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Abstract

Modern computer applications from business decision sappacientific data anal-
ysis use visualization techniques. However, visual exion tools do not scale well
for large data sets, i.e., the level of clutter on the screeiypically unacceptable. To
solve the problem of cluttering at the interface level, wigation tools have recently
been extended to support hierarchical views of the datdy support for focusing and
drilling-down using interactive selection.

To solve the scalability problem, we now investigate howt be€ouple such a near
real-time responsive visualization tool with a databasaagament system. Our solution
proposes a framework containing three major componengsaithy encoding, caching
and prefetching. Since the direct implementation of thaalisiser interactions on hierar-
chical data sets corresponds to recursive query processiigave developed a hierarchy
encoding method, called the MinMax tree, that pushes thinenrecursive processing
step into an off-line precomputation step. The MinMax emegdcheme allows us to
map the hierarchy to a 2-dimensional space and the recumaivigation operations at
the interface level to 2-dimensional spatial range querié®se queries can then be an-
swered efficiently using spatial indexes. To complimerg #rnicoding scheme we employ
a caching strategy that exploits user navigation charatitey to cache the nodes having
high probability of being referenced again. Based on usarattteristics we choose to
implement two replacement policies one which exploits teraplocality (LRU) and the
other exploits spatial locality (Distance). Also, to enbathe performance of the cache
we propose using a prefetching mechanism that predicts agfdtghes future user re-
guests into the cache. Together the components form a chens®e framework that
scales the visualization tool to support navigation openatover large data sets.

The techniques have been incorporated into XmdvTool, adodfevare package for

multi-variate data visualization and exploration. Our esimental results quantify the
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effectiveness of each component and show that collectittedycomponents scale the
XmdvTool to support navigation operations over large data.dainly, our experimental
results show that together the components can achieve 69884aeduction in response

time latency even with limited system resources.
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Chapter 1

Introduction

Whether the domain is stock market data, scientific dataherdistribution of sales,
visualization is becoming an increasingly popular techaitpr data exploration. Visual-
ization tools exploit the fact that humans can detect pagtand trends in the underlying
data by just looking at itwithouthaving to be made aware in advance about what pattern
they’ll face. Human perception is greatly influenced by tlag\wformation is presented.
Thus various techniques for displaying data have been gespeach of which empha-
sizes different characteristics of data. However, mogte$¢ techniques do not scale well
with respect to the size of the data. As a generalizatiori,j@26tulated that any method
that displays a single entity per data point invariably hssa overlapped elements and a
convoluted display that is not suited for the visualizatidmuge datasets.

[19] proposed an approach called hierarchical displaysdigplaying and visually
exploring large datasets. The idea was to present datafetedhit levels of detail based
on clustering the initial data points into a hierarchy aallleecluster tree The problem
of clutter at the interface level is solved by displayingyoahe level of detail at a time.
However, such hierarchical summarizations captured trdifit levels in the cluster tree

in fact increase the size of the input data set by at least aer @f magnitude, as the



clusters that store aggregate information are in additidhée already existing data points.
Hence management of data remains an even more critical ig#uige storing the data in
main memory or in flat files is appropriate for small and motidyssized data sets, this
becomes unworkable when scaling to large data sets on tiee @rd 00,000 data points
or more.

One solution to this is to integrate visualization toolshnatback-end database man-
agement system. However, interactive exploration opesatostructure space (cluster
tree) like navigation and selection [55] are not directlpgorted by traditional database
management systems. In particular the recursive progessiolved when exploring hi-
erarchies in main memory is no longer appropriate whenrggahiese hierarchies on disk.
Thus, in this thesis we propose a framework to meet the ictigesresponse requirements
for user exploration operations over large hierarchiegestn the database. The frame-
work includes a hierarchy encoding mechanism, caching eefétghing strategy each of
which work collectively to reduce the response time latency

The hierarchy encoding technique, caldihMax treesallows us to map hierarchies
to a 2-dimensional space calle®B Hierarchy Map This mapping in turn allows us
to represent visual navigation operations as spatial gsi@ver the2D Hierarchy Map
This2D Hierarchy Mapis stored in a database, where the searches are executeshdific
using spatial indexes.

Furthermore, interactive visual exploration tools exhiivariety of characteristics
that can be exploited to make the system scale to huge datalrsetse include locality of
exploration and data access, predictability of user'sagibry movements, and presence
of idle time between user operations. To take advantageecdltiove characteristics we
propose a caching strategy that buffers the recently udadtdens. The cache exploits the
spatial mapping provided by the hierarchy encoding schenfreitd a memory resident

spatial index for fast cache look-up. Moreover, it also usestial space to implement



a semantic replacement policy that replaces cached oltjastxd on the spatial distance
from the current active selection.

The predictability of user movements and idle time betwessr wperations can be
effectively utilized for predicting and prefetching futuuser requests. We integrate a
directional prefetcher proposed in [15] into our systemefétching helps in reducing
cache misses and thus improves the performance.

We applied our proposed solution strategies to the hiel@bthavigation tool tructure-
based brushin XmdvTool [52], a software package for exploring and akzing multi-
variate data sets. However, this context is neither impjior explicitly assumed in this
thesis. Visual navigation of huge hierarchies is a generdipm and we describe a gen-
eral approach towards solving the problem. The resultsep#grformance study show
that the approach scales to large data sets. Even for medkata sets our solution reduce
the user response time by 63 to 96 percent.

The main contributions of this thesis are:

¢ A hierarchy encoding technique that reduces the tree to aivagnt spatial rep-
resentation. This representation allows us to map reaitssrarchy navigation
operations to spatial search queries that can be answédigdrefy using existing

spatial index structures.

e A framework that exploits the encoding technique and charastics of the visual
navigation environment such as, locality of user explorgtior efficient retrieval

of online data. The framework includes:
1. A main memory caching strategy that buffers the recergdunodes to avoid
database fetches and thus improves system response time.

2. Acache replacement policy called distance that expépigsial locality in user

traces to replace the nodes with maximum distance from themuactive
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selection. This in turn leads to higher hit ratios and betéehe performance.

3. Index structures that exploit the spatial represenmtatirived using the hier-
archy encoding technique to achieve faster searches oratihe @and on the

database contents.

4. A direction-based prefetching strategy that exploiéslimited means of data
requests via the visual interactive tools to predict futuser requests and

prefetch the required data into the cache.

e An object-oriented implementation of the complete framéwesing C++ and Or-
acle database. This framework forms the backend moduleeoXthdvTool and

scales the hierarchical displays [55] to support navigetidarge hierarchies.

e Experimental evaluation that quantifies the relative ¢ifeaess of each component
in the framework towards latency reduction. It shows thattbmponents work

collectively and in some cases can reduce the system latgnity95%.

This thesis is organized as follows. Chapter 2 introduces#sic concepts in multi-
variate hierarchical visualization. The hierarchy enogdis well as the processing of the
MinMaxqueries are presented in Chapter 3. Chapter 4 introducesdhesed framework
and describes the important components of the framewor&pteh5 describes the system
implementation. Chapter 6 presents the results of the attafustudy. Chapter 7 surveys

related work. Chapter 8 presents conclusions and direcfarfuture work.



Chapter 2

Visual Data Exploration

2.1 XmdvTool: The Motivating Application

XmdvTool is a visualization tool designed for exploratiomaanalysis of multivariate
data sets. The tool provides four distinct visualizatiahtéques namely, scatterplot ma-
trices [9], parallel coordinates [23, 53], glyphs [1, 43,37] and dimensional stacking
[29], with interactive selection operations and linkedwse To scale the display tech-
niques to large data sets, we need to reduce the amount térdlutscreen space. To
address this issue, our efforts have produced versionsspfagi techniques that allow
multi-resolution data presentation [19, 20, 55]. Multsoution techniques allow users
to view the data sets at an abstract level of detail and dgtesplore the datasets by
zooming in @rill-down) or zooming outoll-up) on subsets of the datasets. The subsec-
tions to follow explain these operations in detail.

The main objective of the work in this thesis was to improwedfficiency of database
support in XmdvTool. However, the operations that we witr@auce are general and
can be used for visual exploration of arbitrary hierarcheesommon class of navigation

operations in large scale visualization systems [18].



2.2 Visual Brush-Based Exploration

Brushingis the process of interactively painting over a subregiaihefata display using
a mouse, stylus, or other input device that enables thefsgaimn of location attributes
[2, 52]. The location attribute values are then used to ssldusets of the data.

Brushing can be performed in screen or data space to spewifigtainment criterion
i.e., whether a particular point is inside or outside theshrunscreen spactechniques, a
brush is specified by 2D contiguous subspace on the screenddta spacdechniques,
a specification consists of either an enumeration of thealataents contained within the
brush or theV-Dimensional boundaries of a hyper-box that encapsulbtesdlection.

A third category, namelgtructure spaceechniques, that allows selection based on
structural relationships between data points, was intedun [20]. Thestructureof a
data set specifies relationships between data points. frotwre may be explicit (e.qg.,
categorical groupings or time-based orderings) or imp(&ig., resulting from analytic
clustering or partitioning algorithms). Examples of stures include linear orderings,
trees and directed acyclic graphs. In this work we focus eestr

A treeis a convenient mechanism for organizing large data setse@ysively parti-
tioning data into related groups and identifying suitaldmmarizations for each cluster,
we can examine the data set methodically at different lesfeddstraction, moving down
the hierarchy drill-down) when interesting features appear in the summarizatiods an
up the hierarchyrfll-up) after sufficient information has been gleaned from a paldic
subtree.

