal Power Flow (OPF) is to calculate a state of the power system and values

of the control variables which minimize a given objective function (e.g. generation cost, network

losses, etc.) and at the same time satisfy all constraints imposed on the problem. The classical OPF

(also called the base-case) can be stated as the following nonlinear programming problem:

min c(x, u)

subject to: g(x, u) = 0 (1.2)

f(x, u) ≤ 0

x =


 v

θ


 ∈ R2n, u =




pg

qg

tb

φ



∈ Rnu

where: x is a vector of state variables (voltage magnitude v and phase angles θ), u is a vector

of controllable variables (generator outputs, adjustable transformers), g(x, u) is a nonlinear vector

function whose elements are gi(x, u), where i ∈ E , and represent power balance equations at each

node in the network and f(x, u) is a vector whose elements are fi(x, u), where i ∈ I, are limits

imposed on the system.

The most common objective functions include minimum cost of operation, minimum active

power losses, minimum deviation from a specific operating point, minimum number of controls

rescheduled, etc. The objective function usually depends on variables with direct cost u (power

generation, load shedding, etc.) and variables without direct cost x (voltage magnitude). The ob-

jective that is most widely used is the cost of operation, which in the security-constrained framework

accounts for cost of generation and load shedding. One way to model load shedding is as a “very

expensive negative generation”, since otherwise the cheapest solution will be to shed as much load

as possible. The cost of thermal units is derived from the heat-rate curves which are sometimes far

from convex. Convexity of the objective function is one of the assumptions for the optimization

method employed in the solution of the OPF problem; hence cost curves are usually approximated

as convex polynomials, most often quadratic:

cg(pg) = a · p2
g + b · pg + c
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where pg is the MW (or per-unit) output of the generator and a, b and c are quadratic polynomial

coefficients. Other approximations, such as using an arbitrary number of line segments, are used as

well.

OPF incorporates a wide variety of constraints that are formulation-specific. Constraints that

are important in one may not be important in another formulation. The set of constraints, as seen

from the formulation (1.2), can be divided into equality and inequality constraints. The equality

constraint set typically consists of power balance equations (both active and reactive) at each node

of the network. In general, inequality constraints can be classified in three categories:

1. dispatchable (active and reactive power, tap changing and phase shifting transformers)

2. variables (voltage magnitude and phase angles)

3. functions of variables (line flows based on thermal limits)

Generators are rated by the maximum apparent power (Smax) which they can produce. The

combination of P and Q produced by a generator must obey the apparent circle equation P 2+Q2 ≤
Smax. In practice, this condition is usually approximated so that each generator in the system is

subject to the box constraints:

pmin
i ≤ pi ≤ pmax

i

qmin
i ≤ qi ≤ qmax

i

Besides generators, transformers provide an additional means of control of the flow of both

active and reactive power. There are two types of controllable transformers, tap changers and phase

shifters, although some transformers regulate both the magnitude and phase angle. Controllable

transformers are those which provide a small adjustment of voltage magnitude, usually in the range

±10%, or which shift the phase angle of the line voltages. A type of transformer designed for small

adjustments of voltage rather than for changing voltage levels is called a regulating transformer.

1.2.4 OPF Solution Techniques

The large number of variables and limit constraints make the OPF a computationally demanding

nonlinear programming problem. Since OPF has been around since the early ’60s, many methods

have been tried. The choice of a solution method is particularly important. It deserves careful

analysis and depends on many factors (accuracy, speed, storage, etc.). And as usually happens,

there is no method that fits all applications and that has all desirable properties.
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The classical OPF formulations were pioneered by Carpentier [14] and Dommel and Tinney [25].

Their method was based on the use of a penalty function to account for constraints, the solution

of the power flow by Newton’s method, and the optimal adjustment of control variables by the

gradient method.

An extensive survey of the publications in the field of optimal power flow from the early days

up to the year 1991, with a classification based on methods of optimization technique used, is given

in Huneault and Galiana in [41]. A comprehensive review of the OPF algorithms was prepared by

Glavitsch and Bacher in [33].

There are two main approaches to the OPF problem formulation:

a) the exact nonlinear formulation or so-called full AC formulation

b) the linearized problem formulation (DC or incremental formulation)

Equality constraints are treated by the method of Lagrange multipliers. The Lagrangian function of

the problem (1.2), whose inequality constraints are transformed into equality constraints by means

of the slack variable s is:

L = c(x, u) + λT g(x, u) + πT (f(x, u) + s)

where λ and π are vectors of Lagrange multipliers. The first-order (necessary) conditions, or Karush-

Kuhn-Tucker (KKT) conditions for the solution are:

∇xL = ∇xc(x, u) + GT
x λ + F T

x π = 0

∇uL = ∇uc(x, u) + GT
u λ + F T

u π = 0

∇λL = g(x, u) = 0 (1.3)

∇πL = f(x, u) + s = 0

Πs = 0

s, π ≥ 0

where:

Gx =
∂g(x, u)

∂x
∈ R2n×2n, Gu =

∂g(x, u)
∂u

∈ R2n×nu

Fx =
∂f(x, u)

∂x
∈ Rnc×2n, Fu =

∂f(x, u)
∂u

∈ Rnc×nu

and

Π = diag(π)
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The KKT equation Πs = 0 is known as the complementary slackness condition.

Iterative techniques are employed to solve nonlinear programming OPF problems. A sequence of

subproblems, either linear or quadratic approximations to the original problem, are defined at each

iteration. Methods are usually applied to an augmented Lagrangian that combines the requirement

of optimality and feasibility in a single objective. Lagrangian is augmented by a penalty or barrier

function which adds a high cost for either infeasibility or for approaching the boundary of the

feasible region via its interior. The penalty and barrier term vanishes at the solution.

Sequential linear programming methods

Attractive for their speed and flexibility, linear programming methods gained much attention

for application in the nonlinear world of OPF. Sequential linear programming (SLP) optimiza-

tion is performed on piecewise-linear approximation of the quadratic cost function subject to an

incremental linearization of the network constraints. The general form of the SLP problem is

min cT
x ∆x + cT

u ∆u

subject to: Gx∆x + Gu∆u = −g(x, u)

Fx∆x + Fu∆u ≤ −f(x, u)

where cx and cu are vectors of cost coefficients. An incremental linearization of the network load flow

problem yields power balance equations. The sequential linear programming approach requires an

outer linearization loop wherein the constraints and objective function are linearized. The linearized

equations are quite sparse and have the sparsity structure of the network bus admittance matrix.

By eliminating state variables from the problem using distribution factors, as proposed by Stott

and Hobson in [86], results in a reduced problem formulation of the form:

min cT ∆u

subject to: aT ∆u = b

D∆u ≤ d

where the primary variables are controllable unit generations. This formulation has a single equal-

ity constraint and set of inequality constraints. It is similar to the economic dispatch problem,

augmented with set of inequality constraints. Unfortunately, D has a large number of rows and

is dense. Typically, very few of the inequality constraints are binding. This characteristic can be
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exploited with the active set method that will be discussed in Chapter 5. Solution methods for the

LP-based OPF are discussed by Stott and Hobson in [86] and by Stott and Marinho in [87].

Some methods use an entirely linearized system model, neglecting reactive power and voltage

constraints and accepting MW-flow accuracy limitations of the DC load flow.

A method that exploits some physical properties of active and reactive power, has been proposed

by Stott and Alsaç in [84] and is known as fast decoupled load-flow. To explain the idea behind

this method, consider active and reactive power linearized about a given operating point:

∆Pi =
n∑

k=1

∂Pi

∂θk
∆θk +

n∑

k=1

∂Pi

∂Vk
∆Vk

∆Qi =
n∑

k=1

∂Qi

∂θk
∆θk +

n∑

k=1

∂Qi

∂Vk
∆Vk

or in a matrix form

 ∆P

∆Q


 =


 H N

J L





 ∆θ

∆V




The above equations represent an incremental model, meaning that the system is linearized about

an initial system operating point, which is usually provided in real time by a state estimator or in

off-line studies by an AC load flow. The fast decoupled formulation is obtained by neglecting the

coupling submatrices N and J according to the following assumptions:

• insensitivity of real power to changes in voltage magnitude ∂P
∂V ¿ ∂P

∂θ

• insensitivity of reactive power to changes in phase angle ∂Q
∂θ ¿ ∂Q

∂V

The fast decoupled load-flow equations are given by:

∆P/V = B′∆θ

∆Q/V = B′′∆V

where elements of matrices B′ and B′′ are:

B′
ij =




− 1

xij
i 6= j assuming a branch from i to j (zero otherwise)

∑n
k=1

1
xik

i = j

B′′
ij =




− xij

r2
ij+x2

ij
i 6= j assuming a branch from i to j (zero otherwise)

∑n
k=1

xik

r2
ik+x2

ik
i = j
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Both matrices B′ and B′′ are real, sparse, and have constant elements, meaning that they need

to be factored only once in the algorithm. In many practical cases, accuracy of the LP, initially

proposed to improve computing speed, has proved to be adequate. Advancements being made in

LP-based OPF like cost curve modeling, handling infeasibility, and loss-minimization were reported

by Alsaç et al. in [3].

Newton’s method

An extensive survey of the application of Newton’s method to the power flow solution is provided

by Tinney and Hart in [89]. Solution of the classical OPF formulation defined by (1.2) by Newton’s

method was presented by Sun et al. in [88]. That algorithm begins with the standard step of

forming the Lagrangian function by imposing equality constraints and penalty function in terms

of inequality constraints. The set of KKT conditions (1.3) in this approach is solved by Newton’s

method, resulting in the system that has to be solved at each iteration:

 H −JT

J 0





 ∆z

∆λ


 =


 −∂L/∂z

−∂L/∂λ




where ∆z is a vector of incremental state ∆x and control ∆u variables, and ∆λ is the vector

of incremental Lagrangian multipliers. Factorization and solution of the above problem requires

four times as much computational effort compared with the power flow problem. In order to save

computational work per iteration, Sun et al. also presented a decoupled version based on [84] that

requires approximately the same amount of computational effort as Newton power flow. It was

reported in [3] that in the full nonlinear version, convergence difficulties were encountered when

contingency constraints were included.

Sequential quadratic programming (SQP) methods

Probably the most powerful, highly regarded method for solving nonlinear optimization prob-

lems involving nonlinear constraints is sequential quadratic programming (SQP), also called suc-

cessive quadratic programming. The SQP method generates a sequence of iterates, each of which is

the minimizer to a quadratic subproblem that is a local model of the initial nonlinear constrained

problem. For more details on the SQP method, see Bertsekas [10].

The SQP method for the solution of the OPF problem defined by (1.2) was proposed first by

Burchett et. al in [12]. The method linearizes the KKT conditions at each iteration of the original
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nonlinear problem rather than linearizing the problem itself. Since linearized KKT proceeds from the

quadratic programming problem, the method is called sequential quadratic programming (SQP).

The SQP subproblems contain exact first- and second-order derivatives of the nonlinear objective

function and the linearized power flow equations. Like sequential LP algorithms, SQP algorithms

have an outer linearization loop and an inner optimization loop.

First linearize the KKT conditions given by (1.3)

Wxx∆x + Wxu∆u + GT
x λ + F T

x π = −∇xc(x, u)

Wux∆x + Wuu∆u + GT
u λ + F T

u π = −∇uc(x, u)

Gx∆x + Gu∆u = −g(x, u)

Fx∆x + Fu∆u + s = −f(x, u)

Πs = 0

Wxx, Wxu, Wux and Wuu represent the second order derivatives of the Lagrangian function with

respect to control and state variables and are defined as follows:

Wxx = ∇2
xxc(x, u) +

n∑

i=1

∂2gi

∂x2
λi +

nc∑

i=1

∂2fi

∂x2
πi

Wxu = ∇2
xuc(x, u) +

n∑

i=1

∂2gi

∂x∂u
λi +

nc∑

i=1

∂2fi

∂x∂x
πi

Wux = W T
xu

Wxx = ∇2
uuc(x, u) +

n∑

i=1

∂2gi

∂u2
λi +

nc∑

i=1

∂2fi

∂u2
πi

The corresponding Lagrangian is

L =
(
∇xcT (x, u) ∇ucT (x, u)

)

 ∆x

∆u


 +

1
2

(
∆xT ∆uT

)

 Wxx Wxu

Wux Wuu





 ∆x

∆u




+ λT (Gx∆x + Gu∆u + g(x, u))

+ πT (Fx∆x + Fu∆u + s + f(x, u))

Now we can formulate a quadratic programming subproblem given the Lagrangian function above.
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The linearized KKT conditions are the KKT conditions for the following quadratic problem (QP):

min
(
∇xcT (x, u) ∇ucT (x, u)

)

 ∆x

∆u


 +

1
2

(
∆xT ∆uT

)

 Wxx Wxu

Wux Wuu





 ∆x

∆u




subject to: Gx∆x + Gu∆u = −g(x, u)

Fx∆x + Fu∆u ≤ −f(x, u)

If we define

∇c(x, u) =


 ∇xc(x, u)

∇uc(x, u)


 H =


 Wxx Wxu

Wux Wuu


 ∆z =


 ∆x

∆u




and also

G =
(

Gx Gu

)
F =

(
Fx Fu

)

then the Lagrangian function is

L = ∇cT (z)∆z +
1
2
∆zT H∆z + λT (G∆z − g(z)) + πT (F∆z + s + f(z))

which is the Lagrangian of the following quadratic subproblem that we have to solve at each

iteration:

min ∇cT (x, u)∆z +
1
2
∆zT H∆z

subject to: G∆z = g(z)

F∆z ≤ f(z)

Therefore, at each outer iteration the problem is approximated as a quadratic objective function

with a linear constraint set approximated at the current iterate x. The quadratic objective function

models the curvature of the Lagrangian. This SQP problem is solved iteratively until convergence

is attained. Burchett et al. in [12] proposed to apply Newton’s method.

Interior Point Methods (IPM)

An interior point method was developed by Nerendra Karamarkar in 1984 for linear program-

ming, although many of the component ideas were known earlier. The algorithm used for years for

solving linear programming problems has been the simplex method, which moves from one vertex

of the feasible region to another while constantly attempting to improve the value of the objective
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function. An interior point method implies that progress towards a solution is made through the

interior of the feasible region rather than its vertices. A general reference for interior point methods

is Wright [98]. The framework for developing an interior point method has three parts:

• A barrier method for optimization with inequalities

• The Lagrange method for optimization with equalities

• Newton’s method for solving the KKT conditions

After the transformation of inequality into equality constraints by introducing slack variables,

one augments the cost function with a barrier function. The barrier or penalty function accom-

modates nonnegativity constraints on slack variables. A barrier function is continuous and grows

without bound as any of the slack variables approach 0 from positive values (from the interior of

their feasible region). The most common example of a barrier function and the form we will use is

b(µ, s) = −µ

nc∑

i=1

ln si

where µ > is a scalar parameter called the barrier parameter. The value of µ goes to zero as the

solution of the optimization algorithm progresses. After introducing the barrier function, we can

write the modified OPF formulation:

min c(x, u)− µ

nc∑

i=1

ln si

subject to: g(x, u) = 0

f(x, u) + s = 0

The Lagrangian function of this problem is:

Lµ = c(x, u)− µ

nc∑

i=1

ln si + λT g(x, u) + πT (f(x) + s)

The complementary slackness condition in the primal-dual interior point method formulation is

replaced by:

Πs = µe

where e is a vector of ones of appropriate dimension. Solving the SQP OPF problem by an interior

point method was proposed by Nejdawi, Clements and Davis in [63] and further discussed in [62],

where more details are found. An extension of that method to include the CCOPF formulation

appears in Pajić [69].
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Constraint relaxation method

Needless to say, if the correct binding inequalities are known and if they do not change from

iteration to iteration, the OPF problem would be much easier. However, the binding inequality

set is not known a priori. Usually, the number of inequalities imposed on the problem is large,

and to model all of them will slow down the method. The term active constraint will be used to

designate an inequality constraint that is satisfied exactly at the current point (x, u), and the set

of all constraints active at a given point will be referred to as the active set A(x, u) at that point

A(x, u) = {i ∈ I | fi(x, u) = 0}

The set of constraints whose indices lie in the active set are said to be active, or binding, while the

remainder are inactive. The challenge of any efficient algorithm for constrained minimization is to

identify and model only active constraints.

Exploitation of an active set method for the OPF started with Stott in [86] relative to linear

programming formulations, and was further discussed by Sun et al. in [88] and Burchett et. al in

[12] in a nonlinear programming framework.

A method that only models active constraints is called a constraint relaxation method or an

active set method. In this technique, we ignore constraints until they are violated. Mathematically,

that means that Lagrange multipliers corresponding to inactive constraints are not considered in

the problem since they are zero; only when the inequality becomes active is the corresponding

multiplier is nonzero.

Each iteration begins with testing for new active constraints. Once a constraint becomes active,

it is considered active for the reminder of the iterative process, thus avoiding the additional process

of taking it out. Generally, only a small percentage of the total transmission constraints become

active, greatly reducing the size of the OPF problem. Numerical examples presented by Kimball et

al. in [51] show significant reduction in problem size achieved in practice by the active set method.

The heuristic of adding to the active set just the most violated of the newly active constraints was

proposed by Stott in [86] and has proven to be very efficient.

1.2.5 Contingency Constrained OPF

Contingencies, in power system terminology, are unpredictable disturbances to the transmission

or generation facilities. It has been recognized that with the basic OPF formulation, it may not

be possible to keep the system in a normal state after a contingency occurs, or even when it is
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possible, the cost of such a solution may be very high. Contingency Constrained OPF (CCOPF),

also called Security Constrained OPF (SCOPF) dispatch, guarantees that the system will operate

successfully and optimally under the base case and the contingency case.

CCOPF is a cornerstone security application in modern power systems. A given OPF problem

or so called base case, is expanded to account for credible contingencies and the problem is solved

as a single entity. The mathematical formulation of the general contingency constrained OPF is as

follows:

min c(x, u)

subject to: g(x, u) = 0

f(x, u) ≤ 0

gω(xω, uω) = 0 ω = 1, . . . , K (1.4)

fω(xω, uω) ≤ 0 ω = 1, . . . , K

where:
x, u pre-contingency state and controls;

xω, uω post-contingency state and controls;

g(x, u) power balance equations for base case;

f(x, u) set of inequality constraints for base case;

gω(xω, uω) power balance equations for each contingency case;

fω(xω, uω) set of inequality constraints for each contingency case;

ω is the set of possible contingencies;

In general, fω(xω, uω) are contingency limits or security constraints that impose post-disturbance

limits and may be substantially different from base case limits. The computational times for con-

tingency constrained OPF are considerably longer than for base-case OPF.

The first paper that extended the Dommel-Tinney OPF formulation to include outage-contingency

constraints into the method to give an optimal steady-state-secure system operating point is Alsaç

and Stott [5]. The evolution of CCOPF algorithms follow the same path as the OPF. Linear

programming formulations were presented by Stott at al. in [86] and [87]. Linearized CCOPF is

particularly well suited for the contingency framework, since it is very easy to modify constant real

matrices to account for line outages, a process that will be explained and thoroughly exploited in

Chapter 4.

In a CCOPF algorithm, more often than not, more expensive generators have to be dispatched
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and less expensive generators set to lower output in response to a contingency. Therefore, as in

real life, an increase in security comes with an increase in cost of operation. Nonetheless, operating

cost can be controlled to some extent by corrective actions. In that respect, the CCOPF can be

formulated on two ways:

• so called safe or preventive contingency constrained OPF, which does not allow any reschedul-

ing of controls in response to contingency;

• CCOPF with corrective rescheduling, which allows control actions shortly after the occurrence

of the contingency

Corrective rescheduling is accomplished by means of fast-acting control actions taken before the

slow control actions. Examples are:

• fast-acting controls: synchronous machine speed governors, synchronous machine excitation,

load shedding, etc.

• slow-acting controls: transformer taps, area interexchange control, etc.

By considering the corrective action formulation, (1.4) is expanded to include so-called ramp-

rate constraints or coupling constraints of the general form:

h(u, uω) ≤ 0

These constraints recognize that the range of adjustment of certain controls is determined by their

setting at the time of the contingency. They act as a “bridge” between the base and the post-

contingency case. In the algorithm they are modeled as box inequality constraints:

∆ ≤ u− uω ≤ ∆̄ ω = 1, . . . , K

where ∆ and ∆̄ are lower and upper ramp-rate limits. The ramp rate of generators is usually

defined as a percentage of generator capacity (i.e., 10% to 15%) The idea of control actions was

first presented by Stott and Hobson in [86] in the LP framework.

An excellent simple example of corrective economic dispatch is given by Monticelli et al. in [58].

It has been shown that corrective methods provide the same level of security as preventive methods

but with the lower operating cost. In [58] the mathematical framework in which corrective CCOPF

was solved based on Bender’s decomposition.
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It is important to understand that control actions that are essential for economic rescheduling

are both active and reactive. Many times the contingency reactive constraints impose a cost penalty

on MW dispatch. An example that emphasizes this important point is given in [3]. As in the OPF

framework, active set methods are employed; in CCOPF, they consume a significant part of the

running time of the algorithm.

Stott, Alsaç and Monticelli [85] provide a comprehensive treatment of all aspects of security

analysis in the CCOPF framework.

For quite some time, the practice has been to optimize for single contingencies. Also the philos-

ophy of CCOPF employed in practice has been preventive control rather than corrective. That is

the way locational marginal prices are determined. One of the requirements of the new market is

to handle a large contingency list and to identify critical contingencies in it. Screening and rank-

ing multiple contingencies becomes a complicated task. New situations need development of new

algorithms, and we will address that issue and propose a solution using importance sampling.

1.2.6 CCOPF in Today’s Market

Since the OPF is a problem that combines engineering constraints and economic objectives

for system operation, it has paramount importance in today’s market. Many economic quantities

like Locational Marginal Prices (LMP), congestion charges, and so on are derived from the OPF

algorithm.

In a rapidly changing restructured power industry, market participants need to use the results

of CCOPF in order to become more competitive. Extensive OPF simulations are performed by

ISOs to anticipate worst-case system problems. Most abnormal voltage conditions are anticipated

off-line by contingency screening algorithms, and solution of CCOPF is supposed to prepare for the

worst-case contingencies.

Locational Marginal Prices are obtained directly from the solution of any OPF calculation.

OPF-based algorithms are also used to access the cost of transmission congestion which emerges as

the difference in energy prices between locations connected by a line whose flow has hit its limit.

One of the most difficult tasks on the road toward efficient transmission is the problem of

managing and valuing uncertainties. In the past, reliability-related uncertainties have been managed

in a somewhat conservative, preventive way. Those costs were distributed on a pro rata basis to all

customers. Uncertainties are not just system related as in the past. In today’s market it is hard to

distinguish between system-related and market-related uncertainties. For example, is a generator
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unavailable due to maintenance or because its owner does not want to participate in the marked

since the price is too low [42]?

