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ABSTRACT 

Recently, nanomaterials have been vigorously studied for the development of 

biosensors. Among them, carbon nanotubes (CNTs) have stimulated enormous 

interest for constructing biosensors due to their unique physical and chemical 

properties such as high surface-to-volume ratio, high conductivity, high strength and 

chemical inertness. Our study is to develop a general design of biosensors based on 

vertically aligned CNT arrays. Glucose biosensor is selected as the model system to 

verify the design of biosensors. In the preliminary design, glucose oxidase (GOx) is 

attached to the walls of the porous alumina membrane by adsorption. Porous highly 

ordered anodized aluminum oxide (AAO) prepared by two-step anodization are used 

as templates. Deposited gold on both sides of template surfaces serve as a contact and 

prevent non-specific adhesion of GOx on the surface. In order to find out optimized 

thickness of gold coating, the oxidation and reduction (redox) reaction in [Fe(CN)6]3– 

/[Fe(CN)6]4– system is monitored by Cyclic Voltammetry (CV). Subsequently, 

enzymatic redox reaction in glucose solutions is also attempted by CV. We expect 

protein layers with GOx form a conductive network. However, no obvious enzymatic 

redox reaction is detected in the voltammogram. To take advantage of the attractive 

properties of CNTs, the design of enzyme electrodes is modified by attaching CNT 

onto the sidewalls of AAO template nanopores and then immobilizing GOx to the 

sidewalls and tips of CNTs. AAO templates provided vertical, parallel, well separated 

and evenly spacing nanochannels for CNT growth. Cobalt is used as a catalyst to 

fabricate CNTs. As a result, multi-walled carbon nanotubes (MWCNTs) are fabricated 
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inside the AAO templates by catalytic chemical vapor deposition (CCVD). 

Characterization of AAO templates and cobalt electrochemical deposition are 

employed by scanning electron microscope (SEM), and energy dispersive X-ray 

spectrometry (EDS). Detailed structure and texture of CNTs are examined by 

transmission electron microscope (TEM).  
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1. Introduction 

1.1 Introduction to carbon nanotubes (CNTs) 

Carbon nanotubes (CNTs) are rolled up cylinders of graphene sheets. They were 

first observed as multi-walled carbon nanotubes (MWCNTs) by Dr. Iijima in 1991 [1]. 

Figure 1.2 shows the high resolution transmission electron microscope (TEM) images 

of the MWCNTs. These tubes are composed of 2 to 50 coaxial graphitic carbon sheets 

with smallest inner diameter of around 2nm and length up to 1 μm. Two years later, 

Figure 1.1 Rolling of graphite sheet into a SWCNT [4]. 

Figure 1.2 High resolution TEM images of MWCNTs, showing different 

diameters and diverse numbers of graphene sheets [1]. 
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Iijima [2] and Bethune [3] both reported the observation of single-walled carbon 

nanotubes (SWCNTs), which was a new nanomaterial to the scientists. Figure 1.1 

shows how graphene sheet can be rolled up to SWCNTs. Its unique structure leads to 

attractive physical and chemical properties such as high conductivity and good 

mechanical strength. Ever since, these properties have stimulated great interest of 

many researchers and shown tremendous potential in various applications such as 

electronics [5], mechanics [6], chemistry and biology [7].  
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1.1.1 Structure of CNTs 

There are two distinct families of carbon nanotubes, MWCNTs and SWCNTs. 

SWCNT is a single, seamless, wrapped graphene sheet which has the form of 

hexagonal aromatic ring patterns. It can be rolled up in many different ways, and the 

structure of SWCNT can be classified into three basic types: armchair, zigzag and 

(d) 

(a) 

(b) 

(c) 

Figure 1.4 Three structures of SWCNTs: (a) armchair, (b) zigzag, (c) chiral 

nanotubes and (d) the structure of MWCNTs. (Adapted from [8]) 

(a) 

(b) 

Figure 1.3 Textures of MWCNTs (a) herringbone texture and (b) bamboo texture [8].
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chiral (Figure 1.4 (a), (b), (c), respectively). MWCNTs consist of coaxial SWCNT 

sheets. Figure 1.4 (d) shows the schematic structure of MWCNTs. When MWCNTs 

were first discovered by Dr. Iijima, the numbers of SWCNT layers varied from 2 to 

50 [1]. Theoretically, the coaxial layers are from 2 to infinite [8]. The distance 

between sheets is 0.34nm [8]. 

MWCNTs are materials with various textures. Two common features [8] are 

shown in Figure 1.3. One is the so-called herringbone texture, in which graphene 

layers are at an angle with respect to the nanotube axis. The other is the so-called 

“bamboo” texture, in which graphene sheets are oriented perpendicular to the 

nanotubes axis. 

 Since MWCNT is constitutive of SWCNT, it is necessary to study the structure 

of SWCNT first. To simplify the understanding of the structure of SWCNT, we can 

Zigzag axis 

Figure 1.5 Construction of graphene sheet and important 

parameters for CNTs: C
v

 is chiral vector, T is tube axis, θ

is chiral angle (Adapted from [8]). 
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consider SWCNT is rolled up by graphene sheet to a nanotube with respect to a 

certain direction. This direction is known as the tube axis T [8], shown in Figure 1.5. 

Figure 1.5 shows the construction of graphene sheet. Every carbon atom on the sheet 

can be expressed as a function of integers (n, m). A chiral vector C
v

 is the vector 

perpendicular to the tube axis T, given by 

                                 21 amanC vvv
+=                               (1.1) 

with yaxaa ˆ
2

ˆ
2

3
1 +=v , yaxaa ˆ

2
ˆ

2
3

2 −=v , the angle between 1av  and 2av  is 60° 

where 3 0.246cca a nm= = , acc is the C=C bond and has a value of 0.142nm. 

Based on the direction of chiral vector, the SWCNT is either of the armchair 

(n=m), zigzag (n=0 or m=0), or chiral (any other n and m). The diameter of the 

SWCNT is  

                      
2 23( )cc

C a m n nm
D

π π
+ +

= =

r

                         (1.2)    

The tube axis T of the zigzag structure is along a three-fold axis, making its chiral 

axis the so called the zigzag axis. The chiral angle, representing the chirality of the 

tube, is the angle between the chiral vector and this zigzag axis. It is expressed as  

                   
2 2

2cos
2

n m
n m nm

θ +
=

+ +
, usually 0°≤θ≤30°.              (1.3)  

Consequently, the chiral angle of the zigzag structure equals to 0° and the 

armchair structure is 30°.  
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1.1.2 Properties and applications of CNTs 

The unique structures of CNTs result in many attractive properties. In general, the 

diameters of CNTs are in the nanometer range while the length could be at 

micro-scale [9]-[11]. SWCNTs have stimulated intense interest for detailed structure 

and property studies, because the original structure of SWCNTs leads to the novel 

properties. For instance, SWCNTs are stable up to 750 °C in air and up to 

1500-1800 °C in an inert atmosphere [8]. Properties of MWCNTs vary depending on 

the structure and the texture of MWCNTs. The bond strength is quite different along 

the in-plane direction and the direction perpendicular to the plane. Along the in-plane 

direction, very strong covalent strength results in short bonds of 0.142nm [8]. 