Brushing in structure space involves two containment gateFor the first contain-
ment criterion lets us assume that the leaves of the treehaiaed together. Chaining
imposes an order on the set of nodes in the cluster tree. @neorder, nodes that fall

into a user defined interval satisfy the containment catdntuitively, the two values that



form the interval represent the left and the right-most ésaof the selected subtree. We

call this process “horizontal selection”.

A
L(a)’\ 1

Figure 2.1: Structure-based brusbcus  Figure 2.2: Structure-based brudtori-
region(a) anddensity factor(b). zontal(a) andvertical (b) selection.

For our second containment criterion, we augment each notleei hierarchy, i.e.,
each cluster, with a monotonic value that indicatesl#vel-of-detail The nodes at the
desiredevel-of-detailare selected. This process is called “vertical selectidinelevel-
of-detailvalue can have different semantics. For example, it mayesgmt thewidth of
the cluster i.e., the number of leaf nodes the cluster enaessgs. It could also signify the
distanceof the cluster from the root.

A structure-based brush is thus defined by a subrange ofridte extents and the
level-of-detailvalues. Intuitively, if looking at a tree structure from theint-of-view of
its root node (Fig. 2.1), the extent subrange appear$asia region(with the focus point
at its center), while theevel-of-detailsubrange corresponds to a sampling rate factor or a
density In a2-D tree representation, the subranges correspond to ahtaland vertical

selection, respectively (Fig. 2.2).

2.3 Structure-Based Brushing in XmdvTool

Figure 2.3 shows a parallel coordinates display of a five dsimal data set having

16,384 records. In this display each of the N dimensionspsesented by a vertical



Figure 2.3: Cluttered parallel coordinates.

Structure-based
brush components:
a- tree shape

b- level of detail
c- leaf contour

d- focus area

e- focus extents

Figure 2.4: Structure-based brush in XmdvTool.

axis. A data point in N-dimensional space is mapped to a paythat traverses across
all N axes, crossing each axis at a position proportionaistealue for that dimension.
As seen from Figure 2.3, displaying all the data to the uséheatsame time results in
display clutter. Hence, to support the visual navigationloster trees for large data sets,
XmdvTool contains a structure-based brush.

Figure 2.4 shows the structure-based brushing interfapéemmented in XmdvTool.
The triangular frame depicts the hierarchical tree. Theéamamear the bottom of the tree
delineates the approximate shape formed by chaining teg#th leaf nodes. To navigate

the hierarchy the tool provides two main “sliders”. Tlegel-of-detailslider denoted by



'b’ allows users to navigate the tree vertically and view @usat different levels of detail.
Thefocus extentslider denoted bye allows users to move horizontally and focus on a
subset of clusters within the same level. The left and rigktergs of the & slider can
also be adjusted individually to modify the width of the fecarea. Figure 2.5 displays
the same data set as Figure 2.3 but focused on a specificra@idia points; this is after
the user narrows the width of the focus area useéhgnd performs a drill-down operation
using b’ as reflected in Figure 2.6. Figure 2.7 displays the same skttas Figure 2.5
but showing the mean values and the range of the data poititaticluster. This is after

the user performs a roll-up operation usibgas seen in Figure 2.8.

Figure 2.5: After focused area drilled- Figure 2.6: Structure-based brush show-
down. ing drill-down.

2.4 Brush Semantics

A structure-based brush is defined as the intersection ofrtdependent selections, the
horizontal extents of the brugh ande, and thelevel — of — detail. Setting such a brush
requires two computational phases as well.

The first one, the horizontal selection, is accomplisheavim $teps. In the first step

a set of leaf nodes is initially selected based on the ordgpepty. Basically, this step



Figure 2.8: Structure-based brush show-

Figure 2.7: After focused area rolled-up. '
ing roll-up.

corresponds to “select all leaves between the two extrerheeya; ande, ”. In the
second step, the initial selection is propagated up towdrelsoot based on either the
ANY or the ALL semantics: “select nodes that ha¥é&/Y” ( or ALL) of its children
already selected ".

For vertical selection we use thevel-of-detailvalue that has been associated with
each node in the hierarchy. This can be any montonicallyea®ing or decreasing value
from the root towards the leaves. The algorithm below exglaihe process of vertical
selection. The input to the algorithm is thevel-of-detailof the brush. Here we assume
thatlevel-of-detailvalues are monotonically decreasing from the root towdrdddaves.

The functionlod(z) returns thdevel-of-detailof nodez.

Algorithm 1 Vertical Selection
1: Let S andWW be two sets of nodes.
2: Let S initially contain only root node. Letl” be empty.
3: while S is not emptydo
Remove node from S
if lod(n) < lod(brush) then
Insertn into W
else
Insert descendants efinto S
9: endif
10: end while

e B A

10



At the end of the run the sét’ contains the nodes that satisfy the vertical selection
criteria. The algorithm starts traversing the tree from ithet towards the bottom of
the tree breadth-wise to find all the nodes that havelalel-of-detail < lod(brush).
The main intuition is that, thdrill-down or roll-up in the structure space corresponds to
climbing up or descending a particular branch in the hiénarc

The set of nodes that satisfy both the selection criteria$ahe final set of the nodes
in the brush. The brush operations, as described abovenlaeeently recursive. Re-
cursive processing in relational database systems camiegecbtnsuming and thus is not
suitable for interactive applications. In Section 3 we depequivalent but non-recursive
computation methods for setting structure-based brusdsesdon assigning precomputed

values to the nodes that recast retrievals as range queries.

11



Chapter 3

MinMax Trees: Translating Navigation

Operations

The question addressed in this chapter is how to translateigualization operations
into database operations? For this purpose we have dedelopencoding technique
called aMinMax treeThe method places the recursive processing irgeeaomputation

stage, during which labels are assigned to all nodes. Thedslggrovide a containment
criterion. Thereafter, by looking only at a node’s labelepdndent of any other node in

the hierarchy we can determine whether that node belondetadtive selection or not.

3.1 Labeling the Nodes

The containment criteria for a node in the cluster tree igtam two selections: hori-
zontal and vertical. To map the recursive process of selet¢ti a non-recursive one we
augment each node in the cluster tree with horizontal aniiceéextents. Each of these
extents forms an interval. We call this tree a MinMax tree.

A MinMax tree is ann-ary tree. The horizontal extents of the nodes correspond to

12



open intervals defined over a totally ordered set, calledhaial set The horizontal
extents of the leaf nodes in the tree form a sequence of nerlapping intervals. The
non-leaf nodes are unions of intervals corresponding tio thddren. The initial set can
be continuous (such as an interval of real numbers) or des¢seich as a sequence of
integers).

It is always possible to draw the tree such that all the leafescare horizontally
ordered. The leaf nodes are then labeled with pairs of va@loeesponding to the extents
of their interval. As the intervals of non-leaf nodes areoumsi of their children intervals,
it follows that a non-leaf node will be labeled with the minim extent of its first interval
and the maximum extent of its last interval. A nadéaving two children with intervals
¢ = (o, ) andey = (v,9) such thate < ~, will be labeled as: = («a,0). Figure
3.1 gives an example of a labeled cluster tree. For the tréégure 3.1 the process of
assigning the horizontal extents started at the leaf noldessinterval between 0 to 1 was
divided equally between all leaf nodes. These intervalevpeopagated up towards the
root. The interval for each non-leaf node is the union of titervals of its children, as
can be seen for Figure 3.1.

Given a MinMax tre€l” and two nodes: andy of 7" whose horizontal extent values
are (r1, x2) and (/,, y2) respectively, node is an ancestor of nodeg if and only if its
horizontal extentsr; < y; andz, > y,. The containment property is based on the
intuition that each node in the tree is included in its pdseimterval. The horizontal
extents of the nodes encode the ancestor-descendammstaps in the tree structure.

As described in Section 2.4, the horizontal selection fied¢s all the leaf nodes
that lie within the focus extents of the brush, namelyande,. This selection is then
propagated upwards by selecting the non-leaf nodé&it” or AL L of their children are
selected, depending upon the brush semantics. The outphisdfelection process is a

set of subtrees of the cluster tree. The focus extents ofrtlehland horizontal extents of

13



0,1)

(0,1/6) (1/6,2/6)

(5/6,1)

0.3

]
=
o
(2/6,3/6) (4/6,5/6)

o
(3/6,4/6)

Figure 3.1: Labeled Minmax tree

each node in the MinMax tree both define an interval. Using\éir trees we can reduce
this process of selecting nodes in th&/Y” brush to searching for nodes in the MinMax
tree whose interval intersects with the interval of the hruSimilarly, the process for
the ALL brush maps to selecting nodes whose intervals are fullyagoed in the brush
interval. Intuitively, we can see that if the horizontaldntal of a node intersects with that
of the brush, we know that the interval of at least one of iitdcén intersects with that
of the brush. If the horizontal interval of the node is fullyntained within the brush, the
horizontal interval of all its children is also containedfre brush.

