

1

A Reinforcement Learning Approach to
Optimize the MLC Prefetcher
Aggressiveness at Run-Time

MAJOR QUALIFYING PROJECT

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in

ELECTRICAL & COMPUTER ENGINEERING

COMPUTER SCIENCE

by

Matthew Joseph Adiletta

December 18, 2020

Approved:

Professor Berk Sunar, Project Advisor

Professor Craig Shue, Project Advisor

Sponsored by Intel Corporation

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a
degree requirement. WPI routinely publishes these reports on its web site without editorial

or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects

2

1 Abstract

The memory subsystem is a critical component of a CPU, composed of architectures such as
caches and predictors. A cache is used to reduce the latency from when a request to memory is generated
and when it is available to the core. Data prefetchers further reduce latencies by speculating about future
accesses and increasing data coverage. However, aggressive prefetching may increase cache pollution,
create a memory bandwidth performance bottleneck, and add latency to critical path demand
queues. Cache pollution may occur because the prefetcher may bring in unnecessary data into the cache
that will never be used. A memory bottleneck may occur because the prefetcher
generates excessive requests to memory such that critical memory demand misses incur extra latency
because there is not enough allocated memory bandwidth. Finally, the core queues may fill up because of
the prefetching and demand queues are shared, thus excessive prefetching will add additional
latencies for these queues.

Managing the aggressiveness of the prefetchers is necessary to mitigate these problems. State of
the art hardware prefetcher solutions manage aggressiveness by analyzing telemetry data such as
prefetcher accuracy and memory bandwidth consumption. This is an insufficient solution because
telemetry data alone does not necessarily correlate to the overall system performance. Furthermore, the
current solution optimizes the prefetchers individually, rather than allowing the prefetchers to work
together to improve the overall system performance. Appropriate management of the prefetcher
aggressiveness may lead to performance improvements. Preliminary investigations motivating our work
analyze enabling and disabling the prefetchers. We demonstrate that 60% of regions of interest form the
SPEC CPU2017 suite show performance improvement by disabling one of the prefetchers. We take this
work a step further by managing the aggressiveness at a finer granularity than purely on or off.

We propose the Aggressiveness Degree Manager (ADM), employing Q-learning to find the
optimal prefetcher aggressiveness policy for multiple prefetchers at run-time. The aggressiveness degree
represents the number of cache lines a prefetcher may demand on a single request. A prefetcher with
aggressiveness degree zero means the prefetcher is disabled. Highly aggressive prefetchers demand up to
ten cache lines in a single request. The ADM agent manages the aggressiveness degree by varying the
degree from zero to a maximum threshold. The current model is designed for a single-core, single-process
implementation, optimizing the MLC prefetchers. We evaluated the ADM agent using 10 prefetch
sensitive workloads from the SPEC CPU2017 suite. The ADM agent demonstrated a 4.2% higher
speedup than the best static hardware configuration, with a 2.6% average variance from the optimal
prefetcher aggressiveness degree.

3

Table of Contents

1 Abstract ... 2

2 Introduction ... 7

2.1 Contributions ... 8

2.2 Road Map .. 9

3 Related Work .. 9

4 Background ... 11

4.1 Caching Overview .. 11

4.2 MLC-Prefetchers ... 12

4.3 Prefetcher Aggressiveness .. 13

4.4 Q-Learning .. 13

5 Motivation ... 15

6 ADM Implementation: Prefetcher Aggressiveness Controller ... 17

6.1 ADM Initialization and Configuration .. 17

6.2 Updating Q-table and Calculating Reward ... 18

6.3 Intuition about Success of this Algorithm ... 20

6.4 Optimization Techniques for ADM Agent ... 22

6.4.1 Alternating Rewards ... 22

6.4.2 Random-Action Annealing ... 23

6.4.3 Top Down Convergence ... 24

6.4.4 Set on Increase or Decrease .. 25

6.4.5 Quick Convergence Update .. 26

6.4.6 Stay-Six ... 28

7 Evaluation Methodology ... 29

7.1 System Configuration ... 29

7.2 Workload Selection ... 30

7.3 Quality of Service Models .. 30

8 ADM Performance Evaluation .. 31

8.1 Experimental Setup ... 31

8.2 Results for the ADM agent applied to the ACL Prefetcher .. 32

8.3 Results for the ADM agent applied to the DPL Prefetcher ... 33

8.4 Analysis of a Single Prefetcher ADM Agent .. 34

4

8.5 Results for ADM agent applied to both the APL and the DPL Prefetchers 36

8.6 Impact of Optimization Techniques on Improving Convergence ... 37

8.6.1 507.cactuBSSN_r: Random Action Annealing and Top Down Convergence 38

8.6.2 507.cactuBSSN_r: Set on Increase or Decrease ... 39

8.6.3 507.cactuBSSN_r: Quick Convergence Update and Stay 6 .. 40

8.6.4 500.perlbench_r: All optimization Techniques ... 42

8.6.5 523.xalancbmk: Regions with Different Optimal Configurations 43

8.7 Key Findings ... 45

9 Conclusion .. 46

10 References ... 47

Appendix A: Acronym List .. 49

Appendix B: Sampling Regions for SPEC CPU2017 ... 50

Appendix C: Descriptions of SPEC CPU2017 Benchmarks .. 51

Appendix D: Traces of Workloads ... 52

5

Table of Figures

Figure 1: ACL and DPL prefetcher interactions ... 15

Figure 2: Agent Annealing percent chance of Random Action. ... 23

Figure 3: Q-table convergence using the Bellman equation ... 28

Figure 4: IPC performance comparison normalized to no prefetching (APL) .. 32

Figure 5: IPC performance comparison normalized to no prefetching (DPL) .. 33

Figure 6: IPC performance comparison normalized to no prefetching (APL and DPL) 37

Figure 7: ADM agent with RAA and TDC. .. 38

Figure 8: ADM with RA, TDC, and SID. ... 40

Figure 9: Performance graph of ADM with the SS algorithm. ... 41

Figure 10: Performance of ADM agent with all optimization techniques over time. 41

Figure 11: 500.perlbench_r with all optimization techniques. .. 42

Figure 12: Performance of 523.xalankbmk_r. .. 44

6

List of Tables

Table 1: Example Q-learning Agent ... 14

Table 2: Sample situation after reaching steady state using the set on increase or decrease technique. 17

Table 3: Sample situation after reaching steady state using the set on increase or decrease technique. 26

Table 4: Sample situation after reaching steady state using the previous algorithms. 27

Table 5: Results after applying a Quick Convergence Update. .. 27

Table 6: ACL Performance Comparison .. 35

Table 7: DPL Performance Comparison Against the Optimal Aggressiveness Degree 35

7

2 Introduction

 Caches are hardware structures used to reduce the time from when a request to main memory is
generated to when the data is available to the core. The difference in time is the latency of the request.
Caches help reduce the latency by bringing smaller amounts of memory closer to the core. A caching
hierarchy is useful because it acts like a canal lock between a small river, and a large body of water. The
small river in this analogy is the core, and the large body of water is the main memory. Each lock within
the canal is a cache, and the closer the lock to the river, the faster it can be reached. Furthermore, all the
water is shared between the locks, analogous to an inclusive caching system, where all the data in lower
caches must exist in higher level caches.

A technology intended to further reduce latency is a cache prefetcher. Prefetchers bring blocks of
data into the cache before they are referenced. Using the previous analogy, a prefetcher lowers the water
in a lock prior to a boat needing to go between locks. Speculative analysis using spatial locality and
memory access patterns help prefetchers decide which cache blocks might be valuable. Successful
prefetching reduces or eliminates demand misses, diluting the memory bandwidth bottleneck caused by a
memory bound workload. Unfortunately, prefetching unsuccessfully may have significant negative
consequences on performance: prefetching may increase cache pollution by evicting useful cache blocks
with useless cache blocks; high volume speculative requests for both necessary and unnecessary cache
blocks may create a memory bandwidth performance bottleneck and significantly increase latency on
demand requests; prefetching increases pressure on demand queues and pipeline stages, adding latency to
resources on the critical path of a workload.

 An optimal prefetcher is perfectly accuracy, timely, and complete. Accurate meaning that the
prefetcher only requests cache blocks that will be needed by the demand stream. Timely meaning that the
prefetcher is ahead of the demand stream such that all prefetched blocks are available in the cache before
they are needed. Complete meaning that the prefetchers requests all future memory accesses needed in the
demand stream. Different types of prefetchers are required to improve completeness by capturing various
types of locality and memory access patterns.

The work described in this report addresses aspects of accuracy and timeliness by managing the
aggressiveness of a prefetcher. This is a well-studied area because managing the aggressiveness has
significant performance impact. High level solutions to this problem dynamically enable or disable
prefetchers based on run-time telemetry data, such as prefetcher accuracy, memory bandwidth availability
and demand queue pressure [2, 9, 10]. Finer granularity solutions throttle the aggressiveness at run-time
by adding a spectrum of states in-between enabled and disabled to optimize performance more precisely
[7, 13, 15, 16, 23, 26].

These solutions all demonstrate significant performance improvement over static prefetcher
configurations for prefetch sensitive workloads. However, these solutions have several unaddressed
problems.

