
Project Number: EOA-4901

Real-Time Preview of

3D Image Quality Settings

Sponsoring Agency:

ATI Research Inc.
3D Applications and Research Group (3DARG)

A Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

William A. Pfeil

Date: January 10, 2006

Approved:

Prof. Emmanuel Agu, WPI Advisor

____________________________________ ____________________________________

Mr. Daniel Ginsburg, ATI 3DARG Mr. Callan McInally, ATI 3DARG Manager

Project Number: EOA-4901

 ii

Abstract

ATI Technologies is a leading designer of video cards for computers. This ATI-

sponsored project involved implementation of a 3D demo which showcases different 3D

image quality settings in real-time. Many tradeoffs were necessary to fit within certain

design constraints, including but not limited to: release size, setting-change speed, and

quality of demonstration. The report includes unclassified details of code architecture,

size/speed/quality/other tradeoffs, and setting implementation details.

Project Number: EOA-4901

 iii

Table of Contents

Abstract ...ii

List of Figures ...v

List of Tables...v

Acknowledgements ..vi

1. Introduction ...1

2. Background ...4

2.1. DirectX / Direct3D..4

2.1.1. Meshes ..4

2.1.2. 3D Visual Effects..5

2.1.3. Textures ..6

2.1.4. Useful Direct3D Libraries...7

2.1.4.1. DXUT...8

2.1.4.2. D3DX ...8

2.2. Antialiasing ...9

2.3. Mipmaps ...10

2.4. Texture Filtering ...13

2.5. Normal Mapping ...16

2.6. Windows Vista..17

3. Requirements...18

3.1. 3D Graphics API...18

3.2. Target Operating System...18

3.3. Target Platforms..19

3.4. Target Graphics Hardware ..19

3.5. Release Size Constraint...19

3.6. Loading Time Constraint ..20

3.7. Visual Quality Constraint..20

3.8. Window Size Constraint ...20

3.9. 3D Settings for Demonstration..21

4. Programming Decisions ..22

4.1. Integrated Development Environment ..22

4.2. Useful Direct3D Libraries...22

4.2.1. DXUT ...23

4.2.2. D3DX..23

4.3. Commenting System ...24

4.4. Coding Standard..25

5. Tradeoffs – Size vs Loading Speed vs Quality..26

6. Implementation..31

6.1. CCP Design Goals ..31

6.2. Dual Scene Display...32

6.3. 3D Settings..34

6.3.1. Antialiasing...34

6.3.2. Temporal Antialiasing ..35

6.3.3. Adaptive Antialiasing ...36

6.3.4. Anisotropic Filtering...37

6.3.5. Advanced Anisotropic Filtering..38

6.3.6. Catalyst AI ..38

6.3.7. Mipmap Level of Detail Bias..39

6.3.8. Geometry Instancing...39

6.4. Resource Management ..39

6.5. Singletons..40

6.6. Art Assets and Extensibility..41

6.6.1. Art Assets..41

6.6.2. Initialization (.ini) File ..41

6.7. Camera Paths ..45

6.8. Scene Effects...46

6.8.1. Reflection..46

6.8.2. Fence...50

6.8.3. Normal mapping ...52

6.8.4. Sky Effect ...54

Project Number: EOA-4901

 iv

6.9. Debugging Methods..56

6.10. Communication Overview ..58

7. Conclusion...61

8. References ...62

Appendix A. CCP Build / Release Overview..64

A.1. Solution Configurations..64

A.1.1. Dashboard / Non-dashboard Builds...64

A.1.2. Win32 / Win64 Builds...65

A.1.3. Debug / Release Builds...65

Appendix B. DXT Compression...66

Project Number: EOA-4901

 v

List of Figures

Figure 1: The Catalyst Control Center (CCC) with the original 3D preview scene...1

Figure 2: A mesh in wireframe mode and the same mesh with all triangles shaded..5

Figure 3. Textures used to encode image data and purely numerical data (surface properties) of a stone wall.................7

Figure 4: Aliased and antialiased lines ..9

Figure 5: Multisampling antialiasing sampling technique (“4X multisampling” shown)..10

Figure 6: Mipmap levels for a texture ...11

Figure 7: Mipmap filtering technique comparison ..12

Figure 8: Comparison of texture filtering methods..14

Figure 9: Improvement of quality through anisotropic filtering over linear filtering ..16

Figure 10. Multiple solution configurations in VS2005 Professional..19

Figure 11: Zoomed view of uncompressed light map, DXT1-compressed light map, and difference image29

Figure 12: Sample .ini file ‘ccpconfig.ini’...42

Figure 13: Fountain reflection effect ...47

Figure 14: The orientations of the original camera used for the camera fly path, and the reflected camera....................48

Figure 15: Fountain view, with reflection texture shown onscreen for debugging..49

Figure 16: Clip map used for the courtyard fence ...51

Figure 17: Fence with no adaptive AA versus high quality adaptive AA..52

Figure 18: Screenshots with diffuse lighting only and with specular lighting & normal mapping..................................53

Figure 19: The courtyard sky ..54

Figure 20: The different color components of the one texture used for the sky effect...55

Figure 21: Mipmap debugging mode enabled in the courtyard scene ...57

Figure 22. CCP application communication flow chart...59

Figure 23: The new CCC in Windows Vista ...61

Figure 24: Supported build configurations ..64

List of Tables

Table 1: Size / loading speed tradeoff chart ..26

Table 2: Summary of release executable statistics, using best options from Table 1 ..29

Table 3: Supported AA / ASD combinations. ...37

Table 4: Colors scheme for mipmap debugging mode ..58

Project Number: EOA-4901

 vi

Acknowledgements

I would like to thank: Callan McInally (3DARG manager) and Emmanuel Agu

(Worcester Polytechnic Institute project advisor) for connecting me with this

development opportunity, Dan Ginsburg (ATI supervisor) for the majority of the help and

guidance needed for this project, Abe Wiley (ATI lead artist for this project) for

supplying a great scene for the demo, and the rest of the 3DARG, driver team, artist team,

and other project contributors for their work, support, and contributions to my knowledge

and experience.

Project Number: EOA-4901

 1

1. Introduction

 Since September 2004, ATI has made publicly available an application entitled

the Catalyst Control Center (CCC). This application is provided to complement ATI’s

Catalyst video accelerator card drivers, enabling ATI card owners to adjust multiple

monitor settings, 3D display settings, color correction settings, video settings,

overclocking settings, etcetera, from a unified user interface. The CCC is publicly

available on ATI’s web site [4].

Figure 1: The Catalyst Control Center (CCC) with the original 3D preview scene

Project Number: EOA-4901

 2

The CCC’s ability to allow the user to adjust 3D display settings is especially

useful for gamers who would like fine-tuned control over settings such as anisotropic

filtering, anti-aliasing, and mipmap level of detail. This allows a user to trade off in-game

performance for visual quality, and vice versa. One of the features that make the CCC

such a useful tool for making these adjustments is the small Catalyst Control Preview

(CCP) window (shown in Figure 1) that shows a 3D scene with user-defined 3D settings

applied. This allows users to see if 3D setting changes they are making are worthwhile,

and also shows exactly where in a 3D scene those setting changes make a difference.

 The current implementation of the CCP application is outdated, does not display a

very impressive, eye-catching 3D demo, and most importantly, 3D setting adjustments

are not easy to visualize in the preview window as settings are altered. The current 3D

preview scene shows a racecar driving along a desolate road. The new preview should be

niche-independent in subject matter, as opposed to gamer-centric. In addition, the current

implementation of the preview window shows only one scene – for the new preview, it is

desirable to have two copies of the same scene be displayed side-by-side. The scene on

the left would showcase the “current” 3D display settings, and the scene on the right

would showcase the “requested” settings. The requested settings are adjusted by moving

slider bars in the CCC. When an “Apply” button is pressed in the CCC, the new settings

would manifest themselves in the “current” settings scene. It is believed that this is a

more intuitive way to adjust settings: a side-by-side comparison between “before” and

“after,” instead of just one large view of “after.”

As for release requirements, the CCP needed to have a small download size and

start up and change settings very quickly, while preserving as much visual quality as

possible. The CCP application is targeted for Windows Vista and must run on CPUs
1
 of

minimum speed 800MHz and on ATI R300 series GPUs
2
 as a minimum.

1
 CPU: Central Processing Unit

2
 GPU: Graphics Processing Unit

Project Number: EOA-4901

 3

This project involved making and/or testing the above changes to the CCC and/or

CCP, where applicable. In summary, the project involved the following tasks:

• Building a simple 3D engine from the ground up which can handle

multiple scenes and windows

• Allowing for fast application of every 3D setting desired for the CCC

• Integrating new art assets provided by ATI’s team of artists

• Making sure all setting changes were showcased effectively

• Analyzing release size / loading time / visual quality tradeoffs

• Testing and debugging the CCP application in Windows Vista, on

low-end CPUs and GPUs

Project Number: EOA-4901

 4

2. Background

 This section provides background on the platforms, software, application

programming interface (API), and fundamental graphics knowledge required for the

development of the CCP application.

2.1. DirectX / Direct3D

 DirectX is a suite of APIs designed by Microsoft in order to standardize

integration of 2D and 3D graphics, sound, input, and networking into Microsoft Windows

applications. The APIs allow for a common way of communicating with underlying

multimedia hardware components. Most relevant to this project is the Direct3D (D3D)

API, which is the subset of the DirectX API that deals with 3D graphics programming.

2.1.1. Meshes

 At the risk of oversimplification, a 3D scene is made up primarily of geometry. A

position in a 3-coordinate system (3D space) is known as a vertex. A collection of 3

vertices
3
 define a triangle, commonly known as a primitive. A collection of primitives

comprise a 3D shape, also known as a mesh. An example of a mesh can be seen in Figure

2.

