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Abstract  

The Internet of Things (IoT) is a technology that enables new applications using sensors and 

wireless networks. Smart Health is one area in which IoT can improve the quality of healthcare and bring 

benefits to patients. In this project, a smart medication bottle cap with a smartphone app was designed and 

implemented to address the problem of medication non-adherence. Using Nordic’s nRF52 Bluetooth Low 

Energy SoC in conjunction with a capacitive touch sensor, the prototype successfully tracks when a patient 

takes medication. The Android app, SmartMed, maintains a log detailing medication consumption habits 

and reminds patients to take medication timely. The smart cap also serves as a location tracker which aids 

a user in locating the bottle using light, sound and wireless signal strength.  
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1 Introduction  

1.0 Project Overview and Objectives 

Advances in wireless communication technologies and the growing popularity of the Internet of 

Things (IoT) have led countless startups and big name companies to invest in the development of 

marketable IoT products in fields such as smart health, smart home and industrial automation. The purpose 

of this project was to design and implement an IoT device related to the field of smart health. Component 

requirements of the device include a sensor, an embedded microprocessor, a wireless communication 

interface and a smartphone app. Figure 1.1 shows a block diagram of the overall project vision.  

 

Figure 1.1: Overall vision of the IoT project 

Design guidelines are as follows: 

● The device must be small as a wearable or portable product and efficient enough to be powered 

with just a cell battery.  

● The device must have a sensor for data collection.  

● The device must have peripherals for interaction.  

● The IoT device must be able to connect to a smartphone through wireless communication 

technology and an app which serves as user interface.  
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While keeping the design guidelines in consideration, the goal was to completely design and 

implement the firmware and embedded circuitry of the device along with the smartphone application. In 

addition, a small item tracker was designed using the same Bluetooth Low Energy (BLE) technology that 

was used for the smart health device. This report details the specific tools and methods used to accomplish 

these tasks.  

1.1 The Internet of Things  

The past few years have brought a surging interest in the Internet of Things (IoT) with a projected 

market of $7.1 trillion by the year 2020. The boom has been led not only by countless startups, but also big 

name players like Google and Samsung with their respective billion dollar takeovers of IoT companies such 

as Nest and SmartThings [1]. In its broadest sense, IoT can be defined as a “scenario” in which computing 

ability and network connectivity extend to ordinary, everyday objects which are not considered computers. 

In such a scenario, these objects can now communicate with other devices such as smartphones with the 

purpose of exchanging useful data with little user intervention [2]. A device in an IoT network contains 

embedded technology which allows it to communicate with external devices and to sense and interact with 

its surroundings. With this embedded technology it is also able to collect and exchange raw numerical data 

which can be processed using cloud computing services or the computing capabilities of a receiving device. 

These devices are also uniquely identifiable over a network using IP addresses [3].  

It is useful to think of IoT as a means to improving an already existing product, the best example 

being a smartwatch. A device whose sole purpose was to indicate time can now communicate with a user’s 

smartphone and collect useful health information such as heart rate and sleep pattern. The collected 

information can then be presented to the user through elegant graphical displays provided by a smartphone 

or computer application. But IoT applications do not end here. In this young business the possibilities seem 

endless with the most prominent areas being smart infrastructure, smart homes and smart healthcare [1], 

[4].  
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But the popularity of IoT has particularly been heightened by its endless possibilities in the field of 

smart health. For healthcare providers, caring for their patients often means dividing their time between 

interacting with a patient and searching through manual documentation and other patient records. With IoT 

solutions, it would be possible for healthcare professionals to access patient information in real-time to 

improve quality of service. It would also be possible to integrate data from consumer health devices such 

as fitness watches, glucose meters and other wearables into hospital databases [5]. For instance, a diabetic 

patient could be measuring blood glucose levels at home and this information would automatically be added 

to official medical records. With such a system a practitioner would be alerted of changes in the patient’s 

glucose level and he or she could make necessary adjustments in medication, all without the patient having 

to visit the hospital.  

However, the advent of IoT has come with its notable security and privacy concerns. When 

developing an IoT network device, security requirements can be categorized into the three areas of 

confidentiality, integrity and availability. With confidentiality, a set of rules are applied to limit the 

unauthorized access to sensitive information while with integrity, the provision of a reliable service is 

ensured [6]. This is especially applicable to IoT devices in the field of smart health. A patient such as the 

one described previously would want assurance that blood glucose measurements and other patient 

information reaches the hands of authorized health personnel in a secure manner without eavesdropping 

from an unwanted party. In addition, the patient and practitioner would need confirmation that blood 

glucose data received is authentic (i.e integrity is preserved). Finally for devices in other prominent IoT 

fields, such as a smart home security system, constant service availability is a major concern [6]. This means 

providing appropriate protection from outside attackers for an almost guaranteed uninterruptible service.  

Although exciting and full of innovation, the world of IoT technology does present significant 

design challenges depending on the complexity of the specific application. For smart home and industry 

systems, security is most likely the primary concern when it comes to managing network connections and 

accessibility. The same is true for other health and wearable devices but the problem of power provision 
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and efficiency now also becomes a primary concern. For instance, in this project, the goal is to create an 

IoT device that is powered simply by a coin cell battery and can last for weeks or months. 

1.2 Common Elements of IoT and Communication Technologies  

In its most basic form, a typical IoT device has I/O interfaces for sensor input and actuators along 

with a processing unit with memory. Other interfaces are for connection with external devices [3]. 

Depending on the specific application, the sensor and actuator can take the bulk of the design process since 

these two components are responsible for the interaction of the IoT device with its surrounding 

environment. The sensor collects data and it is transferred to a connected device using wireless 

communication technologies. Processing of this data can be performed using cloud computing services or 

the computing capabilities of the receiving device itself such as a smartphone or computer. The actuator is 

a component that acts on the environment in some way. For example, when a temperature sensor senses a 

temperature above a certain threshold, it alerts the user through a smartphone app and based on the user’s 

input, the actuator is instructed to turn on the AC [3]. Figure 1.1 shows a simple block diagram of IoT at a 

glance.  

 

 

Figure 1.2: Basic IoT device model [3]. 

Finally, the communication technology is responsible for the communication and data transfer 

between the IoT object and other devices such as phones or computers. It wasn’t until 15 years ago that the 
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concept of IoT began to fully take off owing to the work performed at MIT Auto-ID labs on networked 

radio-frequency identification (RFID) infrastructures [1]. RFID is a wireless communication and data 

collection technology which uses radio frequency to transfer data between an RFID reader and a tag 

consisting of a small chip or label attached to an item. The main purpose of RFID was to identify, categorize 

and track small movable items in an efficient manner with the reader transmitting a query signal to the tag. 

The received signal is then reflected back to the reader and subsequently passed to a database. The range 

of this technology can vary between a few centimeters to several meters and it is both cheap and energy 

efficient [3].  

But IoT has since been expanded beyond RFID technologies and today multiple wilreless 

communication technologies exist and each have their pros and cons based on specific applications. 

Following is a brief overview of some of the most popular communication technologies available for IoT:  

1.2.0 ZigBee 

ZigBee is a popular wireless network standard due to its low cost and power consumption [3]. It is 

targeted at radio-frequency applications that require a low data rate and common implementations include 

small personal area networks created using low-power digital radios for smart home automation and energy 

systems [7], [8]. A ZigBee radio module is often integrated with a small microcontroller.  

1.2.1 NFC 

NFC is a set of short range wireless technologies usually requiring 10 cm or less. This particular 

communication technology requires an initiator and a target where the initiator actively generates an RF 

field that can power a passive target. This mechanism allows targets to take form as small objects such as 

tags, stickers or cards that do not require batteries. Back and forth communication between connected 

devices is only possible when both are individually powered [3].  

1.2.2 Bluetooth Low Energy 

Bluetooth Low Energy (BLE), also known as Bluetooth Smart, is the power friendly version of the 

Bluetooth 4.0 specification for short range wireless communication and was specifically designed for IoT. 
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Its low power usage makes it suitable for devices designed to run for long periods using small coin cells or 

solar panels [3]. Major components of BLE are often implemented as small System-on-Chip (SoC) solutions 

with an integrated radio, making it quite convenient to integrate BLE into small embedded devices [9]. 

However, although there are similarities, classic Bluetooth and BLE not compatible [10].  

1.2.3 WiFi 

WiFi is the common name for the IEEE 802 standard of data transmission which sets up local area 

networks to transmit and receive data over short distances [11]. It is the staple of home and business 

networking and it is widely used for high data rate transfers with a max throughput of up to 54 Mbits/s. 

However compared with other technologies such as ZigBee and BLE, the implementation of a WiFi network 

usually requires higher power consumption and processor resources [12].    

 

 

 

 

 

 

 

 

 



   16 
 

2 Background 

2.0 Selecting Wireless Communication Technology 

Before discussing device ideas for the project, a wireless communication technology was first 

selected which helped in narrowing down the specific device to be designed and its application. Table 2-1 

gives an overview of the wireless communication standards discussed previously and some of their pros 

and cons.  

Table 2-1: Overview of Wireless Communication Technologies [12], [13]. 

 Freq. Band Range Power 

Source 

Pros Cons  

ZigBee 868MHz 

915MHz 

2.4GHz 

Many meters Battery/Wired Low power usage and 

available in small 

modules for easy 

development. 

Does not have as 

much developer or 

OS support as BLE.  

NFC 13.56MHz ∼10cm Battery Low power and 

depending on 

application, tags don’t 

need to be powered 

allowing for very small 

designs.  

Much smaller range 

compared to all 

other wireless 

technologies.  

BLE 

 

2.4GHz Up to 100m 

(outdoors) 

Battery Low power usage and 

allows for instant 

network setup. Plenty 

of developer support 

and almost every major 

OS supports it.  

Lower data 

throughput than both 

WiFi and classic 

Bluetooth.  

WiFi 2.4GHz 

5GHz 

20-140 m Wired Standard for home and 

office networking and 

has high data 

throughput. 

Higher power 

consumption for 

some IoT 

applications and 

requires large 

hardware resources. 
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We chose BLE because other wireless technologies were not the best for the smart cap project. For, 

example, WiFi consumes too much power and requires more hardware resources than are appropriate for 

mobile devices that can be taken out of the home. The same is true for ZigBee: although it is easier to 

establish a network with it than it is with WiFi, it is still a tool better suited for creating a Wireless Local 

Area Network (WLAN). A WLAN interconnects devices in limited areas such as a business or residence 

[14]. On the other hand, BLE is better suited for creating Wireless Personal Area Networks (WPANs) which 

are described by the IEEE as “networks used to convey information over short distances among a private, 

intimate group of participant devices.” Unlike WLANs, WPANs involve little or no infrastructure outside 

of the link between two devices which allows for small and power efficient wireless solutions [15]. 

Therefore, both WiFi and ZigBee offer too much complexity for a simple smart health device that 

only needs to connect to a user’s smartphone. On the other hand, although NFC contains many benefits 

such as its low power consumption, its incredibly small range made it not suitable for the design. On the 

other hand, BLE advertises a maximum range of 100 meters (although in practice it is usually half this) 

which is more than enough for this project [16]. BLE is also supported by both Android and iOS platforms 

and each have considerable developer resources. Embedded firmware development for BLE is also 

widespread and developer support is readily available.  

2.1 BLE System on Chip (SoC) Solutions 

There are multiple BLE SoC options available in market from companies such as Texas Instruments 

(TI), Cypress Semiconductor and Nordic Semiconductor. Most of the available SoCs contain an integrated 

processor and radio along with flash memory and RAM. The chips are also manufactured in two packages: 

QFN and WLCSP. QFN is the standard Quad Flat No Leads package and is often easier to use and results 

in less PCB design error due to their larger size. WLCSP or Wafer Level Chip Scale packages, on the other 

hand, are made with less material and are less expensive. However, their smaller size increases PCB design 

complexity, driving up costs and hardware failure [17].   
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The major factors in choosing a BLE SoC were ease of use and availability of development support. 

This meant selecting an SoC which came with significant software resources including libraries and 

examples, an easy to use evaluation or development kit and other useful development resources.  

A set of widely used BLE SoCs is Nordic Semiconductor’s nRF5x series with the newest iteration 

being the nRF52832. This was the BLE chip recommended by the project’s advisor and was the one selected 

for this project. This particular SoC is built around a 32-bit ARM Cortex-M4 processor with 512kB of 

programmable flash plus 64kB RAM and is available in a 48 pin QFN or WLCSP package [18]. Unlike 

other SoCs, Nordic’s nRF52832 is supplemented with an extensive set of software tools which include a 

pre-qualified Bluetooth 4.2 BLE protocol stack conveniently provided as a precompiled binary image [18]. 

Therefore, the developer is mostly concerned with the implementation of the higher level application. The 

Software Development Kit provided also contains an extensive collection of libraries and example BLE 

applications.  

Although Nordic does not include a free IDE for development with nRF5 products, they do provide 

multiple tutorials on options for firmware development using free tools such as ARM-GCC compiler and 

Eclipse for IDE. In addition, the complete development kit for the nRF52832 chip is much more reasonably 

priced than the official kits for TI’s CC2541.   

