
Collaborative Learning of Hierarchical Task

Networks from Demonstration and Instruction

by

Anahita Mohseni-Kabir - amohsenikabir@wpi.edu

A Thesis

Submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

September 2015

Approved

Professor Charles Rich, Thesis Advisor

Professor Sonia Chernova, Thesis Advisor

Professor Joseph Beck, Thesis Committee Member

Abstract

This thesis presents learning and interaction algorithms to support a human teaching hi-

erarchical task models to a robot using a single or multiple examples in the context of a

mixed-initiative interaction with bi-directional communication. Our first contribution is an

approach for learning a high level task from a single example using the bottom-up style.

In particular, we have identified and implemented two important heuristics for suggesting

task groupings and repetitions based on the data flow between tasks and on the physical

structure of the manipulated artifact. We have evaluated our heuristics with users in a

simulated environment and shown that the suggestions significantly improve the learning

and interaction. For our second contribution, we extended this interaction by enabling users

to teaching tasks using the top-down teaching style in addition to the bottom-up teaching

style. Results obtained in a pilot study show that users utilize both the bottom-up and the

top-down teaching styles to teach tasks. Our third contribution is an algorithm that merges

multiple examples when there are alternative ways of doing a task. The merging algorithm

is still under evaluation.

i

Acknowledgements

I would like to express the deepest appreciation to my advisors, Professor Charles Rich and

Professor Sonia Chernova, who have been tremendous mentors for me. Besides my advisors,

I would like to thank my thesis reader, Professor Joseph Beck, for his insightful comments.

I would like to also thank Professor Candace Sidner for sharing expertise and guidance

throughout the project and Professor Dmitry Berenson for his insights into the robotics part

of the project. Furthermore, I would like to thank fellow postdoc student Jim Mainprice

for his work on simulated tasks’ execution, and fellow graduate students Daniel Miller for

the development of Gazebo simulation and primitive action detection using Vicon data, and

Artem Gritsenko for extending Jim’s work and applying it on the PR2 robot. This work

is supported in part by ONR contract N00014-13-1-0735. The opinions expressed in this

document are those of the author(s) and do not necessarily reflect the views of the Office of

Naval Research.

ii

Contents

1 Introduction 1

1.1 Problems statement . 1

1.2 Contributions . 3

2 Background and Related Work 4

2.1 Hierachical Task Networks . 4

2.2 Collaborative Discourse Theory . 5

2.3 Learning from Demonstration . 6

3 Overview of the System 8

3.1 Learning Subsystem . 9

3.2 Execution Subsystem . 10

4 Learning from a Single Example 11

4.1 Target Domain and Task Description . 11

4.2 Learning from a Single Example Using the Bottom-Up Style 13

4.2.1 Learning Without Suggestions . 15

4.2.2 Learning With Suggestions . 18

4.2.2.1 Heuristics . 18

4.2.2.2 Ideal Interaction Using Suggestions 20

4.2.3 Evaluation . 22

4.2.3.1 Study Design . 23

4.2.3.2 Task . 23

4.2.3.3 Procedure . 24

4.2.3.4 Measures and Analysis . 24

4.2.3.5 Hypotheses . 25

4.2.3.6 Results and Discussion . 26

iii

4.3 Learning from a Single Example Using the Top-Down Style 28

4.3.1 An Example Using the Top-Down Style 30

4.3.2 Semantic Relations . 32

4.4 Integration of the Bottom-Up and the Top-Down Styles 33

4.4.1 An Example Using Both the Bottom-Up and the Top-Down Styles . . 34

4.4.2 Evaluation . 36

4.4.2.1 Procedure . 36

4.4.2.2 Results and Discussion . 36

5 Learning from Multiple Examples 37

5.1 Why learning from multiple examples is necessary? 37

5.2 An Example . 38

5.3 Merging Algorithm . 40

6 Future Work 43

7 Conclusion 44

iv

List of Figures

1 LfD as a collaborative discourse. 2

2 Simulated environment with PR2. 3

3 A hand-coded hierarchical task network for tire rotation. 8

4 System architecture . 9

5 Terminology for car parts. 10

6 Data flow. 12

7 Graphical user interface for teacher. 12

8 An hypothetical ideal interaction to teach tire rotation without robot’s sug-

gestions. 17

9 Pseudocode for suggestion heuristics. 19

10 Part-whole knowledge. 19

11 A typical interaction to teach tire rotation with robot’s suggestions. 22

12 Start and goal configurations . 24

13 Teaching effort as function of suggestions. 26

14 Plan quality as function of suggestions. 27

15 User interface for both the bottom-up and the top-down teaching styles. . . . 29

16 A typical interaction to teach tire rotation using only the top-down teaching

style. 31

17 Semantic Relations between Object Types of Car Maintenance Domain. . . . 32

18 A typical interaction to teach tire rotation using both the bottom-up and the

top-down teaching styles. 35

19 An example of how alternative recipes are added to an HTN if we do not

use the merging algorithm described in Section 5.3 (for simplicity, temporal

constraints’ arrows are not shown). 37

20 An example of how alternative recipes are added to an HTN using the merging

algorithm (alternative recipes are shown with dashed lines). 38

v

21 An example of applying the merge algorithm to RotateTires task (for simplic-

ity, temporal constraints’ arrows are not shown). 39

22 An example for the execution of the MERGE function in Algorithm 1 is shown in

column 1. Column 2 shows the changed HTN after each iteration in column

1 (in column 2, the oval with dashed lines attached to it shows alternative

recipes for that specific task and gray boxes show optional steps). 40

List of Tables

1 Comparison of objective measures between the two conditions. 26

vi

1 Introduction

In this section, we first explain the problem we aim to address. Then, we will focus on the

contributions of our work in resolving that problem.

1.1 Problems statement

Robots have finally made their way into our homes, offices, museums and other public spaces

as service robots. In order to realize the dream of robot assistants performing human-

like tasks together with humans in a seamless fashion, we need to provide robots with the

fundamental capability of understanding complex, dynamic and unstructured environments

and tasks. Equally importantly, to permit natural cooperation we need to enable robots to

share our understanding of the tasks and the environment. Robotics and artificial intelligence

(more specifically the field of human-robot interaction) are working together to make this

dream possible.

The ability to learn, both from direct experience and from other agents, such as humans,

is at the core of artificial intelligence. This work focuses on the problem of how a robot

can efficiently learn complex procedural tasks from a human teacher who is an expert in

the task domain, but not in robot programming. Our approach integrates learning from

demonstration (LfD) with hierarchical task networks (HTNs). Since our target application

domain is learning complex procedural tasks, such as manufacturing, equipment inspection

and maintenance, we use HTNs as the representation of the learned knowledge. HTNs are

a powerful framework for representing and organizing task knowledge that is both efficient

for computers and natural for humans. The benefits of HTNs over flat representation are

discussed in detail in Section 2.1.

Most LfD research has focused on learning low-level manipulation behaviors and has

treated the human quite narrowly as a “source of data” for the machine learning algorithms

employed. Our approach is to view the interaction between the human teacher and the

learning agent as a mixed-initiative collaboration, in which both parties are committed to

1

manipulate manipulate
Environment

observe observe
human

teacher
robot
learner

communicate

plan tree

focus stack

Disco

answering questions
volunteering metainfo

asking questions
understanding metainfo

Figure 1: LfD as a collaborative discourse.

the shared goal of successful learning, and in which both parties make contributions in the

form of both actions and communication, including verbal instructions, making suggestions,

and critiquing. For this, we draw heavily on collaborative discourse theory and tools. More

specifically, in the situated interaction illustrated in Figure 1, which is our target, both the

human and the robot can manipulate and observe the other’s manipulations of artifacts in the

shared environment, and there is bi-directional communication between them. Collaborative

discourse theory [5] provides a foundation for both the algorithms and the implementation

of our system.

In this work, we present algorithms that will allow a robot to learn complex tasks from a

human teacher. Our approach is based on the conjecture that it is often easier for people to

generate and discuss examples of how to accomplish tasks than it is to deal directly with task

model abstractions. Our approach is thus for the robot to iteratively learn tasks from human

demonstrations and instructions. We use the term instruction to mean that the teacher tells

the robot the steps of a task without any execution of these steps, and demonstration to

mean that the robot (or teacher) also performs the desired action. The robot actively

2

Figure 2: Simulated environment with PR2.

participates in the learning process by asking questions and making suggestions, to which

human responds. By engaging the robot as an active partner in the learning process, and

by using the hierarchical structures, we believe that complex tasks can be naturally taught

by non-expert in robot programming users.

The example domain we have chosen for this research is maintenance tasks and specifically

car maintenance, because it is challenging yet familiar to most readers. We have started with

tire rotation and expect in the future to teach a robot how to check the oil, change filters

and belts, and so on.

This thesis is organized around the running example of a tire rotation HTN, which is

introduced in Section 4.1. The intended application of this work is with a real robot, such

as the PR2, in a shared physical environment. As a first step, however, we have imple-

mented and evaluated our techniques using Gazebo (robot simulation tool) in the simulated

environment shown in Figure 2.