1. Deep/Machine learning enabled solutions require pretraining on working set of workloads to
appropriately configure prefetchers.

2. Deep/Machine learning enabled solutions require significant hardware overhead to implement.

8

3. Simple hill-climbing solutions converge slowly on optimal prefetcher configurations in dynamic
environments and are prone to becoming “stuck” in a single configuration that is not necessarily
globally optimal.

4. Many solutions presented in literature do not use a fair reward scheme to maximize overall system
performance.

2.1 Contributions

In order to address these problems, we propose the Aggressiveness Degree Manager (ADM), a
reinforcement learning agent employing Q-learning to find the optimal prefetcher aggressiveness policy
for multiple prefetchers at run-time. An ADM agent adjusts prefetcher configurations to optimize a
Quality of Service (QoS) metric representing the overall system performance. Synergism between
prefetchers maximizes the overall system performance rather than an individual prefetcher’s performance.

This work contributes the following:

 We studied and analyzed existing techniques that are currently implemented in hardware and
techniques that are detailed in literature.

 We explain the motivation for managing prefetchers by identifying performance variance
when enabling or disabling prefetchers for SPEC CPU2017 workloads.

 We present ADM, a reinforcement learning agent employing Q-learning used to manage the
prefetcher aggressiveness at run-time. Then we provide intuition about why an ADM agent
outperforms current solutions.

 We detail optimization techniques to improve the rate of convergence of an ADM agent on
the optimal prefetcher configuration. We demonstrate the impact of these optimizations for
507.cactuBSSN_r, 500.perlbench_r and 523.xalankbmk_r.

 We conduct two types of experiments; a single prefetcher implementation and a dual
prefetcher implementation. We evaluate the ADM agent’s performance against static
prefetcher configurations for specific regions of interest within prefetch sensitive workloads.
We demonstrate the single prefetcher ADM agent converging to the optimal configuration,
reaching 98.5% of the optimal static configuration performance and the dual prefetcher ADM
agent reaching 97.4% of the optimal static configuration performance.

We consider a single core, single application system with multiple active prefetchers. In the
future we hope to present work supporting a multi-core solution because CPU developers have already
introduced 64+ core systems where prefetching failures have a larger negative performance impact. The
results of our research demonstrate significant performance improvement with minimal hardware
overhead. A high-level goal of this work is to demonstrate the importance of applications of artificial
intelligence at the hardware level, to pave a path for future works using similar low-cost AI
implementations to realize performance improvements.

9

2.2 Road Map

 Section 3 reviews prior art. Section 4 discusses necessary background information. Section 5
introduces motivation for this work. Section 6 presents the ADM agent implementation and
optimizations. Section 8 evaluates the performance of an ADM agent using the methodology from
Section 7. Finally, Section 9 concludes the report.

3 Related Work

 Managing the prefetcher aggressiveness has been studied previously [2, 8, 9, 10, 13, 15, 16, 23,
24, 25, 26]. Current areas of research lie with enabling or disabling prefetchers. Heibel et.al propose a
fine-grained hardware prefetcher control using the contextual bandit framework for dynamically enabling
or disabling hardware prefetchers at run time [9]. They train the agent by randomly enabling or disabling
prefetchers at regular intervals, showing a 4.3% performance speedup on average over a set of memory
bandwidth intensive workloads. Liao et.al presented similar also enabling or disabling prefetchers,
focused on data center applications [2]. They developed a tuning framework to predict the optimal
hardware configuration based on performance counters to achieve a performance improvement of 1.4% to
75.1%. Rahman et.al proposes a solution to optimally enabling prefetchers by pruning program counters
through an algorithm to obtain an expressive feature set [10]. This feature set is used in machine learning
models to optimally enable prefetchers, showing a 96% convergence on the optimal configuration.

 Another area of prefetcher aggressiveness research focused on finding the optimal aggressiveness
distance. Srinath et.al proposes Feedback Directed Prefetching (FDP) which estimates prefetcher
accuracy, prefetcher timeliness, and prefetcher-caused cache pollution to adjust the aggressiveness of the
data prefetchers dynamically. FDP improves average performance by 6.5% on 17 memory-intensive
benchmarks from SPEC CPU2000 [7]. The issue with FDP is that it reacts to poor performance rather
than proactively anticipating negative performance. Heirman proposes a solution dubbed “Near-Side
Throttling (NST)” which detects late prefetches and tunes the prefetcher aggressiveness to balance late
prefetches with a small but non-zero fraction of all prefetches [23]. NST touts a 0.2% performance
improvement over the state of the art at a far cheaper implementation cost.

 The most relevant prefetcher aggressiveness research are fine-grained controllers. Ebrahim et.al
proposes HPAC, a solution for controlling multiple prefetcher in multi-core systems by accounting for
both inter-core and intra-core prefetcher-caused interference [13]. HPAC manages the aggressiveness by
using telemetry data from both local and global perspectives, improving system performance by 14%
against the state-of-the-art prefetcher aggressiveness control technique for an eight-core system. The issue
with this solution is that it uses low-correlation telemetry data to gauge performance. Performance might
correlate to telemetry data; however, it is not a fair method for managing the prefetcher aggressiveness.

Panda took a different approach, focusing on fairness when managing the prefetcher
aggressiveness. His first aggressiveness solution titled CAFFEINE is a single core implementation [16].
Panda quickly expanded his prior work for multi-core systems, proposing SPAC: A Synergistic
Prefetcher Aggressiveness Controller for Multi-Core Systems [15]. SPAC has two phases of execution:
exploration and implementation. During exploration, a meta-controller explores all possible combinations
of throttling levels. Then during implementation, the SPAC agent uses a synergistic throttling

10

combination using a QoS metric to provide the maximum Fair Speedup (FS). FS is calculated using
harmonic mean of IPC speedups. A similar implementation by Hasenplaugh was used for controlling
cache allocations in multithreaded environments [26]. In this work, each thread is offered a new cache
allocation and tested for a “large” number of cycles. If the overall hit rate is higher during the testing
stage than the previous stage, the agent concludes that the new state is better than the old state and accepts
the change. Experiment and evaluate models greatly improve the performance of an agent. Panda
compared SPACs performance against the new state-of-the-art HPAC, demonstrating a 12.3%
improvement over HPAC for a 4-core system, a 14.9% improvement for an 8-core system, and an 18.3%
improvement for a 12-core system.

11

4 Background

 This research manages the prefetcher aggressiveness on MLC prefetchers using a Q-learning
implementation. To provide the reader a better understanding of the problem we are solving, we first
introduce the fundamental principles of caching and the two MLC prefetchers we are optimizing. Then
we discuss the importance of a prefetcher’s aggressiveness. Finally, we explain the fundamental ideas of
Q-learning.

4.1 Caching Overview

Program data is stored in memory. When the program needs to use data, the core generates a
request to retrieve it from memory. Memory request have long latencies – hundreds to thousands of clock
cycles. Latency is incurred because the memory system is gigabytes in size causing long look-up times
and the main memory is far away from the core and built with a slow transistor design. The general
process of a memory request is the following: first, the core must generate a request for a memory
address, then the memory system must locate the data and send it to the core, finally the core receives the
data and continues execution. Long latencies slow down the execution of a program, negatively impacting
performance.

The solution to reducing the long latencies is caching. Caches are hardware structures that store
smaller amounts of memory closer to the core to improve performance. This allows for efficient reuse or
retrieval of previously computed data. Intel Xeon processors have four main caches; L1-Instruction cache,
L1-Data cache, L2 cache (MLC), and a shared L3 cache (LLC). The L1 cache is unique to each core,
while the L2 and L3 caches are shared between cores. Each cache is composed of 64-byte cache lines.
The L1 caches are the smallest caches, typically only 32KB in size created using high-performance
transistors. L2 caches are the second smallest, typically 256KB, sometimes shared between two cores.
Finally, the L3 cache is the largest cache, typically 32MB or larger, shared by many cores.

When a memory address request is generated, caching speeds up the process of retrieving the data
if the memory address is stored in a cache, hence bringing the memory closer to the core located in
smaller data structures with faster look-up times. If a memory request is generated and the data is stored
in the L1 cache, there is almost no latency from when the memory request is generated, to when the
information is available for the core. L2 and L3 caches are farther away from the core and have longer
lookup times, thus causing longer latencies. A memory request that does not exist in the L3 cache has the
longest latency. It can take hundreds to thousands of cycles to retrieve a memory address from DRAM
before it is available to the core. Therefore, one goal of the memory subsystem is to minimize the number
of DRAM memory accesses.

A structure within a cache is a cache block. A cache block is composed of a certain number of
cache lines; the number of cache lines per block is the associativity. In Intel architectures, the L1 and L2
caches are typically 8-way caches, meaning that eight cache lines can fit into a single cache block. Having
more ways in a cache is useful because it reduces the number of collisions resulting in a valuable cache
line being evicted. A collision is when a new cache line must be added to the cache, but the cache does
not have an available cache line. The problems with increasing the associativity is threefold: difficult
hardware design, power constraints, and lookup latency. Higher associativity is difficult to design in

12

hardware because of the additional routing paths, hashing algorithms, and eviction policies. This incurs
higher power to manage these additional features. Finally, the lookup latency increases because more tag
bits are required, thus more bits are compared to determine if a line exists in a cache.

