Optimal Load Balancing in a Beowulf Cluster
by
Daniel Alan Adams
A Thesis
Submitted to the Faculty
of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

May 2005

APPROVED:
Dr. David Finkel, Major Advisor

Dr. Michael Gennert, Head of Department

Abstract

PANTS (PANTS Application Node Transparency System) is a suite of programs
designed to add transparent load balancing to a Beowulf cluster so that processes are
transfered among the nodes of the cluster to improve performance. PANTS provides the
option of using one of several different load balancing policies, each having a different
approach. This paper studies the scalability and performance of these policies on large
clusters and under various workloads. We measure the performance of our policies on
our current cluster, and use that performance data to build simulations to test the
performance of the policies in larger clusters and under differing workloads. Two
policies, one deterministic and one non-deterministic, are presented which offer optimal
steady-state performance. We also present best practices and discuss the major challenges
of load balancing policy design.

Table of Contents

AADSTIACT. .ttt ettt ettt ettt e bt s bt e h bt e bt e e bt e eab e e st e e et e e naaean 2
LI 010 4o Ta LT 5 (o) s USSP 4
2 Load Balancing POLICIES.cccueiiiiiiiiiiiie ettt et 5
2.1 Leader and Random POLICY........cccoiiiiiiiiiiiiiiiccc e 5
2.2 INFS POLICY ..ottt ettt et e 5
2.3 Timeline and Threshold POLICIES.uiiieiiiiieeiiieeeeee e 6
2.4 LRU and Round Robin POICIES.........cccecuiiiiiiiiiiiieeeciiiee et 6
3 Performance TESES........cuiueiriiiiiiieeee ettt s 7
3oL BISUIML . ettt 7
3.2 Distributed Animation Rendering.............coocueeiriiiieiniiiiiniieeniieeeiee et 8
NS 1011 5 o) o SRR 8
4.1 BaCKZIOUNA......oiiiiiiiiiiiiie ettt ettt e st e et e st e e eaneeas 8
4.2 ValIAtION. ... ittt ettt e e s st 9
S Simulation RESULES.coiiiiiiiiiieiieee e 11
SoT BAZSUINL ...ttt ettt et e e e e et e e st e e et eeenanaes 11
5.2 Distributed Animation Rendering.............coocvveeeriuieiriiieeniieeeriieeerieee e e e 12
5.3 Multiple Originating NOAES.ceeevuiieiiiiieiiiiie et e 15
5.4 Variable Work ReqUest S1Ze.......ccveviriiiiiiiiiiieiiieeee et 16
5.5 Varying Concurrent Work ReqUESES..........eviriiiiiiiiiieiiiieeeiieeecee e 18
5.6 Improving the NFS POIICY.....ccccviiiiiiiieeiieceeeeeee et 21
5.7 Performance in a Heterogeneous Environment............cccoeeeveeeeiieeeniiieesnieessieee e, 21
6 Designing Load Balancing POIICIES..........cooiiiiiiiiiiiiiiiieiceee e 22
6.1 Evolution of the POLICIES.ccouiiiiiiiiiiiiiiiiiceiiceeeeee e 23
6.2 Measuring EffiCIency........cooiiiiiiiiiiie e 24
6.3 BESt PraCtiCes. .. ceoutiiiiiiiieeiieei ettt ettt et 26
6.4 The Challenge of POlicy DeSi@n......ccc.ceiiiiiiniiiiiiiiiiiceieceeceeeee e 26
T CONCIUSIONS. ...uvvieeiiiieeiieeeiee e et e e iee e ette e et e e e sebaeeateeessaeeensseeessseeesssaeessseaesnseeessseeennssenanes 27

R EIEIICES . . oo e e et e e e et e e e e et e e e e e e e e e e e e aeaeeeeannas 28

1 Introduction

PANTS is an approach to load balancing in a Beowulf cluster (Claypool and Finkel,
2002). A Beowulf cluster is a cluster of off-the-shelf computers, called nodes, running an
open source operating system, such as Linux, connected via a standard network, such as a
100 or 1000 Mbps local area networks (Beowulf Web Site, 2005).

The advantage of using a Beowulf cluster is achieving the high performance of a
multiprocessor computer at moderate cost. In addition, increased stability and flexibility
are provided as nodes can be added or removed without major system reconfiguration.

A disadvantage of using a Beowulf cluster can be found in distributing the work.
Typically, software running on a Beowulf cluster distributes work by dividing a problem
into subproblems to be executed in parallel on different nodes of the cluster. However,
the software must be explicitly designed to distribute work and collect the results. The
programmer who starts with a non-distributed program faces a significant task to convert
it into a distributed program to run on a Beowulf cluster, including designing a load-
balancing algorithm and modifying the source code to distribute the work. Several
toolkits are available for creating distributed applications, including PVM (PVM Web
Site, 2005) and MPI (MPI Web Site, 2005).

The goal of the PANTS project is to mitigate the disadvantages of using a Beowulf
cluster by transparently performing load balancing and relieving the programmer of the
necessity of modifying the program’s source code (Claypool and Finkel, 2002). PANTS
accomplishes this goal by providing background processes that communicate with each
other and by intercepting operating system calls that initiate program execution. Load
balancing is performed by different policies or load balancing algorithms which can be
selected at run-time.

Our cluster consists of 16 computers, running the Fedora Core 2 Linux distribution,
connected by a 100 Mbps LAN. We used this cluster to run a series of performance tests
and collected data on overall processing times as well as detailed measurements of the
operation of the different policies. This data was used to parameterize a simulation
model of the system. After the simulation model was validated against the operation of
the current cluster, experiments were run to test the performance of the load balancing
polices in larger clusters and with varying workloads.