1.2.7 CCOPF - our research direction

The operation of a large interconnected system to ensure reliable operation at minimum cost

is a very complex problem. The objective is designing an algorithm that will be able to handle

multiple-contingencies in computationally and economically efficient manner.

Part of this dissertation presents the sequential quadratic programming technique applied to

CCOPF [69], combined with the method of importance sampling in order to solve the stochastic

OPF. It is widely recognized that it is impossible to model all possible contingencies. Instead,

we employ Monte Carlo importance sampling techniques to obtain an estimate of the expected

value of multiple-contingency operating costs. Recent blackouts warn us that there is a need for

clever stochastic algorithms able to assess multiple outage scenarios having potentially catastrophic

consequences. The objective in importance sampling is to concentrate the random sample points

in critical regions of the state space. In our case that means that single-line outages that cause the

most “trouble” will be encountered more frequently in multiple-line outage subsets.

1.3 Contents

This dissertation is organized in six chapters that are divided into two main parts. The chapters

are:

1. Introduction

2. Power System State Estimation via Globally Convergent Methods

3. Newton-Krylov Methods in Power System state Estimation

4. The Use of Importance Sampling in Stochastic OPF

5. A Formulation of the DC Contingency Constrained OPF for LMP Calculations

6. Conclusion and Future Work

The first part presents further improvement in state estimation (Chapters 2 and 3), and the sec-

ond part treats several implementations of CCOPF in a stochastic multiple contingency framework

and LMP calculation under multiple contingencies (Chapters 4 and 5).
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• In Chapter 1 we presented a general overview of power system state estimation and contin-

gency constrained optimal power flow, a motivation for further research into more reliable

computational tools, and present an historical review of the formulations and methods em-

ployed for both problems.

• In Chapter 2 the theory and implementation of the TRM method and critical implementation

points are addressed and the algorithm is developed. The performance of the TRM method

is tested on the standard IEEE network cases and results are discussed thoroughly.

• In Chapter 3 power system state estimation is solved by one of the most robust Krylov

subspace methods for solving least-squares problems, the so-called LSQR method.

• In Chapter 4 sequential-quadratic programming (SQP) contingency constrained optimal power

flow is combined with the method of Monte Carlo importance sampling in order to solve the

stochastic optimal power flow.

• In Chapter 5 we develop LP-based CCOPF formulation that can efficiently handle multi-

ple contingencies. The novel formulation can be used in importance sampling framework to

produce an estimate of LMP-based congestion price of multiple contingencies.

• In Chapter 6 presents a brief summary of this research and a discussion of possible future

work.

• The Appendix A provide the network test cases that are used throughout this research.

• The Appendix B covers important theorems used for the reduced problem formulation in the

Chapter 5.
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Chapter 2

Power System State Estimation via

Globally Convergent Methods

2.1 State Estimation - Problem Formulation

Power system state estimation (PSSE) is an algorithm for determining the system state from a

model of the power system network and redundant system measurements. Here we will describe a

basic state estimation algorithm. The state estimation nonlinear measurement model is defined by:

z = h(x) + ε

where:

z m-dimensional measurement vector;

x n-dimensional (n < m) state vector (of voltage magnitude

and phase angle);

h(x) nonlinear vector function relating measurements to states (m-vector);

ε m-dimensional zero mean measurement error vector;

m number of measurements;

n number of state variables.

The problem is to determine the estimate x that best fits the measurement model. The static-state

of an N bus electric power network is denoted by x, a vector of dimension n = 2N − 1, comprised

of N bus voltages and N − 1 bus voltage angles. The state estimation problem can be formulated
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as a minimization of the weighted least-squares (WLS) function problem

min
x∈Rn

J(x) =
1
2

(z − h(x))T R−1 (z − h(x)) (2.1)

or in terms of the residual vector

min
x∈Rn

J(x) =
1
2
rT R−1r

where r = z − h(x) is the residual vector; the nonlinear measurement function is defined as h(x) :

Rn → Rm

h(x) =




h1(x)
...

hm(x)


 ∈ R

m, z =




z1

...

zm


 ∈ R

m

and R is a weighting matrix whose diagonal elements are often chosen as the measurement error

variances, i.e.

R = E{e · eT } =




σ2
1

. . .

σ2
m


 ∈ R

m×m

The problem defined by (2.1) is solved as an unconstrained minimization problem. An algorithm

for such an unconstrained minimization problem is an iterative numerical procedure in which the

objective function J(x) is approximated usually by a quadratic model.

Efficient solution of unconstrained minimization problems relies heavily on some type of New-

ton’s method. Newton’s method has a central role in the development of numerical solution for

unconstrained minimization problems. The type of Newton’s method of most interest here is the

Gauss-Newton method. There are two equivalent ways of defining it.

In the first approach, we linearize the nonlinear vector function h(x) using Taylor series expan-

sion

h(x + ∆x) ≈ h(x) + H(x)∆x

where the Jacobian matrix of dimension m× n is defined as:

H(x) =




∂h1(x)
∂x1

· · · ∂h1(x)
∂xn

...
. . .

...
∂hm(x)

∂x1
· · · ∂hm(x)

∂xn


 ∈ R

m×n
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and then obtain the linearized least-squares objective function

J(∆x) =
1
2

(z − h(x)−H(x)∆x)T R−1 (z − h(x)−H(x)∆x)

J(∆x) =
1
2

(r(x)−H(x)∆x)T R−1 (r(x)−H(x)∆x) .

The first-order necessary condition yields2

∂J(∆x)
∂∆x

= −HT R−1 (r −H∆x) = 0

which results in the well known normal equation

HT R−1H∆x = HT R−1r

In the second approach, given a starting point xc, we construct a quadratic approximation mc

of the objective function J(xc) that matches the first and the second derivative values at that point

mc(xc + s) = J(xc) +∇JT (xc)s +
1
2
sT∇2J(xc)s

Then we minimize the approximation (quadratic function) instead of the original objective function.

Therefore, the first-order optimality condition is

∂mc

∂x
= 0

Finally, the normal equation is of the form

∇2J(xk)s = −∇J(xk)

where

∇J(xc) = −HT R−1r

and the Hessian matrix ∇2J(xc) is defined as:

∇2J(xc) = HT R−1H +
m∑

i=1

ri(xc)∇2ri

︸ ︷︷ ︸
K

The estimates are usually solved by Newton’s method which computes the state corrections s

at each iteration by solving:

∇2J(xk)s = −∇J(xk)

xk+1 = xk + s

2We will write H(x) as H in order to simplify the notation
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for k = 0, 1, 2 . . . until convergence is attained.

In Newton’s method, the Hessian matrix is computed exactly. K denotes the second-order

information in ∇2J(xc), which is often neglected in practice to avoid additional evaluation of m

n × n Hessians. Moreover this term may produce an indefinite ∇2J which will ultimately lead to

the Newton step being in a non-descent direction. Hence, the symmetric approximation of ∇2J(x)

given by

∇2J(xc) ≈ HT R−1H

is used. HT R−1H is called the Gauss-Newton Hessian. Consequently, by neglecting K in the

method, we obtain the Gauss-Newton method as opposed to the full Newton’s method. The dif-

ference between the two methods is that ∇2J(x) contains second order derivatives of h(x) in the

Newton method whereas these terms are not present in the Gauss-Newton method. Using the first

approach, linearizing the nonlinear measurement function h(x), the Gauss-Newton method is ob-

tained right away, whereas using the second approach second order derivatives must be explicitly

neglected. It has been shown by Van Amerongen in [92] that in practice, the impact of the second

order derivatives is negligible when applied to PSSE. In what follows, we will restrict our attention

to the Gauss-Newton method developed using the second approach.

When the Hessian ∇2J(x) (or its approximation) is nearly singular, applying the Newton

method can produce a huge step that is often not in a descent direction. This can produce conver-

gence failure. A descent direction for J(x) at x ∈ Rn is a direction s ∈ Rn at which the condition

∇J(x)T s < 0 is satisfied. This condition will be tested in our algorithms as an indication of whether

the method is heading in the right direction. One should always keep in mind the very important

fact that the Newton step (sN = −∇2J(x)−1∇J(x)) is guaranteed to be a descent direction if

and only if ∇2J(x) is positive definite. The Gauss-Newton step is −(HT R−1H)−1∇J(x), which is

a descent direction as long as H is full-rank. We know that a stationary point is a minimizer if

∇2J(x) at that point is positive definite. In general in Newton’s method, ∇2J(x) may not be posi-

tive definite during the iteration process and as a consequence Newton’s method is not necessarily

a descent method. Newton’s algorithm is outlined in Alg. 1.

2.1.1 Orthogonal transformation

The state of the art in PSSE algorithms is either orthogonal factorization (QR factorization

via Givens rotations) with ordering or the sparse tableau method (which is based on constrained
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Algorithm 1 Newton’s algorithm
given an initial x

until termination do

while ‖∇J(x)‖ > ε do

evaluate ∇2J

solve ∇2Js = −∇J(x)

x← x + s

end while

optimization). In this section we choose to cover QR factorization in detail particularly since we

will use it in performance comparisons. Also globalized Newton’s methods will be based on QR

factorization.

The iterative equations using the Gauss-Newton method have the form:
(
HT (xk)R−1H(xk)

)
s = HT (xk)R−1

(
z − h(xk)

)
(2.2)

xk+1 = xk + s

Equations (2.2) are the so-called normal equations of the weighted least squares problem. In the

above equation the term G = HT R−1H is the so-called gain (information) matrix. Since the normal

equations involve squaring the H matrix, the accuracy depends on the condition number of H,

κ2(G) = κ2
2(R

−1/2H)

While the normal equations can be solved using several methods, the numerically most stable

method is the orthogonal transformation method [93] which will be used in comparison analysis as

well as in developing the trust region method. Orthogonal factorization methods are very desirable

because they do not magnify roundoff or any other kinds of errors due by avoiding building the

gain matrix HT R−1H. The normal equations can be rewritten as:

HT R−1/2R−1/2Hs = HT R−1/2R−1/2 (z − h(x))

Define

Hw = R−1/2H

rw = R−1/2 (z − h(x)) .

Then the normal equation can be written as

HT
wHws = HT

wrw (2.3)



37

Orthogonal transformation avoids squaring the Hw matrix by applying QR factorization to the

weighted Jacobian Hw

Hw = Q̂T Û

where Q̂ is an orthogonal (m × m) matrix (Q̂Q̂T = I) and Û is an upper trapezoidal (m × n)

matrix. Applying orthogonal transformation to (2.3) will result in

ÛT Q̂Q̂T Ûs = ÛT Q̂rw

Ûs = Q̂rw

This equation can be solved in two steps:

y = Qrw

Us = y

where:
Q (n×m) orthogonal matrix Q̂ = (QT Q̄)T ;

U (n× n) upper triangular matrix Û = (UT 0)T ;

r residual vector (r = z − h(h));

rω weighted residual vector (rω = R−1/2r).

The solution algorithm described above will be called Newton-QR throughout the rest of this

dissertation.

2.1.2 Test Results

The Newton-QR algorithm based on Givens rotations has been implemented in MATLAB to-

gether with the Tinney 2 ordering scheme [93] and tested on standard IEEE system cases [90].

At this point, we will show that under normal assumptions on the measurement noise level the

Newton-QR method performs reliably. We will also show cases where the Newton-QR is unable to

find a solution. We will test the same cases with the trust-region method.

Besides the first-order necessary condition for optimization, or the fact that the gradient should

vanish at the minimizer (∇J(x) = 0), we observe the following parameters: the objective function

J(x), the norm of the step ‖s‖, and the descent direction condition ∇J(x)T s < 0. As the iterative
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process proceeds, the objective function and the step length should decrease. The descent direc-

tion criterion, which indicates whether the iteration process is heading in the right directions is

straightforward to check by examining ∇JT (x)s < 0.

The first case consider the measurement set for the IEEE 14-bus network shown in Fig. A.1

on page 134 in the Appendix A. The performance is shown in Fig. 2.1 and in Table 2.1. The

second case is the IEEE 30-bus system with the measurement set shown in Fig. A.2 page 136 of

the Appendix A. Convergence of this case is shown in Fig. 2.2 and Table 2.2.

One can see that QR performs reliably in both cases. Moreover, Newton-QR was able to solve

successfully many situations with a single topology error.

A single topology error in the IEEE 14-bus system can prevent convergence of the Newton-QR

method. The measurement set described in Appendix A Fig. A.3 on page 137 is one such example.

Behavior of the first-order necessary condition during the iteration process is shown in Fig. 2.3.

Observing other parameters in Table 2.3, one can see that in iterations 1,4, and 5 the algorithm

does not head in the descent direction: ∇JT (x)s > 0. Steps in the descent direction reduce both

the objective function and the step norm.
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Figure 2.1: Convergence of the Newton-QR State Estimator for the IEEE 14-bus test case

2.1.3 Orthogonal transformation - Remarks

Although the numerical stability of solving the normal equation plays an important role in the

overall algorithm, it should be regarded as just one of the goals in building robust state estimator.
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Table 2.1: Newton-QR State Estimator applied to the IEEE 14-bus test case

# of iteration J(x) ‖s‖
1 3933.85 0.9118
2 64.551 0.0771
3 12.26155015334864 3.8156 · 10−4

4 12.25774142035936 1.1243 · 10−6

5 12.25774142086011 7.4052 · 10−9

6 12.25774142357370 5.9328 · 10−11
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Figure 2.2: Convergence of the Newton-QR State Estimator for the IEEE 30-bus test case

Table 2.2: Newton-QR State Estimator applied to the IEEE 30-bus test case

# of iteration J(x) ‖s‖
1 3750.167 1.5046
2 52.803 0.0840
3 7.91856500700121 2.00 · 10−3

4 7.89153387383260 2.2860·10−5

5 7.89154236506929 2.3420·10−7

6 7.89154217042462 4.2913·10−9

7 7.89154217376090 7.0944·10−11

8 7.89154217370184 1.2465·10−12
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Figure 2.3: Newton-QR State Estimator applied to the IEEE 14-bus test case, the non-converging
case

Table 2.3: Newton-QR State Estimator applied to the IEEE 14-bus test case, the non-converging
case

# of iteration J(x) ‖s‖ ∇JT (x)s
1 3.8881 · 103 56.5160 5.7048 · 1010

2 1.3418 · 1010 19.2814 −3.5647 · 109

3 9.8887 · 108 12.2159 −1.8289 · 108

4 2.6988 · 107 10.2250 586.1503
5 15.8857 76.9153 1.9210 · 1011

6 3.7584 · 1010 24.4886 −9.7947 · 109

7 2.7010 · 109 14.0975 −6.7856 · 108

...
...

...
...
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If the gain matrix ∇J2 of the normal equation is not positive definite, Newton’s method may

produce a huge step that is not in a descent direction, independent of the numerical conditioning

of the matrix.

In the Gauss-Newton method the gain matrix HT R−1H is always at least positive semi-definite.

It fails to be positive definite if and only if H is rank deficient, in which case the gain matrix is

singular, i.e., “infinitely” badly conditioned. The Gauss-Newton step can fail to be descent direction

only if ill-conditioning results in excessive numerical error in the computed step.

2.2 Globally Convergent Methods - Introduction

The roots of the trust region algorithm methods lie in the pioneering work of Levenberg (1944)

and Marquardt (1963) for nonlinear least squares problems. They first noticed that when the Hessian

is not symmetric positive definite (SPD) in Newton’s method, the method may not converge. Adding

positive elements (the Levenberg-Marquardt parameter) to the diagonal was suggested. Although

the criteria for selecting the Levenberg-Marquardt parameter were not theoretically sound, the idea

was the foundation for work by Moré [59].

Newton’s method works very well when the initial guess is near the solution. An overview of

the Newton’s method can be found in many references, e.g., Moré and Sorensen [61]. But what

happens when we are not in the situation to provide a close initial guess? One idea is to augment

Newton’s method with “globalization”. Globalization of Newton’s method increases the likelihood

of convergence from an arbitrary initial guess. Convergence cannot be guaranteed even with glob-

alization.

Recall the properties of Newton’s method:

1. the iterates may diverge if x0 is not near the solution

2. as xn → x∗ convergence is usually quadratic (very fast)

3. each iteration requires evaluation and factorization of ∇2J

4. convergence is only local

5. numerical difficulties may arise if ∇2J is ill-conditioned

The major strength of the Newton’s method is its quadratic convergence near the solution. Before

considering particular globalization methods, we describe the general structure of the globalized
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Newton’s method [96]

1. Begin with initial trial step (Newton step)

2. Test for adequate progress

3. Modify if necessary to get a new trial step; return to the test

This dissertation will present a new approach for solving power system state estimation based on

a globally convergent modification of Newton’s method using trust region methods. The objective

is to provide a more reliable and robust state estimator, which can successfully cope with all kinds

of errors (bad data, topological, parameter) faced in power system models.

There are two issues which a robust state estimation algorithm must be able to overcome.

One of them is the numerical ill-conditioning problem which is solved quite successfully with QR

factorization; the other is the convergence problem induced by data errors. When the system is ill-

conditioned it will manifest itself in the form of slow convergence or failure to converge. Orthogonal

transformation methods are more numerically stable than other methods. By applying them, the

issue of ill-conditioning is mitigated. But even this algorithm can suffer from non-convergence in

the face of faulty data. This dissertation is an attempt to remedy the second issue.

While there is no way to ensure that iterates will always converge to a solution of every problem,

our motivation was to implement more “successful” methods to the power system state estimation

problem in order to improve convergence in the presence of model errors. The approach we will

present is well known in the field of numerical optimization. It consists of two globally convergent

methods, the line search (backtracking) method and the trust region (restricted step) method. The

trust region state estimator was first presented in [70]. We will provide a theoretical framework for

both global methods and analyze them on standard IEEE network test cases. The backtracking

method is included for completeness although it has not proved as reliable a global method as the

trust region method, which will be our main concentration. Strong theoretical support as well as

practical efficiency and robustness are the strong arguments supporting the trust region method

for power system state estimation.

The standard technique for solving state estimation problems is to apply the Newton or Gauss-

Newton method. While Newton’s method has superior convergence properties when the starting

point is near the solution, its disadvantage is possible convergence failure on problems that are very

nonlinear. Whereas in the Gauss-Newton method very large residuals are the major issue that can

prevent convergence. which are common in power system state estimation. All global algorithms
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include calculation of the Newton step, because the strategy of the global methods is to apply the

Newton step whenever possible. Certainly any global method will end up using Newton’s method

near the solution to exploit its fast local convergence rate.

The trust region method allows more control of the step calculation. The trust region is that

region in the problem space in which we can trust that a quadratic model is an adequate model

of the objective function. The measure of progress is the diameter of the trust region δ which is a

controllable quantity; it can be expanded or reduced based upon how well the local model predicts

the behavior of objective function.

2.2.1 The Backtracking (line search) Method

We will now explore the line-search way of modifying the Gauss-Newton step to obtain steps

that satisfy acceptability criteria. The backtracking idea can be stated as: initially try the Gauss-

Newton step; if a step is not acceptable, shorten it as necessary until an acceptable step is found.

Line search iterative algorithms for finding a minimizer of J(x) are of the form:

xk+1 = xk + θs

for a given trial step s. The choice of θ ensures convergence criteria J(xk+1) < J(xk); under section

2.2.3 on page 49, we will stress more strict convergence criteria which will hopefully force the

sequence into a neighborhood of a local minimizer. The reduction with θ ∈ [θmin, θmax] is the so

called “safeguarded” backtracking method [94].

• θ ≤ θmax ensures that the backtracking (inner) loop will terminate with an acceptable step;

• θ ≥ θmax ensures that steps will not be excessively small, producing poor convergence

The choice of θmin and θmax is arbitrary and problem dependent. We have used values suggested

in [24] for practical implementations, θmin = 0.1 and θmax = 0.5. Our experience has been that the

use of larger values for θmax usually resulted in a larger number of inner loop iterations.

In choosing θ ∈ [θmin, θmax], we minimize a one dimensional quadratic/cubic interpolating

polynomial p(θ) satisfying following constraints:

p(0) = J(xk)

p(1) = J(xk + sk)

p′(0) =
d

dθ
J(x + θs)

∣∣∣∣
θ=0

= ∇JT s
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The quadratic polynomial interpolating the above points is:

p(θ) =
[
p(1)− p(0)− p′(0)

]
θ2 + p′(0)θ + p(0).

The minimum of the above polynomial is

θ =
−p′(0)

2 [p(1)− p(0)− p′(0)]
.

If J(xk+s) does not satisfy the convergence criterion, subsequent reductions can be either quadratic

or cubic interpolations. The proposed algorithm implements cubic subsequent interpolates; more

detail can be found in [24].

In the inner loop, besides the one dimensional quadratic minimization, we need only to evaluate

the objective function which does not require much computational effort.

Shortcomings of the backtracking approach include:

• While sometimes successful, the backtracking strategy has the disadvantage that it makes no

further use of the n-dimensional quadratic model.

• Many step-length reductions may be required, entailing unproductive effort.

• The step may achieve relatively little reduction in the objective function, compared to other

steps of the same length but in different directions.

As we saw, an unsatisfactory Newton step indicates that our quadratic model does not adequately

model the objective function in a region containing the full Gauss-Newton step. The question arises:

What is the region in which we can trust that the quadratic model is able to represent our objective

function correctly? The trust region method is an attempt to answer this question.

2.2.2 Trust Region Method

As mentioned, our prime focus will be on trust region methods. The trust region method is

a robust implementation of the algorithm whose origin lies in the work of Levenberg [53] and

Marquardt [54]. A general trust-region-based algorithm is of the following form.

Minimize the local quadratic model mc of objective function J(x) over the region of radius δ

centered at xc

min mc(xc + s) = J(xc) +∇JT (xc)s +
1
2
sT∇2J(xc)s

subject to: ‖s‖ ≤ δ (2.4)



45

where:
mc quadratic model of the objective function reduction;

δ trust region radius;

∇J(xc) gradient of objective function;

∇2J(xc) Hessian (or approximation);

‖.‖ 2-norm throughout.

The trust region algorithm can be outlined as follows:

• choose a step s according to (2.4);

• check if sufficient reduction in objective function is achieved by the model;

• if the step is not acceptable, reduce δ and try again;

• once an acceptable step has been found, adjust δ for the next step.

