
Lyn: Live Coding Artificial Life
Simulations

Major Qualifying Project

Written By:

EVELYN TRAN

Advisor:

CHARLES ROBERTS

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic
Institute in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science.

8/24/2023 - 4/27/2023

ABSTRACT

Lyn is a web-based platform that enables users to live code and explore artificial life
(AL) simulations for artistic purposes. We developed Lyn to be a simple and intuitive
environment that targets users with little to no programming experience. The platform

was inspired by previous live-coding systems and includes features such as a new programming
language designed specifically for Lyn, GPU acceleration of simulations, audio reactivity, and
a variety of documentation sources for easier exploration of the system. We evaluated Lyn’s
usability with quantitative and qualitative methods. These user studies showed that while users
enjoyed Lyn and appreciated its real-time feedback they also wanted more guidance on how to
use the system, including feedback on how to debug programming errors.

i

TABLE OF CONTENTS

Page

List of Tables iv

List of Figures v

1 Introduction 1

2 Background 3
2.1 Artificial Life . 3

2.1.1 Reaction Diffusion . 4

2.1.2 Cellular Automata . 5

2.2 Live Coding . 6

2.2.1 Hydra . 6

2.2.2 The Force . 7

2.2.3 LiveCodeLab . 8

2.2.4 Gibber . 9

3 Implementation 10
3.1 Language Design . 11

3.1.1 Functions . 11

3.1.2 Inputs . 12

3.2 System Design . 12

3.2.1 Parsing and Visuals . 13

3.2.2 User Interface . 13

3.2.3 Additional Features . 15

4 Evaluation 18
4.1 Results . 18

4.1.1 The interactivity and real-time feedback from live coding were enjoyable

and interesting. 19

4.1.2 Current features can be further developed to make them more accessible

and easier to find. 19

ii

TABLE OF CONTENTS

4.1.3 New features could be implemented in the system to create an easier and

more enjoyable experience. 20

5 Conclusions and Recommendations 22

Appendix A: Study Protocol i
Covid Considerations . i

Opening briefing for testers . i

Think-A-Loud . ii

Appendix B: Survey iii

Appendix C: Study Questions iv
Preliminary Questions . iv

Interview Questions . iv

Appendix D: Grammar v

Appendix E: IRB Approval viii

Bibliography ix

iii

LIST OF TABLES

TABLE Page

3.1 Notes of features of different live coding systems . 11

4.1 Code for open responses answers and transcripts . 18

iv

LIST OF FIGURES

FIGURE Page

1.1 Screenshot of Lyn . 2

2.1 Screenshot of Lyn with reactive diffusion simulation . 4

2.2 Screenshot from Karl Sim’s explanation of the Gray-Scott Model 5

2.3 Screenshot of Lyn with Conway’s Game of Life . 6

2.4 Screenshot of LiveCodeLab with sample visual . 8

2.5 Screenshot of Gibber with sample demonstration . 9

3.1 Code Sample using Lyn . 12

3.2 Screenshot of before and after calling the kaleidoscope function within Lyn 14

3.3 Screenshot of Lyn’s parameter information with the graph tracking changes in param-

eter values based on audio . 14

3.4 Buttons for the “random” button and command list . 15

3.5 Screenshot of the parameter information . 15

3.6 Screenshot of the command list . 16

3.7 Screenshot of audio tab . 17

3.8 Color preview within the Lyn text area . 17

v

C
H

A
P

T
E

R

1
INTRODUCTION

The field of artificial life (AL) has been gaining significant attention in recent years and for good

reason [1]. With the ability to study the nature of “life”, researchers and enthusiasts alike have

been able to explore these simulations to uncover new insights into different fields such as biology,

evolution, and the origins of life. However, the accessibility of these simulations has often been

limited to those with advanced technical knowledge, making it difficult for many to explore and

participate in this fascinating field. In particular, many simulations are limited by the CPU and

require GPU acceleration to run at interactive rates, which is a complex topic requiring extensive

development expertise.

To address this challenge, we created Lyn, a web-based platform for live coding artificial life

simulations available at https://evelyntrvn.github.io/Lyn/. We aimed to enable users of

all programming skill levels to explore the possibilities of AL simulations with interactive coding.

By offering access to these simulations through a web browser, this platform enables anyone with

an internet connection to experience the excitement of creating and experimenting with artificial

life.

Beyond the educational possibilities, the system also offers a creative medium for those

interested in exploring the art of AL simulations [2]. Users can use the platform to create unique

and beautiful visualizations or to experiment with different parameters through code to explore

the potential of these virtual worlds.

1

https://evelyntrvn.github.io/Lyn/

CHAPTER 1. INTRODUCTION

Figure 1.1: Screenshot of Lyn

2

C
H

A
P

T
E

R

2
BACKGROUND

2.1 Artificial Life

Researchers aim to understand, design, and build artificial systems that exhibit lifelike behavior

in the interdisciplinary field known as artificial life, also known as a-life, alife, or AL. It draws

from a multitude of fields, including biology, chemistry, computer science, physics, mathematics,

evolutionary science, origins of life research, and more [3]. We can define literally AL as “life

made by humans rather than by nature” [4]. The findings from this field have contributed to

the understanding of different principles of life and its process, as well as to the development of

technologies and artistic practices.

AL was officially established as a scientific field when Christopher Langton, an American

computer scientist, hosted the first-ever alife workshop in 1987. He coined the term “Artificial Life”

for “a new discipline that studies ‘natural’ life by attempting to recreate biological phenomena

from scratch within computers and other “artificial” media [5]. However, the discipline has its

roots in the former works of computer scientist John von Neumann, who proposed the concept of

self-reproducing automata in 1948 [3]. Since then, artificial life has grown into a vibrant research

field, with numerous theoretical and practical applications.