For selection of thdevel-of-detail(vertical selection), the MinMax tree augments
each node in the cluster tree with a vertical extent valueveithe brush semantics
in Section 2.4 the process of labeling the nodes with vdrégtents can be defined as
follows. The vertical extent of a nodé s the intervalvy, vy) where(v; = lod(A), vy =
lod(parent(A)) where the functiorparent(n) returns the parent node of node The
noden with vertical extentgv,, v9) lies in the brush ity < lod(brush) < v, is true. Note
this is an alternate method of implementing the verticaéa@n algorithm described in
Section 2.4. The vertically aligned extents in Figure 3dvsthe vertical extents for each

node in the cluster tree.
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Essentially, the process of labeling the nodes is a re@u@ne. The intervals are
computed and assigned off-line at the time the hierarchyeigted. By being off-line the
cost of labeling does not affect the interactive user ndiogaesponse time. The codes
assigned to the nodes in the cluster tree can be used for ¢y fuush selections for
navigation operations. The value and the distribution efittiervals (as well as the tree
structure itself) depend on the technique used to creathi¢archy. However, it does

not affect the correctness of the proposed method.

3.2 2-D Hierarchy Maps

0.6

0.5

0.3 J

0.2

1/6 2/6 3/6 4/6 5/6 1

Figure 3.2: 2-D Hierarchy Map

We now make the important observation that the labels asdigy the MinMax pro-
cedure can be viewed as giving each node a spatial repréeanthe complete cluster
tree can thus be mapped to a 2 dimensional space. We calyf@aof representation a
2-D hierarchy map Figure 3.2 shows a-D hierarchy magfor the MinMax tree in Fig-
ure 3.1. A node: with horizontal extent$h, i, hma.) @nd vertical extentsv,,in, Umaz)
maps to a rectangular region in tReD hierarchy mapwith the bottom left corner at
(Rmins Umin) @and the upper right corner &z, Vpaz )-

We observe that the 2-D hierarchy map exhibits the followwngortant properties:
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e The space betwedn, 0) to (1, 1) iscompletely filled, i.e., given any point between

(0,0) and(1, 1) there exists a node that contains the point.

¢ Interiors ofno two nodesoverlap in the 2-D hierarchy map.

3.3 Using 2-D Hierarchy Maps to Implement Structure-

Based Brushes

1.0 A
0.6

0.5

03 J
0.2
C D G H I

1/6 2/6 3/6 4/6 5/6 1
Brush

Figure 3.3: 2-D brush selection with,;,=0.4,b,,,..=0.9 andlod=0.35

From the 2-D hierarchy map, we can implemetWY and ALL structure-based
brushes as non-recursive operations. The containmeantiarior the ANY structure-
based brush can be defined as follows. Given the brush’sdrdakextents,,.;,.,bmaz)
and thdevel-of -detailod, any node: having horizontal extenti, .., hma.) @nd verti-

cal extentSv,,in, Vmaz) li€s in the brush iff:
e The extent$/,,in, imae) iNtersect the brush intervéd, ..., b,....), and
® Unin < lod S Umaz -

A noden lies in theALL structure-based brush iff:

L4 (hmina hma:c) N (bmwu bma:c) = (hmwu hmax)a and
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® Unin < lod S Umaz -

This containment criteria for the nodecan also be stated differently. If we map the
brush to a line segment with end pointg@t;,, lod) and(b,,.., lod) in the 2-D hierarchy
map, a node: lies in the ANY structure-based brush if its representation in the 2-D
hierarchy map intersects with that of the brush. A nodies in the AL L structure-based
brush, if the line segment representing the brush intesdmath the right and left edge of
the node. Our reformulation succeeds to map the processaaftseg for the nodes in
the ALL andANY brush into spatial queries.

Figure 3.3 gives an example of the selection for th&Y" brush wherep,,;,=0.4,
bmax=0.9 andlod=0.35. Figure 3.3 shows the brush in black and all the salanteles

(i.e., the active set) in dark grey.

3.4 Translating Structure-Based Brushes into SQL

The 2-D hierarchy map technique reduces the containmeation from initially recur-
sive semantics to an inclusion test in the horizontal antlcardirection. We can thus
decide whether a node should belong to the active set andependentlyrom the in-
formation stored in the other nodes. One scan of the hieyasdience sufficient to form
the selection.

Let H be the relational table that stores the nodes in thaldby. Each tuple in H
models one node in the cluster tree and has horizontal anidalezxtents of the node,
besides the node information. We have:

H (€minsmaz Vmin Vmazs -+ )
An ANY structure-based brushhaving horizontal extent®,,,;,,, ;... ) andlevel-of-

detail (lod) can be expressed as a range query as follows.
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select * from H

wheree,in < binaz aNdenas > bin

anduv,,;, < lod andv,,,, > lod

An ALL structure-based brush query for the same parameters idispdy:

select * from H

wheree,,in > binin aNdea: < bias

anduv,,i, < lod andv,,,, > lod

While recursive processing would require an exponentiat@ssing time, this range
guery requires only a linear processing time for computingshing results. Also we

note here a few characteristics of the queries generated mbging the structure-based

brush.

1. Regularity of query type: The structure of the query gatest by user movements
remains the same only; the parameters to the query diffezrakpg on the user’s

current position.

2. Continuous user selection: The nodes in the selecte@swihen mapped to a 2D

space yields a continuous subspace in the 2D Hierarchy Map.

3. Single level-of-detail display: The user selection cepldy nodes only at a partic-
ular level-of-detail. That is, no two nodes within the séecsubset of nodes can

have an ancestor-descendant relationship.
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Chapter 4

Backend Framework

Given that we can translate the brush operations into jppteies, we now describe the
components in the backend framework. The components éxpi®simapping along with
typical user trace characteristics to reduce the user nsgpime latencies and in turn

scale the visualization application (front-end) to workhwarge data sets.

MinMax Hierarchical Flat
Labeling Data Data
Database Index Offline process
A

A
\ Cache Index
User 7

Cache

> | Backend |_ | Delta
GUI Controller |- Calculator
Front End T
Direction
Prefetcher

Figure 4.1: System architecture. Solid lines represenhmadules. Ovals represent
data. Arrows show control flow.

Figure 4.1 depicts the components in the backend framewfdheoXmdvTool. The
cache is used to buffer the recently used data items. Thetphefr predicts user requests

and fetches data into the cache. For each user request tieisaiickly searched to find
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the requested objects. The cache may contain all the regiliesties, or only a subset. In
the latter case the delta calculator computes a remain@ey tufetch the subset of nodes
not in the cache. The loader fetches the result of the rereaekery into the cache. Once
all the requested nodes are in the cache they are delivetad foont-end. The sections

below explain each of the important components in the syskepicted in Figure 4.1.

4.1 Spatial Index

For each request from the front end we need to quickly seaecldntents of the cache,
compute the difference query and fetch the data from thébdata We thus need a fast
search mechanism both for the cache and for the databasearactéristic of the objects
in the database and in the cache is that they are not referbgdbeir IDs when requested
by the front-end. In other words, the front-end doesn’t asklie objectr or y. Instead,

it passes a queryto the back-end to search for objects that lie within the lriecall
that queryg in our exploration paradigm defines an instance of the brughherizontal
extents §,.in,0mae) and level-of-detaiklod. This brush maps to a segment in té
hierarchy map(Section 3.2). The answer to the query is a set of clustetsritersect
this segment. Therefore the querys a 2 dimensional spatial range query as shown in
Section 3.4. To execute this query efficiently we thus pregosise a spatial index.

A spatial index, in contrast to a B+ tree, utilizes spati#tienships to organize data
entries with each key value seen as a point or a region in anletsional space. Many
spatial index structures have been proposed, each of whgkidpros and cons. For our
purpose we require a spatial index that works for spatiajeagueries and supports high
update rates because the contents of the cache are corsiyngbanging. Most spatial
indexes do not perform well when the objects exhibit a higirele of overlap. However,

note in the2-D hierarchy maghe interiors of no two objects overlap. Thus this is not an
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issue for us.

In our current implementation we use an R-Tree index straafescribed in [21]. It
is a relatively simple multi-dimensional index structundile its performance is compa-
rable to the more complex index structures available [36]sdpport fast insertions we
use thdinear spitmethod [21] when splitting nodes. However, this splittingthod can
lead to overlapping bounding boxes and a decrease in searfdrmpance. A prominent
variant of the R-Tree, the R*-Tree [3], employs a set of aahefdesigned heuristics for
node splitting to reduce the decrease in the search pernfmgnaHowever, the cost of
splitting is high. There are other variations of the R-Tnegex such as the LR-tree [4],
that support fast updates. Also, LR-trees [4] do not degaaewnith updates and give

updated performance approximately equal to that of R*-g{8¢

4.2 Delta Calculator

Each time the front end submits a querythe backend searches the cache to find all the
objects that lie in the brush. Given this list the backend potas the remainder query
(ga), the query to be sent to the database to fetch the objecis tim¢ cache. Next, we
will explain why computing the query, is always possible. The computation is based
on the property described below.

