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Abstract

Modern computer applications from business decision support to scientific data anal-

ysis use visualization techniques. However, visual exploration tools do not scale well

for large data sets, i.e., the level of clutter on the screen is typically unacceptable. To

solve the problem of cluttering at the interface level, visualization tools have recently

been extended to support hierarchical views of the data, with support for focusing and

drilling-down using interactive selection.

To solve the scalability problem, we now investigate how best to couple such a near

real-time responsive visualization tool with a database management system. Our solution

proposes a framework containing three major components: hierarchy encoding, caching

and prefetching. Since the direct implementation of the visual user interactions on hierar-

chical data sets corresponds to recursive query processing, we have developed a hierarchy

encoding method, called the MinMax tree, that pushes the on-line recursive processing

step into an off-line precomputation step. The MinMax encoding scheme allows us to

map the hierarchy to a 2-dimensional space and the recursivenavigation operations at

the interface level to 2-dimensional spatial range queries. These queries can then be an-

swered efficiently using spatial indexes. To compliment this encoding scheme we employ

a caching strategy that exploits user navigation characteristics to cache the nodes having

high probability of being referenced again. Based on user characteristics we choose to

implement two replacement policies one which exploits temporal locality (LRU) and the

other exploits spatial locality (Distance). Also, to enhance the performance of the cache

we propose using a prefetching mechanism that predicts and prefetches future user re-

quests into the cache. Together the components form a comprehensive framework that

scales the visualization tool to support navigation operations over large data sets.

The techniques have been incorporated into XmdvTool, a freesoftware package for

multi-variate data visualization and exploration. Our experimental results quantify the
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effectiveness of each component and show that collectivelythe components scale the

XmdvTool to support navigation operations over large data sets. Mainly, our experimental

results show that together the components can achieve 63% to96% reduction in response

time latency even with limited system resources.
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Chapter 1

Introduction

Whether the domain is stock market data, scientific data, or the distribution of sales,

visualization is becoming an increasingly popular technique for data exploration. Visual-

ization tools exploit the fact that humans can detect patterns and trends in the underlying

data by just looking at it,withouthaving to be made aware in advance about what pattern

they’ll face. Human perception is greatly influenced by the way information is presented.

Thus various techniques for displaying data have been proposed, each of which empha-

sizes different characteristics of data. However, most of these techniques do not scale well

with respect to the size of the data. As a generalization, [20] postulated that any method

that displays a single entity per data point invariably results in overlapped elements and a

convoluted display that is not suited for the visualizationof huge datasets.

[19] proposed an approach called hierarchical displays fordisplaying and visually

exploring large datasets. The idea was to present data at different levels of detail based

on clustering the initial data points into a hierarchy called thecluster tree. The problem

of clutter at the interface level is solved by displaying only one level of detail at a time.

However, such hierarchical summarizations captured at different levels in the cluster tree

in fact increase the size of the input data set by at least one order of magnitude, as the
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clusters that store aggregate information are in addition to the already existing data points.

Hence management of data remains an even more critical issue. While storing the data in

main memory or in flat files is appropriate for small and moderately sized data sets, this

becomes unworkable when scaling to large data sets on the order of 100,000 data points

or more.

One solution to this is to integrate visualization tools with a back-end database man-

agement system. However, interactive exploration operators in structure space (cluster

tree) like navigation and selection [55] are not directly supported by traditional database

management systems. In particular the recursive processing involved when exploring hi-

erarchies in main memory is no longer appropriate when storing these hierarchies on disk.

Thus, in this thesis we propose a framework to meet the interactive response requirements

for user exploration operations over large hierarchies stored in the database. The frame-

work includes a hierarchy encoding mechanism, caching and prefetching strategy each of

which work collectively to reduce the response time latency.

The hierarchy encoding technique, calledMinMax treesallows us to map hierarchies

to a 2-dimensional space called a2D Hierarchy Map. This mapping in turn allows us

to represent visual navigation operations as spatial queries over the2D Hierarchy Map.

This2D Hierarchy Mapis stored in a database, where the searches are executed efficiently

using spatial indexes.

Furthermore, interactive visual exploration tools exhibit a variety of characteristics

that can be exploited to make the system scale to huge data sets. These include locality of

exploration and data access, predictability of user’s exploratory movements, and presence

of idle time between user operations. To take advantage of the above characteristics we

propose a caching strategy that buffers the recently used data items. The cache exploits the

spatial mapping provided by the hierarchy encoding scheme to build a memory resident

spatial index for fast cache look-up. Moreover, it also usesspatial space to implement
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a semantic replacement policy that replaces cached objectsbased on the spatial distance

from the current active selection.

The predictability of user movements and idle time between user operations can be

effectively utilized for predicting and prefetching future user requests. We integrate a

directional prefetcher proposed in [15] into our system. Prefetching helps in reducing

cache misses and thus improves the performance.

We applied our proposed solution strategies to the hierarchical navigation tool (structure-

based brush) in XmdvTool [52], a software package for exploring and visualizing multi-

variate data sets. However, this context is neither implicitly or explicitly assumed in this

thesis. Visual navigation of huge hierarchies is a general problem and we describe a gen-

eral approach towards solving the problem. The results of the performance study show

that the approach scales to large data sets. Even for moderate data sets our solution reduce

the user response time by 63 to 96 percent.

The main contributions of this thesis are:

• A hierarchy encoding technique that reduces the tree to an equivalent spatial rep-

resentation. This representation allows us to map recursive hierarchy navigation

operations to spatial search queries that can be answered efficiently using existing

spatial index structures.

• A framework that exploits the encoding technique and characteristics of the visual

navigation environment such as, locality of user exploration, for efficient retrieval

of online data. The framework includes:

1. A main memory caching strategy that buffers the recently used nodes to avoid

database fetches and thus improves system response time.

2. A cache replacement policy called distance that exploitsspatial locality in user

traces to replace the nodes with maximum distance from the current active
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selection. This in turn leads to higher hit ratios and bettercache performance.

3. Index structures that exploit the spatial representation derived using the hier-

archy encoding technique to achieve faster searches on the cache and on the

database contents.

4. A direction-based prefetching strategy that exploits the limited means of data

requests via the visual interactive tools to predict futureuser requests and

prefetch the required data into the cache.

• An object-oriented implementation of the complete framework using C++ and Or-

acle database. This framework forms the backend module of the XmdvTool and

scales the hierarchical displays [55] to support navigation of large hierarchies.

• Experimental evaluation that quantifies the relative effectiveness of each component

in the framework towards latency reduction. It shows that the components work

collectively and in some cases can reduce the system latencyup to 95%.

This thesis is organized as follows. Chapter 2 introduces the basic concepts in multi-

variate hierarchical visualization. The hierarchy encoding as well as the processing of the

MinMaxqueries are presented in Chapter 3. Chapter 4 introduces theproposed framework

and describes the important components of the framework. Chapter 5 describes the system

implementation. Chapter 6 presents the results of the evaluation study. Chapter 7 surveys

related work. Chapter 8 presents conclusions and directions for future work.
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Chapter 2

Visual Data Exploration

2.1 XmdvTool: The Motivating Application

XmdvTool is a visualization tool designed for exploration and analysis of multivariate

data sets. The tool provides four distinct visualization techniques namely, scatterplot ma-

trices [9], parallel coordinates [23, 53], glyphs [1, 43, 7,37] and dimensional stacking

[29], with interactive selection operations and linked views. To scale the display tech-

niques to large data sets, we need to reduce the amount of clutter in screen space. To

address this issue, our efforts have produced versions of display techniques that allow

multi-resolution data presentation [19, 20, 55]. Multi-resolution techniques allow users

to view the data sets at an abstract level of detail and actively explore the datasets by

zooming in (drill-down) or zooming out (roll-up) on subsets of the datasets. The subsec-

tions to follow explain these operations in detail.

The main objective of the work in this thesis was to improve the efficiency of database

support in XmdvTool. However, the operations that we will introduce are general and

can be used for visual exploration of arbitrary hierarchies, a common class of navigation

operations in large scale visualization systems [18].
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2.2 Visual Brush-Based Exploration

Brushingis the process of interactively painting over a subregion ofthe data display using

a mouse, stylus, or other input device that enables the specification of location attributes

[2, 52]. The location attribute values are then used to select subsets of the data.

Brushing can be performed in screen or data space to specify acontainment criterion,

i.e., whether a particular point is inside or outside the brush. Inscreen spacetechniques, a

brush is specified by a2-D contiguous subspace on the screen. Indata spacetechniques,

a specification consists of either an enumeration of the dataelements contained within the

brush or theN-Dimensional boundaries of a hyper-box that encapsulates the selection.

A third category, namelystructure spacetechniques, that allows selection based on

structural relationships between data points, was introduced in [20]. Thestructureof a

data set specifies relationships between data points. This structure may be explicit (e.g.,

categorical groupings or time-based orderings) or implicit (e.g., resulting from analytic

clustering or partitioning algorithms). Examples of structures include linear orderings,

trees and directed acyclic graphs. In this work we focus on trees.

