

A Parallel Plate Flow Chamber to Investigate Endothelial Glycocalyx Remodeling After Pneumonectomy

Natasha Cruz-Calderon, Lydia Masse, Gillian Miller, Taylor Paradis & Samantha Raskind

Meet the team

Gillian Miller BME 22'- Tissue Engineering/Drug delivery

Taylor Paradis BME & ME 22'-Biomaterials

Lydia Masse BME '22- Tissue Engineering/Drug Delivery

Natasha Cruz-Calderon BME 22'- Tissue Engineering/Drug Delivery

Samantha Raskind BME 22'- Tissue Engineering/Drug Delivery

Solomon Mensah-Postdoctoral Fellow, 2020, Worcester Polytechnic Institute

Kristen Billiar- Professor & Department Head, Worcester Polytechnic Institute

External Advisor: Dr.
Aaron Waxman Director, Pulmonary
Vascular Disease Center,
Brighams & Women's
Hospital

Worcester Polytechnic Institute

Lung Physiology and Pneumonectomy

Endothelial Glycocalyx

- The glycocalyx is responsible for numerous physiological functions
 - Protects the endothelial <u>cells</u>
 - Regulates exchange between bloodstream and endothelial cells
- Disturbed flow in the arteries can cause damage to the endothelial glycocalyx

Need Statement

 Need: develop a device that more accurately models pulmonary arteries and mimics pneumonectomy conditions to investigate cellular changes in the endothelial glycocalyx

 Clinical Significance: replicating pneumonectomy conditions in vitro would allow for potential explanations to pneumonectomy conditions to be studied and future therapies targeting these aspects developed

Project Objectives

- 1. Develop a device that models the geometries and bifurcation of the pulmonary arteries
- 2. Investigate the effect of increased shear stress & flow on HLMVEC
- 3. Analyze cell coverage, discontinuity in the endothelial layer, and function of cells after pneumonectomy conditions

Functional & Performance Specifications

	Function	Performance	
Model Type	 A model that allows for controlled flow, is biocompatible, and models arteries 	 Glass slides: 10 mm x10 mm Angles of Bifurcation: RPA-MPA= 125°, LPA-MPA= 112° Diameters: MPA= 29.5 mm, RPA= 19.8 mm, LPA= 22.1 mm Material: acrylic with teflon gasket 	
Cell Type	A cell type that models response to the change in flow and shear stress	➤ Human Lung Microvascular Endothelial Cells	
Pneumonectomy	Blood flow cut off to one pulmonary artery to model a pneumonectomy procedure	 Model Right, and Left pneumonectomy and Control/No pneumonectomy The distance the artery will be cut is 1-2 cm 	
Blood Flow	 A constant blood flow (cardiac output) in all experimental models 	171.6 cm ³ /s is average blood volume flow for the pulmonary arteries	
Shear Stress	 A pump to create controlled, laminar flow and shear stress on cells 	 Cells on slide will be stained and imaged after experiments The normal shear stress for the pulmonary arteries is approximately 5-10 dynes/cm² 	

Parallel Plate Flow Chamber Research

Design in Literature #1

Design in Literature #2

Previously Used Model

Worcester Polytechnic Institute

Pugh Analysis

Designs	Design From Literature #1	Design From Literature #2	Previously Used Model
Affordability	0	0	0
Functionality	0	0	0
Leak Prevention	1	1	1
Multiple Testing Points	0	1	-1
Ease of Machining	1	1	1
Ability to Manipulate Flow Path	-1	-1	1
Total Score	1	2	2