The complete key features of the nRF52832 from the product specification document are included 

under Appendix 7.0. As for mechanical specifications, Appendix 7.1 also includes the QFN48 package 

specifications with dimension details along and pin assignments. 

2.2 Smart Health IoT Device Ideas  

Several ideas for a smart health IoT device were considered and the fact that Bluetooth Low Energy 

had been selected as the wireless technology made it easier to narrow down a specific application. Other 

factors such as cost, difficulty and previous work in the literature were also considered when reviewing 

ideas. Below is a brief evaluation of several ideas discussed. 
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2.2.0 Fall Detection Device - Thermal Imaging  

A way to detect falls is using thermal imaging sensors with a simple method being comparing 

thermal imagery data of subjects behaving normally to subjects that are falling [19]. Although thermal 

imaging is much more accurate than other methods, small thermal cameras are expensive and are useful for 

detecting falls close to where they are located. In addition, BLE is not particularly suitable for audio, image 

or video applications due to its small data payload. Although Nordic Semiconductor advertises a 1Mbps to 

2Mbps data rate for the nRF52, this is simply for the physical layer. The maximum throughput for the 

application layer is 236.7 kbps [9].  

2.2.1 Breathing Detection Device – Monitoring Senior or Infant in Bed  

There are multiple physiological conditions that can lead to the cessation of breathing, known as 

apnea. These conditions include respiratory diseases and other unknown reasons such as sudden infant 

death syndrome and sudden adult death syndrome [20]. The advisor for this project had previous experience 

with breathing detection using microphone arrays which capture breathing easily by subtracting background 

noise. However, limited sensitivity was found using omnidirectional microphones. For this project, 

directional microphones would be used to capture breathing. Data would first be processed using a digital 

signal processing chip and then sent wirelessly to a smartphone. But as mentioned previously, BLE is not 

suitable for audio applications. In addition directional microphones are expensive and issues of audio data 

privacy come into play.  

2.2.2 Smart Medication Tracker – A Medicine Bottle Smart Cap 

Medication adherence (i.e. taking medications as prescribed by health providers) is key in achieving 

optimal treatment results for most medication regimens. However, it is estimated that around 20% to 50% 

of patients are non-adherent to prescribed regimens with rates increasing from 40% to 80% among elderly 

patients. When a patient suffers from a chronic disease, non-adherence also leads to higher hospitalization 

rates and treatment costs [21]. There are multiple medication reminding methods ranging from text message 

reminders, to smart watches that vibrate at a desired time. This project would be concerned with the design 
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of a BLE smart cap that could be placed on most generic medicine bottles. This cap would serve as both a 

tracker for a medicine bottle and a device that, along with a smartphone application, reminds a user to take 

their medication and keeps track of whether it has been taken or not. This device would involve a simple 

pressure or contact sensor and little to no data processing would be required. The simple and functional 

design would also make it a cheap and easily marketable device.  

2.2.3 Non-Invasive Glucose Monitoring System 

The majority of blood glucose monitoring devices available in market use a cost-effective 

electrochemical biosensor that has been proven accurate in glucose detection. However, these devices 

employ a small needle to prick the fingertip to acquire a blood sample which leads to pain in users due to 

frequency of glucose checks [22]. One alternative would be using radio waves at the skin or capillary level. 

These waves are reflected back to a sensor and analyzed for patterns in blood characteristics [23]. However, 

most non-invasive technologies are not as accurate as devices that require direct access to blood, and 

estimates could be life threatening to diabetic patients. [22].  

After carefully evaluating these ideas, it was concluded that a smart medication tracker device 

would be the most achievable design in the allotted project time. For this application, no difficult data 

processing would be required and the type of data would be small and numerical which is what BLE is 

intended for. The small size of this device would make it easily portable and would also make the project 

cost effective in both development and production.  

2.3 Basics of Bluetooth Low Energy 

This section provides a brief overview of the BLE wireless communication protocol and includes 

as much detail of the protocol stack architecture as is required for the understanding of the nRF52 SoC 

firmware and android application developed for this project.  
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2.3.0 What is Bluetooth Low Energy and how does it differ from Bluetooth? 

As discussed in Section 1.2, Bluetooth Low Energy (BLE) is sometimes referred to as Bluetooth 

Smart and was first introduced as a subset of the Bluetooth 4.0 core specification. Although there is some 

overlap between BLE and classic Bluetooth, BLE is a completely different wireless communication protocol 

and was originally an in-house project in Nokia known as “Wibree” [10].  

Classic Bluetooth, which is referred to as Basic Rate/Enhanced Data Rate (BR/EDR), operates in 

the unlicensed industrial, scientific, and medical radio band (ISM band) at 2.4GHz [24]. This wireless 

communication protocol was developed in 1994 by Ericsson Mobile and was based on frequency-hopping 

spread spectrum technology [13], [24]. By using a frequency-hop transceiver it was possible to combat 

interference and fading [24]. The Basic Rate implementation of classic Bluetooth supports a bit rate of 1 

Mbps while the Enhanced Data Rate implementation supports a bit rate of 2 Mbps [24]. In addition, classic 

Bluetooth is connection oriented which means that once a device is connected, a link is maintained 

indefinitely, even if there is no data transfer [13]. Therefore, classic Bluetooth is ideal for applications in 

which a relatively short ranged but continuous connection is required [25].  

Like classic Bluetooth, BLE operates in the unlicensed 2.4GHz ISM band and it also employs a 

frequency-hopping transceiver to combat interference and fading [25]. BLE is often thought of as a stripped 

down version of classic Bluetooth and it is most suitable for applications that do not require large data 

exchanges since its application layer throughput is only 236.7 kbps [9]. These small data transactions in 

BLE allow for devices to be battery powered for longer periods. On the other hand, the high data throughput 

of classic Bluetooth means that battery life is consumed fairly rapidly [13].  

However, BLE does not support data streaming due to its lower data rate and is therefore not 

suitable for applications such as audio streaming [13]. And unlike Bluetooth, once a connection has been 

established in BLE, the device spends most of its time in sleep mode waiting to send or receive small data 

packets. Once data transfers are done, the device goes back to sleep mode to conserve energy.  
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2.3.1 Platforms for BLE Development  

Multiple wireless communication protocols are available as outlined previously and what makes 

BLE particularly attractive to product developers is that it is the easiest way to design a device that can 

communicate to any modern mobile platform. Especially for Apple devices, BLE is the only hardware 

design option that doesn’t require developers to take complicated steps to be able to legally market their 

products for iOS devices [10]. Support for BLE is available for most major platforms as listed below: 

● Android 4.3+ 

● iOS7+ 

● Apple OS X 10.6+ 

● Windows 8+ 

● GNU/Linux Vanilla BlueZ 4.93+ 

2.3.2 BLE Protocol Stack Overview  

The BLE protocol stack has two main components: The Controller and the Host. Communication 

between them is standardized as the Host Controller Interface (HCI). The Controller includes the Physical 

Layer and the Link Layer and it is typically implemented as an SoC with an integrated radio. The Host on 

the other hand, runs on a processor and includes the upper layer functionality which is comprised of the 

Logical Link Control and Adaptation Protocol (L2CAP), the Attribute Protocol (ATT), the Generic 

Attribute Protocol (GATT), the Security Manager Protocol (SMP), and the Generic Access Profile (GAP). 

Other application layer functionality not defined by the Bluetooth specification can also be included on top 

of the Host [9]. Figure 2.1 shows a diagram illustrating the BLE protocol stack.  
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Figure 2.1: The BLE Protocol Stack [9] 

 As mentioned previously, there is some overlap between the BLE and classic Bluetooth protocols. 

However, the two are not compatible and devices that only implement BLE (a single-mode device) cannot 

communicate with devices that only implement classic Bluetooth [9]. It is possible to have dual-mode 

devices which implement both BLE and classic Bluetooth protocols [9], [25].  

2.3.2.1 Physical and Link Layer  

BLE operates at the 2.4GHz ISM band and it employs the frequency division multiple access 

(FDMA) scheme. The FDMA scheme uses 40 radio frequency (RF) channels separated by 2 MHz with 

three denoted as advertising channels and 37 as data channels. The advertising channels are used for device 

discovery, connection establishment and broadcast transmission while data channels are used for two-way 

communication between connected devices [25], [9].  

 The physical layer is divided into time units known as events and data is transmitted between 

connected devices in packets that are positioned into each event. Devices that transmit advertising data are 

known as advertisers while devices that receive advertising packets without the intention to connect are 

known as scanners. Transmission of data through advertising channels takes place during advertising 

events. Within one event, the advertiser uses each advertising channel sequentially to transmit advertising 

packets [9]. Figure 2.2 shows an illustration of advertising events and demonstrates the sequential use of 

advertising channels.  
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Figure 2.2: Advertising Events [25] 

Devices that scan for connectable advertising packets in order to form a connection and are referred 

to as initiators [25], [9]. If the advertising device is broadcasting a connectable advertising packet, an 

initiator makes a connection request using the same advertising channel [25]. In the Link Layer, initiators 

and advertisers are assigned the respective roles of master and slave. A master device can manage multiple 

simultaneous connections with several slaves while a slave can only be connected to one master at once. 

This network is known as a “star topology” [9].  

A slave device spends most of its time in sleep mode and wakes up periodically to listen for possible 

packets from the master [13], [9]. The master determines when the slave is required to listen and coordinates 

the medium access by using an FDMA scheme. Once a connection between the slave and master is 

established, the physical channel is divided into connection events. Within these connection events, data 

packets are transmitted bi-directionally using the same data channel. All connection events are initiated by 

the master and once the slave receives a transmission packet, it must respond. While there is packet 

exchange between the master and slave, the connection event is considered open. Each data packet includes 

a More Data (MD) bit which signals whether the sender has more data to transmit. If no more data is waiting 

for transmission, then the connection event will close and the slave device is no longer required to listen 

until the start of the next connection event [9]. Figure 2.3 shows an illustration of connection events.  
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Figure 2.3: Connection Events (M = master, S = Slave) [25]. 

For every new connection event, a new data channel is selected for transmission using the 

frequency-hopping scheme of FDMA. For these connection events, there are three important parameters 

that need to be kept in mind: 

● Connection Interval: This is the time between consecutive connection events which can range 

from 1.5 ms to 4 s in multiples of 1.25 ms [9].  

● Slave Latency:  This is the number of consecutive connection events in which the slave is not 

required to listen to the master. This parameter is an integer between 0 and 499 [9]. The longer the 

slave latency, the more the slave is asleep and the more power is conserved.  

● Connection Supervision Timeout: This parameter can range between 100 ms and 32 s and it 

indicates when a supervision timeout occurs. The purpose of supervision timeout is to detect the 

loss of a connection due to signal interference or device being out of connection range [9].  

 It has been found in previous research that the power consumption characteristics of BLE can 

depend mainly on the connection interval and slave latency parameters since they determine how long the 

slave device can remain in sleep mode [9].  
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2.3.2.2 More on Advertising and Data Packets 

The general structure for BLE over the air packets is shown in Figure 2.4.  

 

Figure 2.4: General BLE packet structure [25]. 

 All BLE packets contain a 4 byte Access Address which is used to identify communications on a 

physical link. These addresses are important for ignoring all other close by packets on different physical 

links that are using the same physical channel [25], [26]. All packets also include a 1 byte Preamble and a 

2-39 byte Protocol Data Unit (PDU) header and payload [26].   

For advertising packets, the PDU consists of a 16-bit PDU header, and depending on specific type 

of advertising, a device address and up to 31 bytes of information [26]. An active scanner can also request 

up to 31 bytes of additional data from an advertiser in the form of a scan response packet [27]. On the other 

hand, the data packet PDU consists of the data packet PDU header and up to 37 bytes of payload. Depending 

on the data packet PDU, the payload can contain link layer control information or actual data for higher-

level functionality [26]. As mentioned previously, data packets will also contain the MD bit to signal more 

data for transmission [9].  

2.3.2.3 GATT and ATT Layers  

The Generic Attribute Profile (GATT) defines a framework which uses the Attribute Protocol 

(ATT) for the transfer of data between connected devices using the concept of Services and Characteristics 
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[10]. Data related to services and characteristics are stored in the ATT layer as attributes in a simple lookup 

table [10], [9]. GATT is also responsible for determining the client and server roles in a connection and 

these roles are independent to the master and slave roles.  Clients can access the attributes stored in the 

server by sending requests [9].  

Since ATT is involved along with the GATT in defining a protocol for transferring attribute data, 

data packets in the PDU payload (Figure 2.4) are often referred to as ATT packets. 

2.3.2.4 GAP 

The Generic Access Profile (GAP) is the highest level of the core BLE stack and its primary roles 

include controlling modes and procedures for the discovery of devices and their services, and managing 

connections and advertising [10], [9]. The GAP is also required for assigning the device roles of 

broadcaster, observer, peripheral and central. Relationships between two devices can either be 

broadcaster-observer or central-peripheral.  A broadcaster simply broadcasts data via the advertising 

channels and does not support connection with other devices. The purpose of the observer then is to receive 

data transmitted by a broadcaster [9]. 

On the other hand, a central device is in charge of initiating and managing several connections [9]. 