3
 vertices: plural of vertex

Project Number: EOA-4901

 5

Figure 2: A mesh in wireframe mode (left) and the same mesh with all triangles shaded (right)

 Meshes can encode much more information per-vertex than just 3D position. As

part of the Direct3D API, Microsoft provides the X mesh format (*.X), which allows for

arbitrary per-vertex information, animation information, texture and effect references, and

other arbitrary annotations as desired. More information about the X format can be found

at [3] or in the DirectX Software Development Kit (SDK) documentation. The X mesh

format is used for the meshes in the CCP application.

2.1.2. 3D Visual Effects

 The programmable pipeline built into modern graphics cards allows developers to

run arbitrary computations on a per-vertex and a per-pixel
4
 basis using the GPU.

Developers can then create fancy special effects and coloring schemes by writing a

program that will operate on each vertex (“vertex shader”) and a program that will

operate on each pixel (“pixel shader”). These shaders are loaded onto the graphics card

4
 pixel: the fundamental unit of a picture (“picture element”)

Project Number: EOA-4901

 6

where they perform their computations over and over to produce a 3D scene in real-time.

Before the emergence of programmable pipelines, graphics cards allowed only fixed-

function processing of vertices and pixels on the GPU, meaning developers could only

process vertices and pixels using available functions hardwired into the silicon of the

graphics card by hardware designers.

 It is important to note that the fixed-function pipeline may currently still be used

in place of either a vertex shader or pixel shader if desired. It is also important to note

that the term “shader” is a misnomer; shaders can do much more than just “shade.”

Finally, it should be mentioned that the term “fragment shader” is sometimes used in

place of “pixel shader.”

 Direct3D provides an encapsulation of vertex shaders, pixel shaders, and pipeline

state in one effect file. These files are called FX effects. The FX effect format allows the

developer to decouple the application’s effect management code from the shaders, and

from the render state, sampler states, and other states required by those shaders. The FX

format also allows for specification of multiple techniques, which allow for different

shaders to be specified for use in different situations (such as for fallbacks for older

hardware). That is, different techniques can specify different pipeline states, or different

shaders altogether, or even no shaders at all (fixed-function processing can be enabled

from an FX effect as well). In the CCP application, every vertex and pixel shader pair is

wrapped inside an FX effect file.

2.1.3. Textures

 Textures are images that can be applied to a mesh surface. In a more general

sense, textures are used as a lookup table in many different real-time graphics

applications. Textures may be used to store surface properties, animation information, or

countless other useful pieces of information. See Figure 3 for an example.

Project Number: EOA-4901

 7

Figure 3. Textures used to encode image data (left) and purely numerical data (surface properties) of

a stone wall (right)

 The D3DX library (see section 2.1.4.2.) supports loading of many different texture

formats: .BMP, .DDS, .DIB, .HDR, .JPG, .PFM, .PNG, .PPM, and .TGA. The Windows-

specific DDS (DirectDraw Surface) format was chosen for the CCP application since it

has a few robust, effective compression methods available, has the ability to store pre-

computed mipmap chains (see section 2.3.), and supports many image formats

(“A8R8G8B8” as an example – 8 bits each of Alpha, Red, Green, and Blue color

information). Effective compression was important to meet size constraints while

maintaining high visual quality. The DDS file format supports DXT
5
 texture compression,

which boasts a few different compression options (See Appendix B for DXT compression

details). Pre-computed mipmap chains help achieve a fast load time (in some cases).

Compression savings and mipmap chain space / load time tradeoffs are discussed in

section 5..

2.1.4. Useful Direct3D Libraries

In any field of development, the wheel should not be reinvented. This is

especially true with software development. When beginning the CCP application, the

5
 DXT: an efficient texture compression method originally developed by S3 Graphics, Ltd.

Project Number: EOA-4901

 8

DirectX Utility Toolkit (DXUT) and D3DX were a couple of common tools that were

considered as candidates for shortening development time.

2.1.4.1. DXUT

 DXUT is a framework that abstracts much of the common code required to get a

DirectX application up and running. It has simple methods allowing for window creation,

D3D device
6
 creation, timing, camera classes, a suite of GUI

7
 tools, and callbacks

8
 for

many kinds of D3D device events and window messages such as keyboard and mouse

input messages, repaint messages, and so on.

2.1.4.2. D3DX

 D3DX is a library produced for use with D3D containing many useful utilities for

common 3D graphics operations. The library includes structures, functions, interfaces,

and macros for loading and/or manipulation of animations, fonts, meshes, shaders,

textures, effects, and much more, as well as math functions for manipulating matrices,

vectors, quaternions,
9
 methods of interpolation, etcetera. Although DirectX-specific

formats like .X meshes, .FX effects, and .DDS textures are open formats that can be

parsed with custom code [1], there is usually no need to ignore the D3DX library; it is

extremely handy in dealing with common operations on these formats.

6
 D3D device: a D3D software interface to an underlying graphics hardware device

7
 GUI: Graphical User Interface

8
 callback: a registered function that will be invoked upon some specific event

9
 quaternion: a 4-tuple used as an efficient way to represent an orientation in 3-space

Project Number: EOA-4901

 9

2.2. Antialiasing

 Antialiasing describes a technique used to correct aliasing artifacts (or "smooth

out jaggies") that are sometimes apparent on line edges. Examples of aliased and

antialiased lines, with zoomed-in versions, are shown in Figure 4.

Figure 4 [23]: Aliased and antialiased lines

 The antialiased line can be produced in one of many ways, with each way having

its own advantages and disadvantages depending on the situation. One method is

supersampling, in which an image is rendered at a higher resolution (or equivalently,

each pixel is divided into sub-pixels), and then the image is resampled down. For

example, if one pixel were subdivided into four (“4X supersampling”), the color of each

subpixel could be determined via Bresenham's algorithm.
10
 The four subpixels could then

be averaged back together to produce one pixel for rendering.

 Supersampling is computationally intensive. In the example above, four times as

many pixels must be evaluated. A faster and more popular antialiasing method is

multisampling. As such, multisampling is supported by most newer graphics cards.

Multisampling uses the pixel color, along with multiple sample points within the pixel

(arranged in different patterns depending on the GPU vendor), to determine the final

10
 Bresenham's algorithm is a common line-drawing algorithm

Project Number: EOA-4901

 10

pixel color. Instead of subdivision into subpixels, multisampling multiplies the color of

the pixel by the percentage of pixel sample points that fall within the border of a

primitive. See Figure 5 for a pictorial of the idea – the figure shows a zoomed-in view of

a pixel that straddles the border of a primitive, with multiple test sample points within the

pixel. With multisampling, no extra pixels are processed, but aliasing artifacts are still

reduced.

Figure 5: Multisampling antialiasing sampling technique (“4X multisampling” shown)

2.3. Mipmaps

 Mipmaps are pre-computed collections of bitmaps of different sizes. They are

widely used in computer graphics applications to increase texture filtering performance

(see section 2.4. on texture filtering). The basic idea is to use a highly detailed version of

a bitmap when the detail would be noticeable and a low detail version of the bitmap when

high detail would not be noticed. As an example, in 3D games the GPU will choose the

Project Number: EOA-4901

 11

highly detailed bitmap as a texture for a mesh that is close to the player. As the player

moves away from the mesh, the GPU will swap in a similar but smaller texture for the

mesh, improving performance. If a mesh is very far away, a high detail texture would

likely not look any better than a low detail one, due to the finite resolution of computer

displays.

 Mipmaps are usually square, power-of-2 size textures (e.g. 1x1, 2x2, 4x4, 8x8,

etc). Figure 6 shows an example of a bitmap alongside lower-detail versions of the

bitmap. Each bitmap is also known as a mipmap “level.”

Figure 6: Mipmap levels for a texture

When a mipmap is not the exact same size as a displayed surface (which is often

the case), mipmapping can either choose the closest mipmap level to find the color for a

pixel, or can blend between the two closest levels. When combined with linear filtering

(discussed in section 2.4.), the former is known as bilinear filtering, and the latter is

known as trilinear filtering. Figure 7 shows a comparison of these filtering types. The

example (demonstrated using code from [5]) shows a quad
11
 with a mipmapped texture

applied. The mipmap levels have been individually modified to have different images (in

11
 quad: a rectangular primitive

Project Number: EOA-4901

 12

this case, solid colors) so that it can be seen how the levels are being chosen and

interpolated.

Figure 7: Mipmap filtering technique comparison

Mipmaps are always used in combination with texture filtering methods

(discussed in section 2.4.).

Project Number: EOA-4901

 13

2.4. Texture Filtering

Texture filtering is a way to account for distortion that occurs when viewing

textured surfaces that do not have a 1:1 pixel to texel
12
 correspondence. This is a very

common occurrence that will take place at most viewing angles. If a texture is too small,

then it is expanded using magnification. If a texture is too large, then it is shrunk using

minification. The three texture filtering types supported by Direct3D are: point filtering,

linear filtering, and anisotropic filtering. Both minification and magnification may use

any of these filtering types. Figure 7 shows a comparison of point, linear, and anisotropic

filtering methods used on a checkerboard texture applied to a quad viewed at a grazing

angle.

12
 texel: the fundamental element of a texture (“texture element”)

Project Number: EOA-4901

 14

Figure 8: Comparison of texture filtering methods

 Point filtering (a.k.a. nearest point or nearest neighbor filtering) performs no

blending of texture colors. This filtering method picks the closest texture element (texel)

and uses it as the final color. This produces a blocky-looking texture when the texture is

magnified, and produces a low-detail texture when the texture is minified, which is

undesirable in most cases.

 Linear filtering (a.k.a. bilinear filtering) uses a weighted average of the four

nearest texels (weighted according to distance from the sample point) to produce the

color of one pixel. If used in conjunction with mipmapping, and the two nearest mipmap

levels are sampled, producing a weighted average of eight texels, this is known as

Project Number: EOA-4901

 15

trilinear filtering. Bilinear and trilinear filtering produce better image quality than point

filtering, but can still produce blurred images.

 Anisotropic filtering produces a higher-quality image than other filtering methods,

but is more computationally intensive. The filtering method is related to mipmapping.

One deficiency of pure mipmapping can be understood through the following example.