However, in the direction perpendicular to the plane, only very weak Van der Waals 

forces exist and cause loose bonds of 0.34nm [8]. Such heterogeneity can be observed 

in bundles of SWNCTs and MWCNTs, but not found in individual SWCNT. Thus, 

properties of CNTs may change significantly depending on whether MWCNTs or 

SWCNTs are considered. 

SWCNTs are unique nanostructures with unusual electronic properties, because 

of the one–dimensional quantum effect. Figure 1.6 shows the early prediction that 

CNTs could be either semi-conducting or metallic depending on their diameter and 

the chirality of the constituent graphene tubules [12] [13]. For example, the zigzag 

structure has semi-conductor or quasi-metallic properties whereas the armchair 

structure behaves as a metallic material. This prediction of CNTs properties was later 

confirmed experimentally [14] [15]. In the metallic state, the conductivity of the 
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carbon nanotubes is very high. It is estimated that they can carry 109 A/cm2 [16]. 

Copper wire fails at 106 A/cm2 because resistive heating melts the wire. One reason 

for the high conductivity of the CNTs is that they have very few defects to scatter 

electrons, and thus a very low resistance. High currents do not heat the tubes in the 

same way that they heat copper wires. CNTs also have a very high thermal 

conductivity, allowing them to be very good conductors for heat. The measured room 

temperature thermal conductivity for an individual SWCNT is more than 6000 W/mK 

[17] and MWCNT is 3000 W/mK [18], both greater than that of natural diamond and 

the basal plane of graphite (both 2000 W/mK).   

Carbon nanotubes have desirable mechanical properties. They have a 

combination of high strength and high stiffness. The tensile strength of SWCNTs has 

been measured equal to about 45 GPa [19] [20], which is 20 times that of steel. Such 

high tensile strength makes them a promising candidate for reinforcement applications. 

Early theoretical work and experiments on individual CNTs (mostly MWCNT) 

Figure 1.6 Different electronic properties with respect to various chiral 

angles.  is semi-conductive, while  is metallic (Adapted from [11]). 
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confirmed that they were one of the stiffest structures. The bending modulus of 

defective MWCNTs was measured to be 2-30 GPa [21]-[23]. They buckle like straws 

but do not break, and can theoretically be straightened back without any damage. 

Most materials fracture on bending because of the presence of defects such as 

dislocations or grain boundaries. However, this does not occur to CNTs, mainly 

because they have so few defects in the structure of their walls. Another reason why 

they do not fracture is that as they are bent severely, the almost hexagonal carbon 

rings in the walls change in structure but do not break, which can be explained by the 

rehybridization of their sp2 bonds [16].  

CNTs have a high surface-to-volume ratio, high conductivity and are chemically 

inert. These properties make CNTs an attractive candidate for constructing biosensors. 

Large surface-to-volume ratio offers large accessible surface. High conductivity offers 

a good opportunity for direct electron transfer (DET). Their chemical inertness avoids 

unnecessary noise introduced to the system. On the other hand, CNTs are able to be 

functionalized to connect to biomolecules. As the reactivity of graphite is known to 

occur mainly through edges, perfect SWCNTs have almost no chemically active 

dangling bonds. The chemical reactivity of SWCNTs comes mainly from the caps, 

where pentagons exist [16]. CNTs with defects or open ends have intrinsically higher 

reactivity, due to the occurrence of accessible edges at the nanotube surfaces.  

The unique properties of CNTs make them promising materials in               

many inorganic applications such as battery electrodes [24], mechanical 

reinforcement [25] [26]and nanoprobes [27]. Meanwhile, CNTs show great potential 
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in biomedical applications such as drug delivery [28] and biosensors [29] [30].  
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1.1.3 Synthesis of nanotubes growth 

1.1.3.1 Electric arc-discharge method 

Electric Arc-discharge method has been employed to fabricate CNTs since they 

were first discovered [1]. An example of an electric arc reactor is shown in Figure 1.7 

[8]. A potential (~18V) is applied across two electrodes, which are usually carbon 

rods of few millimeters in diameter, separated by a certain distance (~1mm) in helium. 

A high current discharge (~100A) passes through the opposing carbon anode and 

cathode, where plasma is generated, and carbon atoms are evaporated onto the 

electrodes. Without catalysts, CNTs are formed as MWCNTs [11]. To produce 

SWCNTs, a small amount of transition metal (usually iron, cobalt or nickel) is 

incorporated as a catalyst in the central region of the anode. Bethune and coworkers 

[3] first produced a substantial amount of SWCNT by arc-discharge method using 

Figure 1.7 Sketch of an electric arc reactor [8]. 
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cobalt as the catalyst. Currently, arc-discharge is the prevailing method to synthesis 

high quality SWCNTs and MWCNTs. 
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1.1.3.3 Catalytic chemical vapor deposition (CCVD) 

Catalytic chemical vapor deposition (CCVD) processes are simple and low cost. 

For this method, substrates with catalysts are placed in the tube furnace and heated up 

to 500 to 1000ºC [34]-[36]. At this temperature, a continuous flow of hydrocarbon gas 

(mainly CH4, C2H2, C2H4 or C6H6, usually as a mixture with either H2 or an inert gas 

such as Ar and N2) is then introduced over a period of time, as demonstrated in Figure 

1.9 [8]. The catalyst decomposes the hydrocarbon, releasing hydrogen and carbon, 

which is free to form nanotubes. The reaction is chemically defined as 

                          22/ HyxCHC yx +→                      (1.4) 

CNT growth is controlled by many factors, including temperature of the reaction, 

duration of the treatment, the composition and flow rate of the gas, the form and size 

of the catalyst, the substrate material and surface morphology. Among those factors, 

the type of hydrocarbon and catalyst are the most important ones [8]. Catalytic 

decomposition takes place at the surface of very small size metal particles, typically in 

nanometer-size range. Due to the low growth temperature, CNTs are formed onto the 

solid-phase catalyst. Two growth mechanisms are considered to be responsible for 

Substrates with catalysts 
yx HC

Furnace 

Reactor tube 

Figure 1.9 Experimental arrangement of synthesizing carbon nanotubes from

hydrocarbon gas by catalytic chemical vapor deposition (CCVD) (adapted 

from [8]). 
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CNT growth during CCVD: the top-growth and the-base growth models. Figure 1.10 

schematically shows these two growth mechanisms. If the catalyst particles stay 

attached to the surface of the support when carbon dissolves, the CNTs would grow 

out from the catalyst [34] [36]. This is known as the base-growth model. Contrarily, if 

the adhesion between the catalyst and the support is too weak to keep the catalyst 

particles attached to the surface of the support, the nanotubes would form below the 

catalyst [37] [38]. This growth process is the top-growth model. Both mechanisms 

have been discussed and the mechanisms differ due to different types of substrate and 

catalyst used causing different strength of the interaction between the nanoparticles 

and the support. 

 

Support 
Catalyst 

(a) (b)
Catalyst 

Figure 1.10 Two mechanisms of CNT growth: (a) base-growth (b) 

top-growth models. 
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1.1.3.4 Comparison of different CNT growth methods 

The advantages of the electric arc-discharge technique lie in the fact that very 

uniform and almost defect-free nanotubes can be formed during the growing process. 