A tree is a convenient mechanism for organizing large data sets. Byrecursively parti-

tioning data into related groups and identifying suitable summarizations for each cluster,

we can examine the data set methodically at different levelsof abstraction, moving down

the hierarchy (drill-down) when interesting features appear in the summarizations and

up the hierarchy (roll-up) after sufficient information has been gleaned from a particular

subtree.

Brushing in structure space involves two containment criteria. For the first contain-

ment criterion lets us assume that the leaves of the tree are chained together. Chaining

imposes an order on the set of nodes in the cluster tree. Giventhis order, nodes that fall

into a user defined interval satisfy the containment criteria. Intuitively, the two values that
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form the interval represent the left and the right-most leaves of the selected subtree. We

call this process “horizontal selection”.

Figure 2.1: Structure-based brush:focus
region(a) anddensity factor(b).

Figure 2.2: Structure-based brush:hori-
zontal(a) andvertical (b) selection.

For our second containment criterion, we augment each node in the hierarchy, i.e.,

each cluster, with a monotonic value that indicates thelevel-of-detail. The nodes at the

desiredlevel-of-detailare selected. This process is called “vertical selection”.The level-

of-detailvalue can have different semantics. For example, it may represent thewidth of

the cluster i.e., the number of leaf nodes the cluster encompasses. It could also signify the

distanceof the cluster from the root.

A structure-based brush is thus defined by a subrange of the structure extents and the

level-of-detailvalues. Intuitively, if looking at a tree structure from thepoint-of-view of

its root node (Fig. 2.1), the extent subrange appears as afocus region(with the focus point

at its center), while thelevel-of-detailsubrange corresponds to a sampling rate factor or a

density. In a2-D tree representation, the subranges correspond to a horizontal and vertical

selection, respectively (Fig. 2.2).

2.3 Structure-Based Brushing in XmdvTool

Figure 2.3 shows a parallel coordinates display of a five dimensional data set having

16,384 records. In this display each of the N dimensions is represented by a vertical
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Figure 2.3: Cluttered parallel coordinates.

Figure 2.4: Structure-based brush in XmdvTool.

axis. A data point in N-dimensional space is mapped to a polyline that traverses across

all N axes, crossing each axis at a position proportional to its value for that dimension.

As seen from Figure 2.3, displaying all the data to the user atthe same time results in

display clutter. Hence, to support the visual navigation ofcluster trees for large data sets,

XmdvTool contains a structure-based brush.

Figure 2.4 shows the structure-based brushing interface implemented in XmdvTool.

The triangular frame depicts the hierarchical tree. The contour near the bottom of the tree

delineates the approximate shape formed by chaining together the leaf nodes. To navigate

the hierarchy the tool provides two main “sliders”. Thelevel-of-detailslider denoted by
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’b’ allows users to navigate the tree vertically and view clusters at different levels of detail.

The focus extentsslider denoted by ’e’ allows users to move horizontally and focus on a

subset of clusters within the same level. The left and right extents of the ’e’ slider can

also be adjusted individually to modify the width of the focus area. Figure 2.5 displays

the same data set as Figure 2.3 but focused on a specific cluster of data points; this is after

the user narrows the width of the focus area using ’e’ and performs a drill-down operation

using ’b’ as reflected in Figure 2.6. Figure 2.7 displays the same dataset as Figure 2.5

but showing the mean values and the range of the data points inthat cluster. This is after

the user performs a roll-up operation using ’b’ as seen in Figure 2.8.

Figure 2.5: After focused area drilled-
down.

Figure 2.6: Structure-based brush show-
ing drill-down.

2.4 Brush Semantics

A structure-based brush is defined as the intersection of twoindependent selections, the

horizontal extents of the brushe1 ande2 and thelevel−of −detail. Setting such a brush

requires two computational phases as well.

The first one, the horizontal selection, is accomplished in two steps. In the first step

a set of leaf nodes is initially selected based on the order property. Basically, this step

9



Figure 2.7: After focused area rolled-up. Figure 2.8: Structure-based brush show-
ing roll-up.

corresponds to “select all leaves between the two extreme values e1 and e2 ”. In the

second step, the initial selection is propagated up towardsthe root based on either the

ANY or theALL semantics: “select nodes that haveANY ( or ALL) of its children

already selected ”.

For vertical selection we use thelevel-of-detailvalue that has been associated with

each node in the hierarchy. This can be any montonically increasing or decreasing value

from the root towards the leaves. The algorithm below explains the process of vertical

selection. The input to the algorithm is thelevel-of-detailof the brush. Here we assume

that level-of-detailvalues are monotonically decreasing from the root towards the leaves.

The functionlod(x) returns thelevel-of-detailof nodex.

Algorithm 1 Vertical Selection
1: Let S andW be two sets of nodes.
2: Let S initially contain only root node. LetW be empty.
3: while S is not emptydo
4: Remove noden from S

5: if lod(n) ≤ lod(brush) then
6: Insertn into W

7: else
8: Insert descendants ofn into S

9: end if
10: end while

10



At the end of the run the setW contains the nodes that satisfy the vertical selection

criteria. The algorithm starts traversing the tree from theroot towards the bottom of

the tree breadth-wise to find all the nodes that have thelevel-of-detail≤ lod(brush).

The main intuition is that, thedrill-down or roll-up in the structure space corresponds to

climbing up or descending a particular branch in the hierarchy.

The set of nodes that satisfy both the selection criteria forms the final set of the nodes

in the brush. The brush operations, as described above, are inherently recursive. Re-

cursive processing in relational database systems can be time consuming and thus is not

suitable for interactive applications. In Section 3 we develop equivalent but non-recursive

computation methods for setting structure-based brushes based on assigning precomputed

values to the nodes that recast retrievals as range queries.
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Chapter 3

MinMax Trees: Translating Navigation

Operations

The question addressed in this chapter is how to translate the visualization operations

into database operations? For this purpose we have developed an encoding technique

called aMinMax tree.The method places the recursive processing into aprecomputation

stage, during which labels are assigned to all nodes. The labels provide a containment

criterion. Thereafter, by looking only at a node’s label independent of any other node in

the hierarchy we can determine whether that node belongs to the active selection or not.

3.1 Labeling the Nodes

The containment criteria for a node in the cluster tree is based on two selections: hori-

zontal and vertical. To map the recursive process of selection to a non-recursive one we

augment each node in the cluster tree with horizontal and vertical extents. Each of these

extents forms an interval. We call this tree a MinMax tree.

A MinMax tree is ann-ary tree. The horizontal extents of the nodes correspond to
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open intervals defined over a totally ordered set, called aninitial set. The horizontal

extents of the leaf nodes in the tree form a sequence of non-overlapping intervals. The

non-leaf nodes are unions of intervals corresponding to their children. The initial set can

be continuous (such as an interval of real numbers) or discrete (such as a sequence of

integers).

It is always possible to draw the tree such that all the leaf nodes are horizontally

ordered. The leaf nodes are then labeled with pairs of valuescorresponding to the extents

of their interval. As the intervals of non-leaf nodes are unions of their children intervals,

it follows that a non-leaf node will be labeled with the minimum extent of its first interval

and the maximum extent of its last interval. A noden having two children with intervals

c1 = (α, β) and c2 = (γ, δ) such thatα < γ, will be labeled asn = (α, δ). Figure

3.1 gives an example of a labeled cluster tree. For the tree inFigure 3.1 the process of

assigning the horizontal extents started at the leaf nodes.The interval between 0 to 1 was

divided equally between all leaf nodes. These intervals were propagated up towards the

root. The interval for each non-leaf node is the union of the intervals of its children, as

can be seen for Figure 3.1.

Given a MinMax treeT and two nodesx andy of T whose horizontal extent values

are (x1, x2) and (y1, y2) respectively, nodex is an ancestor of nodey if and only if its

horizontal extentsx1 ≤ y1 and x2 ≥ y2. The containment property is based on the

intuition that each node in the tree is included in its parent’s interval. The horizontal

extents of the nodes encode the ancestor-descendant relationships in the tree structure.

As described in Section 2.4, the horizontal selection first selects all the leaf nodes

that lie within the focus extents of the brush, namely,e1 ande2. This selection is then

propagated upwards by selecting the non-leaf nodes ifANY or ALL of their children are

selected, depending upon the brush semantics. The output ofthis selection process is a

set of subtrees of the cluster tree. The focus extents of the brush and horizontal extents of

13
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Figure 3.1: Labeled Minmax tree

each node in the MinMax tree both define an interval. Using MinMax trees we can reduce

this process of selecting nodes in theANY brush to searching for nodes in the MinMax

tree whose interval intersects with the interval of the brush. Similarly, the process for

theALL brush maps to selecting nodes whose intervals are fully contained in the brush

interval. Intuitively, we can see that if the horizontal interval of a node intersects with that

of the brush, we know that the interval of at least one of its children intersects with that

of the brush. If the horizontal interval of the node is fully contained within the brush, the

horizontal interval of all its children is also contained inthe brush.