1.2 Contributions

In summary, our work makes the following contributions:

1. A unified system that integrates hierarchical task networks and collaborative discourse

theory with the learning from demonstration;

3

2. A novel approach for learning task structure from a single demonstration, including the

task hierarchy, temporal constraints and inputs/outputs of a task;

3. Integration of mixed-initiative interaction into the learning process through suggestion

generation;

4. A novel approach that integrates demonstrations and instructions to make the interaction

more natural;

5. Novel generalization techniques that reduce the number of demonstrations required to

learn the task through merging multiple examples.

In the following sections, we begin by discussing related work in the areas of collaborative

discourse theory and robot learning from demonstration. We then present an overview of

our system in Section 3 and describe our algorithms in details in Section 4 and 5. Section

4.2 presents the algorithms implemented to learn from a single example using the bottom-up

teaching style, and our user study. The results of our first user study described in Section

4.2.3 show that the robot’s suggestions significantly improve the learning and interaction.

Section 4.4 then describes an extension of our system that integrates both the bottom-up

and the top-down teaching styles based on the lessons learned from the first user study, as

well as a pilot study evaluating that system. We conclude this work by discussing the future

direction of this work.

2 Background and Related Work

In this section, we give an overview of HTNs. We then discuss related work in collaborative

discourse theory and robot learning from demonstration.

2.1 Hierachical Task Networks

HTNs are widely used in artificial intelligence, especially in interactive systems. An HTN

is essentially a tree in which the fringe nodes denote primitive tasks, i.e., tasks that can be

directly executed (e.g., by a robot), and the other nodes denote abstract tasks, which must

4

be decomposed in order to be executed. As an example, consider the HTN for tire rotation

shown in Figure 3 (page 8). This is a hand-coded version of the kind of HTN that our system

learned from the participants in our user study.

The abstract tasks in an HTN are not absolutely necessary to execute the toplevel task—

RotateTire could simply be represented as a sequence of 64 primitives. However, there is

much evidence that humans naturally think about complex tasks hierarchically. For example,

collaborative discourse theory (described below) is based on a hierarchy of goals.

The abstract tasks in an HTN provide an important vocabulary for communication be-

tween the human and robot in the context of a collaboration. This shared vocabulary is

needed for discussing the partial completion status of the task, for delegating subtasks, for

discussing potential problems with execution, and so on. Furthemore, the abstract tasks

can often be reused in other situations. For example, after learning the HTN in Figure 3,

the robot not only knows how to rotate tires, but it has also learned two abstract tasks

(UnscrewHub and UnhangHub) that are useful for fixing a flat tire.

HTNs are also commonly used as an alternative to symbolic planning in complex real-

world applications where a complete logical formalization is difficult or infeasible. Although

tire rotation is simple enough that it could easily be formalized for a symbolic planner,

our target is applications in which this is not true. The learning algorithms in this paper

therefore require only the name and input types of a task.

There are many different formalisms available for representing HTNs. In this work, we

use the ANSI/CEA-2018 standard [12] because, among other things, it explicitly represents

data flow between tasks, which is the basis for one of the grouping heuristics described in

4.2.2.

2.2 Collaborative Discourse Theory

Discourse is the technical term for an extended communication between two or more par-

ticipants in a shared context, such as collaboration. Collaborative discourse theory refers

to a body of empirical and computational research about how people collaborate [5], that

5

uses the same hierarchical task abstraction notions expressed in HTNs. We are applying

the principles of collaborative discourse theory in this work to improve the effectiveness of

the interaction between the human teacher and robot learner (such as to help them jointly

manage their focus of attention) using a software tool called Disco, which is the open-source

successor to Collagen [13].

2.3 Learning from Demonstration

There is extensive research (involving both robots and virtual agents) on learning from

demonstration [1], hierarchical task learning [4, 6, 9] and interactive task learning [2, 10, 9, 6].

However, other than Rybski et al., discussed below, we do not know of any other work that

combines all of these aspects, as our present work does.

Research on hierarchical task learning includes both learning from demonstration and

learning from instructions approaches. LfD approaches generally focus on learning from

multiple demonstrations, rather than learning from a single demonstration. For example, in

robotics research, Nicolescu and Mataric [10] implemented a system for LfD that enables a

robot to learn and refine representations of complex tasks, and to generalize multiple demon-

strations into a single graph-like representation. In [16], Veeraraghavan and Veloso presented

a demonstration-based approach for teaching a robot sequential tasks with repetitions. Our

approach differs from the above methods in representation, and in that it integrates learning

through demonstration, instruction and making suggestions.

Niekum et al. [11] presented a method for automatically segmenting low-level trajectory

demonstrations, recognizing repeated skills, and generalizing complex tasks from unstruc-

tured demonstrations. In contrast, our work focuses on high-level task learning, in which the

task structure is more intuitively clear to users, allowing us to leverage human knowledge

to learn from fewer demonstrations. In other related work, Hayes and Scassellati [6] learn

HTNs through multi-agent coordination with humans in the loop. In contrary to their work,

we focus on learning temporal constraints, and parametrization as well as task hierarchy

from a single example.

6

Garland et al. [4] developed an offline, purely software system that generalizes an HTN

from a set of execution traces (demonstrations). A novel aspect of their system was sup-

port for a domain expert to refine past demonstrations. In addition to relying on multiple

demonstrations, this system does not ask questions—the user must take all of the initiative

in building the HTN.

Most research on interactive task learning goes under the rubric of “active learning”

and involves the system asking questions of the user. We prefer the term “interactive” to

emphasize the bidirectional nature of the communication. For example, Chernova and Veloso

[3] developed a policy learning algorithm in which the robot asks the human to provide labels

for states in which the robot has a high uncertainty. Focusing more on social interaction and

broader question types, Cakmak and Thomaz [2] have formalized three question types—label,

demonstration and feature requests—and studied their use in LfD. None of these systems

generate questions that suggest repetitions or grouping.

Several other works have focused on learning from instruction. Huffman and Laird [7]

explored the requirements for instructable agent design, and demonstrated that a simulated

robotic agent could learn useful instruction in natural language. In [8], Mohan and Laird

extended this work by instantiating their design in the Soar cognitive architecture. In this

work, they also used a hierarchical structure for their task representation. Our approach

differs from theirs in our focus on learning ordering constraints, parametrization, generaliza-

tion and independence from a particular cognitive architecture. Our additional distinction is

that our robot will make suggestions about the structure of the tasks, for example concerning

repeating or grouping the actions, whereas in their approach, the questions are focused on

learning the steps of the tasks.

She et al. [15] presented a method for learning new actions through situated human-robot

dialogue in a blocks world. They explored connections between symbolic representation

of natural language and continuous sensorimotor representations of the robot. Different

from their approach, here we focus on learning ordering constraints, parametrization and

generalization and we use HTNs instead of symbolic planning. Additionally, in contrast to

7

. . .

. . .

. . .

Rotate
(LFhub,Tire3,LRhub,Tire1, ...)

RotateTires

ScrewHubs
(LFhub,LRhub, …)

UnscrewHub
(?hub)

UnscrewStud
(?stud)

UnscrewStud
(?stud)

Unscrew
(?stud;?nut)

PutDown
(?nut)

UnhangHub
(?hub;?tire)

Unhang
(?hub;?tire)

PutDown
(?tire)

HangTire
(Tire3,LFhub)

HangTire
(Tire1,LRhub)

PickUp
(?tire)

Hang
(?tire,?hub)

ScrewHub
(?hub)

ScrewHub
(?hub)

ScrewStud
(?stud)

ScrewStud
(?stud)

PickUp
(?nut)

Screw
(?stud,?nut)

. . .

UnhangHubs
(LFhub, ...;Tire1,Tire3, ...)

. . .

. . .

. . .

. . .
. . .

. . .

frontRear xPattern

Recipe

Abstract Task

Primitive Task

Temporal Constraint

UnscrewHubs
(LFhub,LRhub, ...)

UnscrewHub
(?hub)

. . .

. . .

UnhangHub
(?hub;?tire)

. . .

Figure 3: A hand-coded hierarchical task network for tire rotation.

their work, we are not learning from natural language dialogue.

The closest work to ours is by Rybski et al. [14], who developed an algorithm that com-

bines spoken language understanding, dialog and physical demonstration to learn complex

plans. Their task representation allows abstract tasks to be constructed from simpler sub-

tasks in order to create hierarchical structures. Their robot can also verify the HTN with

the human by asking questions and allowing the human to add additional conditional cases.

However, their approach for learning task structure differs from ours in that it does not

leverage ordering and data flow constraints. Furthermore, the robot’s questions are limited

to filling in unspecified conditions (e.g., missing else statements) while our suggestions are

aimed at improving the plan quality and teaching efficiency.

3 Overview of the System

Figure 4 presents an overview of our system architecture. The key collaborative learning

components are highlighted in gray and are discussed in detail in Section 3.1. The architec-

ture consists of two subsystems, learning and execution. The inputs to the system we have

built are the human’s demonstrations, instructions and answers to suggestions. In Section

8

4.4, we describe an example learning scenario for the RotateTires task that utilizes all three

types of interaction – demonstrations, instructions and suggestions. The goal of our system

is to learn a task representation similar to the hand-coded HTN shown in Figure 3. In the

current implementation, the user interacts with the robot via a graphical user interface (GUI)

connected to Gazebo (see Figure 7). This graphical user interface is completely menu-based

and does not involve any natural language processing.

