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Abstract

The focus and scope of this project are to reduce the computational complexity and time

complexity required to find solutions to large systems of linear equations with binary coefficients

and to implement this reduced method on FPGA hardware. Beginning with a simple exhaustive

search to check all possible solutions against every equation in the system, continuous research

and calculation resulted in various iterations of a reduced search algorithm. Each version

attempted to take advantage of inherent patterns in the input system, or of mathematical

principles that arise when working with systems with binary coefficients. The resulting algorithm

is the combination of Gaussian Elimination and Partial exhaustive search algorithm with

sub-exponential complexity. The provided algorithm makes use of counting 1s coefficients to

recursively find portions of valid solutions for each equation in the system and combines those

portions to generate full solutions to the system. The C implementation of the final

RecursiveSearch() function can be found in the Appendices, as well as the C implementations of

the ExhaustiveSearch() function and the failed search attempts.
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Introduction

In the world of cryptography, computer security relies on the generation of large “key”

numbers to secure data. Various types of schemes exist to solve such systems which break down

mainly into 5 categories: Code-based, hash-based, isogeny-based, lattice-based, and

multivariate-based schemes. For this paper, we focused on the development of multivariate

schemes, which are efficient when implemented on low-resource hardware like an FPGA. When

attempting to solve such systems with computers, we treat the system as a matrix to take

advantage of the various linear algebra properties which arise. Additionally, working with

low-level computer hardware restricts the values within a matrix, and within the solutions to be

found, to a Galois Field (or Finite Field) size of 2 denoted GF(2). In general terms, this means

the possible matrix and solution values are limited to a set of two terms. For the purposes of

computing, we restrict specifically to the binary digits 0 and 1.

In theory, finding solutions to such matrices is an easy task. However, when working in

GF(2) many of the normal rules of Linear Algebra and mathematics, in general, may not produce

results as expected. Under normal conditions, a system of equations can have no solutions, one

solution, or infinitely many solutions. When restricted to binary digits a system can still have no

solutions or one solution, but rather than the third option being an infinite amount, the number of

possible solutions is limited to where v is the number of variables in the system.2𝑣

Additionally, as the level of security needed increases the size of these matrices must

increase accordingly, often to a point that finding solutions becomes costly and prohibitive both

in terms of the time required and the computational power needed.
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Current proposals attempt to use various forms of Gaussian Elimination (GE) or matrix

inversion to find solutions (Bardet et al., 2013; Keinänen et al., 2005; Wang et al., 2016).

However, these methods have their own drawbacks.

In the papers authored by Keinänen et al. and Wang et al., both methods proposed

breaking up an input matrix into blocks to be solved piece by piece as a way of accommodating

matrices otherwise too large for their methods. Wang et al. specifically mention employing

systolic architecture to repeatedly perform GE on smaller subsections which are then used to

solve the entire input matrix. Within the bounds of GF(2) however, the multiplication and

addition operations required to perform a full Gaussian Elimination either results in matrix

values beyond 0 and 1. Or when using boolean operations to multiply and add, relevant data is

removed in the process, resulting in false solutions being generated.

In this paper, we propose a different method of finding solutions entirely. Rather than

attempting to perform full GE on a system as in some of the other proposals, we instead take

elements of the GE process to sort a matrix into an upper triangular form and perform partial

exhaustive searches of the partial solutions that satisfy the 1s in each equation. These partial

solutions are chained together to create full solutions to the system. This simultaneously

eliminates multiple solutions at once during the search while avoiding the data loss issues that

arise when performing GE within GF(2). In doing so, we believe that we have found a novel

method of solving large systems of binary linear equations and that with further improvements it

could be a possible future method of solving quadratic equations as well.
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The RecursiveSearch Algorithm

Having successfully found a method of finding solutions that work well at a small

scale, after experimenting with different ways of interpreting and modifying the system.

Eventually, we created our final algorithm RecursiveSearch(), which makes use of recursion to

find partial solutions without exponential scaling. Normally, performing GE on a matrix involves

performing scalar multiplication on rows, or adding them together. However, when working in

GF(2), to keep values restricted to 0s and 1s we must substitute algebraic Boolean operations to

accomplish the same effect.

For most purposes AND operations and XOR operations, each serves the same function

as multiplication and addition, but when trying to use them for GE issues arise. Our observation

is that using row operations in GE introduces irrelevant solutions to the system or excludes some

solutions from the solution set. Because AND operations require both inputs to be 1 for a 1

output, any scalar row multiplication involving a 0 and a 1 ends up removing data from the

system. Likewise with XOR operations, because row value is a single digit, independent number,

any operation with two 1s also removes data because there’s no second digit for the result to

carry-over to.

With all this taken into account, rather than looking at the entire system of equations at

once in an attempt to modify GE for these restrictions, our new RecursiveSearch() instead

divides the system into independent and dependent pieces. Solutions of the independent pieces

are solved by partial searches and inserted into dependent parts to keep the whole system

consistent. Independent parts are represented by green blocks and dependent parts are

represented by gray blocks in Figure 1.
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Figure 1:The layout and sections of the matrix after sorting with the upper triangle (red), sectioned 1s

(green), and remaining data (gray) are shown.

Before RecursiveSolve() can work the matrix first has to be sorted, with the end goal

being a group of 1s in each row we can later increment through to find solutions as seen in the

green blocks in Figure 1 above. Any 1s in positions in the grey blocks beneath the triangle are

irrelevant to the solution, the states of those bit positions will be fully determined by the 1s in

green. The SortArray() function sorts the matrix to form an upper triangle of 0s, bounded by 1s

much like with GE. Each row is assigned a weight equal to the number of 1s and then resorted

from heaviest to lightest going down. Then within each row, any column with its first 1 in that

row is shifted to the right as far as the end of the group of 1s in the previous row. Once sorted,

the RecursiveSolve() function is then implemented to begin the search process.
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Within each row, RecursiveSolve() increments through partial solutions only relevant to

the grouped 1s, staying within the bounds of the S1- Sn columns defined in Figure 1. To check the

validity of each solution, each individual element in the solution is multiplied using AND

operations by its respective value in the row. Normally, these products would then be added

together with XOR operations to get a single digit sum to be compared against the Right Hand

Side (RHS) value. However, we can bypass this ANDing and successive XORing by instead

counting how many 1s are in the tested solution and checking if that count is even or odd. With

successive XORing if the number of 1s is even XOR operations will always result in 0, and if

the number is odd the XOR operations will always result in 1, as seen in Figure 8. And because

we’re always AND multiplying by a set of only 1s, the product set will always be identical to the

input set.