In BLE, this central role is usually taken by devices with higher processing power such as smartphones or 

tablets [10]. Peripherals then are smaller and simpler devices which only support a single connection with 

a central device. In consequence, the controllers for central and peripheral devices need to assume the roles 

of master and slave respectively. Although a device may support multiple of the roles described above, only 

one can be assumed at a given time [9].  

2.3.2.5 Services, Characteristics and Profiles  

According to the Bluetooth Core Specification, a service is a “collection of data and associated 

behaviors to accomplish a particular function or feature” [28]. In other words, a service is used to break up 

data that is transmitted between central and peripheral into logical entities [10]. Characteristics on the other 

hand, are “values used in a service along with properties and configuration information about how the value 
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is accessed and information about how the value is displayed or represented” [28]. These characteristics 

then, are the subcomponents of a service that contain the actual data. For example, for a wearable heart rate 

monitor, a heart rate service is established which contains characteristics such as the heart rate measurement 

and the heart rate sensor location on the body. The Bluetooth Special Interest Group (SIG) has predefined 

some standard services to ease the development of common IoT applications. However, the establishment 

of custom services by developers is also possible [28].  

 These services and characteristics are each identified by a unique number known as the Universally 

Unique ID (UUID). Using these numbers, central devices can discover what kinds of services are being 

broadcast by the peripheral [28]. These UUIDs can also come in two sizes: 16-bit and 128-bit. Sixteen bit 

UUIDs are reserved for standard SIG services while 128-bit UUIDs are used for custom services and are 

often referred to as vendor specific [10], [28]. Although they take more space in advertising packets, 128-

bit vendor specific UUIDs are recommended to significantly decrease the chance that no other service in 

the world shares the same UUID [28].  

 A vendor specific UUID is comprised of a base UUID that look as follows:  

 6C48xxxx-2EE9-E8C7-A7C7-F1532BB023E8  

 The four x’s in the base UUID represent a smaller 16-bit identifier that is attached directly to a 

custom service or a specific characteristic. Therefore, a single 128-bit base UUID can be used for multiple 

custom services with their respective characteristics which are each identified with a unique 16-bit number 

[28].  

In the context of the BLE stack, the ATT contains a table in which each row is considered an 

attribute, and each attribute has a handle, a type, a set of permissions, and a value. Certain standard UUIDs 

are used to identify attribute types which can be Service Declarations (0x2800) for declaring services and 

Characteristic Value Declarations (0x2803) for declaring characteristics [29]. Once a Characteristic 

Declaration is made, a Characteristic Value Declaration can be made which is specific to the application 
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and is identified by a developer determined UUID. These characteristics will include access properties such 

as read, write or notify. Depending on the specific properties, they may also include Descriptor Declarations 

which hold additional information on the characteristic [29].  

The concept of GATT then is to group attributes in an attribute table in a logical order forming 

profiles. These profiles are a pre-defined collection of services that are compiled by Bluetooth SIG or by 

product firmware developers [29]. Figure 2.5 shows the hierarchical structure of the GATT profile.  

 

Figure 2.5: GATT profile hierarchy [30]. 
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2.4 nRF52832 SoftDevice and API 

For the development with Nordic’s BLE SoCs, Nordic provides a precompiled, linked binary image 

implementing a BLE protocol stack known as the SoftDevice. For the nRF52, the S132 version or above 

are the SoftDevice revisions that are recommended. As mentioned in Section 2.1, the SoftDevice enables 

the firmware developer to write their program as a standard ARM Cortex-M4 project without needing to 

integrate with proprietary Nordic software frameworks. This means that any ARM Cortex-M4 compatible 

toolchain can be used to develop with the nRF52 SoC [31]. A block diagram of the nRF52 software 

architecture is shown in Figure 2.6: 

 

Figure 2.6: Block diagram of nRF52 SoC software architecture [31].  

The nRF52 architecture includes an ARM Cortex Microcontroller Software Interface Standard 

(CMSIS) for interfacing with chip hardware, a master boot record, application specific peripheral drivers, 

the SoftDevice firmware module, and the profile and application code. The SoftDevice module then is 

composed of the binary image BLE protocol stack, the SoftDevice Manager and the SoC Library. The SoC 
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Library includes API for shared hardware resource management between the higher level application and 

the SoftDevice while the SoftDevice Manager includes all the API for BLE stack management such as 

enabling/disabling etc. [31].  

 The API (Application Programming Interface) is a set of standard C language data types and 

functions provided in the Software Development Kit (SDK) as a series of header files which give the higher 

level application code complete compiler and linker independence from the SoftDevice implementation 

[31]. In addition to the SoftDevice Manager and SoC Library, there are other API modules providing 

common definitions and functions for the SoftDevice, GAP, GATT client and server, and L2CAP layers 

[31].   
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3 Methodology  

3.0 Project Design Overview – Medicine Bottle Smart Cap 

The goal of this project was to create a small IoT device for a smart health application that is small, 

portable and efficient enough to be powered with a coin cell battery. The device must have a sensor that 

collects data and it must wirelessly connect to a smartphone. As described in Section 2.2, a smart medicine 

bottle cap was the idea selected for the IoT device. The main purpose of this device is for patients, or even 

physicians, to keep a clear record of if and when their medication is taken with the aid of a companion 

smartphone application. 

This device can play a positive role in the treatment management of patients since, as mentioned 

previously, it is estimated that around 20% to 50% of patients are non-adherent to prescribed regimens. For 

patients with chronic illnesses, nonadherence can lead to a higher number of hospital stays, which can lead 

to higher costs of health care.   

As touched upon in Section 2.3.2, when forming a bidirectional connection between two devices, 

one must assume the roles of central and master and the other of peripheral and slave. The peripheral and 

slave roles are taken by the smart medicine cap device since it is small and only needs to support one 

connection to a central device. Hence, the smartphone takes on the central and master roles since it should 

be able to manage multiple connections to several slaves to form a star topology network if required. For 

instance, the smartphone can connect to multiple medicine bottle smart caps. 

After developing the embedded firmware of the nRF52 chip for the smart medication cap device, 

a prototype hardware was designed. Figure 3.1 shows a chart demonstrating the project design flow. This 

included using firmware development hardware and a development environment to write central/profile 

device applications, and then using a PCB layout software for fast turnaround prototyping.  
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Figure 3.1: Project Design Flow 
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3.1 Overview of Profiles and Services 

3.1.0 Smart Medication Tracker Profile  

 

Figure 3.2: Smart Medication Tracker Profile with its respective services and characteristics. 

 From Figure 3.2, it can be seen that the smart medication cap application has a Smart Medication 

Tracker Profile which consists of the Tracker and Sensor Services. The Tracker service encompasses all 

the proximity tracking functionality for the smart medication cap and it consists of the LED, button and 

PWM signal characteristics. If a user cannot find his or her medication, they tap a button on their 

smartphone application that will flash an LED or play a repeating audio signal driven by one of the nRF52’s 

pulse width modulated (PWM) channels. Through the button characteristic, a user can also locate their 

missing smartphone by pressing a button on the smart medication cap which will trigger the phone to ring.   

The sensor service on the other hand, encompasses the functionality of the smart cap that will keep 

track of whether the user has taken his or her medication. This specific data is contained in the Touch Sensor 

Characteristic while data from the on-chip temperature sensor is contained in the Temp Sensor 
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Characteristic. A temperature characteristic was included as part of the Smart Medication Tracker Profile 

in case it is crucial that a user store their medication at a particular temperature.  

 Through these services and characteristics, the complete functionality of the smart medication 

tracker cap was established and a user is able to both locate their medication when misplaced and keep a 

record of if and when medication was taken. More detail on each characteristic such as their data types and 

GATT permission properties will be discussed in later sections. Details on the specific sensor used to collect 

data for the Touch Sensor Characteristic will also be discussed in later sections as well. 

3.2 Firmware Development Hardware  

3.2.0 nRF52832 Development Kit 

The nRF52832 development kit is the official evaluation board sold by Nordic Semiconductor. The 

board has all GPIO pins and interfaces available at edge connectors. It can be powered using a 3V coin cell 

battery, a power supply, or a micro USB cable. Since programs cannot be flashed directly onto the 

nRF52832, the board also contains an on-board interface microprocessor unit (MCU) that is factory 

preloaded with SEGGER J-Link OB to program and debug firmware on the SoC. 

The official development kit was selected for initial firmware development since it can be easily 

programed and taken on the go with a battery. The on-board buttons and LEDs were also useful for fast 

development and testing. In addition, the kit came with five sample nRF52832 QFN48 chips which were 

originally intended for soldering onto a prototype PCB. Figure 3.3 shows the physical appearance of the 

nRF52832 development kit with the most relevant components pointed out: 
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Figure 3.3: Official nRF52832 Development Kit used for initial firmware development and breakout 

board/prototype programing [31]. 

3.2.1 SparkFun nRF52832 Breakout 

After developing the majority of the project firmware using the official development kit, it was 

important to explore the hardware behavior using a smaller breakout board.  The nRF52 SoC is small 

enough that bread boarding it using a socket was not the best approach when designing prototype hardware. 

Instead, a breakout board could be used for circuit design to catch any voltage or current issues that could 

arise when powering the BLE transceiver in parallel to other circuit components such as the touch sensor 

and audio transducer in the medication smart cap.   

However, the intention was still to develop a PCB prototype for both the smart cap and the item 

tracker without the use of a third party module or breakout board. Designing these custom prototypes would 

entail hand soldering the nRF52 SoC. Since experience with antenna design was limited, it was desirable 

to find an open source third party breakout with available schematic and board files for a free PCB design 

software. This breakout was chosen since it comes with Eagle schematic and PCB files. SparkFun also 

maintains a significant Eagle library of RF components including different style PCB antennas and RF 

transceiver footprints. 
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As explained in more detail in later sections, it was possible to program this breakout board using 

the debug output header on the official development kit shown in Figure 3.3. Figure 3.4 shows the SparkFun 

nRF52832 breakout board:  

 

Figure 3.4: SparkFun nRF52832 Breakout board [32]. 

3.2.2 IMM-NRF52832 Micro-Module 

In the process of designing and assembling a PCB prototype, it was extremely difficult to hand 

solder the QFN48 even when using a stencil and solder paste. Therefore, the prototype PCB transitioned 

from just having the bare chip to having a small breakout or module that could be easily soldered onto it. 

However, the previously tested 52 mm x 17 mm SparkFun board was too large and contained too many 

components that were not required for the final product. Therefore, a smaller module was sought that could 

be easily hand soldered and that already contained an antenna.  

 The IMM-NRF52832 micro-module was perhaps one of the best documented and supported 

modules available in market and is also officially recognized as a reliable third party hardware by Nordic 

Semiconductor. At is small size of 23 mm x 17 mm, the module would not take too much space on the final 

prototype PCB and could be easily hand soldered with its 1.27 mm pitch surface mount pads. This module 
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also exposes all 32 GPIO pins along with pins necessary for program flashing. Figure 3.5 shows the IMM-

NRF52832 Micro-module.  

 

Figure 3.5: IMM-NRF52832 Micro-Module [33]. 

3.2.3 Standalone Momentary Capacitive Touch Sensor Breakout – AT42QT1010 

When evaluating the kind of sensor that would be most appropriate for the smart medication cap 

application, several ideas arose. The first was to have a conductive surface on the parts of the cap and bottle 

that make contact with each other. The conductive surface on the cap would be connected to a general 

purpose I/O pin on the nRF52 while the conductive surface on the bottle would be grounded. This way, 

opening and closing the medication cap would be equivalent to pressing a button. However, this concept 

was dismissed since extensive modifications to the materials of the bottle would have to be made and 

production costs would increase.  

 The second idea was to turn a portion of the cap into a touch sensor. Therefore, touch input is 

recorded every time a user removes the cap. Achieving this functionality was easiest using a simple 

capacitive touch sensor whose sensitivity can be easily altered with parameters such as electrode size, 

capacitance or thickness of overlying panel materials [34]. The SDK for the nRF52 provides a capacitive 

touch sensor library using the SoC’s analog input pins and the comparator module. However, as explained 

in errata 84 [31] for the nRF52832, capacitive sensing using this method is not viable in real products since 
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it will only work reliably at room temperature. This issue is related to the faulty programmable current 

source ISOURCE, which is used by the comparator for capacitive touch sensing [35].  

 Temperature performance is particularly important for a medication device since medicine could 

be stored in specific environments outside room temperature. An easy solution was encountered with 

Adafruit’s momentary capacitive touch sensor breakout pictured in Figure 3.6.  