The graphical details of GUI’s design are not the main contribution of the this thesis and

the primary purpose of the GUI is to evaluate our algorithms. We are currently working

on making the interaction between the user and system as natural as possible by replacing

the menu-based GUI with the human’s physical demonstrations and using simple speech

recognition to enable the user to give instructions more naturally.

3.1 Learning Subsystem

The Learning subsystem learns tasks from a single or multiple examples. The Task Struc-

ture Learning component is responsible for learning the hierarchical task structure, ordering

constraints, inputs/outputs of tasks, and applying relations. After learning this general

structure, we apply the Generalization module, which merges multiple examples of a task

if they are available. The Suggestion Generation module is responsible for generating sug-

gestions based on the heuristics discussed in Section 4.2.2.1. We will explain these modules

Figure 4: System architecture

9

car

hub

stud

Figure 5: Terminology for car parts.

in more details in Section 4 and 5. The entire learning process is supported by Disco, an

implementation of collaborative discourse theory and ANSI/CEA-2018. Disco’s dialogue

management capabilities are used to maintain a focus stack which keeps track of the current

topic and has expectations for what needs to be said or done next. During the execution of

a learned task, the Disco planner decomposes each non-primitive task in the HTN into its

subtasks. When the planner reaches a primitive task, the primitive task is sent as an action

command to the execution subsystem.

3.2 Execution Subsystem

The execution subsystem includes the Motion Planner, Abstract World Model (AWM), and

the robot embodied either as a physical PR2 or as a Gazebo simulation. The Motion Planner

receives primitive task commands, generates plans for their execution, and sends the plans

to the robot. The AWM module tracks the current state of the world based on the simulated

or the real-world data. For real world experiments we use the Vicon motion capture system

to track the position of world objects and the user. Failures in the execution of the task are

propagated back to Disco both through the Motion Planner (planning failure) and AWM

(execution failure). Handling failures is not the focus of this work and is part of our future

work.

10

4 Learning from a Single Example

In this section, we first discuss the system’s capabilities to learn an HTN from the user using

the bottom-up teaching style. We then show that these capabilities are not sufficient for

learning from a naive user and we explain how semantics are used to make learning possible.

Before getting into the details of the system, we will describe the task and the terminology

that we are using in the next subsection.

4.1 Target Domain and Task Description

Since the HTN in Figure 3 (page 8) will be used as a running example in this document,

and it was the subject of our user studies, it is worthwhile to examine it here in some detail.

First, Figure 5 shows the terminology we are using for the relevant parts of a car: a tire

goes on a hub and is secured with three nuts (one on each stud). The hubs are identified

as LF, LR, RF, RR, standing for the left-front, left-rear, etc., and each hub has three studs,

identified as “LFhub.stud1”, etc. The tires are named Tire1, Tire2, etc., and in the user

study have distinct colors for convenience of identification.

In ANSI/CEA-2018, both abstract and primitive tasks have typed inputs and outputs,

and preconditions and postconditions (specified as as JavaScript expressions). The tire

rotation HTN uses six primitive task types: Screw, Unscrew, Hang, Unhang, PickUp, and

PutDown, with their respective input and output types shown. For example Unscrew (see

Figure 6) takes a stud as input and returns a nut as output. There are 64 primitive tasks

in the fringe of the tire rotation tree (some of the repetitive structure has been elided in the

figure to save space).

Figure 3 (page 8) defines 11 abstract task types, such as UnscrewHubs, which are used

45 times in the interior of the tree. This particular way of decomposing the tire rotation

task is not the only possible way, but the other reasonable decompositions all have a similar

number of abstract types and total number of nodes.

In ANSI/CEA-2018, the subtasks of a given task are by default unordered. An explicit

11

Unscrew

PutDown

?stud

?nut

?nut

UnscrewStud

Figure 6: Data flow.

Figure 7: Graphical user interface for teacher.

12

temporal constraint can be added between two tasks to specify a partial ordering. For

example, the four toplevel steps of RotateTires are totally ordered, but the steps of Unscrew-

Hubs are unordered, since it does not matter in what order you unscrew the nuts.

Data flow in ANSI/CEA-2018 is an identity constraint between a task’s output and an

input of a following task, i.e., another subtask of the same parent task. Figure 6 shows an

example of data flow in the tire rotation HTN.

Finally, a key feature of HTN’s in general is the ability to specify alternate decomposi-

tions, or “recipes.” Figure 3 (page 8) provides two recipes for the Rotate step of tire rotation

corresponding to two different rotation patterns: front-to-rear and corner-to-corner (“X”).

Learning alternative recipes is one of those circumstances in which multiple examples are

unavoidable.

4.2 Learning from a Single Example Using the Bottom-Up Style

In this section we will explain, using two example interactions, how our system learns the

hierarchical structure of the tire rotation HTN in Figure 3 (page 8). The first example

interaction, shown in 4.2.1, is a hypothetical “ideal” interaction in which the robot provides

no helpful suggestions, but the user teaches exactly the hand-coded hierarchical structure

anyway. While this interaction is fully supported by our system, in our user study, no

participants came even close to this ideal behavior when the robot provided no suggestions,

instead resulting in far less optimal task structures. In the second interaction, shown in 4.2.2,

the same HTN is learned with suggestions from the robot that guide the user in structuring

the task. This interaction is in fact typical of what we saw with our users (see Section 4.2.3)

who received and accepted suggestions from the robot.

Our focus in this work is on learning the grouping structure of the HTN. The names

chosen for abstract tasks and some details of the inputs and outputs may vary from our

hand-coded HTN. Furthermore, the first version of our system (described in this section)

only supports a bottom-up style of teaching, in which primitives are first combined into

small abstract tasks, which are then combined into bigger abstract tasks, and so on. This

13

style lends itself well to demonstration. In 4.3, we expand this approach to also support the

top-down teaching style using instructions, in which the higher level tasks are defined before

the lower level tasks. The second version of our system supports both the top-down and the

bottom-up styles of teaching using both instructions and demonstrations.

Figure 7 shows the graphical user interface we have developed for our first user study

with a simulated robot and environment. In use, the human teacher will be interacting with

this interface while simultaneously seeing the effects of actions on a side-by-side simulation

screen, similar to Figure 2 (page 3). The screen shot in Figure 7 corresponds to the state of

the GUI during line 32 of Figure 8.

Before we describe its operation in detail, we also need to emphasize that this GUI is not

a research goal in its own right, but rather a means to test our learning algorithms and overall

interaction design while still in simulation. As we discuss in Section 6, most or all of this GUI

will disappear once we move into a physical shared human-robot environment. After our first

user study with the GUI, we found that the system requires some other capabilities to make

the interaction between the user and the robot more natural so we designed another GUI

which is closer to the interaction that we want to have in a shared human-robot environment.

We will explain this user interface in more detail in Section 4.3.

The left side of the GUI contains buttons that select a primitive (top left) or abstract

(bottom left) task to execute. The primitive task types are predefined and do not changed.

However, new abstract task buttons are added whenever a new abstract task type is learned.

Furthermore, to help the user maintain focus of attention, buttons for tasks that are inappli-

cable in the current environment are disabled (greyed out). A primitive task is inapplicable

if its precondition is false; an abstract task is inapplicable if all possible first subtasks (ac-

cording to the temporal constraints) are inapplicable.

The top middle area of the GUI is mainly for specifying inputs, if any, as needed before

executing a task. Each input can be selected from a drop-down list of objects in the envi-

ronment of the correct type. When the user presses the Execute button, the robot executes

the selected primitive or abstract task.

14

The Rename and Delete buttons at the top of this area are for renaming and deleting

learned abstract tasks. The Holding line above these buttons is a small informational display

that keeps track of the object, if any, that the robot is currently holding.

The middle area of the GUI below the input selection area is the main informational

display, which shows the current hierarchical structure of the learned tasks. The small

arrow next to New Task A (red circle added here for visibility) indicates the abstract task

currently being learned. This area is also where the highlighting appears for tasks suggested

for grouping, as described in Section 4.2.2. The Teach New Task and Task Complete buttons

below this area respectively start and end the demonstration of a new abstract task.

Finally, the right side of the GUI contains a “chat” window in which the robot can ask

the user questions and the user can reply. For example, whenever the user presses the Task

Complete button, the robot prompts the user for a name for the newly learned abstract task.

This is also where the robot’s helpful suggestions appear and where the user can accept or

reject them.

4.2.1 Learning Without Suggestions

Figure 8 shows a hypothetical interaction that results in the system learning the hierarchical

structure of Figure 3 (page 8). The user starts by teaching a new abstract task (which will

be named UnscrewStud), demonstrating its two primitive subtasks: Unscrew (applied to

stud1 of the LFhub) and PutDown (applied to the nut it is holding as a result).