The major drawback of this technique is that it is not efficient for large scale 

production. Both electric arc-discharge and laser ablation techniques are well 

developed to understand the mechanism of nanotube nucleation and growth. Other 

disadvantages of these two techniques are the high cost and difficulty to obtain 

individually separated CNTs. For example, high temperature is required for the CNT 

growth and undesired tangled-shape CNTs are commonly formed. Though 

arc-discharge and the laser ablation methods are generally considered not as 

competitive as the CCVD method in the long term for low-cost production, they are 

methods currently used to prepare CNTs for commercial products [8]. The CCVD 

method is considered to be the most favorable method for mass production. Besides 

its economic advantage, it is the only method of the three that can produce MWCNTs 

with open end. CCVD technique creates defects, providing lots of C dangling bonds. 

These dangling bonds are desirable for immobilization of biomolecules. 
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1.2 Introduction to biosensors 

A biosensor is an analytical device which converts a biological response into an 

electrical signal. Usually, a biological response cannot be examined visually. It has to 

be converted into a signal which we can easily observe. Figure 1.11 schematically 

shows how the converting process works. Electrochemical techniques are methods 

that study reactions at the electrode-solution interface by converting biological 

responses into signals. In analytical electrochemistry, biocatalyst and transducer 

constitute a biosensor, which is also considered as an electrode. Transducer is the 

main component converts the response to measurable electrical signals. Then, the 

amplifier, processor and display (as analytical electrochemical equipment) convert 

these signals to visible singles. Reference electrodes are often used to establish a 

standard that other electrodes may refer. 

Biosensors can be classified in many different ways [39]. If sorted according to 

biocatalyst, biosensors are classified into enzyme electrodes, immunosensors, DNA 

sensors and microbial sensors. If categorized by transducers, they can be sorted into 

electrochemical sensors, electrical sensors, optical sensors, mass sensitive sensors and 

thermal sensors.  

Figure 1.11 Schematic diagram showing a biosensor converts biological 

response into signals. Five components are: (1) biocatalyst, (2) 

transducer, (1 and 2 together can be considered as a biosensor) (3) 
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1.2.1 Glucose biosensors 

Glucose plays an important role of the metabolic processes in the human body. 

Glucose biosensors are devices to be used for determination of glucose level in a 

biological sample. They are now widely used to test the concentration of glucose for 

diabetic patients [40]. 

Glucose biosensors were first described by Clark and Lyons in 1962 [41]. In this 

design, glucose oxidase (GOx), an enzyme which catalyzes the oxidation of glucose 

to gluconic acid, was attached to the biosensors. Glucose biosensors are often called 

Figure 1.12 Simulated structure of Glucose oxidase (GOx) [43]. 

FAD is the redox center. 

Figure 1.13 Sketch of redox reaction. FAD/FADH2 is the redox 

reaction center. 
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enzyme electrodes and have been developed for five decades [42]. One persisting 

challenge we face today is the establishment of efficient DET between GOx and the 

electrode surface. Figure 1.13 shows a detailed stimulated structure of GOx molecule 

[43]. Flavin adenine dinucleotide (FAD, red part in Figure 1.13) is part of GOx 

structure, where redox (short form of oxidation-reduction) reaction takes place. This 

FAD/FADH2 redox center is insulated deep inside the protein shell [44]. Thus, the 

reactive enzyme site is a distance away from the electrode surfaces, as illustrated in 

Figure 1.12. Then, the main concern for constructing biosensors becomes to establish 

an efficient DET between the FAD center and the electrode surface. 

The early glucose biosensors employed the reduction of glucose by oxygen: 

        glucose + O2 
GOx⎯⎯⎯→  gluconic acid + hydrogen peroxide       (1.5) 

                   H2O2 → O2 + 2H+ +2e-                        (1.6) 

One limitation of this method is that errors occur because of the oxygen deficit. 

The concentration of oxygen is lower than that of glucose by approximately an order 

of magnitude [42]. To overcome this disadvantage, mediators are used to transfer 

electrons by the following scheme:  

      glucose + GOx (FAD) → gluconic acid + GOx (FADH2)          (1.7) 

      GOx (FADH2) + 2M(ox) → GOx (FAD) + 2M(red)
+ + 2e-           (1.8) 

 2M(red) → 2M(ox) + 2e-                        (1.9) 

where M(ox) and M(red) are the oxidized and reduced forms of the mediator. The 

electrochemical measurements become basically independent of oxygen by using 

mediators. One commonly used mediator today is ferrocene or ferricyanide [42]. 



19 

However, mediator modified electrodes still have limitations due to the leaching 

problems. Thus a more efficient electron transfer method is needed to overcome this 

shortcoming. 
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1.2.2 GOx immobilization 

Immobilization is the process of attaching the biological components to the 

transducer [40]. Figure 1.14 schematically shows the five methods of immobilization: 

adsorption, covalent bonding, entrapment, microencapsulation, and cross-linking [40] 

[45]. Among all these methods, adsorption is the simplest and needs minimal 

preparation. However, the electrodes made by this method can only be used for 

exploratory work over a short time-span. For the covalent bonding method, covalent 

bonds between a functional group in the biomaterial and the support matrix need to be 

carefully designed. The main advantage of this covalent bonding method is that the 

enzyme will not be released during use. The entrapment method involves the trapping 

(a) 
 
 
(b) 
 
 
(c) 
 
 
 
(d) 
 
 
 
(e) 

Figure 1.14 Five main methods of immobilization: (a) adsorption, (b) 

covalent bonding, (c) entrapment, (d) microencapsulation and (e) 

cross-linking [45]. 



21 

of the biomaterial in a polymeric gel, which is prepared in a solution containing the 

biomaterials. Unfortunately, this can cause large barriers, inhibiting the diffusion of 

substrate and slowing the reaction. Enzyme activity also decreases due to pores in the 

gel. Microencapsulation is quite adaptable and does not interfere with the reliability of 

the enzyme. Enabling close contact between the biomaterial and the transducer, the 

biomaterial is held in place behind a membrane. This method also limits 

contamination and biodegradation. The cross-linking method bonds the biomaterial to 

solid supports chemically or to another supporting material such as a gel. Again, 

diffusion limitation and damages to the biomaterial exist. 

In practice, modified electrodes with polymer coatings that facilitate the 

immobilization of the biocomponents through incorporating multiple immobilization 

methods are quite common for electrochemical biosensors.  

Since GOx serves as the catalyst in the glucose electrolyte, GOx immobilization 

on the electrodes is essential for the construction of glucose biosensors. As described 

in section 1.2.1, the redox center of GOx is insulated deep inside the protein shell, so 

an efficient way to establish the connections between the redox center and the 

electrode surfaces is highly needed. Among all methods of immobilization, covalent 

bond is the most desirable one. Functionalized CNTs offer a connection between the 

FAD redox center and electrode surface by carefully designed covalent bond. Details 

are discussed in the following section. 
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1.2.3 CNT-based biosensors 

The main advantage of CNTs is their large accessible surface areas due to a high 

surface-to-volume ratio. This offers possibility of constructing biosensors with high 

sensitivity. CNT-based electrochemical glucose biosensors have improved the 

performance of enzyme electrodes dramatically with high sensitivity, fast response 

and good reversibility [46]-[54].  

