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ABSTRACTS OF THESIS 
 

TRANSACTION COSTS AND RESAMPLING IN                                                            
MEAN-VARIANCE PORTFOLIO OPTIMIZATION 

 
By Emmanuel Asumeng-Denteh 

 
 

Transaction costs and resampling are two important issues that need great attention in 

every portfolio investment planning. In practice costs are incurred to rebalance a 

portfolio. Every investor tries to find a way of avoiding high transaction cost as much as 

possible. In this thesis, we investigated how transaction costs and resampling affect 

portfolio investment.  

 

We modified the basic mean-variance optimization problem to include rebalancing costs 

we incur on transacting securities in the portfolio. We also reduce trading as much as 

possible by applying the resampling approach any time we rebalance our portfolio. 

Transaction costs are assumed to be a percentage of the amount of securities transacted. 

We applied the resampling approach and tracked the performance of portfolios over time, 

assuming transaction costs and then no transaction costs are incurred. We compared how 

the portfolio is affected when we incorporated the two issues outlined above to that of the 

basic mean-variance optimization. 
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Chapter 1 

Introduction 
 

Mathematical methods of optimization have been successfully used in financial portfolio 

management. The Mean-Variance method initiated by Harry Markowitz is one of the 

most widely used techniques of portfolio selection. The risk of the portfolio is modeled 

by the quadratic variance of its daily returns. The Mean-Variance method seeks to 

minimize this quadratic objective function subject to constraints concerning the 

permissible structure of the portfolio and a requirement that the expected returns exceeds 

a pre-specified level. This leads to a constrained quadratic optimization problem which 

has been extensively studied in the mathematical literature. Efficient computational 

algorithms have been developed and coded to solve even very large scale quadratic 

optimization problems. 

 

As market conditions change, portfolios need to be rebalanced to keep them optimal. One 

known practical shortcoming of the Mean-Variance approach is that it requires frequent 

significant rebalancing of the portfolio. To make things worse, these rebalancing not only 

cut into profits through the inherent transaction costs, but are also not improving portfolio 

returns significantly. The cause of the apparent need for rebalancing is not the discovery 

of more promising investment opportunities, but statistical instability of some underlying 

estimates. 

 

The key quantities in the Mean-Variance portfolio model are the covariance matrix and 

the mean vector of the daily returns of the securities in the portfolio. Portfolio theory 

assumes these quantities to be know. But in real life, they have to be estimated from 

observed market data. To get good quality statistical estimates for the large covariance 

and mean return structures one needed a large sample of historical returns data. But since 

market change over the time, only a limited set of recent historical data are relevant for 

the purposes of planning for a future investment horizon. The estimated covariance 

matrix and the mean return vectors are the key inputs of the optimization program. Since 
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they are large data structures based on a relatively small sized samples, their estimates are 

of poor statistical quality. This statistical instability is even more accentuated by the non-

linear mapping represented by the optimization procedure. The result is the unstable 

composition of the mean-square optimized portfolio and the apparent need for frequent 

rebalancing. 

 

The objective of the present thesis is to investigate two issues related to the statistical 

instability of the mean-variance portfolio optimization approach. The first is the effect of 

transaction costs. We will investigate on a concrete example, how transaction cost affects 

the returns on a mean-square optimized portfolio. The second objective is to explore the 

effectiveness of one particular methodology that has been proposed to remedy the 

statistical instability issues outlined above. We investigate how resampling (bootstrap) 

combined with optimization can reduce the extent of rebalancing needs and the resulting 

transaction costs. 

 

We performed our investigation on 12 years of historical data on 20 securities 

representing all major sectors of the financial markets: US stocks, fixed income 

securities, international stocks, commodities and cash. We implemented the estimation 

and optimization procedures required to construct optimal portfolios. We build optimized 

portfolios based on 3-month sections of historical data and investigate their performance 

on market data from the quarter that follows the 3 months period used in the modeling. 

At the end of each quarter we rebalance the portfolio according to the prescriptions of the 

optimization algorithm and deduct the resulting transaction costs. This is the same 

methodology that a portfolio manager would use in real time, but allows us to assess the 

performance of the resulting portfolios on a long period covering various market 

conditions. 
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Chapter 2 

 

Statement of Problem 

 

A. Objective of present study. 
 

One standard formulation of the basic mean-variance (MV) portfolio optimization 

problem is to minimize quadratic risk objective function, specifying the minimum 

expected returns on the portfolio subject to a set of linear constraints. Returns on the 

portfolio are usually measured daily, weekly or monthly. In this research work returns are 

all measured daily.  

