
Coalition Formation and Scheduling
for Heterogeneous Robot Swarms
with Ant Colony Optimization

A Major Qualifying Project
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Computer Science

By:

William Babincsak

Project Advisors:

Prof. Carlo Pinciroli

Ashay Aswale

Date: April 2024

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of

completion of a degree requirement. WPI routinely publishes these reports on the web without editorial or peer

review.



Contents

1 Introduction

2 Background
2.1 Heterogeneous Multi-Robot Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.1 Coalition Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Task Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Time-Extended Coalition Formation and Task Allocation . . . . . . . . . . . . . . . .

2.2 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 The Base ACO Algorithm: Ant System . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 The Multiple Travelling Salesman Problem (MTSP) . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Extending the MTSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Territorial Ant Colony Optimization (TACO) for the MTSP
3.1 MTSP Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 The TACO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Solution construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Pheromone update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Deadlock-Reversal TACO (DR-TACO) for the Collab-MTSP
4.1 Collab-MTSP Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Handling Skills and Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 A Heuristic Based on Waiting Ants . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.3 Pheromone as a Function of Arrival Time . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4 Classification of the Problem Space of the Collab-MTSP . . . . . . . . . . . . . . . . . . . . .

4.4.1 Explored Problem Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5 Experiments Against an Optimal Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 Experiments on Problems of Increasing Scale . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Evaluating Pheromone Approximation and New Heuristics . . . . . . . . . . . . . . . . . . . .
4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Swarm Ant System for the Collab-MTSP
5.1 Swarm Ant System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.1.1 Solution construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 SAS Assignment Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 Dual Swarm Ant System Assignment Function . . . . . . . . . . . . . . . . . . . . . .

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



6 Conclusions



Abstract

In this work, we tackle the problem of task scheduling in heterogeneous multi-robot systems. In our setting,
the tasks require diverse skills to be fulfilled; however, the robots offer some, but not all, of the required
skills. Thus, the robots must construct individual schedules that allow coalitions, i.e., dedicated teams, to
be formed and disbanded dynamically. This results in cross-schedule dependencies that make generating
high-quality solutions difficult, especially as the number of robots, skills, and tasks grows. First, we explore
the multi-robot scheduling problem without coalition constraints. This is equivalent to a multiple traveling
salesman problem (MTSP). We present a novel ant colony optimization (ACO) solution to the MTSP we
call Territorial Ant Colony Optimization (TACO) that outperforms other state-of-the-art metaheuristics on
the MTSP. We then extend this method to the MTSP with coalition constraints, which we term the Collab-
MTSP. We call the extended method Deadlock Reversal TACO (DR-TACO). In addition to DR-TACO,
we present an alternative ACO-based method for the Collab-MTSP we call Swarm Ant System (SAS). We
compare both DR-TACO and SAS to baseline methods: (i) an optimal, but not scalable, formulation based
on mixed-integer linear programming, and (ii) a scalable, but suboptimal, greedy algorithm. Our experiments
show that our algorithms can produce solutions with costs as low as 0.5x those of the greedy algorithm at
scales that are intractable to solve with the MILP baseline. Each of these methods represents a step forward
in quickly solving difficult, time-extend task allocation problems with cross-schedule dependencies.



Chapter 1

Introduction

Robotic systems are capable of solving real-world problems at a large scale. They have already proven
themselves in structured environments such as in warehouses and product assembly; however, solving larger,
dynamic problems, such as fighting forest fires, is currently out of the scope of our robotic systems. In these
scenarios, using teams of robots is essential for handling the scale and complexity of tasks involved in a
mission. In these missions, allocating tasks to the members of the team is difficult.

Consider a team of robots putting out a large forest fire. Many jobs need to be done to complete the
mission, such as fire monitoring, digging fire lines, and fire extinguishing. Ideally, any of these tasks could
be completed by any robot in the team. However, having one robot design that has all the skills required
to complete the mission is unrealistic; instead, the team would consist of heterogeneous robots, each with
different skills, that collaborate to complete the mission. When robots meet to complete a task, this is called
forming a coalition. A heterogeneous team of firefighting robots is depicted in Figure 1.1.

Figure 1.1: A swarm of firefighting robots
forming coalitions.The diagram shows fire
extinguishing (top right), fire line digging
(middle), and fire monitoring (top left and
bottom left). Fire extinguishing requires
multiple tanker robots and fire monitoring
drones to detect and transmit the fire state.
Creating fire lines requires digging robots
with different tools. Fire monitoring re-
quires at least one monitoring drone.

Creating time-efficient schedules for each robot while con-
sidering coalition formation is very difficult, especially as the
number of robots, tasks, and skills increases. This is because
the schedules of each robot must be such that, when robots
need to collaborate, all collaborators are present at a task with-
out being too late and stalling the mission. This is a com-
binatorial optimization problem where we want to minimize
the overall cost of the mission. Exact solution methods, such
as Mixed-Integer Linear Programming (MILP), to these types
of problems exist and can generate high-quality solutions [1].
However, as the problem gets larger, these methods take a long
time to generate the solution, which makes them impractical
for real-world applications [1]. This makes approximate solu-
tion methods attractive. These methods do not guarantee an
optimal solution, but can return good solutions quickly. One
such approximation method is called ant colony optimization
(ACO) [2]. ACO is a swarm-intelligence inspired approach that
is based on the foraging behaviour of ants. ACO is state-of-
the-art in solving other combinatorial optimization problems
such as the classical travelling salesman problem (TSP) [2],
and performs well on the related multiple travelling salesman
problem (MTSP) [3], which is similar to our skilled task allo-
cation problem. In the TSP, one salesman must visit n cities
while minimizing the travel cost between cities. The MTSP is
similar, except there arem salesmen that must collectively visit
all cities. We formulate our combined coalition formation and
scheduling problem as a more complex variant of the MTSP,
which we call the Collab-MTSP. To our best knowldge, no ACO



based-methods to solve the Collab-MTSP currently exist in the
literature. As a result, this work focuses on developing and ACO-based approach to the Collab-MTSP.

We began this research by developing a new approach, which we call Territorial Ant Colony Optimization
(TACO), for the MTSP. This method forms coalitions and creates schedules simultaneously. We show that
this method outperforms other state-of-the-art metaheuristic approaches to the MTSP. We then extend this
method to solve the Collab-MTSP and we call the new method Deadlock-Reversal TACO (DR-TACO).
This algorithm is the first ACO-based method that can generate solutions to the Collab-MTSP and can
generate near-optimal solutions to small-scale Collab-MTSP problems. This approach, however, struggles
to effectively explore the solutions space and suffers from the possibility of deadlocks while constructing
solutions. In an attempt to overcome these issues, we propose another ACO-based method that uses a novel
ant formulation to overcome the deadlock issue, which we call Swarm Ant System (SAS). We show that
this method is generally able to outperform DR-TACO in generating efficient schedules. These techniques
both represent a step forward in quickly solving hard, cross-schedule planning problems using ant colony
optimization.



Chapter 2

Background

In this section, we discuss the relevant background on heterogeneous multi-robot task allocation and ant
colony optimization, in particular, the formulation using the multiple traveling salesman problem. We end
the discussion with the works that explore MTSP variants, particularly those that are most similar to the
Collab-MTSP.

2.1 Heterogeneous Multi-Robot Systems

Single-robot systems are not sufficient to approach many large-scale real-world problems like wildfire
management and disaster recovery. These large-scale, spatially distributed problems need large teams of
robots that can work together to complete the mission. In particular, different types of robots with different
capabilities, or skills, need to efficiently collaborate to complete missions. Two of the core problems in
coordinating multi-robot systems that need to be further investigated are coalition formation and task
allocation [4]. These two problems are interdependent on each other and pose a difficult combinatorial
problem when considered together.

2.1.1 Coalition Formation

Large-scale, distributed missions can often be split into smaller, actionable tasks (for example, digging
fire lines or suppressing fire at a specific location) that can be completed by a small team of robots. (The
process of segmenting the bigger mission into atomic tasks is called task decomposition, and the specifics
of how this is done are not considered in this work.) For missions requiring heterogeneous swarms, these
tasks can require robots with different skills to work together to complete the task. Coalition formation is
the process of forming sub-teams (coalitions) from the entire swarm that will work together to adequately
complete the given tasks.

2.1.2 Task Allocation

Task allocation is the process of assigning tasks to members of a robot swarm. In this work, we consider
the case where tasks are all preassigned to the robots before the mission begins and these schedules do not
change during the mission. In this case, task allocation involves generating a schedule for each robot that
lays out when it should be present at each task. In our formulation, the time to travel between tasks is not
trivial, thus the tasks can be thought of as points distributed in Cartesian spaces that form a fully-connected
graph well call the task space.

2.1.3 Time-Extended Coalition Formation and Task Allocation

In this work, we consider the problem where robots in the swarm each will complete many tasks and
participate in many coalitions across time. This is a single-task robot (ST), multi-robot task (MR), time-
extended assignment (TA) problem as classificed based on the influential taxonomy by Gerkey and Mataric̀



[5]. Some previous work has studied similar problems, though none touch on it exactly. Oh et al. approached
a similar ST-MR-TA problem for UAV scheduling; however, they do not consider differing skills across
robots in the swarm [6]. Mourdian et al. consider varying capabilities, but they only consider a ST-MR-IA
(instantaneous assignment) problem, which means that robots do not participate in many coalitions across
time [7]. Arif et al. is one of the few works that considers a ST-MR-TA problem with skills, however, they
assume that every robot has every skill but can only contribute one at a time to a task [8]. We assume that
robots have a subset of the available skills but can contribute all of their skills towards a task.

2.2 Ant Colony Optimization

Ant colony optimization (ACO) was first proposed by Dorigo et.al. in 1994 [9]. The algorithm was
inspired by the real-life behavior of ants. As ants search for food, they leave a chemical called a pheromone
along their path. They follow the pheromone trails left by other ants probabilistically, meaning they usually
follow paths with stronger pheromones but sometimes explore other paths. The algorithm uses simulated
‘ants’ that build candidate solutions based on a pheromone matrix that encodes estimated solution quality.