Let {b;} represent the set of nodes contained in brisshaving focus extents at
(bmins bmaz) @ndlevel — of — detail = lod. A noden with horizontal extent$a, 3) in
the brushb, can be used to divide the brush into two disjoint brusheandbs, such that
{ba}UnU{bs} = {b; }, whereb, has horizontal extent$,,;,,, @), level—o f —detail = lod
andb; has horizontal extentss, b,,,4. ), level — of — detail = lod. This property is based
on the intuition that the horizontal extents of the brush #relnoden both define an

interval. Therefore we can divide the interval of brashnto two disjoint intervals such
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Figure 4.2: Computing\ queries. The line segment represents the brugh,;,, =
0.3, binae = 0.78, lod = 0.6)
that the result of the union of these two intervial@ndb; with the interval ofn gives us
the interval of brusls,. Thus, to compute the remainder query we need to find the nodes
in the cache that belong to the current brush. We can therkdoesee what parts of
the brush interval are not occupied by the nodes in the cdeheh of these unoccupied
intervals forms a remainder brush and a paijQf

Figure 4.2 gives an example of the above process. The brusfebturesb,,;,, =
0.3, bae = 0.78,lod = 0.6). The figure shows the 2D hierarchy map of the contents
of the cache. The bold part of the brush in Figure 4.2 illussdhe remainder brushes.
Algorithm 2 shows the procedure to compute a list of remaibdeshes.

Input variables to the algorithm 2 are:

e nodelList a list of nodes in the cache that lie in the current brush and
e currentBrush contains the left extent, right extent and teeel-of-detail

Output is
e resultList containing a set of remainder brushes.

To summarize the working of the the algorithm 2. 2 sorts tkedf cached nodes in

ascending order of their horizontal extents. Then stafftiog the top it compares the
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Algorithm 2 Delta Calculator

procedure Cal Delta(nodeList, current Brush, result List)

1

e e =
AwdMkRO

©XNOoOdR N

Sort nodes in the nodelList in ascending order of left extents
tempE1 < current Brush.leftExtent
while nodeList not emptydo
n « nodeList.removeFirst()
if tempE1 < n.left Extent then
rb «— Remainder Brush(tempE1, n.left Extent, current Brush.lod)
resultList.insert(rb)
end if
tempE1 < n.right Extent
end while

if tempE1 < current Brush.right Extent then

rb <+ Remainder Brush(tempFE1, current Brush.right Extent, current Brush.lod)
resultList.insert(rb)

- end if

extents of adjacent nodes in the list to find if they are carttigs in the 2D space. In case

a gap exists between adjacent nodes a remainder brush imggshthat will fetch the

nodes to fill this gap.

4.

3 Cache

Using main memory (cache) to store frequently used datasitermeduce fetch latencies

from secondary storage devices is a proven technique thaesin both the database and

the systems context. Analysis of real user traces of ougaliiation environment done in

[15] has shown that user traces exhibit characteristics asc

1. Locality of Exploration: Users doing data exploratiorplexe one area of the dis-

play at a time before moving on to another area.

2. Contiguous queries have similar answers: Exploratiomgugsual navigation tools
such as sliders and knobs translate to consecutive quedetha answers to these

gueries have a significant number of objects that are common.
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3. Incremental user movement: User explorations usingtewth as sliders are gen-
erally incremental that is fine grained, i.e., the usersllisdan’t make any sudden

big movements.

4. Presence of idle time: Users usually pause to underskendisplay and look for

patterns in the data. So there is idle time between querig®tdatabase.

5. User directionality or inertia: When using interactivavigation tools such as scroll
bars for data exploration, it is likely that once started tiser will navigate in the

same direction for a while before changing to another diwact

Note the properties (1) and (2) correspond to the conceptaifed and temporal lo-
cality respectively. This suggests that the visual expiongparadigm is a good candidate
for caching and if done correctly we can achieve considerghins in performance with
limited memory.

To exploit these characteristics we employ caching to readwt response time and to
avoid database fetches whenever possible. The cache inKaubig a contiguous chunk
of main memory. Each cache entry contains a cluster (node) the cluster tree and a
descriptor that describes the position of the node in thelzearchy map (Section 3.2).
Fig 4.3 shows a snap shot of the state of the cache during #xecnapped to the 2D
space. Note the size of the cache is smaller than the sizef the data set. Thus the
cache does not contain all the nodes in the data set. Thiownsim the 2D hierarchy

map using empty regions.

4.3.1 Cache Replacement

We use two replacement policies namely, LRU (Least Recdsglyd) and the Distance
replacement policy exploiting temporal and spatial |ldgalespectively. The evaluation

section compares the effectiveness of each of the policies.
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Figure 4.3: Snap shot of the cache state

LRU replacement policy replaces the object that has beesadhior the longest time.
This way it mainly exploits temporal locality. Note the useaces do exhibit temporal
locality as shown in the previous section. Mainly, contigsiaser queries having similar
answers correspond to the concept of temporal locality.e@tize the LRU replacement
policy we maintain a linked list containing pointers to dlktcache entries in the main
memory. This list is called the LRU list. Each cache entry A@erresponding node in
the LRU list. To keep track of this node each cache entry stanggointer to its respective
node in the LRU list. The head of the LRU list is the least rédyaumsed entry and the talil
is the most recently used entry. Thus, the head of the listvays the next candidate for
replacement. Each time a cache entry is selected as a mehtbercorrent user selection
the corresponding LRU list entry is moved to the end of the lis

An alternative to using recency information for determgneplacement candidates
is to usesemantic distancfl2]. Intuitively we can say that the entry in the cache tsat i
the furthest away from the current brush has a less chanasimgf beferenced in the near

future, as compared to the ones that are closer to the cumnestt. This is because, with
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visual interface tools such as sliders and knobs the useements are incremental and
not random. Thus, the main idea here is to replace the entheigache that is furthest
away from the current brush. The distance measure can bempkesas the length of the
line from the center of the current brush to the center of tehe entry (node) in the 2D

hierarchy map.

A : Current Brush
—> [ b1 0,1) A /
b2 b2
b3 E / —] A
Current Brush Store b3 | — B
F — E
B —] E
—] G
B empty G H | b ‘ Cache Contents
[ occupied — -
(0,0) (0,1)

Figure 4.4: Snap shot of cache contents before replacement

We describe one way of realizing a replacement policy thalaces objects based
on their distance from the current brush. In our implemémtathe replacement policy
maintains a lists of recent user requests in the form of thslbdescriptors. This list is
called abrush store Each brush descriptor consists of the horizontal exterit®@) and
the level-of-detailof the brush. Figure 4.4 shows a snapshot of the state of steray
during execution. The upper left corner in Figure 4.4 shdvesstate of the brush store.
When we need to make room in the cache for new objects, theaemplent policy iterates
through the contents of the brush store to search for thénltrtisat is the furthest away
from the current brush. The replacement policy then searttireugh the cache to find
the contents of the brudihnand replaces each node in the brush with a new node. If all
nodes within the brush have been replaced the brush is thesvesl from the brush store.

Figures 4.4 and 4.5 show an example of this process. The btoshinitially contains

3 brushes b1,b2 and b3 as shown in Figure 4.4. Assume thadcthe ¢s full. The current
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brush b4 requires us to fetch a new node (1) from the datalasesert this node into the
cache, the replacement policy selects the brush bl to epkacause it lies the furthest
away from the current brush. The brush bl only contains ome n&. Therefore the
cache entry containing A’ is selected as a replacementidateland the entry is filled

with the contents of new node 'I' as shown in Figure 4.5.

A : Current Brush
> (0,1) b A /
b3 b2
b4 E / —— T
Current Brush Store b3 | — B
F —] E
B —] F
— G
=0 empty G H i Cache Contents
1 occupied — R
(0,0 (0,1)

Figure 4.5: Snap shot of cache contents after replacement

Figure 4.6 shows another scenario where the contents ofrtisé In the brush store
overlap. In such a scenario it is possible that we have ajresalaced all the contents of
a particular brush, because one or more brushes aroundrtisis Wwere selected as can-
didates for replacement. Such a brush should ideally natmycspace in the brush store.
To remove such brushes we examine the brush store perilydidating idle time) and
delete them from the brush store. The process of examinwajvies searching through
the cache to find the set of cached nodes for each brush in tisé Btore. If the set is

empty then the corresponding brush can be removed from tishstore.

4.3.2 Direction-based Prefetching

To further improve the performance of subsequent user tipasa XmdvTool uses a
direction-based prefetcher proposed in [16]. The pretatamainly exploits the idle time

in between user operations and user directionality to ptedtid fetch future user requests.
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Figure 4.6: Example of brush store with overlapping brushes

The direction-based prefetch strategy is analogous toafeential prefetching strategy
proposed in other prefetching papers [11, 33]. Tirection strategyassumes that the
most likely direction of the next user movement can be deteeth It is intuitive for

instance that the user will continue to use the same nawig#tiol and move in the same
direction for a while before changing either of them. We ¢hit user inertia Thus,

based on the user’s past explorations, the predictor caaghe last direction of user
movement. The prefetcher then issues a prefetch requdsthétbrush moved in the

same direction as that of the last brush movement.
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Figure 4.7: Analysis of User Traces
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To compute the last direction of the user movement the priedéethas to keep track
of only the previous two brush requests. Each brush requestists of the focus ex-
tents (el,e2) and tHevel-of-detail To determine the direction of the user movement the
prefetcher simply compares the two brushes to find whichtbhandle has been moved
and in what direction.