Functionalized CNTs have been studied to properly immobilize GOx [53]. There 

are two ways to functionalize CNTs. One approach is to first chemically oxidize the 

tips or structural defects of the CNTs and then couple them with other molecules via 

carboxylic, carbonyl and/or hydroxyl groups located at the nanotube tips or its defects. 

The other method is to directly add the molecules to the graphitic-like surface of the 

CNTs. For both method, covalent functionalization is of the majority and is associated 

with the rehybridization of sp2 bond [8]. Noncovalent functionalization is also 

possible and has been achieved by wrapping the nanotubes in a polymer [8].  

The most commonly used CNT-based glucose biosensors are CNT-coated 

electrodes [51] . One disadvantage of these CNT-coated biosensors is the insolubility 

of CNTs in most solvents. The insolubility of CNTs prohibits the electron transfer due 

to the limited accessible surface. To overcome this shortcoming, Nafion was utilized 

to dissolve CNTs [46].  

Another advantage is that CNTs provide a direct connection between the FAD 

redox center of GOx and the electrodes. Glucose biosensors based on vertically 

aligned CNTs have recently received great attention [47] [55]-[57]. Figure 1.15 shows 
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the schematic diagram of the covalent bonding between the CNTs and the FAD redox 

center. GOx were immobilized on the sidewalls (Figure 1.15 (a)) and tips (Figure 1.15 

(b)) of the CNTs, which offers DET from the FAD center to the electrodes and also 

keeps the bioactivities of GOx. These vertically aligned nanotubes are well separated, 

work as individual electrodes and efficiently collect signal [55]. However, these 

forest-like CNTs are often in bundles, which decrease the accessible surface area.  

Figure 1.15 Immobilization of GOx via the walls (a) [56] and tips (b) [55] of 

CNTs. 

(a) (b) 
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1.3 Introduction to characterization methods 

1.3.1 Characterization of CNTs 

To understand properties of CNTs, it is quite necessary to characterize their 

structure at an atomic level. Various analytic methods have been employed to 

investigate the structure of nanomaterials. For instance, scanning electron microscope 

(SEM) and transmission electron microscopy (TEM) are very useful tools for imaging 

and structure analysis [58] [59]. Among all electron beam instruments, SEM is the 

most commonly used to obtain nanoscale information from various nanomaterials. 

High-quality images are obtained with an image resolution of 0.5 nm. TEM 

determines the atomic structure of interfaces and defects with high position accuracy. 

The resolution of TEM reaches as high as 0.1nm. Another advantage of electron 

microscope is that it offers the accessibility of associated spectroscopy and diffraction. 

For example, SEM and TEM provide quantitative analysis and chemical composition 

determination when combined with energy dispersive X-ray spectrometry (EDS). 

To study the structure of CNTs, the most commonly used to explore the overall 

structure of CNTs is TEM, which have been used ever since CNTs were discovered [1] 

[2]. There are other methods that have been used to study the structure of CNTs such 

as scanning tunneling microscopy (STM) [60] [61], Raman spectroscopy [62]-[64], 

atomic force microscopy (AFM) [9] and X-ray Diffraction (XRD) [10].  
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1.3.2 Electrochemical methods 

Among all electrochemical methods, cyclic voltammetry is the most widely used 

technique for acquiring quantitative information about oxidation and reduction (redox) 

reactions [65] [66]. Cyclic voltammetry studies redox properties of chemicals and 

interfacial structures. It has the ability to rapidly provide considerable information on 

the thermodynamics of redox processes and the kinetics of heterogeneous electron 

transfer reactions and on coupled chemical reactions or adsorption processes. In an 

electroananlytical study, cyclic voltammetry is often the first experiment performed. 

Cyclic voltammetry involves the process of linearly scanning the potential of a 

stationary working electrode (usually in an unstirred solution), using a triangular 

potential wave form (Figure 1.16). The working electrode serves as the surface where 

the electron transfer of the redox reaction occurs. A scale of the potential E of the 

electrode can be established against the standard hydrogen electrode (SHE). Hence, 

CV is always carried out using a three-electrode system. The SHE is a reference 

electrode, to which other electrodes may be referred. However, it is not routine to use 

Figure 1.16 Triangular potential in cyclic voltammetry 

technique (adapted from [66]). 
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SHE as a reference electrode because it is explosive. Other secondary reference 

electrodes are used in practice. They give reproducible electrode potentials and have 

low coefficients of variation with temperature. The silver-silver chloride (Ag/AgCl) 

electrode and the saturated calomel electrode (SCE) are commonly used ones. The 

electrodes have potentials of +0.22V and +0.24V relative to SHE, respectively. A 

counter electrode, also known as an auxiliary electrode is, as well, needed in the 

electrochemical system.  

Single or multiple cycles can be employed to extract information about the 

electrochemical process. During the potential sweep, the current resulting from the 

applied potential is measured. The current and potential are then both plotted on a 

diagram called a cyclic voltammogram. This diagram is a complicated, 

time-dependent function of a large number of physical and chemical parameters. 

Figure 1.17 illustrates a typical cyclic voltammogram, presenting the expected 

O → R 

O ← R 

 Forward scan → 

← Reverse scan 

Figure 1.17 Typical cyclic voltammogram, showing one 

cycle of reversible redox reaction [66]. 
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response of a reversible redox couple during a single potential cycle. The reversible 

redox reaction is states as: 

O + ne- ⎯→←  R 

where O is the oxidized form, R is the reduced form. 

 The potential increases or decreases linearly as a function of time. When the 

potential approaches a certain value E0 during the forward scan, the current begins to 

increase dramatically, where the reduction process starts. The potential is then 

reversed at the region that is at least 90/n mV beyond the peak. During the reverse 

scan, reduced production, generated in the forward half-cycle, is reoxidized back to 

the oxidized form.  

 The peak current for a reversible couple (25°C) is given by the Randles-Sevcik 

equation 

                     2/12/12/35 )1069.2( vACDnip ×=                 (1.10) 

where n is the number of electrons, A the electrode area (in cm2), C the concentration 

(in mol/cm3), D the diffusion coefficient (in cm2/s), and v the potential scan rate (in 

V/s).  

The reverse-to-forward peak current ratio, ipr/ipf, is 1 for a simple reversible 

couple. The potential at which the peak occurs, Ep, is related to the standard redox 

potential E0, expressed as: 

                          
2

0 pcpa EE
E

+
=                          (1.11) 

The separation between the peak potentials (for a reversible couple) is given by 
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                      0.059
p pc paE E E V

n
Δ = − =                     (1.12) 

It is possible to relate the half-peak potential Ep/2, where the current is half of the 

peak current, to the polarographic half-wave potential, E1/2: 

                       /2 1/2
0.056

pE E V
n

= ±                         (1.13) 

One of the most common redox reactions used to illustrate a reversible cyclic 

voltammetric response is the redox between the ferricyanide ion and ferrocyanide: 

−−− ⎯→←+ 4
6

3
6 ])([])([ CNFeeCNFe                  (1.14)  

If the electrode process is irreversible, the peaks will be reduced in size and 

widely separated. However, the average of the two peak potentials is still E0. The peak 

current, given by 

                    5 1/2 1/2 1/2(2.69 10 ) ( )p ai n n ACD vα= ×                (1.15) 

is still proportional to the bulk concentration, but will be lower in amplitude. 