Ant colony algorithms generally have three main phases: initialization, solution construction, and pheromone
updating. The initialization phase runs once at the beginning of the algorithm and the solution construction
and pheromone update steps are looped until a termination condition is met. This is usually a specified
number of iterations.

In the initialization phase essential data structures are initialized with sensible values. In the solution
construction phase, simulated ants incrementally construct many candidate solutions. They do this using a
lookup table that contains information about the quality of potential solutions called a pheromone matrix.
In the pheromone update phase, the values in the pheromone matrix are updated based on the quality of
the most recent candidate solutions.

2.2.1 The Base ACO Algorithm: Ant System

Ant system (AS) was the first ACO algorithm proposed to solve the traveling salesman problem (TSP)
[9]. In the TSP, a salesman needs to visit n cities, visiting each city once and starting and returning to the
same city. This algorithm provides the base from which most other ACO algorithms can be understood.
The high-level structure of the algorithm follows Algorithm 1. The initialization, solution construction, and
pheromone updating steps will now be described in detail.

Algorithm 1: High Level Structure of the Ant System

Initialization();
iter = 0;
while iter < threshold do

Solution construction();
Pheromone updating();
iter = iter + 1;

end

Initialization

In AS, each edge in the graph of all cities is associated with a numerical pheromone value. These values
are stored in a pheromone matrix. To initialize all of the edge pheromones to a sensible value t0, a sample
tour is constructed using a reasonable method (for example, a greedy approach), and the length of the tour
is calculated as Cgreedy. If we use m ants in the solution construction phase, the t0 = m/Cgreedy. Initializing
pheromones is the only action taken during initialization.



Solution Construction

In the solution construction phase, m ants (where m is a parameter of the algorithm) each independently
build tours guided by the pheromones. Each of the m ants starts at a random city and chooses the next city
to visit probabilistically based on the following probability:

P (Ant k visits city j from city i) = pkij =
ταijη

β
ij∑

l∈Nk
i
ταilη

β
il

where j ∈ Nk
i

Nk
i is the set of tasks that still need to be visited by ant k while it is at task i, τij is the pheromone

on the edge connecting task i to task j, ηij is the pheromone on the edge connecting task i to task j (in
AS, the heuristic is simply the reciprocal of the distance between the tasks, ηij = 1/dij), and α and β are
parameters of AS to weight the relative importance of heuristic and pheromone information.

Pheromone Updating

Once all ants construct their solutions, the pheromone matrix is updated based on the qualities of the
generated solutions. First, all pheromones are evaporated, meaning they are all multiplied by some number
less than but close to 1, like 0.95. This allows old information to decay away as the algorithm progresses.
Then each ant k updates the pheromones for the edges it travels along using the following update equation:

τij = τij +
Q

Lk
where i, j in ant k′s tour

The value Q is a constant and Lk is the length of ant k’s tour. Applying this for each ant, the final value
of τij is

τij = τij +
∑

a∈Aij

Q

La

where A is the set of ants that travel on edge i, j.

Improvements to Ant System

Later, more ACO algorithms were proposed such as MIN-MAX Ant System, Ant Colony System, and
Rank-Based Ant System [10]. These algorithms implement changes to improve solution quality and conver-
gence properties of Ant System. For example, MIN-MAX Ant System sets a minimum and maximum value
for the pheromone values to maintain exploration of potential solutions and only updates the pheromones
based on the best-performing ants, rather than all of them as in AS. Ant Colony System makes an interesting
change where as soon as an ant moves along an edge i, j the pheromone on that edge is decreased. This
means that pheromone values are modified during solution construction and the paths of the different ants
are no longer independent. Later as ACO solutions to the MTSP are explored, this concept of making ants
dependent on each other becomes more relevant.

2.3 The Multiple Travelling Salesman Problem (MTSP)

The MTSP is a generalized version of the TSP. The optimization goal of the TSP is clear: minimize the
path cost for traveling between the cities. The MTSP is generalized to include m salesmen who collaborate
to visit all the cities. In introducing multiple salesmen, there ceases to be one clear optimization goal. One
can minimize the summed path cost of all agents or the maximum cost of a single agent. To account for
this, modern solutions to the MTSP treat it as a Multi-Objective Optimization Problem (MOOP). This
means that algorithms simultaneously optimize for more than one objective and return a Pareto set of all
non-dominated solutions instead of a single solution. Many variants of the MTSP also exist that modify the
problem formulation but keep the same core structure.

The general solution methods for the MTSP and its variants in the literature include constraint pro-
gramming [11, 12, 13], market-based methods [14], and metaheuristic optimization [15, 16, 17]. This section



will briefly summarize the broad metaheuristic methods before deeply discussing the multi-objective ant
colony optimization literature for the MTSP. It will conclude with a discussion of the current direction of
the literature, identifying the gap that this work addresses.

Metaheuristic approaches to the MTSP are prominent in the literature [3]. Shuai et al. [18] proposed novel
crossover and mutation operators for the NSGA-ii genetic algorithm that performs very well on the MTSP
and is often used as a baseline for other metaheuristic approaches [19, 17]. Particle swarm optimization (PSO)
is another swarm-intelligence-inspired optimization technique that has been used for the MTSP [17, 7, 6].

ACO has been widely used in solving the MTSP and its variants [3]. As a result, ACO approaches to the
MTSP often use a multi-objective ant colony optimization (MOACO) algorithm. These MOACO algorithms
often contain different multi-dimensional pheromone and heuristic matrices, solutions construction, and
pheromone update methods to effectively explore Pareto optimal solutions, often using multiple ant colonies
[20].

MOACO algorithms have been developed widely for many multi-objective optimization problems. Alaya
et al. proposed a MOACO algorithm called m-ACO [21]. This algorithm uses multiple colonies, the exact
number of which is an algorithm parameter. Ants in each colony develop solutions based on heuristics and
pheromones unique to the colony. They propose four variants of m-ACO that slightly change the structure
and demonstrated the performance of these general MOACO algorithms on the multiple knapsack problem.

Ke et al. added to the concept of using multiple colonies to explore different sub-problems. They define
neighborhoods of colonies that are likely to produce similar solutions and update each colony’s solutions
based on information from its neighbors’ solutions [22].

Deng et al. used different classes of ants within the same colony and a pheromone diffusion technique to
improve convergence properties of ACO on scheduling problems like the TSP [23].

As mentioned, using local search to improve ant-generated solutions is often critical to the performance
of MOACO algorithms. Chen et al. developed a MOACO algorithm specifically for the MTSP that uses a
sequential variable neighborhood descent local search method to improve performance.

In most previous work with multiple colonies, the colonies either construct solutions separately or share
information about solutions between the solution construction phase of the algorithm [20]. Wang et al.
developed a novel solution construction technique where ants are divided into groups that co-construct a
solution, and multiple ant groups construct solutions during one iteration of the algorithm [15]. They use
one set of pheromones per objective in the MOOP. Bao et al. proposed a similar solution method around the
same time, where teams of ants co-construct solutions and use a shortest distance biased dispatch scheme to
resolve conflicts [24]. This technique of using teams of ants that co-construct solutions are newly emerging
for ACO and deserve to be further explored.

2.3.1 Extending the MTSP

Work has been done on MRTA variants that significantly differ from the standard. The variants that are
most similar to our problem, the Collab-MTSP, are discussed here. These variants include the Colored MTSP
(CTSP), Vehicle Routing Problem (VRP) with time windows, tightly coupled human-swarm collaboration,
and the law enforcement problem.

Colored MTSP

One relevant variant is the Colored MTSP proposed by Li et al. [25]. In this variant, each salesman j has
a single color cj , and each city i is associated with a set of colors Ci, which contains either one color or every
color. A salesman can only visit city i if the salesman’s color cj ∈ Ci. This is one of the first variants of the
MTSP that explicitly considers that some cities need to be visited by multiple salesmen [3]. The original
authors proposed a genetic algorithm enhanced with simulated annealing to generate solutions to the CTSP.
Han et al. then presented an improved approach to the CTSP that combines ant colony optimization with
ITÒ processes to improve convergence properties and solution quality [26].

While this variant is closer to the Collab-MTSP than the standard MTSP is, it still does not consider
simultaneous collaboration on tasks that can require arbitrary sets of skills. Rather, tasks in the CTSP can
only have a single color or all colors and salesman do not have to meet.



Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem (VRP) is a problem prominent in logistics where a fleet of vehicles needs
to visit different locations for pickup and delivery of goods [27]. The connections to the MTSP are obvious,
and the VRP is often modeled as an MTSP much like MRTA. A common constraint for package delivery
is time windows, where vehicles need to arrive at a task within a given period of time. Since this is an
important constraint for real-life customer satisfaction, variants of the VRP with time windows have been
widely studied. While the Collab-MTSP does not have time windows as usually defined in the literature, it
does exhibit a type of coordinated time window in its simultaneity constraint. The time that a robot must
arrive at the task should coincide as closely as possible with its collaborators on the task, so the robots need
to define their own coordinated arrival time, which is similar enough to time window constraints to consider
the literature surrounding them.

Wang el at. used an ACO approach to solve a variant of the VRP with time windows, among other
constraints. Zhang et al. [27] developed a MOACO approach to the VRP with flexible time windows.
Flexible time windows allow agents to violate the time windows constraints with a penalty. This type of
constraint is more similar to our coordinated arrival times than a hard time window constraint is. The ACO
approaches used to solve the time windows problems usually do not significantly differ in structure from ACO
approaches to the standard MTSP. An exception to this is the time-based pheromone used by Yildrim et al.
[28]. They proposed a MOACO solution that divides the pheromone matrix into Z time windows, where Z
is an algorithm parameter. This embeds knowledge of how good it is to arrive at particular tasks at certain
times into solution construction, improving algorithm results. Works that significantly extend the structure
of the MOACO metaheuristic to take advantage of problem-specific insights like this are uncommon in our
literature review.

Human-Swarm Collaboration

Much of the literature that considers both skill and simultaneity constraints is in the context of Human-
Swarm Interaction (HSI), where humans and robots must work together to complete complex tasks. Shannon
et al. proposed a polynomial-time planning algorithm to quickly allocate tightly coupled tasks to a team of
humans and robots [29]. This is akin to a multi-agent system with different agents having different skills
(humans and robots). This algorithm is fast enough to adapt to system changes in real time, although as
a result, it produces sub-optimal solutions. Emam et al. [12] extend this work to handle cases where the
efficacy of robots at completing tasks is unknown or changes with time.