A cache line is derived from a memory address. Today’s machines use either 32 or 64-bit
memory addressing. A memory address is broken into three main sections, the tag, the index, and the
offset bits. The offset bits specify the specific word within a cache line. For example, in a 64-byte cache
line with a 4-byte word, there are 16 unique data values, so we need 4 offset bits to be fully
representative. The index bits decide which set the cache line hashes into. For example, in a 256KB cache
with an 8-way associativity and 64-byte cache line, there are 512 cache sets, so it uses 9 index bits to
represent each of the 512 sets. Finally, the tag bits are used to identify a cache line with a larger group a
data. Tags are used to quickly decide if a cache line exists in a cache. If the previous example is a 32-bit
machine, 4-bits are used for the offset, 9-bits are used for the index, and 19-bits are used for the tag.

Using a 32-bit addressing mode, a core can generate a request for a 64-byte cache line from a
virtual memory space of 232 addresses. The index bits are used by the memory subsystem to calculate
which cache set the cache line goes into. If there is a free cache line in the cache set, then the cache line is
added directly into the cache. If all the ways within a cache set are used, then the memory subsystem must
choose one of the ways to evict, making space for the new line. Cache eviction or replacement policies
are how the memory subsystem decides which cache line to evict. Intel processors use a Pseudo Least
Recently Used (PLRU) algorithm to decide which cache line to evict. The PLRU method combines
recency with frequency to evicts the cache line that is least likely to be used in the future.

4.2 MLC-Prefetchers

The Mid-Level-Cache for an Intel Xeon core has two active prefetchers; the Data Prefetch Logic
and the Adjacent Cache Line Prefetcher [1, 2, 3, 4]. The Data Prefetch Logic (DPL) detects streaming
requests and fetches streams of instructions and data from memory to the L2 Cache. The DPL initialize a
new stream for individual page accesses. Each stream of the DPL detects simple stride memory access
patterns. Consider the following memory access pattern {a, c, e}. This pattern has a stride length of 2.
One of the DPL streams will capture this plus 2-stride pattern and generate a prefetch for address {g}.
Hyperparameters surround this prefetchers functionality, such as minimum and maximum detectible
stride length, number of prefetches to generate on a detected stride pattern, confidence thresholds based
on DPL accuracy metrics, and maximum number of streams.

The Adjacent Prefetch Cache Line (ACL) is a simple prefetcher which fetches the cache line
adjacent to the current memory request [4]. This prefetcher is a highly active prefetcher that exploits
spatial locality. A cache-miss on an Intel processor with ACL enabled brings in 128 bytes, leading to
higher bus utilization. When ACL is disabled, the system only fetches 64 bytes. Enabling the ACL
prefetcher is useful for workloads with high spatial locality [4]. That said, disabling the ACL prefetcher
reduces memory bandwidth traffic by flooring unused prefetches. Both the DPL and ACL prefetchers
follow similar rules about generating prefetches. A few prefetcher design choices for when to generate a
prefetch are; on a cache hit or miss, on a prefetch hit, on a store address, on a software or hardware
prefetch, or on a page walk [5]. These design decisions are built into the core and are not configurable
post silicon.

13

4.3 Prefetcher Aggressiveness

The purpose of prefetching is to hide I/O latencies. Instead of generating a memory request and
waiting for the memory address to become available, a prefetcher will try to predict future memory
addresses and pull them into the cache for immediate use, saving hundreds to thousands of cycles per
prefetch hit. The issue with speculative future accesses and increasing data coverage is the potential to
prefetch unnecessary data [6].

The following are three important benefits of prefetching. 1) Prefetching reduces or eliminates
demand misses by speculating necessary information into the cache prior need. 2) Prefetching avoids long
delays by demand requests when device response times are irregular. 3) Data-driven workloads exhibit
high memory demand with little reuse making prefetching an optimal decision to limit number of single-
use demand misses.

The following are four negative effects of prefetching. 1) Prefetching can cause cache pollution
where a cache becomes polluted with unnecessary data, ejecting useful data. 2) Prefetching increases
physical memory pressure where page replacement daemon is stressed, and new pages may be evicted
before being used. 3) Prefetching adds inefficiency to I/O bandwidth, especially when large amounts of
unnecessary data are requested, creating a memory bandwidth performance bottleneck. 4) Prefetching
increases device congestion where demand requests are padded with asynchronous prefetch requests
causing latency in demand queues [6].

Prefetchers balance positive and negative impacts by changing aggressiveness. Prefetching
aggressiveness is defined by is defined prefetcher distance and prefetcher degree. Prefetcher distance
represents the distance from the current address to a new prefetch request. Distance is a metric of
timeliness in that it represents how far the prefetcher stays ahead of the demand access stream. For
example, if a demand access to address {a} is generated immediately following a prefetch request for
address {a}, then the prefetcher has poor timeliness because the request did not significantly reduce
memory latency. Conversely, if a prefetch is generated for address {a} but {a} is evicted before it is used,
the prefetcher is too far ahead of the demand access stream, thus also exhibiting poor timeliness.

Prefetcher degree represents how many lines are prefetched in a single request. An aggressive
prefetcher fetches many lines farther away from the current address whereas a conservative prefetcher
fetches few lines close to the current address [7].

4.4 Q-Learning

 Q-learning is a reinforcement learning algorithm that seeks to learn a policy that maximizes total
rewards. This algorithm is a form a dynamic programing requiring minimal computational and memory
demands [27]. A Q-learning agent is composed of states, actions, and rewards. An agent represents the
world it exists in using states noted as 𝑆. At every state, an agent can take some set of actions 𝐴. The
agent receives a reward for an action 𝑎, taken in state 𝑠. If the action is beneficial, then the agent receives
a large reward 𝑟. If the action is not beneficial, the agent receives a small reward.

 A simple situation where Q-learning can be applied is a car at a traffic light. A traffic light has
three states - red for stop, yellow for yield, and green for go - encoded 𝑆 = {𝑟𝑒𝑑, 𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑒𝑒𝑛}. The

14

agent can take two actions in this situation - drive or stop - encoded 𝐴 = {𝑑𝑟𝑖𝑣𝑒, 𝑠𝑡𝑜𝑝}. The total number
of states in this case is three, and the number of actions is two. Therefore, the agent must learn six
rewards.

 In this environment, if an agent drives through the traffic light legally (either a green or yellow
state) the agent is rewarded a +1 reward. If the agent acts illegally by driving through a red light, then the
agent receives a -1 reward. All other cases, the agent receives no reward. We can encode the rewards
learned by this agent after many updates in Table 1. All entries in this table is notated as 𝑄(𝑆, 𝐴) and a
single entry is notated 𝑄(𝑠, 𝑎).

State drive stop

red -1 0

yellow 1 0

green 1 0

Table 1: Example Q-learning Agent

 A Q-learning agent must learn the reward values at each state by taking an action an receiving a
reward. To do this, the agent first survey’s its environment to decide its state. Then the agent chooses an
action 𝑎, that maximizes the reward 𝑟, in state 𝑠, notated max (𝑄(𝑠, 𝐴)). This agent may decide with
some probability 𝜖 to take a random action allowing it to explore. After the agent decides which action to
take, the agent receives a reward.

 The value 𝑄(𝑠, 𝑎) is updated using the Bellman equation shown in Equation 1.

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼൫𝑟 + 𝛾 ∗ max (𝑄(𝑠′, 𝐴)) − 𝑄(𝑠, 𝑎)൯ (1)

The Bellman equation is composed of two parts; the previously assumed reward 𝑄(𝑠, 𝑎), and the
update using the actual reward 𝑟 [28]. The immediate reward 𝑟 is the reward provided to the agent after
taking action 𝑎. The learning rate 𝛼 weights the current reward against the assumed reward. Notice that
this equation uses the best reward from the new state 𝑠′ in the reward for the previous action. This is
useful because it weights future rewards in the agents’ current reward. The discount factor 𝛾 scales the
effect of the future reward on the previous state-action pair. In the example above, the discount factor was
0.

 The fundamental idea of the update function in Q-learning is that the agent updates its reward
using the difference between the received reward 𝑟 and the previously stored reward 𝑄(𝑠, 𝑎) plus some
scaling of future rewards by taking the action 𝑎. In the example above, this means that the reward at
𝑄(𝑔𝑟𝑒𝑒𝑛, 𝑑𝑟𝑖𝑣𝑒) will approach 1 but never reach 1.

15

5 Motivation

This section presents an investigation of the interactions of the MLC prefetchers. As previously
noted, prefetching can affect a systems performance positively or negatively. We conducted a preliminary
investigation which realized the performance impact for enabling or disabling the MLC prefetchers.
Current systems enable the DPL and ACL prefetchers by default. Ideally, a dual prefetcher configuration
should perform better than a single prefetcher configuration. If the dual prefetcher configuration performs
worse than a single prefetcher configuration, then the two prefetchers are negatively interacting. This
experiment was intended to reveal negative prefetch interactions, motivating future work for prefetcher
synergism.