We will outline the development process of the current policies and so present the
behaviors common to each good policy. Building on this we will present best practices in
designing load balancing policies and discuss the major challenges in policy design and
implementation.

2 Load Balancing Policies

There are currently seven load balancing policies provided by PANTS: Leader, Timeline,
Threshold, Random, LRU, Round Robin, and NFS. Each policy takes a different
approach to distributing processes. Some policies, however, are very similar and one
policy is often a variation of another modified to change some key aspect.

In several of these policies, nodes in the system are classified as heavily loaded or lightly
loaded depending on their current workload. Previous research has investigated methods
for measuring load and classifying nodes as heavily loaded or lightly loaded (Lemaire
and Nichols, 2002). In these policies, when a process is about to be initiated on a heavily
loaded node, the policy attempts to identify a lightly loaded node to which the work can
be transferred

2.1 Leader and Random Policy

The Leader policy was the first policy implemented (Claypool and Finkel, 2002). In this
policy, one node, called the leader, keeps track of the status of the nodes and receives
requests to distribute work. The use of the leader node created a bottleneck in the cluster
which decreased system performance and stability, even in a small cluster (Adams and
LaFleur, 2004).

The Random policy is similar to the Leader policy in that they both use random selection
to select from a list of lightly loaded nodes (Adams and LaFleur, 2004). A key difference
is that in Random, each node maintains its own list which is updated by nodes
broadcasting their status. In this way, the Random policy is decentralized and the role of
the leader node eliminated. Similar policies can be found in systems such as openMosix
which distributes work randomly based on partial node status knowledge (openMosix
Web Site, 2005).

2.2 NFS Policy

The NFS policy is similar to the Random policy and uses files in a distributed filesystem,
currently NFS, which is accessible to all the nodes in the system (Adams, 2004). There
are two directories, the available (lightly loaded) and unavailable (heavily loaded)
directories. Each file in these directories is given a filename that is the IP address of a
node. When a work request is received, a file is randomly selected from the available
directory and the work is transferred to that node. If the available directory is empty, then
a node is selected from the unavailable directory. The NFS policy may perform poorly in

a large cluster as accessing these shared files may create a bottleneck. Conversely,
performance may increase in a larger cluster due to the random node selection.

2.3 Timeline and Threshold Policies

The Timeline and Threshold policies are similar to one another (Adams and LaFleur,
2004). In these policies, when a node is needed for a work request, a message is
broadcast to a multicast address listened to by the lightly loaded nodes. The first node to
respond performs the work. The Timeline policy is very basic and does not provide any
optimizations. The disadvantage of this approach is that high network load may be
created in large clusters when there are many lightly loaded nodes. The Threshold policy
provides an approach to reducing the number of unnecessary responses sent. While
currently supported, these policies are being deprecated and thus will not be discussed
further.

2.4 LRU and Round Robin Policies

In the Round Robin policy, a list of all nodes sorted by IP address, including both
available and unavailable nodes, is maintained and the policy stores a pointer to the next
node in the list. When a request is received, the node currently pointed to in the list is
returned and the pointer is incremented to the next node in the list. After the last node in
the list is returned, the pointer is set to the first node in the list. In this way, the policy
continually cycles through the list of nodes, disregarding node status. The motivation
behind this is that, in theory, the load will be balanced over the cluster by this cycling
through the nodes. It is meant to address a problem common to all of the random
selections policies that often a node will be selected two or more times in a row. The
solution in this policy is to ensure that once a node receives a work request, it cannot
receive another until all other nodes do also.

An expected behavior of this policy is that it performs well when jobs are of equal size,
but performs poorly the more jobs sizes vary. This is due to the policy's simplicity in
traversing the list; a single work request of an unusual size should upset the order of node
selection to reflect the size of the job but it does not. For instance, consider a cluster of
five nodes and a test, such as the render test, where jobs are sent out five at a time. If all
jobs are of equal size they are correctly sent to nodes 1, 2, 3, 4, 5 and then 1 again once
the job on node 1 finishes. In this way, each node only processes one job at a time.
Suppose, however, that the third job is abnormally large so that by the second time node
3 is reached in the list it is still processing the third job. Optimally, the policy would skip
node 3 and send the work to the next free node in the list. This is not the case, however,
and node 3 will be sent the job making the load in the cluster unbalanced. The Round

Robin policy is implemented in the simulation only for the purpose of illustrating the
performance of the LRU policy.

The LRU policy is a modification of the Round Robin policy in which the list of nodes is
sorted by the number of currently executing jobs on each node and then by the last time
each node was sent a job. This corrects the problem given above and ensures that, for
instance, a node currently executing two jobs will not be sent another job unless all other
nodes are also executing two jobs. Additionally, tracking the last time a node was sent a
job ensures, as in the Round Robin policy, that if all nodes are executing the same
number of jobs then once a node receives a job it cannot receive another until all other
nodes have also received jobs. These two modifications should ensure improved
performance despite job size.

An expected possible disadvantage common to both policies is that they are not designed
to handle multiple originating nodes. This is the originating of work requests from more
than one node. It is possible that since the lists and node status are not shared between
nodes that this could result in a non-optimal distribution of work. Possible
implementations of a solution to this will be presented later.

3 Performance Tests

Two different tests were used to test the performance of both the existing system and the
simulation, bigsum and the render test. These tests also serve as a means to validate the
simulation. Each test is designed to ascertain the system's, and each policy's, ability to
operate in different environments.

3.1 Bigsum

The bigsum test computes the sum of a range of numbers by dividing a given range into a
number of segments, distributing these segments to the cluster, and recombining the
results to get the final sum (Adams and LaFleur, 2004). The purpose is to test the
systems ability to handle a sudden flood of work requests as the segments, each being a
work request, enter the system at once. A library enabling the use of large integers allows
the test to compute large sums above the limit set by the architecture.