To explore the extent of directionality exhibited in userces, our prior work in [15]
measured the percentage directionality per minute for afsks real user traces. Figure
4.7 presents the results of the analysis. The horizontallests the user number assigned
to the user trace. From Figure 4.7 we can see that most of éheser traces do exhibit

a high degree of directionality. On average the directibypper minute is around 60%.
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Chapter 5

System Implementation

5.1 System Architecture

The complete system has been implemented as an extensiandeTsol 6.0 [52, 40].
XmdvTool 6.0 was coded in C++ with TCL/TK and OpenGL primés: Figure 5.1
depicts the main modules in the Xmdv backend. We used Orachs ¢he database
management system and Oracle spatial extension to con#tei®k-Tree index at the
database. To communicate with the Oracle 9i server we uséd(Ofiacle, Odbc and
DB2-CLI Template Library [35]). The library provides an gds use and efficient API to
send queries and retrieve answers as C++ streams. The maiargnB-Tree index was
built using the spatial index library developed at Univigrsif California Riverside [44].
Figure 5.1 shows a more detailed version of the diagram slho®ection 4. It shows
all the main components (classes) in the system that togetnprise the backend of the
Xmdv Visualization tool. The responsibilities of each campnt are explained below.
The Backend Controller forwards user requests to the cache manager. Each user
request contains the current position of the structuredbsush, the focus extents (el,e2)

andlevel-of-detail Moreover, at the end of each user request the backend #ensees
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Figure 5.1: System Architecture

an opportunity to start the prefetcher. The prefetch cdletrs given a start signal which
in turn activates the prefetch thread. If the backend ctletneceives a user request when
the prefetch thread is active it sends a stop signal to thietgrecontroller that in turn
preempts the prefetch thread.

ThePrefetch Controller activates the prefetch thread each time it gets a start messa
from the backend controller. Activation means giving pession for the prefetch thread
to run. The permission is given by releasing a semaphorediatefetchPermithat the
prefetch thread is blocked on. The prefetcher in turn corsutimis permission and starts
running. On receipt of a stop message the Prefetch contidlactivates the prefetch
thread. To do so it interrupts the prefetch thread. The npeed prefetch thread now
waits for another permission to run from the prefetch cdl@rand thus blocks on the
PrefetchPerimisemaphore, giving up the CPU.

The Cache Managerdoes the job of coordinating the responsibility of the vasio
components. Each time a new request arrives from the cliset or prefetcher) it sends a

search request to the cache. It then forwards the seleatbd eatries (nodes) to the delta
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calculator. The query generated by the delta calculatarrisdrded to the loader. The
cache manager then loads the new nodes into the cache. liresrthe result returned
by the loader with the selected cache entries to form the figsallt set. This result set is
then returned to the client by means of an iterator object.

TheDelta Calculator computes a set of remainder brushes given a set of cachesd node
and the current brush as input from the cache manager. Iemmgts the Algorithm 2
described in Section 4.2.

The Query Generator generates a single SQL query for each remainder brush as
shown in Section 3.4. If there is more than one remainderbitumbines their corre-
sponding queries into a bigger query using the union operato

TheLoader communicates using the OTL API to retrieve the result of therg from
the Oracle database server.

The Cache consists of the cache memory, cache index and the cacheeeapdat
policy. The cache is basically a chunk of contiguous main m®mEach cache entry
stores the information about a particular node and its g#scr The cache index can
help provide fastecache lookup Cache lookups the task of searching for nodes in the
cache that belong to the current user selection. The impi@tien currently supports

two options for cache lookup:

e Spatial Index: Here the cache maintains a spatial main mgmdex, specifically

an R-Tree index, to search through the nodes in the cache.

e Sequential Scan: For each user request, the contents oathe are scanned se-

guentially to find cached nodes that belong to the currentaedection.

Also the cache can be configured to use either the distantaegpent policy or the
LRU replacement policy. Thus given a search request theeaaeimager searches through

the buffer using the chosen cache lookup mechanism anchsdtug selected cache entries
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to the cache manager. Also each time it receives a requesidoal new node it uses the
replacement policy to select the next victim entry to remaveverwrites the contents
of the victim cache entry with the contents of the new nodd,itnecessary, updates the

cache index.

5.2 WorkFlow

Thebackend controller receives a request to fetch the contents of a brush. Thigs¢qu
is then forwarded to the cache manager. thehe manageffinds the nodes in the cache
that lie in the current brush. A list of these nodes is thewéoded to the delta computer.
The delta calculator computes all the remainder brushes. Toery generator gener-
ates a single SQL query that will include all the nodes in ezfdhe remainder brushes.
The loader executes the query and fetches the remainder brushes. the pmnager
then takes the union of the cached nodes (in the brush) arahgweer to the remainder
guery to form a complete list of nodes that lie in the curremish. All the new nodes
are buffered inside the cache. The complete list of nodeth@rbrush) is then sent to
the front end by means of an iterator object. However as aiape&se if the data in
the current brush cannot fit inside the cache all at once ttleecananager loads the data
incrementally. To do so it has to replace entries in the caichtlie in the current brush
but were already served to the front end. We call this procesemental loading This
whole process is hidden behind the iterator interface sittieafront end is not required
to have any knowledge about this.

During idle times, i.e., when there is no active requestbtmekend controller activates
the prefetcher. Therefetcher predicts user movements and issues prefetch requests to
the backend controller. The backend controller in turn fmdg these requests to the

cache manager. The cache manager does not distinguishdoetmeser request and a
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prefetch request. It fetches the requested data and starethe cache. The prefetcher
is implemented in its own separate thread; the backend atertactivates the prefetch
thread when there is no active user request. However, theagpeest has a higher priority
then the prefetch request. Therefore, if the backend cltertigets a user request when
the prefetch thread is active the thread is preempted pueaigt thus giving the main

thread all the CPU it needs.
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Chapter 6

Experimental Results

6.1 Experimental Setup

All of our experiments were run on a Pentium 3 windows XP maehvith 128 MB of
memory running at 833 Mghz. The complete system was implézdan C++. We used
the OTL oracle-odbc template library to access data on atieosrver running Oracle
9i. The oracle 9i was set up on a server running Redhat Lin@o8.a pentium 3 dual
processor machine with each processor running at a 450 Mgbk speed, and 512 MB
of main memory. We installed the oracle spatial extensiaotestruct the R-Tree index at
the database server. For the main memory R-Tree index wethisepatial index library
[44] developed at University of California Riverside.

To test the scalability of the system we used two real datarsehed out5d and uvw.
Outbd data set had 20,000 data points. It is a five dimensiemabte sensor data set
(SPOT, magnetics, and three radiometrics channels - patasthorium, and uranium).
The Uvw dataset had 195,000 data points and 6 dimensionsntaios flow simulation
data. We ran experiments over the out5d with a set of realttesegs. We used a set of

4 real user traces each of half hour duration, collected astapthe study performed in
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[15]. For experiments over uvw data set we used a set of syotler traces. However,
these traces were modeled based on the characteristidstey the real user traces.
[15] presents details of modeling user traces. We simutat@lity of exploration in user
traces using hot regions. Hot regions are places in the atwigspace where the user
spends most of his time. To generate the above set of usestraedeclare 5 hot regions,
well spaced from each other in the navigation space, andegtrbbability that a user
request lies in any of the hot regions to 50%. We call these tusees 50% local. To
simulate user inertia, we use a probability that gives tkelihood that the user keeps
moving in the same direction. For the generation of the aldouser traces we set this
probaility to 50%. Thus we can say that the user moves pseghaemly in our experi-
ments, i.e., some of the future possible actions are motgpte than other, but choosing
among these actions is still performed non-determiniiyicén our last experiment we
use user traces with varying locality and directionalitgb@w how the cache responds to
different types of user traces.

All the results reported in this section are an average takenfour runs.

6.2 Metrics

The main metric used to evaluate the performance of the datdtency Thelatencyfor
a single user request is the time taken for the backend te $lkeevdata once the request
is submitted. To compute the latency for a complete useetrae use the following

formula:

L
SNLT

(6.1)

latency =

whereN is the total number of requests, is the number of objects (tuples) fetched

in request andL; is the latency for request Equation 6.1 gives us the latency per object
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fetched. It gives us a common ground to compare and combékaténcy measures for
different user traces.

A measure derived from latency is theency reduction ratidlrr). Thelatency re-
duction ratiofor a particular system configuration is the ratio of the dase in latency
to the latency obtained when running the same experimenguke base configuration.
In the base configuration the cache, prefetcher and the dagomdex structure all are
turned off so the user requests are sent directly to the ds¢ab

Latencypqse — Latency (6.2)

lrr =
Latencypgse

Equation 6.2 gives us the fraction of the latency reduced paracular system con-
figuration. This helps us to evaluate the relative usef@iégach configuration.

In addition we also usebject hit ratioto measure the usefulness of the prefetcher and
replacement policy. The hit ratio for a complete user traabe ratio of the total objects
fetched directly from the cache to the total number of olsjeetjuested by the complete

user trace. Thus the hit ratio for the user trace is given by:

Zf\il Hz
YN T

(6.3)

hitratio =

whereN is the total number of requestd; is the number of objects (tuples) fetched
directly from the cache in requesandT; is the total number of objects (tuples) requested

in request.

6.3 Database Index

The goal was to show the usefulness of the R-Tree index steion the database server.