As further solutions beyond the first row are iterated through, each one is added to the

valid partial solutions for the previous equations before being tested against the current RHS

value. Adding the partial solutions to each other in this fashion restricts new ones to the bounds

set by the previous ones, ensuring the solutions remain valid for the whole system as they’re

built. When a full solution has been built, the tempsol[] array is tested against any possible

remaining rows in the system. The bin2dec() function then converts tempsol[] to its decimal

equivalent and appends the number to a list of solutions (This step is purely for making the

tracking of solutions easier for people to read, it has no actual effect on finding solutions).

Finally, after the solution has been converted and stored, RecursiveSolve() resets to the

top level of recursion and resumes iterating through partial solutions for the first row to find the

next full solution. This process continues back up and down through the equations until all
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possible combinations of valid partial solutions have been found and all their resulting full

solutions recorded. We can see an example of this entire process below in Figures 2 - 6 as we

take an example system, convert it to a matrix, and find one of its solutions.

Figure 2: The Equations in our Example System.
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Figure 3: The Example System converted into a Matrix, unsorted and unsolved.
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Figure 5: Generating a Solution with the Example Matrix after sorting.
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We start with our example system (Figure 2) which we convert into an unsorted example

matrix (Figure 3). Once sorted, the matrix is laid out as shown in Figure 4, and grouped as shown

in Figure 5, at which point we can test for solutions.

When testing our sample solution against our column we can{0, 0, 0, 1, 1} 𝑆
1

{1, 1, 1, 1, 1}

see that were we to AND them like so:

{(1&0), (1&0), (1&0), (1&1), (1&1)} = {0, 0, 0, 1, 1} 

We would get our sample solution again as described above, proving that we can skip this

step. When we then count the 1s, we can see that we have two 1s meaning if we XOR them

together , or take the parity of the count we get 0 for our sum. Lastly for this row if1 ⊕ 1 = 0

we check the RHS value, we can see that the RHS and the sum are both 0, meaning{0, 0, 0, 1, 1}

is a valid partial solution to equation 1. For subsequent rows, this process continues in much the

same way but with the sums from the previous rows added to the current before checking the

RHS value to keep partial solutions relevant for the rows above the current one.
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Figure 6: The step by step process of verifying a solution.

By basing the search of partial solutions for the current equation on the ones already

found for the previous equations, we not only ensure that the partial solutions being found

remain valid for all equations before and after the current one, but we find solutions more

quickly than ExhaustiveSearch() by checking fewer invalid ones. Once a partial solution is found

to be invalid none of the possible combinations that could follow it are even tested. This

eliminates a large number of invalid solutions altogether without having to fully test them.
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Early Search Attempts

Exhaustive Search

As already established, by working exclusively in GF(2), any possible solution to the

system will consist only of 1s and 0s. Therefore, no matter the system size it is possible to treat

possible solutions as unsigned binary numbers of a length where n is the number of variables2𝑛

in the system, designated within the C code as MaxBin. This has the combined benefit of being

able to increment through solutions one by one, and allowing solutions to be tracked and sorted

by assigning their decimal equivalent as an index number. With this in mind, I designed two

functions, BinArrayAdd(), and ExhaustiveSearch() to check and record every possible solution.

BinArrayAdd() takes an input array and uses internal variables and a special array called

AddOne[] containing only a 1 in the Least Significant Bit (LSB) position to function as a ripple

carry adder. In a loop starting with the LSB, the function uses XOR operations to add together

the current bits of the input and AddOne as well as a carry bit and assigns it to a temporary array

while the carry for the next iteration is assigned based on the current input and carry bits. After

the carry bit assignment, the temporary value is written back into the input array.

ExhaustiveSearch() contains a large FOR loop with a limit of MaxBin. In each loop

iteration, BinArrayAdd() is called to generate a solution. The solution is then tested with the RHS

of each equation, and if the solution satisfies all equations in the system, a 1 is marked at the

current loop position in the array Valid[] so the decimal index of the solution can later be printed.

14



Initially, possible solutions within ExhaustiveSearch() were checked by multiplying each

bit of the solution with its respective bit coefficient bit in the Left Hand Side (LHS) of the

current equation using AND operations, and these products are then XORed together to a single

bit sum. That bit was then compared against the RHS, and if the two matched then the solution

was valid for that equation.

Figure 7: The initial method of verifying a solution through successive XOR operations.

However, by taking advantage of the inherent rules of XOR operations this process could

be accomplished with simpler logic than successive XORing.

A standard XOR operation takes two inputs and outputs a 1 if only one of the two inputs

is equal to 1, otherwise it outputs a 0. Since XOR operations are both commutative and

distributive, an XOR operation with more than two inputs can be interpreted as successive

XORing of additional bits with the result of previous XOR operations, and the logic of the two

input scenario can be generalized as the output will be 1 if an odd number of the inputs is 1. Any

even number of 1s n functions as a set of (n/2) 1⊕1 pairs that each cancel to 0. Any odd number

of ones m would be equivalent to (n+1) 1s adding up to (n/2) 1⊕1 pairs with a single 1

remaining. With this in mind, all that is needed to check if a solution is valid for an equation is to

count the number of 1s (onesCount) in the sum of products stage of the initial method. If

onesCount modulo 2 equals the RHS of the equation, the solution is valid.
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Figure 8: Successive XOR operations reduce to 0 or 1 if the number of input 1s is even or odd, respectively.

Figure 9: The updated method of verifying a solution by counting 1s.

