
Parameter Continuation with Secant Approximation for Deep Neural Networks

by

Harsh Nilesh Pathak

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Data Science

in the

Graduate Division

of the

Worcester Polytechnic Institute, Worcester

Fall 2018

Committee in charge:

Professor Randy Paffenroth, Advisor

Professor Kyumin Lee, Reader

1

Abstract

Parameter Continuation with Secant Approximation for Deep Neural Networks

by

Harsh Nilesh Pathak

Master of Science in Data Science

Worcester Polytechnic Institute, Worcester

Professor Randy Paffenroth, Advisor

Non-convex optimization of deep neural networks is a well-researched problem. We

present a novel application of continuation methods for deep learning optimization that

can potentially arrive at a better solution. In our method, we first decompose the original

optimization problem into a sequence of problems using a homotopy method. To achieve this

in neural networks, we derive the Continuation(C)-Activation function. First, C-Activation

is a homotopic formulation of existing activation functions such as Sigmoid, ReLU or Tanh.

Second, we apply a method which is standard in the parameter continuation domain, but to

the best of our knowledge, novel to the deep learning domain. In particular, we use Natural

Parameter Continuation with Secant approximation(NPCS), an effective training strategy

that may find a superior local minimum for a non-convex optimization problem. Additionally,

we extend our work on Step-up GANs, a data continuation approach, by deriving a method

called Continuous(C)-SMOTE which is an extension of standard oversampling algorithms.

We demonstrate the improvements made by our methods and establish a categorization of

recent work done on continuation methods in the context of deep learning.

i

Contents

Contents i

List of Figures iii

1 Introduction 1
1.1 Contributions . 4

2 Background 5
2.1 Deep Feedforward Networks . 5
2.2 Autoencoders . 7

2.2.1 Principal Component Analysis (PCA) and Autoencoders 8
2.2.2 PCA and SVD . 8

2.3 Non-convex Optimization problem . 9
2.4 Stochastic Gradient Descent (SGD) . 10
2.5 Generative Adversarial Networks . 12
2.6 Continuation Methods . 16

2.6.1 Parameter Continuation . 16
2.7 Secant Line . 18

3 Motivation and Related work 19
3.1 Motivation . 19
3.2 Related Work . 22

4 Methods 26
4.1 Model Continuation . 26

4.1.1 C-Activation function . 27
4.1.2 Rethinking of Cost function . 27
4.1.3 Natural Parameter Continuation of Neural Networks with Secant ap-

proximation . 31
4.2 Stable initialization of Autoencoder through PCA 34
4.3 Data Continuation . 36

ii

5 Experiments 40
5.1 Datasets . 40
5.2 Neural Network Architecture . 42
5.3 Results . 44

5.3.1 PCA initialization results . 44
5.3.2 C-SMOTE results . 45
5.3.3 NPCS results . 48

6 Conclusion and Future Work 54
6.1 Secant on Noise parameter α . 55

Bibliography 58

iii

List of Figures

2.1 Activation functions . 6
2.2 Autoencoder . 7
2.3 Manifold Learning [54] . 9
2.4 Critical Points [20] . 11
2.5 GAN Work-flow . 13
2.6 Distribution disjoint example [4], [50] . 14
2.7 Natural Parameter Continuation . 17
2.8 Secant Line . 18

3.1 Observation . 20
3.2 Step-Up GANs . 21
3.3 Mollified objective function [21] . 24

4.1 C-ReLU . 28
4.2 C-Sigmoid . 28
4.3 C-Tanh . 29
4.4 What’s changing in Lambda space? . 31
4.5 Parameters in Lambda space, λ− θ curve . 32
4.6 Natural parameter continuation via secant in λ space 34
4.7 Adaptive ω . 35
4.8 Continuous-SMOTE explanation . 38

5.1 MNIST Dataset [42] . 41
5.2 Fashion-MNIST Dataset [52] . 41
5.3 Sine-Wave data . 42
5.4 2D Multi-Gaussian Grid data . 42
5.5 Autoencoder with various activation functions 43
5.6 Stable Initialization through PCA . 44
5.7 C-SMOTE applied to a Sine wave . 45
5.8 C-SMOTE applied to a Grid with 25 Gaussian modes 46
5.9 Step-Up GAN result . 47
5.10 C-SMOTE applied to a MNIST digit zero . 48

iv

5.11 NPCS with C-ReLU . 51
5.12 NPCS with C-Sigmoid . 52
5.13 NPCS with C-Tanh . 53

6.1 Secant approximation on C-SMOTE algorithm’s Noise parameter α 55
6.2 Motivation for Pseudo arc-length . 57

v

List of Symbols

The next list describes several symbols that will be later used within the body of the docu-

ment

λ homotopy parameter

θ set of parameters of a neural network

C data embedding code

f(X) encoder function

g(C) decoder function

J(θ) cost or loss function

X ∈ Rm×n input data

φ Activation function

DJS Jensen–Shannon(JS) divergence

DKL Kullback–Leibler(KL) divergence

pθ Generated data distribution

pz Noise distribution

vi

pdata True data distribution

Mathematical Models

AE-ADAMactivation Autoencoder with specified activation function and ADAM optimizer

AE-NPCSactivation Autoencoder with specified activation function and optimized using

NPCS method

WGANBN Wasserstein GAN with Batchnormalization

WGANvanilla Wasserstein GAN with no normalization

AE Autoencoder

GAN Generative Adversarial Network

NPC Natural Parameter Continuation

NPCS Natural Parameter Continuation with Secant approximation

PCA Principal Component Analysis

SVD Singular Value Decomposition

SVM Support Vector Machine

vii

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Randy Paffenroth for his

guidelines throughout my research thesis. Also, I would like to thank Xiaozhou Zou, whose

collaboration was helpful for me to take correct initial steps and thus boost the research

work for this thesis.

1

Chapter 1

Introduction

Deep learning is an example of representation learning methods that are widely used to

transform raw input measurements into one or more abstract levels. Such neural networks

provide the flexibility of adding multiple levels of abstraction, through which we can represent

many complex transformations. These methods have significantly advanced the state-of-the-

art in speech recognition [24], image recognition [33] and text mining [37] for application in

domains such as health-care, travel and security [34]. Deep learning has achieved many state-

of-the-art results in supervised tasks such as classification and regression, and such methods

have also been applied to unsupervised learning such as dimensionality reduction. However,

training the neural network to find an optimal solution is a challenging optimization task

[8], [19]. Using current techniques, machines configured with large number of CPUs, GPUs

and high memory, spend days or even weeks to solve deep learning optimization problems.

The objective of a deep learning model is no different from any other machine learning

model. They try to approximate a function ftrue that is the true function that maps the raw

input x to the output labels or targets, y such that y = ftrue(x) [20]. For example, perhaps

ftrue is a camera taking a picture, or some other physical measurement process. The key

difference between deep learning models and other types of machine learning models is that

deep learning models use deep composition of functions as represented by a neural network.

CHAPTER 1. INTRODUCTION 2

Precisely, a deep neural network forms a chain of functions (layers), that defines a mapping

y = f(x; θ), where θ is the set of parameters. These parameters θ are estimated by minimizing

an objective (cost) function, such that the mapping f best approximates ftrue.

Stochastic Gradient Descent(SGD) [20] is a popular choice for minimizing such functions.

A few random samples, called a mini-batch, from the input matrix are provided to the deep

neural network, after which the average gradients are being computed over those samples

and then using backpropagation to adjust the model parameters accordingly. This allows

convergence even when the number of training dataset samples is large. We have seen many

improvements in SGD that are widely applied by the deep learning community such as

RMSprop [25], AdaGrad [15] and Adam [31]. All of these methods work fairly well for many

tasks. However, their successful implementation is highly dependent on the quality of the

initial guess. Moreover, there are many theoretical guarantees that show that the optimizer

will always converge to a local-minimum, but convergence to a global minimum is difficult

to guarantee.

Loss surfaces are poorly understood [11]. Even a simple feed-forward network can have

exponentially many local minima [6],[45]. Previously, researchers have shown that the dif-

ferent optimization and initialization methods can lead to a dramatically different geometry

of the solution curve on a loss surface [19],[26],[11]. In other words, a slight variation in

initialization may lead the model to converge to a very distinct local minimum. This in-

dicates, that some random initialization may lead to a solution that is very far away from

the true solution. Thus, aforementioned non-convex optimization [19],[20] problem requires

some rethinking toward its solution. In this thesis, we are interested in reporting and solving

similar optimization problems.

Considering non-convex optimization is a challenging task which arises with almost every

deep learning model, a well-known potential alternative to SGD for such complex models

is a parameter continuation method. Continuation methods can be utilized to organize the

training and assist in improving the quality of an initialization that may accelerate the

convergence of the non-convex optimization problem. Parameter continuation is the prime

CHAPTER 1. INTRODUCTION 3

focus of our thesis. The fundamental idea is to start from an easier version of the problem

and gradually transform it into the original version. During this process one transforms the

global minimum (or a superior local minimum 1) of the easier problem into a minimum of the

harder problem. This transformation reveals some unusual mechanics of the deep learning

optimization task. In particular, almost all of the state-of-the-art techniques, of which we

are aware, work on a fixed loss surface. However, we transform the loss surface continuously

to design an effective training strategy.

Further in this thesis, we briefly explain our goals and contributions. In Chapter 2,

we provide the necessary background for our readers. Then, in chapter 3, we study and

discuss other works that are close to our work for deep learning, such as Curriculum learning

[8], Mollifying networks [21] and training deep learning by diffusion methods [38]. In later

chapters, we discuss our methods 4, experiments and results 5.

In this thesis, we provide background on continuation methods, especially on Natural

Parameter Continuation [1]. We attempt to enlighten a few topics, which we believe are

not very well discussed in the literature. First, the association of continuation method with

deep learning is not well known. Second, we discuss the importance of initialization strategy

for stable and faster convergence. These two concerns are frequently encountered in the

literature when one attempts to solve non-convex optimization problems. In this thesis, we

propose a novel continuation training strategy that leverages the advantage of continuation

method along with the standard training procedure of deep neural networks. The novel

contributions of this thesis are outlined in the following section.

1superior local minima means a local minimum, which is near to the true solution of the objective
function

CHAPTER 1. INTRODUCTION 4

1.1 Contributions

In this thesis, we did a literature survey and extracted some insightful relationships between

various work performed on continuation methods for the deep learning optimization problem.

We characterize the continuation methods into model continuation and data continuation.

To facilitate model continuation in our network, we establish a novel activation function

Continuation(C)-Activation, that yields a continuous deformation from the linear to the

non-linear network.

We present a novel continuation training strategy (or optimization method) for neural

networks. Following the principles of Natural Parameter Continuation(NPC), our method

develops the idea of using a Secant approximation leading to our novel Natural Parameter

Continuation using Secant (NPCS) method. NPCS is able to work jointly with Stochastic

Gradient Descent(SGD) and its variants, but at each stage the NPCS method provides a

SGD solver with a good initial guess. Next, we compare the convergence of NPCS with

a well-used optimization technique - Adam. Further, instead of randomly initializing the

neural networks, we use Principal Component Analysis(PCA), which usually provides a

stable initialization and a robust solution for the NPCS method. Next, we show results for

PCA initialization that significantly reduces the number of training steps and we designed

an Autoencoder(AE) to demonstrate the results of our optimization method.