Constraint programming solutions have also been considered for this HSI problem. Lippi and Marino
proposed a mixed integer linear programming (MILP) formulation of the collaboration problem with both
skills (humans and different types of robots) and simultaneity (tightly coupled tasks where humans and
robots must work together). They proposed both a MILP formulation to solve the task allocation problem
offline as well as an adaptive system to monitor and alter the allocations in real-time as needed.

This HSI collaboration is the closest we have found to the Collab-MTSP in the literature. Is it, however,
not formulated as an MTSP, and therefore approaches common to MTSPs, like metaheuristics, have not
been rigorously explored on this variant to our best knowledge.

2.4 Our Work

To further explore ACO techniques for the MRTA problem, we adopt a multi-dimensional pheromone
matrix that gives a unique pheromone matrix to each ant in the construction group. We then adopt a novel
solution-construction technique that uses the information about the distribution of pheromones throughout
the matrix to guide the solution-construction process. Accordingly, we call this new algorithm Territorial
Ant Colony Optimization (TACO). Since each robot is represented by a single ant in TACO, we call this
an ant-as-robot approach. We extend this method to the Collab-MTSP with a method we call Deadlock-
Reversal TACO (DR-TACO). We also present another solution method for the Collab-MTSP called Swarm
Ant System (SAS) that uses a swarm-as-ant approach, meaning that a single ant represents the entire swarm,
rather than an individual robot. We show that this formulation has better scaling properties and performance
than the ant-as-robot technique.



Chapter 3

Territorial Ant Colony Optimization
(TACO) for the MTSP

Territorial Ant Colony Optimization (TACO) expands on the ACO metaheuristic to address the MTSP by
adding territorial pheromones and a willingness function. This section describes the initialization, solution
construction, and pheromone update steps of the TACO algorithm in detail. For the purposes of the MTSP,
we consider the salesmen as robots and the cities as tasks.

3.1 MTSP Problem Formulation

We represent the set of all tasks as a complete graph G(V,E) and will refer to this as a task space. Each
node represents a task. We define N = |V | as the total number of tasks. For simplicity, a task is simply
referred to by its number i, where 0 ≤ i < |V |. An edge between nodes r and s represents the transition
between going from task r to task s. A weight crs is associated with each edge ers ∈ E that represents the
cost to transition from task r to task s. We assume symmetry, so crs = csr. In all of our experiments, it
is assumed that the cost to complete a task is negligible compared to the cost associated with transitioning
between tasks. Accordingly, the cost associated with completing a task r is 0. Task 0 is designated as a
common start and end point for all robots. In applications, consider this the docking point that all robots
are deployed from and must return to. This makes our problem a single-depot MTSP because all salesmen
start and end at the same task. Each of the remaining tasks must be visited exactly once by exactly one
salesman. The number of robots in the swarm is designated by k.

A pair containing a task space and a swarm size, ⟨G, k⟩, denotes a single problem. A solution P for a
problem is a set of k paths. The path of a robot i is denoted by Pi where 0 ≤ i < k. The cost of a single
path Pi is the sum of all edge costs for each edge contained in the path.

Cost(Pi) =
∑

ers∈E

I[ers ∈ Pi]crs (3.1)

In this case, I[x] is the indicator function that returns 1 when x is true and 0 otherwise.
We take a multi-objective optimization approach to this problem considering the objective

minimize F = ⟨f1(P ), f2(P )⟩ (3.2)

f1(P ) =

k−1∑
i=0

Cost(Pi) (3.3)

f2(P ) = max0≤i<k(Cost(Pi)) (3.4)

subject to the constraints



Algorithm 2: Initialization

Result: An initial Pareto set P
Result: An initial pheromone matrix τ
current ant← rand[0, k);
C ← {};
Pi ← [0],∀ i ∈ [0, k);
while |C| ≤ N do

r ← current location of current ant;
closest← argmin

s
(crs);

Append closest to Pcurrent ant;
C ← C + {closest};
current ant← argmin

i
(length(Pi));

end
Append 0 to the end of all paths Pi;
Calculate τ0 using equation (3.8);

τ
(i)
rs ← τ0 ∀ edges ;
P = {P};

k−1⋃
i=0

Pi = V (3.5)

Pi ∩ Pj = {0} ∀[i,k)
∀[j,k) (3.6)

Pi[0] = Pi[length(Pi)− 1] = 0 ∀[i, k) (3.7)

The objective is to simultaneously minimize the total cost of all robots in the mission and the maximum
cost of any individual robot. These are shown in equations 3.3 and 3.4, respectively.

Constraint 3.5 enforces that all tasks are visited.Constraint 3.6 enforces that all paths are disjoint except
for the depot. Constraint 3.7 enforces that all agents start and end at the depot.

3.2 The TACO Algorithm

This section breaks down the three main phases of the TACO algorithm: initialization, solution construc-
tion, and pheromone updating.

3.2.1 Initialization

Pseudo-code of the initialization phase is in Algorithm 2. A single initial solution is generated using a
greedy construction strategy. A team of ants with one ant per robot all start at the starting task. On ant
i’s turn to choose a task, it acts greedily and chooses the task closest to its current location as its next task.
The next ant to select a node is the ant with the shortest path length so far. Ants select tasks until there
are none left to be claimed. All ants then return to task 0 to complete all of their paths. From this initial
solution P , the initial pheromone value τ0 is calculated as

τ0 = 1/(f1(P ) + kf2(P )) (3.8)

Where, recall, f1(P ) is the total cost of the mission and f2(P ) is the maximum single robot path cost. The
Pareto set is initialized with P as the only element.



Algorithm 3: Solution Construction

Result: Ng solutions to the MTSP
S ← empty;
for i = 1 to Ng do

current ant← rand[0, k);
C ← {};
Pi ← [0],∀ i ∈ N | i < k;
W ← {};
while |C| < N do

Choose task observed according to (3.11);
Calculate willingness w according to (3.13);
if random(0, 1) < w then

Append observed to Pcurrent ant;
C ← C + {observed};
W ← {}

else
W ←W + current ant;
if |W | = k then

current ant← argmax
i

(willingness(i, observed));

Append observed to Pcurrent ant;
C ← C + {observed};
W ← {}

end

end
current ant← argmin

i∈[0,...,k−1]−W

(Cost(Pi));

end
Append 0 to the end of all paths Pi

end
return S

3.2.2 Solution construction

Pseudo-code of the solution construction phase is in Algorithm 3. During each solution construction
phase, Ng solutions are generated independently by a group of ants that co-construct the solution. Ng is a
parameter of the TACO algorithm.

In constructing a single solution, ants alternate in adding tasks to their path similar to the initialization
phase. On ant a’s turn, it selects a task to observe. For ant a currently at task r, a weight for an unassigned
task s is calculated using the equation

w(a)
rs = τ (a)rs

α
ηβrs (3.9)

τ
(a)
rs is the pheromone information on the edge from r to s for ant a and ηrs is heuristic information for

the edge from r to s. The heuristic for an edge is the reciprocal of the cost between r and s (ηrs = 1/crs)
so that higher heuristics are associated with shorter paths. α and β are parameters of the algorithm that
weigh the influence of the pheromone and heuristic on the weight, respectively. With probability p0, the task
with the largest weight is chosen next. With probability 1 − p0, the next task is chosen with a probability
proportional to its weight. So, the probability of ant a selecting task s from task r is

q =


w(a)

rs∑
r∈R w

(a)
rr̂

r̂ ∈ R

0 otherwise
(3.10)

where R is the set of all remaining tasks. In all, the task transition rule is as follows:



observed =

argmax
r̂∈R

(w
(a)
rr̂ ) p < p0

X otherwise
(3.11)

X is a random variable that returns elements from R probabilistically according to probabilities from
(3.10). Once an ant has selected a task v to observe, it will claim the task and add it to its path if it is
willing. Intuitively, ants should be less willing to take a task that is incredibly out of its way or is better
taken by another ant instead. To

The willingness of an ant a to select a task s while currently at task r is a function that returns x ∈ R(0,1).
Two quantities essential to calculating willingness are

T a
r = max0≤s<|V |(τrs)

and

T̂ a
r = maxn∈[0...k−1]−{a}(T

n
r ).

T a
r is the maximum pheromone value for ant a that goes into task r and T̂ a

r is the maximum pheromone
value for any ant other than a that goes into task i. Using these, we define an intermediate function s(a, r)
as:

s(a, r) =
T̂ a
r

T a
i

ccv + cv0 − cc0
Cost(Pa)

|V |
|R|

(3.12)

There are three main components to s(a, r):
T̂a
r

Ta
i
, ccv+cv0−cc0

Cost(Pa)
, and |V |

|R| .

T̂a
r

Ta
r

represents the ratio of other ants’ pheromone to ant a’s pheromone. Ant a should be less willing to

claim task v if it is also a good choice for other ants, indicted by high levels of pheromone for other ants and

by a higher value of
T̂a
r

Ta
r
.

ccv+cv0−cc0
Cost(Pa)

represents the extra cost that traveling to task v would have over just returning to the starting

depot and ending the tour. ccv + cv0 − cc0 is the raw extra cost of travelling to task v and it is normalized
by Cost(Pa). Ants should be less willing to take a task that takes them far away from where they will need
to end, indicated by a higher value of ccv+cv0−cc0

Cost(Pa)
.

|V |
|R| represents how well the task space has been covered by all of the ants. Ants should act pickier when

more of the task space has been covered to decrease exploration as the algorithm progresses and to allow
the chance for other ants that are otherwise more willing to claim node v. Ants should be less likely to pick

task v when |V |
|R| is higher.

By multiplying all of these together we get that ants should be less willing to claim v as s(a, v) increases.
To map this to a value bounded between 0 and 1, we compute

willingness(a, r) = e−(γs(a,r)2) (3.13)

Higher values of willingness(a, v) correspond to ant a being more willing to claim node v and γ is a scalar
parameter of the TACO algorithm. When ant a observes v, it claims v with probability willingness(a, v).