While AL has contributed to the development of novel technologies and scientific understand-

ings of life, it has also inspired many artists, as the discipline brings questions such as what

defines life and whether life can exist in a machine [6]. Today especially, computerized systems

and other technologies have enabled AL to find its way into creative fields. Artists have recognized

the aesthetic of mimicking behaviors found in nature and its processes and have explored it

through different computerized systems. AL techniques provide also provide a new opportunity

for interactivity where the dynamics of biological systems which have not been explicitly defined

before can be investigated and enjoyed [7]. This form of artwork can be viewed as controversial

3

CHAPTER 2. BACKGROUND

due to the fact that a given piece is generated by a computer, but it also provides new possibilities

and inspirations outside of traditional artistic techniques [4]. AL extends the scope of art-as-it-is

and opens new experiences to both its audience and the artist.

The discipline has only existed for roughly over three decades, but throughout that period,

computational capabilities have quickly advanced in everyday consumer technologies. With

that in mind, AL findings and technologies have since provided new methods, tools, algorithms,

questions, ideas, and insights toward a multitude of practices. As the domain continues to grow,

it has not only made it possible to investigate both life-as-it-is and life-as-it-could-be but has also

opened up an endless range of possibilities for technological and creative pursuits.

2.1.1 Reaction Diffusion

Reaction-diffusion systems are systems that model how two chemicals transform and react to

one another as they diffuse through a medium. When determining the change of state for the

substances, one would need to account [8]:

• The changes in position and velocity based on Newton’s laws of motion

• The osmotic pressures based on chemical data, and stresses from elasticizes and motion

• The chemical reactions

• The diffusion of the chemical substances

The behavior of these fluids can produce different patterns and can be defined through

reaction-diffusion equations such as the Gray-Scott equations.

Figure 2.1: Screenshot of Lyn with reactive diffusion simulation

The Gray-Scott model simulates the behavior of two chemicals given that:

• Chemical A is added into a system at a specified “feed rate”

4

2.1. ARTIFICIAL LIFE

• A reaction occurs when two Chemical B’s convert an A into a B

• Chemical B is removed from the system at a specified “kill” rate

The diffusion rate of both Chemicals A and B can also be defined as they can both spread at

different speeds. When simulating this model, different concentrations of Chemical A and B can

be specified within a grid of cells. As the grid of cells updates its state, it can produce a multitude

of patterns when simulating the model on a larger scale. The behavior above can be described by

the equations below in Figure 2.2:

Figure 2.2: Screenshot from Karl Sim’s explanation of the Gray-Scott Model

While these rules may seem simple, changing these variables can produce a number of

different complex and dynamic behaviors such as a “coral growth” simulation (DA=1.0, DB=.5,

f=.0545, k=.062) and a “mitosis” simulation (DA=1.0, DB=.5, f=.0367, k=.0649) [9].

2.1.2 Cellular Automata

A cellular automaton is a discrete and abstract computation system that consists of a collection of

cells on a grid in a given shape that transforms and evolves based on a set of rules that define a

cell’s new state depending on the states of its neighboring cells at a given time step. As mentioned

before, this concept was created by von Neumann back in 1948 but is still being explored to this

day.

A famous example of a cellular automaton is John Conway’s Game of Life created in 1970

[10]. This zero-payer game is very simple, where cells are either “dead” or “alive” and evolve from

one generation to the next based on only a couple of rules:

• If a live cell has zero or one neighbor, it dies from isolation.

• If a live cell has two or three neighbors, it lives on to the next generation.

• If a live cell has more than three neighbors, it dies from overcrowding.

5

CHAPTER 2. BACKGROUND

• If a dead cell has exactly three neighbors, it becomes alive in the next generation.

Since Conway’s invention of the Game of Life, it popularized the use of cellular automata

with simulations that model can model the behaviors of ants, traffic, galaxies, and more. Even

with its simple guidelines, it can produce complex patterns and proved that a computer could be

“programmed” to simulate life [9].

Figure 2.3: Screenshot of Lyn with Conway’s Game of Life

2.2 Live Coding

Live coding performances consist of performers creating works by programming them as the code

is being executed at the same time [11]. While live coding has its roots in creating music and in

musical performances, it has also been used within other creative fields such as visual arts, dance,

poetry, and more [12]. It offers the opportunity for audience members to explore and experience

how the manipulation of different algorithms can affect the generated outcome. As well as for

the artist themselves, as they navigate how to improvise on their instrument to generate their

creative work for their audience to enjoy [13].

To develop a live coding system, current and previous live coding environments were looked

into for a better understanding of what makes a live coding system simple and intuitive. This

section explores the different features as well as language design that these environments had

that contributed to the development of Lyn.

2.2.1 Hydra

Hydra is a live coding environment for creating visuals that run on the browser. It was developed

by Olivia Jack and was written in JavaScript and compiled into WebGL. The syntax of Hydra

6

2.2. LIVE CODING

utilizes chaining a set of transformations to create the visuals which was inspired by analog

modular synthesis [14].

The interface of Hydra is designed to be intuitive and user-friendly, with a simple and

straightforward layout that allows users to quickly start creating their own visual compositions.

The interface consists of a main code editor window, where users can write and modify their code,

as well as a preview window that shows the current output of the code. Users can also interact

with the output of the code using a range of controls and parameters, allowing them to modify

and manipulate the visual output in real time.

The user interface was also inspired by TidalCycles, a live-coding interface focused on creating

music created by Alex McLean, where it takes a pattern in time as the base element and

everything is based on that given pattern [15]. For Hydra, “the base element is a transformation

from coordinates to color”, meaning all other functions revolve around changing the colors or

coordinates [16].

The syntax of Hydra is designed to be simple and expressive, allowing users to easily create

complex and dynamic visual patterns through the use of chaining and transformation functions.