Then, in lines 5–8, the user applies this new abstract task to the other two studs of the

LFhub. Notice that when the user completes this demonstration and names this new higher-

level abstract task UnscrewHub, the system includes the immediately preceding demonstra-

tion of UnscrewStud (lines 1–4) in the abstraction, so that UnscrewHub has three subtasks,

one for each stud.

Continuing, in lines 9–13, the user similarly applies this new abstract task to the other

three hubs and names this new yet higher-level abstract task UnscrewHubs (plural). As

before, the system includes the immediately preceding demonstration (lines 5–8) in the

15

abstraction, so that UnscrewHubs has four subtasks, one for each tire. At this point all the

nuts are off the car.

Next, in lines 14–22, the user similarly teaches a high-level abstract task, UnhangHubs,

which takes off all the tires and leaves them on the ground. The heart of tire rotation is in

teaching the Rotate abstract task in lines 23–31, where the user hangs the tires back on in

the rotated pattern (Tire3 on LFhub, etc.).

To save space, 13 button presses (including 7 Execute buttons) are elided at line 32,

culminating in the learning of ScrewHubs. The learning process for ScrewHubs is entirely

parallel to the learning of UnscrewHubs in lines 1–13. Finally, in lines 33–38, the four

highest-level abstract tasks are put together to make RotateTires.

In summary, in this interaction, the user provided 28 execution commands and the robot

learned 11 new abstract task types, including the toplevel RotateTires. (The robot, of

course, executed more than 28 actions because some of the tasks instructed by the user were

abstract.)

Unfortunately, as mentioned earlier, no users in our study came even close to this ideal

behavior. The best anyone achieved was 6 new abstract task types. So, the question is, how

can we help users get closer to this ideal behavior? The next section describes our approach,

which is to use general heuristics to generate helpful suggestions.

16

Teach New Task

Execute Unscrew(LFhub.stud1)

Execute PutDown(the nut)

Task Complete: UnscrewStud

Teach New Task

Execute UnscrewStud(LFhub.stud2)

Execute UnscrewStud(LFhub.stud3)

Task Complete: UnscrewHub

Teach New Task

Execute UnscrewHub(LRhub)

Execute UnscrewHub(RFhub)

Execute UnscrewHub(RRhub)

Task Complete: UnscrewHubs

Teach New Task

Execute Unhang(LFhub)

Execute PutDown(Tire1)

Task Complete: UnhangHub

Teach New Task

Execute UnhangHub(LRhub)

Execute UnhangHub(RFhub)

Execute UnhangHub(RRhub)

Task Complete: UnhangHubs

Teach New Task

Execute PickUp(Tire3)

Execute Hang(Tire3,LFhub)

Task Complete: HangTire

Teach New Task

Execute HangTire(Tire1,LRhub)

Execute HangTire(Tire4,RFhub)

Execute HangTire(Tire2,RRhub)

Task Complete: Rotate

. . .

Teach New Task

Execute UnscrewHubs(LFhub,LRhub,RFhub,RRhub)

Execute UnhangHubs(LFhub,LRhub,RFhub,RRhub)

Execute Rotate(LFhub,Tire3,LRhub,Tire1, . . .)

Execute ScrewHubs(LFhub,LRhub,RFhub,RRhub)

Task Complete: RotateTires

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure 8: An hypothetical ideal interaction to teach tire rotation without robot’s suggestions.

17

4.2.2 Learning With Suggestions

The robot should act as an active participant in the collaboration to help the human teacher

in providing useful information about the task. To provide this useful information, the robot

requires some knowledge about the task and the environment. The advancements in robotics,

more especially the advancements in perception along reasoning about the environment to

find the spatial semantics, provides us with this knowledge. Acquiring this knowledge (more

specifically, we are using the Part-whole relation in the following subsection and the On

relation in Subsection 4.3.1) from the sensory input is not the focus of this work. This

information is used as an input to the system to make repetition suggestions in the following

subsection and handling inputs in Section 4.3.1.

4.2.2.1 Heuristics

Reflecting on the ideal interaction in Figure 8, we identified two general heuristics to help

the robot learn HTNs with useful abstract tasks. Because these are heuristics, which means

that they are not always right, we communicate the robot’s suggestions as questions to which

the user can say yes or no (to accept or reject the suggestion).

The first heuristic, called the parts heuristic, is inspired by the grouping of repeated tasks

in the ideal interaction, which is driven by the part-whole structure of the domain, as shown

in Figure 10. The heuristic rule suggests repeating the last executed task on the other parts

of the same type that share the same physical parent (e.g., the other two studs of a hub). If

this suggestion is accepted, the system then groups the last task together with repetitions

for the other parts into a new abstract task.

The second heuristic, called the data flow heuristic, is inspired by the grouping that the

ideal user does in lines 1–4 of Figure 8. The heuristic rule suggests grouping two consecutive

tasks whenever an output of the first is an input of the second (e.g., the data flow shown in

Figure 6 on Page 12, the output of Unscrew is the input of PutDown).

Figure 9 shows pseudocode for these two heuristics, which are applied in order after the

execution of each primitive or abstract task. Notice also that both of these heuristics are

18

last← last task executed

if |inputs(last)| 6= 1 then return

input← first(inputs(last)); whole← parent(input)

parts← ∅

foreach other ∈ type(input)

if other 6= input ∧ parent(other) = whole

then add other to parts

if parts 6= ∅

then ask ‘Should I execute ’+last+‘ on other ’+type+‘s of ’+whole+‘?’

(a) Parts heuristic

last← last task executed

previous← task executed immediately before last

foreach input of last

if source(input) = previous

then ask ‘Do you want to group the highlighted steps (’+previous+‘ and’+last+‘)

into a new subtask?’

return

(b) Data flow heuristic

Figure 9: Pseudocode for suggestion heuristics.

car$

LFhub$

stud1$ stud2$ stud3$

LRhub$

stud1$ stud2$ stud3$

RFhub$

stud1$ stud2$$ stud3$

RRhub$

stud1$ stud2$ stud3$

Figure 10: Part-whole knowledge.

19

quite general. They may be more or less useful in different domains, but they are expressed

entirely in terms of mathematical concepts, such as data flow and Part-whole relationships.

There is nothing specifically about car maintenance in the statement of the rules.

4.2.2.2 Ideal Interaction Using Suggestions

Now let’s see how these heuristics function in the typical interaction shown in Figure 11.

The first question, based on the data flow heuristic, appears on line 4. The user accepts

the suggestion, leading to the creation of a new abstract task type called Unscrew/PutDown.

Notice that system automatically generates a convenient default name for new abstract task

types created in response to suggestions. The user can rename these using the Rename

button at the top middle of the GUI.

The second question, based on the parts heuristic, appears on line 6 and results in the

new abstract task Unscrew/Putdown*3, which corresponds to UnscrewHub in Figure 8. If

the user accepts the suggestion, the three studs (LFhub.stud1,LFhub.stud3,LFhub.stud3)

will also be generalized to one hub (LFhub).

The interaction proceeds now in a parallel fashion to Figure 8, with the user answering

yes to the next three questions. Then, on line 20, the user first answers no. This suggestion

is generated by the data flow heuristic (in this case applied to abstract tasks). Because the

user has just executed the first step of the front-back tire rotation pattern, which is to put

Tire3 (that was originally on the LRhub) onto the LFhub, it seems plausible that she already

has in mind the idea of grouping this with the next three steps, not the previous task.

The next question, appearing on line 25, suggests in fact grouping these steps into a new

abstract task, which corresponds to Rotate in Figure 8. The user accepts this suggestion.

The second instance in which the user answers no appears on line 27, in answer to another

suggestion generated by the grouping heuristic. This is a case in which a yes answer would

also be reasonable. All it would do is add an extra layer of grouping near the top of the

hierarchy, grouping together what are called UnhangHubs and Rotate in Figure 3 (Page 8).

The remaining three questions follow the same pattern as the first three questions, just

20

as the elided lines in Figure 8 follow the same pattern as lines 1–9 in that interaction.

In summary, notice that in this interaction the user executed only 11 tasks, as compared

to 28 in Figure 8 (Page 17). Even with answering 12 yes/no questions, the user in this

interaction is expending less effort to achieve the same quality plan. This effect is borne out

by the user study described in the next section.

Importantly, we note that following the suggestions does not always lead to desired

results, which is why we rely on them as heuristics instead of rules. As an example, consider

teaching the robot to cook an omelet following a recipe that requires three eggs. After

breaking the second egg in a carton, the grouping heuristic will make the suggestion to break

all the remaining eggs, which is not the intended behavior. By presenting the suggestion

in the form of a question, our system provides the user with a simple way of ignoring or

overriding the suggested behavior when it is not desired.

21

Teach New Task

Execute Unscrew(LFhub.stud1)

Execute PutDown(the nut)

Robot: “Do you want to group the highlighted steps (Unscrew and PutDown) into a new subtask?”

“Yes”

Robot: “Should I execute Unscrew/PutDown on other studs of left front hub?”

“Yes”

Robot: “Should I execute Unscrew/PutDown*3 on other hubs of the car?”