If an ant is not willing to claim a task, it loses the ability to observe a task until another ant claims
one. If all ants are unwilling to claim a task, then the most recently observed task will be given to the most
willing ant.

3.2.3 Pheromone update

Pseudo-code of the solution construction phase is in Algorithm 4. First, all pheromones are uniformly
evaporated by a scalar factor of 1 − ρ, where 0 ≤ ρ ≤ 1. Then, the Pareto set P is updated to include
the non-dominated solutions from the most recent set of candidate solutions S and newly dominated old
solutions are removed from P. For each solution P (x) in P where 0 ≤ x < |P|, pheromone is updated via
the following equation:



Algorithm 4: Pheromone Update

Data: τ
(i)
ab Pheromone matrices for ant i

Data: S solutions generated by previous solution construction phase
Data: P the Pareto set of non-dominated solutions
Evaporate all edges τ

(i)
ab ← τ

(i)
ab ∗ (1− ρ);

Updated P with solutions from S;
for j = 1 to |P| do

Update all edges from solution Pj according to Equation (3.14);
end
return S

τ
(a)
ij =

{
1
2τ

(a)
ij + 1

2
1

f1(P
(x)
a )+kf2(P

(x)
a )

eij ∈ P
(x)
a

τ
(a)
ij otherwise

(3.14)

Put simply, all of the pheromones for the edges along a path P
(x)
a for ant a are updated by averaging the

current value of τ
(a)
ij with 1

f1(P
(x)
a )+kf2(P

(x)
a )

.

3.3 Evaluation

Evaluating the performance of a multi-objective optimization algorithm is non-trivial as there is no
single best metric for solution analysis. This motivates looking at multiple metrics of algorithm quality.
Two metrics prevalent in the MTSP and MOOP literature are the hypervolume indicator and inverted
generational distance plus [15, 20, 17, 30]. We look at both of these in evaluating our algorithm.

TACO is compared against two state-of-the-art algorithms: MOACS [15] and NSGA-ii [18]. The param-
eter settings used for each algorithm can be seen in Tables 3.1, 3.2, and 3.3.

Benchmark task spaces from the TSPLIB dataset repository are used for evaluation [31]. Datasets
kroA100, kroA150, kroA200, kroB100, kroB150, and kroB200 are studied. Swarm sizes ranging from 3 to 8
are tested for all datasets. Since there are 6 task spaces with 6 swarm sizes considered for each, a total of
36 problems were studied in our experiments.

Because all of these algorithms are non-deterministic, each of them was run 30 times per benchmark.
The average value and standard deviation of the IGD+ for each problem are shown in Table 3.5. The
average value and standard deviation of the hypervolume indicator for each problem are shown in Table
3.4. For IGD+ smaller values are better. Larger values are better for the hypervolume. A visualization of
the hypervolume results for the kroA200 dataset is shown in figure 3.1. The best average values for each
problem are denoted in bold in the tables. To test for statistical significance, we use the Wilcoxon Rank
Sign test [30, 27]. This is a non-parametric, paired test for significance. For each problem, the Wilcoxon
test was used to compare the best-performing algorithm and the next best-performing algorithm. Of the
bolded best performers, those that are significantly better than the next best are denoted with a (*). An α
of 0.05 was used for determining significance. We can clearly see that TACO significantly outperforms the
next-best algorithm for most problems for both IGD+ and hypervolume.

3.4 Conclusions

We have presented a multi-objective ant colony optimization-based algorithm to solve the single-depot
multiple traveling salesmen problem called TACO. Our algorithm contains a novel territorial pheromone
matrix and willingness-based solution construction technique. Our experimental results show that our algo-
rithm is able to outperform other state-of-the-art algorithms from the literature in generating Pareto sets
of non-dominated solutions. Since this method shows promise, we next present a method of extending it to
the full Collab-MTSP with both skill and simultaneous collaboration constraints.



Table 3.1: Experiment parameters for TACO.
Symbol Description Value
Ni Number of iterations 1000
Ng Number of ant groups per iteration 100
γ Willingness function parameter 1/30
p0 Probability to select minimum cost task 0.9
α Pheromone exponent 1
β Heuristic exponent 2

Table 3.2: Experiment parameters for MOACS. For more detail on each parameter, refer to the original
paper [15].
Symbol Description Value
Ni Number of iterations 1000
Ng Number of ant groups per iteration 100
q0 Probability of selection minimum partial-cost-ant 0.90
q1 Probability of selection minimum partial-cost-ant 0.05
α1 Pheromone 1 exponent 1
α2 Pheromone 2 exponent 1
β Heuristic exponent 2
ρ Relative importance of the newly added and historic

pheromone information
0.5

Table 3.3: Experiment parameters for Hybrid NSGA-ii. For more detail on each parameter, refer to the
original paper [18]
Symbol Description Value
Ni Number of iterations 2000
Np Population size 100
Symbol Mutation rate 0.05



Dataset k
TACO NSGA-II MOACS

Mean STD Mean STD Mean STD
kroA100 3 0.81* 0.13 0.6 0.09 0.36 0.14
kroA150 3 0.85* 0.09 0.5 0.09 0.4 0.09
kroA200 3 0.8* 0.06 0.48 0.08 0.4 0.09
kroB100 3 0.77* 0.08 0.53 0.07 0.43 0.12
kroB150 3 0.89* 0.04 0.48 0.08 0.56 0.06
kroB200 3 0.85* 0.07 0.51 0.08 0.48 0.11
kroA100 4 0.83* 0.08 0.61 0.09 0.4 0.16
kroA150 4 0.85* 0.07 0.56 0.06 0.51 0.1
kroA200 4 0.87* 0.07 0.56 0.08 0.49 0.09
kroB100 4 0.75* 0.07 0.62 0.06 0.42 0.1
kroB150 4 0.89* 0.05 0.47 0.07 0.54 0.09
kroB200 4 0.84* 0.08 0.6 0.05 0.46 0.09
kroA100 5 0.81* 0.05 0.67 0.07 0.41 0.09
kroA150 5 0.89* 0.07 0.63 0.06 0.55 0.11
kroA200 5 0.81* 0.07 0.54 0.06 0.47 0.06
kroB100 5 0.81* 0.08 0.68 0.05 0.38 0.12
kroB150 5 0.92* 0.04 0.5 0.05 0.56 0.08
kroB200 5 0.77* 0.08 0.62 0.05 0.44 0.11
kroA100 6 0.79* 0.08 0.7 0.05 0.32 0.11
kroA150 6 0.8* 0.08 0.6 0.06 0.39 0.11
kroA200 6 0.92* 0.04 0.67 0.07 0.55 0.08
kroB100 6 0.82* 0.07 0.75 0.04 0.36 0.08
kroB150 6 0.91* 0.04 0.53 0.06 0.51 0.07
kroB200 6 0.72 0.1 0.69 0.06 0.36 0.09
kroA100 7 0.78 0.06 0.77 0.05 0.38 0.09
kroA150 7 0.83* 0.05 0.68 0.05 0.47 0.12
kroA200 7 0.85* 0.05 0.57 0.07 0.42 0.07
kroB100 7 0.74 0.07 0.77* 0.04 0.28 0.09
kroB150 7 0.92* 0.04 0.55 0.05 0.5 0.08
kroB200 7 0.71 0.11 0.71 0.05 0.27 0.11
kroA100 8 0.74 0.06 0.77* 0.05 0.3 0.08
kroA150 8 0.85* 0.08 0.69 0.06 0.38 0.09
kroA200 8 0.86* 0.04 0.67 0.07 0.48 0.04
kroB100 8 0.73 0.07 0.82* 0.03 0.27 0.08
kroB150 8 0.95* 0.03 0.62 0.05 0.57 0.08
kroB200 8 0.68 0.1 0.75* 0.05 0.27 0.09

Table 3.4: Experimental Results for Hypervolume Indicator



Dataset k
TACO NSGA-II MOACS

Mean STD Mean STD Mean STD
kroA100 3 1126.67* 891.68 4308.67 765.02 4377.5 1123.81
kroA150 3 1753.43* 1023.48 7920.97 1064.8 7355.96 1269.25
kroA200 3 1966.0* 756.73 7754.61 1292.19 7563.76 1333.97
kroB100 3 1752.5* 776.55 6153.99 523.46 5380.94 1331.05
kroB150 3 1554.02* 544.3 8322.05 1534.38 5984.83 900.07
kroB200 3 1959.5* 889.2 8360.35 1266.35 6608.42 1562.57
kroA100 4 1724.67* 759.54 4277.9 777.31 6040.13 1668.84
kroA150 4 1806.09* 1014.16 7723.52 1256.15 7298.38 1820.4
kroA200 4 1844.42* 1047.25 9071.11 1368.63 7536.4 1527.24
kroB100 4 2073.0* 720.11 4905.47 753.66 6562.68 1461.93
kroB150 4 1260.76* 529.11 8967.66 1398.83 5956.16 1575.37
kroB200 4 1900.87* 1085.54 7953.92 837.38 7611.38 1431.09
kroA100 5 1017.14* 383.51 3862.86 710.54 6440.31 1473.4
kroA150 5 1731.46* 1005.94 6913.93 1205.08 7044.76 1813.46
kroA200 5 2944.8* 987.72 9361.96 1127.95 8364.92 1269.31
kroB100 5 1997.8* 1005.71 4893.85 580.65 8616.12 2125.26
kroB150 5 1031.42* 363.02 8862.26 1094.14 6106.06 1463.15
kroB200 5 2617.17* 1153.94 7568.63 1238.94 8358.38 2137.72
kroA100 6 1600.19* 939.12 3813.2 620.75 8242.32 1698.11
kroA150 6 1215.37* 664.44 5769.93 835.64 7216.66 1860.37
kroA200 6 1258.78* 671.09 6895.74 1435.31 7880.05 1638.07
kroB100 6 1324.89* 769.7 3484.0 469.53 8516.65 1653.34
kroB150 6 1117.27* 560.87 9083.52 1126.72 7997.36 1504.77
kroB200 6 3614.87* 1838.19 5600.28 1132.15 10631.7 1973.29
kroA100 7 3340.68 1109.8 3256.16 699.4 11837.3 1983.21
kroA150 7 1825.53* 829.91 5401.59 853.99 8365.25 2377.93
kroA200 7 1708.59* 780.57 8595.85 1367.06 9969.16 1518.47
kroB100 7 2048.5* 866.53 2924.93 517.38 10398.5 2144.04
kroB150 7 685.95* 383.24 7978.75 1234.54 7488.69 1636.7
kroB200 7 3609.24* 1753.88 4749.98 711.8 12365.5 2371.09
kroA100 8 2511.1 895.56 2747.08 532.95 11777.3 2090.56
kroA150 8 1325.76* 742.32 5088.86 1003.32 8575.25 1728.25
kroA200 8 1469.85* 555.68 6855.34 1317.97 9529.3 1109.36
kroB100 8 2529.03 947.25 2512.89 382.87 13232.2 2210.82
kroB150 8 603.46* 376.19 8007.9 1120.88 8377.07 1984.92
kroB200 8 4791.21 2024.84 4391.38 815.86 14628.7 2506.32

Table 3.5: Experimental Results for Inverted Generational Distance Plus



Figure 3.1: Hypervolume statistics for the kroA200 dataset. Each plot represents a different swarm size, and
each box plot summarizes the 30 samples taken for a single algorithm on kroA200.