For example, the following code generates a simple visual pattern using Hydra’s syntax:

shape(5) //create a shape with 5 sides

.color(2.83,0.91,0.39) //setting the color of the shape

.rotate(90, 1) //rotating consistently by 90 degrees in 1 sec

.scale(2) //scaling the shape by 2

.out()

Hydra’s functions are not very complex which allows users with little to no experience with

coding an accessible way to explore live-coding visuals. The functions can also be broken down

into five different categories: source, geometry, color, blend, and modulate. Each category has

between 7 to 16 functions which all enable users to create a multitude of dynamic and interactive

visual components.

2.2.2 The Force

The Force is a coding environment developed by Shawn Lawson for generating audio-responsive

visuals with the OpenGL Shading Language (GLSL), designed as a live-coding system for a single

performer [17]. The syntax is based on GLSL which makes it difficult for users if they do not

have a prior understanding of the language or how GPU-run simulations may run. For example,

the following code changes the visual from white to black:

void main () {

float color = sin(time); //setting color based on time

gl_FragColor = vec4(color,color,color, 1.); //setting the color of the visual

}

7

CHAPTER 2. BACKGROUND

Similar to Hydra, the interface consists of a code editor for users to input their code, however,

the code will automatically compile and run as the user types without the need to click a “Run”

button or press a keyboard shortcut to update the image given that there the compiler does

not return an error. On the bottom of the screen, the platform had additional features such as

adjusting the font size of the code editor, being able to add audio input, a function reference, and

more. While the syntax may be a bit difficult for new users to get used to, having the function

reference on the platform allowed for more ease of use.

2.2.3 LiveCodeLab

Another live-coding environment is LiveCodeLab, which was developed by Davide Della Casa and

Guy John to generate music but focuses on creating 3D visuals. LiveCodeLab 2.0 was released in

2014 and was inspired by other live code environments such as Jsaxus’ from its graphic styles as

well as Flaxus from its visual effectiveness [18]. The main motive of the project was to develop an

environment that would be easily accessible to individuals with limited computer skills, allowing

them to produce expressive and creative works using code [18].

The syntax of LiveCodeLab was designed to be concise and very readable, using simple terms

to quickly create visuals and audio such as “box” or “ball”. For example, a sample piece of code for

a simple 3D visual can be found below:

Figure 2.4: Screenshot of LiveCodeLab with sample visual

In addition to the simplicity of the syntax, the editor itself is also simple to use and navigate.

Similar to other environments, LiveCodeLab processes the code as the user types it out without

the need to press any buttons or key commands for updates. It also provides pre-written tutorials

and sample demonstrations in the navigation bar, which will load the content into the editor.

Additionally, it features an Autocoder which will randomly modify the user code in the editor to

allow for further exploration and show users what else can be done with the environment.

8

2.2. LIVE CODING

2.2.4 Gibber

Gibber, developed by Charlie Roberts, is a live-coding environment and programming library that

is designed for audiovisuals [19]. Users can access the environment either by downloading the

environment from Github or visiting the Gibber website [20] [21].

Figure 2.5: Screenshot of Gibber with sample demonstration

The browser-based platform was created with the intent that users would code in JavaScript,

using the Gibber library to make live coding performances [22]. Because of this, users with

JavaScript experience can do more. To run the code, users have the choice of whether to execute

all the code or a given line or selection based on the keyboard commands, making algorave

performances more accessible for non-programmers. Within the navigation bar, it also provides

various tutorials for users to utilize, which will populate the code editor with example code and

comments on how to use the library and environment.

9

C
H

A
P

T
E

R

3
IMPLEMENTATION

In an effort to make AL simulations with live code while still being accessible to both programmers

and non-programmers, the systems mentioned previously were used as inspiration and the basis

of Lyn. Whether or not the user knew about AL simulations or programming, our goal was for

users to quickly jump in and experiment with generating visuals. Table 3.1 notes some of the

main features and notes that I integrated into the development of Lyn.

10

3.1. LANGUAGE DESIGN

Hydra

• Web-based

• Intuitive because the functions build off one
another

• Readable syntax

• Functions separated into different cate-
gories

• Random generator

The Force

• Web-based

• Function reference

• Audio input

LiveCodeLab

• Web-based

• Simple UI

• Easy/readable syntax

Gibber

• Web-based

• JavaScript based

• Executing all or line/block of code

Table 3.1: Notes of features of different live coding systems

3.1 Language Design

3.1.1 Functions

Given that one goal of Lyn is for users to be able to experiment with different simulations, users

should still be able to adjust the associated variable values easily. Keeping this in mind, to

adjust a variable’s value, users simply had to write the function name with a pair of parentheses

containing the new value. If a function requires any inputs, they should be within the parentheses

and separated by commas.

This standard carried through to other functions, such as starting the diffusion simulation

or creating a rectangle on the screen. Inspired by Hydra, and because the focus of Lyn is on AL

simulation, the basis that functions revolved around was the AL simulations themselves. As a

11

CHAPTER 3. IMPLEMENTATION

Figure 3.1: Code Sample using Lyn

result, functions were divided up into five categories: simulations, geometry, color, post-processing,

and audio. Sample code from Lyn can be found below:

Within the code sample in Figure 3.1, dots() the random dots are first generated on the

screen. The reaction-diffusion is then called by diffuse(true) and play(1) causes the audio

file that was uploaded by the user to play. Following this, the feed rate is set to 0.062 with

feed(0.062), and the kill rate is set to the playing audio’s frequency with the kill(audio)

function. In line 7, colorB(#EDFF00) updated color B to a new color, and in line 8, kal(), or the

kaleidoscope effect, is applied on top of the simulation.

3.1.2 Inputs

Certain functions may need the user to include an input for the function to work. The different

input types that are implemented into Lyn include primaries, booleans, colors, and audio.

A primary consists of either a float or integer value. These are the main numerical value used

when exploring the simulations, specifically when setting variables to varying numbers.

A boolean, similar to other programming languages, indicates either true or false. This is

mainly used when calling a simulation and setting it as true or false. When set to true, it runs

the simulation and when set to false, causes the simulation to stop playing.