Finally, we present Step-Up GANs, a data continuation technique derived in pre-

vious work 2. Furthermore, we analyze its shortcomings and overcome them with our

pre-processing algorithm Continuous(C)-SMOTE – a novel oversampling technique. C-

SMOTE can be applied to a variety of datasets such as a synthetic Multi-Gaussian Grid,

Sine-Wave and a real-world dataset MNIST. Association of C-SMOTE can condition the

training of neural networks with some specific loss functions such as KL-divergence and

JS-divergence.

2Xiaozhou Zou’s Master’s thesis was submitted in April 2018.

5

Chapter 2

Background

2.1 Deep Feedforward Networks

We understand linear models from classic machine learning such as linear regression and

logistic regression. Linear models are shown to have convergence guarantees, because they

satisfy all the constraints of convex optimization. However, these models are limited to

extract only the linear properties of the data. To overcome this limitation, various methods

such as kernel trick, RBF, manual engineering and neural networks are developed [20].

Deep Feedforward Networks are modeled with an aim to approximate some function ftrue.

For example, for a classifier, y = ftrue(x), ftrue maps input x to category y. Here, x is an

input row or feature set, from the input data matrix X. A feedforward network introduces

a mapping y = f(x; θ), and then learns the value of the parameters θ that result in the

approximation of the function ftrue [20]. Feedforward network is a directed acyclic graph

representing the composition of functions. f(x) = (f 2(f 1(x))) defines a simple feedforward

network that has two functions, f 1, is the hidden layer and f 2, is the output layer. In order

to make the network deep, we may add several functions in a chain, where the length of

the chain determines the depth of the network. In addition to that, we may vary the width

(dimensionality) of the network at various hidden layers.

CHAPTER 2. BACKGROUND 6

The hidden layers enable to learn nonlinear properties of the input X. However, just

stacking many functions won’t help us to achieve non-linear behavior from the data. Thus,

apart from varying depth and width, we also need to choose a suitable activation function.

Some of the popular choices are:

1. Logistic sigmoid function (Sigmoid)

φsigmoid(x) =
1

1 + e−x
(2.1)

2. Hyperbolic tangent funciton (Tanh)

φtanh(x) =
1− e−2x

1 + e−2x
(2.2)

3. Rectified linear fucntion (ReLU)

φrelu(x) = max(0, x) (2.3)

Sigmoid Tanh ReLU

Figure 2.1: Activation functions

Learning feedforward network consists of specifying an optimization scheme, a cost func-

tion, and network parameters. One of the biggest drawbacks of training a neural network

is the cost function, which is usually convex with most machine learning algorithms, now

becomes non-convex[20]. Usually, a parametric model defines a distribution p(y|x; θ), and

CHAPTER 2. BACKGROUND 7

similar to machine learning, we apply the principle of maximum likelihood to estimate the

parameters. Neural networks usually learn from the iterative gradient descent. Specifically,

SGD is applied to the non-convex cost function along with backpropagation to the parame-

ters of network based on the errors we make [22]. After several backpropagation steps, model

distribution is usually a good resemblance of the data distribution.

2.2 Autoencoders

Autoencoder (AE) is a neural network that aims to learn an identity function, given an

input to the output in unsupervised fashion [20]. AE has two main components, namely

an encoder C = f(X), and a decoder X ′ = g(C), where C represents code and X ′ is

the reconstruction of X. Code C is the feature representation which is usually of lower

dimension.

Figure 2.2: Autoencoder

In the above figure, we show input data matrix X, an encoder function f that transforms the data
to a code layer C. Furthermore, representation of C is mapped back to X ′ using a decoder function
g.

J(x, g(f(x)); θ)1 (2.4)

In equation 2.4, we show the objective function of an AE, where J is the objective function.

One of the most popular choice is mean squared error ‖gθ(fθ(x))−x‖2
F , which is non-convex

as with deep autoencoders [8],[45].

1J(θ) short hand notation

CHAPTER 2. BACKGROUND 8

Theoretically, there is no constraint on the dimension of the code layer C. Instead of

learning key properties from the data, AE can potentially memorize it, when C has a much

higher dimension than data [45]. When the dimension of code layer is less than the dimension

of the data, then AE is popularly known as Undercomplete AE [20]. It captures the most

essential properties of the data, and in this thesis, we are more interested in optimizing

Undercomplete AEs.

AE determines the feature representations of data on a linear or a non-linear manifold.

These are thus widely used for dimensionality reduction, unsupervised pretraining [20] or

feature learning. Recently, AE gained significant attention in generative modeling [30].

However, designing a robust deep autoencoder is a challenging task when dealing with high

dimensional datasets [54].

2.2.1 Principal Component Analysis (PCA) and Autoencoders

The curse of dimensionality is a common issue and frequently encountered with high di-

mensional data; thus analyzing the data in a low dimensional manifold is usually preferred

[14],[48]. PCA, a widely used unsupervised algorithm can provide a lower-dimensional linear

manifold (subspace) of the data. However, the classic linear manifold is usually not preferred

when the data resides in some nonlinear manifold [54] as shown in figure 2.4. On the other

hand, AEs are equipped with non-linear activation functions such as Sigmoid, ReLU etc.

Thus, AE can be viewed as a non-linear generalization of PCA [54]. In the absence of acti-

vation functions, autoencoders learn almost the same linear manifold as PCA, given the loss

function, is mean squared error [20]. In this thesis, we study both the methods, understand

their similarities and show how autoencoders can benefit from PCA in section 4.

2.2.2 PCA and SVD

PCA calculates the correlation matrix of the data (X ∈ Rm×n) as XTX, to compute

the eigen-decomposition of the matrix. To overcome this heavy computation, a numerical

CHAPTER 2. BACKGROUND 9

Figure 2.3: Manifold Learning [54]

Points in blue are true data points that clearly lies on a non-linear manifold. The green points show
an optimized non-linear projection of the data. The red points show the linear manifold which is
projected by PCA. Clearly, PCA fails to learn the non-linear manifold of the data.

method, Singular value decomposition (SVD) has a more efficient approach to calculate the

same PCA projections [41].

Given the data matrix X, its singular value decomposition is given by

X = USV T (2.5)

where U and V are the unitary matrices, and singular values of X are present in the diagonal

matrix S. Rank of the data matrix X is the number of non-zero diagonal entries in S. Next,

the rows of V T are the eigen-vectors of XTX and columns of U contain eigen-vectors of XXT

and principal components can be calculated by US. We show how SVD can be utilized as

an initialization strategy for Autoencoders in chapter 4.

2.3 Non-convex Optimization problem

An optimization problem can be formulated as

min
θ∈R

J(θ)

s.t. θ ∈ C
(2.6)

CHAPTER 2. BACKGROUND 10

where θ is a parameter or set of variables to be estimated in the problem, J : Rp −→ R is

the objective function of the problem, and C ⊆ Rp is constraint set of parameters.

There are two conditions for a problem to be convex, i.e. objective function and a

constraint set 2 of this problem, both of which are convex [27]. Any optimization problem

that fails to meet either one of these conditions is called a non-convex optimization problem

[27].

A non-convex optimization problem is shown to be NP-hard to solve [36]. Such problems

are frequently observed in many applications of machine and deep learning such as recom-

mendation systems, signal processing, and bioinformatics. Popular techniques that are often

used for a non-convex problem are gradient descent, alternating minimization, expectation

maximization, etc.

2.4 Stochastic Gradient Descent (SGD)

In the previous section, we saw the non-convex optimization problem and methods that

are commonly practiced to find their solutions. Especially with deep learning, Stochastic

Gradient Descent (SGD) and its variants are generally used to find a superior local minimum.

SGD algorithm for an AE is shown here 1. SGD is highly sensitive to its learning rate ε

and many improved variants of SGD show plausible ways to converge to a superior local

minimum with almost no theoretical guarantees.

Usually in convex optimization problems, the local minimum must be a global minimum,

but for non-convex problems, generally, tracing the global minimum is a difficult task because

the cost surfaces are composed of multiple local minima and saddle points [39], [40]. For any

non-convex cost function J(θ), if J ′(θ) = 0 3,it is called a critical point [20] which can be

characterized as local minima, local maxima and saddle points. A local minimum is a point

where J(θ) is lower than all neighboring points, but still may be farther from the global

2 Constraint Convex Set: A set C ∈ Rp is considered convex if, for every θ1, θ2 ∈ C and λ ∈ [0, 1], we
have (1− λ) · θ1 + λ · θ2 ∈ C as well [27]

3J ′(θ) denotes first derivative of J(θ)

CHAPTER 2. BACKGROUND 11

Figure 2.4: Critical Points [20]

In the above figure, we show various critical points in one dimension. From left to right, local
minimum, which is lower than the neighboring points; a local maximum, which is higher than the
neighboring points; and lastly, a saddle point, which has neighbors that are both lower and higher
than the point itself.

minimum or any other superior local minimum. If J(θ) is a local highest point, then it is

referred to as local maximum. Saddle points are special points that are both local minimum

and maximum at the same point w.r.t different cross-sections. The simplest neural network

is a perceptron or more traditionally a simple logistic system which is convex but as we go

deeper i.e. increase the number of layers, the optimization problem becomes more and more

non-convex [53], [5] i.e increasing number of local minima and saddle points.

The problem of avoiding or escaping saddle points and bad local minima is a difficult task

in itself. Many configurations of saddle points can appear in high dimensional problems [27].

It should be noted that there exist saddle configurations, bypassing which is intractable in

itself. For such cases, even finding locally optimal solutions is a NP-hard problem [2]. In this

thesis, we mostly use Adam, an advanced and widely accepted variant of SGD optimizer.

Adam is a combination of RMSProp [25] and momentum [20]. Since Adam is well evaluated

and used in many research work, we thought it would be a good selection to compare our

technique.

CHAPTER 2. BACKGROUND 12

Algorithm 1 Stochastic Gradient Descent (SGD) for AE

Require: Learning rate schedule ε1, ε2....
Require: Initial parameter θ

1: k ← 1
2: while stopping criteria not met do
3: Sample a minibatch from data xi

4: Compute gradient estimate ĝ ← 1
m
∇θ

∑
i J(x, g(f(x)); θ)

5: Apply gradient θ ← θ − ε · ĝ
6: k ← k + 1

end while

2.5 Generative Adversarial Networks

Generative Adversarial Network (GAN) is a unique class of neural networks that, when given

a set of target images, can learn to generate new images that have a similar distribution,

instead of just classifying or reconstructing it. GAN is composed of two components as

shown in Fig 2.5, D: the discriminator which learns from the real data and guides G: the

generator whose objective is to resemble the true data distribution.

The objective function of GANs [18],:

min
θG

max
θD

Ex∼pdata)[logD(x; θD)] + Ez∼pz [1− logD(G(z; θG); θD)] (2.7)

here, θG is parameter vector of generator network and θD is the parameter vector of discrim-

inator network.

Ex∼pdata [logD(x; θD)] - Expected log likelihood of the output of discriminator network when

the input x is drawn from true data distribution pdata.