Chapter 4

Deadlock-Reversal TACO
(DR-TACO) for the Collab-MTSP

Given TACO’s state-of-the-art performance on the MTSP, it is natural to try and directly extend it
to solve the Collab-MTSP. Handling skills and time-extended coalition formation present problems to the
original TACO, since deadlocks can occur that TACO cannot handle. At the core of this solution is a deadlock
reversal step to prevent circular dependencies in schedules, so the resulting algorithm is called DR-TACO.
The specifics of the DR-TACO algorithm and experimental performance are presented in this section.

4.1 Collab-MTSP Problem Formulation

The Collab-MTSP is formulated similarly to the MTSP with a complete graph G(V,E) as the task space
with each node representing a task. The edge between nodes r and s represents the transition between going
from task r to task s and weight crs represents the transition cost. Associated with each task n is also a
completion cost bn and a required skillset, denoted by RSn. We assume that the total number of skills S for
the problem is fixed. Using notation similar to Arif el at. [8], the skillset contains skills λx where x ∈ [0, S).
This denotes the skills that task n requires to be simultaneously present in order to be completed. For
example, a task i that requires skills 0, 3, and 4 has the required skillset RSi = {λ0, λ3, λ4}. Under this
formulation, a task cannot require more than one skill of the same type, so {λ0, λ0, λ3, λ4} is not a valid
skillset.

The swarm in a Collab-MTSP problem is a set of R robots where each robot Ri is fully defined by its
skillset SSi. Many robots can come together to form a coalition to complete a task. The skillset of a coalition
is the union of the skillsets of all of the robots in the coalition.

Consider an example with a task s that has SSs = {λ0, λ3, λ4} and two robots R0 and R1 with skillsets
{λ0, λ3} and {λ3, λ4} respectively. Neither robot R0 nor robot R1 has the skills to complete task s indepen-
dently, but they could form a coalition to complete the task together. To do this, they must both be present
at the task at the same time and for the entire time, the task is being completed (cost bs). Notice that since
robots R0 and R1 will likely arrive at task s at different times, one of the robots will need to wait until the
other arrives. The wait for robot i at task s is denoted by wis. This wait time is added to the path cost for
robot i. All robots start and return to the same location in the task space and each task must be completed
by at least one robot.

A tuple containing a task space and a swarm, ⟨G,SW ⟩, denotes a single problem. A solution P for a
problem is a set of R paths. The path of a robot Ri is denoted by Pi where 0 ≤ i < R. The cost of a single
path Pi is the sum of all edge costs, wait times, and completion costs for each edge contained in the path.

Cost(Pi) =
∑

ers∈E

I[ers ∈ Pi](crs + wis + bs) (4.1)

In this case, I[x] is the indicator function that returns 1 when x is true and 0 otherwise.



Algorithm 5: General Structure for DR-TACO Solution Construction

C ← {};
Pi ← [0],∀ i ∈ [0, R);
Li ← {},∀ i ∈ [0, T );
Q = [0, R);
while |C| ≤ N do

if Q is empty then
Handle deadlock as in Algorithm 6

end
a← select next ant from Q;
next← next task to be claimed
if Ant a is willing to claim next then

Lnext = Lnext + a;
if skillset(next) ⊆

⋃
i∈Lnext

skillset(Ri) then
Append next to Pi ∀ i ∈ Lnext;
Q = Q+ Lnext;
Lnext = {};
C ← C + {next};

end

end

end

We take a multi-objective optimization approach to this problem exactly the same as for the MTSP, by
attempting to simultaneously minimize the total cost of all robots in the mission and the maximum cost of
any individual robot.

4.2 Approach

The core structure of the TACO algorithm remains the same: a greedy solution method is used to seed
the iterative process, ants representing robots alternate claiming tasks guided by pheromones in the solution
construction phase, and pheromones are updated from solutions in the Pareto set between iterations. The
additions to TACO are discussed below and are:

• A list of waiting ants for each node and a deadlock reversal step

• A new heuristic for guiding the search

• A pheromone approximation method to make pheromone a function of task arrival time

4.2.1 Handling Skills and Deadlocks

For both constructing the greedy solution and performing solution construction, the methods for handling
skills and deadlocks are the same. A team of ants with one ant per robot all start at the starting task. On
ant i’s turn to choose a task, it chooses a task to claim and will claim it if it is willing. Ants only select from
the subset of tasks that they have the skills to contribute to. If an ant is able to complete a task on its own,
it will complete the task as in TACO. However, if the ant alone cannot complete the selected task, it will
wait at the task for another ant with the appropriate skills to arrive and form a coalition. The set of ants
waiting at task s is denoted by Ls. While waiting, ants cannot claim any other tasks.

If all ants are waiting on another ant to come and form a coalition, then a deadlock has occurred. This is
the core difficulty with taking a one-ant-per-robot approach to this problem. To handle this, the DR-TACO
algorithm performs a deadlock reversal step to free an ant to continue building a solution. This is a curative
approach to handling deadlocks, where we allow them to occur but then fix them we they do.



Algorithm 6: Deadlock Reversal

Data: Wi is the set of all waiting ants with skill i
Data: L is the set of all waiting lists of ants
Data: C is the set of completed tasks
Data: Q is the set of ants not waiting at a task
Selected random node n from all nodes with ants;
S ← skillset(n)−

⋃
i∈Ln

skillset(Ri);

while S != {} do
s← random elements from S;
Ri ← random robot currently waiting with such that s ∈ skillset(Ri);
p← node that Ri is currently waiting at
Lp = Lp −Ri;
Ln = Ln +Ri;
SS ← skillset(Ri);
S ← S − SS;

end
Append n to Pi ∀ i ∈ Ln;
Q = Q+ Ln;
Ln = {};
C ← C + {n};

To undo the deadlock, a node with waiting ants is picked randomly. For each missing skill, pick a random,
waiting ant that has that skill and release it from waiting. This effectively undoes that ant’s initial choice
and instead assigns them to the new node. This process is repeated until the selected node can be completed
and the deadlock is undone and is detailed in Algorithm 6.

4.2.2 A Heuristic Based on Waiting Ants

We present three potential heuristics for guiding the search for DR-TACO. The first is the same heuristic
as used in TACO, which is the reciprocal of the cost between tasks r and s (ηdistancers = 1/crs). Another
is based on the number of required skills currently present at the task. We can express the required skills
already at the task s as skillset(n) ∩

⋃
i∈Ln

skillset(Ri) . To encourage ants to go to tasks that already have
ants waiting, another heuristic can be defined as

ηcompletion
rs =

|skillset(n) ∩
⋃

i∈Ln
skillset(Ri)|

|skillset(n)|
(4.2)

Thirdly, we can multiply these two heuristics to create a new, combined heuristic as

ηcombined
rs = ηdistancers ηcompletion

rs (4.3)

4.2.3 Pheromone as a Function of Arrival Time

As a method to improve the solution quality of the DR-TACO algorithm, a means of making the
pheromone matrix a function of arrival time is introduced. We now define the edge pheromone as

τ(a)rs (t) = τ (a)rs νs(t) (4.4)

with τ
(a)
rs the same edge pheromone from DR-TACO and νs(t) a new pheromone function approximator for

each node, rather than each edge. The intuition behind this is to try and coordinate the arrival times of each
agent, regardless of what edge they arrive from. This is also why νs(t) is not a function of ant a either -
arrival time should be coordinated among all of the ants.

To approximate νs(t), the average arrival times at node s from each group g in the previous round of
solution construction is stored as t̄g with the corresponding solution quality qg. For the purposes of keeping



the approximation function bounded, the arrival time is normalized by the max path cost of the greedy
solution used to seed DR-TACO. νs(t) is calculated as the following sum:

νs(t) = 1 +

∑
(qg,t̄g)

qge
− (t−t̄g)2

c∑
qi
qi

(4.5)

c = 2(
R

N
)2 (4.6)

4.3 Experimental Evaluation

We ran three experiments to assess the performance of the DR-TACO algorithm, these are:

1. Experiments on small problems (4 robots, 8 tasks, 2 skills) where we compared our results to the
optimal solutions using a mixed-integer linear programming approach.

2. Experiments on a dataset of problems with increasing scales comparing the DR-TACO algorithm to a
greedy approach

3. Experiments on the same dataset evaluating the impacts of the pheromone function approximator and
new completion heuristics on DR-TACO

There is no equivalent to TSPLIB for the Collab-MTSP, which is why we made our own. Since the problem
space of the Collab-MTSP is more complex than that of the MTSP, we also present a brief classification of
core components of a Collab-MTSP problem and have created our benchmarks to span these classes. Our
benchmark problems for experiments 2 and 3 were created to represent different classes for Collab-MTSP
problems.