“Yes”

Execute Unhang(LFhub)

Execute PutDown(Tire1)

Robot: “Do you want to group the highlighted steps (Unhang and PutDown) into a new subtask?”

“Yes”

Robot: “Should I execute Unhang/PutDown on other hubs of the car?”

“Yes”

Execute PickUp(Tire3)

Execute Hang(Tire3,LFhub)

Robot: “Do you want to group the highlighted steps (PickUp and Hang) into a new subtask?”

“Yes”

Robot: “Do you want to group the highlighted steps (Unhang/PutDown*4 and PickUp/Hang) into a new subtask?”

“No”

Execute PickUp/Hang(Tire1,LRhub)

Execute PickUp/Hang(Tire4,RFhub)

Execute PickUp/Hang(Tire2,RRhub)

Robot: “Do you want to group the highlighted steps (four HangTire’s) into a new subtask?”

“Yes”

Robot: “Do you want to group the highlighted steps (Unhang/PutDown*4 and HangTire*4) into a new subtask?”

“No”

. . .

Task Complete: RotateTires

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Figure 11: A typical interaction to teach tire rotation with robot’s suggestions.

4.2.3 Evaluation

We conducted a study with non-expert users to evaluate the usability of our algorithms

discussed in this section, and more specifically, the contribution of the suggestions toward

improving the interaction and learning. In this user study, we focus on “one shot” learning

with active agent, which means that the complete task is only demonstrated once and also

the agent makes suggestions based on the heuristics discussed in Section 4.2.2.1. We used

22

the graphical user interface described in Section 4.2 to test our algorithms.

4.2.3.1 Study Design

We conducted a between-subjects study to evaluate two conditions: a No-Suggestions con-

dition, in which the robot provided no repetition or grouping suggestions, and a Suggestions

condition, in which these suggestions were made when appropriate. Participants in both

conditions were able to use the GUI to add hierarchy to their task themselves, as in Figure

8 (Page 17).

A total of 32 participants (18 female and 14 male) were recruited from the local commu-

nity. Most of the participants (15 female and 8 male) did not have programming experience.

15 participants were assigned to the No-Suggestions condition and 17 to the Suggestions

condition. The two conditions were balanced for gender and programming experience.

4.2.3.2 Task

The study consisted of a training activity (in a blocks world domain) followed by the main

study based on tire rotation. All participants were given the same training activity to develop

familiarity with the GUI and the underlying learning algorithms. Specifically, participants

were given step-by-step written instructions for building a tower using six colored blocks and

two primitive actions: Pickup and PutOn. Participants were led through a series of steps,

beginning with simply moving blocks around, to teaching a new abstract task, to reusing

already learned abstract tasks to build a tower. The training process did not include any

robot suggestions, to avoid biasing participants in the No-Suggestions condition. All of the

participants successfully completed the training steps and did not have any questions for the

experimenter afterwards.

After training, participants performed the main study activity in which they were asked to

teach the robot how to rotate the tires from the start configuration to the goal configuration

shown in Figure 12. Participants were given detailed written descriptions of the six primitive

actions described in Section 4.1 and a terminology picture similar to Figure 5 (Page 10), but

23

(a) Start configuration (b) Goal configuration

Figure 12: Start and goal configurations

no step-by-step instructions on how to perform tire rotation. The GUI used by participants

in both conditions was identical. The only difference between the two conditions was whether

or not repetition and grouping suggestions were provided.

4.2.3.3 Procedure

Upon arrival, participants were asked to sign an informed consent form and were surveyed

about their programming experience. Following this, participants were given the written

instructions for the training activity; the experimenter started the learning system and left

the room until training was complete. Following training, the experimenter provided the

written tire rotation instructions, started the system and again waited outside the room.

Upon completion of the tire rotation task, participants were asked to fill out a questionnaire

about their experience. Participants were then asked to perform the tire rotation task a

second time (under the same study condition), followed by the same questionnaire.

We had participants perform two trials of the main study task because we anticipated

that improved performance would occur as they gained experience with the GUI. As we will

see in the results below, we did observe this effect.

4.2.3.4 Measures and Analysis

We used the following three objective measures to evaluate participant performance:

24

• Teaching Effort: The effort expended by the human, measured as the number of times

the teacher pressed the Execute button during the interaction (for both primitive and

abstract tasks). We think of this as the number of task demonstrations communicated

by the human to the robot.

• Plan Quality: The quality of the learned tire rotation plan, measured as the number

of abstract tasks learned (and used). We choose this measure because hierarchy is a

valuable property in complex plans for both communication and reuse.

• Teaching Efficiency: The efficiency of the interaction, measured by dividing the teach-

ing effort by the plan quality (using the definitions above).

The two-tailed Kolmogorov-Smirnov test was used for the evaluation of these measures.

4.2.3.5 Hypotheses

We formed the following five hypotheses about the effect of suggestions on the learning

interaction based on the models we presented earlier and findings from human-computer

and human-robot interaction studies.

• Hypothesis 1: Participants will expend less teaching effort in the Suggestions condi-

tion than in the No-Suggestions condition.

• Hypothesis 2: The quality of the learned plans will be higher in the Suggestions

condition than in the No-Suggestions condition.

• Hypothesis 3: The teaching efficiency will be greater in the Suggestions condition

than in the No-Suggestions condition.

• Hypothesis 4: In the Suggestions condition, participants who accepted more sugges-

tions will have better measures of teaching effort, plan quality and teaching efficiency.

• Hypothesis 5: All participants in both conditions will be able to successfully teach

the tire rotation task by the second trial.

25

Mean± SD

Execute Button
Presses

(First Trial)

Execute Button
Presses

(Second Trial)

Abstract Tasks
Learned

(First Trial)

Abstract Tasks
Learned

(Second Trial)
Efficiency

(First Trial)
Efficiency

(Second Trial)

No-suggestions 62.07± 19.10 51.40± 27.22 2.87± 2.83 2.47± 1.77 0.04± 0.03 0.06± 0.06

Suggestions 50.47± 42.68 26.65± 16.42 7.94± 5.48 8.53± 3.92 0.31± 0.31 0.41± 0.30

p-value 0.05 0.01 0.02 � 0.001 � 0.001 0.001

Table 1: Comparison of objective measures between the two conditions.

0 5 10 150

50

100

150

Ex
ec

ut
e

Bu
tto

n
Pr

es
se

s

Suggestions Accepted

(a) First trial

0 5 10 150

50

100

150

Ex
ec

ut
e

Bu
tto

n
Pr

es
se

s

Suggestions Accepted

(b) Second trial

Figure 13: Teaching effort as function of suggestions.

4.2.3.6 Results and Discussion

Table 1 presents a summary of the results of our study, which are discussed in detail below.

Teaching Effort: Analysis of the number of Execute button presses during the training

process shows that the teaching effort was significantly higher in the No-Suggestions than in

the Suggestions condition, supporting Hypothesis 1. Notice that the p-value in the second

trial is lower than in the first trial due to the large reduction in Execute button presses

by participants in the Suggestions condition during the second trial. We attribute this

difference to participants adapting to the robot’s suggestions. A reduction in effort was

also observed in the No-Suggestions condition, but the change is much smaller. To further

highlight the impact of suggestions on teaching effort, Figure 13 shows via linear regression

how the number of Execute button presses decreases with the number of robot suggestions

accepted by the user, supporting Hypothesis 4.

26

0 5 10 150

2

4

6

8

10

12

14

16

Suggestions Accepted

Ab
st

ra
ct

 T
as

ks
 L

ea
rn

ed

(a) First trial

0 5 10 150

2

4

6

8

10

12

14

16

Suggestions Accepted

Ab
st

ra
ct

 T
as

ks
 L

ea
rn

ed

(b) Second trial

Figure 14: Plan quality as function of suggestions.

Plan Quality: Analysis of the number of abstract tasks learned shows that the quality of plans

was significantly higher in the Suggestions than in the No-Suggestions condition, supporting

Hypothesis 2. Additionally, Figure 14 shows via linear regression how the number of abstract

tasks learned increases with the number of robot suggestions accepted by the uses, further

supporting Hypothesis 4.

Teaching Efficiency: Analysis of the efficiency measure provides insight into how teaching

effort and plan quality vary in combination between conditions. Teaching efficiency (see last

column of Table 1) is significantly higher in the Suggestions than in the No-Suggestions con-

dition, supporting Hypothesis 3. Additionally, we observe greater improvement in efficiency

between the first trial and the second trial for participants in the Suggestions condition.

Hypothesis 5 predicted that by the second trial all participants would successfully teach

the tire rotation task (i.e., teach a plan that achieves the goal configuration starting from

the start configuration specified in Figure 12 on Page 24). Unfortunately, this hypothesis

was not supported by our study. We only found that most, but not all, plans learned from

participants were correct. Several participants in the first trial (5/15 in No-Suggestions and

3/17 in Suggestions) and in the second trial (3/15 in No-Suggestions and 2/17 in Suggestions)

left the world state in the goal configuration at the end of their teaching session, but the

27

learned plan would not successfully achieve the goal configuration starting in the specified

start configuration.