We compared three system configurations; a system with only the ACL prefetcher enabled, a
system with only the DPL prefetcher enabled, and a system with both the DPL and ACL prefetchers
enabled. We evaluated each system configuration using traces of regions of interest within workloads
from the SPEC 2017 suite. The performance metric used for comparisons was instructions per cycle
(IPC). We used a simulation tool to model the three system configurations. The results from the
simulation are shown in Figure 1.

Figure 1: ACL and DPL prefetcher interactions show benefit for 40% of the traces with both prefetchers enabled,
indicating that the interactions between the ACL and DPL two prefetchers must be managed.

 We found that only 40% of traces benefited from using both the ACL and DPL prefetchers. The
system is underperforming on 60% of the traces due to negative interactions between the ACL and DPL
prefetchers. Causes for negative prefetcher interactions are discussed in Section 4.3. Clearly, a prefetcher
management scheme is required to maximize the systems performance.

Our preliminary results are supported by prior work of Liao and Hung. Liao and Hung who
showed that enabling and disabling prefetchers within an entire system has significant impact on
performance [2]. They pretrained a machine learning model to optimally enable or disable the MLC
prefetchers, revealing a 20% speedup execution time for cloud computing applications. Heibel improved
upon Liao and Hung’s work, designing an online training model using a contextual bandit reinforcement
learning framework to learn optimal MLC prefetcher enablement configurations [9]. Rahman took these
studies a step further, analyzing all the prefetchers within a system. Rahman researched the effect of

16

hardware prefetching on multithreaded code and presented a machine-learning technique for predicting a
system-wide optimal combination of prefetchers for a given application, noting that turning on all
available prefetchers within a system rarely yields the best performance [10]. These three research teams
showed that toggling prefetchers on or off based on system telemetry data has performance impact.

 Motivated by our initial findings and supported by prior art, we focused our investigation on
optimally configurating prefetchers at a finer granularity than the prior art, two-state models, which only
enable or disable prefetchers. A prefetcher with aggressiveness degree zero has the equivalent
functionality of disabling a prefetcher, and non-zero aggressiveness degrees have the equivalent
functionality of enabling a prefetcher and weighting its performance by an undiscovered scaling factor.
Our primary investigation was focused on developing a controller for tuning the prefetcher aggressiveness
degree at run time.

17

6 ADM Implementation: Prefetcher Aggressiveness Controller

 In this work, we propose the Aggressiveness Degree Manager (ADM). ADM utilizes the general
Q-learning algorithm outlined in Section 4.4, proposing a state, action, and reward scheme to best manage
the prefetcher aggressiveness degree. In this section, we introduce the reinforcement learning algorithm
we used for controlling the aggressiveness of a prefetcher. First, we describe the Q-learning initiation and
provide intuition about why this configuration performs well. Then we discuss optimization techniques
that we developed to decrease the time for an agent to converge on an optimal prefetcher configuration
policy.

6.1 ADM Initialization and Configuration

 The proposed ADM is designed to maximize the processor performance subject to a quality of
service (QoS) metric, such as instructions per cycle (IPC), power, or performance per watt. A Q-learning
scheme is used for managing the prefetcher aggressiveness, with rewards based on the QoS metric. The
Q-learning methodology described in Section 4.4 is implemented in a data structure called a Q-table
which has states, actions and rewards. The Q-table in this implementation uses states representing the
number of cache lines to prefetch (aggressiveness degree), actions that change the prefetcher
aggressiveness, and rewards representing the expected performance of taking an action in each state. For
example, an ADM agent initialized with three states, <0, 1, 2> means the agent may learn a policy to
optimize its performance using a disabled mode (state 0), a single line prefetch mode (state 1), or a dual
line prefetch mode (state 2).

The ADM agent has three actions; increase aggressiveness degree, decrease aggressiveness
degree, and maintain current aggressiveness degree. These three actions are encoded by the vector <-1, 0,
+1>. If an agent requests an action, then the returned value will be +1 to increase the aggressiveness
degree, -1 to decrease the aggressiveness degree, and 0 to not change the aggressiveness degree. Thus, the
size of the Q-table is N*3 where N represents the maximum number of possible degrees, 𝑆 =

{0, 1, … , 𝑁}}and 𝐴 = {−1, 0, 1}.

The reward for any state 𝑠 and action 𝑎 is represented as 𝑄(𝑠, 𝑎). The reward value for each state-
action pair is learned over time. The value of any state-action pair represents the expected reward
according to the user defined QoS metric. For this research, we use IPC as our QoS metric [12, 13]. The
agent updates the reward values according to the Bellman equation as shown in Equation 1 [11].

Degree Decrease Same Increase

0 0.50 0.50 1.00

1 0.50 1.00 2.00

2 1.00 2.00 3.00

3 2.00 3.00 2.00

4 3.00 2.00 1.00

5 2.00 1.00 0.50

6 1.00 0.50 0.50

Table 2: Sample situation after reaching steady state.

18

A sample Q-table is shown in Table 2. Notice that the aggressiveness degree states range from 0
to 6 and the actions are increase, decrease or stay the same. The rewards are shown at the intersection of
each state-action pair. For example, if the agent is in state 1, the expected reward from taking the increase
action is 2.00. Looking at this example from a higher level, the optimal configuration is aggressiveness
degree 3, showing the highest reward.

Notice that each of the surround states are guiding the agent towards this middle state. When the
agent needs to choose an action, it takes the action presenting the maximum reward in a given state. For
example, if the agent was forced into state 0, it’s next action would be to increase aggressiveness, thus
changing from state 0 to state 1. Then the agent would increase aggressiveness to state 2, then to state 3.
Once the agent is in state 3, the agent chooses the “Same” action because it presents the highest reward.
Occasionally, the agent will take a random action and leave the optimal configuration in case the
environment changes and state rewards need to change, however, assuming steady state with no random
actions, the agent will converge optimally.

6.2 Updating Q-table and Calculating Reward

 A critical design decision for a Q-learning agent is when the agent updates its rewards. An ADM
agent should be rewarded from the impact of the current state. The difficulty with rewarding an agent
acting on a prefetcher is that a new prefetcher configuration does not necessarily show immediate
performance improvement. This is because a cache line might be prefetched but go unused for a long
period of time. Only after thousands of instructions may this cache-line become useful. For an agent to
evaluate the effectiveness of its current state, the agent must allow the system’s performance to “settle”
by allowing many instructions to pass before calculating the reward and taking a new action. The
“settling” period varies between workloads representing both timeliness and lifetime of a prefetched
cache line.

 Timeliness is a quantitative metric for comparing when a cache line is prefetched to when it is
needed on the critical path of a program’s execution. Work by W. Heirman addresses timeliness using an
adaptive prefetching technique dubbed “Near-side Throttling” [23]. If a prefetcher generates a request for
a cache-line, but then that cache-line is immediately needed on the critical path, the speculative prefetch
distance is not aggressive enough. Similarly, if a prefetcher generates a request for a cache line but is
inserted into the cache but evicted before it was needed, the speculative prefetch distance is too
aggressive. This is also an indicator of the lifetime of a cache-line. If the lifetime of a prefetched cache-
line is short, it may potentially have poor timeliness by becoming an unused prefetch eviction. If the
lifetime of a prefetched cache-line is long, then aggressive prefetching may pollute the cache. In our
work, we needed to address timeliness and lifetime issues to optimally tune the prefetcher aggressiveness
degree.

 To address QoS changes due to MLC prefetching issues such as cache pollution, a bottleneck at
the memory pipeline, prefetch timelines, and cache line lifetime, we updated the Q-table after executing a
specific number of instructions. In our ADM performance evaluation described in Section 8, we used an
update frequency of 128,000 instructions. Note that ~33% of all instructions are either load or store
instructions for the SPEC CPU2017 suite [14]. Thus, every Q-table update represents the performance
impact of a prefetcher against ~40,000 load or store instructions. Since a miss at the L2 cache can cost

19

hundreds to thousands of cycles, ~40,000 loads or stores will provide enough data for an agent to realize a
performance impact from the current configuration. That said, further work is needed to quantify the
importance of the update frequency hyperparameter.

 At each update interval, the agent calculated the QoS value. In our studies we calculated
instructions per cycle using the instruction and cycle counters from the associated MLC prefetcher core.
These performance counters are available both in hardware and simulation, making the IPC a realistic
QoS metric to maximize. Further analysis for QoS metric is presented in Section 7.3.

Algorithm 1 is an implementation for the initialization and training functions for an ADM agent.
Note there are two global functions getInstructionCount() and getCycleCount() which return the
instruction counter and cycle counter values respectively.