For setting different colors for the visual representation of the simulation, a user can input

a color value by typing in a hex value. When a user types any hex value, a color preview will

appear next to the input as seen in Figure 3.1. When clicked, a color picker will appear which

will be discussed in Section 3.2.3.

As another focus of the project was to incorporate artistic performance, involving music was

another interest. Being able to set a variable to an audio input was implemented to see how a

simulation changes based on the audio’s frequency. In Lyn’s current state, the audio input can

only be used for setting the reactive diffusion inputs.

3.2 System Design

To make Lyn an easy-to-find and use platform, it was developed using HTML, CSS, JavaScript,

and GLSL to create a web-based system. The visuals are run using the GPU to allow for more

12

3.2. SYSTEM DESIGN

efficient processing and smoother animations. To create this live-coding platform, many other

tools were used to develop Lyn which will be discussed in this section.

3.2.1 Parsing and Visuals

3.2.1.1 Peggy.js

Peggy.js is a parser generator, based on Peg.js, which is an open-source library for producing

parsers in JavaScript. Input types, as well as the structure of functions, were specified in a

grammar to outline the rules of the new language. Based on that grammar, Peggy generates a

parser to iterate through the users’ code and outputs the JavaScript code that is to be run. I was

able to create a simple language, defined in the grammar found in Appendix 5, and generate a

parser within the Lyn system so that individuals with little to no experience would not require

previous knowledge of current programming languages.

3.2.1.2 WebGL

WebGL or the Web Graphics Library, allows for 2D or 3D graphics to be rendered in compatible

web browsers through GLSL and the HTML canvas element. This set of functions, which is

included in almost all modern browsers, enabled Lyn to take advantage of the graphics processing

unit, also known as the GPU, on a user’s device when creating the visuals of the simulation. By

having the visuals run on GPU, processing of the simulations can be done more efficiently and

smoother as compared to being run on the central processing unit, or CPU. Reaction-diffusion

would not be able to run fullscreen using the CPU alone; incorporating the GPU was an essential

component of developing Lyn.

3.2.2 User Interface

3.2.2.1 CodeMirror

CodeMirror is a code editing component that can be integrated into websites to enable text input.

It has many features that make it useful for live coding and programming in general, such as

line numbers, being able to undo or redo, flexible styling, and allowing editor extensions.

These extensions included the https://github.com/replit/Codemirror-CSS-color-picker which

enables a color picker to appear in the CodeMirror text editor when a user is specifying a color.

This lets users not worry about knowing the hex code of a specific color, as they can simply select

a color on the color picker.

3.2.2.2 Post-Pre

Post-Pre, developed by Cole Granof, is a set of presets based on merge-pass, a post-processing

library that allows for a combination of effects to run easily on an image, canvas, or texture. By

13

CHAPTER 3. IMPLEMENTATION

integrating this library, it allowed for more visual effects to be generated within the Lyn system

for users to explore.

Figure 3.2: Screenshot of before and after calling the kaleidoscope function within Lyn

3.2.2.3 D3.js

D3.js is a JavaScript library and framework that focuses on creating visualizations by efficiently

manipulating documents based data using HTML, SVG, and CSS [23]. It allows for fast and

dynamic animations and interaction for data visualizations. This tool was utilized to allow users

to see how the variables change over time if a user were adjusting them manually or through

audio reactivity which is later discussed in Section 3.2.3.

Figure 3.3: Screenshot of Lyn’s parameter information with the graph tracking changes in
parameter values based on audio

3.2.2.4 GitHub and GitHub Pages

GitHub is a web-based platform for version control and collaboration, primarily used in software

development. It allows users to easily track changes in code over time, merge changes, and

manage issues and bugs. Throughout this project, GitHub was utilized to keep a record of updates

in the code such as new features or bug fixes.

14

3.2. SYSTEM DESIGN

GitHub also provides other tools that make it a useful platform to use such as GitHub Pages,

which is a static-site hosting service provided by GitHub that is built off the HTML, CSS, and

JavaScript files within a repository. This service is currently being used to host Lyn for users to

access.

3.2.3 Additional Features

Outside of the live coding and visualization aspect of the Lyn system, additional features were

added to the platform with the goal of providing a user-friendly experience and allowing for more

exploration of the simulations. This section discusses and showcases these features below.

The random button when clicked randomly selects from 4 presets of the reactive diffusion

parameters, providing users a start for exploration and provides references to different variations

of the reactive diffusion.

Figure 3.4: Buttons for the “random” button and command list

Parameter information can be found in the “Parameter Info” box where the current values

of each parameter in the reactive diffusion can be seen and monitored by the user. Additionally,

there is a graph where the user can observe how the value of a variable fluctuates or compares

to other variables. The graph was implemented mainly for the case when a variable is set to an

audio input.

Figure 3.5: Screenshot of the parameter information

15

CHAPTER 3. IMPLEMENTATION

A command list can be found in the top right for users to reference all the different functions

and how to utilize them to generate various and unique visualizations. Within the command

list, functions are broken up into different tabs depending on their functionality which are

“Simulation“, “Audio”, “Shapes and Colors”, and “Effects”. Additionally, the first tab within the

command list provides a quick overview of the platform as well as instructions on how to run the

code.

Figure 3.6: Screenshot of the command list

We also implemented audio reactivity within Lyn to provide more opportunities for users

to play and explore how simulations change depending on the frequency content of the audio.

Within the command list, users can navigate to the “Audio” tab and upload up to three audio files.

By doing so, these audio files can be referenced and played using the playMusic(1) function

where 1 indicates that the audio file in track 1 should be played. From there, variables can be set

to the audio by simply typing in “audio” where a number value should be within a given function.

16

3.2. SYSTEM DESIGN

Figure 3.7: Screenshot of audio tab

As many people do not memorize hex codes, to ease the process of setting different colors,

users can utilize the color picker feature within the code area to select a color. A color picker box

will appear once a user begins typing any hex code. Once the small color preview appears, the

user can click that box for the color picker to open and users can select their color. From there, a

hex code will be generated based on that color.