4.4 Classification of the Problem Space of the Collab-MTSP

We identified the following three axes of core importance to the structure of a Collab-MTSP problem.

1. The number of skills the robots have as a proportion of the total number of skills.

2. The number of skills the tasks requires as a proportion of the total number of skills.

3. How well covered the tasks are by the swarm.

Regarding the first point, we defined five classes of robot skill distribution: super-overpowered (SOPR),
overpowered (OPR), mixed (MR), weak (WR), and super-weak (SWR). A problem has an overpowered
swarm when every robot has all of the available skills. This removes the need for coalition formation, so it
is not an interesting case. Overpowered swarms consist of robots that all have > 50% of the available skills.
Weak swarms consist of robots that all have < 50% of the available skills, and super-weak swarms consist of
robots that each only have one skill. Mixed swarms can have robots with any number of skills.

There is an analogous classification for how skills are distributed among tasks, and they are super-large
(SLT), large (LT), mixed (MT), small (ST), and super-small tasks (SST).

For coverage, we define two classes - large and small coverage (LC and SC, respectively).In problems
with large coverage, there are at least as many robots as there are tasks. Problems with small coverage have
significantly fewer robots than tasks.

With these classifications types, we can categorize a problem as a tuple from {SOPR,OPR,MR,WR,SWR}×
{SLT,LT,MT, ST, SST}×{LC, SC} similar to the taxonomy from Korsah et al. [32]. For example, a prob-
lem with a weak swarm, large tasks, and small coverage is WS-LT-LC.



4.4.1 Explored Problem Space

Since the problem space is vast, we limited our studies to a subset of the possible classifications as we
have defined them.There are 50 unique combinations of these classes; however, not all of them are interesting
to investigate. Any example with SOPR is not interesting, since it removes all need for collaboration under
our formulation. For our experiments, 10 classes of problems were studied at 3 different scales. These classes
are

• SWR-LT-LC

• SWR-LT-SC

• SWR-ST-LC

• SWR-ST-SC

• MR-MT-LC

• MR-MT-SC

• WR-LT-LC

• WR-LT-SC

• WR-ST-LC

• WR-ST-SC

at scales σ = {16, 32, 64}. These include only skill distributions of MT and weaker because when robots
are overpowered there is no need for collaboration, thus not capturing the essence of the Collab-MTSP.
Super-Small tasks are left out via the same rationale, and Super-Large tasks are left out to maintain variety
in the skills required by each task.

For the cases with large coverage, the number of robots (R), number of tasks (T ), and number of skills
(S) is set to

R = σ

T = σ

S = 4

And for cases with small coverage, we have
R = 8

T = σ

S = 4

4.5 Experiments Against an Optimal Baseline

We collected a small dataset of optimal solutions using a linear programming (MILP) technique. Due
to the limits of the MILP technique, collecting many optimal solutions to problems larger than 4 robots, 8
tasks, and 2 skills was impractical due to runtime constraints. We ran the standard DR-TACO algorithm
on these datasets to evaluate how close it can get to optimal baselines on easy (small) problems. All of these
benchmarks are MR-MT-SC problems. The results from some of these trials are visualized in figure 4.1.

DR-TACO can consistently achieve within 10-20% of the optimal bounds across all of the benchmark
problems. The promising results from these experiments motivated further testing of this algorithm on more
problems at larger scales.



Figure 4.1: Charts showing the results of the solutions generated by DR-TACO (red points) compared to the
optimal bounds produced by a MILP solver (blue lines). The blue points represent the solutions generated
by the MILP solver. One solution optimizes for the total cost and the other for the max cost.

4.6 Experiments on Problems of Increasing Scale

Since the main goal of using an ACO approach is to improve scaling properties over an exact approach
like MILP, we also evaluated our algorithm’s performance on problems of increasing scale. For this, we
generated 30 problem instances selected from the 10 problem classes highlighted previously at three scales
σ = {16, 32, 64} each. The results on all problems are in table 4.3. Boxplots visualizing some of the results
from table 4.3 are in figure 4.2.

We can see from these results that the standard DR-TACO algorithm is able to effectively explore the
solutions spaces and improve solution quality in some instances but not in others, as seen in table 4.3. In
25/30 cases, the DR-TACO algorithm achieved significantly lower IGD+ than the greedy baseline. In the
other five cases, the algorithm did not improve on the greedy solution at all, so both got IGD+ values equal
to zero. Of the five cases with no improvement, two are of scale σ = 32 and three are of scale σ = 64. All
of the problems were large coverage problems, meaning that R = T = σ. This indicates that the standard
DR-TACO algorithm struggles to explore the solution space when scaling up the number of tasks and robots
simultaneously.

4.7 Evaluating Pheromone Approximation and New Heuristics

Three modifications of the base DR-TACO algorithm were experimented with to try and improve solution
quality: using a pheromone approximator to make pheromone a function of robot arrival time, using the
completion heuristic ηcompletion

rs , and using the combined heuristic ηcombined
rs . Evaluated these modifications on

the same benchmarks as we did for the experiments in the previous section. The results of these experiments
are in figure 4.4. The algorithms using the completion heuristic and the pheromone approximator often
perform worse than the standard DR-TACO algorithm with higher mean IGD+ values. The algorithm using
the combined heuristic often achieves the lowest IGD+ score, but it is only significantly lower than that
of DR-TACO on five of the problems. The modifications were also unable to achieve significantly better
performance on the problems that DR-TACO had no improvement on, although the completion algorithm
was able to generate a few better solutions to 2/5 difficult problems.

4.8 Discussion

In this section we discussed our extension of the TACO algorithm, TACO with Deadlock Reversal (DR-
TACO), to the Collab-MTSP. This is, to our knowledge, the first ACO-based solution attempted to solve the
heterogeneous multi-robot coalition formation and task allocation problem as we present it. DR-TACO can
generate near-optimal multi-objective solutions to small-scale instances of this problem. In scaling up the
problem size, DR-TACO struggles to scale and gets suck in local optima. We presented modifications to the
algorithm to mitigate this effect, new heuristics and a novel method for approximating pheromone, to mixed
results. One potential reason for the difficulty of solving the Collab-MTSP with this approach is that we



Figure 4.2: Example IGD+ boxplots for 3 problems at 3 scales. For IGD+, lower values are better. Both
algorithms have a value of zero indicates that they both had the same output, i.e. DR-TACO was unable
to improve on the initial seed solution from the greedy algorithm.



Problem DR-TACO Mean DR-TACO STD Greedy Mean Greedy STD
0 16 16 4 0 WR LT LC 477.97 246.63 960.14 0
1 32 32 4 0 WR LT LC 0.0 0 0 0
2 64 64 4 0 WR LT LC 0.0 0 0 0
4 8 16 4 0 WR LT SC 710.71 402.22 3008.31 169.31
5 8 32 4 0 WR LT SC 780.16 480.87 2366.74 0
6 8 64 4 0 WR LT SC 1064.15 888.54 3487.05 704.01
8 16 16 4 0 SWR LT LC 1052.7 504.48 4928.94 0
9 32 32 4 0 SWR LT LC 0.0 0 0 0
10 64 64 4 0 SWR LT LC 0.0 0 0 0
12 8 16 4 0 SWR LT SC 233.71 103.8 1932 0
13 8 32 4 0 SWR LT SC 792.59 339.05 2885.88 587.37
14 8 64 4 0 SWR LT SC 1746.28 982.79 5220.91 1512.53
16 16 16 4 0 WR ST LC 58.26 25.21 1198.02 0
17 32 32 4 0 WR ST LC 169.56 48.31 2226.31 0
18 64 64 4 0 WR ST LC 583.36 220.87 817.72 0
20 8 16 4 0 WR ST SC 39.01 8.97 1056.83 0
21 8 32 4 0 WR ST SC 218.2 114.66 1631.92 0
22 8 64 4 0 WR ST SC 2319.5 1253.46 8377.45 1913.96
24 16 16 4 0 SWR ST LC 43.04 16.38 496.32 0
25 32 32 4 0 SWR ST LC 111.39 28.97 1267.38 0
26 64 64 4 0 SWR ST LC 0.0 0 0 0
28 8 16 4 0 SWR ST SC 61.91 37.23 802.87 0
29 8 32 4 0 SWR ST SC 175.14 74.96 3104.87 1471.17
30 8 64 4 0 SWR ST SC 2562.67 907.41 7098.35 1973.44
32 16 16 4 0 UR UT LC 26.84 7.65 2280.48 0
33 32 32 4 0 UR UT LC 125.85 44 4616.29 0
34 64 64 4 0 UR UT LC 391.41 217.62 1912.84 0
36 8 16 4 0 UR UT SC 42.32 11.29 1703.15 0
37 8 32 4 0 UR UT SC 538.5 203.95 8618.86 0
38 8 64 4 0 UR UT SC 3230.91 2455.98 14807 0

Figure 4.3: Inverted generational distance plus (IGD+) statistics for DR-TACO and the greedy baseline.
Bolded values indicate a statistically significant difference according to the Wilcoxon Ranked Sign test.