Algorithm 1: Q-Learning Initialization and Training Function

class QLearning:
 states = []
 actions = []
 qtable = {}

 function addState(state):
 self.states.append(state)

 function addAction(actions):
 self.actions = a

 function initialize():
 for s in self.states:
 self.qtable[s] = {}
 for a in self.actions:
 self.qtable[s][a] = 0

 function getAction(s):
 max_reward = 0
 for a in self.qtable[s]:
 if self.qtable[s][a] > max_reward then:
 best_action = a
 max_reward = self.qtable[s][a]
 self.old_state, self.old_action = s, a
 return best_action

 function updateReward(r):
 old_reward = self.qtable[self.old_state][self.old_action]
 self.qtable[self.old_state][self.old_action] +=
 LR * (r - old_reward + G*future_reward)

update_frequency = UPDATE_FREQUENCY
prev_i_count, prev_c_count = 0, 0
action = 0

function InitializeAgent(MAX_DEGREE):
 q_table = new QLearning()
 for (i = 0; i < MAX_DEGREE; i++):
 q_table.addState(i)
 q_table.addActions(<-1, 0, +1>)
 q_table.initialize()

function TrainAgent(q_table, degree)
 delta_i = getInstructionCount() – prev_i_count
 if (delta_i > update_frequency) then:
 state = <degree, action>
 reward = delta_i / (getCycleCount() - prev_c_count)
 q_table.updateReward(reward)
 prev_i_count = getInstructionCount()
 prev_c_count = getCycleCount()

20

 The ADM agent updates its state based on a delta instruction count, seen in the TrainAgent
function of Algorithm 1. The intuition why we used instructions rather than cache hits or misses was
because instructions is constant between degree states. Assume the update frequency is based on cache
misses. If aggressiveness degree 0 causes more cache misses than aggressiveness degree 16, then an agent
in aggressiveness degree 0 will be updating its reward more frequently than an agent in aggressiveness
degree 16. This is an unfair scheme and biases the number of updates one state receives compared to
another. This causes some states to converge on a realistic estimated reward faster than others, which is
unfair. The instruction count does not vary with different degree states, how fast those instructions are
executed will change, and the makeup of these instructions may differ, but the raw number of instructions
executed can be held constant. Thus, the instruction count is a useful metric for when to update the ADM
agent.

The ADM agent uses a reward derived from a high level QoS metric. An alternate reward scheme
uses a combination of cache performance statistics to gauge the success of a system [7, 8, 10, 13]. The
issue with optimizing a cache performance statistic is that the statistic might not have a strong correlation
to overall system performance.

For example, the cache prefetcher accuracy may not be a useful metric. A cache prefetcher might
have poor accuracy because it is prefetching more lines than needed. Although this pollutes the cache and
uses extra memory bandwidth, if the workload has poor data-reuse and memory bandwidth is not a
bottleneck, then the prefetcher may be improving performance despite poor accuracy. Similarly, a high
cache hit-rate does not necessarily mean higher performance. A high hit-rate may indicate thrashing in the
L1 cache. These two reward schemes show that designing a reward metric using cache performance
statistics does not necessarily have high correlation to the overall system performance. In fact, prior work
[7] found a correlation factor of ~.8 to IPC using a combination of cache statistics. Other researchers
argue that using a reward derived from a high-level QoS metric shows better system performance [12, 15,
16] because this reward has 1.0 correlation to IPC. If an ADM agent’s goal is to maximize IPC, it should
use a metric derived from the IPC as a reward. This is explained further in Section 7.3.

6.3 Intuition about Success of this Algorithm

 Q-Learning, a powerful machine learning technique, is implemented to address the prefetcher
aggressiveness degree problem. Q-learning is an algorithm that expands upon simple hill climbing. Hill
climbing works well in static environments because it can quickly ascend steep slopes to a decent
maximum reward. A known drawback to hill climbing is that it may not find the optimal configuration.
However, for this problem, most environments will have a convex optimization space, meaning a local
minimum is also the global minima. Thus, hill climbing in general would be a great solution to this
problem, except that the environment is not static.

 Hill climbing is a poor solution in a dynamic environment because it relies on the assumption that
all actions increase its performance. Hill climbing does not learn about the environment, it only searches
for an optimal solution. Searching and learning are different because learning requires the agent to
remember previous states, previous actions, and previous rewards. Searching does not have this
requirement and general hill climbing does not have an “unlearning” mechanism. A major issue for hill
climbing occurs in a dynamic environment if a configuration is optimal, but then becomes sub-optimal.

21

The hill climbing algorithm will become stuck in this configuration because it can not “unlearn” that the
configuration is no longer the optimal configuration. Furthermore, if two states are similar in
performance, creating a plateau or shoulder in the optimization space, the hill-climbing algorithm
becomes stuck. These are two significant challenges with simple hill climbing that Q-learning solves.

 Q-learning solves the challenge of being able to “unlearn” previously optimal because of the
Bellman equation. The Bellman equation causes each state to converge to the expected reward in a
changing environment by using the difference between the received reward and the expected reward. This
is a characteristic of most reinforcement learning algorithms, making reinforcement learning a powerful
solution.

A Q-learning agent solves the second challenge of escaping plateaus and shoulders through
random actions. Using a random exploration technique, a Q-learning agent will leave assumed optimal
plateau regions and learn about the surrounding area. This is another common technique among
reinforcement learning algorithms, making reinforcement learning a useful solution.

The reason why Q-learning is specifically useful for this problem over other solutions is because
of the minimal hardware requirements. Q-learning only requires an array of memory and a few
calculations over a long period of time. The simplicity of the algorithm allows it to be implemented in
hardware. The simplest method of implementing this algorithm is to store the Q-table at the OS level, and
when the hardware needs to know how to change the configuration, the hardware can request information
for the OS. Furthermore, the amount of memory locations needed is the number of states time the number
of actions. For the prefetcher aggressiveness degree problem, this will require less than 50 states total,
which is an insignificant memory footprint.

Another reason why Q-learning is a successful algorithm for this problem is because of its
scalability. The problem we are solving is for a single core, single application; however, Q-learning is
scalable to multi-core, multi-application environments with very few modifications. Future work in this
space will reveal the benefits of Q-learning in a multi-application, multi-core environment.

 To support multi-application, the OS must allocate the memory for the Q-table for each
application. An obvious location to put this memory is at the process control block. Thus, when the
application is running, the Q-table is loaded for the OS to use, and when it is not running, the OS can use
a different applications Q-table to configure the hardware optimally.

 To support multi-core, the Q-tables can work together to optimize the performance of the global
system, rather than the local system. This may require additional Q-learning agents which manage lower
level Q-learning agents. In this case, the lower level Q-learning agents operate on each prefetcher per
core, and the higher level Q-learning agents look at the performance of all the cores and scale the rewards
for each lower level prefetcher based on the large scale system performance.

 Finally, this Q-learning can be applied to other hardware components, not just the prefetcher.
Hardware components are configured statically by hardware designers. These designers test the different
configurations across a set of workloads and take the globally optimal configuration. However,
performance can be improved by dynamically adjusting these hardware parameters. Q-learning offers a
low-cost method for dynamically configuring any hardware parameter.

22

6.4 Optimization Techniques for ADM Agent

 In Sections 6.1 and 6.2 we introduced the fundamental Q-learning implementation for a
prefetcher aggressiveness degree manager. Three drawbacks to a basic ADM agent are poor cooperation
with other ADM agents, minimal exploration in new environments, and slow time to converge on an
optimal configuration. In this section we discuss optimization techniques used to combat these issues.

6.4.1 Alternating Rewards

 We examine the impact of our ADM agent using three experiments described in Section 8.1. The
first experiment is applying an ADM agent to the Adjacent Cache Line (ACL) prefetcher, the second
experiment applies an ADM agent to the Data Prefetch Logic (DPL) prefetcher, and the third experiment
applies an ADM agent to both the ACL and DPL prefetchers. The issue with the current Q-learning
scheme is that it does not provide an interface for agents to interact. Without the ability for agents to
interact, it is difficult for the agents to work together to find the optimal prefetcher configuration.

 A central challenge in reinforcement learning with multiple agents is the “temporal credit”
assignment problem: to which actions should each agent attribute positive or negative reward? In our dual
prefetcher optimization environment, two agents are trying to optimize for the overall system
performance. If both agents act simultaneously, it becomes difficult for an agent to quantify the impact of
its action.

We propose an optimization technique we call Alternating Rewards (AR). Consider a dual agent
environment with agents 𝑎 and 𝑏. Agent 𝑎 will take an action, then receive a reward for its action. Then
agent 𝑏 will take an action and receive a reward for its action. This alternation continues for the duration
of the agent’s execution. The result of Alternating Rewards is when an agent needs to update a state-
action value, it knows that the presented reward accurately represents the impact of its most recent action.
Alternating Rewards can be taken a step further using a windowing technique, where dual agent’s action-
reward sequences overlap by some fraction of instructions. The fraction of overlap becomes the percent
impact of the combined actions of both agents.

To help improve synergism between agents, we build off Alternating Rewards using a weighted
moving average of the past rewards for the current reward. The formula for weighted moving average is
show in Equation 2.

𝑅ௐெ஺ =
௡ିଵ

௡
𝑅ௐெ஺ +

ଵ

௡
𝑅௡௘௪ (2)

𝑅௡௘௪ represents the newly calculated reward. 𝑅ௐெ஺ encodes the performance of both agents and
significantly improves their ability to work together. In our implementation, we use a weighted moving
average using 𝑛 = 3. Consider the following sequence of rewards: 𝑥, 𝑦, 𝑧. The reward values 𝑥 and 𝑧 both
come from actions by agent 𝑎 and reward value 𝑦 comes from an action by agent 𝑏. This is the type of

reward sequence generated by AR. The weighted moving average calculates the current reward using;
ଵ

ଷ

of the reward from the agent’s most recent action,
ଶ

ଽ
 of the reward from the other agents most recent

action,
ସ

ଶ଻
 of the reward from the agents second most recent action, and

଼

ଶ଻
 of the reward from the WMA

of all previous rewards. These agents are working together in the sense that they are encoding each

23

other’s performance into the reward value, weighing the impact of their own reward higher than the other
agents’ reward.