While not very interesting in itself, this test simulates the behavior of a number of
applications, particularly those in scientific computing. Often to parallelize a
computation the processing is separated into sub-parts, distributed at once, and then
recombined at the end for the final result.

To run the test, one must specify the range of numbers to sum as well as the number of

processes to divide the range into. A set of scripts and programs then use PANTS to
distribute the computation and collect and display the result. Normally, the number of
processes is simply the number of nodes in the cluster to ensure the possibility of an
optimal distribution of work.

3.2 Distributed Animation Rendering

The render test measures the system's ability to handle a possibly indefinite stream of
work requests. An animation is divided into a number of work requests, each being one
or more frames to render. A number of work requests are distributed at once initially,
similar to the bigsum test. However, each time a work request is completed the next in
the sequence is sent out until there are no remaining work requests. After the test is
completed the rendered frames can be combined or processed into the final animation.

While there is some similarity to the bigsum test, the heart of this test is the system's
having to distribute work requests while any number of nodes are heavily loaded.
Additionally, as the length of the test increases the impact of the initial work requests
decreases. This is a much better test of system's capabilities than the bigsum test which is
why it is used here more often and several variations of it are also used.

4 Simulation

4.1 Background

The simulations are performed using an object-oriented discrete event simulator written
by the author in the Java programming language. Most of the selection from statistical
distributions was provide by the COLT library, although others such as the triangular and
log normal distributions were written manually (Colt Web Site, 2005). The existing
cluster and a set of performance tests were used to collect data on processing times as
well as benchmarks of the policy internals. These were then used as parameters to create
the simulation.

We ran two sets of simulation experiments. The first compares the simulation behavior
to that of the existing system in order to validate that the simulation accurately
characterizes the system’s behavior. The second set uses the simulation to examine how
the system performs with larger cluser sizes and under various load conditions. All
simulation experiments were run with a minimum of 100 replications.

4.2 Validation

To validate the simulation against the existing system the following tests were used;
bigsum 1 to 200,000, bigsum 1 to 1,000,000, rendering 30 frames, and rendering 100
frames. The bigsum 1 to 200,000 test results are shown in Table 1 comparing the
performance of the existing system and the simulation. The error, or difference between
the simulation and existing system, in most cases for the LRU simulation is less than 1%.
Although not as tight as with LRU, the simulation shows strong agreement in behavior
with the system for the Random and NFS policies. The reason for this is that LRU is
much more deterministic in its behavior as it does not use randomization. Additionally,
there are internal differences between the random number generators used in the system
and the simulation which have a impact on the performance due to its effect on node
selection.

5 Nodes 10 Nodes 15 Nodes
Time Error Time Error Time Error
(s) (s) (s)
LRU 34.84 18.44 13.12
LRU Simulation 34.79 0.14% 13.12 0.46% 11.42 0.67%
NFES 73.31 42.92 32.15
NFS Simulation 68.41 6.69% 32.15 1.58% 3341 3.94%
Random 76.49 45.66 35.58
Random Simulation 80.55 5.32% 35.58 6.58% 36.31 2.05%

Table 1

The bigsum 1 to 1,000,000 test results are summarized in Table 2. As in the previous test,
the LRU policy has a much lower error percentage than the Random and NFS policies yet
all policies show similar behavior in the simulation.

10 Nodes 15 Nodes

Time(s) % Error Time(s) % Error
LRU 341.889 239.190
LRU Simulation 338.23 1.07% 220.34 0.88%
NFS 518.44 400.67
NFS Simulation 588.82 13.57% 420.22 4.97%
Random 629.258 445.174
Random Simulation 622.68 1.05% 432.85 2.77%

Table 2

Table 3 shows the 30 frame render test results for the simulation and the system. Again
we see a low error percentage for the LRU policy and a similar error percentages for the
Random and NFS policy to that of the first bigsum test.

5 Nodes 10 Nodes 15 Nodes
Time Error Time Error Time Error
(s) (s) (s)
LRU 203.63 103.23 70.63
LRU Simulation 202.83 0.39% 102.38 0.82% 69.32 1.85%
NES 318.82 198.77 158.99
NFS Simulation 301.06 5.57% 196.19 1.30% 162.42 2.16%
Random 400.38 226.57 175.06
Random Simulation 364.73 8.90% 214.88 5.16% 169.05 3.43%
Table 3

Table 4 summarizes the results of the 100 frame render test. As with the other tests, the
LRU policy shows a low error percentage. The Random and NFS policies again display
strong agreement.

10 Nodes 15 Nodes
Time(s) % Error Time(s) % Error

LRU 85.777 58.482

LRU Simulation 86.002 0.26% 58.456 0.04%
NFS 226.305 164.204

NFS Simulation 209.554 7.40% 159.862 2.64%
Random 209.536 164.051

Random Simulation 229.624 9.59% 171.285 4.41%

Table 4

When selecting random numbers, a node will often be chosen more than once in a row.
In the render test of 100 frames and 10 nodes, for instance, 23.016% of the 200,000 node
selections in the simulation replications were repeats. This problem of random selection
will be addressed more fully later when discussing the simulation performance results of
larger clusters. To help reduce the performance loss due to this the NFS policy tracks the
last node selected and will not allow the same node to selected twice in a row. The
combination of this optimization and the NFS policy's second list of nodes result in error
that differs from that of the Random policy.

These tests show that there is excellent agreement between the results of the existing
system and those of the simulation. This validates our simulation in that it accurately
represents the behavior of the existing system.