Ez∼pz [1 − logD(G(z; θG))] - Expected log likelihood of the output of discriminator network

classifying the generated data as fake.

Researchers have previously shown that when the discriminator is close to the conver-

gence, the objective of generator network is equivalent to minimizing the Jensen–Shannon(JS)

divergence between pdata and pθ
4 [18], [17].

4here pθ, denotes the probability distribution of the generated data

CHAPTER 2. BACKGROUND 13

DJS(pdata‖pθ) =
1

2
DKL(pdata‖

pdata + pθ
2

) +
1

2
DKL(pθ‖

pdata + pθ
2

) (2.8)

where DKL is given by:

DKL(pdata‖pθ) =
i∑
pdata(i) log

pdata(i)

pθ(i)
(2.9)

Figure 2.5: GAN Work-flow

In the above figure, we show the primary flow of a Generative Adversarial Network(GANs). Dis-
criminator takes input from the real data such as CelebA [35] or MNIST [42] and also from generator
transformed noise. Then it learns to differentiate real and fake data. On the other hand, the gen-
erator learns to fool the discriminator or transform the noise distribution to become as similar as
possible to the real data distribution.

JS divergence is a well-known metric for measuring the distances between two probability

distributions. Both the pdata and ptheta lie in the lower manifold with high probability as

shown in paper [3] with proof that they are almost disjoint. JS divergence is not continuous

in such situation and thus, optimizing through gradient descent won’t work. Wasserstein

paper [4] provides a nice example to illustrate the same. P and Q are the two probability

distributions defined as 2.10 and explained with figure 2.6.

CHAPTER 2. BACKGROUND 14

Figure 2.6: Distribution disjoint example [4], [50]

∀(x, y) ∈ P, x = 0 and y ∼ U(0, 1)

∀(x, y) ∈ Q, x = θ, 0 ≤ θ ≤ 1 and y ∼ U(0, 1)
(2.10)

Following the above definitions for the two distributions, below is the result for different

distribution metrics.

DKL(P ||Q) =

∞ if θ 6= 0

0 if θ = 0

(2.11)

DJS(P ||Q) =

log 2 if θ 6= 0

0 if θ = 0

(2.12)

CHAPTER 2. BACKGROUND 15

DKL results in ∞ and DJS is not differentiable at θ = 0. Thus, when GAN encounters a

disjoint support, we are always capable of finding a perfect discriminator that separates the

real and fake samples 100% correctly, which in turn means an unstable GAN. There are

other evaluation metrics such as Wasserstein distance (DW) that is continuous even if there

is no overlap between the support of the two distributions 2.13. Wasserstein distance is also

referred to as Earthmover distance because it regards a probability distribution as a unit

amount of earth piled on a given metric space. In other words, Wasserstein distance is the

minimum cost of transforming a pile of earth (probability distribution P) to another pile of

earth (probability distribution Q) [4]. It is defined in equation 2.14

DW (P ||Q) = |θ| (2.13)

DW (pdata, pθ) = inf
γ∼Π(pdata,pθ)

E(x,y)∼γ[‖x− y‖] (2.14)

where Π(pdata, pθ) is set of all joint distributions between pdata and pθ. Specifically, γ(x, y)

tells the percentage of dirt that should be transported from x to y so as to make x follow

the same distribution as y [50].

Even though Wasserstein GAN (with few assumptions) is continuous everywhere and

differentiable almost everywhere [4], GANs are extremely difficult to train. Most of the

real world datasets such as images, music, speech, text, or even finance are multimodal

distributions and GANs are commonly seen to have the mode collapse problem [17],[4] with

such datasets. In this thesis, we show adding noise to the data helps in faster convergence

of WGAN with very few modal collapses. We describe our experiments with WGAN in

section 3 and extending our own work to share a novel data continuation strategy that can

be effectively used with many deep learning models depending on the loss function such as

KL and JS divergence.

CHAPTER 2. BACKGROUND 16

2.6 Continuation Methods

Continuation or homotopy methods [44] have long served as a useful technique in numerical

methods, the fundamental idea of which has been a part of the literature since 1880’s [1].

Continuation method may also be seen as an alternate approach to the gradient descent [40]

for non-convex problems. To the best of our knowledge, continuation method for training a

neural network was first presented here [12] and thereafter, the idea has been slowly adopted

by a small group of researches that we discuss in detail in the next section 3. The main

idea is to start from a simple function whose solution is comparatively easy to find, and

gradually deform it towards the actual (complex) task. This deformation process occurs by

slowly tracking the homotopy path. A homotopy function [1] is described as follows:

h(x, λ) = (1− λ) · h1(x) + λ · h2(x) (2.15)

where,

λ ∈ [0, 1] is a homotopy parameter

h1(x) is a system simple function

h2(x) is a system complex function

After doing an extensive literature survey, we found few ways by which continuation

methods can be introduced in a neural network. We present our method using the formula-

tion of the above function in Chapter 4.

2.6.1 Parameter Continuation

Autoencoder is a mapping of data to its code and then back to its reconstruction. This clearly

suggests that it is a system of non-linear equations and we can apply numerical continuation

methods to compute their approximate solutions. Numerical continuation is a technique of

computing approximate solutions of a system of parameterized non-linear equations [1]. The

CHAPTER 2. BACKGROUND 17

Figure 2.7: Natural Parameter Continuation

In this figure, we show the phenomenon of the natural continuation. We start with a random guess
of parameters θ and use some optimizer to find the initial solution. Further, we increase the value
of λ to solve the next problem, but this time we use solution to the previous problem as initial
guess instead of random guess.

objective function in context of AE, in equation 2.4 becomes 2.16.

J(x, g(f(x); θ, λ))5 (2.16)

Here, the additional homotopy parameter λ is usually a real scalar λ ∈ [0, 1], and the

solution θ a n-vector. Natural parameter continuation is an adaptation of the iterative solver

to a parameterized problem. The solution at one value of λ is used as the initial estimate

for the solution at λ + ∆λ. With ∆λ being sufficiently small, the iteration applied to the

initial estimate should converge [1].

5J(θ;λ) short hand notation

CHAPTER 2. BACKGROUND 18

Figure 2.8: Secant Line

In the above figure, we show an example of secant line for a function f(x). P and Q are the two
distinct points through which the line intersects the curve.

2.7 Secant Line

A secant line6 of a curve is a line that passes through at least two distinct points [28], as

shown in figure 2.8. The slope of the secant line is given by equation 2.17.

slopesecant = f(x0+ε)−f(x0)
ε

slopetangent = lim
ε−→0

f(x0+ε)−f(x0)
ε

(2.17)

A secant line may be used to approximate the tangent line. A tangent line is a straight

line that touches a curve at a single point. So, from the figure 2.8, as ε −→ 0, the secant line

becomes more closer to tangent line. In this thesis, we use this secant line approximation

to enhance Natural Parameter Continuation (NPC). We explain this technique in detail in

section 4.

6By introducing secant line, we do not intend to use other secant methods which are popular in deep
learning such as one step secant [13] or modification to Newton’s method.

19

Chapter 3

Motivation and Related work

3.1 Motivation

One of the strong motivations for this thesis is an observation of convergence 3.1 of GANs and

empirical claims on a Multi-Gaussian Grid 5.4. We did this research work in collaboration

with Xiaozhou Zou 1. For this experiment, we used Wasserstein GAN [4] and had a two-

dimensional Gaussian grid 5.4 with 25 modes as our target distribution. The aim of this

experiment was to generate data points similar to this target distribution.

Observation: For learning the target distribution, if at some intermediate training step,

the generated data uniformly covers the support of target distribution, then it is very likely

that GAN would converge to a good solution in later training steps. 3.1.

Considering the true distribution is very complex for a generator to learn. During the

initial steps of our experiments, we observed that the generator transformed data points

were far away from the target distributions, because of very less overlap between the true

distribution pdata and initial model distribution pθ. Even in literature, various experiments

has been performed to efficiently find this overlap in initial stages of training. One approach

1Xiaozhou Zou’s Master’s thesis was submitted in April 2018. Please refer to this thesis for a complete
explanation of the experiment settings. Here, we attempt to provide you with the chief idea used from
previous research.

CHAPTER 3. MOTIVATION AND RELATED WORK 20

Figure 3.1: Observation

In the above figure, blue points are the target distribution and green points are generated from
GANs. Here we want to show at global step 5000 the generated points were uniformly distributed
over the support of the target distribution, and after that the convergence was stable and finally
reached a good solution at global step 50000.

we discovered is to provide information about the underlying support of the distribution to

the generator such that the task becomes simpler.

Consequently, we decomposed the standard training process into multiple phases. We de-

signed a synthetic setting 2 that enabled us to decompose a difficult task (learning a complex

distribution) to a series of simpler tasks. As shown in the figure 3.2, we first train the GAN1

with data uniformly distributed over the target distribution. Next, GAN2 is initialized with

the parameters of previously trained GAN1, however, in this phase, we add noise of standard

deviation 0.3 to every mode of the target distribution. Therefore, this noisy data distribution

is more complex than uniform distribution and simpler than target distribution 5.4. Finally,

we train GAN3, where generator is initialized from GAN2 on the target distribution 5.4. We

refer to our architecture as Step-Up GANs 3.2 because after every step we are one step closer

to the true distribution to be learned by the generator. In our method, a generator inherits

the knowledge learned by all its previous generators. Also note, the discriminator of each

GAN is initialized from scratch and we applied Wasserstein distance as the cost function for

all our experiments.

2Since we knew the modes of the data, we added some noise to the true distribution around that modes

CHAPTER 3. MOTIVATION AND RELATED WORK 21

Figure 3.2: Step-Up GANs

In the above figure, we share the architecture of Step-Up GANs. Here the GAN training is dis-
cretized into three phases. At GAN 1, we train with the data uniformly distributed over the target
distribution. Next, at GAN 2, we add some noise to the target distribution and initialize the weights
of the generator of GAN 2 from the generator of trained GAN 1. Finally, GAN 3, initialized from
the learn the generator of GAN 2 and learns the target distribution.

Result: Step-Up GANs converged 10x faster 5.9 than the standard Wasserstein-GAN

under synthetic setting. We also compared the convergence of Step-Up GAN with WGAN

on our own evaluation metric called overlap loss.

Step-Up GANs can also be viewed as a continuation method (through data) where each

task is more difficult than its previous one and the original task is the final one to be

performed. These findings motivated us to push the boundaries further. We noted a few

untouched questions of Step-Up GANs that are listed below.

CHAPTER 3. MOTIVATION AND RELATED WORK 22

• How to determine the support of the distribution for the true data distribution?

• Can Step-Up GANs (a data continuation approach) be generalized to work with some

well-known datasets for deep learning, the most common example would be MNIST.

• Can this be combined with a model continuation approach, for example, Curriculum

Learning [8] presented in literature?

In this thesis, we try to answer these questions and extend our work so that it is applicable

to most deep neural networks such as autoencoders.