Finally, it is interesting to note that in informal post-study debriefing several participants

in the Suggestions condition commented that they initially rejected the robot’s suggestions

because they were worried about the effect of saying yes would be. This was an unintended

side effect of our study design, in which we sought to eliminate bias by following the same

training procedure in both conditions. Nevertheless, the Suggestions condition showed clear

advantages over No-Suggestions despite this limitation, and we expect better results could

have been achieved with a training process tailored for the Suggestions condition.

In summary, Hypotheses 1–4 were supported, and Hypothesis 5 was not.

4.3 Learning from a Single Example Using the Top-Down Style

The user study described in Section 4.2.3 shows that the plan quality and the teaching effort

increased significantly using robot’s suggestions. Although the results of this user study

show a significant improvement, interacting with our system was not very easy for some

users. We speculate that one of the reasons for this problem was that the system supported

the bottom-up teaching style only. Therefore, enabling the system to support the top-down

teaching style might improves the system’s intractability. To address this, we enable the

users to teach tasks using the top-down teaching style.

In this section we will explain how our system learns a hierarchical structure of the tire

rotation HTN similar to the HTN in Figure 3 (Page 8) using only instructions. This ideal

interaction is based on a top-down approach, in which abstract tasks are first defined and

primitive actions are used in the last stages to define lowest level abstract tasks. In Section

4.4, we give an explanation of the hybrid approach that takes advantage of both the bottom-

up teaching style and the top-down teaching style. We will clarify why this hybrid approach

is more natural by giving an example that utilizes both teaching styles.

Figure 15 shows the graphical user interface we developed that supports both the top-

down and the bottom-up teaching styles. In order to make this user interface closer to the

28

Figure 15: User interface for both the bottom-up and the top-down teaching styles.

situated interaction, we have separated the instruction and demonstration part of the user

interface. Note that in this section we only use the instruction part of the GUI and the

entire GUI will be used in Section 4.4. The panel on the left (Instruction Panel), shows

the instructions that can be given to the system using language. The panel on the right

(Demonstration Panel) illustrates the demonstrations that can be given to the system by

the user executing the primitive tasks.

The user can teach the hierarchy of tasks to the robot by pressing the Teach button in

the middle area of the instruction panel to start teaching a new task and the Done button

to end the started teaching session. After starting a new teaching session, the user can add

a new step to the task by pressing the AddStep button and then adding a new step using

available demonstrated tasks or defining a new task. The user can also add inputs to the

new defined task using the AddInput button. Once an abstract task is defined with an input,

this abstract task can be used multiple times with other inputs of the same type.

29

The top part of the instruction panel contains a “chat” window in which the robot asks

questions and the user can reply. This is where the robot’s helpful suggestions appear and

where the user can accept or reject them.

The bottom area of the instruction panel is the main informational display, which shows

the current hierarchical structure of the learned tasks. Similar to the previous user interface,

the small arrow next to New Task A indicates the abstract task currently being learned. The

question mark next to the task shows the task is not yet fully defined, because the task was

given as an instruction without any body. If the user right clicks on any of the tasks in this

area, another menu will appear with the option of deleting or renaming the tasks.

To execute a task, the user can select the appropriate task from the demonstration panel,

specify its inputs and press Execute. When a primitive task is executed using the interface

buttons or demonstrated in the real-world, it will be added to the information display part

of the user interface.

4.3.1 An Example Using the Top-Down Style

Figure 16 shows an ideal interaction using the top-down teaching style. The user starts by

teaching the RotateTires task by defining its three steps: RemoveAllTires, Rotate, and

ScrewHubs. Then, the user teaches the RemoveAllTires task by adding RemoveTire as its

first step. The system asks the user to add other RemoveTire tasks with different tires; the

user accepts the suggestion and the system learns RemoveAllTires task.

On line 16, the user starts teaching the UnscrewTire(Tire1) task. The user first adds

UnscrewStud with LFhub.stud1 as its input. Guided by the Part-whole heuristic, the system

asks to add UnscrewStud with other studs of left front hub to UnscrewTire task. The user

accepts the suggestion and completes the task. This interaction continues similarly until the

user teaches all the abstract tasks.

30

Teach RotateTires

AddStep RemoveAllTires()

AddStep Rotate()

AddStep ScrewHubs()

Task Complete

Teach RemoveAllTires

AddStep RemoveTire(Tire1)

Robot: “Should I execute RemoveTire on other tires of the car?”

“Yes”

Task Complete

Teach RemoveTire

AddStep UnscrewTire(Tire1)

AddStep UnhangTire(Tire1)

Task Complete

Teach UnscrewTire

AddStep UnscrewStud(LFhub.stud1)

Robot: “Should I execute UnscrewStud on other studs of left front hub?”

“Yes”

Task Complete

Teach UnscrewStud

AddStep Unscrew(LFhub.stud1)

AddStep PutDown(the nut)

Task Complete

Robot: “Do you want to continue executing UnscrewTire?”

“Yes”

Teach UnhangTire

AddStep Unhang(LFhub,Tire1)

AddStep PutDown(Tire1)

Task Complete

Robot: “Do you want to continue executing RemoveAllTires?”

“Yes”

. . .

Teach ScrewStud

AddStep PickUp(a nut)

AddStep Screw(LFhub.stud1,the nut)

Task Complete

Robot: “Do you want to continue executing ScrewTires?”

“Yes”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Figure 16: A typical interaction to teach tire rotation using only the top-down teaching style.

The above example highlights another important property of our system related to the

definition of task inputs. Note that in the example, the abstract RemoveTire task takes tires

31

Figure 17: Semantic Relations between Object Types of Car Maintenance Domain.

as inputs, yet the primitive task used within the removal, Unhang, takes hubs as inputs. This

issue is the result of the differences between the fixed primitive tasks and how people think

about abstract tasks. We allow for this to provide a natural interaction for the users of our

system. In the case that we only allow the bottom-up teaching style in Section 4.2, this was

not a problem since the inputs would propagate up the HTN and the user was forced to

think about the abstract tasks in terms of the propagated inputs; the input of Unhang would

propagate up so the input of the RemoveTire task would be a hub as well. However, since we

have the top-down teaching style here, there is no information about the inputs and the user

should use her understanding of the task to define them. In the ideal interaction described

above, the system is using semantic relations (described below) to find the relations between

the inputs of abstract tasks and the inputs of primitive tasks and to learn the task definition.

4.3.2 Semantic Relations

In addition to the Part-whole relation which determines whether one object is a part of

another object (e.g. stud1 is part of LFhub, or studs are part of hubs) that we used in Section

4.2.2.1 to generate suggestions, we have identified another useful semantic relation: On. The

On relation determines whether an instance of an object is on another instance of another

object, or in the case that we do not have this information about the instances, it determines

whether an object type is on another object type. For example, in the former we know that

32

Tire1 is on LFhub (this information might not be available in a different world state) but in

the latter we just know that tires go on hubs (this information is always available). Figure

17 shows the semantic relations between object types in the car maintenance domain. Given

these relations, our system infers the connection between the inputs that the system inferred

(we refer to these inputs as system inferred inputs) and the inputs defined by the user.

When the user is done teaching a task, the system checks if the inputs that the user has

specified differ from the system inferred inputs. In the case that they are different, if the user

inputs are inferred by a combination of the On and the Part-whole relations, the relations

are considered as the mapping between the the user inputs and system inferred inputs. If

there is no mapping between the inputs, or there is more than one sequence of relations that

results in the same mapping, the system reports failure. Handling failures in the inference

will be analyzed in more details in our future work.

An example of the described inference process can be seen in the UnscrewTire task, which

has 3 inputs (LFhub.stud1, LFhub.stud2, and LFhub.stud3) that differ from the Tire1

input provided by the user. The system recognizes the difference between the user input

and the system inferred inputs and applies the semantic relations on the system inferred

inputs. Applying Part-whole relation on LFhub.stud1, LFhub.stud2, and LFhub.stud3

inputs results in LFhub, and then applying the On relation on the LFhub results in an object

of type Tire. Since this is the only relation found between the user inputs and the system

inferred inputs, the system successfully learns the task definition.

4.4 Integration of the Bottom-Up and the Top-Down Styles

Now, it is the time to consider mixing the bottom-up and the top-down teaching styles.

We believe that a natural human-robot interaction is neither purely bottom-up nor top-

down, since humans naturally switch between these modes of interaction while teaching

other humans. Below, we will see an example of a natural interaction scenario using both

the top-down and the bottom-up teaching styles. This interaction is just one of many natural

interactions that uses both instructions and demonstrations.

33

4.4.1 An Example Using Both the Bottom-Up and the Top-Down Styles

Figure 18 shows an example interaction that results in the system learning the hierarchical

structure similar to Figure 3 (Page 8). In this interaction, higher level abstract tasks are

taught using the top-down style and lower level abstract tasks are taught using the bottom-

up style. We hypothesize that to teach the tire rotation HTN, humans prefer to explain

higher level tasks by giving instructions; however, they prefer to demonstrate lower level

tasks.