 

Figure 3.6: Adafruit’s Momentary Capacitive Touch Sensor Breakout - AT42QT1010 

 This capacitive touch breakout uses ATMEL’s AT42QT1010 digital burst mode, charge-transfer 

sensor IC, which is capable of detecting near-proximity or touch. With a proper electrode and circuit design, 

the digital IC will sense a touch or proximity field for several centimeters through any dielectric and it is 

designed for any interface where a button or switch would be used [34]. Therefore, with the AT42QT1010, 

it would be relatively easy to integrate capacitive touch into the smart medication cap device without the 

use of the nRF52’s comparator. Since it is analogous to a button, using simple library button functions from 

the SDK would also be sufficient to read in touch input, simplifying firmware development. Further detail 

on the specifications of the AT42QT1010 and how it works will be discussed in the hardware design section 

for the smart medication cap prototype.  
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3.3 Setting up the Development Environment  

Given that expensive licenses for IDEs such as Keil or IAR Embedded workbench were not 

available at this academic setting, it was desirable to set up a free development environment such as ARM 

Eclipse with ARM GCC compiler. As briefly mentioned, in order to achieve such a setup, Nordic provides 

what seems to be a comprehensive tutorial [36]. However, after multiple attempts at properly setting up 

ARM Eclipse with ARM GCC compiler and J-Link Debugger, no success was achieved. It was thought 

appropriate to continue with firmware development using just a text editor along with ARM GCC compiler 

tools.  

Although this was not the most elegant solution for development, it still provided the capability 

required to develop the firmware for both the smart medication cap. Yet the setup was limited since no 

comprehensive debugging was available. Important debugging capabilities such as direct access to registers 

or variable tracking were not possible which increased troubleshooting time when programs would compile 

properly but malfunction.  

Nonetheless, using a text editor with ARM GCC compiler proved sufficient throughout the project. 

Below are described the several tools that were required for firmware development and board programming.  

3.3.0 GNU Toolchain for ARM Cortex-M (ARM GCC) 

The GNU Embedded Toolchain for ARM is an open source set of tools for C, C++ and Assembly 

programming targeted to ARM Cortex-M and Cortex-R processors. It includes the GNU compiler (GCC) 

and it is available free of charge for embedded firmware development on Windows, Linux and Mac OS X 

operating systems. After downloading and installing the latest version, the path to the toolchain was added 

to the PATH system variables of a Windows machine in order to run toolchain executables from any 

directory using a bash command line shell.   
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3.3.1 nRF5x Software Development Kit v12.0.0 

The nRF5 Software Development Kit (SDK) is a zip file provided by Nordic which has extensive 

resources for firmware development including SoC drivers, libraries, proprietary radio protocols and 

several versions of the SoftDevice required for BLE applications. It also includes multiple example projects 

tailored to run on Nordic’s nRF5x Development Kits. Each example folder contains a makefile for 

compiling projects using ARM GCC. The inclusion of makefiles in example and template projects provided 

all directives necessary for compiling and linking applications and flashing the precompiled SoftDevice 

onto development and prototype boards.  

 In order to program using makefiles and the ARM GCC toolchain, it was first necessary to edit the 

Makefile.windows file on the <SDK>/components/toolchain/gcc folder path in the SDK. This file includes 

the path to the ARM GCC toolchain, its version and prefix as shown in Figure 3.7:  

 

Figure 3.7: Contents of Makefile.windows file. 

3.3.2 GNU Make 

Another required tool for compiling and building projects based on makefiles is the GNU make 

tool. This tool controls the generation of executable files from a program’s source files by using the detailed 

instructions for building and linking included under a makefile. Once GNU make is downloaded, installed 

and included as a PATH system variable, it can be used to compile SDK examples and template projects 

on the bash terminal. The output given after compiling the smart medication cap software using make is 

shown in Figure 3.8.  
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Figure 3.8: Terminal output of make showing linked source files and output hex file. 

 As shown in Figure 3.8, the final output of the make command is the hex file nrf52832_xxaa.hex 

which can be loaded onto the development, breakout and prototype boards using the programming 

commands described next.  

3.3.3 nRF5x Command Line Tools  

The nRF5x Command Line tools are freely provided by Nordic Semiconductor and are used for 

development, programming and some limited debugging of nRF5x SoCs. The most relevant component of 

the command line tools is the nrfjprog executable. This command line tool is used to program the nRF52 

through SEGGER J-Link programmers and debuggers. As mentioned in Section 3.2.0, the development 

board includes an interface MCU that is factory preloaded with SEGGER J-Link OB. The command line 

tools can be installed and added to the PATH system variables for use in all directories. 
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 The specific commands required to program the nRF52 SoC are shown in Figure 3.9 in sequence.  

For erasing memory, programming and running, the -f command is used to specify the nRF5x SoC family 

used.  

  

Figure 3.9: nrfjprog command line tools for programming the nRF52 SoC with BLE applications. 

3.3.4 Programming nRF52 Modules and Prototype Boards: Serial Wire Debug  

Since the official nRF52 Development Kit includes an on-board interface MCU pre-programmed 

with SEGGER J-Link software, it is sufficient to program the SoC using a micro-USB cable. However, 

both the SparkFun breakout and the IMM-NRF52832 module contain no such interface MCU due to their 

size. Fortunately, it is possible to easily program modules and prototype boards using the interface MCU 

and the Debug Out Connector on the nRF52 Development Kit. The Debug Out Connector is shown in 

Figure 3.3 and contains the Serial Wire Debug (SWD) pins outlined in Figure 3.10.  

 

Figure 3.10: Serial Wire Debug (SWD) pins on Debug Out Connector P20 for SWD programming [37]. 
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 Of the eight shown in Figure 3.10, only the SH_VTG, SH_SWDIO, SH_SWDCLK, and 

SH_GND_DETECT pins are required for SWD programming of external nRF52 SoCs. The SH_VTG pin 

is connected to the external board’s power supply while SH_GND_DETECT shares a common ground with 

the external board. The SH_SWDIO and SH_SWDCLK pins are the data line and clock line respectively. 

It is important to note that all pins in header P20 correspond to the interface MCU on the nRF52 

Development Kit.  

 When the external board to be programed is powered, the interface MCU will detect an external 

supply through the SH_VTG pin and will then program the target SoC on the external board. The only 

voltage supported by external programming is 3.0 V [31]. Figure 3.11 shows a graphical description of the 

SWD interface between the nRF52 Development Kit (Debug Unit) and an external nRF52 SoC.  

 

Figure 3.11: SWD programing interface between nRF52 Development Kit (Debug Unit) and external nRF52 SoC 

[37]. 

 Figure 3.12 shows the physical setup for programming the IMM-NRF52832 module on a breakout 

board using SWD programming. The red jumper wire connects the external 3.0 V supply to SH_VTG while 

the black wire ties SH_GND_DETECT to ground. The yellow and green wires connect the SH_SWDIO 
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and SH_SWDCLK pins between the kit and module breakout respectively. The same setup was used when 

programming the SparkFun breakout and prototype boards for the smart medication cap.  

 

Figure 3.12: Physical setup for SWD programming of the IMM-NRF52832 micro-module breakout board. 

3.4 Overview of Smart Medication Cap Firmware 

This section contains an overview of the most relevant components of the smart medication cap 

firmware including BLE GAP, GATT, advertisement and connection parameters, and device functionality 

through services and characteristics. The source files for the firmware are attached in a zip file to the 

project’s main title page. However, important sections of code discussed in this section will be included 

here.  

3.4.0 Initializing the SoftDevice in main.c 

To initialize and enable the SoftDevice, several modules from the SoftDevice Manager API are 

required which allow the developer to set parameters such as memory isolation, clock source (internal RC 

oscillator or external crystal oscillator) and power management. Below is the segment of code that 

initializes and enables the SoftDevice for BLE applications:  

// Function for initializing the BLE stack. 
// Initializes the SoftDevice and the BLE event interrupt. 
static void ble_stack_init(void) 
{ 
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    uint32_t err_code; 
 
    nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC; 
 
    // Initialize the SoftDevice handler module. 
    SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, NULL); 
 
    ble_enable_params_t ble_enable_params; 
    err_code = softdevice_enable_get_default_config(CENTRAL_LINK_COUNT, 
                                                    PERIPHERAL_LINK_COUNT, 
                                                    &ble_enable_params); 
    APP_ERROR_CHECK(err_code); 
 
    //Check the ram settings against the used number of links 
    CHECK_RAM_START_ADDR(CENTRAL_LINK_COUNT, PERIPHERAL_LINK_COUNT); 
 
    // Enable BLE stack. 
#if (NRF_SD_BLE_API_VERSION == 3) 
    ble_enable_params.gatt_enable_params.att_mtu = NRF_BLE_MAX_MTU_SIZE; 
#endif 
    err_code = softdevice_enable(&ble_enable_params); 
    APP_ERROR_CHECK(err_code); 
 
    // Subscribe for BLE events. 
    err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); 
    APP_ERROR_CHECK(err_code); 
} 
 

 The clock source NRF_CLOCK_LFCLKSRC is defined in a library header file specific to the 

nRF52832 development kit circuit revision (pca10040.h) and is set to NRF_CLOCK_LF_SRC_XTAL 

which is the external 32.768 kHz crystal oscillator. Use of the external crystal oscillator is recommended 

since the use the internal RC oscillator consumes higher current when necessary calibrations are performed 

[18], [38]. Once a clock source is defined, the SOFTDEVICE_HANDLER_INIT macro is used to initialize 

the softdevice handler module (softdevice_handler.c). This macro take as input the 

CENTRAL_LINK_COUNT and PERIPHERAL_LINK_COUNT parameters and an empty 

ble_enable_params structure for fetching the default SoftDevice configuration. The central and peripheral 

link count parameters are defined in main.c and are set to 0 and 1 respectively since this device is meant to 

take the role of peripheral only. With the nRF52 it is possible for a device to switch between central and 

peripheral roles, but for this application, that was not necessary.  

 SOFTDEVICE_HANDLER_INIT will then return the same ble_enable_params structure 

containing the default SoftDevice configuration which will work for a majority of applications. The most 

relevant default parameters in ble_enable_params are described below [31]:  
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● gatts_enalbe_params.attr_tab_size: this parameter determines the attribute table size in bytes. The 

default size is 0x580 bytes which is more than enough for this particular application.  

● gap_enable_params.central_conn_count: determines the number of connections acting as central 

(set to CENTRAL_LINK_COUNT = 0 for this application).  

● gap_enable_params.periph_conn_count: determines the number of connections acting a 

peripheral (set to PERIPHERAL_LINK_COUNT = 1 for this application).  

● common_enable_params.vs_uuid_count: determines the maximum number of 128-bit, vendor 

specific UUID bases to allocate. This parameter is set to one in this application since both services 

in the Smart Medication Tracker profile (Figure 3.2) share the same 128-bit base UUID.  

● gatt_enable_params.att_mtu: determines the maximum size of an ATT packet the SoftDevice can 

send or receive. The default size is set to 23 bytes which is the maximum data transfer allowed in 

BLE.  

 Before enabling the SoftDevice, the CHECK_RAM_START_ADDR macro is used to check the 

specific RAM start address requirements for the SoftDevice. Since the number of central and peripheral 

links affects RAM resources used by the SoftDevice, the parameters CENTRAL_LINK_COUNT and 

PERIPHERAL_LINK_COUNT are passed to the macro [31].  

Finally, the SoftDevice can be enabled by passing ble_enable_params structure to the function 

softdevice_enable(). The application must then be subscribed to BLE events by calling the function 

softdevice_ble_evt_handler_set(ble_evt_dispatch). The function ble_evt_dispatch() contains several BLE 

event handlers and must be passed to the event subscription function.  

3.4.1 Initializing GAP and Advertisement Parameters 

As mentioned in Section 2.3.2, GAP controls connections and advertising in BLE and it is 

essentially the component of the protocol stack that makes a device visible to scanning devices. The 

following segment of code is used to set the necessary GAP parameters used by the smart medication cap 

application.  
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// Function for the GAP initialization. 
// This function  sets up all the necessary GAP (Generic Access Profile) parameters of the 
//      device including the device name, appearance, and the preferred connection parameters. 
static void gap_params_init(void) 
{ 
    uint32_t                err_code; 
    ble_gap_conn_params_t   gap_conn_params; 
    ble_gap_conn_sec_mode_t sec_mode; 
 
    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); 
 
    err_code = sd_ble_gap_device_name_set(&sec_mode, 
                                          (const uint8_t *)DEVICE_NAME, 
                                          strlen(DEVICE_NAME)); 
    APP_ERROR_CHECK(err_code); 
 
 
    memset(&gap_conn_params, 0, sizeof(gap_conn_params)); 
 
    gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; 
    gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; 
    gap_conn_params.slave_latency     = SLAVE_LATENCY; 
    gap_conn_params.conn_sup_timeout  = CONN_SUP_TIMEOUT; 
 
    err_code = sd_ble_gap_ppcp_set(&gap_conn_params); 
    APP_ERROR_CHECK(err_code); 
} 

 The memory reference to the parameter sec_mode is passed to the macro 

BLE_GAP_CONN_SEC_MODE_SET_OPEN() to establish the security of connections made by this 

device as open. The updated sec_mode parameters is then passed to the function 

sd_ble_gap_device_name_set() along with parameter DEVICE_NAME to set the GAP device name. 

Finally, after setting appropriate memory for the structure gap_conn_params of type gap_con_params_t, 

the parameters for maximum and min connection interval, slave latency, and connection supervision 

timeout are set. These parameters are defined in main.c as MIN_CONN_INTERVAL, 

MAX_CONT_INTERVAL, SLAVE_LATENCY, and CONN_SUP_TIMEOUT and are set to the values 

shown in table 3-1.  
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Table 3-1: GAP initialization parameters for smart medication cap. 