Assume no texture filtering were available. Now, imagine a mipmapped 64x64 texture

mapped to a quad, facing the viewer. Pretend the quad happens to be rendered 64 pixels

wide and 64 pixels high. In this case, the texture will appear fine. Now imagine that the

quad is tilted backwards, so that a 32x64 quad (approximately) is shown. One could use a

64x64 mipmap level to cover the quad. The problem with this is that, since only 32 rows

of pixels are needed, 32 of the 64 rows of pixels in the mipmap level will be discarded.

Since the rows that are discarded depend on the angle of the quad, an undesirable

flickering effect will be apparent if either the camera or the quad is moved up or down.

To fix this, mipmapping uses a 32x32 mipmap instead, in this case. This presents a

different problem (though not as qualitatively severe as flickering): as there are 32

columns of pixels that must be covered on the quad, the 32x32 mipmap is stretched out

horizontally. This stretching creates an undesirable blurry image. Although linear

filtering may help reduce the flickering artifacts, the blurring problem will not disappear.

 The method of anisotropic filtering overcomes these deficiencies. Anisotropic

filtering samples and filters a large texture multiple times in the direction of the tilt of the

quad, and then averages the resulting texel values. Figure 9 shows an image contrasting

the use of anisotropic filtering and linear filtering. Notice the lack of blurriness on the

ground in the right half of Figure 9.

Project Number: EOA-4901

 16

Figure 9 [6]: Improvement of quality through anisotropic filtering (right) over linear filtering (left)

2.5. Normal Mapping

 A normal is a 3D vector that is perpendicular to the surface of a triangle of a

mesh. Normals are used for lighting calculations (among other things). Typically, mesh

normals are stored per-vertex. One drawback of this storage technique is that lighting

contributions are then only calculated at the locations of the normals, and are linearly

interpolated to find lighting contributions elsewhere. A mesh may be tessellated further to

allow for more detailed lighting, but this is inefficient, as further geometric detail is often

unneeded.

 One solution to the problem is normal mapping (related to an older technique

called bump mapping) where a texture is used to encode one normal per texel. This

allows for much greater amounts of surface detail without added geometry. Additionally,

the normals do not have to perfectly match the geometry. That is, normals can be cleverly

skewed or tilted to artificially create realistic dents or bumps without making an actual

deformation to the mesh geometry. The added “geometric” detail is simulated purely by

lighting techniques.

Project Number: EOA-4901

 17

2.6. Windows Vista

 Windows Vista is Microsoft’s next-generation Windows operating system, to be

released in early 2007. For the most part, the only Windows Vista changes (from the

earlier Windows XP operating system) that affect development of the CCP application

were those relating to Direct3D. A summary of changes to the DirectX API in Windows

Vista can be found in [2]. Additionally, Windows Vista will be the first operating system

to support upcoming Direct3D version 10 class hardware (although the CCP application

uses the more conservative, well-tested Direct3D version 9 API).

Project Number: EOA-4901

 18

3. Requirements

Before any software design took place, there were constraints placed on the CCP

application by numerous external factors. The 3D graphics API used and the target

operating system, platforms, and graphics hardware were hard constraints. All other

constraints were optional, and should be optimized, but could be negotiated if necessary.

3.1. 3D Graphics API

Direct3D was the 3D graphics API to be used for the project. The previous

preview application used OpenGL, but the new one must use Direct3D, for a few reasons,

one of which being that the target operating system, Windows Vista, is guaranteed to

have good Direct3D support.

3.2. Target Operating System

The new CCP application targets the Windows Vista operating system only, for a

few reasons:

• The CCC has already been developed in Windows.

• Windows has the largest user base of any operating system.

• Windows Vista promises to handle setting changes smoothly.

Although it would be ideal to have the new CCC work on Windows XP as well,

there are technical reasons that make setting changes in Windows XP difficult. Instead of

making the CCC have second-rate performance on both XP and Vista, it was decided to

focus all efforts on development for Vista.

Project Number: EOA-4901

 19

3.3. Target Platforms

 The CCP application needed builds for both 32-bit and 64-bit desktop systems, as

dictated by the CCC team. Fortunately, the IDE of choice, Visual Studio 2005

Professional [7] (VS2005 Pro), allows for cross-compilation for 64-bit platforms using a

32-bit machine. This has been set up using multiple solution configurations. See Figure

10 for a screenshot of the build configurations. See Appendix A for more detail.

Figure 10. Multiple solution configurations in VS2005 Professional

3.4. Target Graphics Hardware

 ATI imposed a constraint that the CCC must run on any ATI R300 model (or

newer) video card. This is also the minimum ATI card that Windows Vista’s new

“Windows Vista Display Driver Model” [8] (WDDM) will support. Additionally, since

the R300 and all newer ATI cards support the popular shader model 2.0, this is the shader

model used for all vertex and pixel shaders.

3.5. Release Size Constraint

 The release size of the CCP application (that is, the size after compression) was a

soft constraint. The size of the previous CCP application was 5.5MB, and it was desired

Project Number: EOA-4901

 20

to keep the new CCP application similar in size or smaller. To assist in a smaller release

size, objects could be compressed at the cost of visual quality and often load time.

3.6. Loading Time Constraint

 The loading time of the 3D scene for the CCP application was desired to be 1

second or less. There are tradeoffs that could be made with preprocessing, compression,

and texture resolution to improve loading speed, at the cost of visual quality and/or the

release size.

3.7. Visual Quality Constraint

If one were to formulate the constraints of sections 3.5., 3.6., and 3.7. as a

knapsack optimization problem, the visual quality is what should be maximized, while

keeping the release size and loading time under certain thresholds. Additionally, it should

be made clear that although having high visual quality was important, it wasn’t as

important as making sure that setting adjustments demonstrated changes in visual quality

effectively. Clearly, demonstrating changes effectively is a requirement – it is what the

CCP application is primarily designed for.

3.8. Window Size Constraint

Each of the windows for CCP scene must have a resolution of 192x220. This

resolution was allotted by the CCC team. It is small since the whole CCC panel must fit

on a desktop with a resolution of 640x480. The very small CCP window size greatly

influences some CCP application choices. Specifically, high-detail geometry and high-

resolution textures are not absolutely necessary.

Project Number: EOA-4901

 21

3.9. 3D Settings for Demonstration

 Eight user-selectable 3D settings are integrated into the CCP application. In no

particular order, they are:

• Antialiasing (AA)

• Temporal Antialiasing (TAA)

• Adaptive Antialiasing (AAA)

• Anisotropic Filtering (AF)

• Advanced Anisotropic Filtering (AAF)

• Catalyst AI (CatAI)

• Mipmap Level of Detail (MipLOD) Bias

• Geometry Instancing (GI)

More detail on each setting and its implementation is given in section 6.3.

Project Number: EOA-4901

 22

4. Programming Decisions

Before diving into the architecture of the CCP application, some prerequisite

development decisions will be described. Good forethought in choosing an integrated

development environment (IDE) and seeking out useful libraries saves many hours of

development time. Additionally, choosing a documentation format and following a

coding standard are two more ways to keep code organized, consistent, readable, and

easily extensible.

4.1. Integrated Development Environment

Visual Studio 2005 Professional is used as the IDE for this project, along with

Perforce [9] for source control. These two intuitive toolsets complement each other very

well. Perforce integrates well with Visual Studio, as well as with artist tools such as

Maya [10] and 3D Studio Max [11]. Visual Studio 2005 Professional has many desirable

features, including a powerful text editor with code completion, advanced project and

solution configurations, platform configurations, cross-compilation for 64-bit platforms

using a 32-bit platform, and extremely helpful debugging tools. Additionally, it integrates

seamlessly with the target 3D API, Direct3D.

4.2. Useful Direct3D Libraries

 The libraries mentioned in section 2.3. are undoubtedly useful for typical

applications. What must be evaluated is whether or not these libraries support the

eccentric requirements of the CCP application (dual windows and D3D devices, as

explained in section 6.2.) and are worth their weight in kilobytes, as the release size is an

important factor to consider.

Project Number: EOA-4901

 23

4.2.1. DXUT

As DXUT (introduced in section 2.1.4.1.) is meant to be a simple framework, one

of its few limitations is that it only supports a single window attached to a single D3D

device. As explained later, the preview application needs multiple D3D devices attached

to multiple windows. Also, a typical application gains about 400KB from using the

framework, mostly due to texture data used for DXUT’s GUI system. This is not an

insignificant footprint when considering the target release size. For these two reasons, it

was decided that DXUT was not worthwhile for the CCP application.

4.2.2. D3DX

In February of 2005, Microsoft began to release the D3DX library (introduced in

section 2.1.4.2.) in their DirectX SDK as a dynamically linked library (DLL) instead of as

a statically linked library (as it used to be). The DLL approach was adopted so that

Microsoft may update their DLLs as necessary (with security fixes, for instance) without

requiring applications using the D3DX library to recompile their code (as would be

required for an updated statically linked library). The downside of DLLs is their memory

footprint. When using a statically linked library, only functions that are used are

compiled into a release executable. With a DLL, the whole DLL must be distributed with

the release. In the case of the February 2006 SDK used for this project, the size of the

D3DX DLL was 2.22MB, or 1.02MB zip-compressed. This is not huge, but when aiming

for a ~5MB release size, it accounts for a significant percentage of the allotted memory.

There were six options considered with regard to D3DX:

1) Include the latest D3DX DLL in the release.

2) Convert the latest D3DX DLL to a static library, and statically link.

3) Use an older, statically linked D3DX library.

Project Number: EOA-4901

 24

4) Do not use the D3DX library.

5) Release an installer that downloads any missing D3DX DLL versions at

install-time.

Option (1) was certainly plausible, with the sole downside of a large download

size for the user. Option (2) may have been possible with the applications MoleBox Pro

[12] or DLL to Lib [13], but the applications cost money, and it is unclear if they would

work with the D3DX DLL. Also, it seems that the primary use of these applications is to

give developers freedom from having to release DLLs along with their application, but it

is unclear if linking with these applications could produce a smaller release size as well.