An important note about the environment is that the calculated QoS reward from an agent’s
action has high variance from the average reward. This is due to the nature of how programs execute, in
that cache misses can cause significant performance loss. Thus, if one sequence of instructions has only a
few cache misses, but the next sequence of instructions has many cache misses, the reward for each
sequence will vary greatly.

 The weighted moving average equation accounts for the variance in the reward values, weighting
all previous rewards at almost 30% of the current reward. This is important to allow the agent to learn the
average reward over time, rather than a highly volatile current reward. Also note that when this reward is
used to update the agent’s state-action value, the agent applies the Bellman equation which has a learning
rate, further reducing the variance and allowing the agent to learn the average reward for the current state.

6.4.2 Random-Action Annealing

 An important function of Q-learning is the ability for an agent to learn an environment through
random actions. Allowing an agent to take random actions during the initial phases of execution is
important for the agent to learn about its environment without worrying about negative consequences.
This is a critical learning phase, especially if the reward space is multi-dimensional with many local
maxima or minima.

As mentioned in Section 4.4, a Q-Learning agent uses a variable 𝜖 for its percent chance of a
random action. We propose Random-Action Annealing (RAA) where 𝜖 is initialized to a high value and
decreased over time until it reaches a minimum value. Figure 2 shows an agent who’s 𝜖 is initialized with
an 80% chance of taking a random action. The agent decreased its chance of random actions from 80% to
8% over 128 iterations. The agent then maintained the 8% chance of random action.

Figure 2: Agent Annealing percent chance of Random Action.

24

In a static environment with few states this method works well to help the agent build a quick
understanding of its environment. However, an agent in a dynamic environment must have the ability to
explore new environments quickly. A simple method to allow the agent to explore its new environment is
to raise its 𝜖 value and apply Random-Action Annealing.

When an agent detects a major change in its environment, the agent raises its 𝜖 value and anneals
the value to a defined minimum 𝜖 value. The number of iterations for the agent to anneal its PCRA value
is a hyperparameter that must be further examined. The agent detects major changes in its environment by
comparing long term rewards vs. short term rewards. The long-term reward and short-term rewards are
calculated using a weighted moving average as described in Equation 3. An implementation for this is
shown in Equation 4. In this implementation, the long-term reward is calculated using n=100 and the
short term is using n=10.

𝑅௟௢௡௚ =
ଽଽ

ଵ଴଴
∗ 𝑅௟௢௡௚ +

ଵ

ଵ଴଴
∗ 𝑅௜௠௠௘ௗ௜௔௧௘ (3)

𝑅௦௛௢௥ =
ଽ

ଵ଴
∗ 𝑅௦௛௢௥௧ +

ଵ

ଵ଴
∗ 𝑅௜௠௠௘ௗ௜௔௧௘ (4)

If the agent detects a large discrepancy between the long-term and short-term reward, the agent
raises its PCRA and applies Random-Action Annealing. Future work is necessary to determine an optimal
threshold for the discrepancy between the long-term and short-term IPC and the optimal n values for the
long and short term reward calculations.

6.4.3 Top Down Convergence

Traditional Q-Learning implementations initialize all rewards to zero. This means that the first
state an agent explores will immediately have a higher reward value than all other states (assuming a non-
negative reward). The agent in this case is trying to prove that certain state-action pairs are better than the
others. Thus, in a static environment, the agent will always take the same sequence of actions assuming
no random actions. Clearly, an agent initialized with all rewards initialized to zero has restricted learning
potential and commonly leads to the agent learning a sub-optimal policy.

The alternative to initializing all rewards to zero is to set all the rewards to a value close to the
estimated optimal reward. Instead of proving a state-action pair is beneficial, the agent is proving that a
state-action pair is not-beneficial, lowering it compared to the other possible states. Using this policy, the
agent is forced to explore widely initially, proving that certain states are immediately worse than others
and should not be revisited. We dub this policy Top Down Convergence (TDC).

In our Q-learning implementation, both the ACL and DPL prefetchers are restricted to a few
states with three actions. Thus, our agent can afford to explore all possible state-action pairs without
incurring too much performance penalty. This is called top-down convergence because all rewards are
initialized higher than expected and are lowered such that the optimal state-action pair is revealed by
process of elimination.

An agent using Top Down Convergence, converges on the optimal solution by first assuming all
states are potentially beneficial. Then through exploration, the agent proves that some states offer worse
rewards than others, eventually converging on the optimal solution. The name Top Down Convergence

25

makes sense because all rewards are initialized high and are lowered such that the optimal state-action
pair is revealed through process of elimination.

Top Down Convergence works well when the agent’s Q-table size is small. This is because Top
Down Convergence essentially forces the agent to explore all possible state-action pairs and agents, while
only a few state-action pairs can afford this exploration. However, Q-learning agents with hundreds of
state-action pairs must initialize all rewards to zero, otherwise the agent will spend too much time proving
actions are poor, rather than discovering a good policy.

Top Down Convergence can be paired with Random-Action Annealing such that when the agent
detects a significant change in its environment, both the 𝜖 is increased and all Q-table rewards are set
higher than new short-term reward. Top Down Convergence and Random-Action Annealing significantly
improve an agent’s ability to explore, giving it a better chance at discovering the globally optimal policy.

6.4.4 Set on Increase or Decrease

Regularization is a powerful technique used to improve a model’s generality. Regularization is
used in deep learning models that require training and testing phases to prevent the model from overfitting
to the training data [17]. Reinforcement learning models use regularization to simplify an agent’s
understanding of its environment by taking the agents’ large search space and reducing the problem’s
complexity via a regularization policy, thus deriving a faster and simpler solution [18].

The Set on Increase or Decrease (SID) optimization technique occurs when the agent selects the
increase or decrease action. For example, if an agent’s current state is aggressiveness degree 1 and it takes
an action to increase its aggressiveness to degree 2, the agent will not use the reward it received by
transitioning from degree 1 to degree 2, but rather set the “increase aggressiveness” action from degree 1
with the “no change” action from degree 2.

In an environment where rewards for each state are constant, the “increase aggressiveness” action
for degree 1 and “no change” action for degree 2 will converge to the same value. Similarly, the “decrease
aggressiveness” action from degree 2 and “no change” action for degree 1 will converge to the same
value. Thus, the agent is trying to learn duplicate reward values unnecessarily. Furthermore, the “increase
or decrease aggressiveness” actions are less frequent than the “no change” action after a period of time,
thus learning the correct reward for increase or decrease actions is more difficult.

Our solution eliminates the need to learn the same value twice by setting the “increase
aggressiveness” reward to the adjacent higher degree “no change” action reward value, and the “decrease
aggressiveness” reward to the adjacent lower degree “no change” action reward value.

This optimization technique is a form of regularization for Q-learning. The Set on Increase or
Decrease technique can be derived from the Bellman reward equation shown in Equation 1, by setting the
discount factor to a high value and making the learning rate the inverse of the discount factor; alpha is the
inverse of gamma. As the learning rate approaches zero, the difference between the reward and the old
state-action reward approaches zero, and the most rewarding action in the new state becomes our new
reward. Prior to executing this function, the agent must set the Q (S, A) reward to zero to prevent the
Bellman equation from becoming a summation driving towards infinity.

26

Now consider a ratio of alpha to gamma shown in the following expression.

𝛼: 𝛾 =
ଵ

௡
: (𝑛 − 𝑚)| 𝑛 ≫ 𝑚 (5)

Note alpha and gamma are still approaching infinity. In this expression, we are adding a transition
buffer requiring that an increase or decrease in aggressiveness demonstrate an (m/n) percent improvement
over the current aggressiveness. This value is adjustable based on the volatility of the environment, to
increase or decrease the difficulty of a state transition.

Table 3 shows an example of the Q-table for a prefetcher after many updates in a steady
environment where n = 100 and m = 1.

Degree Decrease Same Increase

1 0.99 1.00 1.98

2 0.99 2.00 2.18

3 1.98 2.20 0.99

4 2.18 1.00 0.49

5 0.99 0.50 0.19

6 0.49 0.20 0.19

Table 3: Sample situation after reaching steady state using the set on increase or decrease technique.

 From this table we can see that degree 3 is optimal in this environment with the largest reward of
2.20. We also see that each increase or decrease action reward is 99% of the corresponding next state
“same” action reward. This technique has a strong regularization affect and forces quicker convergence.

6.4.5 Quick Convergence Update

One challenge with the Set on Increase or Decrease technique is when two aggressiveness
degrees are very close in performance. As previously noted, the increase or decrease action is only taken
if the new action presents an improvement against a threshold (n/m).

If two degrees show performance within that threshold, a saddle point occurs in the Q-table and
the agent may be caught at a sub-optimal configuration. Consider the situation in Table 4 where the agent
selected random actions and resides in degree 1 highlighted in yellow.