 

MV models found in literature often assume the following; 

• No short selling allowed 

• Fully invested portfolio 

• Dividends are paid at the end of each rebalancing period 

• No transaction cost are incurred to rebalance or set up the portfolio 

 

In reality, it may cost some money to rebalance your portfolio as the need arises when 

data is updated with time. The model in the present thesis is the same as the MV analysis 

model but, it also takes into consideration the following real-life situations: 

• Dividends are not paid out after each rebalancing period. All yields on the 

portfolio after rebalancing are reinvested during the next period. 

• Transaction costs occur when portfolio is rebalanced. 

• The maximum allocation to any single security is bounded. This makes sense in 

real life because, portfolio managers usually put a limit on the amount that he or 

she is willing to invest in a single security in his or her portfolio. 
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The objective of this present study is to progressively rebalance portfolios to keep them 

optimal and investigate the effects of the following factors: 

• Return expectations 

• Transaction cost 

• Uncertainty inherited in statistical estimates of expected returns on the securities 

in the portfolio under study and their covariance. 
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Chapter 3 

The Mathematical Model and Methods 
 

 3.1        Model and notations: 
 

portfolioin  security  of Weight ixi =  

portfolio in the security  ofreturn  Expected ii =µ  

portfolioon  returns expected Required =E
portfolio in the securities  the theofmatrix  Covariance =Q  

ones all ofVector  =e  

portfolioin  securities ofnumber  Total =n  

 

The basic model under investigation is to minimize an objective quadratic risk function 

 

     QxxT
2

1min  

Subject to some given linear constraints; 

                                                        (1) ExT ≥µ

           1=xeT

    bxa0 ≤≤≤  

 

The first constraint requires that the expected return on the portfolio exceed the required 

amount E. The second assumption requires that the portfolio is fully invested. The third 

constraint prohibits short selling and limits the maximum allocation to the individual 

constituents’ securities. 

 

 

 5



 

 

 

3.2 Portfolio Rebalancing 
 

We introduce the following notations: 

grebalancin before portfolio existingin  securities of  weights
__

=x  

grebalancinafter  portfolio newin  securities of  weights=x  

portfolio old rebalance bought to securities of  weights=u  

 portfolio old rebalance  tosold securities of  weights=v  

  

Using these notations, we can express the weights of securities in new portfolio as; 

         (2)  

   

vuxx −+=
__

The main assumption we made is that transaction costs are proportional to the value of 

the securities bought or sold. If we denote by 

 

security a ofunit  one buyingfor r cost vectoon  transacti=BC  

security a ofunit  one sellingfor r cost vecton transactio=SC  

0   and   ,0  where, ≥+≤≤ SBSB CCeCC  

 

 

If we denote the total transaction cost spent to rebalance the portfolio by , then ox

        (3) vCuCx T
S

T
Bo +=

Let   be the total weight of the portfolio before rebalancing. Since part of this is spent 

to rebalance the portfolio, the actual weight left to be allocated to the securities is less 

than . The total weight left for re-investing is - . Thus, if we assume full investment 

then the following equations hold; 

P

P P ox
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     o
T xPxe −=

                     (4) vCuCPxe T
S

T
B

T −−=

We can now replace  from the constraints in the above model labeled (1) with 

equation (4). 

1=xeT

 

Mitchell and Braun stated that the appropriate objective function when we consider 

transaction cost is fractional and it is given by; 

 

    2
2
1

)( o

T

xP
Qxx

−
     (5) 

The denominator is just the square of equation (4). They explained how it makes sense to 

include the fractional quadratic objective function. For a fixed initial portfolio , when 

transaction cost is increased, you have smaller amounts of principal weight available for 

investment. However, in order to get the same returns on the portfolio with this smaller 

principal weight, we will need to reach for higher returns. And this can be achieved with 

higher levels of risk. This fractional objective function measures this risk for these types 

of transaction cost exhausted resource portfolios. 