 For a quasi-reversible system, the current is controlled by both the charge transfer 

and mass transport. The voltammogram of a quasi-reversible system exhibits a greater 

separation in peak potentials compared to a reversible system, but less than an 

irreversible system. 
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2. Materials and methods 

2.1 Anodized aluminum oxide (AAO) template 

Lithography is a conventional technique used to develop controllable pattern of 

small size. However, it has both technical and economical limitations such as low 

throughput, long exposure time, small field size and high cost of equipment for large 

scale integrated fabrication. The template-assisted technique offers a platform that 

could produce large amounts of nanometer-scaled structures by well patterned 

nanoarrays, which overcomes the difficulty for conventional lithography. As a 

commonly used template for filtration, anodized aluminum oxide (AAO) has been 

well studied over the past half century [67]-[76]. This self-organizing method offers a 

promising route to synthesizing nanostructures due to AAO’s high surface-to-area 

ratio, controllable pore diameter and ideal cylindrical shape. AAO template pattern 

provides uniform pore diameter adjustable from 20-200nm, uniform pore periodicity 

in the range of 50-400nm, and a high packing density of 109-1011 cm-2 [68]. The pore 

diameter, the spacing and the array size varies over ranges that are beyond the reach 

of standard e-beam lithography. Another advantage of fabrication using AAO 

Figure 2.1 Schematic diagram of the two-step anodization process. 

(a) first anodization; (b) pretextured Al; (c) second anodization [68]. 
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templates is the low cost and easy process, compared to other techniques such as a 

cleanroom process. 

Traditional AAO template fabrication with only one-step anodization results in 

templates with disordered and non-uniform structure. More recently, a two-step 

anodization process has been well established to achieve self-organized 

highly-ordered nanopatterns in the AAO template [69] [70]. This carefully controlled 

two-step anodization process significantly improves the pore regularity. Figure 2.1 

shows a schematic diagram of this two-step anodization process. During anodization, 

the aluminum oxide obtained from the first anodization step is removed and then a 

porous alumina film with highly ordered pores develops in the second anodization. A 

barrier layer is formed during anodization as a semi-spherical aluminum oxide layer at 

pore bottoms [73]. (See Figure 2.2) This undesirable layer is minimized by dropping 

the voltage at a relative slow speed (1 V/min) after second anodization or removed by 

etching treatments [74].  

 The composition of electrolyte, anodization temperature and voltage are the 

Figure 2.2 Diagram of the typical porous alumina structure 

when fabricated using bulk aluminum [73]. 
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main factors that affect pore diameter and spacing [71] [75]. Table 2.1 shows the 

optimized anodization conditions for various electrolytes [76]. Characterization of the 

morphology of the AAO template surface was obtained by SEM, AFM and XRD. 

Pore-widening is a simple technique that can modify the pore size of alumina 

membranes after anodization. This method provides a convenient way to prepare 

AAO template of any desired diameter in a certain range by chemical etching.  

Table 2.1 Optimized anodization conditions for various electrolytes [76] 

 

The alumina membrane can be separated from the aluminum substrate by wet 

etching in 1-2wt% HgCl solution [69] [73]. Recently, another method is reported to 

separate the membrane from Al sheets by voltage pulse [77] [78]. This voltage pulse 

separation process takes only several minutes, which offers a simple way to obtain 

free-standing AAO templates. 

 

Electrolyte Concentration 

(M) 

Temperature 

(°C ) 

Voltage 

(V) 

Typical pore 

diameter (nm) 

Oxalic acid 0.3 10 40 45 

Phosphoric acid 1.0 0 160 400 

Sulphuric acid 0.5 0 25 30 
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2.2 Methodology of electrode design 

2.2.1 Preliminary electrode design 

The object of the research is to develop a general design for biosensors. Glucose 

biosensor is selected as the model system to verify the design of the biosensors. 

Figure 2.3 shows the preliminary design of glucose biosensor. In this design, there are 

four main steps: AAO template fabrication, gold deposition, GOx immobilization and 

characterization. Porous highly ordered AAO templates are prepared by two-step 

anodization. Deposited gold on both sides of electrodes surfaces serve as contacts and 

prevent non-specific adhesion of GOx on the surface. And then GOx is adsorbed to 

the sidewalls of the porous alumina membrane’s nanopores. Electrochemical 

characterization provides feedback for optimizing the nanostructured electrode device. 

Cyclic Voltammetry (CV) in [Fe(CN)6]3– /[Fe(CN)6]4– system is carried out to 

determine the minimum thickness of Au coating as effective contact. Finally, study of 

Design of Electrode

Gold Deposition

AAO Template Fabrication

GOx Immobilization

Characterization

Biomedical Application

Figure 2.3 Methodology of preliminary electrochemical 

glucose biosensor design. 
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enzymatic redox in glucose solutions by CV is attempted.  

One method of GOx immobilization is to adsorb several layers of protein 

nanotubes (known as binding agents) onto the pore of AAO template and then attach 

the GOx onto each protein layer. In our design, 3-amino propylphosphonic acid (APA) 

and glutaraldehyde (GA) are used for immobilization, which is adapted from [79].The 

chemical structure of APA and GA are shown in Figure 2.4. The nanopore alumina 

template is immersed first into a solution of APA, resulting in attachment (via the 

phosphonate) of a monolayer of this molecule to the pore walls. The amino groups are 

then reacted with an excess quantity of the protein-immobilization agent GA [79], 

leaving unreacted aldehyde groups on the pore walls. The sample is then exposed to a 

solution of the desired protein, which reacts via free amino sites with the aldehyde 

groups on the pore wall.  

However, no obvious enzymatic redox reaction is detected in the voltammogram. 

Thus, we are compelled to revise the GOx electrode design by add CNT to enhance 

the connection between the redox centers in GOx and the Au contacts.  

Figure 2.4 Chemical structure of APA (a) and GA (b). 

(b) (a) 
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2.2.2 CNT-based electrode design 

The flow chart with the major steps involved in the design and construction of 

CNTs-based glucose electrode is shown in Figure 2.5. To take advantage of the 

attractive properties of CNTs, the design of enzyme electrodes is modified by adding 

CNT and immobilizing GOx to the side walls and tips of CNTs. The main difference 

from the preliminary design is that the step of CNTs fabrication is added after AAO 

template fabrication and before gold deposition. Figure 2.6 is the schematic diagram 

of CNT-based electrode fabrication. AAO templates provide vertical, parallel and 

evenly spacing nanochannels for CNT growth by CCVD method. The templates are 

then coated with gold on both sides to prevent non-specific protein attachment on the 

electrode surface and to serve as contacts. A gold wire is attached to the gold surface 

by conductive tape, which makes the template with gold coating a working electrode. 

