Drone Locating and Jamming Assembly By Nick Cauley, Ryan Crowley, Mara Pranter Advisor: Prof. Kaveh Pahlavan

Today's Presentation

The Problem and Our Solution

Why there is a need and how our project fills it

Drones in Restricted Airspace Cause Harm

Financial Damage

Gatwick Airport 2018

- o 700 Grounded Flights
- 100,000 Changed
 Passenger Plans
- Over \$1,800,000 in damages to the airport alone

Safety Implications

- Jean Lesage International Airport
 - Drone & AirplaneCollision

4

• Could Potentially Cause

Deadly Crashes

Drone Locating and Jamming Assembly

Location

- Find coordinates of drone and its controller using SDR signal strength
- Estimating the possible amount of error in the location

Jamming

- Process received signals to identify any threats
 Jam unwanted signals
 - within the area of interest

Importance in an Airfield

Locating

- Finding the person responsible for the disturbance
- Finding the drone to avoid collisions and make sure jamming will be safe

Jamming

- Eliminating the security threat
- Avoiding potential collisions with aircraft

Broad Overview of the System

Technical Background

What we used to create our solution

How We Receive and Process the Signal

Software-Defined Radios (SDRs)

Able to receive the signals
 Unable to process the signals itself

GNU Radio

Able to process the signals
 Runs on a laptop that is connected to the SDR(s)

Example GNU Radio Flowgraph

1. Image courtesy of Ettus Research, <u>https://www.ettus.com/all-products/un210-kit/</u>

Locating the Drone

RLS Algorithm

Path Loss Model

Error Analysis with CRLB

Path Loss Model

• How to convert RSS (Received Signal Strength) into distance

$$P_{r} = P_{0} - 10\alpha \log_{10}(r/r_{0}) + X(\sigma)$$
$$r = 10^{(P0-Pr)/10\alpha}$$

RLS Algorithm

- Using the distance from SDR to drone
- How to find intersection of circles or spheres
- Recursive Least Squares
 Algorithm
- How much error will this produce?

Simulated Error Analysis of Localization

- Cramer Rao Lower Bound (CRLB)
 - Estimates the standard deviation of the localization error at a point
- Equations used in the MATLAB script for 3D space¹

•
$$H[D] = -10 * \alpha * (pD - apD) / r_p^2$$

1. The 3D script is baseff of a 2D C, OLV n the condition of Geolocation Scheme and Technology: At the Emergence of Smart World and IoT, 2019, by Kaveh Pahlave

Example CRLB Contour Map (SDRs at Z = 0)

Jamming the Drone

Jamming Scenario

- J/S @ drone > OdB: should disable drone, but as you approach OdB jamming probability decreases
- J/S @ drone > 6dB: desired ratio, extremely high jamming probability
- Barrage jamming technique used

Frequency Considerations

- Most commercial drones operate within the 2.4 GHz and 5.8 GHZ bands
- Due to budget constraints, our assembly jams signals within the 2.4 GHz band
 - Tinyhawk II used for testing;
 2.4 2.48 GHz
 communication frequency

Brand	Frequency
DJI Phantom	2.4 / 5.8 GHz
Futaba	2.4 GHz
Spektrum	2.4 GHz
JR	2.4 GHz
Hitec	2.4 GHz
Graupner	2.4 GHz
Yuneec	2.4 GHz
Parrot AR2	2.4 GHz
Immersion	433 MHz

Common Drone Frequencies of Operation

How did we create our solution

Localization Test Configuration

- 4 Software Defined Radios
- Placed in a 10 by 10 meter square
- Each SDR has a different height
- 2 Signal Source Positions
 - First test was in the 10 by 10 square
 - Second test was outside the square
- The goal was to measure RSS values so we can find the accuracy of our system

Path Loss Model

Inside Bounds

The Estimated Path Loss Model is: Pr=-62.3642-14.3249*log(r) Mean value of shadow fading is: -37.5362 Standard Deviation of shadow fading is: 2.1047

Outside Bounds

The Estimated Path Loss Model is: Pr=-57.7782-19.2179∗log(r) Mean value of shadow fading is: -37.0628 Standard Deviation of shadow fading is: 0.9637

RLS Algorithm

Calculated Position: (3.57,5.20,2.44) Actual Position: (3,5,0.53)

Calculated Position: (-1.85,3.41,1.52) Actual Position: (-2, 3,0.98)

Simulated Error Analysis of Our Configuration

Top-down CRLB contour map at the first signal's height

Value at Signal 1's position: 1.705 m

Top-down CRLB contour map at the second signal's height

Value at Signal 2's position: 2.13 m

Jammer Assembly Design

- Entire assembly enclosed within a bud box
- Laptop powers entire system
- Switch used as safety precaution

Signal Strength Considerations

- Controller output powered measured to be **19.4 dBm** in lab
- Calculated output power from antenna in Transmit mode is 27.1 dBm
- FSPL (dB) = 20log(d)+20log(f)+20log(4pi/c) equation used to determine power @ drone at different distances
 - ◎ f=2.4GHz
- Jammer will be effective with high probability if same distance from drone as controller (7.7 dB greater strength)

Distance (m)	Power @ Drone (dBm)
10	-40.7
20	-46.7
50	-54.6
75	-58.2
100	-60.7
200	-66.7

Controller Power at Drone vs Distance

istance (m)	Power @ Drone (dBm)
10	-33.0
20	-39.0
50	-46.9
75	-50.5
100	-53.0
200	-59.0

Jammer Power at Drone vs Distance

Jammer Assembly Opened

Jammer Assembly Closed

What matters from this project

Conclusions for the System

Location

- Our method is within a meter of error in the x y plane
- There needs to be greater variance in the height of the SDRs to get proper z position

Jamming

- Theoretically, the assembly will jam the signal from the controller to the drone when the jammer and controller are equidistant from the drone
- Testing of theory was hindered by WPI COVID protocols

Future Recommendations

Location

- Read the signal to determine whether they are from the controller or drone feedback
- Greater variance on z axis with SDRs

Jamming

- Design automated antenna system that focuses jamming signal in direction of drone
- Greater output jamming signal for greater jamming range