With a working Exhaustive Search method finalized, we not only had a way of checking

our results, and initial methods involved exploring ways to manipulate the main

ExhaustiveSearch function and the initial system to streamline the process.
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Using Linear Combinations

The first attempts at simplifying the search process all involved variations of taking linear

combinations of the initial system and finding their solutions. As is true under normal conditions,

within GF(2) the solutions to a system of two equations are also solutions to the linear

combination of those two equations. Unlike normal conditions, however, standard addition

cannot be used to create these linear combinations, as this would result in integer values other

than 0 and 1 in code output. Therefore, XOR operations must be used in place of addition, like

when verifying solutions during an exhaustive search.

Effects of Overdetermined Systems

To ensure that linear combinations would still result in solutions under GF(2), we first

had to design a series of functions that would create linear combinations of the input equations

by XOR adding together individual elements of equations and then append those combinations to

the initial system to make a larger array. This process was broken down such that instead of one

large function setting everything up and doing the calculations, separate functions handled the

steps. The combinations calculations were handled by LinCombs() while the appending them

was handled by LoadArrays(). Additional functions beyond these were also written to support

tasks such as printing test results to text files and tracking if the system is over- or

under-determined, among other things.
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All of these were used in support of a separate main search function called

VariableExhaustiveSearch(), created to calculate solutions of this new system as equations were

repeatedly added. By giving VariableExhaustiveSearch() a starting size less than the number of

initial equations and having it increase the system size by one equation in each loop iteration, we

could see how the number of solutions to a system decreased as the system shifted away from

being under-determined. Additionally, when the system shifts from an equal number of equations

and solutions into an overdetermined state with the linear combinations added the new system

retains the solutions of the initial system.

Figure 10: The contents of the VariableExhaustiveSearch() function.

Reducing with Linear Combinations

With this in mind, the next attempt to take advantage of this property was to assign

weight to each equation and take advantage of equations with fewer 1s coefficients. Rather than

taking every linear combination, each combination was assigned a weight based on the number

of coefficients its two parent equations had in common, so when they canceled out very few 1s

would remain. Combinations that met this threshold, along with the combination of their RHS
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values, were stored in new arrays which would then serve as the system to be solved. However,

once this was implemented two main problems arose.

First, it is possible for the new system to be larger than the input system. Because the

number of 2 equation combinations for any system with n equations will always be larger than n,

depending on the weight threshold the new system could end up containing more equations than

the initial system. For the 5 equation test system used over the course of this project, 8 out of the

10 combinations met the threshold of 4 unique 1s. Alternatively, it is also possible(5 𝐶ℎ𝑜𝑜𝑠𝑒 2)

for no equations to pass the threshold, and in either scenario, for a random system of equations, it

is not possible to know beforehand what that threshold would need to be to prevent these issues

(if such a value exists).

The second problem is that of the solutions found. While it is true that the solutions to the

initial system also satisfy the linear combinations, the reverse does not hold true. Within the set

of solutions to the system of linear combinations there exist solutions not found in the solution

set of the initial system. If one were to look for solutions this way, they would find false and true

solutions with no way to know the difference without solving the initial system to confirm the

results, defeating the purpose of generating linear combinations, to begin with. To combat this

we attempted to repeatedly reduce the system in the hopes that false solutions would disappear,

but that wasn’t the case, and repeat reduction attempts still fell victim to the issues with weight

thresholds and the idea was likewise abandoned.
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Inversion of Coefficients

While the idea of using linear combinations ultimately failed, the concept of performing

operations to reduce 1s coefficients led to other new ideas one of which was a coefficient

inversion. Rather than combining equations to reduce 1s, we attempted to do so by swapping 1s

with 0s and vice versa in any equation where more than half the coefficients were 1, with the

hope being that the solutions would still be the same. This would then allow inversion as a

portion of whatever the final algorithm would be.

But as established above, the outcome value of an equation and a solution is dependent

on the number of coefficients to add with XOR operations, which in turn is based on the bitwise

ANDing equation and solution together. By inverting the coefficients of the equation we change

not just the bit positions of successful AND operations, but the number of successful operations.

In some, but not all scenarios this can result in a different value to compare against the RHS.

Figure 11: Inverting the coefficients of an equation does not guarantee the same solutions.
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Taking Intersections of the Input System

With linear combinations and coefficient inversion having both ultimately failed as

reduced search methods, we instead turned back to the first simplification made within the

original ExhaustiveSearch() function of counting 1s to predict outcomes and explored from there.

Rather than counting 1s to predict a solution’s validity for a single equation, solutions themselves

could be derived by counting positions of 1s across multiple equations.

Instead of looking at the equations of a system, we instead looked at the weight and

arrangement of 1s in the columns. For simplicity, we experimented with a 2 equation system, as

seen in Figure 12. Rather than directly taking an intersection that could result in coefficients

canceling out, each column/bit was assigned a variable based on the column’s values in the two

equations according to the truth table in Figure 12. By then taking those variables and placing

them in an array such that variables line up with their respective system columns we can begin to

build a partial solution.

Expanding on the logic outlined in Figure 8, we know that only 1s in the solution which

lines up with the 1s in an equation determine validity. By default, any valid solution must have

1s at A variables and 0s at B variables since all equations have 1s and 0s, respectively, at those

locations. With definite bits in place, all that remains is to assign values to the bits which only

affect one of the two equations. Looking at the definition of C variables, they line up only with

1s in Equation 1, and only with 0s in Equation 2. Therefore, any number of Cs required to satisfy

Equation 1 will satisfy Equation 2, as they will merely cancel out. The reverse effect holds true

for D variables. Since they will always cancel out of Equation 1, any number of Ds required to

satisfy Equation 2 will satisfy Equation 1.
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With the relevant bit positions identified for each equation, the RHS values can be used

to determine how many relevant 1s are needed in our partial solutions. In the sample case below,

the RHS value of Equation 1 is 1, so all valid solutions need the total number of 1s at A and C

positions to be odd. At the same time the RHS value of Equation 2 is 0, so all valid solutions also

need the total number of 1s at A and D positions to be even. With both A bits predetermined to

be 1, that means any one or any combination of three of the Cs must be 1. And either no Ds or

any two of the Ds must be 1. Incrementing through all possible combinations that satisfy those

conditions will in turn give us all possible solutions to the system. Using these rules, we can also

preemptively calculate the number of possible solutions by repeatedly adding through the

probabilistic combinations of each scenario. In our example case shown below, there would be

32 valid solutions to this system, as seen in Figure 13.