Problem DR-TACO Mean Greedy Mean Comp.Mean Phero(t) Mean C*D Mean
0 16 16 4 0 WR LT LC 477.97 960.14 785.38 907.15 441.79
1 32 32 4 0 WR LT LC 0.0 0 0 0.0 0.0
2 64 64 4 0 WR LT LC 0.0 0 0 0.0 0.0
4 8 16 4 0 WR LT SC 712.72 3014.9 1569.84 1835.45 618.43
5 8 32 4 0 WR LT SC 789.24 2205.3 1007.51 2205.3 556.04
6 8 64 4 0 WR LT SC 1870.62 4368 2531.29 3220.47 1552.71
8 16 16 4 0 SWR LT LC 1052.7 4928.94 2290.19 1521.01 908.71
9 32 32 4 0 SWR LT LC 91.11 91.11 91.11 91.11 88.08
10 64 64 4 0 SWR LT LC 0.0 0 0 0.0 0.0
12 8 16 4 0 SWR LT SC 301.51 2092.61 487.99 763.91 281.61
13 8 32 4 0 SWR LT SC 786.82 2857.06 1132.86 1914.45 672.92
14 8 64 4 0 SWR LT SC 1746.28 5220.91 2148.4 2779.3 1771.62
16 16 16 4 0 WR ST LC 71.03 1207.99 104.12 159.75 80.73
17 32 32 4 0 WR ST LC 203.67 2498.48 318.81 475.94 188.13
18 64 64 4 0 WR ST LC 581.64 776.05 776.05 719.98 586.59
20 8 16 4 0 WR ST SC 39.85 1086.45 62.72 97.49 38.69
21 8 32 4 0 WR ST SC 277.17 1717.31 715.27 627.28 282.71
22 8 64 4 0 WR ST SC 2198.7 8239.64 3980.23 4593.54 1575.9
24 16 16 4 0 SWR ST LC 70.88 588.16 83.3 103.12 65.51
25 32 32 4 0 SWR ST LC 128.72 1219.76 358.67 143.65 101.47*
26 64 64 4 0 SWR ST LC 105.11 105.11 105.11 98.56 103.99
28 8 16 4 0 SWR ST SC 66.55 802.53 70.04 134.63 46.73*
29 8 32 4 0 SWR ST SC 440.59 3594.51 843.09 620.13 335.9*
30 8 64 4 0 SWR ST SC 3123.01 7667.34 3635.79 4120.69 2906.77
32 16 16 4 0 UR UT LC 29.66 2364.47 37.76 109.36 30.3
33 32 32 4 0 UR UT LC 172.53 4077.48 332.26 408.56 169.08
34 64 64 4 0 UR UT LC 795.99 2562.25 2456.64 991.17 723.88
36 8 16 4 0 UR UT SC 65.74 1675.5 65.75 151.81 66.1
37 8 32 4 0 UR UT SC 554.55 8507.97 1321.89 1380.12 405.96*
38 8 64 4 0 UR UT SC 4310.54 16534.4 10739 14601.44 2741.93*

Figure 4.4: Inverted generational distance plus (IGD+) statistics for the variants of DR-TACO and the greedy
baseline. Bolded values indicate the lowest mean, while starred values are significantly lower according to
the Wilcoxon Ranked Sign test.



are attempting to solve both the coalition formation and scheduling problems (both difficult combinatorial
optimization problems by themselves) at once. This motives an attempt to decouple these two problems and
solve them in a pseudo-hierarchical manner. The next section of this paper discusses that research.



Chapter 5

Swarm Ant System for the
Collab-MTSP

Despite the success of the TACO algorithm on the MTSP, extending it directly to the Collab-MTSP
proved difficult due to the significantly higher degree of complexity of the Collab-MTSP compared to the
standard MTSP. Much of this complexity to due to the fact that the Collab-MTSP can actually be viewed as
two difficult combinatorial optimization problems in one, coalition formation and task scheduling. The TACO
algorithm creates robot coalitions and schedules simultaneously, essentially trying to solve both problems
at once. This approach, while effective for small problem sizes, does not scale well to larger problems.
This approach also allows for deadlocks to arise that limit the ability of the TACO algorithm to effectively
explore the solution space of the Collab-MTSP. These two qualities are undesirable, so we propose a new
ACO-based algorithm that decouples coalition formation and scheduling to sidestep the deadlock problem.
This approach eliminates the possibility of deadlock by making ants represent the entire swarm instead
of just single robots. This allows ants to explore the solution space without any dependencies on other
ants. We call this new method Swarm Ant System (SAS). As the ants visit tasks, they assign members
of the swarm to that task based on an assignment function. The selection of the assignment function is a
critical design decision, and we compare the performance of SAS on three different assignment functions.
We also evaluated a modified SAS that uses another pheromone matrix and heuristic function to perform
assignments. Due to the “dual” nature of this solution using separate pheromone matrices to optimize for
each of route planning and coalition formation, we call this method Dual Swarm Ant System (DSAS). The
details of these algorithms and the experimental evaluation is described in this chapter.

5.1 Swarm Ant System

Much of SAS is similar to what has been described in earlier sections. A greedy solution is used to
seed the Pareto set and establish the initial value of the pheromones and many Pareto-optimal solutions are
returned when it terminates. The most novel addition to this method is the solution construction phase that
is described next.

5.1.1 Solution construction

The solutions construction step of SAS is relatively simple compared to that of DR-TACO, by design. At
each SAS iteration, we run Na ants to generate Na candidate solutions. Note the subtle difference between
this and DR-TACO: in DR-TACO, many ants co-constructed a single candidate solution. In SAS, a single
ant forms a single solution.

To form a solution, an ant incrementally steps through the unassigned tasks, selecting them based on a
single pheromone similar to that of Ant System. At each task, the ant assigns robots to the task using the
assignment function. Many assignment functions are evaluated in this work. The paths of the individual
robots are determined by the path of the ant. This is clearly shown in figure 5.1. Robots that are not



Figure 5.1: A diagram showing how robot paths get deconstructed from an ant’s path. On the left, the ant
visits 3 tasks and assigns robots to cover those tasks. On the right are the corresponding robot paths.

Algorithm 7: Solution Construction

Result: Ng solutions to the Collab-MTSP
S ← empty;
for i = 1 to Ng do

F ← x∀ x ∈ T | x < k;
Pi ← [0],∀ i ∈ N | i < k;
while F is not empty do

Choose task next according to (??);
Assign coalition contributing based on assignment function;
Append next to Pi ∀ i ∈ ids(contributing);
F ← F − {next};

end
Append 0 to the end of all paths Pi

end
return S

assigned to a given task are not affected by the ant’s movement to that task, and all robots to a task are
assigned at once. This means that there is no “waiting” in SAS as there is in DR-TACO. This allows the
ant to more freely explore the solution graph to the problem and thus generate solutions more efficiently
than in DR-TACO. The pheromone for the swarm is updated using the same methodology as from TACO
and DR-TACO.

5.1.2 SAS Assignment Function

The general structure of the proposed assignment functions for SAS is shown in Algorithm 8. The viable
robots (robots that have the skills to contribute to the task) are sorted based on an evaluation metric. They
are assigned in a first-come-first-serve manner based on their order and if they can contribute to the task.
We ran experiments with 3 different metrics to sort by which are the distance from the robot to the current
task, the path cost so far, and the sum of both. The assignment function prioritizes allocating robots with
the smallest metrics.

5.1.3 Dual Swarm Ant System Assignment Function

The only difference between DSAS and SAS is the use of a pheromone-based assignment function. The
size of this pheromone matrix is R×T since there is a pheromone for each robot as each task. The pheromone



Algorithm 8: SAS Assignment

Data: n is the current task
Data: sorted is a list of robot ids sorted by the selected metric
Result: Coalition assigned to task n
C ← empty;
S ← skillset(Tnext);
for robot id in sorted do

if skillset(Rrobot id) ⊂ S then
C = C + robot id;
S = S − skillset(Rrobot id);

end
break if S is empty;

end
return C

ϕ
(r)
i for robot r at task i is used with a heuristic h

(r)
i to select the next robot to assign to the task. Robot

r is assigned to task i with probability
ϕ
(r)
i h

(r)
i∑

q∈R ϕ
(q)
i h

(q)
i

where R is the set of remaining robots that have the

skills needed to contribute to task i. The assignment pheromones are updated in the same way as the path
pheromones. The heuristics used for DSAS mirror the assignment function from SAS, being a distance,
path-so-far, and combined heuristic.

5.2 Results

To evaluate the performance of SAS and DSAS, we evaluated their performance on the same benchmarks
as used for TACO in Chapter 4 and used TACO as a baseline. Boxplots for 3 problems are shown in figure
5.2. Eight algorithm variants are compared: DR-TACO (DT), Greedy (GDT), SAS with distance heuristic
(SAS-C), SAS with path-so-far heuristic (SAS-P), SAS with a combined heuristic (SAS-T), and DSAS with
the same heuristic (DSAS-C, DSAS-P, and DSAS-T, respectively). The overall best-performing algorithm
was Swarm Ant System with the closeness assignment function (SAS-C) with the lowest mean IGD+ on
24/36 problems. In general, DSAS performed worse than its SAS counterpart with the same heuristic.
DR-TACO tended to perform worse than SAS-C, but was usually comparable or superior to the rest of the
algorithms. All approaches outperformed the greedy baseline on most problems.

5.3 Discussion

Swarm Ant System represents a fundamentally different ACO formulation of the Collab-MTSP, repre-
senting the whole swarm as an ant rather than individual robots. This facilitates exploring the solution space
more easily than with DR-TACO because deadlocks cannot occur in solution construction. As a tradeoff for
this ease of exploration, a new design decision in designing an assignment function is introduced. We eval-
uated two classes of assignment function - one based deterministically on features of the path states (SAS)
and another that uses a second pheromone matrix to assign tasks (DSAS). The results showed that the SAS
approaches consistently outperformed the DSAS approaches, but the overall quality of the solutions was
highly dependent on the choice of assignment function. Some of the difficulty in using a pheromone-based
assignment function is that the optimal assignment of robots for a given task has a complicated dependency
on the paths that have been created so far and the remaining tasks to be completed which is likely difficult
to capture in a matrix of values.

SAS-C performed at least as well as DR-TACO on most of the benchmark problems and outperformed
it on many, especially on the problems at the largest scales. Though on smaller-scale problems, TACO
could still perform the best. As a result, we now have two algorithms that can produce good solutions to
the Collab-MTSP and seem to perform best on different types of problems. Further analysis is needed to



Figure 5.2: Example IGD+ boxplots for 3 problems at 3 scales. For IGD+, lower values are better.



evaluate which problem classes these algorithms perform best. Future research will deeply explore wall-clock
time costs and solution quality on problems with different spatial qualities and of increasing scale.



Chapter 6

Conclusions

This work presents an exploration of Ant Colony Optimization (ACO) methods on two formulations of the
Multi-Robot Task Allocation (MRTA) problem: the standard Multiple Travelling Salesmen Problem (MTSP)
and an extension of the MTSP with synchronous collaboration constraints we called the Collab-MTSP. The
Collab-MTSP introduces an embedded coalition formation problem entangled with the already difficult to
solve MRTA problem. We formulated both problems as multi-objective optimization problems (MOOPs)
where we care about optimizing both the summed cost of all robot paths as well as the maximum cost of
any robot in the swarm. As a result, we explore ACO techniques that return sets of many Pareto-optimal
solutions that assume no a priori knowledge of the downstream preferences between both objectives.