5 Simulation Results

5.1 Bigsum

We will now look at the test results to predict the performance in larger clusters.
Efficiency here is measured as policy performance compared to ideal, or the lowest
possible time to execute the work, given a certain cluster size. For n nodes, ideal
performance is calculated as the time required to run on one node divided by n.

Figure 1 shows the results of a bigsum 1 to 1,000,000 test using clusters from 10 to 100
nodes. There tests show that all policies decreased in performance as cluster size
increased. The LRU and Round Robin policies decreased from 94.8% to 48.8% efficency
and NFS and Random decreased from 39.2% to 21.9% efficiency. This is due to the fact
that, since the number of work requests do not also increase, the amount of work per node
decreases which increases the impact of overhead on performance. One may also note
that the lines of the LRU and Round policies are indistinguishable. This is due to the fact
that, in situations where work request size is constant, they are essentially the same policy
and will be discussed more fully with the test of varying work request sizes.

Bigsum 1,000,000

100
¢ .
90
80
Rv3
70
/_o\ v
= 60 :
5 ¢ LRU
GC) - | B NFS
5 A Random
E " A.\ vV Round
30 —
N e— & 00 4 a
10
0 \ ‘ ‘ ‘ ‘
o " 50 70 75 100
Nodes
Figure 1

Another important result is that the LRU policy achieves a maximum 94.81% efficiency
while the maximum efficiency of a random selection policy here is 39.18%. In this test
the LRU policy selects each node exactly once every time which is an optimal node
selection. The random selection policies, however, always select at least one node more

than once meaning that some nodes will have two or more work requests and others will
have none due to random selection. Predictably, when the number of nodes increases the
number of repeat selections decrease. While the LRU policy decreases 46% in efficiency
the random selection policies decrease approximately 12%-19%. As the cluster size
increases the number repetitions decreases which in turn, due to the performance
increase, reduces the performance loss incurred by increased overhead.

From this test we can see that random selection policies do not perform well in tests such
as this where all node selection is done at the start, yielding performance lower than that
of the LRU policy.

5.2 Distributed Animation Rendering

The results of a test rendering 100 frames with cluster sizes increasing from 10 to 100
nodes are shown in Figure 2 and are similar to those found in the previous bigsum test; as
the cluster size increases the work per node and performance decreases. Efficiency of the
LRU policy decreased from 97.71% to 71.04% and the random selection policies
decreased from 55.97% to 29.32%. Conversely, a test shown in Figure in which the
cluster size is fixed at 100 nodes and the frames rendered ranges from 100 to 10,000
frames shows predictably reverse results; as the number of frames increases the impact of
overhead decreases, thus increasing performance. The LRU policy's efficiency increased
from 71.20% to 98.07% and the random selection policies' performance increased from
29.66% to 74.3%.

Render 100 Frames

100¥\i\ ° '
90
80 \\-

70
£ 60 © lea
- i A = LRU
2 50 A NFS
£ : i

30 =

20

10

O I I |

10 15 50 100
Nodes

Figure 2

Render with 100 Nodes

1 OO = a
90
80

60 .

O LRU

50 o NFS

40 v Random
0

20
10

Efficiency (%)

100 1,000 10,000 100,000
Frames

Figure 3

Figure 4 shows the results of increasing work and cluster size simultaneously. The
number of frames is eight times the number of nodes in each case. Although it appears
that the performance of LRU decreases, this is due to an initial period in which the first
set of work requests are sent out and an ending period in which the last set of requests are
completing. These periods are essentially overhead and increase as the number of nodes
increases, thus reducing the calculated performance. Figure 5 shows the ratio of busy
nodes through a run of the test with 1,600 frames and 200 nodes. Between the initial and
end periods, the LRU policy operates at 100% cluster utilization.

Despite the initial and end periods, the random selection policies show an increase in
performance. This indicates that as the cluster size increases the node selection errors due
to random selection are decreased thus increasing performance. In fact, in this test the
NFS policy shows a steady state performance, the performance between initial and end
periods, of approximately 80%, much higher than the calculated overal performance of
63.6%.

One other interesting feature of Figure 5 is the difference in slope in the end period of the
random selection policies compared to LRU and Round. The sharp, constant slope of the
LRU policy represents the policy's not being forced to wait for remaining jobs to finish.
Conversely, the more gradual, jagged slope of the random selection policies denotes this
occurring.

Increasing Hork % Cluster Size
188 T T T T T

a5 HFS ——

25 1

P 1

Efficiency <X2

85 | 4

55

S@ 1 1 1 1 1 1] 1
=3= 44 =" =35 10 128 148 le@ 188 200

Hodes
Figure 4

Cluster Utilization

"LRURound| = LRU

Eound

Utilization

I} | |
5] 26 168 138 26868 258 386 358 488 456

Time {(secl

Figure 5

Due to the flexibility and nature of the render test, it will be the used for all further
experiments.

5.3 Multiple Originating Nodes

Another situation we wished to test was one in which there were multiple originating
nodes, or nodes that start work requests in the system. Thus far it has been assumed that
work requests originate from one node, but this may not always be the case. Figure 6
shows the results of a test using 1,000 frames and a cluster of 50 nodes in which the
number of originating nodes, or input sources, is increased from 1 to 50 in which case all
nodes originate work requests. This test demonstrates the worst-case performance of the
LRU and Round policies due to the fact that these policies do not have a universal list, or
a node list shared by or synchronized between all originating nodes in the cluster. Also,
this is a worst case for these policies because, in this case, the lists on each originating
node end up being essentially identical meaning that after one originating node sends a
work request to node 4, for instance, the next originating node will also send its next
work request to node 4. Therefore when all nodes are originating nodes, the first set of
initial work requests will all be sent to the same node. As for the random selection
policies, they both use universal lists so there is almost no difference in performance.