__

x

 

Our revised model now has a fractional objective function given by 

 

   2
2
1

)(
min

vCuCP
Qxx

T
S

T
B

T

−−
 

subject to the following constraints; 

          (6) ExT ≥µ

     vuxx −+=
__

vCuCPxe T
S

T
B

T −−=    

       zPx≤   boundsupper    ←  
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     0,, ≥vux boundslower   ←    

Note that z is a scalar and it represents the maximum fraction of the total weight that can 

be assigned to a security in the portfolio. 

 

 

3.3  Transforming Fractional Quadratic Program (FQP) into a Quadratic Program 

(QP) 

 

We made used an extension of the technique of Charnes and Cooper for this 

transformation.  

 

Let the variable  

    
2)(

1
vCuCP

t T
S

T
B −−

=     (7) 

 

Note: The denominator of the variable t is strictly greater than zero. This actually makes 

sense in reality because no one will be willing to spend all his/ her principal weight on 

transaction cost to balance his/ her portfolio.  

 

Multiplying the (FQP) given in (6) by the variable t, we have 

 

    QxxT
2

1min  

subject to the following constraints 

 

     EtxtT ≥µ

         (8) vtuttxxt −+=
__

     vtCutCPtxte T
S

T
B

T −−=
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    t        zPxt ≤    boundsupper   ←  

         0,, ≥vtutxt boundslower   ←  

 

We redefine the decision variables as follows:    

  

 

Substituting the above variables into the (FQP) equation (8), our model becomes a 

quadratic program (QP). Our new covariance matrix becomes C. Thus we minimize the 

quadratic problem 

      0    and     ˆ      ˆ      ˆ ftxtxvtvutu ===

xCxT ˆˆmin 2
1  

subject to the following constraints: 

     0ˆ ≤+− EtxTµ

        (9) 0ˆˆˆ
__

=−+− txvux

     0ˆˆˆ =−++ PtvCuCxe T
S

T
B

T

          0 ˆ ≤− zPtx boundsupper   ←  

         0,ˆ,ˆ,ˆ ≥tvux boundslower   ←  

 

If   is the optimal solution to the above QP, then we can find its 

corresponding solution to the FQP  by rescaling  so that 

),ˆ,ˆ,ˆ( **** tvux

*)*,*,( vux )ˆ,ˆ,ˆ( *** vux

                                         *
*

*
*

*
*

ˆ1*      ; ˆ1*     ; ˆ1* v
t

vu
t

ux
t

x ===                      (10) 
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3.4 Efficient Frontier 
The efficient frontier is the set of portfolios with  

• Expected return greater than any other portfolio with the same or lesser risk  

• Lesser risk than any other portfolio with the same or greater return 

The efficient frontier (EF) can be obtained by optimizing the above (QP) for various 

values of the expected returns on the portfolio, E. 

 

Procedure for generating the efficient frontier: 

• Calculate the daily returns from three months (one quarter) data for n securities. 

• Compute the expected daily returns and covariance estimates for these n securities 

• Run the minimization program (QP) for varying expected returns, E. 

• Plot various expected returns, E versus their corresponding minimum risk value 

obtained from the QP to generate the efficient frontier. 

 

The question that comes up is which of these portfolios on the efficient frontier should 

we choose for our investment? Two different portfolios on the EF will be considered 

under this study. The first is the portfolio with the maximum reward to risk ratio and the 

second is the lowest risk fully invested portfolio on the EF. These two portfolios are 

rebalanced progressively at the end of every business quarter to keep them optimal. The 

main objective is to track how they will perform on out of sample data. The performance 

of each the two portfolios is compared to a benchmark portfolio of equal weights. At each 

time when we rebalance the portfolio, the following steps will be performed to find the 

new portfolio. 

• Pick the point on the efficient frontier that corresponds to the best reward to risk 

ratio (or the lowest risk fully invested portfolio) on the EF. 

• Find the expected return and risk corresponding to this point. 
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• Compute the actual portfolio composition and the corresponding risk after 

rebalancing.  