The calculation of the step between iterates requires the solution of the above locally constrained

minimization problem. Applying the Lagrange multiplier method to (2.4) will produce the following

solution with µ as the multiplier corresponding to the trust region constraint:

(∇2J + µI
)
s(µ) = −∇J

such that ‖s‖ = δ

Considering the Gauss-Newton case the above equation will have form:

(
HT R−1H + µI

)
s(µ) = HT R−1(z − h(x))

such that ‖s(µ)‖ = δ (2.5)

The first equation in (2.5) can be rewritten in following form:

(
HT R−1/2 µ1/2I

)
·

 R−1/2H

µ1/2I


 s(µ) = HT R−1r (2.6)

The solution process applies QR factorization to the following matrix:

 R−1/2H

µ1/2I


 = QT

k Uk. (2.7)
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Since we already have factored the upper block matrix, it is only necessary to process the additional

diagonal elements. This property is particularly appealing if we need several iterations. We calculate

the trust region step in a very similar way to the Gauss-Newton step

UT
k Uks(µ) = UT

k Qrw. (2.8)

The right hand side is calculated once in the outer Newton iteration, while Uk is calculated by

rotating µ1/2I into U . Finally, the step is calculated by forward/backward substitution.
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Figure 2.4: The curve s(µ)

The s(µ)-curve {s(µ) : 0 ≤ µ <∞} is defined by

s(µ) =
[
HT R−1H + µI

]−1
HT R−1r.

As shown in Fig. 2.5, it traces out a differentiable curve of the trust region steps. ‖s(µ)‖ is monotone

decreasing in µ, with

• limµ→0 ‖s(µ)‖ = ‖sN‖

• limµ→∞ ‖s(µ)‖ = 0

A fundamental practical difficulty is that due to the nonlinear constraint, there is no direct

method for solving equation (2.5); thus we cannot determine exactly an s(µ) such that ‖s(µ)‖ = δ.

Therefore our task is to determine an adequate approximation at a reasonable cost. We will use
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the approximate method (“hook” step) suggested in [24], [59]. The idea can be outlined: determine

s = s(µ) exactly for µ such that ‖s(µ)‖ is approximately δ. One implementation formulation would

be to find an approximate solution to the following scalar nonlinear equation for some strictly

positive value of µ:

Φ(µ) = ‖s(µ)‖ − δ = 0. (2.9)

Since there is no need for great accuracy, we will use the recommendation in [24] (Fig. 2.5) to

terminate iterations as soon as

3
4
δ ≤ ‖s(µ)‖ ≤ 3

2
δ

although some other values are possible. The key point is that it does not influence the number of

δ
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δ
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Figure 2.5: Calculation of trust region step

iterations needed to solve (2.9), usually no more than 2. Solving Φ(µ) = 0 is a scalar zero-finding

problem in µ. Although one might first consider using Newton’s method to solve this problem, it

can be easily shown that it may not perform very well due to the structure of Φ(µ). As suggested

in [61], ‖s(µ)‖2 can be written in the form

‖s(µ)‖2 =
n∑

i=1

γi

(λi + µ)2

where λ1, . . . , λn is the spectrum of HT R−1H. Since ‖s(µ)‖2 is a rational function in µ and has

second order poles at −λ1, . . . ,−λn, Newton’s method tends to perform poorly when the solution

is near −λi, for i = 1, . . . , n. However, this does not present a problem in our case since µ ≥ 0 and
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λi > 0 for each i. Fig. 2.6 shows the function ‖s(µ)‖2 with the assumption of symmetric positive

definite Hessian HT R−1H with eigenvalues λ1 > λ2 > · · · > λn.
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Figure 2.6: Sketch of ‖s(µ)‖2

Several possible implementations have been proposed for solution of (2.9). We will discuss the

one presented in [24] which suggests using a local model of the form according to the structure of

the previous equation:

qc(µ) =
αc

βc + µ
− δc

with current values of αc and βc that are changing in the inner iterations and calculated easily from

the following initial conditions:

qc(µc) = Φ(µc)

q′c(µc) = Φ′(µc).

Therefore, µ is calculated so that qc(µ) = 0 which will ultimately result in the following iterative

process:

µc+1 = µc +
‖s(µ)‖

δc
· Φ(µc)
Φ′(µc)

.

The above iterative process must be safeguarded in order to converge; we specify upper and lower

limits according to [24], [59]. Since each evaluation of ‖s(µ)‖ requires the solution of a system

of linear equations (2.8), it is crucial to solve this problem in a few iterations. A very important

property is that the number of iterations required to determine an acceptable value of µ is very

small (one to two iterations) because the iteration process itself is based upon the rational structure

of Φ.
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2.2.3 Criteria for Global Convergence

One of the serious drawbacks of Newton’s method is that in its pure form, it does not neces-

sarily produce a descent direction. Therefore, it is crucial to distinguish between “successful” and

“unsuccessful” iterates. When applying the pure Newton’s method, as seen in Alg. 1, we just as-

sume that the sequence of iterates will ultimately converge to the solution, without any testing. It

will be shown that, in the presence of certain network topology errors, Newton’s method does not

converge. In developing both the backtracking and the trust region algorithm, we will introduce

a criterion for global convergence, i.e., a step-acceptance rule, as a criterion for the sequence of

iterates to converge to a solution.

There are several alternative criteria for a step-acceptance rule. A simple condition that requires

J(xk+1) < J(xk) does not guarantee that the sequence of iterates will converge to a minimizer.

There are examples in [24] that show how the condition J(xk+1) < J(xk) can be satisfied but the

iterates still fail to converge to a minimizer. Therefore, we need stronger convergence conditions.

The most widely used rules are:

1. Goldstein-Armijo

2. ared/pred

The Goldstein-Armijo conditions are defined as follows: For 0 < α < β < 1 and a descent direction

s, (i.e. s ∈ Rn is a descent direction for J(x) at x ∈ Rn if ∇J(x)T s < 0)

J(x + s) ≤ J(x) + α∇J(x)T s alpha condition

∇J(x + s)T s ≥ β∇J(x)T s beta condition

The condition 0 < α < β < 1 ensures that there exists a step that satisfies these conditions. In a

global optimization framework, the Goldstein-Armijo conditions were suggested in [24]. When ap-

plied to our problem, the results were not encouraging. Many times the iteration process stagnated.

The second test, and the one we have used, is known as the ared/pred criterion. This criterion

requires:

ared ≥ t · pred

ared = J(xc)− J(xc + s)

pred = J(xc)−mc(xc + s) = −∇J(xc)T s− 1
2
sT HT R−1Hs



50

where:
ared actual reduction in J(x);

pred reduction in J(x) “predicted” by the local quadratic

model mc(x) of J(x);

t ∈ (0, 1) usually t is very small so a step could be accepted if

there is minimal (but still adequate) progress [94].

ared/pred criteria for the trust-region algorithm were suggested in [60]. ared/pred criteria were

much more reliable when applied to our problem. Hence we decided to implement them in our

algorithm.

The step-acceptance rule determines whether the trial step is accepted or not. If the trial step

is unacceptable, the trust region will be reduced in an inner loop and minimization of the same

quadratic function performed on a smaller trust region radius. The reduction factor θ is determined

by minimizing the one-dimensional quadratic model interpolated between J(xc) and J(xc + s). We

do not want to decrease the trust region too much; therefore, there will be imposed lower θmin

and upper θmax limits on the reduction factor. While values for θmin and θmax can be chosen

arbitrarily, often (as suggested in [24]) the choices are 0.1 and 0.5 respectively. After the new trust

region is determined the algorithm returns to the approximate solution of the locally constrained

minimization problem.

According to the above criteria, specific rules will be designed for revising and maintaining the

trust region radius δ during the iteration process in an outer loop.

There are three cases of interest. The first is when there is excellent agreement between J(x)

and local quadratic model, the second case is when the agreement is acceptable, and the third case

is when the agreement is poor.

Updating of the trust region radius is done as follows:

δ ← 2δ if
ared

pred
≥ u

δ ← δ if v ≤ ared

pred
< u

δ ← δ/2 if
ared

pred
< v

Values of u and v recommended in [24] are u = 0.75 and v = 0.1. Other values may be considered

as well.
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2.2.4 The backtracking algorithm

The backtracking algorithm [94] is outlined in Algorithm 2.

Algorithm 2 Backtracking algorithm
given t ∈ (0, 1) and 0 < θmin < θmax < 1

evaluate J(x), ∇J(x)

Iterate

while ‖∇J(x)‖ > ε do

calculate s (Gauss-Newton step)

evaluate J(x + s)

while ared < t · pred do

choose θ ∈ [θmin, θmax]

update s← θs

re-evaluate J(x + s)

end while

update x← x + s, and J(x)← J(x + s)

evaluate ∇J(x + s) and update ∇J(x)← ∇J(x + s)

end while

As we initially mentioned in section 2.2.1 on page 43, our backtracking algorithm is “safe-

guarded” so that it terminates in a finite number of steps. Simulation results have shown that the

number of inner (backtracking) iterations was usually very small (2-3) and never exceeded 6.

2.2.5 Trust Region Algorithm

The basic trust region algorithm is outlined in Algorithm 3

2.2.6 Simulation Results

In practice there are several reasons for the failure of the state estimator, even when it is based

on the orthogonal transformation method. Among the reasons for convergence failure are very large

measurement errors, parameter errors and/or topology errors. We have investigated the effect of

topology errors on convergence. These types of errors are very severe because they affect several

local measurement residuals. Residuals produced by these errors can cause the state estimator to

fail to converge to a solution even when one exists.
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Algorithm 3 Trust Region Algorithm
given t ∈ (0, 1), 0 < θmin < θmax < 1, 0 < v < u < 1 and δ > 0

evaluate J(x), ∇J(x)

Iterate

while ‖∇J(x)‖ > ε do

calculate s

s(µ) = − (
HT R−1H + µI

)−1
HT R−1(z − h(x))

such that ‖s(µ)‖ = δ

evaluate J(x + s), mc(x + s)

while ared < t · pred do

choose θ ∈ [θmin, θmax]

update δ ← θδ

calculate a new s

s(µ) = − (
HT R−1H + µI

)−1
HT R−1(z − h(x))

such that ‖s(µ)‖ = δ

re-evaluate J(x + s), mc(x + s)

end while

update x← x + s, and J(x)← J(x + s)

if ared ≥ u · pred then

δ ← 2δ

else if ared < v · pred then

δ ← δ/2

else

same δ

end if

evaluate ∇J(x + s) and update ∇J(x)← ∇J(x + s)

end while
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The trust region and backtracking algorithms were tested on several IEEE test systems. The

Gauss-Newton algorithm presented in the convergence comparison is based on the orthogonal trans-

formation method (QR factorization). The first scenario is a very common case in which we already

saw the non-convergence caused by a single topology error in Fig. 2.3. This case is investigated on

the IEEE 14-bus network with measurement set presented in Fig. A.3 on page 137 in Appendix. A

single topology error (line 12 out) was simulated. A dashed line branch denotes a topology error in

which we assume that the line is out when it is actually in.
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Figure 2.7: Convergence of the Trust Region State Estimator for the IEEE 14-bus test case

First we will present successful solution by the trust region method. Results are shown in Fig. 2.7

and in Table 2.4 and Table 2.5. It has to be pointed out that there is no need that ∇J(x) converge

very accurately to obtain meaningful results. One has to keep in mind that voltage magnitude is

estimated in per-unit and that accuracy of the gradient ∇J(x) of 10−4 is sufficient for practical

purposes. Besides the parameters already discussed, we added the number of inner iterations to

Table 2.4, to indicate the cost of the method. One can notice that the method is constantly in

descent direction (∇JT (x)s < 0) as opposed to Newton-QR presented in Fig. 2.3. The number of

inner iterations is not excessively large, and the method is performing plain Newton’s iterations

near the solution.

In Table 2.5 we compare estimates obtained by the trust region method with the exact solution

which was provided by the test case in [90]. Branch 12, that is modeled out when it is actually

in, is connected between buses 6 and 12, as seen in Fig. A.3 in Appendix A. It is to be expected
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Table 2.4: The IEEE 14-bus test case: Trust region method iteration process
# of iter. J(x) ‖s‖ ∇JT (x)s # of inner iter.

1 3.8881 · 103 0.8949 −7.7652 · 103 3
2 50.2372 2.3001 -95.5471 2
3 5.6373 0.1302 -6.2520 3
4 2.69719653128881 0.0736 -0.3752 2
5 2.52886228627499 0.1467 -0.0397 1
6 2.51570907143946 0.0527 -0.0125 2
7 2.50974212747101 0.0175 −8.4643 · 10−4 2
8 2.50930135450266 0.0158 −4.8502 · 10−5 2
9 2.50927238291790 0.0076 −9.5334 · 10−6 2
10 2.50926775714393 7.6225 · 10−4 −1.9599 · 10−7 2
11 2.50926768735649 7.6223 · 10−4 −5.2979 · 10−8 1
12 2.50926766478838 1.1572 · 10−4 −1.5051 · 10−9 0

that voltages at those two busses are not estimated very accurately. While the voltage at bus 6

is estimated relatively close to the solution one can see that the voltage phasor of bus 12 has an

excessively low and unrealistic value, indicating either measurement or topology error.

Besides estimating the state of the system, SE is able to identify bad data. Bad data identifi-

cation is the process of identifying noise corrupted measurements. and is conducted by performing

normalized residual test (rN -test). At this point we will state the basic idea behind bad data analy-

sis, we refer the interested reader to either [1] or [57], where detailed treatment of bad data analysis

can be found. Let ẑ = h(x̂) denote an estimate of the measurement vector z, where x̂ is an estimate

of the state vector. The covariance matrix of the estimate of the measurement vector ẑ is

Rbz = H
(
HT R−1H

)−1
HT

The difference between the real measurement and the estimated measurement covariance matrix

W = R−Rbz

is the measurement residual covariance matrix. Therefore, the measurement residuals are normal

random variables with zero mean and covariance matrix W (r ∼ N(0,W )). The normalized residuals

for measurement i can be defined as

rN
i =

ri√
Wii

The normalized residual vector rN is Gaussian random variable with a zero mean and unit variance

(rN ∼ N(0, 1)). Thus existence of the bad data is identified by comparing the normalized residual



55

Table 2.5: State Estimates of the IEEE 14-bus test case solved by the Trust Region Method
Solution Estimates

bus # V [pu] θ [◦] V [pu] θ [◦]
1 1.0603 0.0000 1.0602 0.0000
2 1.0451 -4.9754 1.0450 -4.9760
3 1.0094 -12.7012 1.0093 -12.7010
4 1.0192 -10.3265 1.0191 -10.3267
5 1.0202 -8.7753 1.0201 -8.7792
6 1.0697 -14.2225 1.0724 -13.9884
7 1.0621 -13.3637 1.0621 -13.3617
8 1.0902 -13.3537 1.0901 -13.3517
9 1.0561 -14.9419 1.0559 -14.9034
10 1.0509 -15.0965 1.0513 -15.0673
11 1.0568 -14.7905 1.0574 -14.7506
12 1.0548 -15.0721 0.4400 13.8980
13 1.0501 -15.1698 1.0500 -15.0137
14 1.0357 -16.0368 1.0361 -15.8908

against an appropriate threshold. In our test case, the conducted normalized residual test is depicted

in Table 2.6 where suspicious measurement residuals are printed in red, The network placement of

the suspicious measurements is presented in Fig. 2.8 were is one can see that all of them are in

the vicinity of topology error. Therefore SE will detect topology error can be identified although

indirectly. Combining result in the Table 2.5 and Table 2.6 conclusion is that topology error produce

strange voltage values in incident nodes where and measurements in close proximity have very large

residuals.

A convergence comparison for Gauss-Newton, backtracking and trust region method is plotted

as log (‖∇J(xc)‖) vs. the number of iterations for each test case. Fig. 2.9 compares the convergence

of the three methods for the IEEE 14-bus case. It is seen that the Gauss-Newton method exhibits

oscillatory nonconvergence and that the backtracking method stalls, failing to reach an acceptable

solution. The trust region method converges for this test case.

The next case is the IEEE 30-bus network with the measurement set shown in Fig. A.4 on

page 138 in the Appendix A. There are three topology errors indicated.

Fig. 2.10 compares the convergence of the three methods for the IEEE 30-bus case. The con-

vergence behavior for each of the methods is similar to that for the IEEE 14-bus case.

The last case is the IEEE 118-bus network with ten topology errors. One might argue that ten

topology errors are rare in practice; however, such a situation can occur with cascading failures. In

such situations, a reliable state estimator is crucial. Convergence properties are shown on Fig. 2.11.
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Table 2.6: The IEEE 14-bus test case: Normalized Residual Test
measurement # type bus line r rN

1 5 1 0 -0.0002 -0.0258
2 1 0 1 -0.0001 -0.0062
3 3 0 -2 0.0005 0.0224
4 2 2 0 -0.0001 -0.0099
5 4 2 0 -0.0002 -0.0409
6 1 0 5 -0.0003 -0.0114
7 3 0 5 0.0004 0.0145
8 1 0 -3 -0.0009 -0.0531
9 5 3 0 0.0007 0.0828
10 4 3 0 -0.0008 -0.0888
11 1 0 -4 0.0000 0.0006
12 3 0 -4 -0.0004 -0.0144
13 3 0 -7 0.0000 0.0020
14 2 4 0 -0.0001 -0.0275
15 1 0 -8 -0.0004 -0.0350
16 3 0 -8 0.0002 0.0174
17 1 0 14 0.0000 0.0293
18 4 8 0 0.0002 0.0192
19 5 8 0 -0.0001 -0.0192
20 1 0 -9 -0.0012 -0.0386
21 3 0 -9 0.0005 0.0203
22 5 9 0 0.0001 0.0212
23 2 9 0 -0.0002 -0.0308
24 3 0 -17 0.0023 0.0966
25 4 14 0 -0.0013 -0.0686
26 1 0 20 0.0002 0.0326
27 3 0 20 0.0001 0.0058
28 5 13 0 0.0000 -0.0083
29 1 0 19 0.0388 2.2002
30 3 0 -12 -0.0243 -0.7693
31 1 0 13 -0.0185 -1.8223
32 1 0 -11 0.0198 1.0751
33 3 0 -11 0.0012 0.0726
34 5 11 0 -0.0004 -0.0575
35 2 10 0 0.0006 0.0489
36 3 0 18 0.0000 -0.0488
37 1 0 10 0.0177 1.2491
38 5 5 0 -0.0001 -0.0103
39 2 6 0 0.0186 1.8375
40 4 6 0 0.0005 0.0883
41 1 0 -16 -0.0010 -0.0476
42 2 12 0 -0.0388 -1.8944
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Figure 2.8: IEEE 14-bus test case - Topology Error Identification
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Figure 2.9: Convergence comparison for the IEEE 14-bus network with a single topology error.
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Figure 2.10: Convergence comparison for the IEEE 30-bus network with three topology errors.

It can be noticed that in the trust region method the number of iterations varies slightly with

network size. The rate of convergence of the backtracking method in all three cases barely decreased.

In order to show that the rate of convergence is not always as poor as shown in the last three

cases, we examined another test case. The IEEE 30-bus network was considered with four topology

errors, which cause the Gauss-Newton algorithm to diverge (Fig. 2.12).
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Convergence comparison (IEEE 118 bus)
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Figure 2.11: Convergence comparison for the IEEE 118-bus network with ten topology errors.

The backtracking state estimator was run for three cases which differ only in measurement noise
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(the noise was modeled as Gaussian). One notices that even small changes of the order of magnitude

of noise can significantly impact the rate of convergence of the backtracking algorithm.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

10

Number of iterations

LO
G

 o
f t

he
 g

ra
di

en
t n

or
m

 

Gauss−Newton method vs Backtracking method

 ↓ 
 Gauss−Newton

 ← Backtracking1

 ↓ 
 Backtracking2

 ↑ 
 Backtracking3

Figure 2.12: Convergence comparison of the Gauss-Newton versus Backtracking method for the
IEEE 30-bus network with four topology errors.

The results illustrate the main advantage of global methods, and demonstrate that trust region

methods can successfully cope with topology error cases where neither the Gauss-Newton method

nor the backtracking method are able to reach the solution.

In terms of computational time, the backtracking method is comparable to the Gauss-Newton

method since the inner loop requires one-dimensional minimization which is fast to obtain even for

multiple step reductions. For the trust region method it is harder to give an exact analysis. The

reason is that one can not predict the number of inner iterations needed per outer iteration. Our

experience has shown that the number of inner iterations for the first six to eight outer iterations is

usually two, while in some rare cases we encountered up to six inner loop iterations. For each inner

iteration, the factorization (2.7) and solution of the linear system (2.8) are needed. A comparison

of computational time for the three methods was not possible since neither the Gauss-Newton nor

the backtracking method converged for our test cases.

In complex situations, like those arising from topology errors, the trust region method turns out

to be very successful and it is rare that a solution is not found. As in any other numerical method,

the trust region method has places of potential difficulty or break-down caused by finite precision.

In the trust region algorithm, one of the most dangerous stages we faced and referenced in [20] is,

perhaps surprisingly, near convergence. The problem arises due to floating point calculation of the
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term ared/pred. When both differences are close to the machine precision, calculating ared/pred

may result in a wrong sign (i.e., instead 1 we can easily get -1). Error in computation will result in

further reduction of the trust region radius, which causes even more pronounced cancellation. As

a result the algorithm will produce unsuccessful iterations and the convergence curve will stagnate

close to the solution. A practical recommendation [20] is to treat ared/pred=1 whenever absolute

values of both ared and pred are smaller than some threshold value.

2.2.7 Conclusion

Computation of the state estimate for large networks, in the presence of bad measurement

data, parameter, and/or topology errors requires a robust algorithm. Recent blackouts demonstrate

the requirement to build more reliable state estimators. In this chapter, we focus on the robust

implementation of a state estimator based on trust region methods. The trust-region method is

a descent method, meaning that a trial point xk+1 = xk + s is accepted only if fulfill the step

acceptance criterion. This approach to the problem leads to a very reliable situation, but one which

is somewhat more computationally involved. The trust region method-based state estimator was

found to be very reliable under severe conditions. This enhanced reliability justifies the additional

time and computational effort required for its execution.

2.2.8 Historical Notes and Background

As we already mentioned, the foundation of the trust region method lies in the work of Levenberg

[53] and later Marquardt, who surprisingly found out about Levenberg’s work during the revision

of his paper [54]. In [54] Marquardt defined the trust region method although he used the name

maximum neighborhood method. His procedure was: Minimize the objective function (J) in the

neighborhood over which the Taylor series approximation is an adequate representation of the

nonlinear objective function.

He emphasized that any improved method will in some sense interpolate between a steepest-

descent step sg and a Newton step sN such that the objective function of the least squares is

reduced, J (k+1) < J (k), where

sg = −∇J

∇2JsN = −∇J
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In this approach, direction and step size are determined simultaneously instead of choosing a

direction and trying to shorten it until an acceptable step is found. The theoretical basis of the

maximum neighborhood method is contained in the theorem:

Theorem. Let µ ≥ 0 be arbitrary and let s satisfy the equation

(∇2J + µI
)
s = −∇J

Then s minimizes J on the sphere whose radius δ satisfies

‖s‖2 = δ2

Marquardt suggested optimum interpolation between the Newton and steepest-descent step,

although he did not suggest how to find µ such that ‖s‖2 = δ2. He said “some form of the trial and

error is required to find a value of µ”.