To show this we ran two experiments. In the first experimentamefour user traces over
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data sets out5d and uvw. The cache was turned off. Each uperstewas sent directly
to the database. We record the latency for each user trabeheitdatabase index on and
off. Note that when the database index is off the system cor#ign is the same as the

base configuration.

| | No-Index| Index| Irr |
Userl| 2.0253 15 | 0.25
User2| 0.6444 | 0.35 | 0.45
User3| 0.751336/ 0.5 | 0.33
User4| 0.8855 0.6 | 0.32

Figure 6.1: Latency in msec with and without database indetgd data set

| | No-Index| Index| Irr |

Userl 3.90 0.94 | 0.75
User2 6.09 1.75 | 0.71
User3 2.05 0.71 | 0.65
User4 5.42 1.09 | 0.80

Figure 6.2: Latency in msec with and without database indew, data set

Figures 6.1 and 6.2 show the latency and also the latencgtieduatio for data sets
out5d and uvw respectively. For out5d data set the latershyatéon ratio on average is
approximately 33%. However, for uvw data set it is approxeha70%. This is because
the search time for the sequential scan increases linegldtive to the size of the data
set, whereas with an index the search time increases alogasithmically with the size
of the data set. This shows that as the size of the data setses, the benefits of the
database index become more significant.

In the second experiment we measure the effectiveness afidiex at the database
with the cache turned on. The cache size is set constant 1@8¢ size of the data set for
outb5d and to 2% for uvw. Note that uvw is around 10 times latgan out5d. However,

the cache size does not have to scale with the size of the elat@lserefore using these
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settings we also plan to show that for the system to give redse or a better latency
reduction ratio the cache size does not have to scale witbizleeof the data set. In this
experiment we again expect to see that the gain in the latenltiction due to the index
for the bigger data set (uvw) will be larger as compared tatir for the smaller data set
(out5d). Again the reason being the same as the previousie, i.e., the amount of
time we save by using the index over the bigger data set (wgphaater than the amount
of time we save by using index over the smaller data set. Andeswe are using the

latency reduction ratio as the measure, this differencefieated in the output.

| | Irr (no-index) | Irr(index) | Alrr |

Userl 0.50 0.68 0.18
User2 0.52 0.62 0.1
User3 0.25 0.52 0.27
User4 0.36 0.5 0.14

Figure 6.3: Latency reduction ratio with relative cachedif %, out5d data set

| Irr (no-index) | Irr (index) | Alrr. |

Userl 0.73 0.95 0.22
User2 0.74 0.94 0.2
User3 0.70 0.91 0.21
User4 0.79 0.95 0.16

Figure 6.4: Latency reduction ratio with relative caches1%b, uvw data set

Figures 6.3 and 6.4 show the for four user traces using the data sets out5d and
uvw respectively. Note that th& Irr is significant. Thus, the spatial index is beneficial.
On average for out5d data set we gain approximately 17% anavie data set we gain
approximately 20%. As the size of the data set increaseA tineincreases. The reason
again is that the search time when using the index increasdsaer rate as compared to
using the sequential scan. Thus the difference in the anaduime it takes to search for

remainder queries on the database server for the two ap@eadll increase as the size
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of the data set increases. This shows that the databasenmale>s our system scalable.
Furthermore, we can also see that for out5d data set theclateduction ratio on
average is approximately 58% and for uvw data set it is apprately 94%. Recall that,
the relative cache size for out5d data set is 5 times moreutandata set. The reason
being, the amount of time saved due to a cache hit for the bdgga set (uvw) is larger
when compared to the amount of time saved due to a cache hiteosnaller data set
(out5d) because the cost of searching through the biggaseais higher than the cost of

searching through the smaller data set. Thus, we can canthad the size of the cache

does not have to scale with the size of the data set.

6.4 Cache Size

Here we show the effect of the cache size on the latency farskts out5d and uvw. For
this experiment we turn on the cache and the index structutieei database. The cache

uses LRU as the replacement policy and the prefetcherestilhims off.
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Figure 6.5: Comparison of cache size vs. average latentygalata set
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Figure 6.6: Comparison of cache size vs. average latenaydata set

We ran the same four user traces and four runs of each of themigures 6.5 and
6.6 we plot the Relative Cache Size vs. Average Latency fdhaluser traces. As seen
in the results, the Latency decreases at a high rate for sntalthe sizes. However, the
curve flattens out and we get less gains for bigger cache sizes

Latency is inversely correlated with hit ratio. For the usaces used in this exper-
iment it appears that for big cache sizes the only misses wargeompulsory misses
Compulsory missesccur when the cluster is accessed for the first time by thetresse.
Compulsory misseare independent of the cache size, at least until the prefets in-
active. Thus we can see that increasing the relative cazbdrsim 20%-40% for out5d
data set results only in little improvement in latency. Afsiie that the curve flattens out
much earlier for the uvw data set when compared to the cunvddta set outsd. This
also shows that the size of the cache does not have to schl¢heisize of the data set.

This property makes the system scalable for huge data sets.
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6.5 Comparison of Replacement Policies

Here we compare the performance difference between the eacement policy we
have designed Distance, versus the well know LRU replacepmicy. The prior is based
on exploiting spatial locality whereas the latter explo@msporal locality in user traces
to maximize hit ratio. We ran the same four user traces uspdewious experiments for
both out5d and uvw data sets. The experimental setup renaissime as in the previous

experiment.
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Figure 6.7: Cache size vs. hit ratio for Distance and LRUaepmhent, out5d data set

Figures 6.7 and 6.8 show the average hit ratio and averageclateduction ratio for
the out5d data set. Figures 6.9 and 6.10 show the averagatibiand average latency
reduction ratio for the uvw data set. From the charts in Feg&.7 and 6.9 we can see that
in most cases the Distance replacement policy gives a higheatio. In fact for the uvw
data set the distance replacement policy gives a condistagher hit ratio and at some
points the difference is as much as 7%. We also get an imprentim latency reduction

ratio of approximately 2% at some points as shown in Figut8.650 from the charts we
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Figure 6.8: Cache size vbr for Distance and LRU replacement, out5d data set
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Figure 6.9: Cache size vs hit ratio for Distance and LRU regiaent, uvw data set

can say that the Distance replacement policy performs sit ésawvell if not better than the
LRU replacement policy for the user traces we are using. ddndirms that the collected

user traces do exhibit a high degree of spatial locality &g this characteristic can be
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Figure 6.10: Cache size visr for Distance and LRU replacement, uvw data set

effectively exploited for cache replacement.

6.6 R-Tree Cache Index

Here we show the effectiveness of the R-Tree main memoryifatecache lookup. To
show this we ran an experiment with the R-Tree main memorgxratructure turned
on and off. The spatial index on the database is turned oncablee is configured to
use the LRU replacement policy and the prefetcher is turfiedhen the R-Tree main
memory index is turned off, we revert back to using the setialescanning to find the
requested objects in the cache. We again used the same &uraces as in the previous
experiments over data sets out5d and uvw.

Figure 6.11 shows the average latency for the four userdricehe out5d data set.
From the figure we can see the cache index performs worse libaseguential scan for
small cache sizes. The main reason is that for small cacks 8ie hit ratio is low. This

means that cache contents are changing very frequentl, TheiR-Tree index has to be
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Figure 6.11: Comparison of cache size vs. latency with atigdout main memory R-Tree
index, out5d data set
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Figure 6.12: Comparison of cache size vs hit ratio, out5d dat

updated very frequently. Also, since our implementatiogsubdinear split method for
insertions the quality of the R-Tree index can degeneraiteklyuwith frequent updates.

Moreover, the cost of updating the R-Tree index is high aspared to practicaly no
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Figure 6.13: Comparison of cache size vs latency with ankdouitmain memory R-Tree
index, uvw data set
update cost when considering the sequential scan.

However, for bigger cache sizes the R-Tree curve does awesand gives lower
latency values. Figure 6.12 shows the hit ratio for the saxper@ment. Note there is
only one curve because the hit ratio for both the R-Tree iradeksequential scan is the
same. The only difference really is in the cache look up kateif we compare Figures
6.11 and 6.12 we see that around the 80% hit ratio mark theeR-3tarts performing
better than sequential scan. Figure 6.13 shows the regtlte same experiment over the
uvw data set. The R-tree curve crosses over the sequerdiakcsecve when the relative
cache size is around 5% mark. The hit ratio for this point@iad 85%.

From the results we can conclude that the index structurebeamelpful in certain
situations. The effectiveness of the main memory spat@éxniargely depends on the
cache size which in turn determines the hit ratio. With thereasing size of RAMSs in
modern computers the users can allot more cache size anchircases the main memory

index become useful. However, to make the index work for lohie ratios we may
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implement an index such as the LR-Tree [4] or Grid File [34itthupports high update

rates as well as high query rates. This is however beyonccthyeesof this thesis.

6.7 Prefetcher

The goal of this experiment is to show the effectiveness efgiching. The prefetcher
uses time in between user requests to fetch data that hagptroghability of being re-

quested in the near future. To show its usefulness, we raxgeriement using 4 user
traces over data sets out5d and uvw. We turn on the cachendeg structure on the
data base and use sequential scan as the cache look up p@ipjot the charts with the

prefetcher on and off to show its usefulness.
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Figure 6.141rr of prefetch vs. no prefetch, user3, out5d data set

Figure 6.14 shows thkr with and without the prefetcher for user3. Here we can
see that the prefetch curve is above the no prefetch curveréatically all cache sizes.
This shows that the prefetcher improves the performanckeotache by around 8% on

average. This can be directly attributed to the improvenmemt ratio. Figure 6.15 shows
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Figure 6.16: Averagér for 4 user traces, prefetch vs. no prefetch , out5d data set

the hit ratio for the same user trace with and without thegiokfer. The curves for the
remaining user traces also show the same trend. Figuresafdl6.17 show the average

Irr for the four user traces for data sets out5d and uvw resgdgtiFrom the figure we
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can see that enabling the prefetcher increasebrth®y around 4% on average for out5d

data set and 3% on average for uvw data set.