Multiple Originating Nodes

100
90 v

80

70

60 ﬁ%%r\\\\nnnﬁ v ¢ LRU
50 ® NFS

A Random
40 |7 Round

30
20

Efficiency (%)

0 \ \ \ \
1 5 10 25 50

of Originating Nodes
Figure 6

While the current design of the LRU policy does not support multiple originating nodes,
it would be possible to modify it to do so. One simple, yet reasonable, way of doing this
would be to broadcast a small message to the cluster each time a job starts or stops
indicating the node the job will be sent to. Whenever a node receives a message it updates
its list. Even in a larger cluster, the overhead incurred by the broadcast of such small

messages should be minimal.

5.4 Variable Work Request Size

Thus far the work request size has been constant. In this test the cluster will be tested by
varying the request size randomly to different degrees using 1000 total frames and a
cluster of 50 nodes. Three degrees of variability will be used in which different work
request sizes occur at different frequencies:

Level 0: All requests consist of 1 frame.

Level 1: 80% of the requests consist of 1 frame and 20% consist of 3 frames.

Level 2: 50% of the requests consist of 1 frame, 30% consist of 3 frames, and 20%
consist of 10 frames.

Figure 7 shows the results of the test. One result displayed in the graph is that this is the
first test in which the performance of the NFS and Random policies have not been nearly
equal. When there is no variation the performance difference is the same as in previous
tests, but when variation is introduced into the job sizes the policy performances begin to
deviate from one another. In particular, the Random policy decreases in performance
much more so than the NFS policy. This is due to the optimization within the NFS policy
which will not allow it to pick a node twice or more in a row. As the test executes the
number of free nodes in the cluster decreases to a small fraction of the total severely
reducing the range from which to select. It is here that this optimization aids in
mitigating some of the problems with random selection, thus increasing performance.

The clearest result of this test is its display of the weakness of the Round policy. Namely,
the policy is designed with the assumption that job sizes are constant. Once job sizes
begin to vary the policy's simplistic walk through its list of nodes causes performance
loss. The LRU policy, however, continues to show high performance. The Round policy
shows a total performance loss of nearly 50% while the LRU policy shows a performance
loss under 20%. The reason for this performance loss is again due to the design of the
test; LRU performs optimally until the end of the test at which point all nodes with jobs
of 1 or 3 frames have completed and are now idle. Execution is then forced to wait until
nodes with jobs of 10 frames complete. It is this waiting for a small number of nodes to
finish which decreases performance so sharply.

In order to illustrate this, Figure 8 shows the cluster utilization of the policies over time
during a run of this test with Level 2 variability. The data for this graph is captured in the
following way; each time a job starts or finishes, the current time of the simulation clock
and the percentage of nodes which are currently not idle are recorded. This results in a
detailed record of changes in cluster utilization.

Wariakle Hork Reguest Size Efficiency

188 T T
Random —%—
| HFE ——
ag LRL FRound —8—
LEU
Tl
]
z
T Fa
&)
o
- eQ -
L
58 -
48 ' :
5] @.5 1 1.5 Z
Mariakility Lewel
Figure 7
Mariabkle Hork Regquest Cluster Utilization
1 . ; T T T
LRL LEU
Random FRound
MNFS Farndom
B, =8 MF 5 —
c
R Round i
.'.7-
m
M
o 8.4 F -
>
.2 -
@ 1 1 1 1 1 1
5] =5l 4008 (=5)] Zo0 lopa 1288 146868
Time t=ec?
Figure 8

Although difficult to see on this graph, there is an initial period when the first set of work
requests are sent out. After this period a plateau is reached which accurately reflects the
behavior of the policy. Another period follows this plateau in which the last set of work
requests are finishing. By inspecting the plateau we can, in most cases, see a clearer view
the performance of the policies as the test progresses.

We can see by the plateau of the LRU policy that its performance is optimal despite
variation in job size. Cluster utilization fluctuates between 98% and 100% the length of
the test. This minor fluctuation is simply the result of a job ending, slightly lowering the
percentage of busy nodes, and then the next job in the sequence immediately being sent
out thus raising the percentage back up again.

Had this test been one without variability, the Round policy would have displayed results
identical to those of the LRU policy. However, we can see that the policy's simplistic

approach makes it a poor choice for environments with variability in job size. It's cluster
utilization is actually lower and more turbulent than that of the random selection policies.

The results of the NFS and Random policies look similar here, but the difference is,
again, found in the NFS policy's safeguard against migrating to the same node twice in a
row. One evidence of this is Random's long tail on the lower right of the graph near the
end of the test representing backlog and the effect of migrating multiple jobs to the same
node at once when even other busy nodes would have been a better selection.

5.5 Varying Concurrent Work Requests

Another aspect of the system which has remained fixed under testing up to this point is
the number of concurrent jobs, or the maximum number of jobs which may be running at
once in the system. Thus far this has been set to the number of nodes such that there is
one job for each node. While this makes sense for policies such as LRU and Round
which traverse a list, it may not be an optimal situation for random selection policies.
Conversely, it has not been tested how policies such as LRU perform under such
conditions.

Figure 9 shows the results of varying the number of concurrent jobs from 50 to 1,000 in a
test with 10,000 total frames, 50 nodes, and all work requests being one frame. The test
with 50 concurrent jobs acts as a sanity test and is equivalent to the previous test of
10,000 frames and 50 nodes. Also, the Round policy has been omitted from this test as
its behavior here would be equivalent to that of the LRU policy.

One result of this test is that the LRU policy again achieves constant, high performance
with a maximum of 98.02% efficiency. An increase in the number of concurrent jobs
does not effect the policy's optimal distribution of jobs.