Similar to the typical interaction explained in Section 4.3.1, in lines 1–10 the user teaches

the tasks using only instructions. Then, in lines 11–22, the user uses a similar approach as

4.2.2 and teaches a previously defined task called RemoveTire using demonstrations. This

interaction continues until all steps of tire rotation task are defined.

34

Teach RotateTires

AddStep RemoveAllTires()

AddStep Rotate()

AddStep ScrewHubs()

Task Complete

Teach RemoveAllTires

AddStep RemoveTire(Tire1)

Robot: “Should I execute RemoveTire on other tires of the car?”

“Yes”

Task Complete

Teach RemoveTire(Tire1)

Execute Unscrew(LFhub.stud1)

Execute PutDown(the nut)

Robot: “Do you want to group the highlighted steps (Unscrew and PutDown) into a new subtask?”

“Yes”

Robot: “Should I execute Unscrew/PutDown on other studs of left front hub?”

“Yes”

Execute Unhang(LFhub,Tire1)

Execute PutDown(Tire1)

Robot: “Do you want to group the highlighted steps (Unhang and PutDown) into a new subtask?”

“Yes”

Task Complete

Robot: “Do you want to continue executing RemoveAllTires?”

“Yes”

. . .

Teach ScrewHubs()

Execute PickUp(a nut)

Execute Screw(LFhub.stud1,the nut)

Robot: “Do you want to group the highlighted steps (PickUp and Screw) into a new subtask?”

“Yes”

Robot: “Should I execute PickUp/Screw on other studs of left front hub?”

“Yes”

Robot: “Should I execute PickUp/Screw*3 on other hubs of the car?”

“Yes”

Task Complete

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 18: A typical interaction to teach tire rotation using both the bottom-up and the top-down

teaching styles.

35

4.4.2 Evaluation

We conducted a pilot study with 4 computer science students to evaluate the algorithms

discussed in in this section. For this pilot study, we used the graphical user interface described

in Section 4.3.

4.4.2.1 Procedure

Upon arrival, participants were given the written instructions for the training activity. The

training activity for this pilot study is similar to the training activity of the previous user

study with one difference, users were also taught to teach the tasks using the top-down

teaching style. Similar to the previous training activity, participants were led through a

series of steps, beginning with simply moving blocks around, to providing instructions for

the Make Tower task using two instances of Stack Block task and then they demonstrated

the Stack Block task using PickUp and PutOn primitive actions.

4.4.2.2 Results and Discussion

The participants in the first two pilot studies could not teach the tire rotation task completely.

In the first pilot study with participant1 (p1), p1 reported some bugs in the user interface. In

the second pilot study, participant2 reported another bug related to the algorithms, caused

by the fact that we did not differentiate between nuts in the world. Both participants used

the top-down teaching style as well as the bottom-up teaching style. We fixed the user

interface’s bugs and we continued the pilot study with two more students.

Participant3 could teach the tire rotation task completely, but he didn’t take advantage

of the top-down teaching style. He preferred to see that the actions are being executed in

the world to ensure that he is teaching the task in a right way. He also mentioned that the

robot should be more active in this process to assure the teacher that it is learning the tasks

(i.e. the robot should give more feedbacks to the user)

Participant4 was also able to teach the tire rotation task but he reported that providing

inputs for the execution instructions is a really complicated process and at some points he

36

Figure 19: An example of how alternative recipes are added to an HTN if we do not use the merging

algorithm described in Section 5.3 (for simplicity, temporal constraints’ arrows are not shown).

was asking if he should also add the nuts as the inputs of the task. He started to teach

the tire rotation task using instructions by defining one abstract task for each tire without

noticing that he can use the same task for other tires. In addition, he forgot that he was

teaching RemoveTire task and he demonstrated the whole tire rotation task as the steps of

RemoveTire task.

In conclusion, the users tend to use the top-down teaching style in addition to the bottom-

up teaching style. However, our current approach for learning tasks using the top-down

teaching style is very complicated and not natural for the users. Using voice commands

instead of the current GUI might provide a more natural interaction for the users. Fur-

thermore, giving more feedbacks to the users assures them that the robot understands their

commands. We will address these issues in our future work.

5 Learning from Multiple Examples

In this section, we first discuss why dealing with multiple examples is necessary by giving

an example in the tire rotation task. We then explain our algorithm to merge multiple

examples.

5.1 Why learning from multiple examples is necessary?

Having alternative recipes for tasks are inevitable in any task domain. This necessitate

dealing with multiple examples of a task execution. In this section, we provide an algorithm

37

Figure 20: An example of how alternative recipes are added to an HTN using the merging algorithm

(alternative recipes are shown with dashed lines).

to merge multiple demonstrations for the same task to allow for generalization across the two

or more examples. This approach has three advantages. First, this avoids adding a separate

recipe for each tiny difference between the new demonstration for a specific task and the

previously learned model. Second, by merging different demonstrations and factoring the

common steps between them, we are postponing the system’s needs to choose between the

recipes, resulting in a more robust system. Third, this reduces the number of demonstrations

required to learn the task. In the following subsection, we will explain with an example why

merging algorithms are necessary.

5.2 An Example

Assume that we have a user who wants to teach RotateTires task. The user demonstrates

RemoveAllTires task as before, then the user demonstrates and executes four HangTire

tasks to hang the tires using front-to-rear rotation pattern and then the user demonstrates

ScrewHubs task. Now, the RotateTires task includes six tasks: RemoveAllTires, four

HangTire, and ScrewHubs tasks. After teaching the RotateTires task based on front-to-

rear pattern, the user decides to also demonstrate RotateTires task using xPattern. The

user again demonstrates RemoveAllTires task, then she demonstrates four HangTire tasks,

and then she demonstrates ScrewHubs task. The second demonstration of RotateTires task

also has six task executions. Figure 19 shows how these two demonstrations are added to

an HTN if we do not use the merging algorithm described in the following subsection, and

Figure 21 shows the results of applying the merging algorithm. If you compare the HTN

in Figure 19 with the HTN in Figure 21, the HTN’s definition in Figure 21 does not have

38

Figure 21: An example of applying the merge algorithm to RotateTires task (for simplicity, temporal

constraints’ arrows are not shown).

two redundant RemoveAllTires and ScrewHubs tasks since four HangTire executions are

grouped into a higher level task (hypothetically, called Rotate). Furthermore, at the time

of execution, the HTN planner will ask for the preferred rotation pattern after removing the

tires (at Rotate task, not RotateTires task).

This example, illustrates why it is important for our system to merge multiple demon-

strations. Please note that this example does not illustrate how our merging algorithm

reduces the number of demonstrations required to learn the task. Assume that we have two

demonstrations for Have Dinner task, the first demonstration (D1) includes: Make Dinner,

Eat Dinner, and Hand-Wash Dishes and the second demonstration (D2) includes: Order

Dinner, Eat Dinner, and Turn On Dishwasher. Merging these two sequence of tasks results

in an HTN depicted in Figure 20. In addition to the previous demonstrations (D1 and D2),

we can also infer two more demonstrations from this HTN, D3: Make Dinner, Eat Dinner,

and Turn On Dishwasher and D4: Order Dinner, Eat Dinner, and Hand-Wash Dishes.

Therefore, the proposed merging algorithm reduces the number of demonstrations required

from the human teacher. In the following subsection, we explain in more details how our

merging algorithm works. This merging algorithm can also be used for merging multiple

instructions, or merging instructions with demonstrations.

39

Figure 22: An example for the execution of the MERGE function in Algorithm 1 is shown in column

1. Column 2 shows the changed HTN after each iteration in column 1 (in column 2, the oval with

dashed lines attached to it shows alternative recipes for that specific task and gray boxes show

optional steps).

5.3 Merging Algorithm

In this algorithm, once the current demonstration sequence is encoded as an HTN using the

above methods, we check whether any previous demonstrations exist for this task. If this is

the only demonstration, then the HTN remains unchanged and the new task will be added to

the task model. However, if there exists another demonstration for the demonstrated task,

40

we apply the merging algorithm on the previous task demonstration and the new one. Figure

21 shows an example (described in the previous subsection) of merging two demonstrations

in tire rotation task. In this example, instead of having two recipes for RotateTires task,

we capture their common steps by adding a new, higher level task Rotate (the task name is

specified by the user).

The pseudocode for the merging algorithm is shown in Algorithm 1. First, the MERGETASKS

function is called with current model (existing task) and the new demonstration for the task.

If the new demonstration is satisfiable by the current model, there will be no changes in the

model and the merge ends (lines 2-3). If the new demonstration is not mergeable with the

current model, the new demonstration will be added as an alternative recipe of the current

model (lines 6-7). Otherwise, if the models are mergeable, the new demonstration will be

combined with current model using the MERGE function (lines 4-5).

Mergeability is determined by the MERGEABLE function through two steps: GetRootRecipes

and FindMaxLCS. The GetRootRecipes function returns all possible recipes of the model

(e.g., if this function is called on the Rotate task in Figure 3, it will return the steps of

xPattern recipe, and the steps of frontRear recipe.). Then the FindMaxLCS function is

called to determine which recipe shares more common steps with the new demonstration by

using Longest Common Subsequence (LCS) algorithm (line 12). If there are no shared steps

between any of the recipes and the new demonstration, the model and the demonstration

are not mergeable. Otherwise the recipe with the most shared steps will be chosen to be

merged with the new demonstration.