3.2 Related Work

Neurons (units) in the deep neural networks learn the representation of the data. The

last layer is a typical classifier and the previous layers learn different representations of

data. Representation learning is particularly interesting because it unfolds a way to do

unsupervised and semi-supervised learning [20]. However, training deep neural network is

a potentially intractable non-convex problem [7]. One widely applied practical approach

is finding a better initialization strategy to find a find superior local minimum. We draw

observations from the key techniques used in some of the popular architectures which have

been successful in finding the superior local minimum and also achieve better generalization

[16]. Unsupervised pre-training [23] proved to be a good strategy to train deep neural

networks for the supervised and unsupervised tasks. The idea is to greedily train one layer at

a time in unsupervised fashion via Restricted Boltzmann Machine (RBM) or an autoencoder,

and then use this layer in the task of your interest. This technique has two advantages: first,

it provides stable initialization, and second, it increases the regularization effect [20], and

hence provide good generalization accuracy [16]. Fine-tuning can be seen as an extension

of this approach where the learned layers are allowed to retrain or fine-tune on the final

task [20]. Transfer learning , on the other hand, requires two different task, where learning

CHAPTER 3. MOTIVATION AND RELATED WORK 23

from one distribution can be transferred to another. This technique is largely used in many

visual and text tasks such as image super-resolution, recommendation systems etc.

The basic idea for continuation methods may be described as follows: given a cost function

J(θ), define a series of cost functions {J (0)(θ), J (1)(θ), J (2)(θ),, J (n)(θ)} such that J (i)(θ)

is more easier to optimize than J (i+1)(θ) [20]. Here J (i)(θ) and J (i+1)(θ) are preferred to be

close so that the solution of J (i)(θ) can be used to initialize the parameters for J (i+1)(θ).

In other words, one can imagine J (i)(θ) as a convex envelope [39] for the J (i+1)(θ) that we

gradually reduce as i −→ n and finally we get a solution to the original cost function J (n)(θ).

We see the above process can be fundamentally done in two ways: model continuation

and data continuation. Continuation methods for neural networks were initially introduced

[12], and were explained with more insights in curriculum learning [8]. Smoothing of the

objective function reveals the global curvature of the cost function. Smoothing can be

gradually decreased to get a sequence of objective functions with increasing complexity. The

mollified objective function is minimized first, and then gradually reducing its smoothness

and simultaneously minimizing it as training proceeds to obtain the final solution [8].

When continuation is applied directly to the parameters of a neural network during the

training, it can be referred to as Model Continuation method. This method forms a

convex envelope around the non-convex optimization problem [39]. Diffusion methods [38]

convoluted a Gaussian noise to the cost function and showed faster convergence. Unlike the

Annealed Gradient descent , [43] whose cost surface approximation is motivated by some

heuristic, diffusion methods have more theoretical backing for Gaussian kernel[39]. Molli-

fying Networks can be seen as an extended version of curriculum learning. Mollified (noisy)

objective function can be achieved by injecting normally distributed noise to the weights of

each layer of the neural network [21] and following the idea of continuation methods, this

noise is gradually reduced as the training proceeds. They also showed that the mollifica-

tion effect can be achieved by linearization of the network via modified activation functions.

Deforming gradually from linear to nonlinear representation has been implemented with

varying noise injection methods in [21] and [38]. We, on the other hand, do not use the noise

CHAPTER 3. MOTIVATION AND RELATED WORK 24

injection method for linearization of the network, rather discuss how we achieve linearization

in section 4.

Figure 3.3: Mollified objective function [21]

Three loss surfaces are shown in the above figure, 3 is the original loss surface and 1 & 2 are the
surface convoluted with Gaussian noise. Loss surface 1 has more noise than loss surface 2.

Data continuation is intuitively easy to understand but extremely hard to design in

the context of continuation methods. The sampling of data points according to its individual

complexity is rarely available [49]. Information about the support of the true data distri-

bution can be utilized for reweighting the true distribution, such that the entropy of the

distribution increases or the data is more diversified and hence simpler[8]. Initially, weights

favor sampling the simple examples from the distribution and gradually as weight increases,

it sample more difficult examples from the distribution, hence it is called curriculum learn-

ing . Notably, this approach was applied discretely (in two steps), however, we found that

a continuous sequence of sampling was not well explored. Secondly, in transfer learning

method [49], the authors recently illustrated a novel method to rank all the data points in

the sample, through a data difficulty score computed using SVM. Here, the representations

from easy examples were learned first and gradually difficult examples were provided to the

model. They also empirically suggested that the direction of gradient step based on easy

examples is more effective in traversing the cost surface towards the superior local minimum,

CHAPTER 3. MOTIVATION AND RELATED WORK 25

as the variance in the direction of gradients increases with the difficulty of data points [49].

The methods we use in this thesis inherit and extend this idea.

However, some of these methods were tested with a limited number of hidden layers that

may not be considered deep when compared to many state-of-art models [21]. Secondly, the

conjecture that the combination of data and model continuation may improve the results is

not well-tested [21]. There is a lack of systematic experiments to show how the continuation

method may help to skip an early local minima and saddle points, with the increasing number

of layers, hence the non-convexity [19]. Unlike other papers where experiments were focused

on classification task or Recurrent neural networks, we focus on autoencoders.

26

Chapter 4

Methods

In this section, we introduce a novel method to train and initialize neural networks. To the

best of our knowledge, we are first to categorize the ways in which continuation methods

may be applied to the deep neural networks. Data continuation and model continuation are

two approaches with similar objective of decomposing the original task into a sequence of

tasks with increasing level of difficulty.

First, in the model continuation technique, we construct a sequence of cost functions with

decreasing mollification, as briefly explained in previous section 3. Second, data continuation

can be performed in multiple ways and one of them is gradually modifying the distribution

of the data. In this section, we show in detail how we apply these two approaches to enhance

learning in deep neural networks.

4.1 Model Continuation

Modifying the objective function while training of deep neural networks is not an easy task

and requires a meticulous approach. Researchers have previously shown that linearizing the

neural network through activation function can be seen as smoothing of the loss surface

[21]. Deep Linear network is the composition of many matrix multiplications without any

CHAPTER 4. METHODS 27

activation functions [19]. In literature, researchers have added noise [21] and updated the ac-

tivation function to control the non-linear behavior of the neural network [38], while keeping

the scale of the function bounded 1.

We propose a novel homotopy from a linear to a non-linear network through our activation

function which we call, C-Activation (Continuation Activation). Our activation function

is unbounded at all values of the homotopy parameter. This novel activation function can

directly inculcate the effect of continuation methods for optimization of deep neural networks.

4.1.1 C-Activation function

C-Activation can be defined as a homotopic function 2.15 of commonly used activation

functions. C-Activation continuously deforms the ability of a network to learn from a linear

to a non-linear characteristic of the data. Activation functions such as ReLU, Sigmoid and

Tanh can be easily reformulated as shown in this equation 4.1.

φC−Activation(v, λ) = (1− λ) · v + λ · φ(v)

λ ∈ [0, 1]
(4.1)

where φ can be any activation function such as sigmoid, ReLU, tanh etc. λ is the homotopy

parameter and v is the value of the output from current layer. Example of C-sigmoid 4.2,

C-ReLU 4.1 and C-tanh 4.3 is shown here 2.

4.1.2 Rethinking of Cost function

C-Activation does not provide a complete picture of the effects of the continuation methods

in neural networks. In this section, we want to clarify that changes occur in the behavior

of the neural network with the insertion of C-Activation function. Traditionally, we design

a neural network to learn from a particular dataset. The deep neural network has many

1for example:- if sigmoid is bounded by [0,1], its linear counterpart is also bounded by [0,1].
2 Click the link to see end-to-end deformation from linear to non-linear https://drive.google.com/

drive/folders/1hSPzxjweUyX9NL6ZkSdxdj9_cz56boTq?usp=sharing

https://drive.google.com/drive/folders/1hSPzxjweUyX9NL6ZkSdxdj9_cz56boTq?usp=sharing
https://drive.google.com/drive/folders/1hSPzxjweUyX9NL6ZkSdxdj9_cz56boTq?usp=sharing

CHAPTER 4. METHODS 28

λ = 0.0 λ = 0.5 λ = 1.0

Figure 4.1: C-ReLU

In this figure, from left to right we show how the C-ReLU function deforms with λ on uniformly
distributed points between [-10,10]. At λ = 0.0, we start from from linear, then at λ = 0.51 we
observe the sigmoid curve is building up slowly. Finally at λ = 1.0 C-ReLU exactly acts as ReLU
Activation function.

λ = 0.0 λ = 0.9 λ = 1.0

Figure 4.2: C-Sigmoid

In this figure, from left to right we show how the C-sigmoid function deforms with λ on uniformly
distributed points between [-10,10]. At λ = 0.0, we start from from linear, then at λ = 0.918
we observe the sigmoid curve is building up slowly. Finally at λ = 1.0 C-Sigmoid exactly acts as
Sigmoid Activation function.

hyperparameters to tune from, such as activation functions, depth, width, and cost function

etc. We modify this traditional procedure and hence, require some rethinking to understand

it better.

What’s different? Our activation functions are not fixed for a given neural network

with fixed depth and width, because C-Activation is continuously deformed during train-

CHAPTER 4. METHODS 29

λ = 0.0 λ = 0.7 λ = 1.0

Figure 4.3: C-Tanh

In this figure, from left to right, we show how the C-Tanh function deforms with λ on uniformly
distributed points between [-10,10]. At λ = 0.0, we start from linear, then at λ = 0.714, we observe
the sigmoid curve is building up slowly. Finally at λ = 1.0, C-Tanh exactly acts as Tanh Activation
function.

ing. Consequently, the underlying cost surface is also changing throughout the training

procedure until λ = 1, because the configuration of network parameters is being altered as

we take a step in λ space. Traditionally, a cost function for a deep neural network is a func-

tion of its parameters θ as J(θ), but if we use the C-Activation, we introduce an additional

parameter λ. For every λi, we solve a different problem Ji(θi, λi). More precisely at λ = 0,

we solve the linearized network and as λ gradually increases, we solve optimization problems

that are slightly difficult and finally at λ = 1, we solve the original optimization problem

with the complete non-linear network. Hence, we decompose the original problem into many

intermediate problems as shown in figure 4.4. These intermediate problems can be solved by

SGD or its variants, but cannot be solved in parallel. In addition to the usual SGD steps, we

take some additional secant steps in lambda (homotopy parameter) space after every batch

of SGD steps. We explain this in detail in the next subsection.

CHAPTER 4. METHODS 30

Algorithm 2 Natural Parameter Continuation with Secant approximation(NPCS) for AE
with model continuation
Require: Learning rate ε,Secant frequency secant frequency, Secant vector scale ω
Require: Initial neural network parameter θ, homotopy parameter λ, Loss history lookup

window size
1: k ← 1
2: loss history ← []
3: while stopping criteria not met do
4: Sample a minibatch from data xi

5: Compute Loss loss←
∑

i J(x, g(f(x)); θ;λ)
6: loss history[k]← loss
7: Compute gradient estimate ĝ ← ADAM Optimizer()
8: Apply gradient θ ← θ − ε · ĝ
9: k ← k + 1

10: if k%secant frequency == 0 then NPCS
11: if k == secant frequency then NPC
12: θ ← θk−1

13: λ← λk−1 + 8e− 3
14: else
15: θ ← θk−1 + ω · (θk−1−θk−secant frequency)

||(θk−1−θk−secant frequency)||2+||(λk−1−λk−secant frequency)||2

16: λ← λk−1 + ω · (λk−1−λk−secant frequency)

||(θk−1−θk−secant frequency)||2+||(λk−1−λk−secant frequency)||2
17: if avg(∆loss history) of window size is more than 0.02 then Rescale
18: ω ← ω − 5
19: secant frequency ← secant frequency + 10
20: else
21: ω ← ω + 5
22: secant frequency ← secant frequency − 10

23: k ← k + 1
end while

CHAPTER 4. METHODS 31

Figure 4.4: What’s changing in Lambda space?