At that point the foundation for the trust region method was laid down, although a robust im-

plementation was missing. The generalization of a result due to Marquardt and the computational

aspect of the trust-region method (although the name trust-region was still not used), again con-

sidered for the least squares problem, was fully discussed by Moré in [59]. Moré called the method

robust implementation of the Levenberg-Marquardt algorithm. Many parts of our algorithm that

we used were proposed in [59]. Moré called the parameter µ the Levenberg-Marquardt parameter

and presented an efficient procedure for finding µ such that ‖s(µ)‖2 = δ. Moré based the choice of

trust-region radius δ on the actual and the predicted reduction of the objective function. His work

included numerical and convergence results.

Since the early ’80s, there has been an explosion in the research on trust-region methods. A

number of state-of-the-art papers have been appeared since then. The name trust region was first

used by Dennis. A thorough analysis of the locally constrained quadratic minimization problem

defined by (2.4) that arises as a subproblem in the trust-region Newton iteration is given in [83]. This

reference covers both the theoretical nature and possible implementation of the locally constrained

model problem. Convergence criteria based on the ared/pred condition was suggested in this work

as well as in the work of Shultz et. al. in [79].

The book by Dennis and Schnabel [24] is an invaluable source in this research. We highly

recommend this reference to understand the ideas behind Newton’s method in general and trust

region methods in particular. The subject was covered thoroughly in the first book about trust

region methods by Conn, Gould and Toint [20].
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Besides the “hook” step approach for approximately finding ‖s(µ)‖ = δ, another commonly

used approach is the dogleg approach. The idea behind the dogleg approach suggested in [24] is:

Determine s such that ‖s‖ = δ exactly on a curve that approximates the s(µ)-curve. The dogleg

curve, shown in Fig. 2.13 is the polygonal curve connecting s = 0, s = sSD and s = sN .

min mc(xc + s) = J(xc) +∇JT (xc)s +
1
2
sT∇2J(xc)s

s = −λ∇J(xc)

min
λ∈R

mc (xc − λ∇J(xc))

λ = − ‖∇J(xc)‖2
∇J(xc)T∇2J(xc)∇J(xc)

which gives the step in steepest-descent direction

sSD = xc − ‖∇J(xc)‖2
∇J(xc)T∇2J(xc)∇J(xc)

Globally convergent methods in general, and trust-region methods in particular, were not applied

to PSSE before this research. We first introduced trust region methods to the power community in

[70] with a more comprehensive treatment given in [71].
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Figure 2.13: The dogleg (ΓDL) curve
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Chapter 3

Newton-Krylov Methods in Power

System State Estimation

3.1 Introduction

As a real-time application in modern power systems, the state estimator is required to be nu-

merically robust and fast. We stressed numerically robust techniques in the previous chapter. The

general conclusion is that while numerically very stable, a QR factorization-based state estimator

can not successfully handle severe cases resulting from uncertainty in the system. In these situation

a trust-region method-based state estimator provides reliable solution. Under normal system condi-

tions, QR serves as a reliable state estimator. This chapter studies aspects of iterative methods and

their implementation relative to state estimation. The question we try to answer in this chapter is

whether a faster or numerically less expensive solution method with a level of reliability comparable

to QR exists in the pool of Krylov subspace methods.

Over the years, many different algorithms have been proposed for efficient solution of the power

system state estimation problem. When it comes to reliability and robustness of the solution, QR

factorization-based state estimator is the algorithm of choice. Among favorable properties that

distinguish solving the normal equation by QR factorization are:

• QR is the most numerically stable solution [40];

• QR prevents squaring H matrix in the normal equation;

• QR can be implemented with ordering to reduce fill-in (i.e., Tinney Scheme 2).
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The price that one has to pay for such a numerically stable algorithm is its computational burden.

Krylov subspace iterative methods are methods of choice for many problems involving large-

sparse systems of linear equations. Power systems state estimation is one such example. While there

is no guarantee that if proven to be reliable on one sparse problem, an iterative method would be

reliable in general, there is hope that in the large set of Krylov subspace methods some of them

would perform well on our problem. Although present for many years, Krylov subspace iterative

methods did not receive much attention from power system state estimation researchers.

The benefits of iterative methods for the solution of large sparse system are well recognized.

Among them, the most prominent are:

• theoretical convergence in a finite number of steps that is (sometimes significantly) smaller

than the order of the system;

• the original sparsity pattern is preserved;

• only matrix-vector products are required;

• can be implemented without explicitly knowing the coefficient matrix (“matrix-free”).

In general, iterative methods are recommended when direct methods produce excessive fill-in or

when the coefficient matrix (i.e., the Jacobian or Hessian) is not explicitly available. While in power

system state estimation, the coefficient matrix is available and well defined, the problem of fill-in

exists. In large-sparse problems, direct methods tend to increase matrix density and thus incur

additional work. The best one can do is to keep fill-in under control by using ordering algorithms.

An ordering algorithm permutes the rows and columns of a matrix so that the number of fill-ins

during factorization is minimized. In a seminal paper on the application on Givens rotations to

power system state estimation [93], Vempati, Slutsker and Tinney investigated several schemes for

column and row ordering of H. Their conclusion was that the best scheme consisted of minimum

degree ordering for HT R−1H to determine column ordering of H followed by staircase ordering

with a row count tie-breaker rule to order the rows of H. Practical direct solvers are dependent on

effective ordering algorithms, while iterative methods preserve initial sparsity.

Our motivation is to extend the pool of iterative methods applied to power system state esti-

mation in the hope of maintaining the state estimator’s reliability and speed. This work is intended

to screen iterative methods and to assess their performance on the power system state estimation

problem. Due to the nature of our problem, we concentrate our search on the methods known to be
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successful least squares or normal equation solvers. Prospective Newton-Krylov methods will then

be tested against Newton-QR which is numerically the most stable method and performance will

be assessed.

Therefore Krylov subspace methods that have been proposed to solve least squares problem will

be our target. Ideally, the Krylov subspace method would

• not need to “square” the H matrix and deteriorate conditioning;

• preserve the numerical stability of the direct method (i.e., QR factorization);

• have a well-defined and efficient preconditioner that incurs minimal additional cost;

• be computationally cheaper than the direct method.

Power system state estimation has been traditionally solved by direct methods. The first to

apply conjugate gradient methods to power system state estimation were Nieplocha and Carroll in

[64]. Their work has shown that, when implemented with proper sparse matrix format, precondi-

tioned conjugate gradients (PCG) are competitive to a direct solver. Further, PCG methods posses

properties that can enhance the speed of calculations on parallel processing computers.

Galiana et al. in [31] applied the conjugate gradient method with an incomplete Cholesky

preconditioner to solve sets of linear equations in the fast decoupled and the DC load flow problems.

Their test results show that PCG performs significantly faster than a direct solver as the system

size and connectivity increases.

A review of the important aspects of Krylov subspace methods and its fundamental ideas relative

to power flow applications is presented by Semlyen in [78].

Dağ and Alvarado in [22] proposed a method for obtaining a positive definite incomplete

Cholesky preconditioner for coefficient matrices that arise in power system applications like state

estimation, power flow, security analysis, and transient stability. They demonstrate reliable conver-

gence of the CG method with their proposed preconditioner.

Dağ and Samlyen in [23] proposed preconditioned conjugate gradient with an approximate

inverse of the coefficient matrix as preconditioner, based on a matrix-valued Chebyshev polynomial.

With the proposed PCG method they solved fast decoupled load flow. Their test results showed that

the PCG algorithm with matrix-valued Chebyshev polynomial as a preconditioner is comparable to

traditional direct methods used for fast decoupled load flow. Their opinion is that if implemented

using parallel processing architecture, their proposed algorithm could perform even better.
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Nieplocha et al. in [65] compared performance of a direct versus a CG-based solver of the state

estimator’s normal equations on multi-core-processor computers. Their implementation showed

encouraging results in favor of the CG solver.

The general view of all of these authors is that problem-specific preconditioners deserve more

research because of their promise to improve convergence properties of the CG methods.

3.1.1 Power System State Estimation - Problem Formulation

Power system state estimation is an algorithm for determining the system state from a model

of the power system network and redundant system measurements. The state estimation nonlinear

measurement model is defined by

z = h(x) + ε

The state estimation problem is formulated as a weighted least-squares problem

min
x∈Rn

J(x) =
1
2
(z − h(x))T R−1(z − h(x))

The problem is solved by minimization of the quadratic approximation of the objective function

around a starting point. The first-order necessary conditions for a minimum result in the equation

∇J(x) = −HT R−1(z − h(x)) = 0

The optimum is found via Newton’s method by solving the system

∇2J(xk)s = −∇J(xk)

xk+1 = xk + s

at each iteration, until convergence is attained. In practice, the exact Hessian ∇2J(x) is approxi-

mated by the Gauss-Newton Hessian ∇2J(x) = HT R−1H, resulting in an iterative equation of the

form

HT R−1Hs = HT R−1r (3.1)

where H = ∂h/∂x ∈ Rm×n is the Jacobian matrix and r = z − h(x) is the m-dimensional residual

vector.

Equations (3.1) are the so-called normal equations of the weighted least-squares problem. While

the normal equations can be solved using several methods, orthogonal transformations (i.e., QR
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decomposition) is numerically the most stable direct method. QR factorization can be computa-

tionally expensive even for sparse problems. One reason for this is the creation of fill-ins during

the factorization process (a fill-in is the creation of a new non-zero matrix element). With direct

methods, the ability to overcome fill-ins is limited. The best one can do with direct methods is to

keep fill-ins under control by ordering algorithms.

Krylov subspace iterative methods are well known solvers for large sparse linear systems. Among

the benefits of iterative methods for the solution of large sparse systems are: only matrix-vector

multiplications are required per iteration; there are no fill-ins; theoretical convergence within at

most n iterations (using exact arithmetic), where n is the size of the system, though in practice

they may require far fewer or far more than n iterations. The hope is that the state estimator

can take advantage of that. The conjugate gradient method works on symmetric positive-definite

systems, such as equation (3.1), although, as in the direct methods, a concern is the squared

condition number of H when applied to normal equation.

The use of preconditioners has clearly been the key to the success of CG methods in practice.

It has been found in [22] that the preconditioner has to be positive definite to ensure convergence.

Having a symmetric and positive definite gain matrix (HT R−1H) is a necessary but not a sufficient

condition to obtain a positive definite incomplete Cholesky preconditioner. The LSQR method [68],

[67] solves the normal equations without squaring the H matrix.

3.1.2 Sparse matrix computation - The Problem of Fill-in

Power system network equations require the use of large sparse matrices. A matrix is considered

sparse if most of its elements are zero. The reasons for development of sparse matrix methods are to

reduce storage and computational requirement. Sparse matrix problems require special techniques

which avoid or reduce the storage of zero elements and work only with the nonzero entries. A

historical review of the sparse matrix methods relative to power system applications is provided by

Alvarado et al. in [7].

When using matrix factorization in either the dense or sparse case, zero elements before fac-

torization can become nonzero after factorization. The phenomenon of turning a zero element of a

sparse matrix into a nonzero element during a factorization is called fill-in. This kind of behavior

occurs in any kind of factorization (i.e., Cholesky, QR, ...). For full matrices this phenomenon is

not critical since all elements are stored in spite of their value. For sparse matrices this is not the

case. Fill-ins increase storage requirements and produce an additional computational burden.
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The goal of sparse matrix factorization is to limit the fill-in as much as possible. The applied

mathematics community has developed algorithms that minimize fill-ins. These algorithms order the

rows and columns of a given matrix A with the aim of reducing the fill-in during the factorization,

prior to the actual factorization. Thus, the factorization process is divided into two stages: the first

is symbolic, and the second is referred to as the numeric stage. Symbolic factorization is applied to

the basic sparsity structure of the matrix A without regard for the numerical values of its entries.

3.1.3 Condition Number Analysis

Condition number analysis of the problem equation is important whether direct or iterative

methods are used. A poorly conditioned problem is generally difficult to solve by any method.

For a square matrix A ∈ Rn×n, the 2-norm condition number is:

κ2(A) = ‖A−1‖2 · ‖A‖2 =
λ1(A)
λn(A)

where: ‖.‖2 is an Euclidean or 2-norm and λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) are eigenvalues of A. In

general, if A ∈ Rm×n is a non-square matrix, with p-singular values σ1(A) ≥ σ2(A) ≥ · · · ≥ σp(A),

where p =min{m,n} then the 2-norm condition number of A is defined as:

κ2(A) =
σ1(A)
σp(A)

The condition number measures the relative change in the solution as a multiple of the relative

change in the data. In other words, for the linear system Ax = b relative error in x can be κ2(A)

times the relative error in A and b [35]. Matrices with small condition number are said to be

well-conditioned while matrices with large condition number are ill-conditioned.

The convergence rate of Krylov subspace methods depends on condition number; and they

perform poorly on systems that are not well conditioned. Besides the conditioning of the problem,

the convergence of iterative methods also depends on the spectral properties or the distribution of

the eigenvalues of the coefficient matrix [9].

Condition number analysis of power system state estimation has been the subject of research

first by Gu et al. in [36] and then Ebrahimian and Baldick in [28]. Reference [28] studied the effect

of combinations of different types of measurements on the condition number of the gain matrix. In

[28] a formula for the approximate condition number in terms of number of different measurement

types is developed. It is based on the following assumptions: the state estimator Jacobian is derived

from the fast decoupled load flow model, the network is radial, and different measurement error
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variances are assigned to different measurement types. These assumptions are similar to the ones in

[36]. Reference [28] provides guidelines for the order of the condition number that can be expected

in power system state estimation.

With exact arithmetic, CG would terminate in at most n iterations. In practice (finite precision

arithmetic) it may need far more, or far fewer if A has clustered eigenvalues.

CG works well on matrices that are either well conditioned or have just a few distinct eigenvalues

(eigenvalues or singular values are clustered ). A favorable eigenvalue distribution can be achieved

by finding a preconditioner, a topic to be discussed in this chapter.

Table 3.1 presents spectral properties and condition numbers for the matrices derived from the

IEEE 14-bus and IEEE 30-bus test cases described in Fig. A.1 and in Fig. A.2 of Appendix A,

where more details about the particular case can be found. Note that the matrix Hω = R−1/2H is

the weighted Jacobian matrix used in Newton-QR algorithm, and G is the gain matrix HT R−1H.

Table 3.1: Condition Number and spectral properties of the IEEE test cases

IEEE 14 bus IEEE 30 bus
κ2(H) 77.8 342.3
κ2(Hw) 35.3 190.3
κ2(G) 1.15 · 103 3.16 · 104

σ1(H) 50.6 88.9
σn(H) 0.641 0.259
σ1(Hw) 1.56 · 103 2.8 · 103

σn(Hw) 45.1 14.76
λ1(G) 2.41 · 106 6.81 · 106

λn(G) 2.1 · 103 215.6

3.2 Krylov Subspace Methods

Consider the system of linear equations Ax = b. The kth Krylov subspace generated by the

matrix A and vector r0 is

Kk(A, r0) ≡ span
{

r0, Ar0, A
2r0, . . . , A

k−1r0

}

where r0 is the initial residual vector r0 = b−Ax0 associated with the initial approximate solution

x0. A Krylov subspace method determines

xk = x0 + zk = A−1b zk ∈ Kk for k ≤ n
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where

zk =
k−1∑

j=0

λjA
jr0 ∈ Kk

Different methods are determined by different choices of zk. Krylov subspace methods are based

on two traditional criteria:

1. Minimal residual (MR) criteria stated as: choose zk ∈ Kk to solve

min
z∈Kk

‖b−A(x0 + z)‖2 = min
z∈Kk

‖r0 −Az‖2

2. Orthogonal residual (OR) criteria stated as: Choose zk ∈ Kk so that

r(zk) = b−A(x0 + zk) ⊥ Kk

= r0 −Azk ⊥ Kk

Since the CG method, that we will use in this chapter is based on the OR criterion, we will state

the basic idea behind it. For a given basis matrix Bk = (b1, · · · , bk) of the kth Krylov subspace,

the vector zk ∈ Kk can be written as zk = Bkyk for some yk ∈ Rk. With respect to the basis Bk,

the OR criterion can be stated as

BT
k ABkyk = BT

Kr0 (3.2)

The original Krylov subspace basis Bk =
(
r0, Ar0, · · · , Ak−1r0

)
is often very ill-conditioned. A

well-conditioned basis of the Krylov subspace Vk is generated with the Arnoldi process outlined

in Alg. 4. The basis generated by the Arnoldi process is orthonormal (i.e., V T
k Vk = I) because it

draws on the modified Gram Schmidt algorithm.

The Arnoldi process of Algorithm 4 generates

Vk = (v1, · · · , vk) and Hk =




h11 · · · h1k

h21
...

...
. . .

...

0 · · · hk+1,k




For some k the process breaks down (i.e., hk+1,k = 0)

Avk ∈ Kk = span {v1, , . . . , vk}

AVk =





Vk+1Hk before breakdown

VkH̄k on breakdown
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Algorithm 4 Arnoldi process [95]
Given r0

set ρ0 ≡ ‖r0‖ and v1 ≡ r0
ρ0

for k = 1, 2, . . . do

Initialize vk+1 = Avk

for i = 1, . . . , k do

Set hik = vT
i vk+1

Update vk+1 ← vk+1 − hikvi

end for

hk+1,k = ‖vk+1‖2
Update vk+1 ← vk+1

hk+1,k

end for

where

H̄k =




h11 · · · · · · h1k

h21 h22 · · · h2k

...
. . . . . .

...

0 · · · hk,k−1 hkk




is a k × k upper Hessenberg matrix. After a Krylov subspace orthonormal basis Vk is found, the

OR condition in equation (3.2) becomes

V T
k AVkyk = V T

k r0

which leads to

H̄kyk = ρ0e1

where ρ0 = ‖r0‖ and e1 = (1, 0, · · · , 0)T . Therefore we only need to solve a k×k Hessenberg system.

Once yk is obtained, zk is found from zk = Vkyk

xk = x0 + zk = A−1b

A general reference on Krylov subspace methods is Saad [73].

A Newton-Krylov method is an implementation of Newton’s method in which a Krylov subspace

method is used to approximately solve the linear systems that characterize the steps of Newton’s
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method. In our case the Krylov subspace method will be applied to solve the normal equation (3.1)

of the least squares problem. A Newton-Krylov method that uses a specific Krylov subspace method

is often designated by appending the name of the method to “Newton”, as in “Newton-CGNR” or

“Newton-LSQR”.

In this chapter the name Newton-QR is reserved for the direct method of solving the normal

equations based on Givens rotations, against which we compare the performance of the Newton-

Krylov method.

3.2.1 The Conjugate Gradient Method

The conjugate gradient (CG) method was developed by Hestenes and Stiefel in [38] and is one of

the best known iterative methods for symmetric positive definite (SPD) systems of linear equations.

The CG method is a realization of the OR criterion that requires

r(zk) = b−A(x0 + zk) ⊥ Kk

CG exploits orthogonality of the Krylov basis to estimate the residuals. In finite-precision arithmetic

this orthogonality can be lost and the estimate of the residual in the iteration can be poor [48].

For a symmetric matrix A, a step zk that satisfies the orthogonal residual criterion can be found

from the following constraint minimization problem:

zk = min
z∈Kk

Φ(z) =
1
2

(z − x∗)T A (z − x∗) = eT Ae (3.3)

where: x∗ = A−1b− x0 = A−1r(x0).

In order to show that the solution of this constrained minimization problem satisfies the OR cri-

terion, we define the function Ψ(y) = Φ(Vky) where zk = Vky and transform the above constrained

problem in Kk into an equivalent unconstrained problem in Rk

yk = min
y∈Rk

Ψ(y) = min
y∈Rk

Φ(Vky)

The first-order necessary condition for the above problem is

∇Ψ(y) = V T
k ∇Φ(Vky) = V T

k ∇Φ(z) = 0

or in other words, the gradient of Ψ(y) is orthogonal to the basis of the Krylov subspace. By

choosing a proper scalar valued function Φ(z) with its gradient equal to the residual r(z), the first-

order necessary condition provides us with the OR criterion. The objective function in (3.3) is the
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desired function since

∇Φ(z) = A(z − x∗) = Az − r(x0) = −r(z)

Therefore minimization of Ψ(y) with zk = Vky, is equivalent to finding zk that satisfies the OR

criterion

∇Ψ(y) = 0 ⇔ V T
k ∇Φ(z) = 0

⇔ V T
k r(z) = 0

As we will see shortly, the underlying idea behind the LSQR method is very similar, although the

solution steps in obtaining zk are different.

Two important theorems in [20] describe factors that influence the convergence behavior of the

CG method. The first factor is the condition number of A. If the matrix is ill-conditioned, then

round-off errors may prevent the algorithm from obtaining a sufficiently accurate solution after n

steps. The worse the conditioning of A, the slower the convergence of CG is likely to be. The second

factor is the eigenvalue distribution of A. The tighter the eigenvalues of A are clustered, the faster

the convergence.

The pseudocode for the Conjugate Gradient Method is given in Algorithm 5.

Algorithm 5 The Conjugate Gradient Method [95]
Given: A, b, x, tol, itmax

Initialize: r = b−Ax, ρ2 = ‖r‖22, z = 0, β = 0

Iterate

for itno = 1, 2, . . . , itmax do

If ρ ≤ tol, go to END

Update p← r + βp

Compute Ap

Compute pT Ap and α = ρ2/pT Ap

Update z ← z + αp

Update r ← r − αAp

Update β ← ‖r‖22/ρ2 and ρ2 ← ‖r‖22
end for

Update x← x + z
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3.2.2 The CG for the solution of the Normal Equation

The conjugate gradient method applied to the normal equation

AT Ax = AT b (3.4)

constructs the kth iterate

xk = x0 + zk for k ≤ n

using the update zk that lies in the Krylov subspace

K̃k(AT A, AT r0) ≡ span
{

AT r0, (AT A)AT r0, . . . (AT A)k−1AT r0

}

When applied to the system Ax = b, the CG method produces zk such that eT Ae is minimal over

all corrections in Kk. In the same way, when applying the CG method to the normal equation (3.4),

one has to solve the minimization problem

zk = min
z∈Kk

= ẽT (AT A)ẽ

where: ẽ = zk − (AT A)−1AT b. It can be shown that this minimization problem is equivalent to the

problem

zk = min
z∈Kk

(Azk − b)T (Azk − b) = min
z∈Kk

‖rk‖2 (3.5)

Therefore the kth iterate minimizes ‖rk‖2 over all corrections in K̃k. Hence the name CGNR,

meaning CG on the Normal equations with Residual minimization.