27

Degree Decrease Same Increase

1 0.99 1.00 0.99

2 0.99 1.00 4.95

3 0.99 5.00 2.97

4 4.95 3.00 1.98

5 2.97 2.00 0.99

6 1.98 1.00 0.99

Table 4: Sample situation after reaching steady state using the previous algorithms.

 In this situation, the optimal configuration is degree 3, however, the agent is stuck at degree 1 and
will not choose to increase its aggression except by a random action because degree 2 has the same
performance. Therefore, we need an algorithm to periodically sweep across the table and propagate
valuable rewards through the increase and decrease action reward values.

 We introduce the technique of Quick Convergence Update (QCU) where the agent updates all
“increase aggressiveness” actions based on the adjacent “no change” and “increase aggressiveness”
actions and all “decrease aggressiveness” actions based on the adjacent “no change” and decrease
aggressiveness” actions. The algorithm still uses the hysteresis threshold, but instead of only using the
“no change” action it also values the corresponding increase or decrease action.

 Table 5 shows the results of applying a Quick Convergence Update.

Degree Decrease Same Increase

1 0.99 1.00 4.90

2 0.99 1.00 4.95

3 0.99 5.00 2.97

4 4.95 3.00 1.98

5 4.90 2.00 0.99

6 4.85 1.00 0.99

Table 5: Results after applying a Quick Convergence Update to the situation shown in Table 4.

 The rewards shown in bold are the updated values after a Quick Convergence Update. The agent
previously stuck at degree 1 sees that there exists a different state with a higher reward if the agent
increases its aggressiveness. After applying this technique, the agent will move towards the optimal state
quickly.

28

6.4.6 Stay-Six

An important issue we addressed was the rate of convergence when entering a new state. To do
this, we created a solution dubbed Stay-Six (SS). When an agent transitions to a new state, the agent
might only get one opportunity to explore the new state before transitioning to another state. The issue is
the agent did not have a fair opportunity to converge to the real reward at that location.

 The Stay-Six algorithm addresses this issue by requiring that the agent spend a minimum of six
updates at the new state before transitioning to a new state. Figure 3 shows the convergence of four
reward values using the Bellman equation.

Figure 3: Q-table convergence using the Bellman equation with a learning rate of 0.6 after staying in one state for
10 updates.

The final reward value is 2.0, and each reward value shown starts at a different initial value. We see
that the Bellman equation converges to the average reward after 6 updates even if the difference between
the initial reward and the average reward is significantly different. The lightest line is initialized at 0.5,
initialized at 25% of the real reward. Requiring more time for convergence is likely unnecessary because
the difference between the initial reward and the new reward will be minimal after the agent explores the
environment.

29

7 Evaluation Methodology

 We evaluated our model using a simulator because current hardware does not allow a user to
configure the aggressiveness degree dynamically. In this section, first we present the Sniper simulator,
used to simulate ADM. Then we explain our choice of workloads used to evaluate the model. Finally, we
discuss the Quality of Service metric we used.

7.1 System Configuration

We used the Sniper simulator invented by Ibrahim Hur and Wim Heirman [9]. This simulator is a
next generation, parallel, high-speed x86 simulator based on an interval core model and Graphite
simulation infrastructure, allowing for fast and accurate simulation when exploring different
homogeneous and heterogeneous multi-core architectures [9]. Sniper has an average performance
prediction error within 25% at simulation speeds of several MIPS. Source code for Sniper is available to
Intel employees through permission of the inventors who work at the Intel ExaScience Lab.

 The Sniper simulator was useful for this research because it allowed us to simulate the design for
ADM. Sniper has high precision, but average accuracy, which allowed us to make architectural
comparisons using simulation results generated by Sniper. A performance increase in Sniper due to an
architectural change will scale proportionally to real hardware. We conducted architecture comparisons
by simulating different aggressiveness degree configurations. The simulation dumped results into a file
containing performance counters for each of the major hardware components such as; number of executed
instructions, number of cycles per core, TLB accesses and misses, L1-I, L1-D, L2 and L3 cache hits,
misses, pending hits, unused evictions, etc. This file provides information across the entire system and
information localized to each core. We quantified and visualized the results from the results files.

The Sniper simulator needs a type of architecture configuration to use for simulation. We used a
Skylake Server configuration featuring a 32KiB 8-way private L1 Data cache, a 1MiB 16-way private L2-
cache and a 1.375 MiB per core 11-way shared L3-cache. Caching information is the most relevant
feature of the Sniper simulation because we are modifying the aggressiveness of L2 prefetchers which
mainly relates to the memory subsystem. Intel introduced the Skylake system to industry in 2017 and is
the most relevant architecture model we could use for comparisons to current architectures [20].

 Simulating a programs execution in software generally takes a long time. One feature of Sniper is
that it can “Fast Forward” through uninteresting regions of code. Then Sniper can enter “Detailed” mode
where it captures all performance statistics during that region. For our studies, we applied this sampling
technique to generate results from multiple regions of interest in each workload, capturing specific
behaviors. Exact sampling regions are detailed in Appendix B. We sampled ~1% of each benchmark total
instruction count in “Detailed” mode. This type of sampling is useful because short regions of interest
capture moments when one aggressiveness degree is more beneficial than the others, and in most cases,
creating a convex optimization space with only one local minima. This observation is derived from two
characteristics. First, one static configuration is optimal throughout the entirety of the region. Second, the
surrounding static configurations follow a bell-shaped performance curve. Thus, the local minima is also
the global minima in a convex optimization space.

30

7.2 Workload Selection

We used the Standard Performance Evaluation Corporation (SPEC) CPU2017 benchmark suite to
evaluate the performance of the ADM. The SPEC benchmark suite contains next-generation, industry-
standardized, CPU intensive workloads for measuring and comparing compute intensive performance,
stressing a system's processor, memory subsystem and compiler [21]. By design, these benchmarks are
useful for evaluating the success of simulation-based designs and optimization research for next-
generation processors, memory subsystems and compilers [14]. Therefore, using this set of benchmarks
made sense for evaluating the performance of the ADM. Descriptions for all benchmarks from the SPEC
2017 suite can be found in Appendix C.

Since the ADM agent seeks performance gains by optimizing the MLC prefetchers, the
workloads useful for evaluation must be MLC prefetch sensitive. Published performance characterizations
by Navarro-Torres provided a preliminary list of prefetch sensitive workloads from the SPEC suite [22].
These results were found by enabling and disabling all prefetchers at all cache levels. The workloads with
the greatest prefetcher sensitivity were 500.perlbench_r, 502.gcc_r, 505.mcf_r, 507.cactuBSSN_r,
510.parest_r, 519.lbm_r, 520.omnetpp_r, 521.wrf_r, 523.xalancbmk_r, 527.cam4_r, 549.fotonik3d_r,
and 544.roms_r.

Using the Sniper simulator, we performed a similar evaluation of the SPEC CPU2017 workloads,
isolating the sensitivity of the MLC prefetchers on each workload. We conducted this experiment by
enabling or disabling all MLC prefetchers. We found similar results to Navarro-Torres but we removed
527.cam4_r and 521.wrf_r from the evaluation set because they did not show MLC prefetcher sensitivity.

7.3 Quality of Service Models

 A Quality of Service (QoS) metric is a function of statistics, used to evaluate and compare
systems. QoS metrics, such as performance, direct the evolution of technology. In this section we
examine performance QoS metrics and how they are used in practice.

Performance is best defined as a comparison of execution time. Given two computer systems, the
system that can execute a workload faster has the higher performance. Execution time is the only metric
of performance that makes sense for comparing architectures that do not share the same fundamental
architecture design – instruction set architecture, clock frequency, pipeline stages, etc. Systems with
similar architectures can be compared using a performance metric which combines instructions, cycles,
and frequency. Metrics such as Instructions Per Cycle (IPC) and Millions of Instructions Per Second
(MIPS) combine these metrics. IPC and MIPS use instruction count per unit time to evaluate
performance. IPC can be converted to MIPS by dividing IPC by the clock frequency and scaling by 106. If
two systems use the same clock frequency, these metrics encode the same information. The benefit of
using IPC over MIPS is that IPC is a bounded metric. The theoretical maximum IPC is the number of
pipelines in a system, whereas the maximum MIPS depends on the clock frequency and pipeline stages.
Since IPC is non-negative and a higher IPC represents higher performance, graphs of IPC are useful
visual comparisons to quickly understand relative system performance. We use IPC as our performance
QoS metric to compare the ADM model against other hardware configurations.

31

8 ADM Performance Evaluation

 In this section, we demonstrate the impact of an ADM agent on prefetch sensitive workloads from
the SPEC CPU2017 suite. We consider two experiments; a single prefetcher implementation and a dual
prefetcher implementation. Both experiments compare the ADM agent against static prefetcher
aggressiveness configurations. Static prefetcher configurations are useful for comparisons because we
sample programs over short regions of interest where a single static configuration is optimal for the
entirety of the region.

We also present an investigation about the impact of the optimization techniques applied to the
500.perlbench_r, 507.cactuBSSN_r and 523.xalankbmk_r benchmarks. We demonstrate the effects of the
ADM agent by progressively adding optimization techniques. The results demonstrate rapid convergence
for both workloads analyzed.