Figure 12: Bit states of valid solutions can be predicted from the arrangements of 1s in an equation.
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Figure 13: The number of solutions can be calculated from the predicted bit arrangements.

But although this method of solving technically works, it has a large and serious flaw.

When expanding this method beyond a small handful of equations, it quickly becomes unwieldy

as more and more variables are needed to represent different column arrangements. Categorizing

columns this way is essentially the same as assigning a unique binary number to each of them, so

as the number of equations in the system increases, the number of variables increases

exponentially at a rate of 2 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠)

Figure 14: Finding solutions by assigning variables to columns is inefficient at scale.
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Unlike previous attempts, examining intersections to predict solutions is conceptually a

valid method, and on a small scale is faster than an exhaustive search. The only failure was in the

particular implementation. With proof that the concept worked, all that was left now was to work

out an algorithm that could apply the concept to a system without relying on positions within

columns.
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Results and Conclusions

Results

Because the RecursiveSearch() function is dependent only on the 1s in each equation, and

in a random binary system the distribution of 0s and 1s should be even between the two, we can

easily calculate the complexity of this search method. For each Si column (Figure 1), the

complexity of solving that column is equal to:

2
𝑠

𝑖

2

where is equal to the number of bits in . We can then extend this complexity to all the𝑠
𝑖

𝑆
𝑖

columns for a total complexity of:

2
𝑠

1
+···+𝑠

𝑘

2 = 2
𝑛
2

Where n is equal to the total number of variables in the system. Compared to the basic

ExhaustiveSearch(), complexity is reduced from to . To be more specific, exhaustive2𝑛 2
𝑛
2

search capacity is increased from n bits to 2n bits. If we consider the exhaustive search limit as

80 bits then RecursiveSearch() can solve the binary system with 160 variables. But although this

drop to sub-exponential complexity is a significant improvement, perhaps future research could

reduce the complexity further, hopefully even dropping the complexity into polynomial time.
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Future Research

While developing our RecursiveSearch() we discovered a way to possibly modify the

existing search algorithm such that it would be able to solve systems of binary quadratic

equations. As outlined in section 11.3.1 of Algebraic Cryptanalysis (Bard, 2009, p. 191), under

GF(2) any polynomials where n>1 will reduce to x since 0 and 1 raised to any power will𝑥𝑛

remain 0 and 1, respectively. Additionally, in section 12.3 (Bard, 2009 , p. 211-213) Bard tells us

that in a large quadratic polynomial, the unique monomials can all be represented with single

identifier variables. With these two properties, a quadratic system can be condensed into a linear

system mostly solvable through the existing RecursiveSearch().

But solving the system in this reduced form introduces solutions not present in the initial

system. By assigning variables to monomials which would reduce to 0 when uncondensed we

remove information from the system, which then allows for additional solutions to be found

which are invalid for the initial system. In our proposed but untested method, by ordering the

columns of the matrix to identify the single 0 variables and the condensed variables they go into,

one could design a system that still searches for solutions in the normal fashion while keeping

the invalid condensed variables out of the calculations.

However, as we began exploring this method we realized the time it would take to fully

develop and sort out any issues, it looked to possibly extend beyond the time we had left. So with

the time constraints and the scope of this project in mind, we stopped trying to implement it and

now we instead leave it as an avenue for future research.
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Conclusion

The goal of this project was to develop a new method of solving large systems of binary

linear equations. To do so, we designed an algorithm that sorts a matrix into an upper triangle

like in Gaussian Elimination, then performs an exhaustive search of partial solutions within each

row of the matrix to find full solutions faster than an exhaustive search of the full matrix. In

addition to this algorithm being a measurable improvement, our additional failed attempts along

with their reasons for failure have also been discovered, and with them possible avenues of

future research have been revealed. It is our hope that our new RecursiveSearch() can be of value

on its own, and that hope that it along with the aforementioned failed attempts can together serve

as a starting point and guidelines for future researchers.
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Appendix

For reference purposes the code developed for this paper can be found below. This code

can also be found through the following github link or by contacting the paper author at

jrmcaleese@wpi.edu.

Github Repository:

https://github.com/jrmcaleese/Solving-Systems-of-Linear-Equations-over-GF-2-on-FPGAs.git

C Implementation

Main.c

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#include <time.h>

#include "parameters.h"

#include "VariableExhaustiveSearch.h"

#include "SimilarityCheck.h"

#include "ArrayHandling.h"

#include "RecursiveSearch.h"

//Usage bools

bool RandSystem = false; //toggles whether the program uses a preset system or generates a random one

bool doLinCombs = false; //toggles whether A and b are fully populated with their linear combinations

bool ReduceSystem = false; //toggles whether the SimCheck function is used to reduce the system

bool ReduceSearch = false; //toggles whether the ExhaustiveSearch function compares the number of 1s to

skip certain solutions

bool RepeatReduce = false; //toggles whether the system reduction happens once or happens repeatedly by

LoopReduce times

//Debug bools

bool ShowBinaryValids = false; //toggles whether the just the decimal equivalents of the solutions are

shown or the full binary solution sets.

bool ShowFullDebug = false; //toggles detailed print statements for each tested solution. When false

only valid solutions are displayed.

bool ListSols = true; //toggles whether the full list of valid solutions is printed together at the end

of each search

bool csvFriendly = false; //lists the solutions in a format that is copyable to a csv or excel file

bool SimCheckDebug = false; //toggles the debug print statements for the SimCheck2d function
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//The Input system is stored below with the Left Hand Side coefficients stored in InitSystem, and the