Although sometimes effective, solving the normal equation using the CG method is handicapped

by the squaring of the condition number of A [35].

3.2.3 Preconditioning

A preconditioner is a matrix M that transforms the initial problem Ax = b into an equivalent

system

M−1Ax = M−1b

whose coefficient matrix has more favorable spectral properties. The preconditioner clusters the

eigenvalues and improves the condition number, which ultimately speeds the convergence of the

equivalent system. Iteration of a preconditioned system is more expensive, but with careful choice
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of preconditioner, one may reduce the total number of iterations. Finding an efficient preconditioner

is a difficult task.

While there are preconditioners that are inexpensive to construction, more often than not the

use of a preconditioner in an algorithm involves the extra cost in finding and perhaps factoring

M . Many times the only effective preconditioner M is one that approximates A. In those cases, in

order to avoid the need for factoring, a preconditioner is defined as M = LU (with L and U as

triangular matrices). That way solving a preconditioned system would be comparable in expense

to solving a system with coefficient matrix A. In preconditioned algorithms, the hope is that the

initial cost in obtaining the preconditioner will pay off through the iterative process. Another

computational savings might be repeated use of the same preconditioner in successive iteration

steps. An effective preconditioner is often problem specific and thus difficult to find. Each iteration

of the preconditioned CG method in a dense system requires:

• one precondition solve via forward/backward substitution (O (n2))

• one Av product (O (n2))

The Incomplete Factorization Preconditioner

A very important and widely used class of preconditioners is based on incomplete Cholesky

factorization of the coefficient matrix. During Cholesky factorization certain fill elements are cre-

ated. Incomplete Cholesky strategies range from discarding any fill-in during the sparse Cholesky

factorization to allowing different levels of fill-in.

While incomplete Cholesky is not too expensive, one has to be very careful with its implementa-

tion. Obtaining a stable algorithm for incomplete Cholesky is a non-trivial task. One may assume

that it is easy to provide incomplete Cholesky just by constraining the level of fill the existing

algorithm but it has been shown by Golub and Van Loan in [35] that such an algorithm may not

be stable. Incomplete Cholesky may encounter division by zero pivot or may result in an indefinite

matrix. (matrix M is indefinite if xT Mx < 0 ∀x 6= 0). For a stable algorithm we refer the reader

to Elman [29].

In order to be efficient, an incomplete Cholesky preconditioner must be positive definite (xT Mx >

0 ∀x 6= 0). As stressed by Dağ and Alvarado in [22], obtaining a positive definite incomplete

Cholesky preconditioner is a nontrivial task even for a matrix that is symmetric positive definite.
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The CGNR simulation results

The CGNR method is employed for solving the normal equation

HT R−1Hs = HT R−1r

of the state estimation problem.

The following example will illustrate the performance of the CGNR method on the power system

state estimation problem. The CGNR method has been tested on the IEEE 14- and 30-bus networks

with measurement sets described in Fig. A.1 on page 134 and in Fig. A.2 on page 136, respectively,

of Appendix A. For performance comparison, the Newton-QR direct method has been used. Using

the Krylov subspace methods with exact arithmetic, the number of iteration is constrained by the

size of the system to be solved. In our case the size of the system is determined by the number of

state variables, which is 2n− 1 where n is the number of buses in the network. In practice we may

expect that the number of iterations per step to be larger or smaller than n.
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Figure 3.1: Convergence performance of the CGNR method for the IEEE 14-bus test case

The first test case is the IEEE-14 bus network with the measurement set shown in Fig. A.1

on page 134 in Appendix A. The size of the system is 2n − 1 = 27, which implies that in exact

arithmetic CGNR would converge within 27 iterations. Convergence of the CGNR method is shown

in Fig. 3.1. The statistics showing the CGNR work per iteration are presented in Table 3.2. The

CGNR results have shown that residual reduction is obtained many times for a number of inner
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Table 3.2: Newton-CGNR applied on IEEE 14-bus test case
Iteration # of inner iterations

1 18
2 17
3 23
4 16
5 27
6 13
7 30
8 18

iterations less than 27, although in outer iteration 7, the number of inner iterations needed is

slightly greater than 27.
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Figure 3.2: Convergence performance of the CGNR method for IEEE 30-bus test case

For the IEEE 30-bus test case and the measurement set shown in Fig. A.2 page 136 of Appendix

A, results are shown in Table 3.3 and in Fig. 3.2. In this case, although successful, the number of

iterations often exceeds by far the size of the system (i.e., 2n− 1 = 59).

3.3 The LSQR Method

The LSQR method, which is similar in style to the CG method applied to the normal equation,

will be discussed in this section. The LSQR algorithm has been proposed by Saunders and Paige
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Table 3.3: Newton-CGNR applied on IEEE 30-bus test case
Iteration # of inner iterations

1 48
2 68
3 48
4 82
5 61
6 91
7 47
8 117
9 47
10 114
11 47

in [68] and [67]. Numerical tests that compare LSQR with several other CG algorithms are given

in [68]. It is shown that LSQR is more reliable than any other CG based method when A is

ill-conditioned.

As mentioned before, conjugate gradients (CG) work on symmetric positive-definite systems.

When applied to the normal equation, the concern is the squared condition number. It would be

advantageous if a Krylov subspace iterative method could solve the least-squares normal equation

without squaring the A matrix. The reasoning is just as with the QR factorization direct method:

the most effective and robust methods for solution of least-squares problem prevent squaring the

gain matrix and work with A directly.

LSQR is a method that meets this requirement. It is a Krylov subspace iterative method, analyt-

ically equivalent to the standard method of conjugate gradients. LSQR solves the normal equation

without squaring the gain matrix, and so it possesses more favorable numerical properties. The

difference between CG for least-squares and LSQR is that CG is based on the Lanczos method

while LSQR is based on the Golub-Kahan bidiagonalization process. The matrix operations needed

to perform the LSQR algorithm are products: Av and AT u, k-Givens rotations, and forward sub-

stitution. The computational expense associated with the algorithm is of the order n2 in a dense

case.

First we will discuss the LSQR method applied to the system

Ax = b

where A is an m× n real matrix so that m ≥ n and b is a real m× 1 vector. A rectangular m× n
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matrix A can be reduced to lower bidiagonal form by

UT AV = B

where U (m× k) and V (n× k) are orthogonal matrices and B is a k× k lower bidiagonal matrix.

An algorithm that brings A into bidiagonal form is known as the Golub-Kahan process [34]. The

method will be first described theoretically and then implementation details will be addressed.

3.3.1 Golub-Kahan bidiagonalization process

Bidiagonalization is often used as the first step for dense singular value decomposition (SVD)

[35]. The approach to bidiagonalizing A is to generate columns of U and V sequentially as is done

by the Lanczos algorithm for tridiagonalizing a symmetric matrix used in the CG algorithm. So in a

sense the Golub-Kahan bidiaginalization algorithm is a Lanczos-type algorithm. The algorithm for

the Golub-Kahan process generates vectors uk and vk and positive scalars αk and βk (k = 1, 2, . . . )

as described by the following equations and outlined in Algorithm 6. Bidiagonalization is performed

iteratively and requires products Av and AT u; therefore, sparsity can be fully utilized. The scalars

Algorithm 6 Golub-Kahan process
set β1 = ‖b‖ and u1 = b

β1
(exit if β1 = 0)

set α1 = ‖AT u1‖ and v1 = AT u1
α1

(exit if α1 = 0)

Iterate

for k = 1, 2, . . . do

uk+1 = Avk − αkuk

βk+1 = ‖uk+1‖
uk+1 ← 1

βk+1
uk+1

Exit when βk+1 = 0

vk+1 = AT uk+1 − βk+1vk

αk+1 = ‖vk+1‖
vk+1 ← 1

αk+1
vk+1

Exit when αk+1 = 0

end for

αi ≥ 0 and βi ≥ 0 are chosen so that ‖ui‖ = |vi‖ = 1. The algorithm recurrence relationships can
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be written also as

uk+1 = Avk − αkuk

βk+1 = ‖uk+1‖
uk+1 ← 1

βk+1
uk+1





⇔ βk+1uk+1 = Avk − αkuk for k = 1, 2, . . .

and
vk+1 = AT uk+1 − βk+1vk

αk+1 = ‖vk+1‖
vk+1 ← 1

αk+1
vk+1





⇔ αk+1vk+1 = AT uk+1 − βk+1vk

Therefore, after k steps we have:

AVk = Uk+1Bk = UkLk + βk+1uk+1e
T
k

AT Uk+1 = VkB
T
k + αk+1vk+1e

T
k+1 = Vk+1L

T
k+1

where Uk = (u1 u2 . . . uk), Vk = (v1 v2 . . . vk), Lk is lower bidiagonal, and Bk is lower bidiag-

onal with one extra row:

Bk =




α1

β2 α2

β3 α3

. . . . . .

βk αk

βk+1




Lk =




α1

β2 α2

β3 α3

. . . . . .

βk αk




thus, Bk can be written as

Bk =


 Lk

βk+1e
T
k




The bidiagonalization process breaks down for some k ≤ n (i.e. either βk+1 = 0 or αk+1 = 0).

Using exact arithmetic UT
k Uk = I and V T

k Vk = I, while in the presence of rounding errors, the

previous identities hold to within machine precision. In practice using floating-point calculations,

more sophisticated stopping criterion is needed since βk+1 is unlikely to vanish for any k.

AVk =





Uk+1Bk before breakdown

UkLk on breakdown
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3.3.2 The LSQR Algorithm

Development of the LSQR algorithm starts with the same objective function as the CGNR

method. The objective function is least-squares residual minimization over the vectors in the kth

Krylov subspace

J(x) = min
xk∈Kk

rT
k rk = min

xk∈Kk

‖rk‖2

where

rk = b−Axk

is the residual vector for a given xk. If we choose yk ∈ Rk such that xk = Vkyk and Vk is a basis of

the Krylov subspace Kk, the residual vector can be written as:

rk = b−Axk

= β1u1 −AVkyk

= β1Uk+1e1 − Uk+1Bkyk

= Uk+1 (β1e1 −Bkyk)

Thus the unconstrained objective function has the form

J(y) = min
y∈Rk

‖Uk+1 (β1e1 −Bkyk) ‖2

Since

‖Uk+1 · w‖ =
√

wT UT
k+1Uk+1w = ‖w‖

due to orthonormality of the matrix Uk+1, the objective function simplifies to

J(y) = min
y∈Rk

‖Bkyk − β1e1‖2 (3.6)

with corresponding normal equation

BT
k Bkyk = BT

k β1e1 (3.7)

We only need to solve a k×k bidiagonal system. Equation (3.7) can be solved using QR factorization

of Bk to retain stability. We will use Givens rotations to factor

Qk,k+1 . . . Q2,3Q1,2︸ ︷︷ ︸
Qk

Bk =


 Rk

0



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Note that the QR factorization for LSQR can be computed at negligible cost using k rotations of

the lower diagonal elements β2 . . . βk of Bk.

 Rk

0


 yk = QT

k β1e1

where

QT
k β1e1 =


 zk

ζk+1




so

Rkyk = zk

Substituting back xk

RkV
−1
k xk = zk

xk can be calculated by

xk = VkR
−1
k︸ ︷︷ ︸

Wk

zk

where

Wk = VkR
−1
k

can be calculated from

RT
k W T

k = V T
k

using column-by-column forward substitution. Note that the solution xk = Vkyk lies in the Krylov

subspace

K̂k(AT A, AT b) ≡ span
{

AT b, (AT A)AT b, . . . (AT A)k−1AT b
}

The LSQR algorithm that we implemented is from [68].
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Algorithm 7 LSQR algorithm 1
Initialize β1 = ‖b‖ and u1 = b

β1

Initialize α1 = ‖AT u1‖ and v1 = AT u1
α1

Iterate

for k = 1, 2, . . . do

Bidiagonalization

βk+1uk+1 = Avk − αkuk

αk+1vk+1 = AT ui+1 − βk+1vk

Exit when βk+1 = 0 or αk+1 = 0

end for

Factor Bk = QkRk

Calculate zk = QT
k β1e1

Calculate Wk from RT
k W T

k = V T
k

Calculate xk = Wkzk

Table 3.4: LSQR method results for IEEE 14-bus test case
# of inner iterations for Newton-LSQR with

outer iteration FC precond. IC precond. w/o precond.
1 1 18 27
2 11 18 27
3 9 15 27
4 6 11 27
5 2 4 18
6 2 7
7 7

Table 3.5: IEEE 14-bus test case - First-order necessary condition

‖∇J(x)‖
iteration Newton-LSQR Newton-QR

1 1.0196 · 10−4 1.0196 · 10−4

2 94.2197 94.2096
3 0.2578 0.2578
4 4.299 · 10−4 3.2489 · 10−4

5 1.8805 · 10−4 6.5315 · 10−6

6 4.2301 · 10−5 6.5474 · 10−8
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Algorithm 8 LSQR algorithm 2[68]

Initialize β1 = ‖b‖ and u1 = b
β1

Initialize α1 = ‖AT u1‖ and v1 = AT u1
α1

Set ω1 = v1

Set x0 = 0

Set φ1 = β1

Set ρ1 = α1

Iterate

for i = 1, 2, . . . do

Bidiagonalization

βi+1ui+1 = Avi − αiui

αi+1vi+1 = AT ui+1 − βi+1vi

Orthogonal transformation

ρi = (ρ2
i + β2

i+1)
1/2

ci = ρi/ρi

si = βi+1/ρi

θi+1 = siαi+1

ρi+1 = −ciαi+1

φ1 = ciφi

ρi+1 = siρi

Update x, ω

xi = xi−1 + (φi/ρi)ωi

ωi+1 = vi+1 − (θi+1/ρi)ωi

Test for convergence, exit if stopping criteria have been met

end for
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3.3.3 The LSQR Simulation Results

To evaluate the performance of the LSQR algorithm we have used the IEEE 14-bus and IEE

30-bus test cases with the measurement sets described in Fig. A.1 on page 134 and in Fig. A.2

page 136 respectively of Appendix A. Preconditioners used in the LSQR algorithm were found

once at the beginning of the algorithm and were used repeatedly in successive Newton iteration

iterations. Two extreme cases of preconditioners were applied: Full Cholesky (FC) (i.e., option ’inf’

in MATLAB meaning “infinite tolerance”) and the no fill-ins Cholesky preconditioner or Incomplete

Cholesky (IC) (i.e., option ’0’ in MATLAB, meaning zero tolerance). The FC essentialy requires

the full factorization of A, and in terms of computational effort for obtaining and solving the

preconditioned system, probably least effective. The FC initially leads to the solution using LSQR

in a single iteration (M−1A = I); thus the method is the direct method at the very first iteration.

Since the preconditioner is calculated only once, consecutive iterations require more work. The

Newton-LSQR method without preconditioner was also considered. The incomplete Cholesky (IC)

in our case presents a good trade-off between comutational effort for obtaining and solving on one

hand and convergence efficiency on the other. Fig. 3.3 illustrates the convergence behavior of the

Newton-LSQR method when applied to the IEEE 14-bus test case. Performance of the Newton-

LSQR method with Incomplete Cholesky as a preconditioner is depicted in Fig. 3.4. Table 3.5 as

well as Fig. 3.4 shows that in the first three iterations of the Newton-QR and the Newton-LSQR

are the same.
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Figure 3.3: Convergence comparison: Newton-QR vs Newton-LSQR for the IEEE 14-bus test case
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Figure 3.4: Convergence comparison: Newton-QR vs Newton-LSQR with IC preconditioner for the
IEEE 14-bus test case

The effect of the IC preconditioner is apparent when comparing the speed of convergence of the

test run presented in Fig. 3.5 and the one in Fig. 3.6

Test results for the IEEE 30-bus network depicted in Fig. 3.6 also reveal that LSQR iteration

turned out to be exactly equal to the Newton-QR iteration in the first few steps.

An algorithm efficiency comparison has many aspects. Among things to consider are fill-ins,

storage reguirements, number of floating point operations, and potential for paralel computer imple-

mentation. If proven reliable, the only critical comparison will be floating point work per iteration,

since in all other aspects LSQR is far more efficient.

For the sparse case it is more difficult to provide exact floating point operations estimates for

either Newton-QR and Newton LSQR. Thus, without loss of generality, we discuss results obtained

in terms of the cost of the dense case agorithm. Each LSQR iteration requires O (n2) arithmetic

operation and each QR factorization requires O (n3) arithmentic operations. Notice that whenever

the number of LSQR iterations is less than n for the given outer iteration, the LSQR method

cost less. One can see from Table 3.4, that using LSQR with IC preconditioner, number of LSQR

iterations per outer iteration is less than n. Overall computational effort in the IEEE 14-bus case

for the Newton-LSQR method is ≈ 2.5n3 whereas computational effort for the Newton-QR is 5n3.

Similar conclusions holds for the IEEE 30-bus case: LSQR costs less.
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Table 3.6: LSQR method results for the IEEE 30 bus network
# of inner iterations for Newton-LSQR with

outer iteration FC precond. IC precond. w/o precond.
1 1 48 59
2 13 48 59
3 11 46 59
4 8 42 59
5 6 28 59
6 3 8 59
7 2 59
...

...
12 44
13 32
14 13
15 10
16 6
17 3
18 3
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Figure 3.5: Convergence comparison: Newton-QR vs Newton-LSQR for the IEEE 30-bus test case
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Figure 3.6: Convergence comparison: Newton-QR vs Newton-LSQR with IC preconditioner for the
IEEE 30-bus network test case

3.3.4 Conclusions

Preliminary results from the Newton-LSQR iterative solver are very encouraging and interesting.

Computational results have shown that the Newton-LSQR method is effective on our test cases

with very reasonable computational effort. One may have noticed another asset besides its speed

that Newton-LSQR posesses - its numerical robustness. Testing has shown that the reliability of

the direct Newton-QR is preserved when an iterative Newton-LSQR method is applied to the state

estimation normal equations. The hope remains that this trend will be preserved once Newton-

LSQR is applied to larger networks.
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Chapter 4

The Use of Importance Sampling in

Stochastic OPF

4.1 Introduction

The study of steady-state contingency problems is an important and well recognized activity in

the power system planning and operating environment. Methods based upon the use of distribu-

tion factors (both active [97] and reactive [45]) are fast and are widely used for studying single-line

outages. A well known and computationally efficient technique for contingency ranking is the per-

formance index algorithm [56]. Usually, the quadratic performance index (PI) is a scalar function of

either real power loading or voltage magnitude or both. None of these methods go beyond single-line

contingencies.

Our intention is to assess multiple credible contingencies while preserving the detailed AC

network model of the contingency-constrained OPF (CCOPF). With this model much information

can be obtained such as feasibility, locational prices and operating cost. The proposed algorithm

combines sequential-quadratic programming for solving CCOPF with a technique called importance

sampling [46], [30] for stochastic cost assessment of the multiple contingencies. This method emerged

from Monte Carlo importance sampling.

The AC contingency analysis approach is computationally involved, and the computational bur-

den is proportional to the number of contingencies considered. Our approach was to stochastically

assess different multiple-contingency scenarios (but not explicitly solve all of them).

Numerous methods have been proposed to find reliable algorithms for contingency selection
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and assessment. The key point in any proposed method is to achieve balance between acceptable

accuracy and computational speed. The computational burden resulting from contingency analysis

is the reason why most studies are limited to single and a few double-line outages. The contribution

of this work is in stochastic assessment of multiple contingencies which will allow better modeling

of unexpected system events. Currently, reliability is rarely guaranteed under the event of a second

contingency. Therefore the cost/pricing aspect of multiple contingency studies is very important in

order to determine the cost of reliability. Solutions obtained from these scenarios can be also used

to develop appropriate hedging strategies.

Problems associated with contingencies have recently received greater attention, due in part

to blackouts around the world. Since low probability scenarios can lead to blackouts and network

collapse under certain circumstances, our intention was to go beyond the “n − 1” criterion. The

approach is general and allows the stochastic study of any type of “n− k” contingency. Generally

speaking, single-line outages are more probable then double or multiple outages. But if the first

outage is one of the critical lines, then subsequent outages are more likely. That observation guided

our application of the importance sampling algorithm.

This paper presents proposed computational steps for a CCOPF algorithm which is outlined in

[51] as well as an importance sampling method [46] for assessment of multiple contingencies. Monte

Carlo simulation with importance sampling combined with CCOPF in large networks promises to

be an effective technique for analyzing such problems.

4.1.1 Nonlinear CCOPF formulation

The mathematical framework for the solution of the nonlinear contingency constrained optimal

power flow (OPF) is based on sequential quadratic programming as proposed in [51] and described

in detail in [69]. The contingency constrained optimal power flow minimizes the total cost of a

base case operating state as well as the expected cost of recovery from contingencies such as line

or generation outages. The sequential quadratic programming (SQP) OPF formulation [63] has

been expanded in order to recognize contingency conditions, and the problem is solved as a single

entity by an efficient interior point method. The objective function in (4.1) includes the total cost

of operation in the pre-contingency or base case as well as the expected cost of recovery from all

contingencies. This formulation takes into account the system’s corrective capabilities in response

to contingencies introduced through ramp-rate constraints.

Contingency constrained OPF is a very challenging problem, because each contingency con-
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sidered introduces a new problem as large as the base case problem. Not all contingencies have

the same likelihood of occurrence, which leads us to assigning a probability to each contingency

considered. The expected cost of these contingencies is defined as

E {cω(uω)} =
k∑

ω=1

pωdT
ωuω

Thus, by modeling contingency probabilities we can formulate the optimal power flow as a stochastic

programming problem. This formulation is also called the stochastic OPF and its linear form was

the subject of the research by Kimball, Clements and Davis in papers [49] and [50] where it was

solved via an interior point method and Bender’s decomposition.

By proper system reduction and use of constraint relaxation (active set) methods, the compu-

tational burden can be reduced significantly. The mathematical formulation of contingency con-

strained OPF with corrective rescheduling is as follows:

Minimize c(x0, u0) + E {cω(uω)}
Subject to: g(x0, u0) = 0

f(x0, u0) ≤ 0

gω(xω, uω) = 0

fω(xω, uω) ≤ 0

h(u0, uω) ≤ 0

ω = 1, . . . , K

(4.1)

where x0 and xω are state variables for the base and contingency cases, respectively, and u0 and

uω are pre- and post-contingency control settings. Constraints are following:

g(x0, u0) power balance equations for base case;

f(x0, u0) set of inequality constraints for base case;

gω(xω, uω) power balance equations for each contingency case;

fω(xω, uω) set of inequality constraints for each contingency case;

h(u0, uω) ramp-rate constraints;

pω probability of contingency ω;

ω is the set of possible contingencies ω = 1, . . .K.