Option (3) was also plausible; however it was possible that some of the required D3DX

functionality has been significantly improved since December of 2004 (which is the latest

release of a statically linked D3DX library). So, option (3) would be a risky choice.

Option (4) was not plausible, as the project required heavy use of DirectX mesh (.X),

texture (.DDS), and effect (.FX) formats, for which algorithms for loading and

manipulation are not trivial. Option (5) was looked into briefly; however the user may

end up downloading more than one DLL, as the installer downloads any missing D3DX

DLL versions from Microsoft. This also imposes a requirement that the user must be

online at install-time, which is not necessarily acceptable. In addition, if the DLL(s) must

be downloaded from Microsoft, then effectively no bandwidth is saved anyhow. It was

decided that option (1) was the most reliable option.

4.3. Commenting System

Doxygen [14] commenting was used throughout the CCP project from the start of

development. The style is popular, easy to become familiar with, readable, and can

produce tidy HTML documentation of any annotated C++ classes, functions, structs,

typedefs, code segments, etcetera.

Project Number: EOA-4901

 25

4.4. Coding Standard

ATI’s 3D Applications and Research Group had defined a coding standard that

includes many common rules and annotations, including a shortened Hungarian notation,

upper and lower camel case for different variables, naming conventions, and commenting

styles. Overall, the coding standard was all-encompassing and clear. The standard applies

mainly to C++ code, which was prominent in this project.

Project Number: EOA-4901

 26

5. Tradeoffs – Size vs Loading Speed vs Quality

One of the most challenging aspects of the project was balancing the constraints

of size, quality, and loading speed. The goal was to have as small size release as possible,

with load time at a minimum, and visual aesthetics as pleasing as possible. Note that

“visual aesthetics” encompasses both visual quality and effective changes in

demonstration of visual quality. As mentioned in section 3., it is desired to have the CCP

application be 5.5MB or smaller and load within a second or less.

Table 1 shows size and loading time profiling for various components of the CCP

application. The rows outlined in red denote the best options for each component. Note

that the zipped size in Table 1 is the only important size benchmark, since the CCP art

assets are uncompressed on a user’s computer at install-time to allow for fast run-time

loading of the CCP application. Similarly, the load time does not take into account any

time used for zip uncompressing.

Table 1: Size / loading speed tradeoff chart

Project Number: EOA-4901

 27

X mesh files may be stored in one of three formats: text, binary, or compressed

binary. The text format is useful for readability and manual editing, but is the worst

option for a release in terms of both size and loading time. The binary format saves both

size and loading time over the text format. The compressed binary saves more size, but

loads slower than a pure binary format mesh. After zipping the binary format, it is almost

the same size as the zipped compressed binary format, but still loads twice as fast at run-

time. Thus, it is the best option.

FX effect files may be stored in either text format or binary format. The sum of all

zipped binary format effects is slightly larger than all zipped text format effects, but also

loads slight slightly faster at run-time. Since the size difference is tiny, it was decided to

favor the load time advantage gained from using binary format effects.

After the artist qualitatively determined the required resolutions for textures, it

was then necessary to evaluate some compression and pre-calculation options. Firstly, it

was determined that all textures used in the scene could be legitimately compressed using

DXT1 compression (see Appendix B for more detail on DXT compression). Since DXT

compression is the compression option of choice for the CCP application, only tradeoffs

between no compression and DXT1 compression are presented.

Additionally, since a mipmap chain is usually created at run-time, pre-computing

and storing a mipmap chain for a particular texture can speed up load times. In the case of

the uncompressed textures, a pre-computed mipmap chain does not speed up the load

time (possibly due to the large amount of loading from the hard disk required for the

large, uncompressed mipmap chain). For the DXT1-compressed textures, pre-computing

the mipmap chain does save some time. Since DXT1 compression saves a great amount

of space, but does not dramatically increase the load time, DXT1 compression is used for

all textures. As for mipmap pre-calculation, the technique saves a tenth of a second of

load time and adds 151KB to the release size. In this case, it was decided that lessening

the load time was more critical.

Project Number: EOA-4901

 28

One downside of DXT compression is that it typically produces undesirable

artifacts when applied to light maps,
13
 which are textures used to encode static lighting

information. Figure 11 shows a portion of the light map used for the CCP application,

uncompressed and DXT1-compressed. The middle image in the figure shows the

differences (brightened 16x) between the two versions. However, these artifacts were

hardly apparent when applied to the scene.

 Finally, camera paths are exported from Maya using a Sushi
14
 plug-in. They are

saved in a text format, which happens to include more information than necessary for

camera paths for the CCP application. These files are preprocessed to remove the

unnecessary information, pre-normalize the quaternion orientations, and convert the

camera path file to binary format. This preprocessing reduces the size and loading time of

the camera path files.

13
 light map: a texture used as an approximation to static shadows

14
 Sushi: ATI 3DARG’s internal demo engine

Project Number: EOA-4901

 29

Figure 11: Zoomed view of uncompressed light map (left), DXT1-compressed light map (right), and

difference image (middle, brightened 16x)

Table 2 shows a summary of size and loading time of all of the components in the

CCP application. Also shown is the time measured for the CCP application to deallocate

all of its resources and shut down.

Table 2: Summary of release executable statistics, using best options from Table 1

Project Number: EOA-4901

 30

Note a couple things about Tables 1 and 2:

• These are preliminary results, meant as an estimate. Assets were nearly

finalized at the time of writing.

• All trials were done with hard disk “Prefetch” cleans

(c:\Windows\Prefetch) as a pre-build step, to avoid inconsistent

profiling results due to caching. Windows’ swap file was also disabled.

Project Number: EOA-4901

 31

6. Implementation

 This section describes high-level and low-level implementation details of the CCP

application. First, an overview of the goals of the design is presented. Each subsequent

section describes the implementation of an aspect of the CCP.

6.1. CCP Design Goals

There is always a balance between hard-coding and data-driven design. If an

application were completely hard-coded, it would be an inflexible, hard to debug 3D

demo that would probably never be extended. If an application were almost completely

data-driven, it would be a 3D engine. The former has the advantage that it is quick to

produce, while the latter involves long development cycles. Somewhere in the middle is

the CCP application. Given the short development time constraint, the CCP application

needed to be as data-driven and extensible as possible, without over-engineering the task

at hand.

The following is a list of guidelines indicating the required amount of

functionality and generality that the CCP application needed.

• The CCP should use content created by 3D artists. The application may

need art assets updated after development is complete. Updates needed not

only be possible, but simple and quick to produce and add.

• The CCP should have two identical scenes that can display different

settings. The settings could be changed at any time, in either window.

Setting changes would be activated by different kinds of inputs, depending

on whether debugging or using a release build of the CCP application; so,

Project Number: EOA-4901

 32

it should be easy to accept inputs from multiple sources, and respond to

any of them.

• Both scenes should follow the exact same camera paths to make 3D

setting differences easy to notice. The camera paths would focus on areas

of the scene that best show off a particular setting change.

• The CCP application should be very easy to debug.

With the aforementioned goals in mind, as well as the constraints from section 3.,

the specification of the CCP project is well-defined. Sections 6.2. through 6.10. detail the

satisfaction of the guidelines above and the requirements from section 3.

6.2. Dual Scene Display

 One of the first technical challenges imposed was the need for two displays with

unique settings. Since different settings are set through different mechanisms, it was

necessary to experiment with a few “dual scene display” options before beginning any

CCP application coding: multiple viewports, multiple swap chains, and multiple D3D

devices.

A D3D device is a mechanism used to interface with an adapter, which is a

representation of an underlying physical 3D hardware device. Each adapter may have

multiple D3D devices instantiated. In Direct3D, most graphics objects that are created

(textures, effects, meshes, etc.) are bound to a D3D device. To deallocate objects bound

to a D3D device, they are usually released with a call to Release(). A D3D device also

allows for querying of hardware features, such as device capabilities.

Project Number: EOA-4901

 33

A swap chain is essentially a render target
15
 associated with a D3D device. Every

D3D device has at least one swap chain, called the implicit swap chain. Additional swap

chains may be created and associated with a D3D device. Since most resources are bound

to a D3D device, swap chains are useful for allowing different views of the same

resources, such as different views of the same scene. For instance, multiple swap chains

could be used to show the four separate views typically seen in 3D modeling packages

such as Maya or 3D Studio Max.

 Finally, a viewport is very similar to a swap chain – it allows for multiple views

of the same scene. The difference between swap chains and viewports is that all

viewports must be placed within the same window. Different swap chains may be placed

in separate windows.

Each of these three multiple scene view mechanism options (multiple viewports,

multiple swap chains, multiple D3D devices) can accomplish the task of showing two

views of the same scene. However, only multiple D3D devices allow for any setting to

differ between each scene. One potential drawback to using multiple D3D devices is that

all resources must be loaded twice (bound to each D3D device), which increases both the

size of the CPP application in memory as well as the startup time. Another drawback is

that the DirectX documentation states that Direct3D is optimized for drawing with one

device, as opposed to multiple. However, these drawbacks are not severe, and using

multiple D3D devices is the only method that allows for individual D3D render state and

other setting changes to occur per scene, since these functions are associated with D3D

devices.

 Finally, “should multiple windows be used?” was a question to be considered.

After some experimentation, it turns out that any number of D3D devices may be used

within a single window (“one window per D3D device” is not a requirement). It was

decided that using multiple child windows within a single parent window would be the

15
 render target: a target surface to render to

Project Number: EOA-4901

 34

most elegant paradigm, in terms of message-passing. This is discussed in detail in section

6.10..

6.3. 3D Settings

There are eight 3D setting changes that the CCP is required to handle, as

mentioned in section 3.9.. Some setting changes require simple D3D API calls, while

others more advanced techniques. The settings are enumerated and their implementations

are explained in this section.

6.3.1. Antialiasing

 As explained in section 2.2., antialiasing is a method used to eliminate aliasing or

“jaggies” along the edges of primitives. For the CCP, the antialiasing technique used is

multisampling antialiasing (MSAA). The following settings are supported.