For selection of thelevel-of-detail(vertical selection), the MinMax tree augments

each node in the cluster tree with a vertical extent value. Given the brush semantics

in Section 2.4 the process of labeling the nodes with vertical extents can be defined as

follows. The vertical extent of a nodeA is the interval(v1, v2) where(v1 = lod(A), v2 =

lod(parent(A)) where the functionparent(n) returns the parent node of noden. The

noden with vertical extents(v1, v2) lies in the brush ifv1 ≤ lod(brush) < v2 is true. Note

this is an alternate method of implementing the vertical selection algorithm described in

Section 2.4. The vertically aligned extents in Figure 3.1 show the vertical extents for each

node in the cluster tree.
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Essentially, the process of labeling the nodes is a recursive one. The intervals are

computed and assigned off-line at the time the hierarchy is created. By being off-line the

cost of labeling does not affect the interactive user navigation response time. The codes

assigned to the nodes in the cluster tree can be used for computing brush selections for

navigation operations. The value and the distribution of the intervals (as well as the tree

structure itself) depend on the technique used to create thehierarchy. However, it does

not affect the correctness of the proposed method.

3.2 2-D Hierarchy Maps
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Figure 3.2: 2-D Hierarchy Map

We now make the important observation that the labels assigned by the MinMax pro-

cedure can be viewed as giving each node a spatial representation. The complete cluster

tree can thus be mapped to a 2 dimensional space. We call this type of representation a

2-D hierarchy map. Figure 3.2 shows a2-D hierarchy mapfor the MinMax tree in Fig-

ure 3.1. A noden with horizontal extents(hmin, hmax) and vertical extents(vmin, vmax)

maps to a rectangular region in the2-D hierarchy mapwith the bottom left corner at

(hmin, vmin) and the upper right corner at(hmax, vmax).

We observe that the 2-D hierarchy map exhibits the followingimportant properties:
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• The space between(0, 0) to (1, 1) is completely filled, i.e., given any point between

(0, 0) and(1, 1) there exists a node that contains the point.

• Interiors ofno two nodesoverlap in the 2-D hierarchy map.

3.3 Using 2-D Hierarchy Maps to Implement Structure-

Based Brushes
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Figure 3.3: 2-D brush selection withbmin=0.4,bmax=0.9 andlod=0.35

From the 2-D hierarchy map, we can implementANY and ALL structure-based

brushes as non-recursive operations. The containment criteria for theANY structure-

based brush can be defined as follows. Given the brush’s horizontal extents (bmin,bmax)

and thelevel-of -detail=lod, any noden having horizontal extents(hmin, hmax) and verti-

cal extents(vmin, vmax) lies in the brush iff:

• The extents(hmin, hmax) intersect the brush interval(bmin, bmax), and

• vmin < lod ≤ vmax.

A noden lies in theALL structure-based brush iff:

• (hmin, hmax) ∩ (bmin, bmax) = (hmin, hmax), and
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• vmin < lod ≤ vmax.

This containment criteria for the noden can also be stated differently. If we map the

brush to a line segment with end points at(bmin, lod) and(bmax, lod) in the 2-D hierarchy

map, a noden lies in theANY structure-based brush if its representation in the 2-D

hierarchy map intersects with that of the brush. A noden lies in theALL structure-based

brush, if the line segment representing the brush intersects both the right and left edge of

the node. Our reformulation succeeds to map the process of searching for the nodes in

theALL andANY brush into spatial queries.

Figure 3.3 gives an example of the selection for theANY brush wherebmin=0.4,

bmax=0.9 andlod=0.35. Figure 3.3 shows the brush in black and all the selected nodes

(i.e., the active set) in dark grey.

3.4 Translating Structure-Based Brushes into SQL

The 2-D hierarchy map technique reduces the containment criterion from initially recur-

sive semantics to an inclusion test in the horizontal and vertical direction. We can thus

decide whether a node should belong to the active set or notindependentlyfrom the in-

formation stored in the other nodes. One scan of the hierarchy is hence sufficient to form

the selection.

Let H be the relational table that stores the nodes in the hierarchy. Each tuple in H

models one node in the cluster tree and has horizontal and vertical extents of the node,

besides the node information. We have:

H (emin,emax,vmin,vmax, ... )

An ANY structure-based brushhaving horizontal extents(bmin, bmax) andlevel-of-

detail (lod) can be expressed as a range query as follows.
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select * from H

whereemin ≤ bmax andemax ≥ bmin

andvmin ≤ lod andvmax > lod

An ALL structure-based brush query for the same parameters is specified by:

select * from H

whereemin ≥ bmin andemax ≤ bmax

andvmin ≤ lod andvmax > lod

While recursive processing would require an exponential processing time, this range

query requires only a linear processing time for computing brushing results. Also we

note here a few characteristics of the queries generated when moving the structure-based

brush.

1. Regularity of query type: The structure of the query generated by user movements

remains the same only; the parameters to the query differ depending on the user’s

current position.

2. Continuous user selection: The nodes in the selected subset when mapped to a 2D

space yields a continuous subspace in the 2D Hierarchy Map.

3. Single level-of-detail display: The user selection can display nodes only at a partic-

ular level-of-detail. That is, no two nodes within the selected subset of nodes can

have an ancestor-descendant relationship.
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Chapter 4

Backend Framework

Given that we can translate the brush operations into spatial queries, we now describe the

components in the backend framework. The components exploit this mapping along with

typical user trace characteristics to reduce the user response time latencies and in turn

scale the visualization application (front-end) to work with large data sets.

MinMax

Labeling

Hierarchical

Data

Flat

Data

Offline processDatabase

User

GUI

Front End

Cache Index

Delta

Calculator

C
a
c
h
e

Index

Backend

Controller

Direction

Prefetcher

Loader

MinMax

Labeling

Hierarchical

Data

Flat

Data

MinMax

Labeling

Hierarchical

Data

Flat

Data

Offline processDatabase

User

GUI

Front End

Cache Index

Delta

Calculator

C
a
c
h
e

Index

Backend

Controller

Direction

Prefetcher

Loader

Figure 4.1: System architecture. Solid lines represent main modules. Ovals represent
data. Arrows show control flow.

Figure 4.1 depicts the components in the backend framework of the XmdvTool. The

cache is used to buffer the recently used data items. The prefetcher predicts user requests

and fetches data into the cache. For each user request the cache is quickly searched to find
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the requested objects. The cache may contain all the requested nodes, or only a subset. In

the latter case the delta calculator computes a remainder query to fetch the subset of nodes

not in the cache. The loader fetches the result of the remainder query into the cache. Once

all the requested nodes are in the cache they are delivered tothe front-end. The sections

below explain each of the important components in the systemdepicted in Figure 4.1.

4.1 Spatial Index

For each request from the front end we need to quickly search the contents of the cache,

compute the difference query and fetch the data from the database. We thus need a fast

search mechanism both for the cache and for the database. A characteristic of the objects

in the database and in the cache is that they are not referenced by their IDs when requested

by the front-end. In other words, the front-end doesn’t ask for the objectx or y. Instead,

it passes a queryq to the back-end to search for objects that lie within the brush. Recall

that queryq in our exploration paradigm defines an instance of the brush with horizontal

extents (bmin,bmax) and level-of-detail=lod. This brush maps to a segment in the2-D

hierarchy map(Section 3.2). The answer to the query is a set of clusters that intersect

this segment. Therefore the queryq is a 2 dimensional spatial range query as shown in

Section 3.4. To execute this query efficiently we thus propose to use a spatial index.

A spatial index, in contrast to a B+ tree, utilizes spatial relationships to organize data

entries with each key value seen as a point or a region in a k-dimensional space. Many

spatial index structures have been proposed, each of which has its pros and cons. For our

purpose we require a spatial index that works for spatial range queries and supports high

update rates because the contents of the cache are continuously changing. Most spatial

indexes do not perform well when the objects exhibit a high degree of overlap. However,

note in the2-D hierarchy mapthe interiors of no two objects overlap. Thus this is not an
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issue for us.

In our current implementation we use an R-Tree index structure described in [21]. It

is a relatively simple multi-dimensional index structure,while its performance is compa-

rable to the more complex index structures available [36]. To support fast insertions we

use thelinear spitmethod [21] when splitting nodes. However, this splitting method can

lead to overlapping bounding boxes and a decrease in search performance. A prominent

variant of the R-Tree, the R*-Tree [3], employs a set of carefully designed heuristics for

node splitting to reduce the decrease in the search performance. However, the cost of

splitting is high. There are other variations of the R-Tree index such as the LR-tree [4],

that support fast updates. Also, LR-trees [4] do not degenerate with updates and give

updated performance approximately equal to that of R*-Trees [3].

4.2 Delta Calculator

Each time the front end submits a queryq, the backend searches the cache to find all the

objects that lie in the brush. Given this list the backend computes the remainder query

(q∆), the query to be sent to the database to fetch the objects notin the cache. Next, we

will explain why computing the queryq∆ is always possible. The computation is based

on the property described below.

Let {b1} represent the set of nodes contained in brushb1 having focus extents at

(bmin, bmax) andlevel − of − detail = lod. A noden with horizontal extents(α, β) in

the brushb1 can be used to divide the brush into two disjoint brushes,b2 andb3, such that

{b2}∪n∪{b3} = {b1}, whereb2 has horizontal extents(bmin, α), level−of−detail = lod

andb3 has horizontal extents(β, bmax), level− of − detail = lod. This property is based

on the intuition that the horizontal extents of the brush andthe noden both define an

interval. Therefore we can divide the interval of brushb1 into two disjoint intervals such
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0.3, bmax = 0.78, lod = 0.6)

that the result of the union of these two intervalsb2 andb3 with the interval ofn gives us

the interval of brushb1. Thus, to compute the remainder query we need to find the nodes

in the cache that belong to the current brush. We can then check to see what parts of

the brush interval are not occupied by the nodes in the cache.Each of these unoccupied

intervals forms a remainder brush and a part ofq∆.