Design of Electrode

Gold Deposition

CNTs Fabrication

AAO Template Fabrication

GOx Immobilization

Characterization

Biomedical Application

Figure 2.5 Methodology of CNT-based electrochemical 

glucose biosensor design. 
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Figure 2.6 (b) shows the GOx immobilization process. Ideally, GOx molecules are 

immobilized on the side walls and tips of CNTs. For future study, further 

characterization of this CNT based glucose biosensor by CV and is desirable.  

 

 

 

 

Figure 2.6 Schematic diagrams of CNT-based electrode fabrication (a) and GOx 

immobilization (b). 

(b) 

+  binding agents       ★  glucose oxidase 

(a) 
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3. Experimental 

3.1 Preparation of AAO template 

High purity (99.999%) aluminum sheets were annealed at 500°C for 4 h. They 

were polished electrochemically in a chemical solution (C2H5O: HClO4 = 5:1) at 20 V 

(0°C) for 4 min. After the pretreatments, first anodization was carried out at a constant 

cell potential of 40 V in a 0.3M oxalic acid solution for 16h. Nanopores 

approximately 60nm in diameter were formed during the first anodization. The porous 

alumina film was then removed by a chemical etching in a mixture of 6wt% H3PO4 

1.8wt% CrO3 in deionized (DI) water for 2 h at 70°C. Subsequently, the Al sheets 

were anodized again using the same conditions of the first anodization for 5 h. The 

thickness of alumina membrane increases at the rate of 1micron/15min under these 

conditions. At the end of the second anodization, the voltage was dropped from 40 to 

10V by 1V steps in order to minimize the thickness of the barrier alumina layer at the 

bottom of the pores, which is of importance to obtain the uniform electrodeposition of 

the cobalt nanoparticle catalyst. After the pores were widened by immersing the 

samples in 0.1M H3PO4 solution for half an hour, Co was electrochemically deposited 

at the bottom of the nanopores in CoSO4·7H2O, H3BO3, C6H8O6 (240:40:1 in weight) 

electrolyte at 14VAC, 0.1 kHz for 1 min. The samples were rinsed with DI water and 

dried in the air after each step. Characterization of deposited Co nanoparticles was 

carried out by using SEM and EDX. 
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3.2 Study of gold deposition 

Two groups of samples were prepared for characterization optimized Au 

thickness. Group A consisted of two commercial templates purchased from Whatman 

Company with pore diameter of 200nm and membrane diameter of 13mm. Group B 

consisted of the empty AAO templates fabricated by two-step anodization in our lab. 

To remove the barrier layer of the homemade AAO template, the sample was 

immersed in 0.5M phosphoric acid solution at room temperature for 1 h before Au 

deposition. 1 wt% HgCl2 solution was used to separate the AAO template from the Al 

substrate underneath. Gold deposition was carried out to form a continuous coating on 

both sides for both groups, following the schematic steps shown in Figure 3.1.  

For Group A, templates were coated with thickness of 5nm, 20nm or 50nm Au on 

the front side and 5nm thick Au on the back side using an e-beam evaporator. During 

the e-beam evaporation, the base pressure was controlled between 4-5x10-7 torr and 

the evaporation rate of 1 Å/s. Gold wires were then attached to the front surfaces of 

the templates with conductive tape, to form the working electrodes. 

CV studies were carried out using a BAS 100 B/W Potentiostat C3 cell in a 

three-electrode system. The template served as a working electrode, a platinum wire 

as a counter electrode, and a Ag/AgCl electrode as a reference electrode. 

Figure 3.1 Schematic diagram of preparing AAO templates with gold coating. 
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3.3 Preliminary biosensor construction 

The AAO templates with gold coated on both sides were immersed in a 5 mM 

APA solution at 5.8 pH for 24 hours. Afterwards, the samples were immersed in a 2.5 

wt% solution of GA for 12 hours. Finally, the GOx were deposited by vacuum 

filtration of the 10 mg/mL GOx solution through the membrane, using a Millipore 

mini-vacuum system. A gold wire was attached to the top of the AAO template by 

conductive taping. 
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3.4 Carbon nanotubes growth 

CCVD method was applied to grow CNTs in the porous alumina film. To 

investigate the appropriate conditions for CNT growth by CCVD method, two sets of 

experiments were carried out. First, empty commercial templates were utilized for 

CNT growth in pure C2H2 gas for 10 minutes, 30 minutes and 1 hour, without catalyst. 

Thermal cleaning conditions were examined in order to remove junk carbon deposited 

on the surface of AAO templates. Second, a mixture of 10 vol% acetylene and 90 vol% 

N2 has been employed to grow CNTs for 1 h, 2h, 4h and 10 h in home-made AAO 

templates, using electrodeposited cobalt as a catalyst. 

 Figure 3.2 shows a schematic of the CNTs growth conditions. The samples, 

were placed in a tube furnace and were heated up to 600 °C at a rate of 10 °C /min 

with a flow rate of 60 sccm of pure nitrogen. At 600 °C, N2 was replaced by pure CO 

to reduce any cobalt oxides. After 1 hour, the gas was changed to pure acetylene or a 

mixture gas of 10 vol% acetylene and 90 vol% N2. In order to find the proper growth 

time for CNTs, the growth was carried out over different period. After CNT growth, 

the furnace was cooled down to room temperature in pure N2 atmosphere.  

Figure 3.2 Schematic diagram of CNTs growth conditions. 

Room Temperature 

Temperature (°C) 

600 

Time (h) 

10°C/min 

CO for 1h Growth time 
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For SEM observation, the AAO template was wet etched in a mixture solution of 

6wt% H3PO4 and 1.8wt% CrO3 for 5 hours to partially expose the CNTs. For TEM 

observation, the CNTs were released by removing the alumina template in 0.5M 

NaOH solution. The collected CNTs were rinsed by DI water using centrifuge and 

dispersed in ethanol by sonication. TEM samples were made by dropping a few drops 

of the ethanol solution containing the CNTs onto copper grids.  
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4. Results and discussions 

4.1 Characterization of AAO templates 

The morphology of AAO templates was examined by SEM (JEOL JSM-840). 

Figure 4.1 shows the top-view and cross-section SEM images of a typical porous 

alumina membrane fabricated by two-step anodization. A uniform array of nanopores 

in a hexagonal pattern was obtained. To examine the surface structure of AAO 

templates, software ImageJ was used to analyze the pore size, spacing and packing 

density of the templates. Appendix A demonstrates the image analysis details by 

ImageJ. The average diameter of the nanopores in AAO templates is around 50 nm 

and the inter-pore distance (distance from the center of one nanopore to the center of a 

neighboring nanopore) is about 90 nm. The overall packing density is on the order of 

1010 cm-2. The cross-section SEM image shows that the nanopores are straight and 

oriented parallel to each other, providing idea nanochannels for one dimensional 

nanomaterial growth.  

Figure 4.1 Top-view (a) and cross-section (b) SEM images of AAO template 

after two-step anodization. 

(a) (b) 
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In order to facilitate Co catalyst electrodeposition, templates were immersed in 

0.1M phosphoric acid solution at room temperature for 30 min to widen the nanopores 

and thin the barrier layer after the second anodization step. Figure 4.2 shows the 

top-view SEM image of a typical AAO template after this pore widening treatment.  