Sequential quadratic programming coupled with an interior point method, as proposed in [63],

can be used to solve this optimization problem. The Lagrangian for the above problem with non-

negativity constraints imposed on the slack variables si and σi through a barrier parameter µ,
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is

L = c(x0, u0)− µ

(nc0∑

i=1

ln s0i +
K∑

ω=1

ncω∑

i=1

ln sωi +
nr∑

i=1

lnσi

)

+λT
0 g(x0, u0)

+πT
0 (f(x0, u0) + s0)

+
K∑

ω=1

λT
ω

(
gω(xω, uω) + πT

ω (fω(xω, uω) + sω)
)

(4.2)

+
K∑

ω=1

(pωdT
ωuω + γT (h(u0, uω) + σω))

A stationary point of the Lagrangian function is a zero of the following system of KKT conditions

from the interior point formulation:

∇x0L = ∇x0c(x0, u0) + GT
x0

λ + F T
x0

π = 0

∇u0L = ∇u0c(x0, u0) + GT
u0

λ + F T
u0

π + HT
u0

γ = 0

∇xωL = GT
xω

λω + F T
xω

πω = 0

∇uωL = GT
uω

λ + F T
uω

π + HT
uω

γ + pkdk = 0

∇λL = g(x0, u0) = 0

∇π0L = f(x0, u0) + s0 = 0

∇λωL = gω(xω, uω) = 0

∇πωL = f(xω, uω) + sω = 0

∇γL = h(u0, uω) + σ = 0

∇s0L = π0 − µS−1
0 e = 0

∇sωL = πω − µS−1
ω e = 0

∇σL = γ − µΣ−1e = 0

s0 ≥ 0, sω ≥ 0, σ ≥ 0

ω = 1, . . . ,K

where S = diag(s), Sω = diag(sω) and Σ = diag(σ) and e is a vector of ones of appropriate

dimension. The last three of KKT equations are known as complementary slackness conditions. In

order to solve this system of nonlinear equations we first apply a Newton linearization by expanding

the KKT equations about x0, u0, xω, uω.
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Wxx∆x + Wxu∆u + GT
x λ + F T

x π = −∇xc(x, u)

Wux∆x + Wuu∆u + GT
u λ + F T

u π + HT
u γ = −∇uc(x, u)

Wxωxω∆xω + Wxωuω∆uω + GT
xω

λω + F T
xω

πω = 0

Wuωxω∆xω + Wuωuω∆uω + GT
uω

λω + F T
uω

πω + HT
uω

γ = −pωdω

Gx∆x + Gu∆u = −g(x, u)

Fx∆x + Fu∆u + s = −f(x, u)

Gxω∆xω + Guω∆uω = −gω(xω, uω)

Fxω∆xω + Fuω∆uω + sω = −fω(xω, uω)

ΠSe = µe

ΠωSωe = µe

ΓΣe = µe

This linearized set of KKT conditions can be seen as necessary conditions of a quadratic optimiza-

tion problem at each iteration, hence the name sequential quadratic programming.

At this point we give a summary of the major steps of the algorithm. We refer the interested

reader to [69] where the complete procedure can be found. The solution procedure is to decompose

the system and solve it in a few stages. First we eliminate ∆x and λ as well as ∆xω and λω

since these vectors are largest in size. The reduced-order system obtained after elimination of the

variables has the form:

W uu∆u + F
T
u π + HT

u γ = bu

W uωuω∆uω + F
T
uω

∆πω + HT
uω

γ = buω

F u∆u + s = bπ

F uω∆uω + sω = bπω

Hu∆u + Huω∆uω + σ = bγ

ΠSe = µe

ΠωSωe = µe

ΓΣe = µe

This is still a nonlinear system of equations in terms of s, sω, π, πω and σ. The next step in the
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algorithm is to linearize the system about those variables. Linearized variables ∆s, ∆sω and ∆σ

are expressed using the linearized complementary slackness equations and substituted in the rest

of the system. After performing that operation and a few algebraic steps, the reduced system will

have the following matrix form:



W uu F
T
u 0 0 · · · HT

u

F u −Π−1S 0 0 · · · 0

0 0 W uωuω F
T
uω

· · · HT
uω

0 0 F uω −Π−1
ω Sω · · · 0

...
...

...
...

. . .
...

Hu 0 Huω 0 · · · −Γ−1Σ







∆u

∆π

∆uω

∆πω

...

∆γ




=




b̂u

b̂π

b̂uω

b̂πω

...

b̂γ




What we have shown is the block bordered diagonal form that has the base case and one

contingency block, but in general, under multiple contingencies, the above system will expand

along the diagonal and border. The above system is still unacceptably large due to the significant

number of control variables u and uω. As we stressed before, the number of active constraints is

relatively small. Hence it would be computationally cheaper to eliminate the control variables from

the above system. Once the control variables are eliminated, the final stage is a potentially small,

bordered-block diagonal system of the form



C0 V T
0

C1 V T
1

C2 V T
2

. . .
...

Ck V T
k

V0 V1 V2 · · · Vk M







∆π1

∆π2

∆π3

...

∆πk

∆γ




=




r0

r1

r2

...

rk

rγ




(4.3)

to be solved in the inner loop. Here the block matrix C0 corresponds to the base case, the blocks

Cω, ω = 1, . . . K, correspond to the each of the contingency cases, and the bordering blocks Vk arise

from the generator ramping constraints that couple the sub-problems.

Potentially, each diagonal block in (4.3) is as large as the number of all the line flow and control

variable constraints in a single case; (4.3) could be enormous! But constraint relaxation limits the

entries in each ∆πω to just the constraints active for contingency ω, a number which is typically

quite small compared with the size of the base case problem. A method for solving the above

bordered block diagonal (also called multistage) system is suggested in [47], with the caution that
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in this formulation, the block matrices Ck usually differ in size. The first k + 1 equations have the

form:

Cω∆πω + V T
ω ∆γ = rω

from which ∆πω can be expressed

∆πω = C−1
ω

(
rω − V T

ω ∆γ
)

(4.4)

The last equation in the matrix equation (4.3) is:

k∑

ω=0

Vω∆πω + M∆γ = rγ

After substituting ∆πω, last equation becomes:
(

M −
k∑

ω=0

VωC−1
ω V T

ω

)
∆γ = rγ −

k∑

ω=0

VωC−1
ω rω (4.5)

In order to solve (4.5) for ∆γ, we have to factor each diagonal block Cω as:

Cω = UT
ω DωUω

The computational steps in computing ∆γ are

VωC−1
ω V T

ω = VωU−1
ω D−1

ω U−T
ω V T

ω = KT
ω D−1

ω Kω

where Kω = U−T
ω V T

ω is calculated by column fast-forward substitution. Also,

VωC−1
ω rω = VωU−1

ω D−1
ω U−T

ω rω = KT
ω D−1

ω r̄ω

where the term r̄ω = U−T
ω rω is calculated by forward substitution. Therefore, after this factoriza-

tions, (4.5) can be written as
(

M −
k∑

ω=0

KT
ω D−1

ω Kω

)
∆γ = rγ −

k∑

ω=0

KT
ω D−1

ω r̄ω

∆γ can be found from this equation. Now we can go back to (4.4) to calculate ∆πω using the

following procedure:

Cω∆πω = rω − V T
ω ∆γ = r̃ω

Since we already factored Cω, we have

UT
ω DωUω∆πω = r̃ω
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If we define

z = DωUω∆πω

then z can be found from

UT
ω z = r̃ω

by forward substitution and finally ∆πω is calculated from

Uω∆πω = D−1
ω z

by backward substitution. Then the algorithm calculates the rest of the unknowns iteratively.

These are the major steps in the nonlinear SQP CCOPF algorithm. The computation of the

cost of multiple contingencies even with this compact formulation can be prohibitively expensive.

For a 1,000-line network, the number of all possible double-line contingency scenarios is close to

5 million. The core question is how to choose the multiple contingencies to consider in order to

obtain an accurate cost approximation. Stochastic modeling based on Monte Carlo methods is an

attractive approach to a practical answer for such high dimension problems.

4.1.2 Importance Sampling

Importance Sampling- Basic Idea

To illustrate the basic idea of importance sampling we will discuss it first in its basic form,

using it to approximately calculate the value of an integral. A more detailed introduction to general

importance sampling can be found in references on Monte Carlo methods, [82] and [37]. that we

used.

Let us consider a function f(x) defined over the interval D and let us compute approximately

an integral

I =
∫

D
f(x)dx

An underlying assumption is that in the above case the integrand is beyond our power of either

theoretical integration or quadrature formulas, which is the case with a multidimensional integrand,

where the variable of interest x ∈ Rk. The idea is to calculate the above integral approximately as

an expectation of a continuous random variable.
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A naive Monte Carlo method would estimate I based on the independent identically distributed

random samples x(1), . . . , x(N) drawn uniformly from D. An approximation to I in that case can

be obtained as:

I ≈ ÎN =
1
N

N∑

j=1

f(x(j))

The method called importance sampling proposed by Marshall in [55] provides a much better

estimate. Suppose we could generate random samples x(1), . . . , x(N) from a nonuniform distribution

that puts more probability mass in the “important” parts of the sample space D. Let us explain

the basic idea. Without loss of generality, let us assume the simple case where D = [0, 1]. In order

to perform importance sampling, we first select a function g(x) defined over the same interval as

the integral that we want to calculate that satisfies two probability density function conditions:

1. The function g(x) is positive inside [0, 1]

2. The integral of g(x) over the whole interval [0, 1] is equal to 1
∫ 1

0
g(x)dx = 1

Then g(x) is a density function for 0 ≤ x ≤ 1, and we can calculate I as:

I =
∫ 1

0
f(x)dx =

∫ 1

0

f(x)
g(x)

g(x)dx

If ξ is a random number sampled from the distribution g(x) then we define the random variable

η =
f(ξ)
g(ξ)

whose expectation is

E{η} = E

{
f(ξ)
g(ξ)

}
=

∫ 1

0

f(x)
g(x)

g(x)dx = I

Now let us consider N independent, identically distributed random variables ξ1, ξ2, . . ., ξN . Ac-

cording to the central limit theorem, for sufficiently large N , one can estimate the integral I by

means of the unbiased estimator

I ≈ 1
N

N∑

j=1

f(ξj)
g(ξj)

which has a variance

σ2
f/g =

∫ 1

0

(
f(x)
g(x)

− I

)2

g(x)dx
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By proper choice of g(x), one can theoretically reduce the variance substantially, well beyond that

obtained using independent samples. In practice, successful importance sampling depends on the

efficient choice of the importance sampling density g(x). Theoretically, a candidate that produces

zero variance is I · f(x), but its practical value is very low, since in order to select it we have to

know I, the value that we want to estimate. Realistically, one may hope to find a good “candidate”

g(x) that follows the shape of f(x) as much as possible or which will sample more in the regions

where the value of f(x) is high. However, generating random numbers from such a distribution can

be a real challenge.

Importance Sampling in Stochastic OPF

The approach presented in this section follows the derivation in [46]. We present a general

method applicable to multiple contingencies of any type. We just showed that importance sampling

is a variance reduction technique which usually performs well with reasonable sample sizes. The

objective in importance sampling is to concentrate the distribution of the sample points in the

parts of the state space that are of most “importance” instead of spreading them out evenly.

A multiple-contingency state is modeled by a random vector v,

v =
(

v1 v2 . . . vn

)T

where n is the number of independent random variables which could be line status, generator

availability uncertainties, etc. If line contingencies are studied, n is the number of lines, and each of

the entries vi denotes line status. From the perspective of the sample space, line uncertainties are

simpler to study than other kinds of uncertainties, since the state has only two possible realizations,

in service or out of service. Therefore, v can have realization vω with corresponding probability

p(vω), ω ∈ Ω, where Ω is the set of all possible contingency realizations. The number of all possible

scenarios even for a modest order of multiple contingencies is not practically solvable. The operating

cost function c(x, u, vω) depends on the state vector x, the control vector u, and the random vector

vω, which represents the uncertainties. For simplicity of notation, we will denote the cost function

by c(vω) to emphasize its stochastic character, which is crucial in this section.

Consider a random line outage scenario with random vector vω, ω ∈ Ω and N = |Ω|. The cost

of the random line outage scenario c(vω) is an independent random variable with expected value

C, which in our discrete case is

C =
∑

ω∈Ω

c(vω)p(vω)
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As we have shown in the integral example, by applying naive Monte Carlo, an unbiased estimator

of the mean C is:

C ≈ z =
1
N

N∑

ω=1

c(vω)

whose variance depends on the sample size as O(
√

N) regardless of the dimensionality of v. The

expected value will be the same if we calculate it as

C =
∑

ω∈Ω

c(vω)p(vω)
qω

qω

by introducing a new sampling probability density function qω.

Successful importance sampling, as discussed, requires selecting an importance sampling density

qω so that the variance in the estimate is reduced. For these reasons, we want qω to be proportional

to c(vω)p(vω) and at the same time computationally inexpensive to find. A Monte Carlo importance

sampling estimator of C can be then defined as

z =
1
N

N∑

ω=1

rω

where the new random variable is

rω =
c(vω)p(vω)

qω

Now we will show how a potential candidate for a successful sampling function qω can be found.

Let us introduce the notion of the “incremental cost” of a single line contingency. A single-line

contingency state can be defined as the vector
(

τ1 . . . τi−1 vi τi+1 . . . τn

)

with a single random variable corresponding to the base case
(

τ1 . . . τn

)

The incremental cost is defined as the difference between the cost of the contingency case arising

from vi and the base case

Mi(vi) = c(τ1 . . . τi−1 vi τi+1 . . . τn)− c(τ) (4.6)

with corresponding expected value

M = E {Mi(vω
i )} =

n∑

i=1

[c(τ1 . . . τi−1 vi τi+1 . . . τn)− c(τ)] pω
i
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When line outages are studied, the expectation M simplifies to M = Mi, since vi can have only

one different outcome than assumed. Since the incremental cost is proportional to the respective

contingency cost (i.e., Mi(vi) ∼ c(vω) ), the expected value of the random outage scenario can be

written as

C =
∑

ω∈Ω

c(vω)
M

M(vω)
M(vω)

M
p(vω)

=
∑

ω∈Ω

M
c(vω)
M(vω)︸ ︷︷ ︸
new r.v.

M(vω)
M

p(vω)
︸ ︷︷ ︸
new distribution

or as the expectation

C = ME
{ c(vω)

M(vω)

}

therefore the new random variable

F (vω) = M
c(vω)
M(vω)

is distributed according to probability density function

qω =
M(vω)

M
p(vω)

For a particular network structure, we can calculate the base and all single-contingency OPF solu-

tions in order to form an additive approximation of the cost function under multiple contingencies:

c(v) ≈ c(τ) +
n∑

i=1

Mi(vω
i ) (4.7)

where Mi is the incremental cost of the single-line contingency, vi represents a line outage scenario

with probability pω
i , and c(τ) is the cost of the base case. The incremental cost is not too expensive

to compute since we have to find one base case OPF solution and the n solutions of the single-

line outage scenarios. The CCOPF formulation (4.3) shows that each single-line contingency will

contribute to that set of equations one bordered diagonal block (one additional dimension beside

the base case). In other words, we have to solve n one-dimensional CCOPF scenarios instead of

one n-dimensional case.

The expected value of the cost (4.7) for the multiple contingency cases can be expressed in the

following form:

E
{

c(vω)
}

= c(τ) +
n∑

i=1

M
∑

ω∈Ω

F (vω)qω
i

n∏

j=1
j 6=i

pj(vω) (4.8)
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where

F (vω) =
c(vω)− c(τ)∑n

i=1 Mi(vω
i )

qω =
pi(vω)Mi(vω

i )
M

Equation (4.8) can be interpreted as the sum of a constant term and n expectations. To describe

the sampling scheme, partition the sample space Ω into n subspaces Ωi,

n⋃

i=1

Ωi = Ω

each of size ni, corresponding to each line; assign each multi-line contingency to only one partition.

Therefore each line i will be represented in double-line contingencies with weight ni according to

its incremental “importance”

ni =
Mi

M
N

The second component of the double-line outage in the subset Ωi will be sampled according to the

prescribed density function. In our case, since we do not have any a priori knowledge, it will be

uniformly distributed among all other lines j = 1, . . . , n, j 6= i. Therefore, for each ni, the ith sum

in (4.8) can be estimated by

µi =
1
ni

nj∑

j=1

F (vj)

Finally, the estimated expected value of the double (in the general case, multiple) contingency can

be written as:

z = c(τ) +
n∑

i=1

Miµi (4.9)

4.1.3 Numerical example

The importance sampling technique coupled with the CCOPF formulation was tested on the

IEEE 14-bus network. The ramp-rate constraints coefficient ∆ was modeled as 10% of the generating

capacity of each generator. This example tested n − 2 contingency cases. Since the IEEE 14-bus

network has 20 lines, the number of all possible combinations for n − 2 contingency cases is 190.

Since this is still a manageable number for our formulation, we found the exact cost of hedging
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against all 190 cases and compared it with the estimated cost (4.9) obtained using importance

sampling with three different sample sizes (N = |Ω|). In the table, both the cost of the universe of

all contingencies (i.e. all 190 second contingencies) and the estimated cost are normalized against

the base case cost.

The total cost of hedging all 190 second contingency cases is Cn−2 = 1.315 p.u. The fifth

column of Table 4.1 shows the estimation error as a percent of Cn−2. This test case indicates that,

as concluded in [46], importance sampling shows promise in the stochastic evaluation of multiple-

contingency cases.

The implementation for large networks considering multiple contingencies will be the subject of

future research. Our hope is that, as in other importance sampling applications described in [46],

the method will be even more useful for investigating multiple contingencies on large networks.

Future research will also incorporate load shedding into the formulation.

Table 4.1: Results for the IEEE 14-bus network test case

IEEE 14-bus network
Case Sample Sample Estimated Normalized Estimation

size N size % Cost function Error %
1 15 7.9 1.236 6.01
2 20 10.5 1.264 3.88
3 30 15.8 1.270 3.42

4.1.4 Conclusion

Evaluation of multiple contingencies is a challenging problem. The ultimate goal for any prac-

tical stochastic algorithm is to employ a sufficiently detailed model and to construct samples that

emphasize the “important” part of the state space. In the formulation presented, a detailed model

is obtained using nonlinear contingency-constrained OPF and a manageable sample size is achieved

through importance sampling.

We have developed a mathematical formulation and tested it on the IEEE-14 bus network case.

Results of the numerical example show that the expected costs obtained using importance sampling

are close to the actual operating cost of accommodating the full universe of contingencies.

It is hoped that importance sampling-based methods will complement simulation methods in

planning studies by filtering out from the large number of cases being studied those which require

detailed scrutiny.
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Chapter 5

A Formulation of the DC Contingency

Constrained OPF for LMP

Calculations

5.1 Introduction

Restructuring of the electric utility industry started with the unbundling of traditionally ver-

tically integrated utility companies that provided generation, transmission, and distribution into

independent, competitive commercial entities. Generating companies today sell electrical energy on

the open market to which transmission companies have to provide open access. In the restructured

industry, transmission companies are still treated as a monopoly, subject to regulation of the trans-

mission tariffs they can charge for network access. The role of independent distribution companies

is to provide low-voltage power to individual industrial, commercial and residential customers [43].

To ensure reliable, secure, and efficient operation of the power system, the Independent System

Operator (ISO) entity has been established. The role of the ISO is

1. to be independent from market participants (i.e., electric utilities, generator owners, retailers);

2. to coordinate the use of the transmission system;

3. to operate the electric energy market.

With the restructuring of the electric utility industry, operation of the market has moved from

being cost-based to bid-based. Under the Standard Market Design (SMD) issued by the Federal
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Energy Commission (FERC) in 2002, the ISO as the central authority accepts supply and demand

bids submitted by market participants (i.e., sellers and buyers). Once bids are submitted, the ISO

performs a bid-based OPF to determine dispatch of the generation, calculate Locational Marginal

Prices (LMP), and at the same time ensure secure and reliable operation of the power network.

Just as in the regulated industry, computer methods continue to play a major role in imple-

menting the electricity market objective while ensuring secure system operations. A chart showing

the inter-dependence between typical computer applications essential for successful energy market

is depicted in Fig. 5.1.

Real-time snapshots of the system state are of paramount importance for market applications.

In the electricity market environment a state estimator continues to serve the monitoring role

essential for secure system operation. Its prominent role is to ensure that market modules are

based on accurate on-line data and correct topology. The state estimation function utilized in the

energy market is shown in Fig. 5.1. Only a robust and reliable state estimator can fulfill that need

at all times. That segment of the problem is stressed in Chapter 2, where development of a robust

estimator is discussed in detail.

The process of computing LMPs depicted in Fig. 5.1 is based on some form of contingency

constrained OPF (CCOPF) and is decomposed into two stages. The information about the system

status and selection of the bids subject to system constraints is performed by the LMP Preprocessor.

The LMP Contingency Processor in Fig. 5.1 represent the contingency screening function. Its

function is to identify efficiently active power flow binding inequalities. In this chapter we will

present a novel algorithm in which this function can be efficiently performed through reduction of

the underlying CCOPF problem. Ultimately, the LMP block in Fig. 5.1 computes the prices.

A Locational Marginal Price (LMP) at a particular node in the network is “the price of supplying

an additional MW of load” at that bus. Or in other words, LMPs can be seen as the least expensive

way of delivering one additional MW of electricity to a node in the network while respecting all

system constrains.

The theory of LMPs, also called spot prices, was developed by Schweppe et al. in a few classical

papers that preceded [75], where a comprehensive treatment of the subject can be found. The work

by Hogan on contract networks in [39] is an important extension of Schweppe’s idea.

The LMPs are obtained from the underlying OPF-based optimization problem. From a math-

ematical point of view, LMPs are derived from Lagrange multipliers or as a solution of the dual

optimization problem. The traditional cost-based OPF, translates in the new market environment
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Figure 5.1: Typical Components of LMP Based Energy Market

into a bid-based OPF. Therefore, the problem objective is to find control settings that minimize

the bid-based objective function constrained by meeting load demand while respecting all other

constraints imposed on the problem. The resulting dispatch yields a set of market-clearing prices

for energy market transactions and for transmission congestion charges. In a linear programming

framework, bids are discrete bids, although in general other formulations of bid functions are pos-

sible [13].

The major factors affecting the LMP values are generator bid prices, the losses throughout the

system, and transmission lines prone to congestion. Thus, each LMP has three components [4]

LMP = LMPE + LMPL + LMPC

where:
LMPE is the component due to the energy;

LMPL is the component due to losses

LMPC is the component due to congestion.

The energy component is the same throughout the system. In optimization language, the energy

component is the Lagrange multiplier of the power balance equations at the reference bus (what

we will define as α). The loss component varies and is usually small. If a lossless network model is

used, as in our case, the loss component is neglected.