Modeling and Flow Simulations

Worcester Polytechnic Institute

Assembly

Bottom Plate

Top Plate

Control Gasket

Right Pneumonectomy Gasket

Left Pneumonectomy Gasket

Final Assembly - Expanded View

Worcester Polytechnic Institute

Flow Simulation Shear Stress Visuals

Left Pneumonectomy

Right Pneumonectomy

2D Flow Simulation Data

Verification & Validation

Control

Left Pneumonectomy

Right Pneumonectomy

Worcester Polytechnic Institute

Experimental Setup

No Pneumonectomy

Worcester Polytechnic Institute

Right Pneumonectomy

Right Pneumonectomy

Left Pneumonectomy

Left Pneumonectomy

Worcester Polytechnic Institute

Analysis of Discontinuity in the Endothelial Layer

Average Gap Area (Fold Change)

RPA Testing Point 3

Treatment

- We hypothesized that the discontinuity would increase after a pneumonectomy
- More experiments are required to support the hypothesis

Discussion

- We hypothesized that after a pneumonectomy the increase in shear stress would cause discontinuity in the endothelial layer and decrease cell coverage
- Flow simulations results showed a large increase in shear stress magnitude supported by the literature and hypothesis
- The coverage data collected indicated the possibility of loss of cellular function under pneumonectomy conditions
 - Although we can see trends in the data, more experiments and more cell analysis needs to be done in order to prove significance

Future Direction - 3D Model

Alternative 3D Model Design - Solidworks

Alternative 3D Model Design - Fabrication

Alternative 3D Model Design - Recommendations

- Difficulties
 - Time and budget constraints
 - 3D printing availability
 - Technical problems
- Possible Solutions
 - Ensure sole focus
 - Different materials

Acknowledgements

- WPI Advisors: Solomon Mensah & Kristen Billiar
- Clinical Advisor: Dr. Aaron Waxman from Brigham and Women's Hospital
- WPI Washburn & Goddard Machine Shop
- WPI BME Department: Lisa Wall, Rob Kirch, and Victoria Bicchieri

Thank you!

References

- [1] SEER Training Modules, Circulatory Pathways. U. S. National Institutes of Health, National Cancer Institute. Retrieved April 21, 2022, from https://training.seer.cancer.gov/anatomy/cardiovascular/blood/pathways.html
- [2] Pneumonectomy surgery for mesothelioma, defeated Lung removed. CleverBoris. (n.d.). Retrieved April 21, 2022, from https://cleverboris.blogspot.com/2016/03/pneumonectomy-surgery-for-mesothelioma.html
- [3] Human blood vessel anatomy. detailed scheme. 123RF. (n.d.). Retrieved April 21, 2022, from https://www.123rf.com/photo_125326192_stock-vector-human-blood-vessel-anatomy-detailed-scheme-editable-vector-illustration-isolated -on-a-light-backgrou.html
- [4] Farah, C., Michel, L., & Balligand, J.-L. (2018). Nitric oxide signaling in cardiovascular health and disease. *Nature Reviews Cardiology*, 15, 292–316. https://doi.org/https://doi.org/10.1038/nrcardio.2017.224
- [5] Harding, I. C., Mitra, R., Mensah, S. A., Nersesyan, A., Bal, N. N., & Ebong, E. E. (2019). Endothelial barrier reinforcement relies on flow-regulated glycocalyx, a potential therapeutic target. *Biorheology*, 56(2-3), 131–149
- [6] Sato, K., Nitta, M., & Ogawa, A. (2018). A Microfluidic Cell Stretch Device to Investigate the Effects of Stretching Stress on Artery Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. *Inventions*, 4(1), 1. MDPI AG. Retrieved from http://dx.doi.org/10.3390/inventions4010001
- [7] Chung, B. J., Robertson, A. M., & Peters, D. G. (2003). The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. *Computers & Structures*, 81(8), 535–546. https://doi.org/https://doi.org/10.1016/S0045-7949(02)00416-9
- [8] Kandathil, A., & Chamarthy, M. (2018). Pulmonary Vascular Anatomy & Anatomical variants. *Cardiovascular Diagnosis and Therapy*, 8(3), 201–207. https://doi.org/10.21037/cdt.2018.01.04