In the above figure, we show how the optimization problem changes as λ changes from 0 −→ 1. From
top to bottom, in Row 1: we show how the activation function changes, in Row 2: we show the
other settings of autoencoder such as depth and width, which is consistent throughout the network.
In Row 3: we show the hypothetical cost surfaces where number of local minimas and saddle points
increases as λ −→ 1.

4.1.3 Natural Parameter Continuation of Neural Networks with

Secant approximation

We now have background on how SGD methods 2.4. Also, we know what all internal

changes are inculcated to the neural network training as we introduce C-Activation 4.1.2.

We start from a relatively simpler problem and gradually solve a more difficult problem,

thus forming a sequence of problems. In this section, we will first provide the hypothetical

visualization of a coordinate system, which we call λ − θ curve and later discuss network

initialization technique for every subsequent problem. There are multiple ways to perform

this operation, here we will discuss two of them, namely Natural Parameter Continuation

(NPC) and Natural parameter Continuation with Secant approximation (NPCS).

Natural Parameter Continuation(NPC): Let us denote the set of parameters of neural

CHAPTER 4. METHODS 32

Figure 4.5: Parameters in Lambda space, λ− θ curve

Here we show a hypothetical coordinate space where X-axis is homotopy parameter and Y-axis is
the solution to each optimization problem defined at λ. Here θi is the solution at λi and also used
to initialize the problem at λi+1. θi+1 is the solution at λi+1 after some ADAM steps.

networks as θ. Similar to the approach we explained in section 2.6.1, we can start from the

PCA solution (θPCA)3, because at λ = 0, we aim to solve a problem that finds a solution to

the linear manifold. In other words, at λ0, most of the activation functions are linear. Hence,

we initialize the AE with the solution of PCA, so that we have the advantage of starting

from a known solution. Next, we minimize for the optimization problem at λi, such that λi

is very close to λ0 and obtain θi using some SGD or ADAM steps. Next, to find a solution

at (λi+1, θi+1), we use these set of parameters (θi), initialize and again apply some ADAM

steps to find the solution θi+1. We may continue this process until λ = 1, because at this

point we solve the original problem. Interestingly, all such solutions or parameters can be

3Here, solution at λ = 0 is θPCA, which is eqvivalent to θ0

CHAPTER 4. METHODS 33

traced to a one-dimensional curve in lambda space. We have shown this hypothetical λ− θ

curve 4.5, where homotopy parameter can track all the solutions of gradually deforming

problems. However, we do not know the optimal value of ∆λ to take the subsequent steps

of the homotopy function. Hence taking many continuation steps on this λ− θ curve, could

be very slow. So instead of using only the previous solution, we can use the previous two

solutions to gain from this λ−θ curve, and speed up the process via secant guess to overcome

the above mentioned limitation.

Natural Parameter Continuation with Secant approximation(NPCS): This method is very

similar to the method explained above, the key difference being the way we initialize the

parameters (θ) for the subsequent problem. Here, instead of using the previous solution as

the initial guess, we make a secant guess for the subsequent problem. More precisely, at

λi, we take a certain fixed number of ADAM steps to minimize the cost function, then at

λi+1, we can make a secant approximation by using the parameter of λi−1 and λi to initialize

the weights of the neural network at λi+1. In other words, we are doing a piece-wise linear

approximation of the curve from λi to λi+1 using a secant vector.

We illustrate the same in the figure 4.6. For the optimization problem at λ3, we can

initialize the parameter through a secant update, using the parameter at λ2 and λ1. This

may prove to be useful in avoiding some local minima. After secant initialization at λ3,

we again apply a certain number (secant frequency) of ADAM steps, with λ3 being fixed,

as shown in the figure 4.6. We gradually continue this process until λ = 1; this assists

us to find a superior local minimum. The algorithm for parameter continuation via secant

approximation is here 2. We use additional parameters, adaptive scaling of secant vector,

ω and a frequency at which we update the value of λ, is called secant frequency. Initial

choices of these are dependent on the training data and neural network architecture. We

scale these two parameters according to the percentage change in the loss history of a specific

window size (loss at previous 400 steps). If we observe decrease in the average loss for the

previous window, we increase the value of ω, i.e. we can take longer steps in λ, and at the

same time we decrease the secant frequency, i.e. we take lesser number of ADAM steps to

CHAPTER 4. METHODS 34

Figure 4.6: Natural parameter continuation via secant in λ space

In this figure, we provide a clear visualization of our algorithm NPCS. Let’s say neural network
was initialized with θinit; at λ1, the solution θ1 is obtained, then we perform our first NPC step,
which is defined by user. After some ADAM steps, solution at λ2 is θ2. Further, for λ3, and all
subsequent values of λ, we perform with secant approximation using previous two points in this
λ− θ curve.

minimize the current problem. An illustration of effective scaling is shown in the figure 4.7,

which shows if we perform incorrect scaling of ω then we may end doing poor initialization

for the subsequent problem.

4.2 Stable initialization of Autoencoder through PCA

PCA is well-known as a dimension reduction technique that provides lower dimensional (lin-

ear) manifold of the data. As explained in the Section 2, PCA projections can be computed

CHAPTER 4. METHODS 35

Figure 4.7: Adaptive ω

In this figure, we shown the importance of adaptive omega, omega2 is the incorrect scaling
and we can see if wee take big steps in λ through large ω values we may end up doing a

poor initialization for the subsequent problem.

by SVD method. We use SVD to compute U , S, V T from the centered data as shown in

equation 2.5. Further, from the equation 4.3, we understand that V can be seen as a map-

ping of data from high dimensional space to the lower dimension (linear) manifold and V T

is a mapping from a lower manifold to the data. This behavior of SVD empowers us to

initialize the weights of the hidden layers of the autoencoder. More precisely, we use the first

n columns of V for the encoder layer with width n and for the decoder, we use the transpose

of the weights used for encoder as shown in the equation 4.4.

Xr,c
centered = Xr,c −

∑
i

X i,c

r
(4.2)

where Xr,c represents input data matrix with rows r and and columns c.

Xcentered = USV T

XcenteredV = USV TV

XcenteredV = US

(4.3)

CHAPTER 4. METHODS 36

W n
encoder = Vn-columns

W n
decoder = (W n

encoder)
T

(4.4)

where W n represents the Weight matrix of the encoder layer with n as width.

There are multiple advantages of initializing an AE using PCA. First, we start the deep

learning training from a solution to the linear manifold of the data rather than something

random, which in itself is a big win. This is because the set of parameters obtained presum-

ably would have caught some key characteristics of the data. Second, in the NPCS method,

C-Activation defines the homotopy as a continuous deformation from a linear to a non-linear

network. Note that PCA also gives a solution to the linear manifold of the data. Therefore,

the PCA solution is expected to be very close to the solution of the first step of the NPCS

method (at λ = 0). Third, since C-Activation is unbounded, we empirically observed that

random initialization of the network with wide and deep layers leads to unstable training,

but the PCA initialization proves to be a robust solution here as well.

In order to condition the training of autoencoders, we propose to initialize the encoders

and decoder by PCA. The idea of initializing the deep feedforward networks with PCA is

not novel and has been independently explored in literature [46], [32], [10].

4.3 Data Continuation

Researchers have shown that the cost functions like KL-divergence and JS-divergence fail

when there is no overlap between the support of the true and the generated distributions

[4]. Also, adding noise to the data distribution usually helps to increase the stability of

GANs training [47]. In this section, we share a data preprocessing technique that could be

considered as a smarter way of adding noise to the data. The basic idea for data continuation

was shared in curriculum learning [8], to define a sequence of data distributions by re-

weighting the data samples in the order of difficulty of the samples. We take this idea

further and introduce a data continuation technique by using an oversampling method.

CHAPTER 4. METHODS 37

Instead of sampling the data in the order of their difficulty, we oversample it to increase

the distribution such that the generated data is uniformly distributed over the support of

the target distribution and then we gradually decrease this support to attain the target

distribution back or transform back to the intrinsic dimensions of the data. Please note, the

final deep learning model we train is always on the true distribution, using data continuation

techniques we just modify the sequence of providing this data to the model.

We present a novel data continuation approach that leverages the support of the data

distribution. We extend the SMOTE [9] algorithm and oversample the data to expand the

coverage over the support of its distribution. This benefits the neural networks for learning

from the data. One key advantage of extending SMOTE is that it operates in feature space

rather than data space and hence, can be easily applied to various datasets. Originally,

SMOTE was designed to oversample the minority class considering the balance between

the two classes. We redefine our objective and use C-SMOTE 3 is used to oversample a

single class over the support of the distribution of that particular class. We oversample

by introducing many samples along the line segments joining any or all of the k-nearest

neighbors. Let us denote this line segment by d and we define a parameter α that controls

the length of this line segment as shown in the equation 4.5. As α changes from 0 −→ 1,

data distribution is modified from a uniform distribution over the support to the target

distribution. For more motivation, an explanation is provided in the figure 4.8 and some

example illustrations can be seen in these figures 5.7, 5.8.

dnew = d ·m

m ∈ [0, 1
2
− α]or[1

2
+ α, 1]

α ∈ [0, 1
2
]

(4.5)

CHAPTER 4. METHODS 38

Figure 4.8: Continuous-SMOTE explanation

In the above figure, from left to right, we show oversampling of new data points (green), given some
true distribution of data (grey points). Here α controls the length of d (yellow line), where the
generation of points are allowed. We can see at α = 0 that the generated points can be anywhere
on the yellow line d randomly. Further as α −→ 0.5 in right most figure, the generated points are
very close to the nearest neighbour or the point itself.

CHAPTER 4. METHODS 39

Algorithm 3 C-SMOTE(x, t, k, α)

Input: Raw data matrix x; t is number of samples to be inserted between a pair of
neighbours; Number of nearest neighbours k; α (Noise parameter) controls the distribution
of the data

Output: (t* Number of samples in x) Synthetic samples depending on α

1: numsamples = Number of samples in x
2: numattrs = Number of attributes
3: Sample[][] : array for original data matrix
4: Synthetic[][]: array for synthetic samples
5: newindex : keeps a count of number of synthetic samples generated, initialized to 0
6: for i← 1 to numsamples do
7: Compute k nearest neighbors for i, and save the indices in the nnarray
8: for j ← 1 to t do
9: Populate(i, j, t , nnarray)

10: return Synthetic
11:

12: Populate(i, j, t, nnarray) - Function to generate the synthetic samples.
13: Choose a random number between 1 and k, call it nn. This step chooses one of the k

nearest neighbors of i.
14: for attr ← 1 to numattrs do
15: Compute: dif = Sample[nnarray[nn]][attr] -Sample[i][attr]
16: Compute: gap = random number between 0 and 1

2
-α

17: if j ≥ t
2

then
18: Overwrite: gap = random number between 1

2
+α and 1

19: Synthetic[newindex][attr] = Sample[i][attr] + gap · dif

20: newindex+ +
21: return - End of Populate
22:

End of Pseudo Code

40

Chapter 5

Experiments

5.1 Datasets

In our experiments, we used Fashion MNIST and MNIST dataset. MNIST [42] is one of the

most widely used datasets in Deep learning research. It is a data set for handwritten digits

and can be used to test the supervised or unsupervised learning models. The training set

contains 55,000 images, and each image is a 28 × 28 resolution. Similarly, we have Fashion

MNIST [52], where the pictures are of fashion instead of digits. The number of training

images and dimensions are exactly the same as MNIST. Thus, Fashion MNIST is considered

to be relatively complex dataset than MNIST. Few images from fashion MNIST and MNIST

are shown in figure 5.1 and 5.2 respectively.