Perhaps the most notable feature of these results is the vast difference in performance
between the NFS and Random policies. After 100 concurrent jobs the two policies begin
to deviate from one another in performance severely.

Increasing Concurrency

100 < < <& <
90 e — ——a—
. -
80 —
///
70 —
— L3 °
S 60
> ¢ LRU
[&]
5 50 ® NFS
l."% 40 A Random
L A
30
20 A
10
0 T T T \
50 100 200 500 1000
Concurrent Jobs
Figure 9

One interesting feature of this graph is that for the NFS policy, as the number of
concurrent jobs increases the efficiency increases to a peak and then begins to decrease
slowly. It appears that there is a range in which the policy reaches peak performance. To
investigate this further, Figure 10 shows the results of a test with 4,000 frames, 50 nodes,
and the number of concurrent jobs increasing from 50 to 350 or 1 to 7 times the cluster
size. The goals of this test is, using a different number of work requests and nodes than
the previous test, to attempt to determine the multiple of the cluster size which results in
the highest NFS policy performance. It appears by the graph that the range of 4 to 5
times cluster size provides the highest efficiency. As in the previous graph, the two
policies deviate in performance after 100 — 125 concurrent jobs or 2 — 2.5 times cluster
size at which point the Random policy reaches its peak performance.

Figure 11 shows the cluster utilization over time for a run of this test with 250 concurrent
jobs with the NFS and Random policies. One of the striking results of this test is the high
performance of the policies during the plateau. In fact, the NFS and Random policies
operated during this period at mean efficiencies of 99.0% and 88.8%, respectively. This
gives the NFS policy a performance level comparable to that of the LRU policy. The
Random policy also gives a high performance level except for one defect; one may
notice that on the right side of the graph, after the NFS policy has completed the test, the
Random policy exhibits a lag of over 3,000 seconds. The performance difference between
the two policies is largely due to the NFS policy's use of two node lists for lightly loaded
and heavily loaded nodes, respectively. Under this high amount of concurrent jobs, it is
inevitable that all nodes will become heavily loaded. When this occurs, the NFS policy
will continue to distribute work requests over the list of heavily loaded nodes. Because
the Random policy does not maintain a list of heavily loaded nodes, however, it attempts
to distribute work having an empty list and is forced to run all work requests on the

originating node thus resulting in the unusually large delay.

Random Selection Policy Efficiency

100 T T
9 - g . S
80 -
Ay
70
- 7]
< 60
= o ¢ |deal
(&)
& % 1 B NFS
;fg’ 40 A Random
L PN
30
20
10
0
50 75 100 125 150 175 200 225 250 300 350
Concurrent Jobs
Figure 10
Cluster Utilization
1 CRTan o s = = T T I
Random
HFS ——
H,58 -
c
S ek -
.'_'h
m
M
- Random
= B8.4 - -
s NFS
.2 -
@]]] ; 1
5] 18aa8 ZEaa JEaa 4888 SEa8 caEa ~aaa

Time (=sec?
Figure 11

5.6 Improving the NFS Policy

Based on the results in the previous test we created a new policy, NFS2, which modifies
the NFS policy by increasing the number of concurrent jobs to four times the cluster size.
Figure 12 shows a comparison in steady state performance between the NFS and NFS2
policies under various tests. In each test, the NFS2 policy shows a 20-30% increase in
cluster utilization yielding a maximum of 98.93%. Figure 13 shows the overall
performance of the policies. By the steady state performance we can see that the NFS2
policy rivals the LRU policy and also provides high performance in cases of multiple
originating nodes.

NFS vs. OptimalNFS Overall Performance
100 100
el a0
a0 a0
Ta 4
= E &1 -
==
2 @ =R Wres2
b o
304 N
0 4 0 -+
10 4 11 -
o T T T 0 T T T
Rendr Rendwr Varidtle Muipa Rerdar Reder Vaisble Mulipe
Ve Reest e 1000 00000 Rsquest bput
Siza Sources
Figure 12 Figure 13

5.7 Performance in a Heterogeneous Environment

The existing system is a homogeneous cluster, each node being identical in hardware and
operating system. In all other experiments, this has assumed as the simulation models the
existing system. It is possible, however, for the software to run on a heterogeneous
cluster and will be simulated in this experiment. The experiment is run using 1,000
frames and 50 nodes.

Heterogeneous may mean that the nodes vary in many different ways such as processor
speed or memory or disk size. In this experiment the nodes will be heterogeneous only in
that the time a job takes to process is determined by multiplying the job's process time by
a multiple from the node it will execute on. The multiple of the node determined

randomly at the beginning of the experiment. There are three different levels of node
speed variability:

Level 0: All nodes are the same speed.
Level 1: 80% are the base speed, 20% are 3x faster.
Level 2: 50% are the base speed, 30% are 3x faster, and 20% are 10x faster.

As shown in Figure 14, the results are very similar to those of the variable work request
size experiment. The LRU policy performs optimally while the Round Robin policy
decreases in performance dramatically. This is the expected result as the Round Robin
policy has shown to perform poorly when variance is present. As before, the random
selection policies are unaffected by the variance in node speed.

varyhnode Mode Speed Cluster Utilization

1 T T T I—
andam
LRU NF &
K Round
B.8 LEU -
5
- B.6 K -
-'_'\‘
m
M
o 8.4 | -
o
a.2 F -
NES
Random
& 1 1 1 1
5] 18686 ZHEA 3EEA 4EEEA SEEA GHEA
Time (sec?
Figure 14

6 Designing Load Balancing Policies

When designing a load balancing policy, many intuitive notions of how a policy should
operate are in fact counter-productive and degrade performance. It is often only through
implementing an existing policy, such as those presented here, or through research and
performance analysis, that any flaws in a design may become apparent. Many of the
designs in the current policies exist due to seeing flaws in previously intuitive designs. In
this section we will present some examples of designs which by using ideas which were

intuitive appeared to offer high performance but later proved otherwise. We will also
present best practices of load balancing policies, or those properties which are present in
a “good” policy.