Parameter  Value  

MIN_CONN_INTERVAL 0.2 s 

MAX_CONN_INTERVAL 0.4 s  

SLAVE_LATENCY 5 

CONN_SUP_TIMEOUT 5 s  

 

As seen in Table 3-1, the connection interval range was set to be between 0.2 s and 0.4 s. The 

interval is therefore in the faster end of the allowed 1.5 ms to 4 s range. However, due to the slave latency 

parameter, the effective connection interval is in fact longer. For this application, the slave latency was set 

to five, i.e., the slave device can ignore five consecutive connection events from the master. The equation 

below is used to determine the effective connection interval [39]:  

𝐸𝑓𝑓. 𝐶𝑜𝑛𝑛. 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝐶𝑜𝑛𝑛. 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ×  (1 +  𝑆𝑙𝑎𝑣𝑒 𝐿𝑎𝑡𝑒𝑛𝑐𝑦)                                    

Therefore, with a slave latency of five, and assuming that the connection interval is at its minimum 

value of 200 ms, the effective connection interval is 1.2 s. In a situation in which no data is being sent from 

the slave, the slave will only transmit every 1.2 s. Having the effective connection interval longer than a 

second can significantly reduce the power consumption of both slave and master. Finally, the connection 

supervisory timeout, which must be longer than the effective connection interval, was set to 5 s. This means 

that checking for disconnection events due to poor range or signal interference will happen every 5 seconds. 

Once these parameters are set, the SoftDevice handler function sd_ble_gap_ppcp_set(&gap_conn_params) 

is used to set the GAP parameters.  

Next, the advertising parameters for the smart cap application were set using the code segment 

below:  
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// Function for initializing the Advertising functionality. 
static void advertising_init(void) 
{ 
    uint32_t               err_code; 
    ble_advdata_t          advdata; 
    ble_adv_modes_config_t options; 
 
    // Build and set advertising data. 
    memset(&advdata, 0, sizeof(advdata)); 
 
    advdata.name_type               = BLE_ADVDATA_FULL_NAME; 
    advdata.include_appearance      = false; 
    advdata.flags                   = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE;; 
    advdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids)/sizeof(m_adv_uuids[0]); 
    advdata.uuids_complete.p_uuids  = m_adv_uuids; 
 
    // Declaring and Instantiating Scan Response 
    // Adding scan response increases advertising space  
    ble_advdata_t srdata; 
    memset(&srdata, 0, sizeof(srdata)); 
 
    // addign UUID to scan respose  
    srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids_sr)/sizeof(m_adv_uuids_sr[0]); 
    srdata.uuids_complete.p_uuids  = m_adv_uuids_sr; 
 
    memset(&options, 0, sizeof(options)); 
    options.ble_adv_fast_enabled  = true; 
    options.ble_adv_fast_interval = APP_ADV_INTERVAL; 
    options.ble_adv_fast_timeout  = APP_ADV_TIMEOUT_IN_SECONDS; 
    options.ble_adv_slow_enabled  = true; 
    options.ble_adv_slow_interval = APP_ADV_SLOW_INTERVAL; 
    options.ble_adv_slow_timeout  = APP_ADV_SLOW_TIMEOUT_IN_SECONDS; 
     
    err_code = ble_advertising_init(&advdata, &srdata, &options, NULL, NULL); 
    APP_ERROR_CHECK(err_code); 
} 
 

First, the advertising data is saved into the declared structure advdata of type ble_advdata_t. The 

first parameters set in this struct is the name_type which is set to BLE_ADVDATA_FULL_NAME to 

include the full name of the peripheral. The appearance of the device is not included by setting 

inlcude_appearance to false. Then the advertising data flags is set to 

BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE to indicate that the device only 

supports BLE and is set to general discoverable mode. A complete count of the UUIDs and the UUIDs 

themselves are then included in the advertising data. Only the 128-bit UUID for the tracker service is 

included in the advertising data due to size constraints. 

In order to advertise the 128-bit sensor service UUID as well, the scan response data is used by 

declaring the srdata structure of type srdata. The only parameters set in srdata were the UUID count and 
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actual UUID for the sensor service. Then, the actual advertising parameters were set using the options struct 

of type ble_adv_modes_cofig_t. The parameters set in the options struct are outlined below:  

● options.ble_adv_fast_enabled: Set to true in order to enable the peripheral device to advertise in 

fast mode. This mode allows for smaller advertising intervals. 

● options.ble_adv_fast_interval: Set to APP_ADV_INTERVAL which is defined in main.c as 

187.5 ms.  

● options.ble_adv_fast_timeout: Set to APP_ADV_TIMEOUT_IN_SECONDS which is defined in 

main.c as 30 s.  

● options.ble_adv_slow_enabled: Set to true in order to enable the device to advertise in slow mode. 

This mode allows for longer advertising intervals.  

● options.ble_adv_slow_interval: Set to APP_ADV_SLOW_INTERVAL which is defined in 

main.c as 1 s.  

● options.ble_adv_slow_timeout: Set to APP_ADV_SLOW_TIMEOUT_IN_SECONDS which is 

defined in main.c as zero. Setting this parameter to zero allows for indefinite advertising in slow 

mode.  

 As described in the advertising parameters, both fast and slow advertising are enabled for this 

peripheral device. When the device first advertises, it will do so in fast mode at intervals of 187.5 ms to 

enable a faster connection. After 30 s, fast advertising will timeout and the device will switch to slow 

advertising at intervals of 1 s. Since it is required that the smart cap device advertise indefinitely, increasing 

the length of the advertising interval can significantly decrease current consumption by the device. The 

parameters for fast and slow advertising are summarized in Table 3-2.  
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Table 3-2: Fast and slow advertising parameters for smart medication cap. 

 Fast Advertising  Slow Advertising  

Advertising Interval 187.5 ms  1 s 

Advertising Timeout  30 s No timeout  

 

In order to initialize fast advertising, the SoftDevice handler function sd_ble_gap_adv_star() 

function is called with fast advertising interval and timeout as arguments. Once fast advertising timeout 

occurs, the function returns the BLE event BLE_GAP_EVT_TIMEOUT, which signals the start of slow 

advertising. To start slow advertising, the same sd_ble_gap_adv_start() function is used but with slow 

advertising interval and timeout as arguments.  

3.4.2 Overview of Services and Characteristics  

The track_service.h and sensor_service.h files included in the attached zip file contain the 

necessary definitions and data structures required in the files track_service.c and sensor_service.c to 

initialize the tracker and sensor services and add the appropriate characteristics. As shown in Figure 3.2, 

the tracker service characteristics include an LED pin state characteristic, a PWM signal characteristic, and 

a Button state characteristic while the sensor service includes the Sensor state and Temperature value 

characteristics. The operation properties of each characteristic are shown in Table 3-3.  
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Table 3-3: Operation properties for characteristics in tracker and sensor services. 

Characteristic Value  Operation Properties  

Tracker Service   

LED PIN STATE read/write 

PWM SIGNAL  read/write 

BUTTON STATE read/notify  

Sensor Service  

TOUCH SENSOR STATE read/notify 

TEMPERATURE VAL.  read/notify  

  

 Therefore, a client device is able to read and write the characteristic value for LED pin state and 

PWM signal characteristics while it is able to read the characteristic value and receive notifications from 

the BUTTON state, TOUCH SENSOR state and TEMPERATURE VAL. characteristics. The segment of 

code below from track_service.c shows the function led_char_add() for declaring the LED pin state 

characteristic: 

// Function for adding LED characteristic to Service  
// param[in] p_track_service   Tracker Service structure. 
// param[in] p_lb_init         LED Button PWM Service init structure. 
static uint32_t led_char_add(ble_track_t * p_track_service, const ble_track_init_t * 
p_track_init) 
{ 
    // Add a custom characteristic UUID 
    uint32_t err_code; 
    ble_uuid_t char_uuid; 
    ble_uuid128_t base_uuid = BLE_UUID_BASE_UUID; 
    char_uuid.uuid =  BLE_UUID_CHARACTERISTIC_LED; 
    err_code = sd_ble_uuid_vs_add(&base_uuid, &char_uuid.type); 
    APP_ERROR_CHECK(err_code); 
     
    // Add read/write properties to our characteristic 
    ble_gatts_char_md_t char_md; 
    memset(&char_md, 0, sizeof(char_md)); 
    char_md.char_props.read = 1; 
    char_md.char_props.write = 1; 
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    // Configuring Client Characteristic Configuration Descriptor metadata and add to char_md 
structure 
    ble_gatts_attr_md_t cccd_md; 
    memset(&cccd_md, 0, sizeof(cccd_md)); 
 
    // Configure the attribute metadata 
    ble_gatts_attr_md_t attr_md; 
    memset(&attr_md, 0, sizeof(attr_md)); 
    attr_md.vloc = BLE_GATTS_VLOC_STACK; 
    attr_md.rd_auth    = 0; 
    attr_md.wr_auth    = 0; 
    attr_md.vlen       = 0; 
      
    // Set read/write security levels to our characteristic 
    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&attr_md.read_perm); 
    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&attr_md.write_perm); 
     
    // Configure the characteristic value attribute 
    ble_gatts_attr_t    attr_char_value; 
    memset(&attr_char_value, 0, sizeof(attr_char_value)); 
    attr_char_value.p_uuid = &char_uuid; 
    attr_char_value.p_attr_md = &attr_md; 
     
    // Set characteristic length in number of bytes 
    attr_char_value.max_len = sizeof(uint8_t); 
    attr_char_value.init_len = sizeof(uint8_t);  
    attr_char_value.p_value = NULL;  
 
    // Add led characteristic to the service 
    err_code = sd_ble_gatts_characteristic_add(p_track_service->service_handle, 
              &char_md, 
              &attr_char_value, 
            &p_track_service->led_char_handles); 
    APP_ERROR_CHECK(err_code); 
 
    return NRF_SUCCESS; 
} 

 

 In this segment of code, the function sd_ble_uuid_vs_add() is first used to add the vendor specific 

characteristic UUID (BLE_UUID_CHARACTERISTIC_LED) to the BLE attribute table based on the 

application’s base UUID. Then the characteristic metadata structure, char_md (of type 

ble_gatts_char_md_t), is used to set the characteristic properties for read and write by setting the 

char_props.read and char_props.write data fields to true. Next, the attribute metadata structure (of type 

ble_gatts_attr_md_t) field attr_md.vloc is used to set the attribute value location. Setting this field to 

BLE_GATTS_VLOC_STACK saves the attribute value in stack memory and no user memory is required. 

Next, the macro BLE_GAP_CONN_SEC_MODE_SET_OPEN sets the open security levels of the 

characteristic as read and write.  
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 The structure attr_char_value (of type ble_gatts_attr_t for setting GATT attribute) then contains a 

pointer to the characteristic UUID (attr_char_value.p_uuidi) and a pointer to the previously defined 

attribute metadata (attr_char_value.p_attr_md). Its three other fields also contain an initial characteristic 

value offset and its maximum value in bytes, and a pointer to the actual value. Since the attribute value is 

saved in stack memory, a user is not allowed to specify location and its pointer must be set to NULL. 

Finally, the SoftDevice handling function sd_ble_characteristic_add() is used to add the characteristic to 

the attribute table using the defined structures for attribute metadata and characteristic attribute values, and 

a pointer to the structure where the assigned values will be stored (declared in track_service.h).  

 The function for declaring the PWM signal characteristic, pwm_char_add() is in essence identical 

to led_char_add() since they have the same read and write operation properties and read and write open 

security levels. On the other hand, the functions for adding characteristics in both services that send a 

notification to the central device contain a small difference. For example, the function temp_char_add() for 

adding the TEMPERATURE value characteristic contains the additional lines of code:  

// Configuring Client Characteristic Configuration Descriptor metadata and add to char_md 
structure 
    ble_gatts_attr_md_t cccd_md; 
    memset(&cccd_md, 0, sizeof(cccd_md)); 
    cccd_md.vloc = BLE_GATTS_VLOC_STACK; 
    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&cccd_md.read_perm); 
    BLE_GAP_CONN_SEC_MODE_SET_OPEN(&cccd_md.write_perm); 
 
    // Add read/write properties to our characteristic 
    ble_gatts_char_md_t char_md; 
    memset(&char_md, 0, sizeof(char_md)); 
    char_md.char_props.read = 1; 
    char_md.char_props.notify = 1; 
    char_md.p_cccd_md = &cccd_md; 
 
 

 This segment of code sets the memory data field for the cccd_md structure of type 

ble_gatts_attr_md_t to configure the Client Characteristic Configuration Descriptor (CCCD) metadata. 

CCCD is required for a GATT client to control what kinds of packets the GATT server can send to it. 

Therefore, the peripheral device can only send a notification if the client has written a one to the CCCD for 

the respective characteristic [40]. The macro BLE_GAP_CONN_SEC_MODE_SET() is then used to set 

the open security permissions of the CCCD metadata as read and write. The characteristic metadata for this 
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TEMPERATURE value characteristic will then set possible operations to read and notify and will also 

contain a pointer to the cccd_md structure. This same procedure is used for adding the SENSOR state and 

BUTTON state characteristics since they too are required to send the client notifications.  