• No AA

• 2X MSAA

• 4X MSAA

• 6X MSAA

• 8X MSAA

The multisampling type to use is one of many parameters passed to the D3D

device creation function, IDirect3DDevice9::CreateDevice(). As such, the multisampling

type must be specified up front. This presented a problem. To change multisampling

settings, a device reset is necessary, which destroys and recreates a device using a call to

IDirect3DDevice9::Reset(). All resources bound to the device must be released before the

reset, and must be reloaded after the reset. The upshot is: changing multisampling

settings takes a long time to do (nearly a second).

Project Number: EOA-4901

 35

A better option using render targets was devised to allow for fast MSAA setting

changes. A render target may have MSAA options specified for it upon creation. First, a

D3D device for each scene is created with no AA. Then, an offscreen render target is

created for each scene, with the requested MSAA setting. When an MSAA setting change

is requested, the render target is destroyed and recreated with the new setting. Destroying

and recreating an offscreen render target is very fast, as no D3D devices (and thus no

resources) need to be released and reloaded.

 For each scene, the application renders completely to the offscreen render target.

This is possible since render-to-texture
16
 is a supported feature of all ATI R300+ video

cards. The application then copies the contents of the render target (using

IDirect3DDevice9::StretchRect()) to the back buffer
17
 for display.

6.3.2. Temporal Antialiasing

Temporal AA is an ATI-specific setting that may be set to either enabled or

disabled. Whereas regular AA uses a fixed sampling pattern, temporal AA uses a

different sampling pattern each frame. Given a high enough frame rate, the alternating

sampling patterns cannot be perceived by the human eye, and the end result is an

effectively higher AA level, at no extra performance cost. One constraint is that the frame

rate must be high in order to fool the human eye, preventing perception of a flickering

effect at the edges of primitives.

This option requires vertical sync
18
 (VSync) to be forced on. It is undetermined

whether this presents a problem for a windowed application like the CCP. The CCP

application enables the technique, but this setting may not show correctly, and thus is not

currently demonstrated by the CCP.

16
 render-to-texture: a feature allowing a texture to be used as a render target

17
 back buffer: the default render target for a D3D device

18
 vertical sync: limits the framerate to the monitor's refresh frequency

Project Number: EOA-4901

 36

6.3.3. Adaptive Antialiasing

While standard AA techniques take care of aliasing around the edges of

primitives, there remain situations in which aliasing can occur on the internals of

primitives. For example, an alpha-tested
19
 primitive (such as a quad with a chain link

fence texture applied) would suffer from aliasing artifacts that could not be corrected by

standard AA techniques. Adaptive AA overcomes these problems by selectively

supersampling only alpha-tested textures.

Although ATI’s driver typically seeks out alpha-tested textures and automatically applies

adaptive AA to them, the effect was emulated in the CCP application, for various

undisclosed reasons. To emulate, multiple rendering passes were used, while masking off

different samples per pass, in combination with centroid sampling, for each object that

demonstrates adaptive AA. Essentially, centroid sampling allows texture coordinates (and

other pixel shader interpolants
20
) to vary in each pass, based on the varying sample

pattern mask (see [15] for more on centroid sampling). In the end, the technique produces

the average value of the texture lookups, producing an antialiasing effect on the alpha-

textured primitives.

In addition to an enable / disable setting for adaptive AA, there is a quality versus

performance setting dubbed Adaptive Sampling Divisor (ASD). ASD specifies how many

samples to render per pass, which is used in conjunction with the number of samples to

determine the number of passes required, as follows:

• Adaptive AA disabled: 1 geometry pass

• Adaptive AA enabled: [Number of samples / ASD] geometry passes

19
 alpha-tested: transparency in some areas, to a degree, according to per-pixel “alpha” values

20
 interpolants: per-vertex values that are interpolated in a pixel shader to produce per-pixel values

Project Number: EOA-4901

 37

Therefore, ASD = 1 produces the highest quality at the cost of performance (many

passes are required). Table 3 shows the supported combinations of sample counts and

ASD settings.

AA Setting

(# of samples)

ASD Setting

(# of samples per pass)

Number of passes

(no AA) 1 1

2X 1 2

2X 2 1

4X 1 4

4X 2 2

6X 1 6

6X 2 3

6X 3 2

8X 1 8

8X 2 4

8X 4 2

Table 3: Supported AA / ASD combinations.

Each of the combinations shown in Table 3 is implemented as a different FX

effect technique, each of which must be defined in any FX effect file that is to

demonstrate adaptive AA. In the CCP application, the fence happens to be the only object

in the scene that demonstrates adaptive AA.

6.3.4. Anisotropic Filtering

Anisotropic filtering (AF), as introduced in section 2.4., is a setting that allows for

angle-independent texture sampling to produce high quality textured surfaces, no matter

what the viewing angle is with respect to the surface. For the CCP application, the

following texture filtering modes are supported:

• No AF

Project Number: EOA-4901

 38

• 2X AF

• 4X AF

• 8X AF

• 16X AF

When anisotropic filtering is disabled, trilinear filtering is enabled. This filtering method

is the baseline filtering method that we wish to compare against. Enabling different AF

levels is done easily through the D3D API.

6.3.5. Advanced Anisotropic Filtering

Advanced anisotropic filtering (AAF) is a feature specific to a small subset of

ATI video cards (ATI R500 series). This setting allows for higher quality anisotropic

filtering. The setting may be either enabled or disabled.

6.3.6. Catalyst AI

Catalyst AI is an ATI-specific mechanism used to improve performance behind

the scenes in subtle ways. Catalyst AI has three settings: disabled, standard, and

advanced. When disabled, no optimizations are used. When standard, some liberties are

taken with compression of textures, among other things, to improve performance. These

optimizations are meant to be hardly noticeable to the user. When advanced, many more

liberties are taken, and a reduction in visual quality is usually noticeable. In order to

display any changes in the CCP application, all textures must be released and reloaded

after a Catalyst AI setting change.

Since textures in the CCP are already compressed, the Catalyst AI setting makes a

minimal difference in the CCP application visuals. However, small changes are

noticeable if the camera is extremely close to some surfaces.

Project Number: EOA-4901

 39

6.3.7. Mipmap Level of Detail Bias

 As explained in section 2.3., mipmaps are collections of pre-computed, different-

sized versions of the same bitmap, used for fast lookups during texture filtering. For a

given textured primitive, the GPU performs calculations to choose the mipmap level that

best fits the primitive, and will then use that level when applying the texture. The

mipmap level of detail (LOD) bias setting influences the mipmap level choice

calculation, persuading the GPU to choose a smaller or larger mipmap level, improving

performance or quality, respectively. The four choices allowed for the level of detail bias

setting are high performance, performance, quality, and high quality. Additionally, if the

High Performance option is specified, then some of the larger levels in a mipmap chain

are ignored (dropped from the chain).

6.3.8. Geometry Instancing

Geometry instancing is the concept of having multiple copies of the same

geometry or mesh in a scene. Each instance could have different state, such as

transparency, hierarchical transformations, etcetera. Clearly, the world space position of a

multiply-instanced object would be one desirable state change between instances. GI can

speed up applications by precompiling graphics commands so that they may be passed

quickly to the GPU, instead of being processed one at a time on the CPU.

The geometry instancing setting was eventually decided to be excluded from the

CCP demonstration. However, in the CCP, although the function to enable GI is only a

stub, support for the calling that stub was added.

6.4. Resource Management

Project Number: EOA-4901

 40

For generic resource management, a templated interface CCPIManager was

made. The interface exposes generic methods for loading, fetching, and removing

resources from the base management data structure. The only two methods that need be

overwritten by derived class are the loading and unloading functions Add() and

CleanByName(), as their implementations are specific to the resource being managed.

Once a class is derived from the templated interface, extra functionality can be added to

that specific manager. When a resource is loaded, a string identifier is associated with the

resource such that the resource can be fetched by its identifier. In the CCP application,

this feature was used to fetch a loaded resource by its file name.

6.5. Singletons

In some cases, instances of managers may suffice, but sometimes classes are well-

suited as singleton objects. Managers are a great example – usually, only one manager is

needed for a given application.

In rare cases, it is useful to make a class, and then be able to use it as both a global

singleton instance, and at the same time, have multiple local instances of that same class.

For instance, the CCP application has a camera class. A singleton camera was useful,

since only one camera defined the view for both scenes. However, it was necessary to

have instances of the camera to allow for copying of the singleton camera, to make

modifications to its view for rendering reflections (see section 6.8.1. for discussion of the

reflection rendering technique).

The templated singleton design used for the CCP application allows for both a

global singleton of a class as well as instances of the class, if desired. If the developer

would like no local instances to be allowed (a true singleton), then a derived singleton

class need only have its constructors declared private.

Project Number: EOA-4901

 41

6.6. Art Assets and Extensibility

 As with most 3D demos, this project was a combination of artist and programmer

contributions. As such, it was necessary to provide the artist with any tools he needed to

quickly and easily ascertain the quality of the scene as shown in the CCP application, as

development progressed.

6.6.1. Art Assets

 The art for the CCP application was created, edited, and/or applied by ATI artist

Abe Wiley. The art assets include meshes (the complete courtyard), textures (color

maps
21
, a clip map

22
, light maps

23
, and normal maps

24
), and camera flight paths. The

main tool used for modeling and creating camera paths was Maya. For texture creation

and tweaking, Modo [16] and Photoshop [17] were used.

6.6.2. Initialization (.ini) File

During the design of the CCP, it was necessary to tweak settings and art assets to

quickly and easily produce the most effective visuals and features, without requiring

recompilation of the application. Integrating a scripting engine would be an excessive

solution. However, a program initialization file (.ini file) serves as an easy way to test out

new features and art assets. Figure 12 shows a sample .ini file. Comments are preceded

with a semicolon. All options shown in Figure 12 are required, with the exception of the

MIPDEBUG* options.