Transmission constraints are the cause of congestion. If line flow limits are binding, their effect
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on the LMPs can be significant. Due to them the operator has to dispatch out-of-merit generation

in order to meet the demand. Mathematically speaking, the congestion component is Lagrange

multiplier of the binding line flow constraints; it will be defined soon as πb in our algorithm. There-

fore, transmission constraints contribute to the fluctuation of LMPs. The congestion component

adds or subtracts from the LMP depending on whether power injection at the bus contributes to or

alleviates congestion. These components will be much clearer once we derive the KKT conditions

for the underlying optimization problem. We defer further discussion until then.

Under locational pricing, the cost of transmission congestion emerges as differences in energy

prices between locations connected by a line whose flow hits its limit. The process that is currently

in use by most ISO’s for pricing congestion is based on the LMP-congestion component. Energy

markets that adopted LMP-based congestion management agree that so far experience has been

fairly successful. On a longer horizon, LMPs provide effective financial signals and incentives for

locating new generation and transmission facilities which could provide further cost savings to

energy consumers.

Although less accurate than full nonlinear OPF, a linear programming OPF formulation has

been used almost exclusively in the LMP-based applications. Studies that examined the tradeoff

between a full nonlinear OPF based on AC power flow against a linear OPF based on DC power

flow have shown that results match fairly closely [66].

Linear programming OPF uses the DC power flow model. A favorable feature of the LP-based

OPF is that it can handle many different contingencies in an efficient and computationally accept-

able way. The cost of the computation in a linear OPF is substantially smaller than in a nonlinear

OPF. A drawback of the DC power flow model is that it does not model power losses and is less

accurate.

The development of a novel contingency constrained OPF algorithm suitable for market appli-

cations is the subject of the current chapter. We already discussed a closely related topic in Chapter

3, where the nonlinear CCOPF was used to estimate the cost of multiple contingencies. Since this

chapter deals with energy market applications that have been governed by almost exclusively linear

power flow models, our idea is to develop the CCOPF algorithm in the linear framework. The

algorithm that we present efficiently calculates the dispatch, state and LMPs of the system under

multiple contingencies.

The idea for problem decomposition that is used to develop the algorithm is based on work

of Stott and Hobson in [86]. Once the KKT conditions for the original CCOPF problem have
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been stated, the problem is decomposed into two stages. The first stage is a modified economic

dispatch subproblem, whose solution allows efficient calculation of the system state and the LMP-

congestion prices at the second stage. An interior point method is applied to the problem resulting

in a bordered-block diagonal system for which an efficient solution exists. This formulation provides

a framework to apply the importance sampling in order to obtain estimates of congestion charges

under multiple contingencies.

5.2 Initial problem formulation

The objective in bid-based contingency constrained OPF is to find control settings that minimize

the linear bid-based objective function

J = bT u0

Subject to the base case (pre-contingency) equality and inequality constraints

B0θ0 + C0u0 = −pL

F0θ0 + G0u0 ≤ f0

as well as contingency constraints of the form

Bωθω + Cωuω = −pL

Fωθω + Gωu0 + Hωuω ≤ fω

ω = 1, . . . , K

The equality constraints are power balance equations at each bus in the network. The inequality

constraints are limits imposed on the system components. Contingency constraints are incorporated

either for corrective or preventive scheduling. In our case the corrective approach will be considered.

Corrective control actions are modeled through ramp-rate constraints.

The general problem formulation is:

Minimize bT u0

Subject to: B0θ0 + C0u0 = −pL

F0θ0 + G0u0 ≤ f0

Bωθω + Cωuω = −pL

Fωθω + Gωu0 + Hωuω ≤ fω

ω = 1, . . . , K

(5.1)
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The details of the formulation will be presented once the constraints used in the problem formulation

are defined.

Nomenclature

b ∈ Rng is the bid vector;

B ∈ Rn×n is the negative susceptance network matrix;

θ ∈ Rn is the vector of bus angles (state variables);

u ∈ Rnu is the vector of control variables;

pg ∈ Rng is the vector of generator powers;

pl ∈ Rnl is the vector of nodal loads;

0 subscript that denotes variables or constraints associated with the base case;

ω subscript that denotes variables or constraints associated with that contingency case;

n number of network buses;

ng number of generators;

nl number of loads;

nb number of network branches, but in implementation the number of active line-flow constraints.

5.3 Modeling of Inequality Constraints

In our problem formulation we will have four types of inequality constraints. They are classified

as follows:

• Transmission line flow limits (active power flow limits)

• Generator limits (lower and upper limits on real generation)

• Load-shedding limits

• Ramp-rate constraints

5.3.1 Transmission line flow limits using distribution factors

In DC power flow, active power line flow between nodes i and j is defined as

pij =
1

xij
(θi − θj)
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where xij is the reactance of the line. We will define a vector pline of all active power line flows,

and a matrix E ∈ Rnb×n whose rows correspond to line flows and whose ij element has the form

Eij =
1

xij
(ei − ej)T

where ei is the vector with all components equal to zero except for the ith component, which is

equal to 1. From the power balance equation,

Bθ = Kpg −Mpl

where:

K ∈ Rn×ng is the node-to-generator incidence matrix that has value 1 at position

Kij where i denotes a bus where generator j is connected;

M ∈ Rn×nl is the node-to-load incidence matrix that has value 1 at position

Mij where i denotes a bus where load j is connected

phase angles θi and θj can be obtained as

θi = eT
i B−1(Kpg −Mpl)

θj = eT
j B−1(Kpg −Mpl)

Then, the line flow equation can be written as

pij =
1

xij
(ei − ej)T B−1Kpg − 1

xij
(ei − ej)T B−1Mpl

The vector pline can be written as

pline = EB−1Kpg − EB−1Mpl

where a matrix of so-called distribution factors can be defined as

Fb = EB−1

Since the DC OPF problem requires LU factorization of B, distribution factors can be calculated

at the cost of a two step forward/backward substitution. The first step is to find RT by solving the

equation

UT RT = ET
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via column-by-column forward substitution and the second is finding F T
b from

LT F T
b = RT

via column-by-column backward substitution. It is worthwhile to note that matrix Fb is non-sparse.

Using distribution factors, line limit inequality constraints can be stated as

F bpg − F̃bpl ≤ fb

where

F b = FbK

F̃b = FbM

Among the favorable properties of the DC OPF-based applications is one related to updat-

ing the system matrix B when the network is subject to contingencies. Since efficient contingency

calculation is of particular interest in the development of the algorithm, we will show the computa-

tional steps for recomputing distribution factors of the network subject to line contingencies. When

multiple (i.e., k-line) contingencies are considered, modifications to matrix B can be represented

using U and V matrices in Rn×k. The general Sherman-Morrison-Woodbury formula [35] writes

the inverse of (B + UV T ) as

(B + UV T )−1 = B−1 −B−1U(I + UT B−1U)−1V T B−1

which allows efficient recalculation of distribution factors.

When single contingencies are considered, the new B matrix, denoted as Bc, can be expressed

as a rank-one modification:

Bc = B + uvT

The updating procedure is a very important part of designing a computationally efficient algorithm.

Using the rank-one Sherman-Morrison-Woodbury formula, B−1
c can be written as

B−1
c = (B + uvT )−1 = B−1 − 1

1 + vT B−1u
(B−1u)(vT B−1)

Let us define

γ =
1

1 + vT B−1u
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For efficient solution, write

vT B−1u = vT U−1L−1u = v̄T ū

where v̄ is calculated from UT v̄ = v via fast-forward substitution, and ū is calculated from Lū = u,

also by fast-forward substitution. Thus,

B−1
c = B−1 − γ · ũ ṽT where γ =

1
1 + v̄T ū

and ṽ is calculated from Uũ = ū via fast-backward substitution, and ṽ is calculated from LT ṽ = v̄,

also by fast-backward substitution. Therefore, the distribution factors for each contingency can be

found by

F c
b = Fb − γ · Eũ ṽT

5.3.2 Generator output limits

Generator output limits are constrained between

pmin
g ≤ pg ≤ pmax

g

where

pmax
g is the maximum generation limit as determined by its rating;

pmin
g is the minimum generation limit, usually dependent on boiler stability and not necessarily zero.

For modeling purposes, we split each double-sided limit into two inequalities

pg1 ≤ pmax
g1

pg2 ≤ pmax
g2

...

pgng ≤ pmax
gng

−pg1 ≤ −pmin
g1

−pg2 ≤ −pmin
g2

...

−pgng ≤ −pmin
gng
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written in matrix form as

 Ig

−Ig


 pg ≤


 pmax

g

−pmin
g




Fgpg ≤ fg

where Ig is the identity matrix of dimension (ng × ng).

5.3.3 Load shedding limits

Load shedding is included in both the objective function and in the constraint set. In the past,

high cost has been assigned to the load shedding variables so that they are adjusted only as a

last resort when no other solution can be achieved. Load shedding in today’s market is tailored to

customers’ needs. By assigning proper weights we can model customers’ participation in the market

dispatch, especially if provided with forecasts of price information.

There are two alternatives for including load in the dispatch:

• voluntary - where customers agrees to adapt their demand to meet utility needs under un-

certainty or during a period of high electricity price (congestion) or generation shortage;

• involuntary - by assigning very high weights and using load shedding.

Our formulation will allow this choice through the assignment of appropriate load weights ci in

the weight vector c. Load shedding limits represent the amount of load shed, generally bounded

between 0 and the actual load p0
li
,

0 ≤ pli ≤ p0
li

which we write as

 Il

−Il


 pl ≤


 p0

l

0




Flpl ≤ fl

where Il is the identity matrix of dimension (nl × nl)
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5.3.4 Ramp-rate constraints

Corrective control actions produce lower cost than preventive methods that are more conser-

vative. In preventive methods contingency constraints are imposed in the base case and corrective

actions are not allowed. One has to solve the base case such that a feasible operating state is

achieved without considering the systems’ corrective actions.

Corrective control actions involve changing the control variables of the system in response to a

contingency occurrence within prespecified limits. This process is also known as post contingency

corrective rescheduling. The underlying assumption is that rescheduling of the plant can be done

within a maximum increment of ∆i up or down.

General ramp-rate constraints are of the form

∆ ≤ u− uω ≤ ∆

In our algorithm the control variables subject to ramp-rate constraints are active power generation.

∆ ≤ pg − pgω ≤ ∆

By replacing double-sided constraints with two sets of inequalities, as we have done before, one gets

H0pg + Hωpgω ≤ ∆

where

H0 =


 Ig

−Ig


 , Hω =


 −Ig

Ig


 and ∆ =




∆1

...

∆n

−∆1

...

−∆n




where Ig is the identity matrix of dimension (ng × ng).

5.4 An Interior Point Solution Algorithm

The algorithm that we will derive in this section is based on an idea of Stott and Hobson in

[86], which is that the linear programming formulation can be reduced to a smaller subproblem by
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elimination of the phase angles and the Lagrange multipliers corresponding to the power balance

equations.

In what follows, we adopt Stott’s very elegant approach but solve the problem using an interior

point method, prove some very interesting observation along the way, and extend the formulation

to account for multiple contingencies.

The network power balance equation

Bθ = Kpg −Mpl

has to be decomposed due to the singularity of the network susceptance matrix B. To do this

we impose the reference bus3 equality constraint explicitly in the original set of power balance

equations and treat separately its power balance equation. The corresponding modified power

balance equation is

B′θ = K ′pg −M ′pl

where B′ is the modification of B in which its first row is replaced with vector eT
1 ; the first rows of

the incidence matrices K and M are zeroed out in order to obtain K ′ and M ′. This modification

reflects the constraint that the angle at the reference bus is equal to 0◦.

The power balance equation for the reference bus is treated separately and can be extracted

from the initial set of power balance equations by premultiplying by eT
1 :

eT
1 Bθ = eT

1 Kpg − eT
1 Mpl

Therefore, the problem formulation is

Minimize bT pg + cT pl

Subject to B′θ −K ′pg + M ′pl = 0

eT
1 Bθ − eT

1 Kpg + eT
1 Mpl = 0

Eθ ≤ fb

Fgpg ≤ fg

Flpl ≤ fl

The first step in the interior point method solution process is to convert inequality constraints to
3In this chapter the first bus in the network denotes the reference bus
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equality constraints by introducing slack variables sb, sg and sl:

Minimize bT pg + cT pl

Subject to B′θ −K ′pg + M ′pl = 0

eT
1 Bθ − eT

1 Kpg + eT
1 Mpl = 0

Eθ − fb + sb = 0

Fgpg − fg + sg = 0

Flpl − fl + sl = 0

The nonnegativity of the slack variables is enforced by appending a logarithmic barrier function of

the form

µ
[ nb∑

i=1

ln sb +
ng∑

i=1

ln sg +
nl∑

i=1

ln sl

]

The problem Lagrangian is given by

L = bT pg + cT pl

+ λT
[
B′θ −K ′pg + M ′pl

]

+ α
[
eT
1 Bθ − eT

1 Kpg + eT
1 Mpl

]

+ πT
b

[
Eθ − fb + sb

]

+ πT
g

[
Fgpg − fg + sg

]

+ πT
l

[
Flpl − fl + sl

]

− µ
[ nb∑

i=1

ln sb +
ng∑

i=1

ln sg +
nl∑

i=1

ln sl

]

where the corresponding Lagrange multipliers in the LMP framework can be interpreted as:

α is the energy component of the LMPs;

λ(2 : n) is the vector of LMPs;

πb is the vector of (shadow) congestion price for the line limit constraints
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The KKT first-order necessary conditions

∂L
∂pg

= b−K ′T λ− αKT e1 + F T
g πg = 0 (5.2)

∂L
∂pl

= c + M ′T λ + αMT e1 + F T
l πl = 0 (5.3)

∂L
∂θ

= B′T λ + BT e1α + ET πb = 0 (5.4)

∂L
∂λ

= B′θ −K ′pg + M ′pl = 0 (5.5)

∂L
∂α

= eT
1 Bθ − eT

1 Kpg + eT
1 Mpl = 0 (5.6)

∂L
∂πb

= Eθ − fb + sb = 0 (5.7)

∂L
∂πg

= Fgpg − fg + sg = 0 (5.8)

∂L
∂πl

= Flpl − fl + sl = 0 (5.9)

∂L
∂sb

= ΠbSb − µe = 0 (5.10)

∂L
∂sg

= ΠgSg − µe = 0 (5.11)

∂L
∂sl

= ΠlSl − µe = 0 (5.12)

The fundamental equation for understanding the idea behind LMP-based congestion prices is

equation (5.4). The λ’s are LMPs that, in the absence of congestion (no binding limits, i.e., πb = 0),

are equal to α, which is an energy price component or the price at the reference bus. Therefore,

in the absence of congestion, prices are the same throughout the system. Once a line constraint

becomes binding, its corresponding Lagrange multiplier becomes nonzero (i.e., πb 6= 0), and the

LMPs undergo changes. A very interesting discussion of equation (5.4) can be found in Wu et al.

[99].

Reduction of the above system will be accomplished through elimination of λ and θ from the set

of KKT conditions. Vectors λ and θ can be expressed from equations (5.4) and (5.5), respectively,

as

θ = B′−1K ′pg −B′−1M ′pl

λ = −B′−T ET πb −B′−T BT e1α
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Substituting these expressions in the rest of the system results in

b + K ′T B′−T ET πb + α
[
K ′T B′−T BT −KT

]
e1 + F T

g πg = 0 (5.13)

c−M ′T B′−T ET πb − α
[
M ′T B′−T BT −MT

]
e1 + F T

l πl = 0 (5.14)

eT
1 B

[
B′−1K ′pg −B′−1M ′pl

]
= eT

1 Kpg − eT
1 Mpl (5.15)

EB′−1K ′pg −EB′−1M ′pl − fb + sb = 0 (5.16)

Fgpg − fg + sg = 0 (5.17)

Flpl − fl + sl = 0 (5.18)

ΠgSg − µe = 0 (5.19)

ΠbSb − µe = 0 (5.20)

ΠlSl − µe = 0 (5.21)

In order to simplify further, we will show that the following two equations hold:

K ′T B′−T BT e1 −KT e1 = ē where ē = (1 . . . 1)T ∈ Rng

M ′T B′−T BT e1 −MT e1 = ẽ where ẽ = (1 . . . 1)T ∈ Rnl

One may recall that K is the node-to-generator incidence matrix, each of whose columns has exactly

one element equal to one and the rest of the elements are zero. K ′ is the matrix K modified in such

a way that its first row is zeroed out. Accordingly, two cases are considered

1. There is no generator connected to the reference bus.

In this case, each row of K ′T has exactly one element equal to 1 and the first column is the

zero vector. Also the product K ′e1 is the zero vector

K ′T =




0 × × · · · ×
0 × × · · · ×
0 × × · · · ×
...

...
...

. . .
...

0 × × · · · ×




and K ′e1 =




0

0
...

0




2. Generator j, (j 6= 1), is connected to the reference bus.

In this case the jth row of K ′T is a zero vector, while the jth element of vector K ′e1 will have
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value 1 and zero everywhere else.

K ′T =




0 × × · · · ×
...

...
...

...
...

0 0 0
... 0

0 × × · · · ×
...

...
...

...
...

0 × × · · · ×




and K ′e1 =




0
...

1

0
...

0




According to Theorem B.4. on page 143 in the Appendix B, the product B′−T BT is equal to

B′−T BT =




0 0 0 · · · 0

−1 1 0 · · · 0

−1 0 1 · · · 0
...

...
...

. . .
...

−1 0 0 · · · 1




With this matrix structure, one can easily show that whether or not a generator is connected to

the reference bus, one gets

K ′T B′−T BT e1 −KT e1 = ē where ē ∈ Rng

In a similar way it can be shown that

M ′T B′−T BT e1 = −ẽ where ẽ ∈ Rnl

Equation (5.15) can be rewritten as

eT
1

[
BB′−1K ′ −K

]
pg = eT

1

[
BB′−1M ′ −M

]
pl

From the above discussion it is straightforward to show that

eT
1

[
BB′−1K ′ −K

]
= −ēT where ē ∈ Rng

and also

eT
1

[
BB′−1M ′ −M

]
= −ẽT where ẽ ∈ Rnl

Therefore, the power balance equation for the reference bus (5.15), after elimination of the vector

θ, becomes the system power balance equation

ēT pg = ẽT pl
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One may recall that we already encountered the terms

EB′−1K ′ = F b

EB′−1M ′ = F̃b

as the distribution factors discussed on page 110.

Thus, the KKT conditions can be written in more compact form as:

b + F
T
b πb + ēα + F T

g πg = 0

c− F̃ T
b πb − ẽα + F T

l πl = 0

ēT pg − ẽT pl = 0

F bpg − F̃bpl − fb + sb = 0 (5.22)

Fgpg − fg + sg = 0

Flpl − fl + sl = 0

ΠbSb − µe = 0

ΠgSg − µe = 0

ΠlSl − µe = 0

This reduced system of KKT conditions can be seen as the KKT conditions of the following La-

grangian:

L = bT pg + cT pl

+ α
[
ēT pg − ẽT pl

]

+ πT
b

[
F bpg − F̃bpl − fb + sb

]

+ πT
g

[
Fgpg − fg + sg

]

+ πT
l

[
Flpl − fl + sl

]

− µ
[ nb∑

i=1

ln sb +
ng∑

i=1

ln sg +
nl∑

i=1

ln sl

]
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The corresponding reduced problem is

Minimize bT pg + cT pl

Subject to ēT pg = ẽT pl

F bpg − F̃bpl ≤ fb (5.23)

Fgpg ≤ fg

Flpl ≤ fl

One can recognize this problem as an economic dispatch problem with line limits imposed via

distribution factors.

5.4.1 Solution of the reduced system

In this section we will discus how the reduced order system can be solved using an interior point

method, The reduced KKT conditions (5.22) are nonlinear due to the last three complimentary

slackness conditions. They are linearized as follows:

Πg∆sg + Sg∆πg = µe−ΠgSge

Πb∆sb + Sb∆πb = µe−ΠbSbe

Πl∆sl + Sl∆πl = µe−ΠlSle

Now express ∆sg, ∆sb, ∆sl as

∆sg = µΠ−1
g e− sg −Π−1

g Sg∆πg (5.24)

∆sb = µΠ−1
b e− sb −Π−1

b Sb∆πb (5.25)

∆sl = µΠ−1
l e− sl −Π−1

l Sl∆πl (5.26)

and substitute them in the rest of the linearized system, which becomes

F T
g ∆πg + F

T
b ∆πb + αē = r1

F T
l ∆πl − F̃ T

b ∆πb − αẽ = r2

ēT pg − ẽT pl = 0 (5.27)

Fgpg −Dg∆πg = r3

F bpg − F̃bpl −Db∆πb = r4

Flpl −Dl∆πl = r5
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where

r1 = −b− F T
g πg − F

T
b πb

r2 = −c− F T
l πl − F̃ T

b πb

r3 = fg − µΠ−1
g e

r4 = fb − µΠ−1
b e

r5 = fl − µΠ−1
l e

and

Dg = Π−1
g Sg

Db = Π−1
b Sb

Dl = Π−1
l Sl

The next step is to express the vectors ∆πg, ∆πb and ∆πl from the system (5.27) as

∆πg = D−1
g Fgpg −D−1

g r3 (5.28)

∆πb = D−1
b F bpg −D−1

b F̃bpl −D−1
l r4 (5.29)

∆πl = D−1
l Flpl −D−1

l r5 (5.30)

Eliminating (5.28), (5.29) and (5.30) results in the matrix form



F T
g D−1

g Fg + F
T
b D−1

b F b −F
T
b D−1

b F̃b ē

−F̃ T
b D−1

b F b F T
l D−1

l Fl + F̃ T
b D−1

b F̃b −ẽ

ēT −ẽT 0







pg

pl

α


 =




r6

r7

0


 (5.31)

where the right hand side terms are

r6 = r1 + F T
g D−1

g r3 + F
T
b D−1

b r4

r7 = r2 + F T
l D−1

l r5 − F̃ T
b D−1

l r4

The pseudocode for a DC OPF algorithm based on this form is outlined in Algorithm 9.