Right Hand Side stored in InitSols

int InitSystem[Equations][Variables] =

{

{0,0,0,1,0,1,0,1,1,1,0},//0

{0,1,1,1,0,0,0,0,1,0,1},//1

{0,0,0,0,1,0,1,1,0,1,0},//2

{1,1,0,1,1,0,0,0,0,1,0},//3

{0,1,0,0,0,0,0,1,0,0,1},//4

};

int InitSums[InitEqs] = { 0,1,0,0,1 };

int main()

{

printf("Start Program\n"); //Marking the Start of the output file

int i, j;

AddOne[Variables - 2] = 1;

//print the initial system

for (i = 0; i < Equations; i++)

{

for (j = 0; j < Variables; j++)

{

printf("%d,",InitSystem[i][j]);

}

printf("\n");

}

printf("==========\n");

//sort the system

SortArray(InitSystem, RowWeights);

//print the sorted system

for (i = 0; i < Equations; i++)

{

for (j = 0; j < Variables; j++)

{

printf("%d,", InitSystem[i][j]);

}

printf("\n");

}

printf("==========\n");

//find solutions

RecursiveSearch(InitSystem);

//print the solutions

printf("The solutions to this system are:\n");

for (i = 0; i < answercount; i++)

{

printf("%d,", answers[i]);

if (i == answercount - 1)

{

printf("\n\n");

}

else if (i % 10 == 0)
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{

printf("\n");

}

}

printf("\nEnd Program");

return 0;

}

Parameters.h

#ifndef PARAMETERS_H

#define PARAMETERS_H

#define InitEqs 5 //The number of initial Equations in the system

#define MaxCombs ((InitEqs*(InitEqs-1))/2) //the maximum number of 2 equation linear combinations from a

system the size of InitEqs

#define Equations 5//(InitEqs+MaxCombs) //The maximum number of equations in the combined system

#define SearchEqs 5 //The number of Equations for the program to start looking through solutions for

#define Variables 11 //The number of variables in the system

#define MaxBin 1023 //The largest binary number possible with "Variables" number of bits.

#define MinSame ((Variables/2)-(Variables/2)%1) //The minimum number of coefficients two equations must

have in common to be reduced

#define LoopReduce 5 //If reducing the system, this sets the number of times you wish to repeatedly

reduce it

//Usage bools

extern bool RandSystem;

extern bool ReduceSystem;

extern bool ReduceSearch;

extern bool doLinCombs;

extern bool RepeatReduce;

//Debug bools

extern bool ShowBinaryValids; //toggles whether the just the decimal equivalents of the solutions are

shown or the full binary solution sets.

extern bool ShowFullDebug; //toggles detailed prextern int statements for each tested solution. When

false only valid solutions are displayed.

extern bool ListSols;

extern bool csvFriendly;

extern bool SimCheckDebug;

#endif
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RecursiveSearch.c

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#include <time.h>

#include "VariableExhaustiveSearch.h"

#include "parameters.h"

#include "SimilarityCheck.h"

#include "ArrayHandling.h"

int RowWeights[Equations] = { 0 };

int CoefIndices[Variables - 1] = { 0 };

int stopPoint[Equations] = { 0 };

int depth = 0;

int tempsum[Equations] = {0};

int tempsol[Variables - 1] = { 0 };

int tempones = 0;

int answers[MaxBin] = { 0 };

int answercount = 0;

int binsize = 0;

int fullbinsize[Equations] = { 0 };

int row[Equations][Variables] = { 0 };

int temprow[Variables] = { 0 };

int looplimit[Equations] = { 0 };

void GetRowWeights(int arr1[Equations][Variables], int Weights[Equations])

{

//get the number of ones for each row

int i, j;

int sum;

for (i = 0; i < Equations; i++)

{

sum = 0;

for (j = 0; j < (Variables - 1); j++)

{

if (arr1[i][j] == 1)

{

sum++;

}

}

Weights[i] = sum;

}

}

int countOnes(int arr1[],int limit)

{

//a function for counting the number of ones in an array

int i;

int onescount = 0;

for (i = 0; i < limit; i++)

{

if (arr1[i] == 1)

{

onescount++;
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}

}

return onescount;

}

void SortArray(int InputArray[Equations][Variables], int rw[Equations])

{

//sorting the array into the format required for finding solutions

int h, i, j, k;

int temprow[Variables] = { 0 };

int tempcoef[Equations] = { 0 };

int tempweight = 0;

int temp = 0;

stopPoint[0] = Variables - 1;

GetRowWeights(InputArray, rw);

//Sort the equations so the number of coefficients per matrix row decreases from top to bottom

for (i = 0; i < (Equations-1); i++)

{

//Bubble sorting each row of the matrix

for (j = 0; j < Equations - 1 - i; j++)

{

if (rw[j] < rw[j + 1])

{

for (k = 0; k < (Variables); k++)

{

temprow[k] = InputArray[j+1][k];

InputArray[j+1][k] = InputArray[j][k];

InputArray[j][k] = temprow[k];

}

tempweight = rw[j+1];

rw[j+1] = rw[j];

rw[j] = tempweight;

}

}

}

//Rearrange the columns in an attempt to create an upper triangle of zeroes in the matrix

for (i = 0; i < Equations; i++) //Increment through each row

{

if (i == 0)

{

for (j = 0; j < Variables-1; j++)

{

for (k = 0; k < Variables - 2 - j; k++)

{

//If the value at this index in the current row is greater than the next value

//then swap the entire columns

if (InputArray[i][k] > InputArray[i][k + 1])

{

for (h = 0; h < Equations; h++)

{

tempcoef[h] = InputArray[h][k];

InputArray[h][k] = InputArray[h][k + 1];

InputArray[h][k + 1] = tempcoef[h];

}

}

}

}
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//In the current row, find the first index with a one so we have a new stopping point when

sorting the next row

for (j = 0; j < Variables - 1; j++)

{

if (InputArray[i][j] == 1)

{

stopPoint[i] = j;

break;