To merge the LCS recipe with the new demonstration, the MERGE function iteratively

selects two pairs of shared steps in the two HTNs, and merges the steps between them.

This process is illustrated in Figure 22. First, given the new demonstration and the base

recipe, we add start and end steps to each (line 16). Next, we calculate the overlap (using

LCS) between the base and the new (line 17). Then, for each pair of consecutive steps in

the overlapArray, we find the corresponding steps in the base and new (lines 21-26) (note

that BI and NI are the steps between pairs of equivalent consecutive steps in base and new,

41

Algorithm 1 Merge algorithm
1: function MergeTasks(model, demonstration)

2: if Statisfiable(model, demonstration) then

3: return

4: else if (maxLCS ← Mergeable(model, demonstration)) 6= NULL then

5: Merge(maxLCS, demonstration)

6: else

7: AddAlternativeRecipe(model,demonstration)

8: end if

9: end function

10: function Mergeable(model, demonstration)

11: modelRootSeqs ← GetRootRecipes(model)

12: maxLCS ← FindMaxLCS(modelRootSeqs,

demonstration)

13: return maxLCS

14: end function

15: function Merge(base, new) . base is the chosen recipe, and new is the new demonstration

16: Add start and end to base and new

17: overlapArray ← Overlap(base,new)

18: for Pi ∈ overlapArray do

19: C1 ← Pi in overlapArray

20: C2 ← Pi+1 in overlapArray

21: B1 ← find pointer to C1 in base

22: B2 ← find pointer to C2 in base

23: N1 ← find pointer to C1 in new

24: N2 ← find pointer to C2 in new

25: BI ← steps between B1 and B2

26: NI ← steps between N1 and N2

27: if BI = empty ∧ NI = empty then

28: Do nothing

29: else if BI = empty ∧ NI 6= empty then

30: modelRecipe ← AddOptional(base,BI)

31: else if BI 6= empty ∧ NI = empty then

32: modelRecipe ← MakeOptional(base,NI)

33: else

34: modelRecipe ← MakeNewRecipe(BI)

35: demRecipe ← MakeNewRecipe(NI)

36: AddAlternativeRecipe(modelRecipe,demRecipe)

37: end if

38: end for

39: end function

42

respectively). If BI and NI are empty, we will continue by choosing the next equivalent

consecutive steps (lines 27-28). If NI is not empty and BI is empty, we will add NI steps to

the model but we will mark them as optional steps (line 30), but if BI is not empty and NI

is empty, we will make BI steps in model as optional (line 32). If neither of them is empty,

we replace BI with a new task, and BI and NI become alternative recipes in the new task

(lines 34-36).

Importantly, the merge operation is not commutative, and thus changing the order in

which demonstrations are performed will change the hierarchical structure of the HTN.

However, the execution of the primitive actions within the model is preserved, regardless

of demonstration order, ensuring correct execution of the task regardless of demonstration

order. The evaluation of this method is parts of our future work.

6 Future Work

Our main next step is to move the human-robot interaction from simulation into a shared

physical space using a PR2 robot and an approximately life-size plastic and wood mockup of

the relevant parts of a car. To circumvent the need for computer vision processing, we will

locate the user, robot and mockup inside of a Vicon motion-capture cell and attach markers

to all elements as needed. This change will make it possible to move away from the GUI

and towards a more natural and situated interaction. If the GUI does not totally disappear

in this context, it will be moved to a hand-held touch screen. To start, instead of pressing

a primitive task button, selecting the input object(s) from a menu, and then pressing the

Execute button, the user will be able to physically demonstrate a primitive task by picking

up, putting down, screwing, unscrewing objects, etc. With only a small number of primitive

task types, we are currently able to recognize which primitive action is being performed and

its inputs.

We noticed in our user studies that it is not natural for the users to use our predefined

primitive tasks. To address this problem, we are working on learning the primitive actions

from scratch both at symbolic level (HTN) and motion planning level (learning from the

43

human trajectories). At the symbolic level, the system automatically segments reusable

primitives from narrated demonstrations and sends the segmented human trajectory (just

one segment) to a component at the motion planning level. At the motion planning level,

the constraints of the human trajectory are extracted and generalized. These constraints are

represented as Task Space Regions (TSRs) and are given to a robot planner to be executed

by the robot.

For learned abstract actions, the GUI (or perhaps voice recognition) will need to be

used to identify the action, but the selection of input(s) will be done by gesture, such as

pointing to or touching the appropriate object(s). We will study how these changes affect

the learning process, which will inform how other communication functions of the GUI, such

as the Teach New Task and Task Complete buttons, the chat pane and the display of the

current hierarchical structure should be handled. We speculate that voice commands might

be good replacements for those buttons (we do not want to deal with natural language

processing).

In a more theoretical vein, our next steps include exploring how to extend our algorithms

to support the flexible combination of demonstrations and instructions using the bottom-up

and the top-down teaching styles. We also plan to explore both improvements to our existing

heuristic rules and new heuristics for making helpful suggestions, especially as we extend our

task domain beyond tire rotation. Finding other useful relations and making suggestions

(by applying heuristics) based on the output of relations is another area that we have not

explored yet.

Finally, working with a physical robot will inevitably present us with the challenge and

opportunity to explore the very broad issue of how uncertainty and failure in robotic systems

affects the learning process.

7 Conclusion

In this paper, we presented an approach that integrates HTNs and collaborative discourse

theory into learning from demonstration and instruction paradigm to enable robots to learn

44

complex procedural tasks from human users through mixed-initiative interaction. We have

evaluated our algorithms to learn using the bottom-up teaching style with users in a simulated

environment and shown both that the overall approach is usable and that the suggestions

significantly improve the learning and interaction. We noticed that not having the top-

down teaching style in the learning process degraded the efficiency and flexibility of the

interaction. We evaluated our new system with four users using both the bottom-up and the

top-down teaching styles in a pilot study and we noticed that the users are able to teach a

task using both teaching styles but the interaction is not sufficiently natural for them. We

speculate amending our system to leverage natural language in a situated interaction will

greatly improve the users’ ability to use the top-down teaching style. The ultimate goal of

our project is to move the human-robot interaction from simulation into a shared physical

space using a PR2 robot and we are currently working on making this happen. We also

provided an algorithm for merging multiple examples of the same task; we will evaluate this

algorithm in our future work.

45

References

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of

robot learning from demonstration. Robotics and Autonomous Systems, 57(5):469–483,

2009.

[2] Maya Cakmak and Andrea L Thomaz. Designing robot learners that ask good questions.

In ACM/IEEE International Conference on Human-Robot Interaction, pages 17–24.

ACM, 2012.

[3] Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-

based autonomy. Journal of Artificial Intelligence Research, 34(1):1, 2009.

[4] Andrew Garland, Kathy Ryall, and Charles Rich. Learning hierarchical task models

by defining and refining examples. In International Conference on Knowledge Capture,

pages 44–51, 2001.

[5] Barbara J. Grosz and Candace L. Sidner. Attention, intentions, and the structure of

discourse. Comput. Linguist., 12(3):175–204, July 1986.

[6] Bradley Hayes. Social hierarchical learning. In Proceedings of the 8th ACM/IEEE

International Conference on Human-Robot Interaction (HRI 2013) Pioneers Workshop.

[7] Scott B. Huffman and John E. Laird. Flexibly instructable agents. Journal of Artificial

Intelligence Research, 3:271–324, 1995.

[8] Shiwali Mohan and John E Laird. Towards situated, interactive, instructable agents in

a cognitive architecture. In AAAI Fall Symposium Series, 2011.

[9] Shiwali Mohan and John E Laird. Exploring mixed-initiative interaction for learning

with situated instruction in cognitive agents. In AAAI, 2012.

46

[10] Monica N Nicolescu and Maja J Mataric. Natural methods for robot task learning:

Instructive demonstrations, generalization and practice. In AAMAS, pages 241–248,

2003.

[11] Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G Barto. Learning and

generalization of complex tasks from unstructured demonstrations. In IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, pages 5239–5246, 2012.

[12] Charles Rich. Building task-based user interfaces with ANSI/CEA-2018. IEEE Com-

puter, 42(8):20–27, 2009.

[13] Charles Rich, Candace L Sidner, and Neal Lesh. Collagen: applying collaborative

discourse theory to human-computer interaction. AI Magazine, 22(4):15, 2001.

[14] Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive robot

task training through dialog and demonstration. In ACM/IEEE Int. Conf. on Human-

Robot Interaction, pages 49–56, 2007.

[15] Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia, Joyce Y Chai, and Ning Xi. Back

to the blocks world: Learning new actions through situated human-robot dialogue. In

15th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 89,

2014.

[16] Harini Veeraraghavan and Manuela Veloso. Learning task specific plans through sound

and visually interpretable demonstrations. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2599–2604, 2008.

47