ImageJ analysis indicates that after this pore widening step, the average diameter of 

the nanopores increased to around 76 nm with a distribution of 6.2%. The nanopore 

spacing reminded as about 90 nm, confirming that this pore widening treatment does 

not affect the spacing of nanopores. The details for result analysis by ImageJ are 

described in Appendix A.  

Figure 4.2 Top-view SEM image of AAO template after pore widening.
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4.2 Study of Au coating 

Cyclic Voltammetry in [Fe(CN)6]3– /[Fe(CN)6]4– system was used to test the 

performance of Au coating as contacts. Figure 4.3 is the cyclic voltammogram of 

three electrodes with different thickness of gold coating. The electrode with a 

thickness of 5nm gold coating (sample A1) gets no signal, while the ones with 20nm 

and 50nm thickness (sample A2 and A3, respectively) obtain electrochemical signals, 

of which the cyclic voltammogram demonstrated the desired ‘duck shape’. The anodic 

and cathodic peak potentials of sample A2 occur at 164 and 282 mV, and the sample 

A3 are 182 and 272 mV. The redox potentials for sample A2 and A3 are 0.228 V and 

0.227 V respectively, both agree well with the known [Fe(CN)6]3– /[Fe(CN)6]4– redox 

potential relative to Ag/AgCl (0.23 V). The result indicates that 20-50 nm Au coating 

serves as effective contact to collect electrical signal. In order to enable enzyme 

Figure 4.3 Cyclic voltammogram of homemade AAO template with different 

thickness of gold coating. 
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attachment to the CNT tips and walls, it is essential that Au coating should be 

effective to prevent non-specific attachment of enzymes to the AAO surface yet not 

blocking the openings of the nanopores. Figure 4.4 shows high resolution top-view 

SEM image of a typical homemade template with 50nm thick gold deposition. Pores 

with a diameter of ca. 78nm were observed. It indicates that the gold coating does not 

block the surface, which offers the possibility for accessing CNT for enzyme 

immobilization. 

 

 

 

 

 

Figure 4.4 Top-view SEM image of empty homemade AAO 

template with 50nm thickness gold coating. 
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4.3 Characterization of cobalt deposition 

 After the cobalt electrodeposition, the samples turned into dark purple. Figure 

4.5 (a) shows the top-view SEM image taken after cobalt deposition. It clearly 

confirms that the opening of the nanopore channels in the AAO template reminded 

open for further materials deposition. Figure 4.5 (b) is the cross-section SEM image 

a) b) 

Co 

Figure 4.5 Top-view (a) and cross-section (b) SEM images of AAO template 

after cobalt deposition. 

Co 

Al 

O 

Figure 4.6 Cross-section EDS spectrum of the AAO template after 

cobalt deposition. 
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of the AAO template after the cobalt deposition. The electrochemically deposited 

cobalt formed short nanorods at the bottom of nanochannels in AAO templates. The 

cross-section EDS spectrum shown in Figure 4.6 confirms the existence of the cobalt. 

EDS line scan was carried out to characterize the distribution of cobalt along the 

length of the nanopore. Three different locations on each of three different samples 

were examined. A representative cross-section SEM image of the AAO template with 

cobalt deposition and corresponding EDS spectrum line scan along a nanopore from 

bottom to top are presented in Figure 4.7. The EDS line scan results indicate that the 

amount of cobalt decreases along the length of the nanopore from bottom to top. 

Further analysis of SEM cross-section images and EDS line scan results suggests that 

the average lengths of Co nanorods is around 400nm, as shown in Table 4.1. 

Table 4.1 SEM cross-section and EDS line scan results of electrodeposited cobalt 

length for 1 min 

Sample name  A   B   C  

location 1 2 3 4 5 6 7 8 9 

Estimated cobalt length (nm) 215 427 507 294 223 498 433 461 683 

Average cobalt length (nm)     416     

 

 

 

 

 

Co Co 
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Figure 4.7 Cross-section SEM image of the AAO template after cobalt deposition (a) 

and EDS spectrum line scan along the length of the nanopore from bottom to top. 

1500nm 

Co - 76 

Co 

(a) (b) 
tensity 
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4.4 Observation of CNTs  

4.3.1 CNT growth in pure C2H2 

Empty commercial templates were utilized for CNT growth in pure C2H2 without 

any catalyst. Figure 4.8 (a) shows the SEM top-view image of a typical as-grown 

sample for 1 hour growth. It is obvious that bulk carbon particles of micrometer size 

were formed on the surface of AAO template. These bulk carbons are known as the 

junk carbon. In order to remove those junk carbons on the surface, thermal cleaning 

Figure 4.9 Top-view SEM images of commercial AAO templates before (a) 

and after (b) thermal cleaning. 

Figure 4.8 Schematic diagram of thermal cleaning. 

Room Temperature Time (h) 

2°C/min 

    Thermal cleaning time 

Temperature (°C) 

600 
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conditions were studied. The cleaning procedure employed a temperature profile 

shown in Figure 4.8. The templates were heated to 600°C at 2 °C/min and kept for 

various periods in air. Three different thermal cleaning periods were tested: 10 min, 

30min and 1h. It was found that 1 hour was needed to thoroughly clean the surface 

with junk carbon. Junk carbon on the AAO surface was removed partially for 10 min 

or 30 min. Figure 4.9 (b) shows the top-view SEM images of commercial AAO 

templates after 1 hour thermal cleaning. However, no CNTs were observed after this 

thermal cleaning process. Even though there were reports suggesting that AAO 

template can sever as a weak catalyst for CNT CCVD growth [80], under the growth 

conditions in our study, the catalytic effect might be too weak to result in significant 

CNT growth. In addition, large size junk carbon might have been formed from the 

beginning of the growth due to the easy access to the top surface and blocked the 

passage to the inside of nanopore channels for CNT growth. Thus, a second group of 

samples were fabricated by employing a mixture of 10 vol% acetylene and 90 vol% 

N2 to grow CNTs for 1 h, 2h, 4h and 10 h in home-made AAO templates, using 

electrodeposited cobalt as catalyst. 
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4.3.2 CNT growth in C2H2 and N2 mixture gas 

CNT growth was performed in a mixture of 10 vol% acetylene and 90 vol% N2 

using electrodeposited Co as catalyst. Figure 4.10 shows the top-view and 

cross-section SEM images of a typical sample after 1 hour of growth. Very little junk 

carbon formed on the surface of the AAO templates and the opening of nanopores is 

clearly visible. From the cross-section view (Figure 4.10 (b)), long tube-like carbon 

Figure 4.11 High resolution top-view SEM images of AAO templates with CNTs 

inside nanopores after 5h etching. 

Figure 4.10 (a) Top-view and (b) cross-section SEM images of AAO templates 

after 1h CNT growth. 

(a) (b) 
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was observed.  

CNTs in AAO templates were partially exposed by wet etching in a phosphoric 

acid and chromic acid solution for 5 hours. Figure 4.11 (a) shows the top-view SEM 

images of a typical sample after this wet etching treatment. Long tube-like structures 

were seen in Figure 4.11. In the SEM image at high magnification (Figure 4.11 (b)), 

Figure 4.12 TEM images of MWCNT with an open tip (b, c) and bubble 

texture (a). 