}

}

}

else

{

if (stopPoint[i - 1] <= 0)

{

break;

}

//Sort the columns based on the 1s in the current row of outer loop

for (j = 0; j < stopPoint[i - 1]; j++)

{

for (k = 0; k < stopPoint[i - 1] - 1 - j; k++)

{

//If the value at this index in the current row is greater than the next value

//then swap the entire columns

if (InputArray[i][k] > InputArray[i][k + 1])

{

for (h = 0; h < Equations; h++)

{

tempcoef[h] = InputArray[h][k];

InputArray[h][k] = InputArray[h][k + 1];

InputArray[h][k + 1] = tempcoef[h];

}

}

}

}

//In the current row, find the first index with a one so we have a new stopping point when

sorting the next row

for (j = 0; j < Variables - 1; j++)

{

if (InputArray[i][j] == 1)

{

stopPoint[i] = j;

break;

}

}

}

}

}

int bin2dec()

{

int i;

int tempval=0;

for (i = 0; i < Variables - 1; i++)

{

if (row[depth][i] == 1)
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{

tempval += 1 << i;

}

}

return tempval;

}

void RecursiveSearch(int InputArray[Equations][Variables])

{

int i, j, k;

int sameones = 0;

//calculate the loop limit for the given row as

//( (2^S_i) - 1 ) where S_i is the size in bits of the clustered column

//Bitshifting to the appropriate depth serves as a quick shortcut for raising to the correct power

of 2

int size;

if (depth == 0)

{

size = (Variables - 1) - stopPoint[depth];

}

else

{

size = stopPoint[depth - 1] - stopPoint[depth];

}

looplimit[depth] = (1 << size)-1;

for (i = 0; i <= looplimit[depth]; i++)

{

if (looplimit[depth] == 0 && depth != (Equations - 1)) //if we've found a full solution but we

aren't at max depth, we need to check remaining rows against the full solution

{

for (j = depth; j < Equations; j++)

{

sameones = 0;

int remainingrows = Equations - depth;

EqSum[j] = 0; //making sure EqSum is zero before calculating for the current row so only

the correct answer for this iteration is recorded

for (k = 0; k < Variables - 1; k++)

{

if ((InputArray[j][k] == 1) && (tempsol[k] == 1))

{

sameones += 1; //if a coefficient bit in the current equation and its

corresponding bit in the solution are both 1, then increment sameones

}

}

if (sameones % 2 == 1)

{

EqSum[j] = 1; //if sameones is odd, the equation sum is odd

}

else if (sameones % 2 == 0)

{

EqSum[j] = 0; //if sameones is even, the equation sum is even

}

if (EqSum[j] == InputArray[depth][Variables - 2]) //if the EqSum equals the RHS value

the solution is valid

{

if (j == remainingrows)

{
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answers[answercount] = bin2dec(tempsol); //find the decimal equivalent of the

answer and append it to an output array

answercount++;

continue;

}

else

{

continue;

}

}

else

{

break;

}

}

}

if (looplimit[depth] > 0)

{

if (looplimit[depth] = 1)

{

//if we only have a 1 bit wide group

//instead of iterating and testing both 0 and 1, we can just set the tempsum equal to

the RHS value and guarantee the valid value.

//only 1 of the two options can be valid.

tempsum[depth] = InputArray[depth][Variables - 1];

}

else

{

//Increment through the possible partial solutions for this row

if (depth == 0)

{

BinArrayAdd(Variables - 1, stopPoint[depth], row[depth], temprow);

}

else

{

BinArrayAdd(stopPoint[depth - 1], stopPoint[depth], row[depth], temprow);

}

//multiply the possible partial solution with the relevant portion of the current row

if (depth == 0) //if on the first equation, solve from stop point to the end

{

for (j = stopPoint[depth]; j < Variables - 1; j++)

{

tempsum[depth] = tempsum[depth] ^ (row[depth][j] & InputArray[depth][j]);

}

}

else //if not on the first equation, solve from the stop point to the stop point of the

last equation

{

for (j = stopPoint[depth]; j < stopPoint[depth - 1]; j++)

{

tempsum[depth] = tempsum[depth] ^ (row[depth][j] & InputArray[depth][j]);

}

}

//add the tempsum of the previous rows to this one
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tempsum[depth] = tempsum[depth] ^ tempsum[depth - 1];

}

if (tempsum[depth] == InputArray[depth][Variables - 1]) //if the tempsum of this row summed

with that of all previous rows is equal to the RHS of the current row, the partial solution is valid, so

the function should recurse

{

//copy the partial solution

if (depth == 0) //if on the first row, stop copying the partial sol at the last index

point

{

for (j = stopPoint[depth]; j < Variables - 1; j++)

{

tempsol[j] = row[depth][j];

}

}

else //otherwise stop at the point from the last row

{

for (j = stopPoint[depth]; j < stopPoint[depth - 1]; j++)

{

tempsol[j] = row[depth][j];

}

}

if (depth == (Equations - 1)) //if we're at the max depth, then there's no more solution

to find after this point

{

answers[answercount] = bin2dec(tempsol); //find the decimal equivalent of the answer

and append it to an output array

answercount++;

continue;

}

depth += 1;

RecursiveSearch(InputArray);

}

else

{

continue;

}

}

//otherwise the function will return to the top of the for loop

}

}
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RecursiveSearch.h

#ifndef RECURSIVESEARCH_H

#define RECURSIVESEARCH_H

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#include "parameters.h"

extern int RowWeights[Equations];

extern int CoefIndices[Variables - 1];

extern int stopPoint[Equations];

extern int depth;

extern int tempsum[Equations];

extern int tempsol[Variables - 1];

extern int answers[MaxBin];

extern int answercount;

extern int binsize;

extern int fullbinsize[Equations];

extern int row[Equations][Variables];

extern int temprow[Variables];

extern int looplimit[Equations];

void GetRowWeights(int arr1[Equations][Variables], int Weights[Equations]);

int countOnes(int arr1[], int limit);

void SortArray(int InputArray[Equations][Variables], int rw[Equations]);

int bin2dec();

void RecursiveSolve(int InputArray[Equations][Variables]);