Figure 4.2 gives an example of the above process. The brush has features(bmin =

0.3, bmax = 0.78, lod = 0.6). The figure shows the 2D hierarchy map of the contents

of the cache. The bold part of the brush in Figure 4.2 illustrates the remainder brushes.

Algorithm 2 shows the procedure to compute a list of remainder brushes.

Input variables to the algorithm 2 are:

• nodeList, a list of nodes in the cache that lie in the current brush and

• currentBrush, contains the left extent, right extent and thelevel-of-detail

Output is

• resultList, containing a set of remainder brushes.

To summarize the working of the the algorithm 2. 2 sorts the list of cached nodes in

ascending order of their horizontal extents. Then startingfrom the top it compares the
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Algorithm 2 Delta Calculator
procedure CalDelta(nodeList, currentBrush, resultList)

1: Sort nodes in the nodeList in ascending order of left extents.
2: tempE1← currentBrush.leftExtent

3: while nodeList not emptydo
4: n← nodeList.removeF irst()
5: if tempE1 < n.leftExtent then
6: rb← RemainderBrush(tempE1, n.leftExtent, currentBrush.lod)
7: resultList.insert(rb)
8: end if
9: tempE1← n.rightExtent

10: end while
11: if tempE1 < currentBrush.rightExtent then
12: rb← RemainderBrush(tempE1, currentBrush.rightExtent, currentBrush.lod)
13: resultList.insert(rb)
14: end if

extents of adjacent nodes in the list to find if they are contiguous in the 2D space. In case

a gap exists between adjacent nodes a remainder brush is generated that will fetch the

nodes to fill this gap.

4.3 Cache

Using main memory (cache) to store frequently used data items to reduce fetch latencies

from secondary storage devices is a proven technique that isused in both the database and

the systems context. Analysis of real user traces of our visualization environment done in

[15] has shown that user traces exhibit characteristics such as:

1. Locality of Exploration: Users doing data exploration explore one area of the dis-

play at a time before moving on to another area.

2. Contiguous queries have similar answers: Exploration using visual navigation tools

such as sliders and knobs translate to consecutive queries and the answers to these

queries have a significant number of objects that are common.
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3. Incremental user movement: User explorations using tools such as sliders are gen-

erally incremental that is fine grained, i.e., the users usually don’t make any sudden

big movements.

4. Presence of idle time: Users usually pause to understand the display and look for

patterns in the data. So there is idle time between queries tothe database.

5. User directionality or inertia: When using interactive navigation tools such as scroll

bars for data exploration, it is likely that once started theuser will navigate in the

same direction for a while before changing to another direction.

Note the properties (1) and (2) correspond to the concept of spatial and temporal lo-

cality respectively. This suggests that the visual exploration paradigm is a good candidate

for caching and if done correctly we can achieve considerable gains in performance with

limited memory.

To exploit these characteristics we employ caching to reduce our response time and to

avoid database fetches whenever possible. The cache in XmdvTool is a contiguous chunk

of main memory. Each cache entry contains a cluster (node) from the cluster tree and a

descriptor that describes the position of the node in the 2-Dhierarchy map (Section 3.2).

Fig 4.3 shows a snap shot of the state of the cache during execution mapped to the 2D

space. Note the size of the cache is smaller than the size the of the data set. Thus the

cache does not contain all the nodes in the data set. This is shown in the 2D hierarchy

map using empty regions.

4.3.1 Cache Replacement

We use two replacement policies namely, LRU (Least RecentlyUsed) and the Distance

replacement policy exploiting temporal and spatial locality, respectively. The evaluation

section compares the effectiveness of each of the policies.
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Figure 4.3: Snap shot of the cache state

LRU replacement policy replaces the object that has been unused for the longest time.

This way it mainly exploits temporal locality. Note the usertraces do exhibit temporal

locality as shown in the previous section. Mainly, contiguous user queries having similar

answers correspond to the concept of temporal locality. To realize the LRU replacement

policy we maintain a linked list containing pointers to all the cache entries in the main

memory. This list is called the LRU list. Each cache entry hasa corresponding node in

the LRU list. To keep track of this node each cache entry stores a pointer to its respective

node in the LRU list. The head of the LRU list is the least recently used entry and the tail

is the most recently used entry. Thus, the head of the list is always the next candidate for

replacement. Each time a cache entry is selected as a member of the current user selection

the corresponding LRU list entry is moved to the end of the list.

An alternative to using recency information for determining replacement candidates

is to usesemantic distance[12]. Intuitively we can say that the entry in the cache that is

the furthest away from the current brush has a less chance of being referenced in the near

future, as compared to the ones that are closer to the currentbrush. This is because, with
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visual interface tools such as sliders and knobs the user movements are incremental and

not random. Thus, the main idea here is to replace the entry inthe cache that is furthest

away from the current brush. The distance measure can be as simple as the length of the

line from the center of the current brush to the center of the cache entry (node) in the 2D

hierarchy map.
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Figure 4.4: Snap shot of cache contents before replacement

We describe one way of realizing a replacement policy that replaces objects based

on their distance from the current brush. In our implementation, the replacement policy

maintains a lists of recent user requests in the form of the brush descriptors. This list is

called abrush store. Each brush descriptor consists of the horizontal extents (e1,e2) and

the level-of-detailof the brush. Figure 4.4 shows a snapshot of the state of the system

during execution. The upper left corner in Figure 4.4 shows the state of the brush store.

When we need to make room in the cache for new objects, the replacement policy iterates

through the contents of the brush store to search for the brush b that is the furthest away

from the current brush. The replacement policy then searches through the cache to find

the contents of the brushb and replaces each node in the brush with a new node. If all

nodes within the brush have been replaced the brush is then removed from the brush store.

Figures 4.4 and 4.5 show an example of this process. The brushstore initially contains

3 brushes b1,b2 and b3 as shown in Figure 4.4. Assume that the cache is full. The current
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brush b4 requires us to fetch a new node (I) from the database.To insert this node into the

cache, the replacement policy selects the brush b1 to replace because it lies the furthest

away from the current brush. The brush b1 only contains one node ’A’. Therefore the

cache entry containing ’A’ is selected as a replacement candidate and the entry is filled

with the contents of new node ’I’ as shown in Figure 4.5.
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Figure 4.5: Snap shot of cache contents after replacement

Figure 4.6 shows another scenario where the contents of the brush in the brush store

overlap. In such a scenario it is possible that we have already replaced all the contents of

a particular brush, because one or more brushes around this brush were selected as can-

didates for replacement. Such a brush should ideally not occupy space in the brush store.

To remove such brushes we examine the brush store periodically (during idle time) and

delete them from the brush store. The process of examining involves searching through

the cache to find the set of cached nodes for each brush in the brush store. If the set is

empty then the corresponding brush can be removed from the brush store.

4.3.2 Direction-based Prefetching

To further improve the performance of subsequent user operations, XmdvTool uses a

direction-based prefetcher proposed in [16]. The prefetcher mainly exploits the idle time

in between user operations and user directionality to predict and fetch future user requests.
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The direction-based prefetch strategy is analogous to the sequential prefetching strategy

proposed in other prefetching papers [11, 33]. Thedirection strategyassumes that the

most likely direction of the next user movement can be determined. It is intuitive for

instance that the user will continue to use the same navigation tool and move in the same

direction for a while before changing either of them. We callthis user inertia. Thus,

based on the user’s past explorations, the predictor computes the last direction of user

movement. The prefetcher then issues a prefetch request with the brush moved in the

same direction as that of the last brush movement.
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To compute the last direction of the user movement the prefetcher has to keep track

of only the previous two brush requests. Each brush request consists of the focus ex-

tents (e1,e2) and thelevel-of-detail. To determine the direction of the user movement the

prefetcher simply compares the two brushes to find which brush handle has been moved

and in what direction.

To explore the extent of directionality exhibited in user traces, our prior work in [15]

measured the percentage directionality per minute for a setof 15 real user traces. Figure

4.7 presents the results of the analysis. The horizontal axis lists the user number assigned

to the user trace. From Figure 4.7 we can see that most of the real user traces do exhibit

a high degree of directionality. On average the directionality per minute is around 60%.
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Chapter 5

System Implementation

5.1 System Architecture

The complete system has been implemented as an extension to XmdvTool 6.0 [52, 40].

XmdvTool 6.0 was coded in C++ with TCL/TK and OpenGL primitives. Figure 5.1

depicts the main modules in the Xmdv backend. We used Oracle 9i as the database

management system and Oracle spatial extension to construct the R-Tree index at the

database. To communicate with the Oracle 9i server we used OTL (Oracle, Odbc and

DB2-CLI Template Library [35]). The library provides an easy to use and efficient API to

send queries and retrieve answers as C++ streams. The main memory R-Tree index was

built using the spatial index library developed at University of California Riverside [44].