Bubble texture 

20nm

(b) 

50nm 

(a) 

(c) 



52 

in addition to these long tube-like structures, it was observed that shape of the 

opening of nanopore channels changed to irregular shapes compared with samples 

without CNT growth (Figure 4.10 (a)) and the diameter of the opening of nanopore 

channels decreased to 30 nm (analysis by ImageJ) due to the growth of CNTs along 

the inner wall of nanopore channels. Further CNTs characterization was carried out 

using TEM (JEOL 100kV TEM). CNTs were released by dissolving the templates in 

NaOH solution. Figure 4.12 (a) is the TEM image of MWCNT with a hollow shape. 

Figure 4.12 (b) shows that the tip of as fabricated MWCNTs is open. Figure 4.12 

shows that the diameter of the MWCNTs is around 60nm, which agrees with the 

diameter of the pore size of the AAO template. The length of MWCNTs varies up to 

the micron scale. 

CNTs were synthesized for three other different growth times: 2 h, 4 h and10 h. We 

can see from the top-view SEM images in Figure 4.13 that more junk carbon was 

formed on the surface of the templates, compared with 1 h CNT growth, especially for 

the 10 h growth procedure. After 2 h growth, the surface was relatively clean and 

nanopores are still visible (Shown in Figure 4.13 (a)). However, after 10 hour of growth, 

Figure 4.13 Top-view SEM images of AAO template after 2h (a), 4h (b) and 10h (c) 

CNT growth. 

(a) (b) (c) 
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only large carbon particles can be resolved by top-view SEM observation. It was 

confirmed that the thermal cleaning procedure we developed were effective to remove 

those large carbon particles, as shown in Figure 4.14, For thermal cleaning, the samples 

were heated at a speed of 2 °C/min to 600°C and kept for 1 hour in air. Figure 4.15 

shows cross-section SEM image of homemade AAO template for 4 h CNT growth. 

Tube-like carbon was also observed. 

 

 

 

 

 

Figure 4.15 Cross-section SEM image of homemade AAO template for 4 h CNT 

growth. 

Figure 4.14 Top-view SEM image of homemade AAO template

after thermal cleaning procedure for 2 h CNT growth. 

(a) (b) 
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5. Conclusions 

A general design of electrochemical biosensors based on vertically aligned CNTs 

arrays has been developed. Electrochemically deposited Co was employed as the 

catalyst to facilitate the CNT growth. MWCNTs with open tips were successfully 

fabricated by catalytic chemical vapor deposition. The fabricated MWCNTs were 

characterized using SEM and TEM. CV testing in both [Fe(CN)6]3– /[Fe(CN)6]4– 

system and glucose system show the redox reactions have been observed. Gold 

deposition of 20nm thickness on the surface of AAO was confirmed to be sufficient to 

provide effective contact for electrochemical measurements. 
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6. Future work 

Our success in well aligned CNT growth by CCVD and preliminary work on 

constructing nanostructured biosensors provided unique opportunities for further 

study of: 

1. The growth mechanisms of CNT by CCVD; 

2. Highly controllable immobilization of GOx on well-aligned CNT arrays; 

3. Synthesis of ultrasensitive glucose nanobiosensor; 

4. Electrochemical behaviors of this novel glucose nanobiosensors by CV; 

5. Immobilization of other biomolecules such as enzymes on well-aligned CNT; 

6. Synthesis and electrochemical characterization of nanobiosensors; 

7. The general design of the nanobiosensors based on vertically aligned CNT 

arrays. 
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APPENDIX 

ImageJ is a public domain, Java-based image processing program. It has been 

widely used to display, edit, process and analyze 8-bit, 16-bit and 32-bit images. In 

this appendix, ImageJ was used to analyze the pore size, spacing and packing density 

of the templates, measure the average length of electrodeposited cobalt and determine 

the length and diameter of CNTs from SEM and TEM images. 

In Appendix A, I will demonstrate one example of image analysis in detail by 

using Figure 4.2 (Top-view SEM image of AAO template after pore widening). Other 

results obtained by ImageJ are shown in Appendix B. 

 

Appendix A Demonstrated image analysis by ImageJ software 

First, open the software ImageJ. Fig. A1 shows the software window. Then open 

the file that needs to be analyzed in ImageJ. This image will be opened in another 

window. 

The next step is using the scale bar at the bottom part of the image to set scale. In 

the tool bar, choose straight line tool (See Fig. A1). Draw a line along the scale bar 

(See Fig. A2). Under menu Analyze, choose Set Scale. In the open window, put in the 

known distance and unit of length indicated in the scale bar and then press OK (See 

Fig. A1 Tool bar of ImageJ 
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Fig. A2).  

 

Fig. A2 Set scale in ImageJ 
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Next step is adjusting the threshold. Choose the image type (8-bit, 16-bit or 32-bit) 

under main menu Image → Type. Then adjust the threshold by choosing Image → 

Adjust → Threshold. Then adjust the threshold to a certain value that makes the red 

circles cover all the holes (See Fig. A4 and Fig. A3). Press Set. 

Fig. A4 Adjust threshold in ImageJ. 

Fig. A3 Threshold adjusting result figure in imageJ. 
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The following step allows us to get data. Under Analyze menu, choose Set 

measurement and select necessary parameters for output. Then choose Analyze 

particles. Refine the size and choose different display under Show catalogue as 

shown in Fig. A5. Click OK. 

Finally, the results figure and a worksheet will pop out (See Fig. A6). Save the 

sheet as an Excel file. To make final analysis, use the data saved in Excel to calculate 

desired parameters. From this demonstrated image, 1869 sets of parameters were 

obtained. As a result, the average diameter of the nanopores is around 76nm with a 

distribution of 6.2%. 

Fig. A5 Analyze particles dialogue window in imageJ. 
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Fig. A6 Analysis result figure in ImageJ. 



67 

Appendix B Other image analysis by ImageJ 

Using the same analysis procedures demonstrated above, Figure 4.1 (Top-view 

SEM images of AAO template after two-step anodization), Figure 4.4 (Top-view SEM 

image of empty homemade AAO template with 50nm thickness gold coating) and 

Figure 4.11 (b) (top-view SEM images of AAO templates with CNTs inside nanopores 

after 5h etching) were examined by ImageJ. 

Fig. B1 shows the analysis results image of Figure 4.1. The average diameter of 

the nanopores in AAO templates is around 50 nm and the inter-pore distance (distance 

from the center of one nanopore to the center of a neighboring nanopore) is about 

90nm. The overall packing density is on the order of 1010 cm-2. 

 

Fig. B1 ImageJ analysis results image of AAO template after 

pore widening. 



68 

Fig. B2 shows the analysis results image of Figure 4.4 . Pores with a diameter of 

ca. 78nm were observed. 

Fig. B2 ImageJ analysis results image of empty homemade 

AAO template with 50nm thickness gold coating. 
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Fig. B3 shows the analysis results image of Figure 4.11 (b). The diameter of the 

opening of nanopore channels decreased to 30 nm. 

 

 

Fig. B3 ImageJ analysis results image of top-view SEM images 

of AAO templates with CNTs inside nanopores after 5h etching. 