Figure 3.8: Color preview within the Lyn text area

For running code, users can either run all the code within the text area together by clicking

CTRL + ENTER or they may choose to only run a selected block of code or individual line with

SHIFT + ENTER. Being able to only run a line of code or a selected block was implemented

to allow for more flexibility in the live coding experience, especially if a user wanted to create

visuals based on the timing of any audio.

17

C
H

A
P

T
E

R

4
EVALUATION

To evaluate the usability of Lyn, we conducted user testing where participants performed a

think-a-loud [24] as they performed various tasks on the platform (Appendix 5). Following this,

they answered a survey based on the System Usability Scale (SUS) [25] and a series of open-

ended questions regarding their experience and feedback (Appendix 5, Appendix 5). Six sessions

were held with WPI students; they provided valuable insights and comments. Out of the six

participants, only two had prior coding experience with computer science as a major, and one

participant with some coding experience from classes.

To analyze the open responses, the think-a-loud and responses to the open-ended questions

were then transcribed and coded to identify patterns and improvement points in the system. The

transcripts were coded with the following categories found in the table below.

Language Design
Improvements in current features

Suggestions for new features
Difficulties/dislikes

Table 4.1: Code for open responses answers and transcripts

4.1 Results

The survey had a SUS score of 64.5, meaning the platform in terms of ease of use, the platform

performed slightly below the average score of 68 [25]. While many positive comments were

mentioned during the user testing, there are many further developments that can be implemented.

Overall during the testing, participants were able to complete most of the tasks with little to no

assistance. This section will discuss the major findings and opportunities for development that

18

4.1. RESULTS

emerged after the analysis.

4.1.1 The interactivity and real-time feedback from live coding were
enjoyable and interesting.

During the user testing, it was clear that participants enjoyed the level of interactivity and

customization available within the platform. All six participants expressed their appreciation

for being able to personalize their simulations, saying comments such as “What I liked about

using Lyn was that it was very customizable” when asked what things they liked and saying

“Nice it looks like I’m watching, like the intro movie” after changing the colors and parameters of

their simulation. Interestingly, some participants were particularly drawn to the way in which

the audio reacted to the simulations, saying “I really also do like the option that there is to play

audio, so it would react to whatever music I would be playing”, while others were more interested

in the visual aspect of the platform with remarks about the visuals such as that the “I found

this new appreciation coding so like seeing that it’ll come from the text box and then, like seeing

the live feed on the side, it’s really cool”. As mentioned before that only two of the participants

had prior knowledge of programming before the testing, highlighting the ease of the platform for

those without prior experience, with one participant even mentioning “I would say, nice and easy

to use, because the code actually is very understandable”.

Upon starting their reactive diffusion simulations, each participant had a unique reaction

to the visuals generated. Most users were excited and intrigued to watch and see how the

simulation evolved over time, however, a few participants also expressed discomfort with certain

visualizations. Fortunately, as the platform allowed these participants to adjust the simulation

or select a randomized preset, it allowed participants to find a visual that better suited their

preferences. Overall, the reactions to the simulations were positive and showed the potential for

the platform to engage users and spark their creativity.

4.1.2 Current features can be further developed to make them more
accessible and easier to find.

All the participants made comments regarding the command list regarding either its contents

or ways a user can interact with it. To start, the placement of the icon as well as the icon for

the command list confused some participants. Five participants were able to navigate and find

the popup with no help. Based on the options that were given to them, some determined the “?”

button made the most sense which is why they clicked on it to find the list. The one participant

who was unable to find the command list on the first try was due to their confusion on what

a “command list” would be or look like with remarks such as “I had to think about it, and I

thought like that was the only option cause nothing else really screamed command list! But

even then I think the question mark more so, gives me like frequently asked questions more so

than command list”. Some suggestions were to change the icon to better represent the feature.

19

CHAPTER 4. EVALUATION

Additionally, for users with less experience, it was also suggested to put the icon closer to the text

box for easier access or enable keeping the reference open for users to refer to whenever.

With regard to the information within the command list, it was suggested to differentiate

the function, its inputs, and its description more clearly such as through different styling or

documenting the functions in a table. Additionally, the data types should be clearly mentioned

for users as many of the participants had difficulty and were unsure of how to set a variable to

the “audio” data type. However, the participants with little to no prior programming experience

commented on how they liked having the command list and being able to copy and paste functions

straight into their code and make minimal adjustments, saying “I like that they had directions

for us, or like templates in the sense, so that way I could just copy and paste”.

Outside of the command list, the color picker was a feature that was often not discovered or

was suggested without knowing had been implemented. When users were asked to change one of

the colors of the simulation, three participants asked for a hex code to input because they did not

have one in mind, and four participants made a comment regarding the color picker square that

appeared but did not click on it. The two participants who did click on the color picker found it

quite helpful but did mention it may not have been intuitive to click the color picker box without

prior programming experience.

4.1.3 New features could be implemented in the system to create an easier
and more enjoyable experience.

While users were able to navigate the platform in its current state, participants provided valuable

feedback on how to improve the Lyn platform experience The most common suggestions were

regarding tutorials, the text box as well as the audio features.

While participants with less coding experience were able to complete the tasks and generate

different visualizations, they expressed a need for a tutorial on the platform and the language.

Current live-coding systems can be used as a reference for future development such as having

tutorials by having simple preset code with comments to guide users, such as in Gibber. Another

approach could be to implement a tutorial showing the different features of the platform with a

popup when a user starts the website.

For the coding area, a common issue that was found was the lack of feedback when a

participant had an issue in their code. While going through different tasks and there was an error

in the code, participants were often confused by the lack of response. When asked for suggestions,

one participant recommended “having like an error function just like, oh, this is not gonna work

because of this”. For future iterations of Lyn, either providing error messages or underlining

errors within the coding area would allow users to be able to identify their mistakes and prevent

confusion when no changes occur if the current code cannot run. Additionally, participants found

it cumbersome to go back and forth between the command list and the coding area when they did

not remember the exact function. To address this issue, an autocomplete feature within the code

20

4.1. RESULTS

area could be implemented and would allow users to write code more quickly and efficiently.