Figure 5.1 shows a more detailed version of the diagram shownin Section 4. It shows

all the main components (classes) in the system that together comprise the backend of the

Xmdv Visualization tool. The responsibilities of each component are explained below.

The Backend Controller forwards user requests to the cache manager. Each user

request contains the current position of the structure-based brush, the focus extents (e1,e2)

andlevel-of-detail. Moreover, at the end of each user request the backend controller sees
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Figure 5.1: System Architecture

an opportunity to start the prefetcher. The prefetch controller is given a start signal which

in turn activates the prefetch thread. If the backend controller receives a user request when

the prefetch thread is active it sends a stop signal to the prefetch controller that in turn

preempts the prefetch thread.

ThePrefetch Controller activates the prefetch thread each time it gets a start message

from the backend controller. Activation means giving permission for the prefetch thread

to run. The permission is given by releasing a semaphore calledPrefetchPermitthat the

prefetch thread is blocked on. The prefetcher in turn consumes this permission and starts

running. On receipt of a stop message the Prefetch controller deactivates the prefetch

thread. To do so it interrupts the prefetch thread. The interrupted prefetch thread now

waits for another permission to run from the prefetch controller and thus blocks on the

PrefetchPerimitsemaphore, giving up the CPU.

The Cache Managerdoes the job of coordinating the responsibility of the various

components. Each time a new request arrives from the client (user or prefetcher) it sends a

search request to the cache. It then forwards the selected cache entries (nodes) to the delta
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calculator. The query generated by the delta calculator is forwarded to the loader. The

cache manager then loads the new nodes into the cache. It combines the result returned

by the loader with the selected cache entries to form the finalresult set. This result set is

then returned to the client by means of an iterator object.

TheDelta Calculator computes a set of remainder brushes given a set of cached nodes

and the current brush as input from the cache manager. It implements the Algorithm 2

described in Section 4.2.

The Query Generator generates a single SQL query for each remainder brush as

shown in Section 3.4. If there is more than one remainder brush it combines their corre-

sponding queries into a bigger query using the union operator.

TheLoader communicates using the OTL API to retrieve the result of the query from

the Oracle database server.

The Cache consists of the cache memory, cache index and the cache replacement

policy. The cache is basically a chunk of contiguous main memory. Each cache entry

stores the information about a particular node and its descriptor. The cache index can

help provide fastercache lookup. Cache lookupis the task of searching for nodes in the

cache that belong to the current user selection. The implementation currently supports

two options for cache lookup:

• Spatial Index: Here the cache maintains a spatial main memory index, specifically

an R-Tree index, to search through the nodes in the cache.

• Sequential Scan: For each user request, the contents of the cache are scanned se-

quentially to find cached nodes that belong to the current user selection.

Also the cache can be configured to use either the distance replacement policy or the

LRU replacement policy. Thus given a search request the cache manager searches through

the buffer using the chosen cache lookup mechanism and returns the selected cache entries
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to the cache manager. Also each time it receives a request to load a new node it uses the

replacement policy to select the next victim entry to remove. It overwrites the contents

of the victim cache entry with the contents of the new node, and if necessary, updates the

cache index.

5.2 WorkFlow

Thebackend controller receives a request to fetch the contents of a brush. This request

is then forwarded to the cache manager. Thecache managerfinds the nodes in the cache

that lie in the current brush. A list of these nodes is then forwarded to the delta computer.

Thedelta calculator computes all the remainder brushes. Thequery generator gener-

ates a single SQL query that will include all the nodes in eachof the remainder brushes.

The loader executes the query and fetches the remainder brushes. The cache manager

then takes the union of the cached nodes (in the brush) and theanswer to the remainder

query to form a complete list of nodes that lie in the current brush. All the new nodes

are buffered inside the cache. The complete list of nodes (inthe brush) is then sent to

the front end by means of an iterator object. However as a special case if the data in

the current brush cannot fit inside the cache all at once the cache manager loads the data

incrementally. To do so it has to replace entries in the cachethat lie in the current brush

but were already served to the front end. We call this processincremental loading. This

whole process is hidden behind the iterator interface so that the front end is not required

to have any knowledge about this.

During idle times, i.e., when there is no active request, thebackend controller activates

the prefetcher. Theprefetcher predicts user movements and issues prefetch requests to

the backend controller. The backend controller in turn forwards these requests to the

cache manager. The cache manager does not distinguish between a user request and a
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prefetch request. It fetches the requested data and stores it in the cache. The prefetcher

is implemented in its own separate thread; the backend controller activates the prefetch

thread when there is no active user request. However, the user request has a higher priority

then the prefetch request. Therefore, if the backend controller gets a user request when

the prefetch thread is active the thread is preempted prematurely, thus giving the main

thread all the CPU it needs.
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Chapter 6

Experimental Results

6.1 Experimental Setup

All of our experiments were run on a Pentium 3 windows XP machine with 128 MB of

memory running at 833 Mghz. The complete system was implemented in C++. We used

the OTL oracle-odbc template library to access data on an oracle server running Oracle

9i. The oracle 9i was set up on a server running Redhat Linux 9.0 on a pentium 3 dual

processor machine with each processor running at a 450 Mghz clock speed, and 512 MB

of main memory. We installed the oracle spatial extension toconstruct the R-Tree index at

the database server. For the main memory R-Tree index we usedthe spatial index library

[44] developed at University of California Riverside.

To test the scalability of the system we used two real data sets named out5d and uvw.

Out5d data set had 20,000 data points. It is a five dimensionalremote sensor data set

(SPOT, magnetics, and three radiometrics channels - potassium, thorium, and uranium).

The Uvw dataset had 195,000 data points and 6 dimensions. It contains flow simulation

data. We ran experiments over the out5d with a set of real usertraces. We used a set of

4 real user traces each of half hour duration, collected as a part of the study performed in
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[15]. For experiments over uvw data set we used a set of synthetic user traces. However,

these traces were modeled based on the characteristics exhibited by the real user traces.

[15] presents details of modeling user traces. We simulate locality of exploration in user

traces using hot regions. Hot regions are places in the navigation space where the user

spends most of his time. To generate the above set of user traces we declare 5 hot regions,

well spaced from each other in the navigation space, and set the probability that a user

request lies in any of the hot regions to 50%. We call these user traces 50% local. To

simulate user inertia, we use a probability that gives the likelihood that the user keeps

moving in the same direction. For the generation of the above4 user traces we set this

probaility to 50%. Thus we can say that the user moves pseduo-randomly in our experi-

ments, i.e., some of the future possible actions are more probable than other, but choosing

among these actions is still performed non-deterministically. In our last experiment we

use user traces with varying locality and directionality toshow how the cache responds to

different types of user traces.

All the results reported in this section are an average takenover four runs.

6.2 Metrics

The main metric used to evaluate the performance of the cacheis latency. Thelatencyfor

a single user request is the time taken for the backend to serve the data once the request

is submitted. To compute the latency for a complete user trace, we use the following

formula:

latency =

∑
N

i=1 Li
∑

N

i=1
Ti

(6.1)

whereN is the total number of requests,Ti is the number of objects (tuples) fetched

in requesti andLi is the latency for requesti. Equation 6.1 gives us the latency per object
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fetched. It gives us a common ground to compare and combine the latency measures for

different user traces.

A measure derived from latency is thelatency reduction ratio(lrr ). The latency re-

duction ratiofor a particular system configuration is the ratio of the decrease in latency

to the latency obtained when running the same experiment using the base configuration.

In the base configuration the cache, prefetcher and the secondary index structure all are

turned off so the user requests are sent directly to the database.

lrr =
Latencybase − Latency

Latencybase

(6.2)

Equation 6.2 gives us the fraction of the latency reduced by aparticular system con-

figuration. This helps us to evaluate the relative usefulness of each configuration.

In addition we also useobject hit ratioto measure the usefulness of the prefetcher and

replacement policy. The hit ratio for a complete user trace is the ratio of the total objects

fetched directly from the cache to the total number of objects requested by the complete

user trace. Thus the hit ratio for the user trace is given by:

hitratio =

∑
N

i=1
Hi

∑
N

i=1 Ti

(6.3)

whereN is the total number of requests,Hi is the number of objects (tuples) fetched

directly from the cache in requesti andTi is the total number of objects (tuples) requested

in requesti.

6.3 Database Index

The goal was to show the usefulness of the R-Tree index structure on the database server.

To show this we ran two experiments. In the first experiment weran four user traces over
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data sets out5d and uvw. The cache was turned off. Each user request was sent directly

to the database. We record the latency for each user trace with the database index on and

off. Note that when the database index is off the system configuration is the same as the

base configuration.

No-Index Index lrr

User1 2.0253 1.5 0.25
User2 0.6444 0.35 0.45
User3 0.751336 0.5 0.33
User4 0.8855 0.6 0.32

Figure 6.1: Latency in msec with and without database index,out5d data set

No-Index Index lrr

User1 3.90 0.94 0.75
User2 6.09 1.75 0.71
User3 2.05 0.71 0.65
User4 5.42 1.09 0.80

Figure 6.2: Latency in msec with and without database index,uvw data set

Figures 6.1 and 6.2 show the latency and also the latency reduction ratio for data sets

out5d and uvw respectively. For out5d data set the latency reduction ratio on average is

approximately 33%. However, for uvw data set it is approximately 70%. This is because

the search time for the sequential scan increases linearly relative to the size of the data

set, whereas with an index the search time increases almost logarithmically with the size

of the data set. This shows that as the size of the data set increases, the benefits of the

database index become more significant.