 Finally, the track_service.c and sensor_service.c files contain functions that are called in main for 

initializing the services. For example, the function sensor_srv_init(), from sensor_service.c, is shown 

below:  

// Function for initiating the sensor service. 
// param[in] p_sensor_service     sensor Service structure. 
uint32_t sensor_srv_init(ble_sensor_t * p_sensor_service) 
{ 
    uint32_t err_code;   // return error codes from softdevice and library functions 
     
    //Declare 16 bit service and 128 bit base UUIDs and add them to BLE stack table      
    ble_uuid_t service_uuid; 
    ble_uuid128_t base_uuid = BLE_UUID_BASE_UUID; 
    service_uuid.uuid = BLE_UUID_SENSOR_SERVICE; 
    err_code = sd_ble_uuid_vs_add(&base_uuid, &service_uuid.type); 
    APP_ERROR_CHECK(err_code); 
 
    // Add service to the stack 
    err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY, 
           &service_uuid, 
           &p_sensor_service->service_handle); 
    APP_ERROR_CHECK(err_code); 
 
    // Calling the function sensor_char_add() to add new characteristic to the service 
    err_code = sensor_char_add(p_sensor_service); 
    APP_ERROR_CHECK(err_code); 
 
    // Calling the function temp_char_add() to add a new characteristic to the service 
    err_code = temp_char_add(p_sensor_service); 
    APP_ERROR_CHECK(err_code);  
 
 
    return NRF_SUCCESS; 
} 
 

 This function first calls sd_ble_uuid_vs_add() to add the service UUID to the BLE stack attribute 

table based on the applications base UUID. Again both the service UUID 

(BLE_UUID_SENSOR_SERVICE) and the base UUID (BLE_UUID_BASE_UUID) are defined in the 

sensor_service.h file. Next, the SoftDevice handling function sd_ble_gatt_service_add() is called to add 

the service to the BLE stack by specifying the memory location of the service UUID and the service handle 

defined in sensor_service.h. The service adder function also requires the developer to specify the GATT 

server service type. Both the sensor and tracker services for the smart medication device are primary which 
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is denoted by BLE_GATTS_SRVC_TYPE_PRIMARY. After adding the service to the stack, the functions 

for adding the different service characteristics described previously are then called. Therefore, calling 

sensor_srv_init() in main initializes the service and its respective characteristics.  

 Apart from the service and characteristic adding functions, the track_service.c and sensor_service.c 

files also contain other functions for BLE event handling including connection, disconnection and writing 

events. For certain characteristics, the service files also contain functions which, with the help of the 

SoftDevice handling function sd_ble_gatts_hvx(), send the client notifications.  The main.c file also 

contains multiple write handlers for characteristics that can be written to by the client. For brevity, these 

functions will not be discussed in detail but can still be inspected in the attached zip file.  

3.5 Smart Medication Cap Prototype Hardware 

This section gives an overview of the steps taken to design and test the prototype hardware for the 

smart medication cap device. Initially, the hardware was prototyped using a standard breadboard. The tested 

design on the breadboard was then translated to a PCB prototype using Eagle PCB design software. Two 

iterations of hardware design were performed for this device: one in which the nRF52 SoC would be hand 

soldered onto the prototype board and another in which an nRF52 module with attached antenna would be 

used.  

3.5.0 Initial Hardware Design with Hand Soldered nRF52832 

The initial hardware design was tested with the nRF52 Development Kit but then was eventually 

tested with SparkFun’s nRF52 breakout board since it was initially intended for the final PCB prototype to 

be completely custom with a hand soldered nRF52 SoC. As mentioned in Section 3.2.1, the SparkFun 

breakout was chosen since it was provided with comprehensive Eagle schematic and PCB files that could 

be closely followed for circuit design accuracy. This was particularly attractive since the student working 

on this project had very little experience with antenna design. The breadboarded circuit for the smart 

medication cap using the SparkFun breakout is shown in Figure 3.14.  
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Figure 3.13: Breadboarded prototype circuit using SparkFun’s nRF52 breakout board. 

 The breakout board was powered using 3.0 V from the power supply to imitate a 3.0 V coin cell. It 

is extremely important to note that the nRF52 general purpose I/O (GPIO) pins cannot drive more than 15 

mA of current combined. In fact, it is never recommended to drive any components directly from GPIO 

pins in any microcontroller since they will most likely not provide enough current. Therefore, the LED, 

PWM buzzer, and capacitive touch sensor IC are all powered with the same 3.0 V input voltage rail as the 

nRF52 breakout board.  

The LED whose state is controlled by the LED state characteristic value was a standard T-1 ¾ LED 

package whose maximum forward current is 20 mA and max forward voltage is 4 V. When powered with 

3.0 V, it was possible to achieve around half of the LED’s light intensity with a forward current of around 

6 mA. Therefore, the LED is connected to VCC with a current limiting resistor of around 475 Ω which was 
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simply calculated using Ohm’s laws. Although this only allows for 50% intensity, the LED used in the 

hardware has an intensity of 7,500 millicandela (mcd) at a 32 degree viewing angle. Hence, the LED is still 

incredibly bright with this setup and cannot be looked upon directly from above without discomfort.  

Next, the PWM buzzer, whose state is controlled by the PWM signal characteristic value is also 

connected to the 3.0 V VCC rail in parallel to the LED and the nRF52 breakout board. In order to drive the 

buzzer with a PWM signal generated by the nRF52 SoC, a transistor driver circuit was used. This driver 

circuit is shown in Figure 3.15. 

  

Figure 3.14: NPN transistor driver circuit for piezoelectric buzzer/magnetic transducer audio elements. 

In this simple driver circuit, the transistor behaves like a switch which is controlled by the voltage 

at its base pin. Hence, the control signal for the audio buzzer (a PWM signal from GPIO pin 29) is connected 

to the base of the transistor. Once the control signal’s voltage increases above the transistor’s threshold 

voltage, the transistor will behave as a short circuit between its collector and emitter pins, tying the buzzer 

straight to ground. However, when the control signal’s voltage is below the threshold voltage, the transistor 

is in cutoff mode and no current flows between collector and emitter. This is a simple technique that allows 

for the audio buzzer to be powered by the VCC rail for higher current drive while still being controlled by 

an nRF52 GPIO pin signal.  
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 Finally, the Adafruit capacitive touch sensor breakout using ATMEL’s sensor IC was also powered 

with the 3.0 V VCC rail in parallel to the rest of the components. Its digital output pin is then connected to 

an nRF52 GPIO pin that is controlled using SDK button library functions. This pin was initialized to use 

an internal pull up resistor, therefore, when the sensor output pin is low, the GPIO pin is shorted to ground, 

registering an input value of one. However, when the capacitive sensor pad is touched and the output pin 

goes high, the input GPIO pin is no longer tied to ground and is pulled high, registering a zero. Hence, 

when the sensor is touched, the smart medication cap will send the central device a value of zero. In 

addition, when the sensor IC output pin goes high, it does so at the same input voltage of 3.0 V. Therefore, 

for protection measures, this sensor output voltage was stepped down to the nRF52 GPIO pin’s logic high 

voltage of 2.5 V using a simple voltage divider. 

 This breadboarded circuit was then translated to a PCB prototype design using Eagle software. 

Again, this particular design involved hand soldering the nRF52 SoC and was therefore complex since it 

involved not just the hardware for the external components described previously, but also the specific 

supporting hardware for the proper functioning of the nRF52 SoC, including a PCB antenna. Fortunately, 

it was possible to closely follow the provided Eagle schematic and layout provided for the SparkFun 

breakout board to minimize design flaws. The detailed schematic for this design is included under Appendix 

7.2. Figure 3.16 shows the final layout design for this particular PCB prototype.  
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Figure 3.15: PCB layout for complete custom prototype with hand soldered nRF52 SoC. 

 From the schematic under Appendix 7.2 and the PCB layout shown in Figure 3.15, it can be seen 

that many more components are included in the design than were originally tested on the breadboarded 

circuit in Figure 3.14. However, the placement of these components in the final design was carefully 

mimicked from the SparkFun breakout board to insure proper functionality. This was especially true for the 

impedance matching network between the SoC antenna pin and the PCB trace antenna. The 15.2 mm trace 

antenna itself was also provided as a library component under the SparkFun Eagle files. In addition, the 

extra components include a 3.3 V AP2112K voltage regulator in case the custom board was to be powered 

using higher voltage through the VIN pin.  

 Otherwise, the 39.32 mm by 43.40 mm custom board contains all other components described 

previously required for the smart medicatication cap application. In Figure 3.16, the location of the audio 
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transducer and the driver circuit is clearly visible as is the T-1 ¾ LED and buttons. The ATMEL 

AT42QT1010 sensor IC and its supporting circuitry were also placed on the top layer of the custom board, 

opposite the battery holder on the bottom layer. The design for this supporting circuitry for the sensor IC 

was readily available in the IC’s data sheet as shown in Figure 3.17.  

 

Figure 3.16: ATMEL AT42QT1010 sensor IC circuitry [34]. 

 A few things to keep in mind for the sensor IC circuit in the above figure is the fact that a 0.1 uF 

bypass capacitor must be wired between VDD and VSS. In addition, the value of CS, which is typically 

between 2 and 50 nF, can affect the overall sensitivity of the sensor IC. For example, decreasing the value 

of this capacitance can significantly reduce sensitivity. For this particular prototype, the value was kept at 

10 nF, which is the same used in the Adafruit breakout sensor utilized during testing.  

Another important aspect to keep in mind for the PCB design shown in Figure 3.16 is the fact that 

area where the PCB antenna is traced is completely out of reach for other traces and ground planes. This 

particular section of the board is also only one layer instead of two. Having ground planes or other traces 

near the antenna can have a major negative impact on the RF performance of the antenna.  
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3.5.1 Second Hardware Design Using IMM-NRF52832 Micro-Module 

The previous PCB design shown in Figure 3.16 had to be discarded since attempting to hand solder 

the 48 pin QFN package for the nRF52 SoC did not result in success. The idea of outsourcing prototype 

assembly to an outside company was considered, however, time and budget constraints did not make this 

solution feasible. The fastest and simplest solution was to redesign the PCB layout in Figure 3.16 to use an 

nRF52 module instead. As mentioned in Section 3.2.2, the IMM-NRF52832 micro-module was chosen 

since it already has a PCB antenna and was one of the best documented third party modules available in 

market. Figure 3.18 shows the breadboarded prototype circuit for the smart medication cap using the IMM-

NRF52832 micro-module.  

 

Figure 3.17: Breadboarded prototype circuit with IMM-NRF52832 micro-module. 

 The specific design for all the external components such as the LED, the audio buzzer and the 

ATMEL sensor IC circuitry were as described in the previous section. However, the use of the IMM-
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NRF52832 module significantly reduced the complexity of the PCB layout design as seen in the schematic 

included under Appendix 7.3 and the PCB layout shown in Figure 3.19. 

 

Figure 3.18: PCB layout for final revision of smart medication cap prototype using IMM-NRF52832 module. 

 This 40.85 mm by 39.78 mm revision of the PCB prototype is less crowded than the one shown in 

Figure 3.16 and involved tracing the external components shown in Figure 3.18 to their respective GPIO 

pins on the nRF52 module. Again, it is important to note that there is only one layer on the right side of the 

board where the nRF52 module antenna rests. There is also no ground plane or other traces in this antenna 

keep out area. In addition, the SWCLK and SWDIO pins were traced to two through-hole connectors for 

SWD programming.  

In this prototype revision, further care was also taken when placing and tracing the components of 

the sensor IC’s supporting circuit as detailed in the data sheet [34]. For example, the sensor IC was placed 

to minimize the SNSK (see Figure 3.17) trace length to reduce low frequency pickup. In addition, the CS 

and RS components were placed as close as possible to the chip’s body to reduce trace length between 
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SNSK and RS as much as possible. Keeping this trace short reduces its antenna like ability to pick up high 

frequency signals and feed them to the sensor IC. To reduce loading as well, no ground plane was included 

near the RS resistor and electrode pad. Finally, the electro trace and electro pad were kept as far away from 

other signal and power traces. Switching signals adjacent to this trace can induce significant noise onto the 

sensing signal, causing the IC to misbehave.  

3.6 Testing BLE Applications with nRF Connect Mobile Application 

When developing firmware for nRF5x family SoCs, Nordic Semiconductor offers a valuable tool 

for testing and troubleshooting known as the nRF Connect. This tool is in the form of a smartphone 

application which behaves as central device and is programmed to scan and connect to BLE peripherals. 

Figure 3.13 shows a screenshot of the application scanner which has discovered multiple BLE peripherals 

including the smart medication cap. The scanner is set to list all discovered devices based on their device 

name included under GAP parameters. A shortened version of the smart medication cap device name, 

MQP_SMART, is shown on the list.   