 

 

3.5 Determination of the maximum reward to risk and lowest risk fully 
invested portfolios. 

Computation of actual portfolio value is given by 

    
⎭
⎬
⎫

⎩
⎨
⎧

+= ∑ ∏
= =

−
n

i

m

k

j
ij kirxP

1 1

)1( )),(1(    (11) 

And its corresponding risk is 

        (12) 
)1()1( )( −− jTj Cxx

Where, 

jquarter  of end at the  valuePortfolio =jP  

)1(quarter  of end at thesolution on Optimizati )1( −=− jx j  

kikir day  on trading security  of returns  ),( =  

portfolio in the securities ofnumber   total =n  

jm quarter for  days  tradingofnumber   total =  

 

 

3.6 Critique of the validity of appropriate theory and research literature. 
 
The above method is a power tool for portfolio optimization. However, one of the main 

critiques behind this rigorous theory is that it turns to maximize error and invest in non-

relevant portfolios. Markowitz assumes that the inputs of the MV portfolio optimization 

are 100 percent certain. However, these inputs; expected returns on the securities and 

their corresponding covariance matrix are measured from historical data and fed into the 

model as if they were know perfectly. Actually, these inputs are subject to significant 

statistical and specification errors. They are estimated on the basis of a statistical sample 

of limited size of historical data and then applied to a different set of future data. The MV 

analysis does not take into account the uncertainty incorporated in the input parameters.  
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In order to control estimation error in our MV optimization inputs, we will apply a 

powerful statistical procedure called re-sampling. The re-sampling method defines a new 

efficient frontier that is consistent with most applications of MV efficiency. One 

advantage of the re-sampling is that it reduces the need to trade. This saves money on 

transaction cost when rebalancing the portfolio. 

 

 

3.7 Resampling procedure 
 

We will apply the boostrap method for our re-sampling. The actual historical daily 

returns are used as a psuedo-population or as an estimate of the true population.  

1. Run the minimization program only once for fsh EEEE == or      where E  

comes from the first non-bootstrap stage for either the maximum reward to risk 

ratio or the first fully invested portfolio. 

2. Resample from m daily returns to get a new bootstrap sample of size m trading 

days. 

3. Use the bootstrap sample to recalculate the new mean  and covariance  of 

the n securities. 

b
iµ

b
ijC

4. Re-run the minimization program again with the following: 

 

{ }fsh
bbbbTb EorExxCx   :)(min ≥µ        (14) 

5. The bootstrap mean vector and bootstrap covariance matrix of the daily returns 

are now our inputs for the optimization program. 

6. Repeat steps 2 through 4 several (B) times and compute the average of these re-

sampled portfolios.  

     ∑
=

=
B

b

bavg x
B

x
1

1
          (15) 

7. Use  as the re-sampled portfolio for the next period. avgx
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Chapter 4 

Computation Implementation 
 

All the computational work underlying the present thesis has been implemented in 

MATLAB. First, we will illustrate the interconnection among the MATLAB code 

modules in a form of a flow chart. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Daily Returns

Matlab 
Code A

 Matrices 

Matlab 
Code B 

Matlab 
Code C

 Sol of the QP 

   TC, Rf, Z, P, Xbar 

 Generates the 

efficient frontier

 
 
 
 
 
 

Figure 1. Computational Flowchart 1 
 
 

• The daily closing prices of the n=20 securities involved in this portfolio have been 

downloaded from yahoo finance. The daily returns are calculated for each of the 

trading days in the given quarter.  
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1)-i(day  Price Closing
1)-i(day  Price Closing - i)(day  Price Closing  i) Return(day =  

•  3-months risk-free rates (Rf) are downloaded from the Missouri Federal Reserve 

Bank. The need for these risk free rates comes into play when we use the 

maximum reward to risk option of selecting the portfolio on the efficient frontier. 

We should note that in this option, cash is invested in T-Bills. 

• Matlab Code A calculates the estimated expected returns and covariance matrices 

from the historical security returns from Item 1 above. 

• Matlab Code B implements the solution to the QP problem 

• Matlab Code B passes the solution to Matlab Code C. Code C increases the 

expected daily return on the portfolio and passes it back to Code B. The process 

continues in a loop until the maximum expected return is reached. 

• Matlab Code C then generates the efficient frontier. 

 

The actual portfolio weight P measures the growth of the portfolio. Because dividends are 

not paid out, all yields on the portfolio from the prior quarter are re-invested in the next 

quarter. Thus the starting portfolio weight for any given quarter is the ending portfolio 

weight prior to that particular quarter. Moreover, we assumed a portfolio weight of one at 

the beginning of the investment. 