In the second experiment we measure the effectiveness of theindex at the database

with the cache turned on. The cache size is set constant 10% ofthe size of the data set for

out5d and to 2% for uvw. Note that uvw is around 10 times largerthan out5d. However,

the cache size does not have to scale with the size of the data set. Therefore using these
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settings we also plan to show that for the system to give reasonable or a better latency

reduction ratio the cache size does not have to scale with thesize of the data set. In this

experiment we again expect to see that the gain in the latencyreduction due to the index

for the bigger data set (uvw) will be larger as compared to thegain for the smaller data set

(out5d). Again the reason being the same as the previous experiment, i.e., the amount of

time we save by using the index over the bigger data set (uvw) is greater than the amount

of time we save by using index over the smaller data set. And since we are using the

latency reduction ratio as the measure, this difference is reflected in the output.

lrr (no-index) lrr(index) ∆lrr

User1 0.50 0.68 0.18
User2 0.52 0.62 0.1
User3 0.25 0.52 0.27
User4 0.36 0.5 0.14

Figure 6.3: Latency reduction ratio with relative cache size 10 %, out5d data set

lrr (no-index) lrr (index) ∆lrr.

User1 0.73 0.95 0.22
User2 0.74 0.94 0.2
User3 0.70 0.91 0.21
User4 0.79 0.95 0.16

Figure 6.4: Latency reduction ratio with relative cache size 2%, uvw data set

Figures 6.3 and 6.4 show thelrr for four user traces using the data sets out5d and

uvw respectively. Note that the∆ lrr is significant. Thus, the spatial index is beneficial.

On average for out5d data set we gain approximately 17% and for uvw data set we gain

approximately 20%. As the size of the data set increases the∆ lrr increases. The reason

again is that the search time when using the index increases at a lower rate as compared to

using the sequential scan. Thus the difference in the amountof time it takes to search for

remainder queries on the database server for the two approaches will increase as the size
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of the data set increases. This shows that the database indexmakes our system scalable.

Furthermore, we can also see that for out5d data set the latency reduction ratio on

average is approximately 58% and for uvw data set it is approximately 94%. Recall that,

the relative cache size for out5d data set is 5 times more thanuvw data set. The reason

being, the amount of time saved due to a cache hit for the bigger data set (uvw) is larger

when compared to the amount of time saved due to a cache hit on the smaller data set

(out5d) because the cost of searching through the bigger data set is higher than the cost of

searching through the smaller data set. Thus, we can conclude that the size of the cache

does not have to scale with the size of the data set.

6.4 Cache Size

Here we show the effect of the cache size on the latency for data sets out5d and uvw. For

this experiment we turn on the cache and the index structure in the database. The cache

uses LRU as the replacement policy and the prefetcher still remains off.
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Figure 6.5: Comparison of cache size vs. average latency, out5d data set
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Figure 6.6: Comparison of cache size vs. average latency, uvw data set

We ran the same four user traces and four runs of each of them. In Figures 6.5 and

6.6 we plot the Relative Cache Size vs. Average Latency for all the user traces. As seen

in the results, the Latency decreases at a high rate for smaller cache sizes. However, the

curve flattens out and we get less gains for bigger cache sizes.

Latency is inversely correlated with hit ratio. For the usertraces used in this exper-

iment it appears that for big cache sizes the only misses we get arecompulsory misses.

Compulsory missesoccur when the cluster is accessed for the first time by the user trace.

Compulsory missesare independent of the cache size, at least until the prefetcher is in-

active. Thus we can see that increasing the relative cache size from 20%-40% for out5d

data set results only in little improvement in latency. Alsonote that the curve flattens out

much earlier for the uvw data set when compared to the curve for data set out5d. This

also shows that the size of the cache does not have to scale with the size of the data set.

This property makes the system scalable for huge data sets.
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6.5 Comparison of Replacement Policies

Here we compare the performance difference between the new replacement policy we

have designed Distance, versus the well know LRU replacement policy. The prior is based

on exploiting spatial locality whereas the latter exploitstemporal locality in user traces

to maximize hit ratio. We ran the same four user traces used inprevious experiments for

both out5d and uvw data sets. The experimental setup remainsthe same as in the previous

experiment.
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Figure 6.7: Cache size vs. hit ratio for Distance and LRU replacement, out5d data set

Figures 6.7 and 6.8 show the average hit ratio and average latency reduction ratio for

the out5d data set. Figures 6.9 and 6.10 show the average hit ratio and average latency

reduction ratio for the uvw data set. From the charts in Figures 6.7 and 6.9 we can see that

in most cases the Distance replacement policy gives a higherhit ratio. In fact for the uvw

data set the distance replacement policy gives a consistently higher hit ratio and at some

points the difference is as much as 7%. We also get an improvement in latency reduction

ratio of approximately 2% at some points as shown in Figure 6.10. So from the charts we
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Figure 6.8: Cache size vs.lrr for Distance and LRU replacement, out5d data set
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Figure 6.9: Cache size vs hit ratio for Distance and LRU replacement, uvw data set

can say that the Distance replacement policy performs at least as well if not better than the

LRU replacement policy for the user traces we are using. Thisconfirms that the collected

user traces do exhibit a high degree of spatial locality and thus this characteristic can be
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Figure 6.10: Cache size vs.lrr for Distance and LRU replacement, uvw data set

effectively exploited for cache replacement.

6.6 R-Tree Cache Index

Here we show the effectiveness of the R-Tree main memory index for cache lookup. To

show this we ran an experiment with the R-Tree main memory index structure turned

on and off. The spatial index on the database is turned on, thecache is configured to

use the LRU replacement policy and the prefetcher is turned off. When the R-Tree main

memory index is turned off, we revert back to using the sequential scanning to find the

requested objects in the cache. We again used the same four user traces as in the previous

experiments over data sets out5d and uvw.

Figure 6.11 shows the average latency for the four user traces for the out5d data set.

From the figure we can see the cache index performs worse than the sequential scan for

small cache sizes. The main reason is that for small cache sizes the hit ratio is low. This

means that cache contents are changing very frequently. Thus, the R-Tree index has to be

44



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Relative Cache Size %

L
a
te

n
c
y

(m
s
e
c
)

Seq Scan

RTree Scan

Figure 6.11: Comparison of cache size vs. latency with and without main memory R-Tree
index, out5d data set
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Figure 6.12: Comparison of cache size vs hit ratio, out5d data set

updated very frequently. Also, since our implementation uses thelinear split method for

insertions the quality of the R-Tree index can degenerate quickly with frequent updates.

Moreover, the cost of updating the R-Tree index is high as compared to practicaly no
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Figure 6.13: Comparison of cache size vs latency with and without main memory R-Tree
index, uvw data set

update cost when considering the sequential scan.

However, for bigger cache sizes the R-Tree curve does cross-over and gives lower

latency values. Figure 6.12 shows the hit ratio for the same experiment. Note there is

only one curve because the hit ratio for both the R-Tree indexand sequential scan is the

same. The only difference really is in the cache look up latency. If we compare Figures

6.11 and 6.12 we see that around the 80% hit ratio mark the R-Tree starts performing

better than sequential scan. Figure 6.13 shows the results of the same experiment over the

uvw data set. The R-tree curve crosses over the sequential scan curve when the relative

cache size is around 5% mark. The hit ratio for this point is around 85%.

From the results we can conclude that the index structure canbe helpful in certain

situations. The effectiveness of the main memory spatial index largely depends on the

cache size which in turn determines the hit ratio. With the increasing size of RAMs in

modern computers the users can allot more cache size and in such cases the main memory

index become useful. However, to make the index work for lower hit ratios we may
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implement an index such as the LR-Tree [4] or Grid File [34] that supports high update

rates as well as high query rates. This is however beyond the scope of this thesis.

6.7 Prefetcher

The goal of this experiment is to show the effectiveness of prefetching. The prefetcher

uses time in between user requests to fetch data that has highprobability of being re-

quested in the near future. To show its usefulness, we ran an experiment using 4 user

traces over data sets out5d and uvw. We turn on the cache, the index structure on the

data base and use sequential scan as the cache look up policy.We plot the charts with the

prefetcher on and off to show its usefulness.
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Figure 6.14:lrr of prefetch vs. no prefetch, user3, out5d data set

Figure 6.14 shows thelrr with and without the prefetcher for user3. Here we can

see that the prefetch curve is above the no prefetch curve forpractically all cache sizes.