6.8 User Trace Analysis

The goal here is to show how the cache responds to differpastgf user traces. To show
this we record the cache hit ratio for different types of usgces. We vary 2 parameters
in the user traces, the locality and the directionality. this experiment the spatial index
at the data base is turned on, the cache is turned on and flieécpher is turned off.

In the first experiment we test the performance for the cachauger traces with
varying locality. We set the directionality of the user gao 50%. That means there
is a 50% chance that the user will move in the same directioatsof the last user
movement. User traces with x% locality means there is x% chamat the user will be
in one of the hot regions. As described in Section 6.1 hotoregare used to simulate

locality of exploration. Thus we declare 5 hot regions, gpthced from each other in the
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Figure 6.18: Localtiy % vs. hit ratio, uvw data set

Figure 6.18 shows the results of the experiment for diffecache sizes. From the
figure we see that as locality increases the hit ratio alseases. This is mainly because
with increasing locality the chances that the user revapsrticular node also increase
and thus the hit ratio also increases. Also, as the cachdargimeases the curves shift
upwards. This confirms the effect we see in Section 6.4.

In the second experiment we test the performance of the dacheser traces with
varying directionality. We set the locality of all the useades to 50%. Other than that,
experiment setup stays the same as in the previous experimen

Figure 6.19 plots directionality versus hit ratio for diéat cache sizes. From Figure
6.19 we do not see any direct correlation between direditgrend hit ratio. This is
mainly because our caching (replacement) strategy doesxptiit the directionality of
user traces. However, the curves in this experiment alsbughwards with an increasing

cache size. This again confirms the effect we see in Sectibn 6.
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Figure 6.19: Directionality % vs. hit ratio, uvw data set
6.9 Discussion

The experiments have demonstrated that each componemstfohthework plays a signif-
icant part in reducing the response time of the system. Adsh ef the methods scales,
i.e., perform relatively better with bigger data sets. Thus proposed framework that
includes a hierarchy encoding technique, caching and afotehg strategy work in syn-
ergy to exploit characteristics of visual visual explavatenvironments such as locality of
exploration, temporal locality in user traces and usettiaéo support visual exploration
operations over large data sets. Due to this success, onevvark will be released with

the next version of the freeware XmdvTool [54].

51



Chapter 7

Related Work

7.1 Visual Hierarchy Exploration

There has been considerable research in the visualizatantaward finding effective
methods to display and explore hierarchical informatiachsas Tree-Maps [42], Cone-
Trees [38] and Reconfigurable Disc Trees [24]. Most of thes¢hods provide only
modest modes of interaction for navigating the hierarchgvityation plays an important
role in aiding users to find their way through the complexdtite: to see where they are,
what information is available and how to identify informatiof interest.

On the other hand, techniques for visual exploration ofdrgries [30] have inde-
pendently been proposed. Hierarchy visualizations ardeewj for instance, in many
commercial applications, such as Microsoft Windows ExgloNorton Commander, and
so on. The major disadvantage of such interfaces howeveaistiere is a limited display
space for the hierarchy. Hence, they are not suitable fptalighg large data sets. The vi-
sualization technique we use in this work [19, 20] has boghctpability of interactively

navigating the hierarchical structures and the capalufityisplaying large datasets.
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7.2 Visualization-Database Integrated Systems

Database support systems for visualization systems sueblass [45], Tioga [46], ADR
[28], USD [25] and IDEA [41] represent work closely relateddurs in the sense that
all of them work towards making visualization systems ruerolarge persistent data.
However, practically all of the detailed techniques usea rather different in each of
these systems.

Polaris [45] is an interface for exploring multi-dimensabdatabases that extends the
well-known Pivot Table interface. Similar to our structdrased brush, Polaris includes
an interface for constructing visual specifications of eédbhsed graphical displays and
the ability to generate a set of relational queries for ttsei@i specifications. But Polaris
does not study the effect of caching and prefetching to inmgperformance.

ADR [28] provides a general framework to provide supportdpplications that em-
ploy range queries on large scale multi-dimensional data #R targets a distributed
memory architecture with one or more disks attached to eada.rHowever in our case
we propose a framework specifically optimized for navigatd hierarchies.

USD [25] proposes a semantic net model to store and retriesguctured data. In-
stead, in our case we assume the data is structured in adhigarfashion and specif-
ically optimize the system to store and retrieve hierachitoga [46] proposes a user
interface paradigm in which the user can construct a visuahg(recipe) to retrieve and
process information for the purpose of data visualizatiowever, the problem of query
translation is not present since the user directly spedtiesjuery using the interface.

IDEA [41] is an integrated set of tools to support interaetilata analysis and explo-
ration. Similar to the XmdvTool the tool focuses on integrgtmultiple display views,
but on-line query translation and memory management araddtessed. In sum this

work is unique in that it focuses on the issue of what corelega techniques can be
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utilized to effectively exploit and thus support visualstiural exploration environments.

Other systems that have a visual interface and a databakeshddnclude dynamic
guery histograms [13] and direct manipulation histogra@23.[However, the operations
translate differently: to dynamic range queries in [13] amdemporal queries in [22].

Neither deals with hierarchy exploration support nor wiglcluing or prefetching.

7.3 Hierarchy Encoding

Our approach toward hierarchy labeling is related to théegeisiterval [51] method and

the nested set [6] method. The Nested interval method géeresaéhe nested set method
[6]. The interval boundaries do not have to be integers; ttagybe rational or even real
numbers. The labels assigned to the node by the nestedahégproach are similar to

the horizontal extents. We augment this labeling schemie ladiels for vertical extents

to incorporate the vertical selection semantics of thecttine-based brush in our labeling
scheme. Furthermore our work goes beyond hierarchy engotlile propose a method
that allows us to map the encoded hierarchy to a 2D space amnththgation operations

to spatial queries. Moreover we propose a framework to éxffle encoding scheme
which includes spatial indexing, caching, spatial reptaeet and prefetching.

Ciaccia et al. [8] used the mathematical propertiesiofple continued fractiontr
encoding tree hierarchies. Basically, each node of theimsea unique label that encodes
the ancestor path from that node up to the root. The treessatgreed to be ordered (i.e.
children have order numbers) so that the ancestor pathdysaopespond to a sequence
of integers. The sequence gives us the code of the anceston®de without any physical
access to the data. This information is sufficient for peniog some operations, such as
getting the first common ancestor of 2 nodes or testing if &n®the ancestor of another

one, without any recursive retrieval of data. However, gigenoden, this method cannot
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efficiently provide the list of descendants @f This limitation reduces the number of
operations that can be supported.

A similar idea was introduced by Teuhola [50] who used a stedalignaturefor
encoding the ancestor path. Given a nagéhe code of: is obtained by applying a hash
function to it and by concatenating the resulting value Wit code of its parent. The
non-unique code can make the number of tuples retrieved lod havger than needed.
Moreover, the code obtained by the concatenation of allsioceodes could exceed the
available precision for deep trees.

The above encoding schemes and many others come under dgrgaof prefix-
based encoding schemes. [26] trys to optimize space regeins of labels assigned
by the encoding scheme. It derives the space requirememsstéd interval encoding
schemes and suggests a prefix-based encoding scheme sih $gsice requirements.
The encoding scheme is based on assigning binary stringacto @dge and the label
assigned to a node is derived from concatenating the stesgigned to the edges in
the path from the node to the root. They show that in most ¢dkissscheme reduces
total size of the labels by around 10%. However, the scherffiersdirom bad worse case
guarantees, that is for a tree with a long path the labels eawvegy long. There is no clear
winner and this is still an open research topic. Moreovethigthesis we do not focus on
minimizing the size of the labels. This can be one possilda af future research.

Recently, there has been considerable work in the area wdrbiey representation
for XML indexing and for retrieval of XML documents. [31] exttds the idea proposed
in Dietzs numbering scheme [14] to support dynamic insestimith recomputation of
labels. However, in our case we assume that the data is. sStdgcmain idea in [14] was
to use tree traversal order to determine the ancestor-a@scerelationship between any
pair of tree nodes. Each node is labeled with a pair of preadd postorder numbers.

In the tree, we can tell node (1,7) is an ancestor of node,(Be2ause node (1,7) comes
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before node (4,2) in the preorder (i.e.<14) and after node (4,2) in the postorder (i.e., 7
> 2). This scheme does not incorporate the vertical selesgomantics of the ALL and
the ANY brush. Moreover, unlike the labels assigned by obeswe, the labels assigned
to the nodes do not easily map to a 2D space. Thus the streuaisesl brush selection
cannot be expressed as simple spatial intersection opesads in our framework.

[49] proposes the dewey order encoding to answer queridsagiollowing andfol-
lowing sibling Here each node is assigned a vector that represents thérgathihe
document’s root to the node. The labels for each node caneggtbig for deep trees.
Also note that when implementing structure-based bruslesmy need to answer an-
cestor queries. Thus, for our visualization applicatiom ldbels do not have to contain

information about the absolute position of the node in theplete tree.