#endif

38



VariableExhaustiveSearch.c

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#include <time.h>

#include "VariableExhaustiveSearch.h"

#include "parameters.h"

#include "SimilarityCheck.h"

#include "ArrayHandling.h"

int InvCount = 0; //tracking the number of invalid solutions

int SolCount = 0;

int FinalCount = 0;

int CarryBit=0;

int CoefProd = 0;

int xOnes = 0;

int LHSOnes = 0;

int ValidRows = 0; //tracking the number of equations for which a possible solution is valid

void ZeroReset(void)

{

/*

Resets relevant global variables to required initial conditions

to avoid possible data errors when solving systems of multiple size

or when variables don't rewrite properly between loop iterations

*/

int i;

for (i=0;i<Variables;i++)

{

x[i]=0;

y[i]=0;

invalid[i] = 0;

valid[i] = 0;

}

for (i=0;i<Equations;i++)

{

EqSum[i]=0;

}

for (i = 0; i < MaxCombs; i++)

{

samecoef[i] = 0;

}

for (i=0;i<Variables-1;i++)

{

if(i<(Variables-2))

{

AddOne[i]=0;

}

else

{

AddOne[i]=1;

}

}

InvCount=0;
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ValidRows=0;

SolCount=0;

FinalCount = 0;

CarryBit=0;

}

void BinArrayAdd(int length, int arr1[], int arr2[])

{

/*

Generates the possible solution sets.

In this for loop the Variables are treated as bits in a ripple carry adder so we can increment

through all solutions.

Outside this for loop the carry bit has no effect and the sets are treated as arrays of individual

values again.

*/

int i;

for (i = 0; i < Variables - 1; i++) //clear arr2 before adding

{

arr2[i] = 0;

}

for (i=length;i>-1;i--) //this loop is a 1-bit ripple CarryBit adder looped into a multi-bit ripple

CarryBit adder

{

//XOR addition of the current elements in x and AddOne and then with the carrybit, all stored in

arr2[i]

arr2[i]=(arr1[i]^AddOne[i])^CarryBit;

if (arr1[i]==1 && AddOne[i]==1) //if x and AddOne were both 1, the CarryBit bit will be 1 next

loop

{

CarryBit=1;

}

else if (arr1[i]==1 && CarryBit==1) //if x and the CarryBit bit were both 1, the CarryBit bit

will be 1 next loop

{

CarryBit=1;

}

else if (CarryBit==1 && AddOne[i]==1) //if AddOne and the CarryBit bit were both 1, the CarryBit

bit will be 1 next loop

{

CarryBit=1;

}

else //otherwise the CarryBit bit will be 0 next loop

{

CarryBit=0;

}

//now that the CarryBit bit has been assigned,

//the value from y can be moved into x so the values are in place for the next iteration of the

outermost loop

arr1[i]=arr2[i];

}

}

void SystemDeterminance(int CurrentEqs)

{

/*
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Prints whether or not the current System is under or over determined

*/

if ((CurrentEqs)<Variables)

{

printf("This is an underdetermined system.\n");

}

else if((CurrentEqs)>Variables)

{

printf("This is an overdetermined system.\n");

}

else

{

printf("This is a determined system.\n");

}

}

int GenerateSolutions(int v1[MaxBin],int v2[MaxBin], int vs[MaxBin])

{

/*

Listing all together the decimal representations of the solutions for the given system.

Makes it easier to actually track patterns in solutions.

*/

int i,c = 0;

for (i = 0; i < MaxBin; i++)

{

if ((v1[i] == 1)&&(v2[i] == 1))

{

vs[c] = (i + 1);

c++;

}

}

return c;

}

int PrintSolutions(int arr1[MaxBin],bool repeat)

{

int i, count;

if(csvFriendly==false)

{

if (SolCount > 0)

{

if (repeat == false)

{

count = 1;

}

else

{

count = 0;

}

printf("\nThe valid solutions for this system are:\n");

for (i = 0; i < SolCount; i++)

{

if (arr1[i] == 0) //if the value is 0 then we've printed all solutions

{

printf("\n\n");

return count;

}
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printf("%d", arr1[i]);

if (i == (SolCount - 1)) //if i is one less than SolCount then we've reached the end of

the solutions

{

printf("\n\n");

return count;

}

else if ((i + 1) % 20 == 0) //start a new line every 20 solutions printed

{

printf(",\n");

}

else //print a comma between solutions

{

printf(",");

}

count++;

}

}

else if (SolCount == 0) //Printing a fail message is a clearer output than leaving blank space

in the event of no solutions

{

printf("\n-----NO SOLUTIONS FOUND-----\n\n");

}

}

else

{

if (SolCount > 0)

{

int count;

if (repeat == false)

{

count = 1;

}

else

{

count = 0;

}

printf("\nThe valid solutions for this system are:\n");

for (i = 0; i < SolCount; i++)

{

if (arr1[i] == 0) //if the value is 0 then we've printed all solutions

{

printf("\n\n");

return count;

}

printf("%d", arr1[i]);

if (i == (SolCount - 1)) //if i is one less than SolCount then we've reached the end of

the solutions

{

printf("\n\n");

return count;

}

else //print a comma between solutions

{

printf("\t");

}
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count++;

}

}

else if (SolCount == 0) //Printing a fail message is a clearer output than leaving blank space

in the event of no solutions

{

printf("\n-----NO SOLUTIONS FOUND-----\n\n");

}

}

}

void ExhaustiveSearch(int LHS[][Variables],int RHS[], int v[MaxBin], int CurrentEqs)

{

int i, j, k;

/*

1. The central search function of the whole program. On each loop, BinArrayAdd() is used to generate

a new possible solution set as an array equal in length to the number of variables in the system,

incrementing all the way up to the MaxBin value.

2. The values at each index in the tested solution are then AND multiplied by their respective

values in the first equation of matrix arr1[] and those products are XOR added together

with the final sum stored in an array called EqSum[] at the index equal to the equation number

being tested.