This shows that the prefetcher improves the performance of the cache by around 8% on

average. This can be directly attributed to the improvementin hit ratio. Figure 6.15 shows
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Figure 6.15: Hit ratio of prefetch vs. no prefetch, user3, uvw data set
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Figure 6.16: Averagelrr for 4 user traces, prefetch vs. no prefetch , out5d data set

the hit ratio for the same user trace with and without the prefetcher. The curves for the

remaining user traces also show the same trend. Figures 6.16and 6.17 show the average

lrr for the four user traces for data sets out5d and uvw respectively. From the figure we
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Figure 6.17: Averagelrr for 4 user traces, prefetch vs. no prefetch , uvw data set

can see that enabling the prefetcher increases thelrr by around 4% on average for out5d

data set and 3% on average for uvw data set.

6.8 User Trace Analysis

The goal here is to show how the cache responds to different types of user traces. To show

this we record the cache hit ratio for different types of usertraces. We vary 2 parameters

in the user traces, the locality and the directionality. Forthis experiment the spatial index

at the data base is turned on, the cache is turned on and the prefetcher is turned off.

In the first experiment we test the performance for the cache for user traces with

varying locality. We set the directionality of the user trace to 50%. That means there

is a 50% chance that the user will move in the same direction asthat of the last user

movement. User traces with x% locality means there is x% chance that the user will be

in one of the hot regions. As described in Section 6.1 hot regions are used to simulate

locality of exploration. Thus we declare 5 hot regions, wellspaced from each other in the
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navigation space.
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Figure 6.18: Localtiy % vs. hit ratio, uvw data set

Figure 6.18 shows the results of the experiment for different cache sizes. From the

figure we see that as locality increases the hit ratio also increases. This is mainly because

with increasing locality the chances that the user revisitsa particular node also increase

and thus the hit ratio also increases. Also, as the cache sizeincreases the curves shift

upwards. This confirms the effect we see in Section 6.4.

In the second experiment we test the performance of the cachefor user traces with

varying directionality. We set the locality of all the user traces to 50%. Other than that,

experiment setup stays the same as in the previous experiment.

Figure 6.19 plots directionality versus hit ratio for different cache sizes. From Figure

6.19 we do not see any direct correlation between directionality and hit ratio. This is

mainly because our caching (replacement) strategy does notexploit the directionality of

user traces. However, the curves in this experiment also shift upwards with an increasing

cache size. This again confirms the effect we see in Section 6.4.
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Figure 6.19: Directionality % vs. hit ratio, uvw data set

6.9 Discussion

The experiments have demonstrated that each component of the framework plays a signif-

icant part in reducing the response time of the system. Also each of the methods scales,

i.e., perform relatively better with bigger data sets. Thusour proposed framework that

includes a hierarchy encoding technique, caching and a prefetching strategy work in syn-

ergy to exploit characteristics of visual visual exploration environments such as locality of

exploration, temporal locality in user traces and user inertia to support visual exploration

operations over large data sets. Due to this success, our framework will be released with

the next version of the freeware XmdvTool [54].
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Chapter 7

Related Work

7.1 Visual Hierarchy Exploration

There has been considerable research in the visualization area toward finding effective

methods to display and explore hierarchical information, such as Tree-Maps [42], Cone-

Trees [38] and Reconfigurable Disc Trees [24]. Most of these methods provide only

modest modes of interaction for navigating the hierarchy. Navigation plays an important

role in aiding users to find their way through the complex structure: to see where they are,

what information is available and how to identify information of interest.

On the other hand, techniques for visual exploration of hierarchies [30] have inde-

pendently been proposed. Hierarchy visualizations are evident, for instance, in many

commercial applications, such as Microsoft Windows Explorer, Norton Commander, and

so on. The major disadvantage of such interfaces however is that there is a limited display

space for the hierarchy. Hence, they are not suitable for displaying large data sets. The vi-

sualization technique we use in this work [19, 20] has both the capability of interactively

navigating the hierarchical structures and the capabilityof displaying large datasets.
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7.2 Visualization-Database Integrated Systems

Database support systems for visualization systems such asPolaris [45], Tioga [46], ADR

[28], USD [25] and IDEA [41] represent work closely related to ours in the sense that

all of them work towards making visualization systems run over large persistent data.

However, practically all of the detailed techniques used are rather different in each of

these systems.

Polaris [45] is an interface for exploring multi-dimensional databases that extends the

well-known Pivot Table interface. Similar to our structure-based brush, Polaris includes

an interface for constructing visual specifications of table-based graphical displays and

the ability to generate a set of relational queries for the visual specifications. But Polaris

does not study the effect of caching and prefetching to improve performance.

ADR [28] provides a general framework to provide support forapplications that em-

ploy range queries on large scale multi-dimensional data sets. ADR targets a distributed

memory architecture with one or more disks attached to each node. However in our case

we propose a framework specifically optimized for navigation of hierarchies.

USD [25] proposes a semantic net model to store and retrieve unstructured data. In-

stead, in our case we assume the data is structured in a hierarchical fashion and specif-

ically optimize the system to store and retrieve hierarchies. Tioga [46] proposes a user

interface paradigm in which the user can construct a visual query (recipe) to retrieve and

process information for the purpose of data visualization.However, the problem of query

translation is not present since the user directly specifiesthe query using the interface.

IDEA [41] is an integrated set of tools to support interactive data analysis and explo-

ration. Similar to the XmdvTool the tool focuses on integrating multiple display views,

but on-line query translation and memory management are notaddressed. In sum this

work is unique in that it focuses on the issue of what core database techniques can be
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utilized to effectively exploit and thus support visual structural exploration environments.

Other systems that have a visual interface and a database back-end include dynamic

query histograms [13] and direct manipulation histograms [22]. However, the operations

translate differently: to dynamic range queries in [13] andto temporal queries in [22].

Neither deals with hierarchy exploration support nor with caching or prefetching.

7.3 Hierarchy Encoding

Our approach toward hierarchy labeling is related to the nested interval [51] method and

the nested set [6] method. The Nested interval method generalizes the nested set method

[6]. The interval boundaries do not have to be integers; theycan be rational or even real

numbers. The labels assigned to the node by the nested interval approach are similar to

the horizontal extents. We augment this labeling scheme with labels for vertical extents

to incorporate the vertical selection semantics of the structure-based brush in our labeling

scheme. Furthermore our work goes beyond hierarchy encoding. We propose a method

that allows us to map the encoded hierarchy to a 2D space and the navigation operations

to spatial queries. Moreover we propose a framework to exploit the encoding scheme

which includes spatial indexing, caching, spatial replacement and prefetching.

Ciaccia et al. [8] used the mathematical properties ofsimple continued fractionsfor

encoding tree hierarchies. Basically, each node of the treehas a unique label that encodes

the ancestor path from that node up to the root. The trees are assumed to be ordered (i.e.

children have order numbers) so that the ancestor paths simply correspond to a sequence

of integers. The sequence gives us the code of the ancestors of a node without any physical

access to the data. This information is sufficient for performing some operations, such as

getting the first common ancestor of 2 nodes or testing if a node is the ancestor of another

one, without any recursive retrieval of data. However, given a noden, this method cannot
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efficiently provide the list of descendants ofn. This limitation reduces the number of

operations that can be supported.

A similar idea was introduced by Teuhola [50] who used a so called signaturefor

encoding the ancestor path. Given a noden, the code ofn is obtained by applying a hash

function to it and by concatenating the resulting value withthe code of its parent. The

non-unique code can make the number of tuples retrieved be much larger than needed.

Moreover, the code obtained by the concatenation of all ancestor codes could exceed the

available precision for deep trees.

The above encoding schemes and many others come under the category of prefix-

based encoding schemes. [26] trys to optimize space requirements of labels assigned

by the encoding scheme. It derives the space requirements ofnested interval encoding

schemes and suggests a prefix-based encoding scheme with lesser space requirements.

The encoding scheme is based on assigning binary strings to each edge and the label

assigned to a node is derived from concatenating the stringsassigned to the edges in

the path from the node to the root. They show that in most cases, this scheme reduces

total size of the labels by around 10%. However, the scheme suffers from bad worse case

guarantees, that is for a tree with a long path the labels can get very long. There is no clear

winner and this is still an open research topic. Moreover, inthis thesis we do not focus on

minimizing the size of the labels. This can be one possible area of future research.

Recently, there has been considerable work in the area of hierarchy representation

for XML indexing and for retrieval of XML documents. [31] extends the idea proposed

in Dietzs numbering scheme [14] to support dynamic insertions with recomputation of

labels. However, in our case we assume that the data is static. The main idea in [14] was

to use tree traversal order to determine the ancestor-descendant relationship between any

pair of tree nodes. Each node is labeled with a pair of preorder and postorder numbers.

In the tree, we can tell node (1,7) is an ancestor of node (4,2), because node (1,7) comes
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before node (4,2) in the preorder (i.e. ,1< 4) and after node (4,2) in the postorder (i.e., 7

> 2). This scheme does not incorporate the vertical selectionsemantics of the ALL and

the ANY brush. Moreover, unlike the labels assigned by our scheme, the labels assigned

to the nodes do not easily map to a 2D space. Thus the structure-based brush selection

cannot be expressed as simple spatial intersection operations as in our framework.

[49] proposes the dewey order encoding to answer queries such asfollowing andfol-

lowing sibling. Here each node is assigned a vector that represents the pathfrom the

document’s root to the node. The labels for each node can get very big for deep trees.

Also note that when implementing structure-based brushes we only need to answer an-

cestor queries. Thus, for our visualization application the labels do not have to contain

information about the absolute position of the node in the complete tree.