 

Figure 3.19: nRF Connect BLE device scanner listing discovered devices, including the MQP_SMART IoT device. 
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 The nRF Connect application can also discover services and allow the reading and writing of 

discovered characteristics. It can display real time graphs of a device’s received signal strength indicator 

(RSSI) and allow the enabling or disabling of BLE notifications. But perhaps the most important 

functionality of the nRF Connect application is parsing advertisement packet data. Parsed advertisement 

data displays the connection modes for a scanned device, a complete list of 128-bit/16-bit UUIDs, device 

name, and the exact advertising interval in ms for each consecutive packet. In addition, the nRF Connect 

application logs events and method calls in enough detail to facilitate debugging during development. This 

feature was particularly useful for determining when and why certain connection errors occurred.  

3.7 nRF52832 TX and RX Current Measurements  

For both the smart medication cap firmware, while the devices are not undergoing an advertisement 

or connection event, the CPU will be in low power mode as dictated by the SoftDevice power management 

function sd_app_evt_wai() which is called in an infinite loop in main(). Therefore, the major current 

consumption by the nRF52 SoC will occur when the CPU is active and undergoing an advertising and 

connection event. To evaluate the SoC’s current performance during advertisement and connection events, 

oscilloscope measurements were performed using a test circuit which was similar to the one in Figure 3.18. 

This involved placing a 10 Ω resistor is series with the 3.0 V voltage source. Then two oscilloscope probes 

are placed on either side of the resistor as shown in Figure 3.21.  



   67 
 

 

Figure 3.20: Ten ohm resistor and oscilloscope probe placement for current measurement. 

Placing the oscilloscope probes at either end of the resistor allows for measuring the voltage drop 

across it by subtracting the two voltage signals using a math setting included in most oscilloscopes. The 

current consumed is then given by the following equation. 

𝐼𝑒𝑣𝑒𝑛𝑡 =  
𝑉𝑑𝑟𝑜𝑝

𝑅
  

It is possible to use this equation to calculate current consumed at each different step of the 

connection or advertising events. The average of these currents would then equal the total current 

consumed. However, performing these measurements were difficult using oscilloscopes available in the 

department’s laboratories since they are not sensitive enough to accomplish accurate current measurements 

due to limitations in resolution. In addition, they were not sophisticated enough to capture advertising and 

connection events as a smooth waveform and would contain significant discontinuity between gathered 

samples.  
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Therefore, it was best to only accurately measure the current consumed during peak TX and RX 

since these two sections of the advertising or connection events resulted in the largest change in voltage. 

The TX and RX current results were compared to estimates given by Nordic’s nRF52 Online Power Profiler 

[41]. 

3.8 Overview of Smart Medication Cap Android Application  

Setting up the android development studio was simple compared to the steps taken in Section 3.3 to 

set up a firmware development environment for the nRF52 SoC. This consisted of downloading the latest 

version of Android Studio and installing it onto a computer along with the latest SDK and building tools. 

Since android development is done using Java, it was also important to have the latest version of Java’s 

Standard Edition Development Kit (JDK) installed. The path for the JDK was then added as a new system 

environment variable named JAVA_HOME. Android Studio searches for the JDK using this specific name, 

hence the system variable name cannot be changed.  

 In order to speed up the implementation of the smart cap smartphone application, the android 

example project BluetoothLEGatt was used as a starting point. This example already contained source files 

for implementing a BLE scanner that can discover devices, connect to them, and discover available services. 

Further functionality and user interface pertaining to the smart medication cap was built upon this example 

application.  

 Starting with the example application was also convenient since the student working on this project 

had no previous experience writing in Java or developing smartphone applications. After becoming familiar 

with the BluetoothLEGatt example, it was sufficient to simply navigate the Android Developers 

Documentation to learn how to include further functionality and user interface to the app. The available 

documentation is thorough and easy to understand, making it a perfect resource for beginners. A zip file of 

the android project is attached to the project’s files in the MQP title page.  
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4 Results 

4.0 Results for Device Firmwares using nRF Connect Application  

4.0.0 Smart Medication Cap Device Firmware 

Figure 4.1 shows the scanner on the nRF Connect application having discovered the smart 

medication cap device. Once nRF Connect has discovered a device, it lists it by name followed by device 

address. The listed information also includes whether the respective device is single-mode or dual-mode 

along with other flags. The information also includes all custom 128-bit service UUIDs discovered for the 

particular device. The UUIDs listed for the smart medication cap device are for the tracker service and 

sensor service as described previously.  

 

Figure 4.1: nRF Connect Scanner listing the discovered smart medication cap device by name and listing important 

properties of advertising/scan packets. 

As can be seen in Figure 4.1, the smart medication cap is a single-mode device that only supports 

the BLE protocol. The device is also set to be a general discoverable device. The line “BrEdrNotSupported” 

is included to explicitly state that this device does not support classic Bluetooth.  

Figure 4.2 shows the advertising event tracker on the nRF Connect application. In this particular 

figure, the smart medication cap is advertising in fast mode and its interval is around 191 ms. This feature 
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of the app allows the user to keep track of the varying advertising interval lengths for the most recent 100 

events. The advertising interval can vary slightly and keeping track of this information is necessary for 

debugging and for evaluating the performance of the nRF52 SoC. It can be seen that all recorded interval 

times are close to the originally set value of 187. 5 ms.  

 

Figure 4.2: Variations in advertising interval duration for the smart medication cap in fast advertising mode along 

with RSSI value plot. 

 The plot shown in Figure 4.2 also allows the programmer to visually track the received signal 

strength indicator (RSSI) value for the device. This value is reported in dB and becomes less negative as 

the range between the central and peripheral devices becomes shorter. Figure 4.3 shows the same tracker 

of advertising events but for when the smart medication cap is advertising in slow mode. Again, although 

the advertising interval length can vary slightly, it is still close to the set value of 1 s as shown in table 3.2. 

The current value in this case was 994 ms.  
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Figure 4.3: Variations in advertising interval duration for the smart medication cap in slow advertising mode along 

with RSSI value plot. 

Figures 4.2 and 4.3 served to verify that the device was indeed switching between fast and slow 

advertising modes. The fact that the device could be discovered by the application scanner at any point in 

time also confirms that the smart medication cap is capable of advertising indefinitely while in slow mode. 

The device will only stop advertising when not powered. In addition, once connected, the device will only 

disconnect when out of range or when there is signal disruption as desired. If disconnected for any reason, 

the device will advertise in fast mode to connect as quickly as possible.  

After connecting to the smart medication cap device, the nRF Connect application lists the available 

services and their characteristics as shown in Figures 4.4 and 4.5. It was confirmed that both the tracker and 

sensor services were initialized properly in the smart medication cap firmware since they were discovered 

and listed by nRF Connect. The same was true for all characteristics inside the services. If these were not 

initialized properly, they would not be listed as they are in Figures 4.4 and 4.5.  
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Figure 4.4: nRF Connect listing tracker service and its 

characteristics upon connection to the smart 

medication cap device. 

 

Figure 4.5: nRF Connect listing sensor service and its 

characteristics upon connection to the smart 

medication cap device. 

 

Testing the writing, reading and notification properties of each characteristic was also successful. 

For example, when writing 0x01 to the LED state characteristic on the tracker service, the following is 

observed in the debug window of the nRF Connect application: 

 

Figure 4.6: Debug window output on nRF Connect upon writing 0x01 to LED state characteristic on tracker 

service. 
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As expected, writing a 0x01 to the LED state characteristic triggers the LED on the smart 

medication cap device to flash. The LED stops flashing once 0x00 is written to the LED state characteristic. 

The same is true for the PWM signal characteristic on the tracker service. Writing a 0x01 to this 

characteristic triggers the PWM signal on the nRF52 pin which is fed to the magnetic transducer on the 

smart medication cap hardware for audio. Playback of the PWM signal is stopped when 0x00 is written to 

the characteristic.  

Reading data from the touch sensor is also achieved by enabling notifications on the nRF Connect 

application. It is important to note on Figures 4.4 and 4.5 that all characteristics in the tracker and sensor 

services that provide the central device with a notification have the descriptor Client Characteristic 

Configuration (CCCD) set to the UUID value of 0x2902. This descriptor was set when initializing the 

characteristics in the track_service.c and sensor_service.c files as explained in Section 3.5.2. After enabling 

notifications and sending sensor data, the following is observed in the debug window of the nRF Connect:  

 

Figure 4.7: Debug window output upon enabling notifications for sensor characteristic and receiving sensor data. 

The same output on the debug window is observed when enabling notifications for the BUTTON 

state and TEMPERATURE value characteristics. This confirms that all characteristics that send the central 

device a notification were initialized properly in the smart medication cap firmware and that their respective 

data were handled and sent appropriately. By verifying the complete functionality of the smart medication 
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cap using the nRF Connect app, it was concluded that both the firmware and the hardware prototype were 

functioning as expected.  

 

4.1 Prototype Hardware Results for Smart Medication Cap 

In this section, the prototype hardware results for the smart medication cap are discussed. As 

mentioned previously, during the completion of the project there was only enough time to manufacture the 

two different prototype PCBs for the smart medication cap device shown in Section 3.7.  

 The PCB prototypes that were ordered for the smart medication cap were manufactured by OSH 

Park. This manufacturer was selected for its “Super Swift” service which guarantees shipping of PCB 

prototypes within five business days at a price of ten dollars per square inch. Due to the small size of the 

designed boards, ordering three boards had a cost of around thirty dollars for each prototype.  

4.1.0 Prototype Hardware Results for Initial Design Revision 

Figure 4.11 shows the front and back of the manufactured PCB for the smart medication cap 

prototype shown in Figure 3.16.  

   

Figure 4.8: Front and back of manufactured PCB for smart cap using hand soldered nRF52 SoC. 

 The first step in attempting to assemble this PCB prototype was to hand solder the nRF52 SoC. 

Figure 4.12 demonstrates the hand soldered result of the QFN package using solder paste and a stencil.  
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Figure 4.9: Hand soldered nRF52 SoC on prototype PCB. 

 Despite a small number of pins on the SoC that were properly soldered to their pads, there were 

still multiple solder bridges on each side of the chip. The most visible damage can be seen on the row 

containing pin number one in Figure 4.12. On this side of the chip, all pins were bridged together. In 

addition, since there was no reflow oven available for surface mount assembly, the chip and solder were set 

using a hot air soldering rework station. However, using a hot air gun is not recommended for sensitive ICs 

such as the nRF52 since the gun is channeling air at much higher than 200°C directly onto it. It is very 

likely that even if the chip was soldered properly, it would not be functional due to exposure to peak package 

temperature for longer than the recommended 30 seconds.  

 This PCB prototype contained another significant defect as shown in Figure 4.13. The footprint 

shown in the figure is for a 20 mm coin cell battery holder. The small circled holes are known as vias which, 

connect signal traces between the top and bottom layer of the PCB board. In the assembled prototype, the 

negative side of the battery would be sitting on top of these vias causing multiple shorts. It would not have 

been a major issue if these vias were connected to the ground plane, but they are connecting other signals, 

including VCC, between PCB layers.  
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Figure 4.10: Incorrectly placed signal and VCC vias in coin cell battery area which would lead to multiple shorts. 

 Therefore, powering this smart medication cap prototype using a battery would not have been 

possible. The power and ground pins shown in Figure 4.11 would have provided a powering alternative. 

4.1.1 Prototype Hardware Results for Second Design Revision   

Figure 4.14 shows the the manufactured PCB board for the second smart medication cap prototype 

using the IMM-NRF52832 micro-module.  

  

Figure 4.11: Front and back of manufactured PCB for smart cap using IMM-NRF52832 micro-module 

 The assembled prototype is shown in Figure 4.15. The coin cell battery pack was not soldered 

initially for easy breadboarding of the board for SWD programing using the SWCLK and SWDIO pins. 

However, the prototype could easily be powered using the power and ground pins shown in Figures 4.14 

and 4.15.  
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Figure 4.12: Assembled prototype PCB for smart medication cap device. 

 The capacitive touch sensor IC and its supporting components can be seen on the lower left corner 

of the prototype board in Figure 4.15.  A wire attached to a conductive copper surface on a medicine bottle 

cap was soldered to the small pad on the bottom left corner of the prototype. The finished assembly along 

with the medicine bottle is shown in Figure 4.16. Although not clearly visible in the figure, a 20 mm coin 

cell battery pack is soldered to the bottom of the prototype PCB.  
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Figure 4.13: Finished prototype with PCB hardware and medication bottle. 

4.1.2 Notes on Hardware Design  

After having ordered the prototype PCB shown in Figures 4.14 and 4.15, a design error was 

observed in the breadboarded test circuit shown in Figure 3.18 concerning the AT42QT1010 touch sensor 

IC breakout module. Occasionally, when the PWM signal was turned on, the sensor module would behave 

erratically and record false input. This of course was undesirable. 

 After closely reading through the AT42QT1010 datasheet once more it was found that if the IC’s 

power supply is shared with another electronic system, then care should be taken so that the supply is free 

of digital spikes since the IC can be negatively affected by rapid input voltage fluctuations [34]. This was 

indeed the case when the PWM signal was turned on. The best hardware fix is to regulate the input voltage 

of the IC using a Low Dropout (LDO) regulator. However, as the prototype shown in Figure 4.14 had 

already been ordered, the addition of the LDO regulator was not possible. It was best to assemble the 

prototype to look out for the same error and, if it occurred, a new design would be included using an LDO 

regulator. An additional software fix to bypass the issue was also added to the firmware. This was to stop 

reading input from the sensor when the PWM signal is currently on. 
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 Fortunately, when the assembled prototype in Figure 4.15 was tested, the same issue was not 

observed. It was then concluded that the misbehavior of the touch sensor IC module in the breadboard 

circuit could be related to other noise not in the input voltage signal as well. But the best practice is to 

isolate the IC input voltage from the rest of the circuit and thus the LDO regulator should be included in 

future designs.  