3. This sum is then compared against the value at the same index in b[], and if they are equal the

ValidRows count is incremented by 1.

Otherwise the InvCount (invalid solution count) is incremented by 1 to show that the solution is

not valid for this equation and therefore the system.

4. Steps 2 and 3 are repeated for all remaining rows in the system. If at the end ValidRows is equal

to the number of equations, then the index number of the tested solution (k+1)

is stored in the first available spot in the array valid[] and SolCount (a tally of the total

number of valid solutions) is incremented by 1.

5. Steps 1-4 are repeated until all possible solutions have been incremented through and tested.

6. When debugging is on the index numbers of each solution are printed along with the SolCount and

the number of solutions tested.

*/

int sameones;

for(k=0;k<MaxBin;k++) //this largest loop controls the whole process, running through steps 1-4

until all possible solutions have been tested

{

BinArrayAdd((Variables-1),x,y);

if (ShowFullDebug==true) //shows the specific solution set being tested

{

printf("Solution Tested = %d\n",k+1);

printf("x = {");

for(i=0;i<Variables;i++)

{

printf("%d",x[i]);

if (i==(Variables-1))

{

printf("}\n\n");

}

else
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{

printf(",");

}

}

}

xOnes = 0;

for (i = 0; i < Variables; i++)

{

if (x[i] == 1)

{

xOnes = xOnes + 1;

}

}

for (i=0;i<(Equations-CurrentEqs);i++) //for each row/equation in A

{

sameones = 0;

EqSum[i] = 0; //making sure EqSum is zero before calculating for the current row so only the

correct answer for this iteration is recorded

for (j = 0; j < Variables; j++)

{

if ((LHS[i][j] == 1) && (x[j] == 1))

{

sameones += 1; //if a coefficient bit in the current equation and its corresponding

bit in the solution are both 1, then increment sameones

}

}

if (sameones % 2 == 1)

{

EqSum[i] = 1; //if sameones is odd, the equation sum is odd

}

else if(sameones % 2 == 0)

{

EqSum[i] = 0; //if sameones is even, the equation sum is even

}

if (EqSum[i] != RHS[i]) //if the equation sum does not equal the b value for this equation,

save the current k value + 1 to the array 'invalid', then increment invalidcount

{

invalid[InvCount]=(k+1);

InvCount+=1;

ValidRows=0;

break;

}

else //otherwise if the equation some does equal the solution for this equation, increment

the ValidRows count

{

ValidRows+=1;

}

}

if (ValidRows == (Equations-CurrentEqs)) //if the solution is valid for all rows/equations, then

record the k+1 value into 'valid' at the index equal to the current SolCount

{

v[k]=1;

if (ShowBinaryValids==true) //print the full binary readout of the solution just found

{
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printf("VALID SOLUTION FOUND = %d\n",(k+1)); //FIX THIS LINE. VALID SOLUTION FOUND WILL

NOW JUST PRINT A 1 OR 0 IN CURRENT STATE

if (ShowFullDebug==false)

{

printf("x = {");

for(i=0;i<Variables;i++)

{

printf("%d",x[i]);

if (i==(Variables-1))

{

printf("}\n\n");

}

else

{

printf(",");

}

}

printf("----------------\n\n");

}

}

SolCount+=1;

if (ShowFullDebug==true) //print the number of valid solutions

{

printf("\nVALID ANSWERS = %d\n\n----------------\n\n",SolCount);

}

ValidRows=0;

}

}

}

void VariableSearch(int LHS[][Variables], int RHS[], int v1[MaxBin], int v2[MaxBin], int vs[MaxBin],

bool repeat) //A,b,valid,reducedvalid,validsols,repeat

{

int i;

//The search loop of the function. Depending on the inputs for h, this loop iterates at least once

//depending on whether we want to test how solutions change as a system increases in size

for (i = (Equations - SearchEqs); i > -1; i--)

{

ZeroReset(); //Reset variables to ensure the search works properly on each iteration of the for

loop

printf("For a %d Equation System with %d Variables:\n", (Equations - i), Variables); //print the

current system size

ExhaustiveSearch(LHS, RHS, v1, i); //Search for all solutions in a system of this size

if (ListSols == true) //Print the decimal equivalents of the solutions if desired

{

GenerateSolutions(v1, v2, vs);

FinalCount = PrintSolutions(vs, repeat);

}

SystemDeterminance((Equations - i)); //Print the determinance of the system at it's current size

//print the total number of solutions found compared to the number tested

printf("Total Solutions, Reduced System: %d out of the %d tested\n\n", FinalCount, MaxBin);

printf("------------------------------------------------------------------------------------------------

----\n");

printf("||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

||||\n");
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printf("------------------------------------------------------------------------------------------------

----\n");

}

}

VariableExhaustiveSearch.h

#ifndef VARIABLEEXHAUSTIVESEARCH_H

#define VARIABLEEXHAUSTIVESEARCH_H

#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <math.h>

#include "parameters.h"

void ZeroReset(void);

void BinArrayAdd(int length, int arr1[], int arr2[]);

void SystemDeterminance(int CurrentEqs);

int GenerateSolutions(int arr1[MaxBin], int arr2[MaxBin], int arr3[MaxBin]);

int PrintSolutions(int arr1[MaxBin], bool repeat);

void ExhaustiveSearch(int LHS[][Variables], int RHS[], int v[MaxBin], int CurrentEqs);

void VariableSearch(int LHS[][Variables], int RHS[], int v1[MaxBin], int v2[MaxBin], int vs[MaxBin],

bool repeat);

extern int InvCount; //tracking the number of invalid solutions

extern int SolCount; //tracking the number of valid solutions for the initial system

extern int FinalCount;

extern int CarryBit; //carry bit needed in the binary counter

extern int CoefProd; // product of a polynomial coefficient with the test variable

extern int xOnes;

extern int LHSOnes;

extern int ValidRows; //tracking the number of equations for which a possible solution is valid

#endif
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