Regarding audio features, participants suggested being able to adjust the volume level of the

audio on the interface and having a track slider to show where the music is in the audio track.

These features would allow users to better time changes in the visuals and improve the overall

experience of working with audio.

Other suggestions from participants included adding more shapes and simulations, imple-

menting a full-screen mode to hide all interface features and focus solely on the simulation,

adding a save code feature, and enabling sharing of simulations and visualizations with others.

21

C
H

A
P

T
E

R

5
CONCLUSIONS AND RECOMMENDATIONS

By the end of the project, the final iteration of Lyn provided a promising platform for live coding

artificial life simulations for users to explore and generate. Many people showed interest in

Lyn due to both AL and live coding aspects when being presented during WPI’s 2023 Project

Presentation Day. At its current state, Lyn offers various tools and features for users to utilize,

however, there are several opportunities for improvement that remain for future development.

For the last iteration of this project, there were only two AL simulations available for users

to test while there is a multitude of simulations that people can explore and enjoy within the

field of AL. Even with the two AL simulations, only reactive diffusion provided parameters

that could be adjusted whereas Conway’s Way of Life could only be adjusted with the starting

geometry. The implementation of more AL simulations involves adjusting the current language

design as its current state may not offer user-friendly ways of adjusting parameters for that

simulation. Outside of AL simulations, more functions and options for creating different geometry,

adjusting post-processing effects, and experimenting with audio would offer users a wider toolset

to generate unique visualizations. Further development of the language would allow users the

ability to explore more functions and data types

Regarding Lyn’s system design, the user interface can be made more user-friendly and

intuitive so that users have the abilities and knowledge of using Lyn to all of its abilities. This

would involve improving the current features within Lyn, as well as implementing new ones.

Certain placements and indicators for features such as the command list and color picker should

be updated so to better represent them and allow users to more easily find them. The formatting

and explanations provided within the command list should also be improved, especially for

users with little to no experience in programming, for easier understanding of functions and the

language itself. Outside of these current features, new capabilities should also be implemented

22

into Lyn including having feedback on errors and autocomplete within the coding area, more

audio capabilities, as well as the tutorials of the platform and its language.

As mentioned previously, the Lyn system has generated interest from various individuals

due to its combination of artificial life and live coding aspects. The project additionally also

showcased a more creative side to code. With continued development, Lyn has the potential

to become a valuable resource and medium for anyone interested in exploring the possibilities

of AL simulations and creative code. Lyn is free and open-source software, available at https:

//github.com/evelyntrvn/Lyn.

23

https://github.com/evelyntrvn/Lyn
https://github.com/evelyntrvn/Lyn

APPENDIX A: STUDY PROTOCOL

The beginning of each study procedure will start with an introduction to the project, explaining

their right to refuse any questions, and recording consent to participate with a digital signature

or in-person signature. The interview will be recorded using Zoom to capture the screen and

participants’ comments.

Participants will be asked a preliminary set of questions for general demographic information.

Following that, they will be directed to Lyn (https://evelyntrvn.github.io/Lyn/) where they will be

asked to perform a think-a-loud while completing various tasks using the platform found below.

After completing the set of tasks, participants are directed to another URL and asked to fill

out a short survey to characterize aspects of their subjective experience and solicit suggestions

for improving the experience. Finally, the participants will be asked a short set of open-ended

questions to further elaborate their experience and opinions on the platform. Participation in the

study should take 15 to 30 minutes.

Covid Considerations

Prior to a participant’s session, the investigator will send an email to the participant to confirm

the session details and inform volunteers that if they have COVID-19, show symptons, or has

been in close contact with anyone who has COVID-19, they should inform the investigator and

cancel the session. Additionally, the email will encourage but not require the volunteer to wear a

mask during the session. The email template can be found below.

Before beginning the study, participants will be asked if they have COVID-19 or symptoms of

COVID-19 or have been in close contact with anyone who has or had COVID-19. During user

testing, only the investigator and one participant will be present in the testing room, where the

investigator will be wearing a mask. The investigator will also maintain a 6-foot distance unless

needed to proceed with the investigation such as navigating to the survey or fixing any issues

with links. All equipment and areas that will be used will be sanitized prior to each session such

as laptops, computer mouses, door knobs, etc.

Opening briefing for testers

“Hello!

i

APPENDIX A: STUDY PROTOCOL

Thank you for participating in this session. The purpose of this study is to obtain user

feedback to evaluate the usability and design of a web-based system to allow users to explore

Artificial Life (AL) simulations with live-coding and audio-reactivity.

This session will be recorded and transcribed for analysis purposes only. All your personal

information will be kept confidential and used for educational purposes only. This study should

take 15-30 minutes. Your participation is voluntary, and you may choose to stop any time or skip

any questions or tasks that are asked. Before I continue, do you have any questions, comments,

or concerns?

Before we begin, I am going to ask you to look through and sign this consent form which has

more information regarding the study.”

Think-A-Loud

Users proceed to go onto the website and will be asked to perform the following tasks while

thinking aloud:

• Look through the command list

• Make random dots

• Start a diffusion simulation*

• Generate a random simulation

• Change one of the colors*

• Change the kill variable*

• Play music*

• Set the feed variable to the audio*

• Try one of the commands in the “Effects” list*

• Explore the website

* These tasks are accomplished by executing a command in the code editor.

ii

APPENDIX B: SURVEY

After completing the tasks, participants will be asked to complete a survey which will be hosted

on Qualtrics with the following questions:

Please rate the following prompts.

iii

APPENDIX C: STUDY QUESTIONS

Preliminary Questions

Do you have any programming experience?

Do you know what live-coding is?