 

The xbar vector represents the weight of each of the n-securities in the portfolio we want 

to rebalance. This is a zero vector at the time we build our initial portfolio. Transaction 

cost, TC and the maximum weight on each security Z are already explained at the 

beginning of Chapter 2. 

 

These inputs discussed above are then passed onto the Matlab Code A, which formulates 

the matrices of the quadratic minimization problem in model (9). These matrices are then 

passed onto program Code B, which calls the QUADPROG from the optimization 

toolbox in matlab. This solves the quadratic risk minimization problem discussed in 

model (9). Program Code C stores the above solution and varies the expected daily 

return, E on the portfolio. It then passes this new expected daily return to program code 
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B, which solves the quadratic risk minimization problem again with this updated return. 

This process is repeated for several E’s and their corresponding risk are store in Code C. 

The efficient frontier is obtained by plotting the expected return E with the corresponding 

minimum risk from the QP model. The question is, which of these portfolios on the 

frontier should we choose for our investment? 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 

Lowest risk fully 
Invested Portfolio 

Bootstrap Resampling 

Avg. Portfolio weight Matlab 
Code E 

Expected daily returns  
     Covariance Matrix 

Matlab 
Code D 

Sharpe Ratio Portfolio 

 Efficient Frontier

Figure 2. Computational Flowchart 2 
 

 

Two main portfolios on the EF were considered in this research work; the Sharpe ratio 

(best reward to risk portfolio) and the lowest risk fully invested portfolio. The expected 

daily returns on these portfolios are passed to Matlab Code D. This code also performs a 

bootstrap re-sampling by treating the original daily returns as the pseduo-population. It 

the computes the mean and covariance of the re-sampled daily returns and these serve as 

an input to Matlab Code E, which solves the quadratic risk optimization model (9). Note 

that we use the expected daily returns obtained from the Sharpe ratio or the first fully 

invested portfolios in place of the value of E in model (9). The whole resampling process 

is repeated several times and its corresponding solutions (optimal portfolio weights) 
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recorded. The average of these optimal portfolio weights was computed and this served 

as our investment portfolio for the next quarter. Note that rebalancing of the portfolio was 

done quarterly throughout this research. 

 

 

 

 

Chapter 5 

Findings 
 

We used the same data set consisting of 20 securities to arrive at our findings. The 

efficient frontier was generated by solving the QP model with various expected daily 

returns, E, and plotting these returns with their corresponding minimum risk obtain from 

solving the model.  

 

5.1 Uncertainty in the estimates of our inputs in MV optimization. 
 

We investigated the uncertainty in Mean-Variance optimization model when used on out 

of sample data. Our results are based on the 20-securities historical data. We achieved our 

goal by solving the QP minimization model with these 20-securities data and tracking 

how our investment grows with time when the portfolio is rebalanced quarterly.  

 
Figure 5-1. Efficient Frontier showing                                                                      

Sharpe ratio portfolio and security compositions 
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Figure 5-1 above shows the results obtained from solving our QP minimization problem 

using the 20-securities. The upper part of the figure shows the efficient frontier 

displaying the maximum reward to risk portfolio. Refer to Sharpe on how this portfolio 

can be obtained. The lower part of figure 5-1 shows the distribution of weights of each of 

the portfolios on the frontier. For this particular figure above, we relaxed the fully 

invested constraint and found out that the maximum reward to risk portfolio was not fully 

invested. Some money was invested in the best risk free T-Bills available. Michaud, 

stated that in order to correct this uncertainty in the QP optimization portfolio selection 

model, there is a need to do resampling. In this research paper, we performed a bootstrap 

resampling quarterly on the daily returns. We tracked the performances of two portfolios 

on the efficient frontier under this method.  

• The best reward to risk ratio portfolio and 

•  Minimum risk fully invested portfolio 

Below are some findings from our investigation. Figure 5-2 below shows the best reward 

to risk and minimum risk fully invested portfolios with some resampled portfolios. 