4.2 nRF52832 TX and RX Current Measurement Results 

Figure 4.17 shows an oscilloscope capture of an advertisement event when the nRF52 SoC is 

advertising at 1 s intervals. The green signal (CH4) corresponds to the oscilloscope probe connected 

between the input voltage and the 10 Ω resistor as shown in Figure 3.21. The purple signal (CH4) 

corresponds to the oscilloscope probe connected between the 10 Ω resistor and the rest of the test circuit. 

The red signal is the difference between the CH4 and CH3 signals, i.e. the voltage drop across the resistor.   

 

Figure 4.14: Advertising event for nRF52 SoC when advertising interval is 1 s (red signal). 



   80 
 

 The specific steps of the advertising event are also pointed out in Figure 4.17. After the pre, ramp 

and stand by events, data exchange starts followed by TX, switch and then RX. As seen in the figure, the 

complete advertising event has three consecutive data exchange intervals separated by a small stpost period. 

The max TX payload for the advertisement event of 31 bytes is being transmitted in this case.  

 Using amplitude cursors on the oscilloscope, it was possible to measure the peak TX and RX 

voltages as 104 mV. Therefore, using equation 3.1, the peak TX and RX currents were calculated as 10.4 

mA. This measured value is around 4 mA larger than the estimate value given by Nordic’s Online Power 

Profiler. The estimate online profiler values were 6.6 mA for TX and 6.7 mA for RX. This discrepancy could 

be due to the fact that measuring a change in voltage on the poor resolution wave resulted in a higher 

estimate than expected. But of course, the values reported on the online profiler are modeled estimates and 

it is possible that the value measured here is appropriate due to device variations or other aspects of the test 

circuit.  

 Figure 4.18 shows the advertising event (red signal) when the nRF52 is advertising at a 100 ms 

interval. The waveform is similar to the one in Figure 4.17 but is shown here using a larger time scale.  
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Figure 4.15: Advertising event for nRF52 SoC when advertising interval is 100 ms (red signal). 

 It is clear by looking at this particular signal why doing a complete average current estimate for the 

event using the available oscilloscopes was almost impossible. There is too much noise in the signal and 

the specific events pointed out in Figure 4.18 are not clearly visible. Attempts at capturing the signal at 

smaller time scales did not improve its overall appearance. However, it was possible to measure peak TX 

voltage at around 112 mV. Peak RX voltage was measured at around 108 mV. Therefore, peak current for 

TX and RX were 11.2 mA and 10.4 mA respectively. These peak values should not change based on 

advertising interval and while TX was higher than 10.4 mA, it was not by a significant amount. In fact, the 

average current for each part of the event will remain constant no matter the advertising interval. What 

makes a longer interval preferable is the fact that, since these events will take place less often, average 

current consumption will be lower. 

 However, advertising interval is not the only factor that affects current consumption. The size of 

data being transmitted also plays a major role. Since 128-bit UUIDs were advertised in this case, the full 

31 bytes were used. If less data, such as 20 bytes, would have been transmitted instead, the length of each 
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TX period would be smaller in both advertisement events and the average current consumption would 

decrease. The same is true for the connection event shown in Figure 4.19.  

 

Figure 4.16: Connection event for nRF52 SoC (red signal). 

 The connection event also contains the pre, ramp and stand by events but due to the noise in the 

signal they are barely noticeable. However, unlike the advertisement events, the RX period comes before 

the TX period. In this particular connection event, a temperature value notification is being sent from the 

peripheral to the central and the total TX payload is 11 bytes. Therefore, the TX period for this connection 

event is much shorter than the ones shown in Figures 4.17 and 4.18. The peak RX and TX voltages were 

measured as 108 mV. Therefore the peak RX and TX currents were 10.8 mA and consistent with the peak 

values measured for both advertising events shown above.  

 The device would consume the least amount of current while connected since as determined by 

Table 3-1 and equation 3.0, it has a minimum effective connection interval of 1.2 s. In addition, unlike the 

advertisement event, the connection event only has one period of RX and TX not three. The longer interval 
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and the lower data transmission (with a maximum of 27 bytes) makes connection more power efficient than 

advertising.  

4.3 Smart Medication Cap Android Application Results  

Figure 4.20 shows the welcome screen of the SmartMed android application. This screen first appears 

after the application is launched.  

 

Figure 4.17: Welcome screen for SmartMed android application, a companion app to the smart medication cap. 

 At the welcome screen, the user is instructed to tap the screen to continue. The activity that follows 

is shown in Figure 4.21. Here, the application starts scanning for devices that only support the sensor and 

tracking services shown in Figure 3.2 and described in Section 3.5.2. Once a device with these services has 

been discovered, it will be listed by name and device address as shown in the figure.  
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Figure 4.18: SmartMed application scanner which has discovered the prototype device “MQP_SMART.” 

 The STOP button on the upper right corner of the screen can be pressed to stop the application from 

scanning for devices. The STOP button is then replaced with a SCAN button which can be pressed to restart 

scanning. To establish a connection between the smartphone and the peripheral device, the listed device in 

Figure 4.21 can be pressed. Once pressed, the following activity automatically triggers the central device 

to negotiate a connection with the smart medication cap. The screen shown in Figure 4.22 is also shown. 
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Figure 4.19: Control panel for the SmartMed android application. 

 The screen shown in Figure 4.22 serves as the main control panel for the SmartMed application. 

The page is titled with the medication name which is user determined. This is followed by the date and time 

in which the medication was last taken. The time at which the medication is supposed to be taken, which is 

user determined, is also listed. Three user buttons then allow for adjusting settings, locating medication, or 

viewing a medication consumption log. Under “TempSense” in the lower left corner of the screen is the 

on-chip temperature sensor reading in degrees Fahrenheit.  

 When the settings button is pressed, the screen in Figure 4.23 is shown. Here the user can set the 

name of the medication and at what time they will take it. These settings are shared preferences in the 

application and will remain saved even if the application is killed. The user can then press the back button 

on the upper left corner to return to the control panel. An alarm will go off at the time determined by the 
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user and a message appears on the control panel instructing the user to take their medication. By clicking 

the “Stop Alarm” button in Figure 4.22, the user can dismiss the alarm tone. 

 

Figure 4.20: Settings screen where the user can input medication stats such as name and time at which medication 

is taken. 

 When the “Find Med” button is pressed, the screen in Figure 4.24 is shown. Here the user can flash 

the LED on the smart medication cap by pressing “Flash.” The user can also toggle the audio signal on the 

smart cap by pressing “Ring.” Finally, the user can get an estimate of the device’s signal strength by 

pressing “Signal Strength.” This feature of the app takes the device’s RSSI value and maps it to a progress 

bar percentage. The percentage of progress bar filled depends on how close the smartphone is to the smart 

medication cap. In Figure 4.24, the devices are close to each other and the progress bar is mostly filled with 

blue. 
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Figure 4.21: Find medication screen in which the user can flash or ring the device and get approximate distance 

through signal strength. 

 When the user takes the medication, the touch sensor on the smart cap will read input and send a 

BLE notification to the smartphone. Once the smartphone application receives notification data from the 

touch sensor UUID, it will record a timestamp string that is printed onto the control panel screen as shown 

in Figure 4.22. This timestamp includes the date in day-month-year and the time in which the sensor was 

touched. This string is a shared preference in the application and will remain saved even if the application 

is killed. The timestamp string is also saved into a simple SQLite database in order to maintain a log of 

timestamps. This log can be viewed when the user presses “View Log” in Figure 4.22. The log screen is 

shown in Figure 4.25. 
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Figure 4.22: Touch sensor timestamp log in SmartMed application. 

 The log is a simple list of all the timestamp strings that have been saved into the SQLite database. 

As the list keeps increasing in size, the user will be able to scroll down to view it completely. By evaluating 

this log, a patient is able to see at which specific time the medication was taken each day. The user can also 

see whether they have skipped days or if medication was taken twice in one day. If the user cannot 

remember if they have taken their medication in a particular day, they can check the date on the control 

panel or they can check the log.  

 Other miscellaneous features of the SmartMed application involve the small user button on the 

smart medication cap. If this button is pressed, a notification is sent to the smartphone and once the 

notification is received, the default ringtone on the phone will play. This is intended in case the user has the 

medication cap in hand and they cannot locate their phone.  
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5 Conclusion  

The goal of this Major Qualifying Project was to design and implement an IoT device related to 

the field of smart health. The device requirements established at the beginning of the project are listed in 

Section 1.0. The device is small and for mobile applications, the device has a sensor that collects data, and 

the device wirelessly connects to a smartphone using BLE.  

The implemented device is relevant in the field of smart health since it addresses the issue of non-

adherence with medication regimens. As mentioned in Section 2.2, medication adherence is key in 

achieving optimal treatment results. However, around 20% to 50% of patients do not take their medication 

as indicated by trained professionals. In the long term, this can lead to higher hospitalization rates and 

treatment costs, especially for patients with chronic illness. The touch sensor integrated into the smart 

medication cap prototype registers input when a user opens the medicine bottle to take their medication. 

This triggers a notification which is received by the SmartMed android application which will record a 

detailed timestamp saved into a database. This way, the smartphone application keeps a detailed record of 

when medication has been taken (i.e. when the touch sensor registers input).  

The developed firmware for the smart medication cap was fully functional as expected and 

implemented the Smart Medication Tracker and Item Tracker profiles successfully. In addition, the second 

hardware design revision for the smart medication cap prototype functioned properly during testing and did 

not exhibit the false input read problems by the sensor due to noise as observed in the breadboarded circuit.  

The SmartMed android application also demonstrated all required functionality during testing. It 

can scan for and connect to devices that support the Smart Medication Tracker Profile and will remain 

connected to the peripheral device indefinitely as required. In addition, it allows the user to manipulate the 

data for the characteristics in the tracker service in order to locate the device using light, sound and signal 

strength. Most importantly, the app keeps a clear log of the date and times at which the touch sensor on the 

medication cap registers input, indicating that medication has been taken.  
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Of the requirements established at the beginning of the project, the only one that was not met was 

power efficiency. The developed prototype for the smart medication cap was not efficient enough to be 

powered using a 3.0 V coin cell battery and had to be powered using 3.0 V worth of AA batteries during 

testing and demonstration. The final prototype consumed around 40 mA during advertisement and during 

connection. When attempting to power the smart medication cap using a coin cell, most functionality still 

worked except the AT42QT1010 sensor IC. Since the sensor is not getting enough current, it malfunctions 

and registers input continuously. However, the sensor IC behaves as expected when supplied with enough 

current.  

Even when using AA batteries, the device will not stay powered for very long. For example, when 

using Duracell Quantum batteries with a current capacity of around 3000 mAh, the device will only stay 

powered for around 75 hours. This is only around three days of battery life.  

Otherwise the project results were successful and throughout the process, valuable experience was 

gained in the fields of embedded programing, wireless protocols, hardware prototyping and android 

development.  

5.0 Future Recommendations  

Although the touch sensor integrated to the smart medication cap is sufficient for the purpose of 

tracking when medication is taken, it is too sensitive to be completely functional in practice. If the user 

were to grab the bottle by the cap and not take medication, input would still be recorded. For future revision 

of the device, it would be desirable to explore alternate methods for determining that the medication bottle 

has been opened. A better approach would be using a pressure sensor along with capacitive touch sensing. 

If other revisions of the nRF5x SoCs are used, the capacitive touch sensor libraries would allow the user to 

adjust for electrode sensitivity using software.  

In addition, the prototype hardware should be re-evaluated in order to achieve optimal current 

efficiency and allow for the device to be powered using a coin cell battery. This could involve further 

adjusting the connection interval and latency parameters listed under Table 3-1. However, current 
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measurements for the BLE SoC running the smart cap program were on the order of micro amps on average 

when it is in sleep mode. Therefore, the problems are most likely due to surrounding peripherals in the 

smart cap prototype such as the touch sensor IC.  

Further modification could be done to the SmartMed android application as well. For example, 

recorded timestamps are saved to a local database using SQLite. SQLite implements self-contained, 

serverless databases that are saved into the host device’s memory. This means that only the owner of the 

smartphone has access to the medication tracker log. Although this might be desirable in certain 

applications, it would still be useful to save the database to an external server. This way medical 

professionals, or even guardians, can have access to patient’s logs if required.  
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7 Appendix  

7.0 nRF52832  SoC Specifications 
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7.1 nRF52832 Mechanical Specifications  

 

 

Figure 7.1: 6mm x 6mm QFN48 package and dimensions [18]: 

 

Figure 7.2: QFN48 package dimensions (mm) [18]. 
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7.2 Smart Medication Cap First Hardware Design Schematic 
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7.3 Smart Medication Cap Second Hardware Design Schematic 

 

 

 

 

 

 

 

 

 