Interview Questions

Following the survey, participants will be asked the following questions:

• What did you like?

• What did you dislike?

• Are there any features you would want to see added to the website?

iv

APPENDIX D: GRAMMAR

term "term" = _? body:(keyword / sentence) _? { return body; }

POINT = "."

COMMA = ","

DIGIT = [0-9]

INTDIGIT = [1-9]

TRUE = "true" / "True" { return "true" }

FALSE = "false" / "False" { return "false" }

PRIMARY = float / int

float = first:int dec:dec { return parseFloat(`${first}`) + parseFloat(`${dec}`); }

dec = point:POINT num:DIGIT+ { return parseFloat("." + `${num}`); }

int = first:INTDIGIT dig:DIGIT* { return parseInt(`${text()}`); }

boolean = TRUE / FALSE

regular = [^{}]+ { return text(); }

expr = regular*

sentence = "{" expr:expr "}" { return expr.join("") } / regular

_ "whitespace" = [\t\n\r]*

audio = "audio" {return "'audio'"}

/****** Key Words ******/

keyword "keyword" = col / difFct / cellFct /

effects / reset / music / shapes /

colInput / $[^{} \t\n\r] +

v

APPENDIX D: GRAMMAR

// Shapes and styles

shapes = rect / dots

rect = "rect(" _? x:PRIMARY "," _? y:PRIMARY "," _? w:PRIMARY "," _? h:PRIMARY _? ")"

{ return `shape.rect(${x}, ${y}, ${w}, ${h})`}

dots = "dots()"{ return `shape.dots()`}

/****** Diffuse attributes ****/

difFct = diffuse / rateA / rateB / feed / kill / size

difInput = PRIMARY / audio

diffuse = "diffuse(" bool:boolean ")"{ return `setDiffuse(${bool})`;}

rateA = "dA(" r:difInput ")"{ return `rateA(${r})` ; } //change to primary

rateB = "dB(" r:difInput ")"{ return `rateB(${r})` ; }

feed = "feed(" f:difInput ")" { return `feed(${f})` ; }

kill = "kill(" k:difInput ")" { return `kill(${k})` ; }

size = "size(" s:difInput ")" { return `size(${s})` ; }

reset = "reset()" { return `reset()` }

/****** Cellular Automata attributes ****/

cellFct = automata

automata = "automata(" bool:boolean ")"{ return `setAutomata(${bool})`;}

/***** music ****/

music = playMusic / pauseMusic / time

playMusic = "playMusic(" trackNum:int ")" { return `playMusic(${trackNum})` }

pauseMusic = "pauseMusic()" { return `pauseMusic()` }

// Input and other

time = "time" { return Date.getTime; }

/** colors **/

hexChar = h:[0-9A-Fa-f] { return `${h}`; }

hex = "#" h:(hexChar hexChar hexChar hexChar hexChar hexChar) {return `"#${h.join("")}"`}

vi

rgb = "rgb(" PRIMARY "," PRIMARY "," PRIMARY ")"{ return text();}

col = colorA / colorB

colInput = hex / rgb

colorA = "colorA(" h:colInput ")"{ return `col.setColor("A", ${h})` ; } //

colorB = "colorB(" h:colInput ")"{ return `col.setColor("B", ${h})` ;}

/** Post Processing **/

effects = editAttribute / noEffect / effect

postProcess = "kal" / "blur" / "celShade" / "foggy" /

"light" / "noise" / "oldFilm" / "vignette"

attribute = "size" / "side" /

"period" / "speed" / "intensity" /

"speckIntensity" / "lineIntensity" / "grainIntensity" /

"blurScalar" / "brightnessScalar" / "brightnessExponent"

noEffect = "noEffect()"{ return `effects.noEffect()` }

effect = func:postProcess "()"_ { return `effects.postEffect("${func}")`}

effectAttribute = attr:attribute { return `${attr}` }

editAttribute = e:postProcess POINT att:effectAttribute "(" val:PRIMARY ")"

{ return `effects.setEffect('${e}', '${att}', ${val})`}

vii

APPENDIX E: IRB APPROVAL

viii

BIBLIOGRAPHY

[1] W. Aguilar, G. Santamaría-Bonfil, T. Froese, and C. Gershenson, “The Past, Present, and

Future of Artificial Life,” Frontiers in Robotics and AI, vol. 1, 2014. [Online]. Available:

https://www.frontiersin.org/articles/10.3389/frobt.2014.00008

[2] D. Shiffman, S. Fry, and Z. Marsh, The nature of code. D. Shiffman California, USA, 2012.

[3] L. Sinapayen, “Introduction to Artificial Life for People who

Like AI,” Nov. 2019. [Online]. Available: https://thegradient.pub/

an-introduction-to-artificial-life-for-people-who-like-ai/

[4] C. Langton, “Artificial Life: An Overview,” 1995. [Online]. Avail-

able: https://www.semanticscholar.org/paper/Artificial-Life%3A-An-Overview-Langton/

021e5595c614c7b85ca835c5ace37cab89834cf7

[5] S. Wilson and C. G. Langton, “Artificial Life,” in Leonardo, vol. 24, 1991, p. 244,

iSSN: 0024094X Issue: 2 Journal Abbreviation: Leonardo. [Online]. Available:

https://www.jstor.org/stable/1575317?origin=crossref

[6] E. Bartlem, “Immersive Artificial Life (A-Life) Art,” 2005. [Online]. Available:

https://www.ekac.org/edwina.html

[7] S. Penny, “Art and Artificial Life – a Primer,” Dec. 2009. [Online]. Available:

https://escholarship.org/uc/item/1z07j77x

[8] A. M. Turing, “The chemical basis of morphogenesis,” Bulletin of mathematical biology,

vol. 52, no. 1-2, pp. 153–197, 1990.

[9] K. Sims, “Reaction-Diffusion Tutorial.” [Online]. Available: http://www.karlsims.com/rd.html

[10] E. W. Weisstein, “Cellular Automaton,” publisher: Wolfram Research, Inc. [Online].