21
 color map: the traditional use of a texture – encoding of a mesh’s color

22
 clip map: 1-bit “on” or “off” data in a texture, used to determine what parts of a surface are transparent

23
 light map: a texture used to store lighting contributions from static light sources

24
 normal map: a texture used to encode normal information for a surface

Project Number: EOA-4901

 42

; Resolution of each of the two windows.
RES: 640x480

; Reflection texture size.
REFLECTION_RES: 320x240

; Height of the water level in the main lower basin of the fountain. This is only used for reflection calculations.
FOUNTAIN_WATER_LEVEL: 65.619

; Show the reflection texture, picture-in-picture, for debugging?
DEBUG_SHOW_REFLECTION: false

; .X files' paths. These .X files should reference a number of .FX files and textures.
XFILE: ./Meshes/final_mesh.x ; Final courtyard scene revision.

; Whether or not to reset the path location to the beginning of a path upon a path switch.
CAMPATH_RESET_ON_SWITCH: true

; Camera path files.
CAMPATH_DEFAULT: AmbCamera.bth
CAMPATH_AA: AntiAliasCam.bth
CAMPATH_AF: AnisoCam.bth
CAMPATH_TAA: AntiAliasCam.bth
CAMPATH_AAF: AnisoCam.bth
CAMPATH_AAA: AdaptiveAACam.bth
CAMPATH_CAI: AmbCamera.bth
CAMPATH_MIPLOD: MipMapCam.bth
CAMPATH_GI: AmbCamera.bth

; Camera path FOVs.
CAMPATH_DEFAULT_FOV: 55.0
CAMPATH_AA_FOV: 55.0
CAMPATH_AF_FOV: 55.0
CAMPATH_TAA_FOV: 55.0
CAMPATH_AAF_FOV: 55.0
CAMPATH_AAA_FOV: 55.0
CAMPATH_CAI_FOV: 55.0
CAMPATH_MIPLOD_FOV: 55.0
CAMPATH_GI_FOV: 55.0

; Whether or not to use mipmap debugging mode (different colored mips).
MIPDEBUG: false

; Paths to mipmap debugging textures (colored levels).
MIPDEBUGBASE1024: ./Mipdebug_textures/texbase1024.bmp
MIPDEBUG1024: ./Mipdebug_textures/tex1024.bmp
MIPDEBUG512: ./Mipdebug_textures/tex512.bmp
MIPDEBUG256: ./Mipdebug_textures/tex256.bmp
MIPDEBUG128: ./Mipdebug_textures/tex128.bmp
MIPDEBUG64: ./Mipdebug_textures/tex64.bmp
MIPDEBUG32: ./Mipdebug_textures/tex32.bmp
MIPDEBUG16: ./Mipdebug_textures/tex16.bmp
MIPDEBUG8: ./Mipdebug_textures/tex8.bmp

Figure 12: Sample .ini file ‘ccpconfig.ini’

The .ini options are explained below.

RES:

This option allows for adjustment of the resolution (and size) of each of the two

CCP windows.

Project Number: EOA-4901

 43

REFLECTION_RES:

This option specifies the resolution of the texture to use for creating the reflection

shown in the fountain. A higher resolution produces a more realistic reflection

See section 6.8.1. for explanation of the reflection effect.

FOUNTAIN_WATER_LEVEL:

This option must be a floating-point constant, which tells the application the

vertical height of the water in the scene. This is used for reflection calculations.

Although there are multiple pools in the fountain, some with different heights

than others, only one reflection is done and applied to all water surfaces, for

reasons of efficiency. This value can be adjusted to make the reflection look the

best for all pools, and as such, is a matter of aesthetics. Refer to section 6.8.1. for

more detail on the reflection effect.

DEBUG_SHOW_REFLECTION:

This option must be either “true” or “false.” It specifies whether or not to show

the reflection texture for the fountain in the top-left corner of the window, for

debugging purposes. See Figure 15 in section 6.8.1. for an example of this.

XFILE:

This option specifies a full or relative path to an X mesh file, to be loaded into the

scene. For the CCP application, there is only one mesh. However, multiple

meshes may be loaded by simply adding more XFILE: meshname.x declarations

to the .ini file. However, note that all loaded meshes are simply positioned in the

center of the scene.

CAMPATH_RESET_ON_SWITCH:

Project Number: EOA-4901

 44

This option must be either “true” or “false.” There are multiple looping camera

flight paths that are switched between when choosing 3D setting categories in the

CCC GUI. If this setting is “true,” then when the CCP switches to a new camera

path, the camera’s flight will begin from the start of the new path’s animation

loop. If this setting is “false,” then, upon a switch, the camera will immediately be

placed as far along the new path as it has reached along the old path. Which

option is better is a matter of taste, but “true” was chosen for the CCP release.

CAMPATH_*:

This set of options specifies the full or relative paths to camera path files. These

may either be camera paths taken straight from the Sushi camera path exporter

(.pth files) or preprocessed, stripped-down binary camera paths (.bth files). There

is a camera path for each of the settings that the CCP demonstrates. Note that

some camera paths are used more than once in Figure 12. For instance, it was

desirable to use the same camera path for demonstrating AA setting changes

(CAMPATH_AA) as for temporal AA setting changes (CAMPATH_TAA).

CAMPATH_*_FOV:

This set of options specifies the field of view (FOV) to use for each camera path’s

camera. Note that if two different paths use the same path (as in the case of

CAMPATH_AA and CAMPATH_TAA), then they must also have the same FOV

specified.

MIPDEBUG:

This option must be either “true” or “false.” If true, this option enables a

debugging mode that allows for visualization of different mipmap levels in the

scene, and how they are affected by changing the mipmap level of detail setting.

See Figure 21 in section 6.9. for a screenshot of this debugging mode. If “false,”

the scene is loaded as normal. Note that if this is “true,” a different mesh

(“test_mesh_at_work_mipdebug.x”) should be loaded with the XFILE option. The

Project Number: EOA-4901

 45

mesh should reference effect files developed exclusively for this mipmap

debugging mode.

MIPDEBUG*:

This set of options specifies the full or relative paths to textures to be used in the

mipmap debugging mode. The textures are different sizes and colors, as explained

in section 6.9..

To handle loading of the .ini file settings, a singleton class, CCPConfigManager,

reads and interprets the .ini file, and grants access to the settings to any application code

that needs the information.

6.7. Camera Paths

 Different camera fly paths are used in the CCP application to demonstrate

different settings. For instance, to demonstrate temporal AA setting changes, it was found

to be most effective to use a camera path that flies alongside the alpha-textured fence (see

section 6.8.2. for more detail on the fence effect). All paths were created in Maya and

exported using a Sushi plug-in for Maya. As explained in section 5, the path files are then

preprocessed to make run-time loading of the paths as fast as possible.

The camera system in the CCP application is fairly straightforward. A camera

class, CCPCamera, defines a basic camera representation, allowing for basic placement,

movement, and orientation of a camera. Since it was desired to move this camera along a

path, a camera path class was created called CCPCameraPath. This class holds many 3D

position and orientation value pairs, as well as the sampling period (in seconds) between

each pair. Given the current application time, a function will return the current position

and orientation of the camera by LERPing
25
 and SLERPing

26
 between position and

25
 LERP: linear interpolation

26
 SLERP: spherical linear interpolation

Project Number: EOA-4901

 46

orientation values, respectively. Finally, a camera controller class,

CCPCameraController, was created. This class holds a CCPCamera and a

CCPCameraPath as members. CCPCameraController pulls together all camera

functionality, including switching between different camera paths, disabling camera path

following in order to move the camera manually, querying for the application time,

finding the camera position/orientation for a particular time, and setting the camera

position/orientation of the CCPCamera.

Since it was desired to have each scene’s camera path remain in sync, it was

simplest to use an instance of the CCPCameraController class as a Singleton object. This

was possible by using the following type definition:

typedef CCPSingleton<CCPCameraController> CCPGlobalCameraController;

Note that the design of the templated CCPSingleton class still allows a

CCPCameraController to be instantiated multiple times if desired, as is required for the

fountain’s reflection rendering technique (see section 6.8.1.).

6.8. Scene Effects

 A few notable effects were used in the courtyard scene. Some were used to

demonstrate specific settings, and others were used to make the scene more attractive.

This section discusses the implementation of the various effects.

6.8.1. Reflection

 The fountain at the center of the courtyard scene shows pools of water with a

realistic reflection on the water’s surface. This effect is meant to make the scene look

more realistic (as opposed to demonstrate a particular setting). Figure 13 shows a

screenshot of the fountain’s reflection.

Project Number: EOA-4901

 47

Figure 13: Fountain reflection effect

 To create the reflection visuals seen on the surface of the water, the application

renders the scene to a texture, from the point of view of a camera that is under the water.

For example, if the camera were looking straight down into the fountain, we would want

to reflect the camera about the plane defined by the surface of the water, producing a

camera facing straight up at the sky. Figure 14 shows an example of the idea. A function

CCPCamera::ReflectAboutPlane(...) flips the camera as desired.

Project Number: EOA-4901

 48

Figure 14: The orientations of the original camera used for the camera fly path, and the reflected

camera

From this point of view, it is necessary to remove any objects at or below the

level of the water, since they would not ever be seen in a reflection. This is done using a

user clip plane, which is a standard component of the D3D API. It allows us to prevent

portions of the scene from being rendered. The user clip plane is set to be slightly higher

than the surface of the water, so that the scene may be seen “from the water’s point of

view.” A rendering pass is then performed from the reflected camera’s position, storing

the result in a texture. The top-left corner of Figure 15 shows the scene from the point of

view of the reflected camera, after the user clip plane has been applied.

Project Number: EOA-4901

 49

Figure 15: Fountain view, with reflection texture shown onscreen for debugging.

 The only remaining step is to correctly position the texture shown at the top-left

of Figure 15 onto the surface of the fountain. To do this, the application uses projective

texture mapping, which is a method used to project a texture onto a scene as if the texture

were a slide in a slide projector. More information on projective texture mapping can be

found at [18]. By distorting vertex positions or texture coordinates, a moving surface

could be simulated, if desired. However, it was desired to have an unmoving surface, as

the fountain has no circulation or cascading of water.