7.4 Caching

Unlike the microprocessor’s instruction and data cachesrglbbjects in the cache are
directly referenced by their ids (address), in our case Hjpects in the cache are referred
by a property they satisfy, i.e, if they lie in the currentusture-based brush. Thus a
set of objects is referenced using a query (current bruskgh kvel caching system in
which objects are not individually referenced is cakketnantic cachinflL2] or predicate
caching[27]. Semantic caches organize or group the contents of uffertby queries
that retrieved them. The groups are calksinantic regionsind the queries are called
semantic descriptorsThe cache lookup and replacement is then done at the grapula
of semantic regions. However, our memory management systdiffierent from the one
proposed for semantic caches [12, 27]. The contents of tertawe not organized by the
set of queries that retrieved them; rather, each cachedtdbjbandled individually and

stores alescriptorthat helps to identify if the object falls in the current gquefhus, we
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handle data at a smaller granularity (i.e., object levethwegards to cache lookup and
replacement. This approach avoids the question of cacheatitn raised in [12]. One
can argue that this gain comes as a trade off against therligkeof cache lookup, since
in our architecture the complete cache has to be scanneddbmrequest. To counter this
argument we exploit characteristics of visual exploragamironments such as regularity
of the query type (Section 3.4) and spatial encoding of r&iog operations to use a
main memory spatial index structure that can eliminate #edrto scan the complete
cache. Other work in the area of object level caching forlakzda applications has been
addressed for example in [10, 39]. Also, object-based oachas been studied recently
in the context of web applications [17].

[12] usessemantic distancéor replacing semantic regions. It usk&hattan dis-
tanceas asemantic value functioto determine the importance of each semantic region.
Here each semantic region is assigned a replacement valuedrethe “center of grav-
ity” of that region and the most recent query. The semantyorewith the maximum
distance from the most recent query is replaced. This idearigar to the Distance re-
placement policy we use, the only difference being we do eotaice complete semantic
regions (brushes); we only replace individual objects. fitaén reason being for visual
exploratory environments such as ours consecutive qu@drashes) exhibit a high de-
gree of overlap. Emptying the results of complete queriessfies) from the cache can

remove potentially useful objects from the cache.

7.5 Prior Work in XmdvTool

We use this section to describe the exact contributionsisthiesis to XmdvTool. There
has been a significant effort over the past four years to dualarchical displays in

XmdvTool to support navigation operations over large dats.s Onekey effor of this
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thesis work has been simply to fix many of the assumptions laadimitations of the
prior work.

[48] proposed to use a hierarchy encoding and caching sctesupport navigation
operations over large data sets. However, the hierarchydemg technique did not cor-
rectly incorporate the vertical selection semantics ofstinecture-based brush. Precisely
a noden could satisfy the vertical selection criteria iff thed(n) = lod(brush). This
criteria does not give the same result as Algorithm 1. Toestive problem we change
the criteria. That is a node satisfies the vertical selection criteria iéd(parent(n)) <
lod(brush) < lod(n). Furthermore, we also extend the idea and propose a mapping o
the hierarchy to th@D Hierarchy Mapand the navigation operations to spatial queries.
This mapping now allows us to use spatial index structurexécute efficient searches.

The caching scheme proposed in [47] also suffered from thee gaoblem. For ef-

ficient cache lookup it proposed hashing the nodes basedeangliel-of-detailvalue.
Assumed that the node satisfies the vertical selectiorrieribaly if the desiredevel-of-
detail is exactly equal to that of the node. As per the structuredvdsush semantics
a noden is a part of the vertical selection ifbd(parent(n)) < lod(brush) < lod(n).
In this thesis we propose a caching scheme described ino8et® that overcomes this
limitation. That is we no longer hash on tlevel-of-detail Instead for fast cache lookup
we propose maintaining a memory-resident spatial indebetkyaloits the spatial mapping
derived from the hierarchy encoding to search for selecbels in the cache.

Furthermore the implementation of the cache in [47] wasdbasghe assumption that
the contents of the brush will always fit into the cache. Tsuanption seriously limits
the scalability of the system, mainly because the maximumlbsize is equal to the size
of the unclustered data set (or the leaves in the clusté tree the system to be scalable
the cache size should not directly depend on the data sefflsizemove this assumption,

we have implemented an incremental loading scheme (Sestrthat handles the case
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when the brush size exceeds the cache size. It loads therdatdhfe database in blocks
equal to the cache size and delivers these blocks to thedr@htOnce a block is served

it can be replaced by the new block coming from the database.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

With the increasing amount of data being accumulated noygdbe need for visually
exploring large datasets becomes imperative. A viable waschieve scalability for
visualization tools is to integrate them with database rganmeent systems [32]. Such
integrations raise two problems: First it requires the pizgtion of data on persistent
storage such that visual exploration operations can be etbjgpqueries that can be effi-
ciently executed on persistent data. Second, a good mairongemanagement strategy
is needed that exploits unique properties of visual expilmmasystems to reduce the over-
head of database fetches and thus make the use of the dati@rsgparent to end-users.
This thesis presents a framework of components that coMdgtaddress both these re-
guirements.

The approach is being used to couple the XmdvTol 6.0, a visatadn application
for interactive exploration of multivariate data, with ama©le 9i database management
system. Experiments for assessing the approach show thetto@ly the components

scale XmdvTool 6.0 to handle visual exploration operatiowsr large hierarchies. In
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summary the main contributions of the approach are:

¢ A hierarchy encoding technique that reduces the tree to aivagnt spatial rep-
resentation called th2-D Hierarchy Map This representation allows us to map
recursive hierarchy navigation operations to non-regarspatial search queries
that can be answered efficiently using existing spatiabrsteuctures. We show

the effectiveness of the spatial index structure.

e A caching strategy that exploits the characteristics ovikeal navigation environ-
ment such as, locality of user exploration to buffer the nédgaused nodes to avoid
database fetches and thus improve system response timendihdeatures of the

cache are:

1. Spatial Index based Cache Lookup Strategy: The cacheiexghe spatial
representation of the tree derived from the hierarchy emngochnique for
efficient cache lookup. Specifically it builds a memory residspatial index

for fast searches over the cache.

2. Distance based Cache Replacement: To exploit spatialitppexhibited in
user traces [15], we implement a Distance replacementypolitie policy
chooses a cache entry that is furthest away from the curcimeéaelection as

the replacement victim.

¢ Integrated the direction-based prefetching strategyagseg in [15]. It mainly ex-
ploits user inertia, i.e, the tendency of the user to movénensdame direction, to

predict and buffer future user requests and thus reduceraysisponse time.

e Performed experiments to quantify the usefulness of eagtpoaent in the system.

The experiments show that each of the components in the Warkecontributes
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significantly to reducing system latency and thus will seaiedvTool to work over

large data sets. The summary of the experimental resulssfalaws:

1. The Spatial Index at the database used alone reducesgheyldy up to 72%.

2. The cache when used together with the spatial index atdtabdse reduces

the latency by up to 94%.

3. The distance replacement policy performs as well or b#tten LRU replace-

ment in most cases.

4. The prefetcher used together with the cache and the datatdex can reduce

the latency by up to 96%.

8.2 Future Work

Directions for further research include both refining therent approach and making it
more general by dropping some of the constraints that wetiirergorcing now.

To improve the performance of the cache look up index (Maimide/ R-Tree index)
we can use a spatial index such as the LR-Tree [4] or Grid Béd¢that claim to support
fast updates and do not degenerate with frequent updates.

Integrated caching and prefetching [5] for visual exploraenvironments is also an
interesting area of future research. Prefetching and cepiant both try to make the
optimal use of the main memory available to the applicatibhe former fetches data
having high probability of being referenced next, and thtefareplaces the data items
with the least probability of being referenced when the reméges. This suggests that if
both the strategies work together this may significantlyronp the cache performance.
Thus, the study of the inter-play between integrated cachi prefetching can be useful.

The system could also be functionally extended by droppamgesof the current con-

straints, for example the “static” assumption. Currently assume that the data set is

62



static. This assumption has two aspects. First, we mighéidendynamic changes of
the data set. It is more and more common to analyze informalhiat suffers intensive
updates during the exploration. Second, we might dynafgicabnge the tools that we
are using during the exploration itself. Dynamic clustgror dynamic computation of
aggregates would be possible, for instance.

Another interesting extension to the system could be toidenfiow to extend the
system to support multiple active brushes, this can affectitree main components of the
framework i.e the hierarchy encoding, caching and prefetchlhe hierarchy encoding
scheme should work fine because each active brush can bsepfeée as a line and
the nodes in the brush are the nodes that intersect this hiogvever, having multiple
brushes can raise some interesting questions for cacheufisally cache replacement
and prefetching.

For caching and prefetching for multiple active brushes eednto study user trace
characteristics to see how often user’s tend to switch beivieeushes? also whether the
user trace characteristics listed in Section 3.4 still inlé? This study can help answer
guestions such as what nodes to cache? What nodes to reflacethe nodes still be
replaced based only on recency?

Moreover, to incorporate for multiple brushes we will needriodify the proposed
cache replacement policies because the LRU and Distantzcespent policy assume
only one active brush. We can extend distance replaceméay pmcompute the distance
of node using the distance from each active brush or extgnli@ LRU replacement
policy to maintain multiple lists each for a different brusAlso prefetching now will
have to keep track of current active brush and predict whicheobrushes will be moved

and in what in direction.
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