Available: https://mathworld.wolfram.com/

[11] C. Roberts and G. Wakefield, “Tensions & Techniques in Live Coding Performance,” in The

Oxford Handbook of Algorithmic Music, Jan. 2018, journal Abbreviation: The Oxford

Handbook of Algorithmic Music.

ix

https://www.frontiersin.org/articles/10.3389/frobt.2014.00008
https://thegradient.pub/an-introduction-to-artificial-life-for-people-who-like-ai/
https://thegradient.pub/an-introduction-to-artificial-life-for-people-who-like-ai/
https://www.semanticscholar.org/paper/Artificial-Life%3A-An-Overview-Langton/021e5595c614c7b85ca835c5ace37cab89834cf7
https://www.semanticscholar.org/paper/Artificial-Life%3A-An-Overview-Langton/021e5595c614c7b85ca835c5ace37cab89834cf7
https://www.jstor.org/stable/1575317?origin=crossref
https://www.ekac.org/edwina.html
https://escholarship.org/uc/item/1z07j77x
http://www.karlsims.com/rd.html
https://mathworld.wolfram.com/

BIBLIOGRAPHY

[12] T. Magnusson, “Herding Cats: Observing Live Coding in the Wild,” Computer

Music Journal, vol. 38, no. 1, pp. 8–16, Mar. 2014. [Online]. Available: https:

//direct.mit.edu/comj/article/38/1/8-16/94447

[13] I. zmölnig and G. Eckel, “Live coding: An overview,” International Computer Music Confer-

ence, ICMC 2007, pp. 295–298, 01 2007.

[14] O. Jack, “Hydra: live coding networked visuals,” Madrid, Spain, Jan. 2019, iSBN:

9788418299087 Pages: 353 Publication Title: Proceedings of the Fourth International

Conference on Live Coding Publisher: Medialab Prado / Madrid Destino. [Online].

Available: https://zenodo.org/record/3946269

[15] A. McLean and G. Wiggins, “Tidal–pattern language for the live coding of music,” in Pro-

ceedings of the 7th sound and music computing conference, 2010, pp. 331–334.

[16] P. Kirn, “A free, shared visual playground in the browser: Olivia Jack talks Hydra,” Feb.

2019. [Online]. Available: https://cdm.link/2019/02/hydra-olivia-jack/

[17] S. Lawson and R. R. Smith, “The dark side,” in Centro Mexicano para la Música y las Arts

Sonoras (Mexico): Proceedings of the Third International Conference on Live Coding,

2017.

[18] D. Della Casa and G. John, “LiveCodeLab 2.0 and its language LiveCodeLang,” in

Proceedings of the 2nd ACM SIGPLAN international workshop on Functional art,

music, modeling & design, ser. FARM ’14. New York, NY, USA: Association for

Computing Machinery, Sep. 2014, pp. 1–8. [Online]. Available: https://dl.acm.org/doi/10.

1145/2633638.2633650

[19] C. Roberts, “gibber.audio.lib,” Apr. 2023, original-date: 2014-09-22T00:19:40Z. [Online].

Available: https://github.com/charlieroberts/gibber.audio.lib

[20] C. Roberts and J. Kuchera-Morin, “Gibber: Live coding audio in the browser,” in ICMC,

vol. 11, 2012, p. 6.

[21] C. Roberts, M. Wright, J. Kuchera-Morin, and T. Höllerer, “Gibber: Abstractions for creative

multimedia programming,” in Proceedings of the 22nd ACM international conference on

Multimedia, 2014, pp. 67–76.

[22] C. Roberts, M. Wright, and J. Kuchera-Morin, “Beyond Editing: Extended Interaction

with Textual Code Fragments,” in Proceedings of the international conference on New

Interfaces for Musical Expression, ser. NIME 2015. Baton Rouge, Louisiana, USA: The

School of Music and the Center for Computation and Technology (CCT), Louisiana State

University, May 2015, pp. 126–131.

x

https://direct.mit.edu/comj/article/38/1/8-16/94447
https://direct.mit.edu/comj/article/38/1/8-16/94447
https://zenodo.org/record/3946269
https://cdm.link/2019/02/hydra-olivia-jack/
https://dl.acm.org/doi/10.1145/2633638.2633650
https://dl.acm.org/doi/10.1145/2633638.2633650
https://github.com/charlieroberts/gibber.audio.lib

BIBLIOGRAPHY

[23] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,” IEEE transactions on

visualization and computer graphics, vol. 17, no. 12, pp. 2301–2309, 2011.

[24] C. Lewis, Using the" thinking-aloud" method in cognitive interface design. IBM TJ Watson

Research Center Yorktown Heights, NY, 1982.

[25] A. S. f. P. Affairs, “System Usability Scale (SUS),” Sep. 2013, publisher: Department

of Health and Human Services. [Online]. Available: https://www.usability.gov/

how-to-and-tools/methods/system-usability-scale.html

xi

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

	List of Tables
	List of Figures
	Introduction
	Background
	Artificial Life
	Reaction Diffusion
	Cellular Automata

	Live Coding
	Hydra
	The Force
	LiveCodeLab
	Gibber

	Implementation
	Language Design
	Functions
	Inputs

	System Design
	Parsing and Visuals
	User Interface
	Additional Features

	Evaluation
	Results
	The interactivity and real-time feedback from live coding were enjoyable and interesting.
	Current features can be further developed to make them more accessible and easier to find.
	New features could be implemented in the system to create an easier and more enjoyable experience.

	Conclusions and Recommendations
	Appendix A: Study Protocol
	Covid Considerations
	Opening briefing for testers
	Think-A-Loud

	Appendix B: Survey
	Appendix C: Study Questions
	Preliminary Questions
	Interview Questions

	Appendix D: Grammar
	Appendix E: IRB Approval
	Bibliography