 

   
 

Figure 5-2. Efficient frontier and resampled portfolios 

 

Please refer to the previous chapter for how the resampled portfolios were obtained. The 

average of the resampled portfolio served as a very important portfolio for our 

investment. We used this portfolio as our investment portfolio for the coming quarter. We 

investigated how our model performed on an out sample data by tracking the 
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performance of this portfolio over a 3-year period. Though best reward to risk portfolio 

has a higher expected return than the investment portfolio, the investment portfolio yields 

better return when applied on real data. The compositions of the securities in the portfolio 

over a 3-year period are shown below. 

 

 
 

Figure 5-3. Composition  of weights in portfolio with time 

 

From figure 5-3 above, we observed the effect of resampling on our investment portfolio 

with time. Each color above represents a particular type of security in the portfolio. The 

composition of securities in the resampled portfolio has less trading effect as compared to 

that of the non-resampled portfolio. When we incorporate transaction costs are in the 

model, then the non-resampled portfolio will incur more cost during rebalancing periods 

because of the often transacting of securities. Figure 5-4 also shows the performance of 

our investment with time when we apply resampling to obtain our investment portfolio. 

The average resampled portfolio yielded better returns than the usual mean-variance 

portfolio obtained with resampling. It also shows how the risk on portfolio for these two 

cases varies with time. One interesting observation is that the risk of the resampled 

portfolio is more stable with time. 
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Figure 5-4. Portfolio value and risk with time 

We compared resampled portfolio with a benchmark portfolio with equally weighted 

securities over this 3-year period. We found that for this particular portfolio, when we 

assign equal weights to the 20 securities in the portfolio, the investment returns were 

slightly better when we assign mean-optimized weights.  We should be careful not to 

conclude that the mean-optimized portfolio is not the optimal portfolio for the data set it 

was obtained. Of course it is the optimal portfolio for the data set it was obtained, but it 

served as an investment portfolio for out-of-data sample. We assumed that the daily 

returns of the 20 securities for the investment period would not be that different from the 

returns from the previous quarter, which we used for the computation of the mean-

optimized portfolio. The return from the minimum risk portfolio was slightly better than 

maximum reward to risk portfolio returns.  

 

 

 

5.2 Effect of transaction cost on portfolio investment 
 

We examined the effect of transaction cost on efficient frontier when underlying 

securities weights are unchanged. We varied transaction cost from (0%, 10%, 20%, to 

30%) and generated the efficient frontiers for these varying transaction costs. Our results 

are displayed in the figure 5.6 below. 

 

 19



 
 

Figure 5-5. Effect transaction cost on efficient frontier  

 

At a fixed level of risk, say 2.5e-5, the corresponding expected daily returns increases as 

we reduce transaction cost. Also for a fixed expected return Eo, a portfolio with a higher 

transaction cost can attain this return with a higher risk level. Increasing transaction cost 

pushes our efficient frontier inwardly from that of a zero transaction cost efficient 

frontier. What does this tells us in reality? Increasing transaction cost has a decreasing 

effect on our feasible set of the QP model, hence, reducing the choice of portfolios for 

investment. 

 

 
 

Figure 5-6. Composition of portfolio weights with time 

 

Incorporation of transaction cost in the basic mean-variance optimization makes we loose 

money fast even with low transaction cost. This involves a lot trading during resampling. 
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Figure 5-7. Portfolio value and risk with time 
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Chapter 6 
 

Conclusion 
 
Portfolio optimization is directly opposite to the traditional stock picking. We explored 

how resampling diversify our resulting mean-optimized portfolio after rebalancing to 

withstand the uncertainty in the mean-variance method. Resampling works in real 

returns. Though it may have a lower expected return than that of the non-resample 

portfolio, it provides higher real returns at lower risk. Resampling also reduces trading.  

 

In real life, transaction costs are incurred to rebalance our portfolio to keep it optimal. 

This makes intuitive sense because we increasing costs make one looses money fast with 

optimization strategy. Transaction cost optimization strategies should be left for large 

investment firms for whom transaction costs are low. On the other hand, transaction cost 

may reduce trading and risk.  

 

 From our findings, simple strategies such as equal weighting of securities in a portfolio 

may beat the mean-variance resampling approach when used on an out-of-sample data. 

An equally weighted securities portfolio from a cleverly chosen asset universe may often 

outperform the mean-variance approach during investment.  
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