With regards to the MTSP, we introduced a novel ACO-based method called Territorial Ant Colony
Optimization (TACO) that outperforms competing state-of-the-art metaheuristic techniques for the MTSP
on commonly used TSPLIB benchmark datasets. The main novelties of TACO are the introduction of
territorial pheromones and willingness. Taking advantage of the fact that each ant represents a single robot,
each ant is assigned its own pheromone to guide its search. Additionally, the willingness of an ant to move
to a new task is affected by the distribution of other ant pheromones at that node, effectively allowing ants
to claim territory over tasks.

We present two new methods for solving the Collab-MTSP, an extension of TACO called TACO with
Deadlock Reversal (DR-TACO) and another method called Swarm Ant System (SAS). When extending
TACO to the Collab-MTSP, a new challenge arises which is handling deadlocks. Since robots need to
form coalitions to complete tasks, it becomes possible for circular dependencies to occur while iteratively
constructing a solution. We propose a deadlock reversal step that allows ants to undo actions they have
previously taken to remove deadlocks and continue constructing a solution. SAS reformulates the problem
completely by casting the entire swarm as an ant, rather than an individual robot. This sidesteps the
deadlocks problem by constructing robot paths based on the ant path and by introducing an assignment
function that assigns a coalition of robots to a task at once. Our results show that both DR-TACO and
SAS are effective solution techniques for the Collab-MTSP, achieving near-optimal performance on small
benchmarks and significantly outperforming a greedy baseline on larger problems. SAS generally outperforms
DR-TACO in terms of solution quality, especially as the problem scales to more tasks and robots. We
attribute this to the higher degree of simplicity in SAS as well as the ease with which it can explore the
solution space of the Collab-MTSP with its ant-as-swarm formulation.

The most significant contribution of this work is the comparison of algorithms that represent two funda-
mentally different ways of formulating ACO for MTRA, these being DR-TACO for the ant-as-robot formula-
tion and SAS for the ant-as-swarm formulation. Recent literature has gravitated toward the former [15, 24],
likely due to the straightforward intuition that underpins its design. However, this work shows that this
method of the formulation does not scale well as more constraints are added to the problem since effectively
handling these changes is not straightforward as they become increasingly complicated to implement and
hinder the exploration ability of ACO. On the other hand, SAS presents a fundamentally different way of
using ACO for these problems that is more scalable with problem size and extendable with additions to the
problem formulation.

Accordingly, we recommend further analysis of the strengths and weaknesses of this technique. In partic-



ular, how these techniques fair with different classes of MRTA problems. A detailed analysis of the empirical
wall-clock time cost of these methods is also needed and not included in this work. In further research, we
are interested in exploring these critical research questions as well as boosting SAS with machine learning
techniques and further extending it to more constrained versions of the Collab-MTSP.



Bibliography

[1] A. Aswale and C. Pinciroli, “Heterogeneous Coalition Formation and Scheduling with Multi-Skilled
Robots.” https://arxiv.org/abs/2306.11936v1, June 2023.

[2] M. Dorigo and T. Stützle, “Ant Colony Optimization: Overview and Recent Advances,” in Hand-
book of Metaheuristics (M. Gendreau and J.-Y. Potvin, eds.), vol. 272, pp. 311–351, Cham: Springer
International Publishing, 2019.

[3] O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the Multiple Traveling Salesman Problem:
Applications, approaches and taxonomy,” Computer Science Review, vol. 40, p. 100369, May 2021.

[4] Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative Heterogeneous Multi-Robot Systems: A Survey,”
ACM Computing Surveys, vol. 52, pp. 29:1–29:31, Apr. 2019.

[5] B. P. Gerkey and M. J. Matarić, “A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot
Systems,” The International Journal of Robotics Research, vol. 23, pp. 939–954, Sept. 2004.

[6] G. Oh, Y. Kim, J. Ahn, and H.-L. Choi, “PSO-based Optimal Task Allocation for Cooperative Timing
Missions,” IFAC-PapersOnLine, vol. 49, pp. 314–319, Jan. 2016.

[7] C. Mouradian, J. Sahoo, R. Glitho, M. Morrow, and P. Polakos, “A Coalition Formation Algorithm for
Multi-Robot Task Allocation in Large-Scale Natural Disasters,” Apr. 2017.

[8] M. U. Arif, “Robot coalition formation against time-extended multi-robot tasks,” International Journal
of Intelligent Unmanned Systems, vol. ahead-of-print, Jan. 2021.

[9] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System: Optimization by a colony of cooperating
agents,” p. 26, 1996.

[10] M. Dorigo, Ant Colony Optimization. Cambridge, Mass: MIT Press, 2004.

[11] M. Lippi and A. Marino, “A Mixed-Integer Linear Programming Formulation for Human Multi-Robot
Task Allocation,” in 2021 30th IEEE International Conference on Robot & Human Interactive Com-
munication (RO-MAN), pp. 1017–1023, Aug. 2021.

[12] Y. Emam, S. Mayya, G. Notomista, A. Bohannon, and M. Egerstedt, “Adaptive Task Allocation for
Heterogeneous Multi-Robot Teams with Evolving and Unknown Robot Capabilities,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7719–7725, May 2020.

[13] G. Notomista, S. Mayya, S. Hutchinson, and M. Egerstedt, “An Optimal Task Allocation Strategy for
Heterogeneous Multi-Robot Systems,” in 2019 18th European Control Conference (ECC), pp. 2071–
2076, June 2019.

[14] A. Koubâa, O. Cheikhrouhou, H. Bennaceur, M.-F. Sriti, Y. Javed, and A. Ammar, “Move and Improve:
A Market-Based Mechanism for the Multiple Depot Multiple Travelling Salesmen Problem,” Journal of
Intelligent & Robotic Systems, vol. 85, pp. 307–330, Feb. 2017.

[15] S. Wang, Y. Liu, Y. Qiu, Q. Zhang, F. Huo, Y. Huangfu, C. Yang, and J. Zhou, “Cooperative Task
Allocation for Multi-Robot Systems Based on Multi-Objective Ant Colony System,” IEEE Access,
vol. 10, pp. 56375–56387, 2022.



[16] X. Chen, P. Zhang, G. Du, and F. Li, “Ant Colony Optimization Based Memetic Algorithm to Solve
Bi-Objective Multiple Traveling Salesmen Problem for Multi-Robot Systems,” IEEE Access, vol. 6,
pp. 21745–21757, 2018.

[17] C. Wei, Z. Ji, and B. Cai, “Particle Swarm Optimization for Cooperative Multi-Robot Task Allocation:
A Multi-Objective Approach,” IEEE Robotics and Automation Letters, vol. 5, pp. 2530–2537, Apr. 2020.

[18] Y. Shuai, S. Yunfeng, and Z. Kai, “An effective method for solving multiple travelling salesman problem
based on NSGA-II,” Systems Science & Control Engineering, vol. 7, pp. 108–116, Nov. 2019.

[19] Z. Wang and J. Zhang, “A task allocation algorithm for a swarm of unmanned aerial vehicles based on
bionic wolf pack method,” Knowledge-Based Systems, vol. 250, p. 109072, Aug. 2022.

[20] M. Lopez-Ibanez and T. Stutzle, “The automatic design of multiobjective ant colony optimization
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 6, pp. 861–875, 2012.

[21] I. Alaya, C. Solnon, and K. Ghédira, “Ant colony optimization for multi-objective optimization prob-
lems,” in Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, vol. 1,
pp. 450–457, 2007.

[22] L. Ke, Q. Zhang, and R. Battiti, “MOEA/D-ACO: A Multiobjective Evolutionary Algorithm Using
Decomposition and AntColony,” IEEE Transactions on Cybernetics, vol. 43, pp. 1845–1859, Dec. 2013.

[23] W. Deng, J. Xu, and H. Zhao, “An Improved Ant Colony Optimization Algorithm Based on Hybrid
Strategies for Scheduling Problem,” IEEE Access, vol. 7, pp. 20281–20292, 2019.

[24] C. Bao, Q. Yang, X.-D. Gao, Z.-Y. Lu, and J. Zhang, “Ant colony optimization with shortest distance
biased dispatch for visiting constrained multiple traveling salesmen problem,” in Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO ’22, (New York, NY, USA),
pp. 77–80, Association for Computing Machinery, July 2022.

[25] J. Li, M. Zhou, Q. Sun, X. Dai, and X. Yu, “Colored Traveling Salesman Problem,” IEEE Transactions
on Cybernetics, vol. 45, pp. 2390–2401, Nov. 2015.

[26] S. Han, M. Xu, X. Dong, Q. Lin, and F. Shen, “Hybrid ITÖ algorithm for multi-scale colored traveling
salesman problem,” Journal of Computer Applications, vol. 42, p. 695, Mar. 2022.

[27] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, and Y. Liu, “A hybrid ant colony optimization algorithm for
a multi-objective vehicle routing problem with flexible time windows,” Information Sciences, vol. 490,
pp. 166–190, July 2019.

[28] U. M. Yildirim and B. Çatay, “A time-based pheromone approach for the ant system,” Optimization
Letters, vol. 6, pp. 1081–1099, Aug. 2012.

[29] C. J. Shannon, L. B. Johnson, K. F. Jackson, and J. P. How, “Adaptive mission planning for coupled
human-robot teams,” in 2016 American Control Conference (ACC), pp. 6164–6169, July 2016.

[30] H. Zhao and C. Zhang, “An ant colony optimization algorithm with evolutionary experience-guided
pheromone updating strategies for multi-objective optimization,” Expert Systems with Applications,
vol. 201, p. 117151, Sept. 2022.

[31] G. Reinelt, “TSPLIB—A Traveling Salesman Problem Library,” INFORMS Journal on Computing,
vol. 3, no. 4, pp. 376–384, 1991.

[32] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for multi-robot task allocation,”
The International Journal of Robotics Research, vol. 32, pp. 1495–1512, Oct. 2013.