To examine the robustness of C-SMOTE, in addition to MNIST, we designed some Syn-

thetic datasets such as Sine-wave and 2D Multi-Gaussian Grid. Sine-Wave has four signals

and a total of 100 data points as shown in the figure 5.3. Grid data has 25 Gaussian distri-

butions and a total of 500 data points that are evenly placed in [−2, 2] × [−2, 2] with zero

standard deviation as shown in the figure 5.4.

CHAPTER 5. EXPERIMENTS 41

Figure 5.1: MNIST Dataset [42]

In this figure we show the first 400 handwritten digits in the MNIST dataset. Each image
has a resolution of 28× 28.

Figure 5.2: Fashion-MNIST Dataset [52]

In this figure, we can see the variety of images in Fashion MNIST dataset. From this dataset,
we show three rows from all the ten classes present. Each image has a resolution of 28× 28.

CHAPTER 5. EXPERIMENTS 42

Figure 5.3: Sine-Wave data

In this figure, we have 100 data points distributed along a simple sine wave with a total of
four signals or phase shifts. So the shape of this data is (100,2).

Figure 5.4: 2D Multi-Gaussian Grid data

In this figure, we have total of 25 data points that are evenly placed from in the range of
[−2, 2]× [−2, 2]. So the shape of this grid data is (25,2).

5.2 Neural Network Architecture

Autoencoder(AE) we employed in our experiments is depicted in the figure 5.5. The input

to the AE is a 784-dimensional image from the Fashion MNIST dataset 5.2 and output is the

reconstruction of the same (784 dimensions). We use this AE to attempt the reconstruction

of the image from two dimensional manifold, which is encoded in the code layer. We apply

one particular activation function to all the hidden layers of the network, except the code and

the output layer. For instance, activation function can be any C-Activation such as C-ReLU,

CHAPTER 5. EXPERIMENTS 43

Figure 5.5: Autoencoder with various activation functions

Here, we show an eight layer Autoencoder(AE), with code dimension as two. The activation
function used here actually varies from experiment to experiment, but we use the same activation
function across all hidden layers as depicted above. C-Relu, ReLU, Sigmoid or C-Sigmoid are few
potential examples. At every layer, we also show the dimension or the width of the neural network
such as for layer Encoder-1 input dimension is 784 and output dimension is 200.

CHAPTER 5. EXPERIMENTS 44

Figure 5.6: Stable Initialization through PCA

In this plot we show the efficiency of the PCA initialization. Blue curve is the loss when neural
network is initialized randomly. Red curve shows loss with PCA initialization.

C-Sigmoid or C-Tanh for NPCS method. Further, to compare our method (NPCS) with the

traditional ADAM (SGD variant), we use the usual ReLU, Sigmoid, or Tanh as Activation in

AE 5.5. We will clarify the activation function we used in the respective experiments while

reporting our results.

We did not apply any normalization to the data or to the model such as batch normal-

ization, weight normalization [51] etc. We do center the data according to the equation 4.2,

when we use PCA initialization for AE in most of our experiments. In addition to that, we

used Python 3.6.5 and Tensorflow 1.10.0 on CPUs for all our experiment as the computations

are not very expensive.

5.3 Results

5.3.1 PCA initialization results

Random initialization of neural networks is one of the widely accepted techniques in deep

learning. Here, we show the results for another effective initialization technique using PCA.

CHAPTER 5. EXPERIMENTS 45

For this experiment we use the AE 5.5, with all the hidden layers sigmoid as the activation

function, lets denote this network as AE-ADAMsigmoid. Result for AE-ADAMsigmoid is

shown in the figure 5.6. We clearly see that the PCA initialization is much more stable with

traditional ADAM. Precisely, for a particular random seed (85), with random initialization,

the loss at step one is 24.194 but with PCA initialization, loss at step one is 0.0675. The

dataset used in this experiment is Fashion MNIST.

5.3.2 C-SMOTE results

Figure 5.7: C-SMOTE applied to a Sine wave

In this figure, we show the result of C-SMOTE to oversample the Sine-Wave. From left to right
we observe the distribution of data is wider at α = 0 than α = 0.30 and all the oversampled data
points are pushed back to the intrinsic dimension of the sine wave at α = 0.5

We applied the C-SMOTE algorithm on a variety of datasets. This pre-processing al-

gorithm does not require any modification of datasets before their application. Results for

Sine-Wave and 2D Multi-Gaussian Grid data is shown in figure 5.7 and 5.8 respectively.

CHAPTER 5. EXPERIMENTS 46

Figure 5.8: C-SMOTE applied to a Grid with 25 Gaussian modes

In this figure, we show the result of C-SMOTE to oversample the grid data. From left to right,
we observe the distribution of data is almost uniform at α = 0 then at α = 0.30 we observe few
clusters forming near the means of the 25 distribution and again all the oversampled data points
are pushed back to the intrinsic dimension of the grid at α = 0.5.

Here, for both the datasets, we used, 25 as the number of neighbors (k) and we populate 200

points between any two neighbors (t). From the images 5.7, we observe that at α = 0.5 data

strictly follow the true data distribution and for smaller values of the α data distribution is

noisier. Under the motivation 3, we witnessed how the noisier data distributions can help

to achieve stable WGAN training and even other deep learning architectures with KL and

JS divergence as loss functions. We share the results of the Step-up GAN1 5.9 here, to em-

pirically illustrate the effectiveness of C-SMOTE. Please note we use Wasserstein distance

in all GANs in the presented result 5.9. Clearly, Step-Up GANs is 10 times faster compared

with the convergence obtained from the same architecture as WGANvanilla and less biased

compared with the convergence from WGANBN .

1From our previous work in collaboration with Xiaozhou Zou

CHAPTER 5. EXPERIMENTS 47

Figure 5.9: Step-Up GAN result

In this figure, we compare the convergence of Step-Up GAN introduced in figure 3.2 with other
two. The first convergence is obtained from a simple feedforward WGANvanilla with no batch-
normalization . In this convergence, the generated(green) points are well distributed amongst all
the modes, but takes 50000 training steps to obtain. The second convergence is achieved by adding
batch normalization to the WGANvanilla, say WGANBN . WGANBN , convergence is reached in
5000 steps, but generated grid is biased. The convergence from the Step-up GANs takes in total
5000 steps to reach (1000 steps in the first phase. 2000 steps in second and third phase), and is
equally good to the convergence of WGANvanilla which takes 50000 training steps.

We wanted to investigate how C-SMOTE would effectively perform with the images,

hence we used MNIST dataset to oversample more digits. A specific example is shown in

figure 5.10. Here, we take first two zeros of the MNIST dataset and use C-SMOTE to

oversample a total of 10 digits (zeroes). In this experiment, we kept 2 nearest neighbors (k)

and 5 data points (t) to be filled in between these two zeroes.

CHAPTER 5. EXPERIMENTS 48

Zero 1 Zero 2

6.512 1.869 0.0

Figure 5.10: C-SMOTE applied to a MNIST digit zero

In first row, we show the first two zero’s in the MNIST dataset. In second row from left to right, we
can see that at α = 0, the image of zero is a random combination of the two zeros. At α = 0.375,
we see more clear image of first zero and finally at α = 0.5 we have the first zero back again.
Finally, in third row, we show the difference in the images of Zero 1 and zeroes at alpha equals
0, 0.375 and 0.5 respectively. We also report the sum of all pixel values of images in the third row,
we clearly see the sum is decreasing with the α increasing.

5.3.3 NPCS results

In this section, we share the results of our method - NPCS, compared to ADAM. Specifically,

we used Adam optimizer in the implementation, and refer that as a variant of SGD. Here,

CHAPTER 5. EXPERIMENTS 49

we used Fashion MNIST dataset and the AE 5.5 to obtain the results in this section. We

compared our methods with three different activation functions. We use the same activation

function across the AE for simplicity, such as C-ReLU, ReLU, C-sigmoid, sigmoid etc. First,

AE-NPCSC−ReLU is compared with AE-ADAMReLU . For both these methods, all other

hyperparameters are kept same such that batch size is 200, the learning rate is 5e− 5, input

data is initially centered and initialization is through PCA. Additionally, the NPCS method

requires two more hyperparameters to be tuned i.e secant frequency = 100 and ω = 5.

We illustrate the results of this experiment in figure 5.11. As observed from the first plot

of the figure which shows the reconstruction loss on the y-axis, AE-NPCSC−ReLU is able

to obtain a superior local minimum and on the other hand, AE-ADAMReLU is unable to

converge better. Next, in the second plot 5.11, we note the sequence of the λ values we took

to complete the homotopy. At step 100, our method takes the natural continuation (NPC)

update which is fixed, ∆λ100 = 8e − 3. The subsequent lambda updates, ∆λ200,∆λ300 and

∆λ400 are computed with secant according to the NPCS algorithm 2. In addition to that,

we share the lambda norm and theta norm for all three secant updates, in the third and the

fourth plot of the figure 5.11. Please note the ω and secant frequency are adaptive to the

loss.

Similar to the above experiment we designed another experiment with Tanh. We com-

pared AE-NPCSC−tanh compared with AE-ADAMtanh, and the results are shown in figure

5.13. Here, both the methods show good convergence, in the first plot of the figure 5.13, but

during later steps AE-NPCSC−tanh shows better convergence and hence reached to superior

local minimum. In the subsequent plots of the figure we illustrate the λ values , λ norm and

θ norm. Further, we designed the experiments for sigmoid function. Here AE-ADAMsigmoid

is compared with AE-NPCSC−sigmoid but, we need to change value of ω 5.0 −→ 20.0, to

achieve the stable convergence in this case. Results of this experiments are shown in the

figure 5.12. Here, we report that similar results are achieved with ADAM and NPCS opti-

mization methods. Finally, we show a table of experiments 5.3.3, that shows the behaviour

of NPCS method with various ω values. We present the cases when we are not able to

CHAPTER 5. EXPERIMENTS 50

secant frequency ω Final λ No. of contin-
uation steps

Loss at final
step

1000 0.5 1 23 1430
1000 1.5 0.1398 50 0.043
1000 5 1 9 0.049

100 1 1 4 0.049
100 5 1 4 0.041
100 10 1 2 0.047

10 0.5 1 6 0.067
10 1 1 4 0.0486
10 5 1 2 0.0482

Table 5.1: AE−NCPSC−ReLU is trained with various initial secant frequency and ω values,
shown in this table. We also show total number of continuation steps taken and observe
respective final value of λ and loss.

complete the homotopy (i.e final λ 6= 1), and also the cases when the final loss is extremely

high because of the bad choice of λ. This explains the importance of these parameters and

require tuning depending upon the various hyperparameters of the deep learning model.