The water is semi-transparent, due to alpha-blending, or transparency, applied to

the water. The amount of transparency is dependent on the viewing angle of the camera

with respect to the water’s surface. This effect is a partial approximation of the Fresnel

Effect, which is a real-life phenomenon: when looking at a water surface at a small

grazing angle, more reflectivity is apparent than when looking straight down at the

surface. The water also has a light map applied, allowing for explicit specification of

lighter or darker areas of the surface.

Project Number: EOA-4901

 50

Although the resolution for the reflection render target is configurable via the .ini

file (see section 6.6.2.), a smaller resolution is usually used than for the resolution of the

CCP window. This is because less detail will be apparent in the reflection, and thus the

performance optimization will show little to no decrease in visual quality.

 Since the complete scene had to be rendered an extra time to accomplished a

reflection, only one reflection was performed for efficiency reasons. As such, this method

only produces a perfectly accurate reflection for one of the fountain pool levels.

However, the reflection still looks realistic from all viewing angles in all camera fly

paths.

6.8.2. Fence

 Although each section of the fence in the courtyard is only composed of a couple

of primitives, its pattern detail is simulated through the use of a clip map. A clip map is a

simple bitmap specifying which texels of a texture should be opaque and which should be

transparent. Figure 16 shows the clip map used for the fence.

Project Number: EOA-4901

 51

Figure 16: Clip map used for the courtyard fence

The clip map in Figure 16 is stored as the 1-bit alpha channel of a DXT1-compressed

normal map texture for the fence. A separate texture stores the color map for the fence.

The fence is used as a way to demonstrate adaptive AA. Figure 17 shows two

views of a portion of the fence. The left scene has MSAA enabled with adaptive AA

disabled, and the right scene has MSAA enabled, as well as adaptive AA. With only

MSAA enabled, the fence’s outlines still show aliasing artifacts. With temporal AA

enabled, the aliasing artifacts are greatly reduced. Note that mipmapping must be

disabled for any textures applied to a surface that demonstrates adaptive AA, or else

undesirable artifacts appear.

Project Number: EOA-4901

 52

Figure 17: Fence with no adaptive AA (left) versus high quality adaptive AA (right)

6.8.3. Normal mapping

As explained earlier in section 2.5., normal mapping encodes normal information

in the R, G, B color channels of a texture. Each color component encodes one component

of a 3D vector.

It was decided early on that diffuse lighting
27
 effects could be encoded into a light

map, avoiding expensive run-time lighting calculations as well as storage of normal

maps. This is because conventional diffuse lighting contributions are calculated via the

following equation:

LN
vv

• , where N
v
 is a normal, L

v
 is a vector pointing towards a light source

27
 diffuse lighting: lighting from diffuse (rough-surface) reflections

Project Number: EOA-4901

 53

and both N
v
 and L

v
 are static. That is, the normals of all scene objects are static with

respect to the (also static) light source (the sun).

Since specular lighting
28
 contribution calculation requires a vector pointing

towards the camera (among other things), and the camera position is constantly changing,

specular lighting contributions must be computed at run-time. Since detailed normal

information provides substantial benefits when calculating specular lighting, normal

maps would be used if specular lighting were to be used. Additionally, it would be

beneficial to use other features like gloss maps
29
 or specular exponent maps

30
 for each

surface. However, CCP release size constraints as well as project time constraints

prevented these per-pixel lighting techniques from being used in the CCP application.

Normal mapping is not used, but the technique is implemented within applicable shaders.

The right half of Figure 18 shows an example of the use of normal maps combined with

specular lighting.

Figure 18: Screenshots with diffuse lighting only (left) and with specular lighting & normal mapping (right)

 Within any shader that utilizes normal mapping, in order to obtain valid normal

values from a normal map, the color component ranges (0.0 to 1.0) are first scaled and

shifted, to be in the valid normal ranges (-1.0 to 1.0). Then, since all vectors that are used

for lighting calculations need to be in the same coordinate space, every vector must be

transformed (from world space) to the same space as the vectors encoded in the normal

28
 specular lighting: lighting from specular (smooth-surface) reflections

29
 gloss map: a texture used to control the shininess of different areas of a surface

30
 specular exponent map: a texture used to control the focus or tightness of specular reflections on

different areas of a surface

Project Number: EOA-4901

 54

map (tangent space). World space is the global coordinate system that all geometry is

stored in, relative to one origin, and tangent space is a local coordinate system used at the

surface of any given primitive. The basis of a tangent space coordinate system consists of

the tangent, the normal, and the binormal. These tangent space vectors are stored within

the courtyard mesh. Although it would be possible to translate the normal map tangent

space vectors to be in world space (and this is probably more intuitive), this would be

more computationally intensive, since the translation would need to be performed per-

pixel instead of per-vertex.

6.8.4. Sky Effect

The courtyard sky shows moving clouds to increase the realism of the scene. The

sky geometry is composed of one large quad, and uses only one texture to produce the

unique animated effect. The sky is demonstrated in Figure 19.

Figure 19: The courtyard sky

The animated cloud technique is a variation on a technique found in [19]. Since

only one texture is needed for the effect, the technique it is very economical in terms of

storage space, which is a perfect fit for the CCP application’s requirements. The effect

uses the red and green channels of a texture to store horizontal and vertical texture

coordinate perturbation values, respectively, and the blue channel is used to store the

cloud texture itself. Although each channel can only store 8 bits of information, this is

Project Number: EOA-4901

 55

enough to produce convincing animated clouds. Figure 20 shows the different channels

of the sky texture, each interpreted as 8-bit grayscale textures. The tool RGBAviewer [20]

(shown in Figure 20) was developed to allow for simple viewing and editing of texture

color components.

Figure 20: The different color components of the one texture used for the sky effect

 The way the sky shader works is as follows. First, horizontal and vertical

perturbations are fetched from the texture (red and green channels, respectively). These

perturbation values are scaled by different amounts and are summed with texture

coordinate values. Then, the application time is scaled and summed to the x-component

of the texture coordinates. Next, the cloud texture (blue channel) is fetched with these

new texture coordinates. Since these coordinates have been disturbed (horizontally and

vertically) and scrolled (horizontally), and this behavior will continue each frame, this

Project Number: EOA-4901

 56

produces a moving, distorting cloud. This same algorithm is used to produce a second

cloud that scrolls in the opposite direction.

Finally, the colors of the two clouds are linearly interpolated to produce a final

cloud color, which is then interpolated with a sky color, according to an “overcast

factor.” Other options were added for tweaking, including cloud color, sky color, sun

glare, brightness, tint, and individual cloud speed and perturb factors. The combined

effect of the distortion and the clouds passing at different speeds produces a seemingly

slithery, cloudy sky (best appreciated when in motion).

6.9. Debugging Methods

To help shorten development time and solve any future issues that could arise, it

was helpful to make the CCP application easy to debug. As such, a logging class was one

of the first classes implemented. The logger outputs warning and error messages to both

the debug console using OutputDebugString(), and to a log file. To capture messages sent

to the debug console, one can either use Visual Studio’s output tab, or the program

DebugView [21].

A unique debugging issue arose from the embedded nature of the CCP

application. The final build of the CCP application needed to run inside a small window

provided by the CCC. This makes stepping through code difficult. More importantly, the

CCP could only be launched by launching the CCC, which is an undesirable level of

indirection when debugging. For this reason, both “dashboard” and “non-dashboard”

builds were created. The two builds use conditional compilation to include either code

paths to create an executable to be launched by the CCC (“dashboard” build) or a

standalone executable with a larger window size, movable windows, and other debugging

features (“non-dashboard” build). Since both builds include code that is mostly common

to the two, debugging can successfully be carried out in a “non-dashboard” build in most

Project Number: EOA-4901

 57

cases. Additionally, switching between the two build types is very simple (see Appendix

A).

To verify that different settings were changing as desired, it was useful to zoom in

on certain parts of the scene, instead of flying along preconfigured paths. To do this, a

“manual camera movement” mode was implemented to let developers move and face the

camera anywhere in the scene.

Moving around the scene does not help verify every setting, however. For

instance, to confirm that the mipmap LOD bias setting was working as expected, it was

necessary to create a mipmap debugging mode. When this mode is enabled, every texture

in the scene has its mipmap levels individually modified to have different images (solid

colors) so it can be seen that the levels are being blended and biased correctly. Figure 21

shows what the mode looks like for the courtyard scene.

Figure 21: Mipmap debugging mode enabled in the courtyard scene

Table 4 denotes what each color represents. Note that the mipmap levels chosen

are dependent on the resolution chosen for the window. That is, if the same view of the

scene is shown with a smaller window, the mipmap levels chosen will be different

(specifically, they will be closer to purple).

Project Number: EOA-4901

 58

Color Texture size

Black 1024x1024

Dark Red 512x512

Red 256x256

Orange 128x128

Yellow 64x64

Green 32x32

Blue 16x16

Purple 8x8

Table 4: Colors scheme for mipmap debugging mode

6.10. Communication Overview

This section discusses the overall flow of the CCP application, both execution and

communication. The flow chart in Figure 22 summarizes the essential steps of the CCP

application. The flow chart distinguishes between functionality existing only in the

dashboard build, functionality existing only in the non-dashboard build, and functionality

that is common to both builds.

Project Number: EOA-4901

 59

Figure 22. CCP application communication flow chart (main loop outlined in red)

First, the CCP application initializes global components such as the logging

system and timer. This initialization takes place regardless of the build chosen.

Project Number: EOA-4901

 60

Next, if a non-dashboard build is being used, two separate windows are created.

The application then loads a default set of 3D settings for both windows.

Due to the embedded nature of the dashboard build, a different message-passing

scheme is required, and thus a different hierarchy of windows is required. Two child

windows are spawned below a parent window, and are similar in functionality to the two

windows created in the non-dashboard build.

 After the preceding window specifics have been taken care of, the application

flow is almost identical between builds. Direct3D is initialized and all art assets for the

scene are loaded. Listeners are added to allow for application control via any input

device. Finally, the program’s main loop is reached, outlined in red. This loop is where

scene rendering takes place in both windows.