6.1 Evolution of the Policies

The first policy used by PANTS, for several versions in fact, was the Leader policy. More
information on the Leader policy and others can be found in the Load Balancing Policies
section. Until it was inspected more closely, it was intuitive and assumed to be
performing well. Many properties of this policy, however, decreased performance. One of
the reasons its poor performance was not evident was because it was only used in clusters
of less than ten nodes. Closer examination showed that the presence of a leader node
quickly became a bottleneck as cluster size increased. In fact, even in small clusters, a
sufficiently high workload could cause the cluster to go into a state of “meltdown” in
which performance degrades significantly.

In order to eliminate the leader node, the Random policy was created which distributes
the role of the leader node over all nodes in cluster. This helped to improve the stability
of system and avoid “meltdown” under high workloads. Even during its development, the
Random policy went through several versions with each revision changing something that
had previously been thought a good approach. One idea was that since the nodes are
classified as heavily and lightly loaded, work should only be distributed if the node
starting the work is heavily loaded. If the node is lightly loaded it is acceptable to execute
it on that node. This proved to be a very bad policy as in tests such as the bigsum test all
work would be executed on the originating node. To fix this, work is always distributed
even if the originating node is lightly loaded.

Another design of the Random policy is that work is only distributed over lightly loaded
nodes. This is understandably intuitive as heavily loaded nodes are currently busy and so
work should only be sent to those that are lightly loaded. Thus the list on each node only
contains only lightly loaded nodes. This introduced a problem in situations in which the
cluster was under high load. In this case the list would either be very small, such as one
or two nodes, or the list would be empty. When the list is empty, the policy would be
forced to default to executing all requests on the originating node until another lightly
loaded node became available.

As a solution to this problem in the Random policy, the NFS policy was created. The
major modification in this policy was its assumption that no matter what the state of the
cluster, work requests should always be distributed. One way of implementing this was to
maintain lists of both lightly loaded and heavily loaded nodes. If all nodes became
heavily loaded, work requests would be distributed over the heavily loaded nodes. This
offered significant performance improvement under high load as demonstrated in the

increased job concurrency experiments. Up to this point, all policies had used random
node selection but closer work with the design of the policies showed that random
selection did not distribute work as evenly as one might expect. In fact, a node would
often be selected twice or more in a row. In an attempt to mitigate this the NFS policy
included an optimization which prevents a node from being selection twice in a row even
if it is the only node in a list.

In another attempt to overcome the problems with random selection, the Round Robin
policy was implemented as a move toward a more deterministic policy. It was thought
that if each node received the same number of work requests this would result in an even
distribution of work and thus optimal performance. Additionally, the policy's design
included what was found to be good in previous policies; work requests were always
distributed, even over heavily loaded nodes. In most situations the policy showed near-
ideal steady state performance. Any variation in the work requests or node speed,
however, caused the policy to perform much worse than the random selection policies.

To handle situations in which work request size or node speed vary, the LRU policy was
designed to prioritize nodes by the number of work requests currently executing on each.
Another problem found in the random selection policies is their dependence on knowing
node state. Knowing this required that the load on each node be measured and updated
periodically which lead to the lists becoming slightly outdated. The goal of the LRU
policy was to have a more accurate picture of the cluster state at any time which led to
using the number of jobs on each node rather than each node's load status as the factor in
node selection.

By looking back over the evolution of policies supported by PANTS, we can see that
designing a good load balancing policy is a non-trivial process. An intuitive design is
often not optimal. This difficultly in designing policies can be mitigated, however,
through understanding how policy performance can be measured and what behaviors are
characteristic of good policies.

6.2 Measuring Efficiency

In order to design a good policy, one that offers near-ideal performance under the
circumstances for which it is designed, we must understand how to measure performance
and what aspects of a policy's behavior most affect it. Here performance has been
measured as either overall performance or steady-state cluster utilization.

Overall performance, or efficiency, is calculated as the ratio of the speedup of the policy
and the ideal speedup. For instance, if for a cluster of 100 nodes a policy offered a speed-
up of 80x, compared to an ideal speedup of 100x, would be a .80 or 80% efficiency. This
serves as a good general measure of performance but does include overhead in calculation

and so varies with the length of the test as noted in the section on simulation test results.

Steady-state cluster utilization is calculated as the ratio of the number of busy nodes to
the number of nodes in the cluster. It can be calculated at any time and is useful for
providing a more detailed view of a policy's behavior as well as the policy's performance
independent of the length of the test. Not only is this a useful metric but actually
measures the most important characteristic of policy behavior; how fully the policy
utilizes the nodes available. In fact, if one were to look at a graph of cluster utilization
over time, take it's integral, and divide by the length of the test one would find that this
and overall performance are nearly equal, deviating from one another by 1-2%. Figure 15
shows the a graph of cluster utilization over time. Calculating overall steady-state
performance can be accomplished in the same way as overall performance by not
including the initial and end periods in the integral. For instance, the LRU policy here
shows near-optimal steady-state performance but overall performance, which includes the
initial and end periods, would be lower.

Cluster Utilization

1 r T T T T i I T T
LRU/Round LRU ——
Round —
A.2 | -
c
S 8.6 - .
.'_7-
m
M
'_;,' A.d4 -
o
A.2 -
@]]]]]]]

5] =0 166 138 288 g538 388 338 488 4350

Time (zec?
Figure 15

This relationship between cluster utilization and efficiency shows that the key behavior of
a policy is node selection. Node selection is what determines the level of cluster
utilization and at anything less than 100% utilization, there are idle resources which could
have been used.