CHAPTER 5. EXPERIMENTS 51

Figure 5.11: NPCS with C-ReLU

CHAPTER 5. EXPERIMENTS 52

Figure 5.12: NPCS with C-Sigmoid

CHAPTER 5. EXPERIMENTS 53

Figure 5.13: NPCS with C-Tanh

54

Chapter 6

Conclusion and Future Work

In this thesis, we addressed the most common and yet open problem, the deep learning

optimization. We studied the background in detail, and design the layout of relationships

amongst some quality works on continuation methods. We inferred that the continuation

methods can be classified into model and data continuation.

In our model continuation approach, we first define the C-Activation function which

allowed us to decompose the original problem into a sequence of problems with increasing

complexity. This can also be seen as homotopy from a linear to a non-linear network.

Additionally, we developed a method NPCS that potentially accelerated up the training

because of the secant steps and also helps to avoid many bad local minima. We then show

the results of NPCS method and see that our method outperforms the traditional ADAM

optimizer in our experiments with ReLU and Tanh, while for Sigmoid, the results were

similar.

Secondly, we presented C-SMOTE as a data continuation approach. We applied this

preprocessing technique to various datasets such as MNIST, Sine-wave and Grid data. We

also presented our work of Step-Up GANs that shows how C-SMOTE can be effectively

applied.

CHAPTER 6. CONCLUSION AND FUTURE WORK 55

Figure 6.1: Secant approximation on C-SMOTE algorithm’s Noise parameter α

6.1 Secant on Noise parameter α

Extending the idea of Secant approximation on λ - θ curve, we can similarly apply the secant

approximation on the Noise parameter (α) of C-SMOTE. The idea can be visualized on the

α − θ curve shown in the figure 6.1. Here, instead of the homotopy parameter λ we have

noise parameter α. We start from a uniform distribution (α = 0) over the support of the

true data and then gradually get back to the intrinsic dimensions of the data. Similar to the

model continuation (NPCS), here we can trace the solutions of all the problems on α − θ

curve 6.1. The idea of using secant approximation in model continuation was to avoid hand

picked values of ∆λ. Similarly using previous two values on α− θ curve we can modify the

alpha parameter adaptively. In addition to that, we can also reintroduce the re-scaling factor

parameter ωα (similar to ω in 2) which is adaptive to loss. Similar to the NPCS step in the

CHAPTER 6. CONCLUSION AND FUTURE WORK 56

algorithm 2, we may modify the equation 6.1 to perform secant for data continuation.

θ ← θk−1 + ωα · (θk−1−θk−secant frequency)

||(θk−1−θk−secant frequency)||2+||(αk−1−αk−secant frequency)||2

α← αk−1 + ωα · (αk−1−αk−secant frequency)

||(θk−1−θk−secant frequency)||2+||(αk−1−αk−secant frequency)||2

(6.1)

Hence, we can apply secant on both λ − θ curve for model continuation, and on α − θ

curve for data continuation. Moreover, these methods can be applied simultaneously and

may improve the quality and speed of achieving the minimum of an objective function.

There are be more future directions to this research work. First, C-Activation, can be

any activation function and in many architectures various activation functions are used, so

we would like to work on how to tune multiple activation functions on a single network.

Second, the hypothetical λ − θ curve we shared, can be of different shapes for which the

secant may lead to very bad initialization as shown in figure 6.2, a more advanced method

to secant is Pseudo arc-length method [29]. Third, in our experiments, we observed that

if we use C-Activation function with random initialization, training wide neural networks

results in unstable convergence. For example:- an AE with hidden layers of width 100 or 500

would give extremely high losses, one of the possible reasons of which is our C-activation

function is unbounded. PCA provides a more stable initialization with C-activation for any

width, but we would like to explore more solutions to address this instability. Fourth, we

want to organize our experiments with increasing depth (8,16,32,64,128) so that we can test

the ability of the network on very deep networks. Finally, we would like to test our NPCS

method on some state-of-art image recognition tasks and check on generalization errors.

CHAPTER 6. CONCLUSION AND FUTURE WORK 57

Figure 6.2: Motivation for Pseudo arc-length

58

Bibliography

[1] E. Allgower and K. Georg. Introduction to Numerical Continuation Methods. Society

for Industrial and Applied Mathematics, 2003. doi: 10 . 1137 / 1 . 9780898719154.

eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9780898719154. url:

https://epubs.siam.org/doi/abs/10.1137/1.9780898719154.

[2] Anima Anandkumar and Rong Ge. “Efficient approaches for escaping higher order

saddle points in non-convex optimization”. In: CoRR abs/1602.05908 (2016). arXiv:

1602.05908. url: http://arxiv.org/abs/1602.05908.

[3] Martin Arjovsky and Leon Bottou. “Towards Principled Methods for Training Gener-

ative Adversarial Networks”. In: ArXiV abs/1701.04862 (2017). arXiv: 1701.04862.

url: https://arxiv.org/abs/1701.04862.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. In: ArXiV

abs/1701.07875 (2017). arXiv: 1701.07875. url: https://arxiv.org/abs/1701.

07875.

[5] Sanjeev Arora, Nadav Cohen, and Elad Hazan. “On the Optimization of Deep Net-

works: Implicit Acceleration by Overparameterization”. In: CoRR abs/1802.06509 (2018).

arXiv: 1802.06509. url: http://arxiv.org/abs/1802.06509.

[6] Peter Auer, Mark Herbster, and Manfred K Warmuth. “Exponentially many local

minima for single neurons”. In: Advances in Neural Information Processing Systems 8.

Ed. by D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo. MIT Press, 1996, pp. 316–

https://doi.org/10.1137/1.9780898719154
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719154
https://epubs.siam.org/doi/abs/10.1137/1.9780898719154
http://arxiv.org/abs/1602.05908
http://arxiv.org/abs/1602.05908
http://arxiv.org/abs/1701.04862
https://arxiv.org/abs/1701.04862
http://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1802.06509
http://arxiv.org/abs/1802.06509

BIBLIOGRAPHY 59

322. url: http://papers.nips.cc/paper/1028-exponentially-many-local-

minima-for-single-neurons.pdf.

[7] Yoshua Bengio. “Learning Deep Architectures for AI”. In: Foundations and Trends R© in

Machine Learning 2.1 (2009), pp. 1–127. issn: 1935-8237. doi: 10.1561/2200000006.

url: http://dx.doi.org/10.1561/2200000006.

[8] Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Curriculum

Learning.

[9] Kevin W. Bowyer, Nitesh V. Chawla, Lawrence O. Hall, and W. Philip Kegelmeyer.

“SMOTE: Synthetic Minority Over-sampling Technique”. In: CoRR abs/1106.1813

(2011). arXiv: 1106.1813. url: http://arxiv.org/abs/1106.1813.

[10] T. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. “PCANet: A Simple Deep Learning

Baseline for Image Classification?” In: IEEE Transactions on Image Processing 24.12

(Dec. 2015), pp. 5017–5032. issn: 1057-7149. doi: 10.1109/TIP.2015.2475625.

[11] Anna Choromanska, Mikael Henaff, Michaël Mathieu, Gérard Ben Arous, and Yann

LeCun. “The Loss Surface of Multilayer Networks”. In: CoRR abs/1412.0233 (2014).

arXiv: 1412.0233. url: http://arxiv.org/abs/1412.0233.

[12] J. Chow, L. Udpa, and S. S. Udpa. “Homotopy continuation method for neural net-

works”. In: 1991 Second International Conference on Artificial Neural Networks. Nov.

1991, pp. 19–23. doi: 10.1109/ISCAS.1991.176030.

[13] Rodica Constantinescu, Vasile Lazarescu, and Radwan Tahboub. “Geometrical form

recognition using “one-step-secant” algorithm in case of neural network”. In: ().

[14] Li Deng and Dong Yu. “Deep Learning: Methods and Applications”. In: Foundations

and Trends R© in Signal Processing 7.3–4 (2014), pp. 197–387. issn: 1932-8346. doi:

10.1561/2000000039. url: http://dx.doi.org/10.1561/2000000039.

http://papers.nips.cc/paper/1028-exponentially-many-local-minima-for-single-neurons.pdf
http://papers.nips.cc/paper/1028-exponentially-many-local-minima-for-single-neurons.pdf
https://doi.org/10.1561/2200000006
http://dx.doi.org/10.1561/2200000006
http://arxiv.org/abs/1106.1813
http://arxiv.org/abs/1106.1813
https://doi.org/10.1109/TIP.2015.2475625
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1412.0233
https://doi.org/10.1109/ISCAS.1991.176030
https://doi.org/10.1561/2000000039
http://dx.doi.org/10.1561/2000000039

BIBLIOGRAPHY 60

[15] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for On-

line Learning and Stochastic Optimization”. In: J. Mach. Learn. Res. 12 (July 2011),

pp. 2121–2159. issn: 1532-4435. url: http://dl.acm.org/citation.cfm?id=

1953048.2021068.

[16] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal

Vincent. “The Difficulty of Training Deep Architectures and the Effect of Unsuper-

vised Pre-Training - erhan09a.pdf”. In: (). url: http://jmlr.csail.mit.edu/

proceedings/papers/v5/erhan09a/erhan09a.pdf.

[17] Ian J. Goodfellow. “NIPS 2016 Tutorial: Generative Adversarial Networks”. In: NIPS

abs/1701.00160 (2017). arXiv: 1701.00160. url: http://arxiv.org/abs/1701.

00160.

[18] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Net-

works”. In: NIPS abs/1406.2661v1 (2014). arXiv: 1406.2661v1. url: https://arxiv.

org/abs/1406.2661v1.

[19] Ian J. Goodfellow and Oriol Vinyals. “Qualitatively characterizing neural network op-

timization problems”. In: CoRR abs/1412.6544 (2014). arXiv: 1412.6544. url: http:

//arxiv.org/abs/1412.6544.

[20] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.

deeplearningbook.org. MIT Press, 2016.

[21] Çaglar Gülçehre, Marcin Moczulski, Francesco Visin, and Yoshua Bengio. “Mollify-

ing Networks”. In: CoRR abs/1608.04980 (2016). arXiv: 1608.04980. url: http:

//arxiv.org/abs/1608.04980.

[22] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural

networks for perception. Elsevier, 1992, pp. 65–93.

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://jmlr.csail.mit.edu/proceedings/papers/v5/erhan09a/erhan09a.pdf
http://jmlr.csail.mit.edu/proceedings/papers/v5/erhan09a/erhan09a.pdf
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1701.00160
http://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
https://arxiv.org/abs/1406.2661v1
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1412.6544
http://arxiv.org/abs/1412.6544
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1608.04980
http://arxiv.org/abs/1608.04980
http://arxiv.org/abs/1608.04980

BIBLIOGRAPHY 61

[23] G. E. Hinton and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with

Neural Networks”. In: Science 313.5786 (2006), pp. 504–507. issn: 0036-8075. doi:

10.1126/science.1127647. eprint: http://science.sciencemag.org/content/

313/5786/504.full.pdf. url: http://science.sciencemag.org/content/313/

5786/504.