5.5 Formulation of the DC Contingency Constrained OPF

The DC contingency constrained OPF problem may be formulated as a single optimization prob-

lem which includes a base case and a set of contingency cases coupled with ramp-rate constraints.
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Algorithm 9 DCOPF algorithm
given an initial dispatch pg

build initial Fg and Fl

initialize µ

while µ ≥ ε do

calculate pg, pl

calculate ∆πg, ∆πb and ∆πl

calculate ∆sg, ∆sb, ∆sl

calculate step size

update ∆π and ∆s vectors

update µ

end while

check for new violations

while new violations 6= 0 do

build new F b and F̃b

% resolve the problem

initialize µ

while µ ≥ ε do

calculate pg, pl

calculate ∆πg, ∆πb and ∆πl

calculate ∆sg, ∆sb, ∆sl

calculate step size

update ∆π and ∆s vectors

update µ

end while

end while

calculate θ and λ
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The mathematical formulation is as follows

Minimize bT pg + cT pl

Subject to ēT pg = ẽT pl

F bpg − F̃bpl ≤ fb

Fgpg ≤ fg

Flpl ≤ fl

ēT pgω = ẽT pl

F bωpgω − F̃bωpl ≤ fbω

Fgωpgω ≤ fgω

Flωpl ≤ flω

H0pg + Hωpω ≤ ∆

ω = 1, . . . , K

Instead of deriving the full algorithm, we will just look at terms that will be affected by extending

the problem to include contingencies. We know from the nonlinear CCOPF covered in Chapter 4

that each contingency case introduces a problem as large as the base case and that the base case

and contingency cases are coupled via the ramp-rate constraints. Addition of ramp-rate constraints

will expand certain terms in the base case KKT conditions and add appropriate blocks for each

contingency case considered. Once the impact of the ramp-rate constraints upon the base case

problem structure is examined, the pattern of the full linear CCOPF will emerge.

Addition of the ramp-rate constraint

H0pg + Hωpω ≤ ∆

to the base case will add the following terms to the base case problem Lagrangian

L = · · ·+πT
rω

[
H0pg + Hωpω −∆ + srω

]

−µ
K∑

ω=1

ng∑

i=1

ln srω

Those new terms will modify the following KKT condition

∂L
∂pg

= b + F T
g πg + F

T
b πb + αē +

K∑

ω=1

HT
0 πrω = 0
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as well as add two new KKT conditions

∂L
∂πrω

= H0pg + Hωpgω −∆ + srω = 0

∂L
∂srω

= ΠrωSrω − µe = 0

where Srω = diag(srω), Πrω = diag(πrω). The KKT conditions linearized around πrω and srω are

F T
g ∆πg + F

T
b ∆πb + αē +

K∑

ω=1

HT
0 ∆πrω = r′1 (5.32)

H0pg + Hωpgω −∆ + srω + ∆srω = 0 (5.33)

Πrω∆srω + Srω∆πrω = µe−ΠrωSrωe (5.34)

For convenience we will define

r′1 = r1 −
K∑

ω=1

HT
0 πrω

By expressing the incremental slack variable ∆srω from the linearized complementary slackness

equation as

∆srω = µΠ−1
rω e− srω −Π−1

rω Srω∆πrω

and substituting in (5.33) one gets

H0pg + Hωpgω −Drω∆πrω = r10ω

where

Drω = Π−1
rω Srω

r10ω = ∆− µΠ−1
rω e

Now ∆πrω can be eliminated from

∆πrω = D−1
rω H0pg + D−1

rω Hωpgω −D−1
rω r10ω (5.35)

After substituting ∆πrω into (5.34) and a bit of algebra, the equation has the form

[
F T

g D−1
g Fg + F

T
b D−1

b F b +
K∑

ω=1

HT
0 D−1

rω H0

]
pg − F

T
b D−1

b F̃bpl + λē +
K∑

ω=1

HT
0 D−1

rω Hωpgω = r′′1

(5.36)
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where

r′′1 = r′1 +
K∑

ω=1

HT
0 D−1

rω r10ω

which closes consideration of the base case with ramp-rate constraint appended.

The next stage is to consider the general form of the contingency part. As stated before, the

KKT conditions for the contingency part of the problem are very similar to the base case, and all

of them can be obtained from the base case consideration by appending the subscript ω. Due to

the coupling constraints, only the ∂L
∂pgω

condition requires special consideration. Therefore, ∂L
∂pgω

has

the form

∂L
∂pgω

= ēαω + F T
gωπgω + F

T
bωπbω + HT

ω πrω = 0

Using the same linearization process as in the base case leads to the final form

HT
ω D−1

rω H0pg +
[
F T

gωD−1
gω Fgω + F

T
bωD−1

bω F bω + HT
ω D−1

rω Hω

]
pgω − F

T
bωD−1

bω F̃bωplω + αω ē = r′′1ω

where

r′′1ω = r′1ω + HT
ω D−1

rω r10ω

The coupling between the base and the contingency cases is best seen if we represent all equations in

block matrix form. The following compact form produces the well-known upper bordered-diagonal

system, similar to the lower bordered-diagonal system obtained for the nonlinear CCOPF.




C0 V1 V2 · · · Vk

V T
1 C1

V T
2 C2

...
. . .

V T
k Ck







p0

p1

p2

...

pk




=




r0

r1

r2

...

rk




(5.37)

where each block has the structure

C0 =




C11 C12 ē

C21 C22 −ẽ

ēT −ẽT 0


 , V1 =




C14 0 0

0 0 0

0 0 0


 and p0 =




pg

pl

α



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The base-case block matrices are defined as:

C11 = F T
g D−1

g Fg + F
T
b D−1

b F b +
K∑

ω=1

HT
0 D−1

rω H0

C12 = −F
T
b D−1

b F̃b

C14 = HT
0 D−1

rω Hω

C21 = CT
12

C22 = F T
l D−1

l Fl + F̃ T
b D−1

b F̃b

The coupling block matrices are defined as:

C41 = CT
14 = HT

ω D−1
rω H0

and the contingency block matrices are defined as:

Cω
11 = F T

gωD−1
gω Fgω + F

T
bωD−1

bω F bω + HT
ω D−1

rω Hω

Cω
12 = −F

T
bωD−1

bω F̃bω

Cω
21 = CωT

12

Cω
22 = F T

lωD−1
lω Flω + F̃ T

bωD−1
bω F̃bω

5.5.1 Solution of the upper Bordered-diagonal system

Next a procedure for solving the bordered-diagonal system (5.37) will be outlined. Equations 2

to k have the same form and can be written as

V T
ω p0 + Cωpω = rω ω = 1, . . . , K

Express pω as

pω = C−1
ω (rω − V T

ω p0) (5.38)

The first equation from (5.37) is

k∑

ω=1

Vωpω + C0p0 = r0

which after substituting pω from (5.38) becomes
(

C0 −
k∑

ω=1

VωC−1
ω V T

ω

)
p0 = r0 −

k∑

ω=1

VωC−1
ω rω (5.39)
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The first step in solving this equation is to factor each symmetric block matrix Cω as

Cω = UT
ω DωUω

Then calculating the terms in the sum on the left-hand side as

VωC−1
ω V T

ω = VωU−1
ω D−1

ω U−T
ω V T

ω = KT
ω D−1

ω Kω

with Kω calculated column-by-column via fast-forward substitution from

UT
ω Kω = V T

ω

In a similar way the terms on the right-hand side of the summation are calculated as

VωU−1
ω D−1

ω U−T
ω rω = KT

ω D−1
ω r̄ω

where

r̄ω = U−T
ω rω

is calculated by forward substitution. Thus, equation (5.38) has the form
(

C0 −
k∑

ω=1

KT
ω D−1

ω Kω

)
p0 = r0 −

k∑

ω=1

KωD−1
ω r̄ω

from which p0 can be found by performing LU factorization of the matrix

C0 −
k∑

ω=1

KT
ω D−1

ω Kω

Once p0 is found, the pω’s are calculated from equations 1 to k of the system (5.37)

UT
ω DωUωpω = rω − V T

ω p0

where pω can be found by forward/backward substitution by first finding z from

UT
ω · z = rω − V T

ω p0

via forward substitution and then pω from

Uωpω = D−1
ω · z

by backward substitution.
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5.6 Importance sampling for LMP-based congestion prices

In practice, LMPs that respect the standard N−1 reliability criteria are obtained in the following

way: the system operator identifies the worst single contingency and performs CCOPF with that

contingency to obtain LMPs that meet standard reliability criteria. Finding single worst contingency

is still a manageable job even for a large system. If one is interested in going beyond standard

reliability criteria, it is an open question as to what to do. As we explained earlier, if we go one

step further, the number of N − 2 cases could be prohibitively large.

The real challenge is how to define schemes for the evaluation of multiple contingencies without

considering all of them and still obtain an acceptable estimate of the relevant variables. A method

based on probability is required to gain more insight into the cost of congestion. What we suggest

is to find a valid sample space, similar to the one presented in Chapter 4, and apply the importance

sampling algorithm. Experience suggests that such an algorithm will give a good estimate of the

congestion prices under multiple contingencies.

Let us reiterate the basic ideas of importance sampling algorithm described in Chapter 4. The

algorithm first assesses all single contingencies and finds their incremental cost (Mi), which is the

difference between bid value of each contingency case (Jω) and the base case (J). Then one finds

the expected value of the incremental cost M for all single contingencies. One has to choose the

size N of the sample space Ω for the multiple contingencies to be considered. Partition the sample

space Ω into nb subspaces Ωi where
⋃nb

i=1 Ωi = Ω, each of size ni, corresponding to each line; assign

each multi-line contingency to only one partition. Therefore, each line i will be represented in a

double-line contingency with weight ni according to its marginal “importance”

ni =
Mi

M
N

The second component (the second line in the double-line contingency) will be sampled randomly.

Finally, the congestion price at each node is calculated according to:

λ =
1
N

N∑

k=1

λωk

The cost of security under multiple contingencies is estimated as

λ =
1
N

N∑

k=1

λωk − α

The importance sampling algorithm for LMP-based congestion and cost of security estimation,

using contingency constrained DC OPF as developed in this chapter is proposed in Fig. 5.2.
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Figure 5.2: Importance sampling in contingency constrained DC OPF framework
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The ability of the state estimator to achieve a high level of efficiency and numerical robustness

is of paramount importance in today’s eclectic utility industry. A robust algorithm must be globally

convergent (convergent from any starting point), and able to solve in practice both well-conditioned

and ill-conditioned problems.

This dissertation presents a new approach for solving power system state estimation based on

a globally convergent modification of Newton’s method using trust region methods (TRM). The

performance of the TRM method was tested on the standard IEEE network cases and results are

discussed thoroughly. A sound theoretical support as well as practical efficiency and robustness are

the strong arguments supporting the trust region method to be applied in practical power system

state estimators. The objective is to provide a more reliable and robust state estimator, which can

successfully cope with all kinds of errors (bad data, topological, parameter) faced in power system

models.

It is well known that Krylov subspace iterative methods are used to solve large sparse linear

systems. Although it was not clear their potential on the power system state estimation problems.

In presented research it has been found that LSQR method perform reliably when applied to solve

PSSE. The LSQR method follows the same principle as CG, although it is much better suited for

least-squares problems. The numerical simulations indicate that LSQR method is very competitive

in robustness with classical QR factorization algorithm. Additional savings by reduction is number

of floating point operations, no need for ordering, and ability to implement iterative methods using

parallel computing, recommend Newton-LSQR method for practical implementations.



132

The dissertation presents SQP technique combined with the method of importance sampling

in order to solve the stochastic OPF. The objective in importance sampling is to concentrate the

random sample points in critical regions of the state space. In our case that means that single-line

outages that cause the most ”trouble” will be encountered more frequently in multiple line outage

subsets. It has been shown that

Under multiple contingencies LMP-based congestion prices fluctuate considerably. Proposed

method employs reduced problem formulation and decouples economic dispatch problem from state

and LMP calculation problem. Thus, the large multiple contingency optimization problem can be

solved efficiently. We believe that the proposed method will be very effective on networks of practical

size. Based on Monte Carlo importance sampling idea, the proposed algorithm can stochastically

assess the impact of multiple contingencies on LMP-congestion prices.

6.2 Future Work

Future work can be extended in following directions

• Explore possible ways of reducing computational effort in TR method by solving inner itera-

tions using LSQR method

• Testing of the proposed LP based CCOPF with importance sampling
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Appendix A

Network Test Cases

A.1 Introduction

Bus/branch network models are most commonly used in state estimation and power flow studies.

The algorithms in this dissertation have been tested by means of a standard IEEE test systems that

can be found in [90]. In power system state estimation the measurement set is usually a mixture

of line power flow (both active and reactive), power bus injection (also active and reactive), and

voltage magnitude measurement. Today even power angle measurements are available by means of

PMUs, although those types of measurement were not consider in our study.

A fundamental question one has to answer when placing measurements is the following: “Is

it possible to estimate the state from an available set of measurements, or in other words is the

network observable?” An observability analysis is conducted prior to performing state estimation.

Observability analysis is based on three methodologies: topological, numerical or hybrid. The topo-

logically based algorithm that determines observability of the network was introduced by Clements

and Wollenberg in [19] and further developed by Krumpholz, Clements and Davis in [52], where

more details can be found. A review of the observability analysis methods and meter placement

was prepared by Clements in [15].

A.2 IEEE 14 bus network case

The one-line diagram of the IEEE 14-bus network with a measurement set is illustrated in

Fig. A.1. This network has been used in many examples throughout the research and also in many

references cited in this dissertation. The original network and data files can be found in [90].
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The IEEE 14-bus network in Fig. A.1 could be summarized:
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Figure A.1: IEEE 14-bus test system with measurement set

- number of buses: N = 14

- number of state variables: n = 2N − 1 = 27

- number of measurements: m = 42

- redundancy ratio η = m/n = 1.56

For practical implementation, there should be enough redundancy in measurement throughout the

network. Degree of redundancy is usually expressed in terms of ratio of number of meters to number

of states. η is a very important quantity, more redundant measurements give more chances for bad

data to be detected [16].

Each of these measurements is not perfect. There is a constant level of error/noise present in the

measurement. Therefore measurement error must be considered. The measurement error variance
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σ2, is assigned to each measurement type to reflect the expected accuracy of the meter used. These

values are usually used as weights in the diagonal matrix R−1. Assumed values of the variance σ2

depending on the measurement type are given in Tables A.1 and A.2.

The way that we generated the measurement set is by calculating “perfect measurements” from

the data available. Standard IEEE systems come with both parameters and solution. Measurement

system is generated knowing the solution and then measurement noise (Gaussian random variable,

zero mean unit variance) has been added to the perfect measurement to produce more realistic

“noisy” measurements.

Table A.1: IEEE 14-bus test case - measurement set

type # measurement type # of meas. σ2

1 P flow 13 1 · 10−3

2 P injection 6 1 · 10−3

3 Q flow 11 1 · 10−3

4 Q injection 5 1 · 10−3

5 V magnitude 7 1 · 10−4

A.3 IEEE 30 bus network case

IEEE 30-bus network in Fig. A.2 could be summarized:

- number of buses: N = 30

- number of state variables: n = 2N − 1 = 59

- number of measurements: m = 81

- redundancy ratio η = m/n = 1.37

Table A.2: IEEE 30-bus test case - measurement set

type # measurement type # of meas. σ2

1 P flow 26 1 · 10−3

2 P injection 13 1 · 10−3

3 Q flow 26 1 · 10−3

4 Q injection 13 1 · 10−3

5 V magnitude 3 1 · 10−4
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Figure A.2: IEEE 30-bus test system with measurement set
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A.4 Non-converging cases

When we say “non-converging cases”, we mean that the measurement set with topology error

could not be solved by the Newton-QR algorithm. The notion of observability applied to the network

with topology errors also. The design goal is to provide network observability under most operating

conditions. If the outages or topology errors render a network unobservable even, the most robust

algorithm won’t be able to find the solution. While there is a constant effort to provide observable

networks, temporary unobservability may still occur due to unanticipated network topology or

failure in the telemetered measurements.

When building “non-converging” cases such as the ones in Fig. A.3 and Fig. A.4, we carefully

placed the measurement set so that the network is observable. In Fig. A.3 and Fig. A.4 we denoted

topology error by a dashed line, in which we assume that the line is out when it is actually in.
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Figure A.3: IEEE 14-bus test system with measurement set and topology errors
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Figure A.4: IEEE 30-bus test system with measurement set and topology errors
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Appendix B

B Matrix Theorems

In this Appendix we will prove four important theorems regarding the bus susceptance network

matrix B and its modifications (i.e., matrices B′ and B̂). Theorem B.4. is the key theorem in

the development of the economic dispatch-based reduced system in Chapter 5. In order to prove

Theorem B.4., Theorems B.1. through B.3. are needed.

Theorem B.1. is considered something of a Folk Theorem in the power system analysis commu-

nity. To the best of the author’s knowledge it has not been given a rigorous mathematical proof.

Therefore, for completeness, we provide a mathematical proof for the fact that was taken for granted

in many references.

Recall that B ∈ Rn×n is a symmetric, singular matrix whose rows/columns have the following

property

bkk = −
n∑

j=1
j 6=k

bkj k = 1, . . . , n

Theorem B.1. Suppose that matrix B ∈ Rn×n is a symmetric matrix such that for, k = 1, . . . , n

bkk < 0, and bik ≥ 0 for i 6= k

and

bkk = −
n∑

j=1
j 6=k

bkj k = 1, . . . , n

Then dim N (B) = 1, where N (B) denotes the null-space of B.
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Proof. Suppose that:

B




v1

v2

...

vn




= 0

Claim:



v1

v2

...

vn




= λ




1

1
...

1




for some λ ∈ R.

Suppose that not all vi’s have the same value. Then for some l, 1 ≤ l ≤ n

|vl| ≥ |vj | for 1 ≤ j ≤ n and

|vl| > |vj | for some k 6= l.

Then since

n∑

j=1

bljvj = 0

|bll||vl| = |bllvl| =
∣∣∣−

n∑

j=1
j 6=l

bljvj

∣∣∣

≤
n∑

j=1
j 6=l

|blj ||vj |

<
( n∑

j=1
j 6=l

|blj |
)
|vl|

=
( n∑

j=1
j 6=l

blj

)
|vl|

= |bll||vl|

Which is a contradiction and therefore all vi’s must have the same value; hence dim N (B) = 1
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Theorem B.2. Suppose matrices B′ and B̂ are defined as

B′ =




1 0 · · · 0

b12 b22 · · · b2n

...
...

. . .
...

b1n b2n · · · bnn




and B̂ =




b22 · · · b2n

...
. . .

...

b2n · · · bnn




with the following property

bkk = −
n∑

j=1
j 6=k

bkj k = 2, . . . , n

Then matrices B′ and B̂ are nonsingular.

Proof. Let us denote

B′ =




eT
1

b2

...

bn




e1 =




1

0
...

0



∈ Rn×1 e =




1
...

1


 ∈ R

n×1

It is straightforward to show that det(B′) = det(B̂), so B̂ is nonsingular if and only if B′ is

nonsingular.

Also due to the property of the B matrix

Bv = 0 ⇔ v = λ




1
...

1




Since dim N (B) = 1, where N (B) denotes the null-space of B, b2, . . . , bn of B are linearly inde-

pendent. In order to prove that, suppose a contradiction.

Assume that vectors b2, . . . , bn are linearly dependent vectors. Then
n∑

i=2

αibi = 0

for some αi’s that are not all zero. Then

n∑

i=2

αibi = 0 ⇒ B




0

α2

...

αn




= 0 ⇒ dimN (B) ≥ 2
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which is a contradiction.

Now suppose B′v = 0 for some v. Then

0 = B′v =




1 0 · · · 0

b12 b22 · · · b2n

...
...

. . .
...

b1n b2n · · · bnn







v1

v2

...

vn




=




v1

b2v
...

bnv




We have

0 = b2v = . . . = bnv

Therefore, v is orthogonal to the linearly independent rows b2, . . . , bn of B i.e.,

v ∈ span{bT
2 , . . . , bT

n} ⊥ {λe : λ ∈ R}

⇒ v = λ




1
...

1




But v1 = λ = 0 ⇒ λ = 0, and v = 0. Therefore B′v = 0 only if v = 0; thus B′ and B̂ are

nonsingular.

Theorem B.3. Given:

B′ =




1 0 · · · 0

b12 b22 · · · b2n

...
...

. . .
...

b1n b2n · · · bnn




=




1 0 · · · 0

b12

... B̂

b1n




with the property

bkk = −
n∑

j=1
j 6=k

bkj k = 2, . . . , n

then

B′−1 =




1 0 · · · 0

1
... B̂−1

1



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Proof. Set:

C =




1 0 · · · 0

1
... B̂−1

1




Then the first column of B′C is



1 0 · · · 0

b12

... B̂−1

b1n







1 0 · · · 0

1
... B̂−1

1




=




1

0
...

0




and the second through nth columns are:

B′




0 · · · 0

B̂




=




1 0 · · · 0

b21

... B̂

bn1







0 · · · 0

B̂−1




=




0 · · · 0

B̂B̂−1




=




0 · · · 0

1 · · · 0
...

. . .
...

0 1




It follows than that B′C = I, so C = B′−1

Theorem B.4. Suppose B, (B = BT ) and B′ are defined as

B =




b11 b12 · · · b1n

b12 b22 · · · b2n

...
...

. . .
...

b1n b2n · · · bnn




and B′ =




1 0 · · · 0

b12 b22 · · · b2n

...
...

. . .
...

b1n b2n · · · bnn




with the property

bkk = −
n∑

j=1
j 6=k

bkj k = 1, . . . , n
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Then

B ·B′−1 =




0 −1 · · · −1

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




Proof. Let D = B ·B′−1. We claim that

D = B ·B′−1 =




b11 b12 · · · b1n

b12

... B̂

b1n







1 0 · · · 0

1
... B̂−1

1




=




0 −1 · · · −1

0
... B̂B̂−1

0




Since b11 = −∑n
i=1 b1n, it is straightforward to show that the first column of matrix D is the zero

vector. We have to show that

D1j = −1 for j = 2, . . . , n

Recall that if we multiply matrices P ∈ Rm×p and Q ∈ Rp×n, then the product W ∈ Rm×n is

Wij =
n∑

k=1

PikQkj

or if pi is the ith row vector of matrix P and vector qj is the jth column vector of matrix Q, then

the matrix product can be written

Wij = pT
i qj

Accordingly, if we define the elements of matrix B̂ as b̂ij and the elements of matrix B̂−1 as b̃ij,

then the first row elements of matrix D are

D1j =
n∑

k=2

b1kb̃kj j = 2, . . . , n (B.1)

Using the given property of the row/column elements of matrix B

b1k = −
n∑

i=2

b̂ik for k = 2, . . . , n

then equation (B.1) can be rewritten as

D1j = −
n∑

k=2

n∑

i=2

b̂ik b̃kj
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If we denote by b̂i the ith row of B̂ and by b̃j the jth column of B̂−1, then

D1j = −
n∑

i=2

b̂T
i b̃j

or, in other words, D is a negative sum of dot products of all rows of B̂ with the jth column of B̂−1.

One can see that only the jth element of the sum produces a nonzero element; moreover b̂T
j b̃j = 1.

Hence,

D1j = −1 for j = 2, . . . , n
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