6.3 Best Practices

In this section we will look at best practices, or general guidelines, in designing load
balancing policies. There are behaviors common to all good policies but that can be
difficult to identity. We will present these behaviors here and why they are important.

One behavior that a policy should include is to always distribute work. This means that
despite cluster state, such as being under high workload, work distribution never defaults
to a single node. This behavior should be fairly intuitive as defaulting to one node does
not make sense if the goal of a policy is to distribute work load evenly.

The most important behavior to any policy is to avoid “bad choices”. While the previous
behavior is essential, it is actually a subset of this general behavior. Bad choices occur
where a policy selects one node, when another could have processed the work faster. For
instance, the LRU policy performs optimally because, by prioritizing nodes by the
number of jobs on each, it essentially prioritizes nodes by which nodes can process the
next work request fastest. The random selection policies, however, encounter problems
due to random selection and periodic node status updates. Random selection leads to
nodes being selected twice or more in a row and periodic updates result in incorrect
cluster information. These cause the policy to make bad choices which can be seen in
their approximately 80% cluster utilization under normal operation. Note that we speak of
avoiding bad choices rather than making good choices although these are essentially the
same thing. For any node selection there could be many bad choices, selecting a busy
node rather than one that is idle, and many good choices, such as selecting an idle node.

6.4 The Challenge of Policy Design

Having identified those behaviors which are necessary for any good load balancing
policy, we find that implementing such a policy presents problems which may not be
apparent initially. Here we will address the key challenges in designing and implementing
a policy.

Consider a hypothetical policy which offers optimal steady-state performance. This mean
that for any node selection, the policy never makes a bad choice. Clearly the policy would
need to have a correct view of the cluster status at all times. Now begin to consider a
possible implementation for such a policy. How do the nodes communicate? Where is
cluster information stored? How is this information updated and what does it contain?
How is this affected as cluster size increases? One can quickly see that these issues are
the reason policy design is non-trivial. Maintaining accurate node information while
minimizing overhead is the key challenge in policy design.

One issue in this challenge is the trade-off presented of balancing how much
communication takes place. Where this balance falls depends on the intended use of the
policy and the environment it is designed for. For instance, in situations where only one
originating node is used the LRU policy offers ideal performance with no communication
overhead, but in cases where there are many originating nodes it's performance decreases
dramatically. The NFS policy, however, offers much higher performance in cases of
multiple originating nodes but incurs more communication overhead than the LRU
policy. Each policy has its own strengths and weaknesses and intended use.

The design of a good policy involves not only including those behaviors that are best
practices, but also considering its intended use and the specific problems introduced by
the system it is included in.

7 Conclusions

In order to more thoroughly test the existing system and its load balancing policies we
built a simulation of it. We have shown this simulation to be valid and have used it to test
system performance in larger clusters as well as various workloads including varying
work request size, varying node speed, increasing concurrency, and multiple originating
nodes.

We have demonstrated the LRU policy to perform optimally in all tested situations,
achieving 99-100% steady-state performance, except when there are many originating
nodes which it is not currently designed for. Future work on this could include modifying
it to support multiple originating nodes with a mechanism such as node status
broadcasting. The Round Robin policy was shown to perform the same as the LRU
policy, except for when work request size or node speed variance is present in which
cases its performance degrades significantly.

The NFS policy has been shown to perform poorly when all node selections are made in a
short period of time. In other situations, however, it achieves approximately 80% steady-
state performance. An improved version of the NFS policy, NFS2, has been shown to
achieve near-optimal performance in many situations through increasing work request
concurrency. The Random policy demonstrates performance slightly lower than the NFS
policy in most situations. Its performance degrades dramatically under high concurrency
or under high variance in work request size.

By reviewing the development process of the PANTS policies, we have identified best
practices in designing policies. Namely, that a policy should always distribute work
despite cluster state and always attempt to make a bad choice in node selection. We also
identified balancing the need for cluster state information with communication overhead
as the key challenge in policy design.

References

Adams, D. (2004), “NFS Load Balancing Policy,” Independent Study, Worcester
Polytechnic Institute Computer Science Department, Worcester, Massachusetts.

Adams, D. and LaFleur, J. (2004) “Leaderless Load Balancing in a Beowulf Cluster,”
Major Qualifying Project CS-DXF-0401, Worcester Polytechnic Institute Computer
Science Department, Worcester, Massachusetts.

Beowulf Web Site (2005), “Beowulf.org: The Beowulf Cluster Site”, www.beowulf.org,
(Accessed 25 March 2005)

Claypool, M. and Finkel, D. (2002), “Transparent Process Migration for Distributed
Applications in a Beowulf Cluster”, Proceedings of the International Networking
Conference, pp 423 — 422.

Colt Web Site (2005), "Colt", hoschek.home.cern.ch/hoschek/colt/, (Accessed 8 April
2005)

Lemaire, M. and Nichols, J. (2002), “Performance Evaluation of Load Sharing Policies
on a Beowulf Cluster,” Major Qualifying Project MQP-MLC-BWO0I, Worcester
Polytechnic Institute Computer Science Department, Worcester, Massachusetts.

MPI Web Site (2005), “Message Passing Interface”, www-unix.mcs.anl.gov/mpi/,
(Accessed 25 March 2005)

openMosix Web Site (2005), “openMosix, an Open Source Linux Cluster Project”,
openmosix.sourceforge.net, (Accessed 25 March 2005)

PVM Web Site (2005), “PVM: Parallel Virtual Machine”, www.csm.ornl.gov/pvm/,
(Accessed 25 March 2005)