[24] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. “Deep Neural Networks for Acous-

tic Modeling in Speech Recognition: The Shared Views of Four Research Groups”. In:

IEEE Signal Processing Magazine 29.6 (Nov. 2012), pp. 82–97. issn: 1053-5888. doi:

10.1109/MSP.2012.2205597.

[25] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. “Rmsprop: Divide the gradi-

ent by a running average of its recent magnitude”. In: Neural networks for machine

learning, Coursera lecture 6e (2012).

[26] Daniel Jiwoong Im, Michael Tao, and Kristin Branson. “An Empirical Analysis of Deep

Network Loss Surfaces”. In: CoRR abs/1612.04010 (2016). arXiv: 1612.04010. url:

http://arxiv.org/abs/1612.04010.

[27] Prateek Jain and Purushottam Kar. “Non-convex Optimization for Machine Learn-

ing”. In: Foundations and Trends R© in Machine Learning 10.3-4 (2017), pp. 142–336.

issn: 1935-8237. doi: 10.1561/2200000058. url: http://dx.doi.org/10.1561/

2200000058.

[28] R.E. Johnson and F.L. Kiokemeister. Calculus, with analytic geometry. Allyn and Ba-

con, 1964. url: https://books.google.com/books?id=X4%5C_UAQAACAAJ.

[29] H. B. Keller. “Numerical solution of bifurcation and nonlinear eigenvalue problems”.

In: Applications of Bifurcation Theory. Ed. by P. H. Rabinowitz. New York: Academic

Press, 1977, pp. 359–384.

https://doi.org/10.1126/science.1127647
http://science.sciencemag.org/content/313/5786/504.full.pdf
http://science.sciencemag.org/content/313/5786/504.full.pdf
http://science.sciencemag.org/content/313/5786/504
http://science.sciencemag.org/content/313/5786/504
https://doi.org/10.1109/MSP.2012.2205597
http://arxiv.org/abs/1612.04010
http://arxiv.org/abs/1612.04010
https://doi.org/10.1561/2200000058
http://dx.doi.org/10.1561/2200000058
http://dx.doi.org/10.1561/2200000058
https://books.google.com/books?id=X4%5C_UAQAACAAJ

BIBLIOGRAPHY 62

[30] D. P Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: ArXiv e-prints

(Dec. 2013). arXiv: 1312.6114 [stat.ML].

[31] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”.

In: CoRR abs/1412.6980 (2014). arXiv: 1412.6980. url: http://arxiv.org/abs/

1412.6980.

[32] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. “Data-dependent

Initializations of Convolutional Neural Networks”. In: CoRR abs/1511.06856 (2015).

arXiv: 1511.06856. url: http://arxiv.org/abs/1511.06856.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with

deep convolutional neural networks”. In: Advances in Neural Information Processing

Systems. P. 2012.

[34] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature (2015).

url: https://www.nature.com/articles/nature14539.

[35] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face At-

tributes in the Wild”. In: Proceedings of International Conference on Computer Vision

(ICCV). 2015.

[36] Raghu Meka, Prateek Jain, Constantine Caramanis, and Inderjit S. Dhillon. “Rank

Minimization via Online Learning”. In: Proceedings of the 25th International Confer-

ence on Machine Learning. ICML ’08. Helsinki, Finland: ACM, 2008, pp. 656–663.

isbn: 978-1-60558-205-4. doi: 10.1145/1390156.1390239. url: http://doi.acm.

org/10.1145/1390156.1390239.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. “Dis-

tributed Representations of Words and Phrases and their Compositionality”. In: Ad-

vances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges, L. Bot-

tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran Associates, Inc.,

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.06856
http://arxiv.org/abs/1511.06856
https://www.nature.com/articles/nature14539
https://doi.org/10.1145/1390156.1390239
http://doi.acm.org/10.1145/1390156.1390239
http://doi.acm.org/10.1145/1390156.1390239

BIBLIOGRAPHY 63

2013, pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-

representations-of-words-and-phrases-and-their-compositionality.pdf.

[38] Hossein Mobahi. “Training Recurrent Neural Networks by Diffusion”. In: CoRR abs/1601.04114

(2016). arXiv: 1601.04114. url: http://arxiv.org/abs/1601.04114.

[39] Hossein Mobahi and John W. Fisher III. “On the Link Between Gaussian Homotopy

Continuation and Convex Envelopes”. In: Lecture Notes in Computer Science (EMM-

CVPR 2015). Springer, 2015. url: http://people.csail.mit.edu/hmobahi/pubs/

gaussian_convenv_2015.pdf.

[40] Hossein Mobahi and John W. Fisher III. “A Theoretical Analysis of Optimization

by Gaussian Continuation”. In: Proceedings of the Twenty-Ninth AAAI Conference

on Artificial Intelligence. AAAI’15. Austin, Texas: AAAI Press, 2015, pp. 1205–1211.

isbn: 0-262-51129-0. url: http://dl.acm.org/citation.cfm?id=2887007.2887174.

[41] Klaus Nordhausen. “The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman”.

In: International Statistical Review 77.3 (), pp. 482–482. doi: 10.1111/j.1751-

5823.2009.00095_18.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.

1111/j.1751-5823.2009.00095_18.x. url: https://onlinelibrary.wiley.com/

doi/abs/10.1111/j.1751-5823.2009.00095_18.x.

[42] Online Resource. url: http://yann.lecun.com/exdb/mnist/.

[43] Hengyue Pan and Hui Jiang. “Annealed Gradient Descent for Deep Learning”. In:

UAI. 2015.

[44] Werner C. Rheinboldt. “Numerical analysis of continuation methods for nonlinear

structural problems”. In: Computers Structures 13.1 (1981), pp. 103–113. issn: 0045-

7949. doi: https : / / doi . org / 10 . 1016 / 0045 - 7949(81) 90114 - 0. url: http :

//www.sciencedirect.com/science/article/pii/0045794981901140.

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://arxiv.org/abs/1601.04114
http://arxiv.org/abs/1601.04114
http://people.csail.mit.edu/hmobahi/pubs/gaussian_convenv_2015.pdf
http://people.csail.mit.edu/hmobahi/pubs/gaussian_convenv_2015.pdf
http://dl.acm.org/citation.cfm?id=2887007.2887174
https://doi.org/10.1111/j.1751-5823.2009.00095_18.x
https://doi.org/10.1111/j.1751-5823.2009.00095_18.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2009.00095_18.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2009.00095_18.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2009.00095_18.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2009.00095_18.x
http://yann.lecun.com/exdb/mnist/
https://doi.org/https://doi.org/10.1016/0045-7949(81)90114-0
http://www.sciencedirect.com/science/article/pii/0045794981901140
http://www.sciencedirect.com/science/article/pii/0045794981901140

BIBLIOGRAPHY 64

[45] Itay Safran and Ohad Shamir. “On the Quality of the Initial Basin in Overspecified

Neural Networks”. In: Proceedings of the 33rd International Conference on Interna-

tional Conference on Machine Learning - Volume 48. ICML’16. New York, NY, USA:

JMLR.org, 2016, pp. 774–782. url: http://dl.acm.org/citation.cfm?id=3045390.

3045473.

[46] Mathias Seuret, Michele Alberti, Rolf Ingold, and Marcus Liwicki. “PCA-Initialized

Deep Neural Networks Applied To Document Image Analysis”. In: CoRR abs/1702.00177

(2017). arXiv: 1702.00177. url: http://arxiv.org/abs/1702.00177.

[47] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and Ferenc Huszár.

“Amortised MAP Inference for Image Super-resolution”. In: CoRR abs/1610.04490

(2016). arXiv: 1610.04490. url: http://arxiv.org/abs/1610.04490.

[48] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. “A Global Geometric

Framework for Nonlinear Dimensionality Reduction”. In: Science 290.5500 (2000),

pp. 2319–2323. issn: 0036-8075. doi: 10.1126/science.290.5500.2319. eprint:

http://science.sciencemag.org/content/290/5500/2319.full.pdf. url:

http://science.sciencemag.org/content/290/5500/2319.

[49] Daphna Weinshall and Gad Cohen. “Curriculum Learning by Transfer Learning: The-

ory and Experiments with Deep Networks”. In: CoRR abs/1802.03796 (2018). arXiv:

1802.03796. url: http://arxiv.org/abs/1802.03796.

[50] Lilian Weng. From GAN to WGAN. 2017. url: https://lilianweng.github.io/

lil-log/2017/08/20/from-GAN-to-WGAN.html.

[51] Sitao Xiang and Hao Li. “On the Effects of Batch and Weight Normalization in Gen-

erative Adversarial Networks”. In: ArXiV abs/1704.03971 (2017). arXiv: 1704.03971.

url: https://arxiv.org/abs/1704.03971.

http://dl.acm.org/citation.cfm?id=3045390.3045473
http://dl.acm.org/citation.cfm?id=3045390.3045473
http://arxiv.org/abs/1702.00177
http://arxiv.org/abs/1702.00177
http://arxiv.org/abs/1610.04490
http://arxiv.org/abs/1610.04490
https://doi.org/10.1126/science.290.5500.2319
http://science.sciencemag.org/content/290/5500/2319.full.pdf
http://science.sciencemag.org/content/290/5500/2319
http://arxiv.org/abs/1802.03796
http://arxiv.org/abs/1802.03796
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html
http://arxiv.org/abs/1704.03971
https://arxiv.org/abs/1704.03971

BIBLIOGRAPHY 65

[52] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset

for Benchmarking Machine Learning Algorithms. Aug. 28, 2017. arXiv: cs.LG/1708.

07747 [cs.LG].

[53] Reza Zadeh. The hard thing about deep learning. 2016. url: https://www.oreilly.

com/ideas/the-hard-thing-about-deep-learning.

[54] Chong Zhou and Randy C Paffenroth. “Anomaly detection with robust deep au-

toencoders”. In: Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM. 2017, pp. 665–674.

http://arxiv.org/abs/cs.LG/1708.07747
http://arxiv.org/abs/cs.LG/1708.07747
https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning
https://www.oreilly.com/ideas/the-hard-thing-about-deep-learning

	Contents
	List of Figures
	Introduction
	Contributions

	Background
	Deep Feedforward Networks
	Autoencoders
	Principal Component Analysis (PCA) and Autoencoders
	PCA and SVD

	Non-convex Optimization problem
	Stochastic Gradient Descent (SGD)
	Generative Adversarial Networks
	Continuation Methods
	Parameter Continuation

	Secant Line

	Motivation and Related work
	Motivation
	Related Work

	Methods
	Model Continuation
	C-Activation function
	Rethinking of Cost function
	Natural Parameter Continuation of Neural Networks with Secant approximation

	Stable initialization of Autoencoder through PCA
	Data Continuation

	Experiments
	Datasets
	Neural Network Architecture
	Results
	PCA initialization results
	C-SMOTE results
	NPCS results

	Conclusion and Future Work
	Secant on Noise parameter

	Bibliography