7.4 Caching

Unlike the microprocessor’s instruction and data caches where objects in the cache are

directly referenced by their ids (address), in our case the objects in the cache are referred

by a property they satisfy, i.e, if they lie in the current structure-based brush. Thus a

set of objects is referenced using a query (current brush). High level caching system in

which objects are not individually referenced is calledsemantic caching[12] or predicate

caching[27]. Semantic caches organize or group the contents of the buffer by queries

that retrieved them. The groups are calledsemantic regionsand the queries are called

semantic descriptors. The cache lookup and replacement is then done at the granularity

of semantic regions. However, our memory management systemis different from the one

proposed for semantic caches [12, 27]. The contents of the buffer are not organized by the

set of queries that retrieved them; rather, each cached object is handled individually and

stores adescriptorthat helps to identify if the object falls in the current query. Thus, we
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handle data at a smaller granularity (i.e., object level) with regards to cache lookup and

replacement. This approach avoids the question of cache utilization raised in [12]. One

can argue that this gain comes as a trade off against the higher cost of cache lookup, since

in our architecture the complete cache has to be scanned for each request. To counter this

argument we exploit characteristics of visual explorationenvironments such as regularity

of the query type (Section 3.4) and spatial encoding of navigation operations to use a

main memory spatial index structure that can eliminate the need to scan the complete

cache. Other work in the area of object level caching for database applications has been

addressed for example in [10, 39]. Also, object-based caching has been studied recently

in the context of web applications [17].

[12] usessemantic distancefor replacing semantic regions. It usesMahattan dis-

tanceas asemantic value functionto determine the importance of each semantic region.

Here each semantic region is assigned a replacement value between the “center of grav-

ity” of that region and the most recent query. The semantic region with the maximum

distance from the most recent query is replaced. This idea issimilar to the Distance re-

placement policy we use, the only difference being we do not replace complete semantic

regions (brushes); we only replace individual objects. Themain reason being for visual

exploratory environments such as ours consecutive queries(brushes) exhibit a high de-

gree of overlap. Emptying the results of complete queries (brushes) from the cache can

remove potentially useful objects from the cache.

7.5 Prior Work in XmdvTool

We use this section to describe the exact contributions of this thesis to XmdvTool. There

has been a significant effort over the past four years to scalehierarchical displays in

XmdvTool to support navigation operations over large data sets. Onekey effor of this
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thesis work has been simply to fix many of the assumptions and the limitations of the

prior work.

[48] proposed to use a hierarchy encoding and caching schemeto support navigation

operations over large data sets. However, the hierarchy encoding technique did not cor-

rectly incorporate the vertical selection semantics of thestructure-based brush. Precisely

a noden could satisfy the vertical selection criteria iff thelod(n) = lod(brush). This

criteria does not give the same result as Algorithm 1. To solve the problem we change

the criteria. That is a noden satisfies the vertical selection criteria ifflod(parent(n)) <

lod(brush) ≤ lod(n). Furthermore, we also extend the idea and propose a mapping of

the hierarchy to the2D Hierarchy Mapand the navigation operations to spatial queries.

This mapping now allows us to use spatial index structures toexecute efficient searches.

The caching scheme proposed in [47] also suffered from the same problem. For ef-

ficient cache lookup it proposed hashing the nodes based on their level-of-detailvalue.

Assumed that the node satisfies the vertical selection criteria only if the desiredlevel-of-

detail is exactly equal to that of the node. As per the structure-based brush semantics

a noden is a part of the vertical selection ifflod(parent(n)) < lod(brush) ≤ lod(n).

In this thesis we propose a caching scheme described in Section 4.3 that overcomes this

limitation. That is we no longer hash on thelevel-of-detail. Instead for fast cache lookup

we propose maintaining a memory-resident spatial index that exploits the spatial mapping

derived from the hierarchy encoding to search for selected nodes in the cache.

Furthermore the implementation of the cache in [47] was based on the assumption that

the contents of the brush will always fit into the cache. This assumption seriously limits

the scalability of the system, mainly because the maximum brush size is equal to the size

of the unclustered data set (or the leaves in the cluster tree). For the system to be scalable

the cache size should not directly depend on the data set size. To remove this assumption,

we have implemented an incremental loading scheme (Section5.2) that handles the case
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when the brush size exceeds the cache size. It loads the data from the database in blocks

equal to the cache size and delivers these blocks to the frontend. Once a block is served

it can be replaced by the new block coming from the database.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

With the increasing amount of data being accumulated nowadays, the need for visually

exploring large datasets becomes imperative. A viable way to achieve scalability for

visualization tools is to integrate them with database management systems [32]. Such

integrations raise two problems: First it requires the organization of data on persistent

storage such that visual exploration operations can be mapped to queries that can be effi-

ciently executed on persistent data. Second, a good main memory management strategy

is needed that exploits unique properties of visual exploration systems to reduce the over-

head of database fetches and thus make the use of the databasetransparent to end-users.

This thesis presents a framework of components that collectively address both these re-

quirements.

The approach is being used to couple the XmdvTol 6.0, a visualization application

for interactive exploration of multivariate data, with an Oracle 9i database management

system. Experiments for assessing the approach show that collectively the components

scale XmdvTool 6.0 to handle visual exploration operationsover large hierarchies. In
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summary the main contributions of the approach are:

• A hierarchy encoding technique that reduces the tree to an equivalent spatial rep-

resentation called the2-D Hierarchy Map. This representation allows us to map

recursive hierarchy navigation operations to non-recursive spatial search queries

that can be answered efficiently using existing spatial index structures. We show

the effectiveness of the spatial index structure.

• A caching strategy that exploits the characteristics of thevisual navigation environ-

ment such as, locality of user exploration to buffer the recently used nodes to avoid

database fetches and thus improve system response time. Themain features of the

cache are:

1. Spatial Index based Cache Lookup Strategy: The cache exploits the spatial

representation of the tree derived from the hierarchy encoding technique for

efficient cache lookup. Specifically it builds a memory resident spatial index

for fast searches over the cache.

2. Distance based Cache Replacement: To exploit spatial locality exhibited in

user traces [15], we implement a Distance replacement policy. The policy

chooses a cache entry that is furthest away from the current active selection as

the replacement victim.

• Integrated the direction-based prefetching strategy proposed in [15]. It mainly ex-

ploits user inertia, i.e, the tendency of the user to move in the same direction, to

predict and buffer future user requests and thus reduce system response time.

• Performed experiments to quantify the usefulness of each component in the system.

The experiments show that each of the components in the framework contributes
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significantly to reducing system latency and thus will scaleXmdvTool to work over

large data sets. The summary of the experimental results is as follows:

1. The Spatial Index at the database used alone reduces the latency by up to 72%.

2. The cache when used together with the spatial index at the database reduces

the latency by up to 94%.

3. The distance replacement policy performs as well or better than LRU replace-

ment in most cases.

4. The prefetcher used together with the cache and the database index can reduce

the latency by up to 96%.

8.2 Future Work

Directions for further research include both refining the current approach and making it

more general by dropping some of the constraints that we are still enforcing now.

To improve the performance of the cache look up index (Main Memory R-Tree index)

we can use a spatial index such as the LR-Tree [4] or Grid File [34] that claim to support

fast updates and do not degenerate with frequent updates.

Integrated caching and prefetching [5] for visual exploratory environments is also an

interesting area of future research. Prefetching and replacement both try to make the

optimal use of the main memory available to the application.The former fetches data

having high probability of being referenced next, and the latter replaces the data items

with the least probability of being referenced when the needarises. This suggests that if

both the strategies work together this may significantly improve the cache performance.

Thus, the study of the inter-play between integrated caching and prefetching can be useful.

The system could also be functionally extended by dropping some of the current con-

straints, for example the “static” assumption. Currently we assume that the data set is
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static. This assumption has two aspects. First, we might consider dynamic changes of

the data set. It is more and more common to analyze information that suffers intensive

updates during the exploration. Second, we might dynamically change the tools that we

are using during the exploration itself. Dynamic clustering or dynamic computation of

aggregates would be possible, for instance.

Another interesting extension to the system could be to consider how to extend the

system to support multiple active brushes, this can affect the three main components of the

framework i.e the hierarchy encoding, caching and prefetching. The hierarchy encoding

scheme should work fine because each active brush can be represented as a line and

the nodes in the brush are the nodes that intersect this line.However, having multiple

brushes can raise some interesting questions for caching specifically cache replacement

and prefetching.

For caching and prefetching for multiple active brushes we need to study user trace

characteristics to see how often user’s tend to switch between brushes? also whether the

user trace characteristics listed in Section 3.4 still holdtrue? This study can help answer

questions such as what nodes to cache? What nodes to replace?Can the nodes still be

replaced based only on recency?

Moreover, to incorporate for multiple brushes we will need to modify the proposed

cache replacement policies because the LRU and Distance replacement policy assume

only one active brush. We can extend distance replacement policy to compute the distance

of node using the distance from each active brush or extending the LRU replacement

policy to maintain multiple lists each for a different brush. Also prefetching now will

have to keep track of current active brush and predict which of the brushes will be moved

and in what in direction.
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