One final difference between the dashboard and non-dashboard builds is how 3D

settings are adjusted. In the non-dashboard build, the CCP application accepts input from

the keyboard for testing of all CCP options. In the dashboard build, the application

communicates with the CCC to determine 3D setting changes.

 Aside from the preceding setting change mechanism difference, the main loop is

similar for both dashboard and non-dashboard builds. If any settings have changed, the

application updates the scene display for the appropriate window. Different settings are

changed using different techniques, as explained earlier in section 6.3.

Project Number: EOA-4901

 61

7. Conclusion

The new CCP application was designed with many goals in mind, including

extensibility, readability, effective showcasing of 3D settings, quick loading time, quick

transitioning between camera paths and 3D settings, small release size, ease of use (for

both developers and artists), among many other desirables. Above all, it is hoped that the

new CCP application demonstrates setting changes effectively and provides a unique,

intuitive 3D setting tweaking experience for end users.

Figure 23: The new CCC in Windows Vista

Project Number: EOA-4901

 62

8. References

[1] Coppens, Paul. "Loading and displaying .X files without DirectX." Gamedev.net. Accessed: June 2006.

<http://www.gamedev.net/reference/programming/features/xfilepc>.

[2] Microsoft Corporation. "DirectX for Windows Vista." MSDN Library. Accessed: May 2006.

<http://msdn2.microsoft.com/en-us/library/ms681824.aspx>.

[3] "Direct-X File Format." Compiled by Bourke, Paul. Created: January 1999. Accessed: May 2006.

<http://local.wasp.uwa.edu.au/~pbourke/dataformats/directx/>.

[4] ATI Technologies, Inc. Accessed: May 2006. <http://www.ati.com>.

[5] Harris, Kevin. "Texture Mip-mapping" sample code. Codesampler.com. Created: February 2005. Accessed: May

2006. <http://www.codesampler.com/dx9src/dx9src_3.htm>.

[6] Weinand, Lars. "ATI's Optimized Texture Filtering Called Into Question." Tomshardware.com. Created: June 2004.

Accessed: May 2006. <http://www.tomshardware.com/2004/06/03/ati/index.html>.

[7] Microsoft Corporation. "Visual Studio 2005 Professional Edition" product page. Microsoft Products. Accessed:

May 2006. <http://msdn2.microsoft.com/en-us/vstudio/aa718668.aspx>.

[8] Walbourn, Chuck. Microsoft Corporation. "Graphics APIs in Windows Vista." MSDN Library. Modified: August

2006. Accessed: May 2006. <http://msdn2.microsoft.com/en-us/library/ms681824.aspx>.

[9] Perforce. "Perforce Windows Client" product page. Accessed: May 2006.

<http://www.perforce.com/perforce/products/p4win.html>.

[10] Autodesk, Inc. "Autodesk Maya" product page. Accessed: May 2006. <http://www.autodesk.com/maya/>.

[11] Autodesk, Inc. "Autodesk 3ds Max" product page. Accessed: May 2006. <http://www.autodesk.com/3dsmax/>.

[12] Teggo. "MoleBox Pro" product page. Accessed: May 2006. <http://www.molebox.com/>.

[13] Binary Soft, Inc. "DLL To Lib" product page. Accessed: May 2006. <http://www.binary-

soft.com/dll2lib/dll2lib.htm>.

[14] van Heesch, Dimitri. "Doxygen: Source code documentation generator tool." Modified: December 2006.

<http://www.stack.nl/~dimitri/doxygen/>.

Project Number: EOA-4901

 63

[15] Microsoft Corporation. "Antialias Sample." MSDN Library. Modified: October 2006. Accessed: June 2006.

<http://msdn.microsoft.com/library/default.asp?url=/library/en-us/directx9_c/Antialias_Sample.asp>.

[16] Luxology LLC. "Modo" product page. Accessed: May 2006. <http://www.luxology.com/whatismodo/>.

[17] Adobe Systems Incorporated. "Adobe Photoshop" product page. Accessed: May 2006.

<http://www.adobe.com/products/photoshop/>.

[18] Everitt, Cass. "Projective Texture Mapping." Nvidia Corporation. Accessed: May 2006.

<http://developer.nvidia.com/object/Projective_Texture_Mapping.html>.

[19] Isidoro, Jon and Riguer, Guennadi. “Texture Perturbation Effects.” ATI Research, Inc. Accessed: July 2006.

<http://ati.amd.com/developer/shaderx/ShaderX_TexturePerturbationEffects.pdf>.

[20] Pfeil, William A. "RGBAviewer" application. Modified: July 2006.

<http://users.wpi.edu/~wap/downloads/RGBAviewer_1.0_bin.zip>.

[21] Russinovich, Mark. "DebugView for Windows v4.63." Microsoft TechNet. Modified: November 2006. Accessed:

May 2006. <http://www.sysinternals.com/Utilities/DebugView.html>.

[22] "UnrealWiki: DXT." The Unreal Engine Documentation Site. Accessed: June 2006.

<http://wiki.beyondunreal.com/wiki/DXT/>.

[23] "Antialiasing." Meko Ltd. Accessed: May 2006. <http://www.meko.co.uk/antialias.shtml>.

Project Number: EOA-4901

 64

Appendix A. CCP Build / Release Overview

Switching between the many builds required for development / release, 32-bit /

64-bit platforms, and embedded / floating window configurations is greatly simplified by

Visual Studio’s configuration manager.

A.1. Solution Configurations

There are 8 solution configurations for the CCP application. There is one each for

all 8 combinations of (dashboard / non-dashboard), (Win32 / Win64), and (Debug /

Release). Simply choose a solution configuration, and then compile.

Figure 24: Supported build configurations

A.1.1. Dashboard / Non-dashboard Builds

Dashboard and non-dashboard build configurations were made to allow for easy

switching between a version of the application that gets embedded within the CCC

dashboard, and a version of the application that is standalone, useful for controlled

development and debugging. The latter build configuration proved critical for controlled

testing.

Project Number: EOA-4901

 65

A.1.2. Win32 / Win64 Builds

The CCC is meant for both 32-bit and 64-bit platforms, so builds of each were

required for both testing and release. Although the development machine for this project

is a 32-bit machine, Visual Studio 2005 allows for 64-bit cross-compilation.

A.1.3. Debug / Release Builds

Debug / Release builds are standard configurations within Visual Studio. The

debug configuration allows for stepping through the application, and the release

configuration is optimized for speed.

Project Number: EOA-4901

 66

Appendix B. DXT Compression

DXT, or DXTC, is an effective texture compression method originally developed

by S3 Graphics, Ltd.. DirectX version 9 supports 5 types of DXT-compression: DXT1,

DXT2, DXT3, DXT4, and DXT5.

“In DXT compression, images are divided into a block of 4x4 texels. For each

texel, two color values are chosen to represent the range of pixel colors within that block,

and then each pixel is mapped to one of four possible colors (two bits) within that range.

The compressed texel is represented by the two 16-bit color values, and 16 2-bit pixel

values, totaling 64 bits of data per texel, amounting to an overall image size of 4 bits per

pixel. [22]

“Alpha (transparency) information in DXT is handled in one of several ways,

depending on the DXT format. In DXT1, each texel can either be defined as having four

possible color values within the range (as described above), or alternately three color

values and one value indicating "this pixel is transparent". Thus, in DXT1, one can have

at most 1-bit (on or off) transparency in the image, but even this is done at the expense of

some color information. In DXT2/3/4/5, alpha information is specified using a second 64-

bit block for each texel (thus doubling the image size). In DXT2/3, for each pixel, four

bits are used to indicate its alpha, providing 16 different transparency levels. DXT4/5

uses a method similar to the way color data is stored to provide "interpolated" alpha

information: Two (8-bit) alpha values are chosen representing the range of transparency

in that texel, and then for each pixel, three bits are used to represent its transparency

within that defined range (This allows much better for subtle gradations, but can have

less precision for large ranges within a texel). [22]

“In DXT2 and DXT4, the pixel color values are multiplied by the alpha values

before compressing (so partially transparent pixels have a color value stored darker than

it shows onscreen, and completely transparent pixels always have a color value of black

Project Number: EOA-4901

 67

in the compressed texture). This can speed up some types of compositing operations, but

it has the side-effect of losing color information, and can result in uglier DXT

compression for some types of textures.” [22]

For the CCP application, DXT1 is used exclusively for space-saving reasons,

since alpha channels are rarely needed. In the case where the alpha channel is needed (the

courtyard fence texture), only 1 bit of alpha is needed, which DXT1 satisfies.

Project Number: EOA-4901

 68

Glossary of Acronyms

AA – Antialiasing

AAA – Adaptive Antialiasing

AAF – Advanced Anisotropic Filtering

AF – Anisotropic Filtering

API – Application Programming Interface

ASD – Adaptive Sampling Divisor; a divisor used to tradeoff adaptive antialiasing performance / quality

CatAI – Catalyst AI

CCC – Catalyst Control Center

CCP – Catalyst Control Preview

CPU – Central Processing Unit

D3D – Direct3D

D3DX – a library for use with Direct3D, with many common graphics operations

DDS – DirectDraw surface

DLL – Dynamically-Linked Library

DX – DirectX

DXT / DXTC – an effective texture compression method originally developed by S3 Graphics, Ltd.

DXUT – DirectX Utility Toolkit, a framework for useful for typical Direct3D applications

GI – Geometry Instancing

GPU – Graphics Processing Unit

GUI – Graphical User Interface

IDE – Integrated Development Environment

LOD – Level of Detail

MipLOD – Mipmap Level of Detail

MSAA – Multisampling Antialiasing

R*00 – a particular series of ATI GPU hardware

R300 – the minimum generation of ATI GPU hardware supported by the CCP application

R500 – ATI’s X1xxx series of GPU hardware

SDK – Software Development Kit

TAA – Temporal Antialiasing

UI – User interface

VS – Visual Studio

VSync – vertical sync

WDDM – Windows Vista Display Driver Model