8.1 Experimental Setup

 To implement an ADM Q-learning agent for single MLC prefetcher, we enabled either the ACL
prefetcher or the DPL prefetcher with an ADM agent. For dual MLC prefetchers, we enabled both the
ACL and DPL prefetchers, each with its own ADM agent. The ADM agents used the current
aggressiveness degree as the state variables. The actions were to increase the aggressiveness, to decrease
the aggressiveness, or to not change the aggressiveness. The DPL aggressiveness degree varied from zero
to eight lines, and the ACL aggressiveness degree varied from zero to six lines. This means that if the
DPL prefetcher detects a stride, it may prefetch up to eight stride-separated cache-lines. Similarly, the
ACL prefetcher may prefetch up to six adjacent cache-lines in a single request. Thus, the Q-table for the
DPL prefetcher had nine states, and the Q-table for ACL prefetcher had seven states.

We updated the aggressiveness of the prefetcher on intervals of 128,000 instructions; this period
provides ample time for the prefetcher configuration to impact the performance as discussed in Section
6.2. At each update, the Q-learning agent takes a random action eight percent of the time, and an action
predicting the maximum reward ninety-two percent of the time. The reward function for each action taken
uses a weighted moving average of the IPC.

Using a grid search, we derived the hyperparameters which are the DPL and ACL degree ranges,
update interval, percent chance of a random action, weights for the weighted moving average. Further
research is needed to optimally choose these hyperparameters for a larger set of workloads. The necessary
investigations include those that explore the impact of the state degree values, interval size, percent
change of a random action, and reward function.

We evaluated our aggressiveness-degree tuner on a subset of ten workloads from the SPEC 2017
suite exhibiting prefetch sensitivity. We compared eight static prefetcher aggressiveness degrees for both
the ACL and DPL prefetchers against the ADM agent: static aggressiveness degrees zero, one, two, four,
eight, sixteen and thirty-two.

Short regions of interest have a convex optimization space over changes in aggressiveness degree.
We derived this from two observable characteristics. First, one static configuration was optimal
throughout the entirety of the region. Second, the surrounding static configurations followed a bell-shaped

32

performance curve. Therefore, our results were not expected to outperform any single aggressiveness-
degree, but rather expected to converge on the optimal aggressiveness degree within each region.
Instances where the ADM agent outperformed a static configuration for an entire workload were due to
different optimal prefetcher aggressiveness degrees for different regions of interest.

8.2 Results for the ADM agent applied to the ACL Prefetcher

The Q-learning agent converged to the globally optimal aggressiveness degree within each region
for the APL prefetcher and, in some cases, found a higher performing configuration than the static
aggressiveness degrees.

We isolated the effects of the Q-learning aggressiveness tuner on the ACL prefetcher by disabling
the DPL prefetcher. We then compared the seven static aggressiveness degrees with the dynamic Q-
learning approach. From the results visualized in Figure 4, we classified each workload based on its
optimal aggressiveness degree for the APL prefetcher: 500.perlbench_r, 507.cactuBSSN_r, and
523.xalancbmk_r are degree 1 or 2 workloads; 502.gcc_r, 505.mcf_r, 510.parest_r and 554.roms_r are
prefetch degree 4 workloads; 519.lbm_r and 549.fotonik_r are degree 8 workloads; and 520.omnetpp _r is
a degree 0 workload.

The ADM agent converged to each class of aggressiveness degrees. The Q-learning approach was
within 1% of the optimal configuration for 500.perlbench_r, 505.mcf_r, 507.cactuBSSN_r, and
510.parest_r, and exceeded performance of the static configurations for 502.gcc_r, 523.xalancbmk_r, and
549.fotonik_r.

Figure 4: IPC performance comparison normalized to no prefetching for prefetcher aggressiveness degrees applied
to APL prefetcher. Higher IPC values are better.

A Q-learning aggressiveness tuner applied to the APL prefetcher on average performs 20% better
than the average of the static aggressiveness configurations, and 6.5% better than the optimal static
aggressiveness configuration – degree 4. Furthermore, the Q-learning approach has the lowest variance

33

from the optimal configuration, on average 1.5% of the optimal. This is a useful metric because it
indicates that there is only 1.5% potential improvement using the ADM agent. The best static prefetcher
shows 7.9% performance loss due to not being the optimal configuration, which is why the ADM agent is
a good innovation for this problem.

8.3 Results for the ADM agent applied to the DPL Prefetcher

The Q-learning agent converged to the globally optimal aggressiveness degree within each region
for the DPL. We performed a similar test to the APL prefetcher where we isolated the effects of the Q-
learning aggressiveness tuner on the DPL prefetcher by disabling the APL prefetcher. We then compared
the seven static aggressiveness degrees with the dynamic Q-learning approach. The results for the ADM
agent applied to the DPL Prefetcher are shown in Figure 5. The ADM agent was within 2% of the optimal
configuration for 500.perlbench_r, 502.gcc_r, 507.cactuBSSN_r, 510.parest_r, 519.lbm_r,
520.omnetpp_r, 523.xalancbmk, and 554.roms_r.

Figure 5: IPC performance comparison normalized to no prefetching for prefetcher aggressiveness degrees applied
to DPL prefetcher. Higher IPC values are better.

A Q-learning aggressiveness tuner applied to the DPL prefetcher on average performs 6% better
than the average of the static aggressiveness configurations, and .6% better than the optimal static
aggressiveness configuration – degree 8. Furthermore, the Q-learning approach has the lowest variance
from the optimal configuration, on average 1.4% of the optimal, while the best average static
configuration varies 1.9% of the optimal configuration on average. The main reason that the ADM agent
does not outperform the static DPL configurations to the same degree as the ADM agent applied to the
DPL prefetcher is because the performance variance due to DPL aggressiveness is lower than the APL
prefetcher.

34

8.4 Analysis of a Single Prefetcher ADM Agent

The performance improvement of the ADM agent manifests because of high variance in
performance due to changes in prefetcher degree within and between workloads. If there is no variance in
performance within a workload, such as 507.cactubssn_r for the DPL prefetcher, then the ADM agent can
not demonstrate performance improvement. If there is no variance in performance between workloads,
such as 502.gcc_r and 505.mcf_r for the ACL prefetcher with optimal degree four, then the ADM agent
cannot show performance improvement. The performance improvement of the ADM agent is a direct
result of the variance in optimal prefetcher configuration both between workloads and within each
workload.

The following is an example using 505.mcf_r and 507.cactubssn_r for the ACL prefetcher.
507.cactubssn_r has an optimal static prefetcher configuration of degree one and 505.mcf_r has an
optimal static prefetcher configuration of degree four. The ADM agent converges on both these
configurations. The average of the optimal static configuration performances over no prefetching for these
two workloads is 16.0%. The average ADM agent performance is 15.0% improvement over no
prefetching. This shows the ADM agent can converge on different optimal configurations. Furthermore,
the average performance improvement of static degree one on 505.mcf_r and 507.cactubssn_r is 7.8% and
the average performance improvement of static degree four on 505.mcf_r and 507.cactubssn_r is 0.7%.
The ADM agent is two times better then degree one and twenty-one times better than degree four using
these two workloads. This example demonstrates variance within workloads because the average variance
between degree one and four within 505.mcf_r is 16.5% and 507.cactubssn_r is 47.1%. It also
demonstrates variance between workloads because the difference between the optimal configurations for
each workload is 23.6%.

Tables 6 and 7 show the performance variance between these workloads for the ACL and DPL
prefetchers. The rows show performance variance within a workload while the columns show
performance variance between workloads.

35

 Degree

 0 1 2 4 8 16 32 ADM average

500.perlbench_r 96.4% 100.0% 99.6% 97.9% 94.2% 85.5% 76.8% 99.0% 93.6%

502.gcc_r 75.0% 87.4% 93.6% 98.6% 98.1% 90.7% 68.8% 100.0% 89.2%

505.mcf_r 76.8% 87.5% 94.4% 100.0% 94.3% 82.5% 76.8% 98.8% 88.8%

507.cactubssn_r 98.5% 100.0% 95.3% 69.8% 40.7% 28.5% 64.3% 99.9% 74.6%

510.parest_r 89.8% 95.5% 98.3% 100.0% 98.0% 90.6% 90.4% 99.4% 95.3%

519.lbm_r 55.6% 62.2% 71.6% 95.6% 100.0% 96.6% 55.6% 96.5% 79.2%

520.omnetpp_r 100.0% 91.9% 84.3% 76.6% 64.0% 49.2% 45.0% 93.2% 75.5%

523.xalancbmk_r 80.2% 90.3% 93.0% 88.5% 78.0% 70.3% 63.4% 100.0% 83.0%

549.fotonik3d_r 49.9% 83.3% 93.0% 93.3% 93.3% 79.1% 53.3% 100.0% 80.7%

554.roms_r 68.7% 90.8% 98.0% 100.0% 78.8% 69.3% 67.8% 97.8% 83.9%

average 79.1% 88.9% 92.1% 92.0% 83.9% 74.2% 66.2% 98.5% 84.4%

Table 6: ACL Performance Comparison Against the Optimal Aggressiveness Degree within each Workload.

 Degree

 0 1 2 4 8 16 32 ADM average

500.perlbench_r 96.8% 100.0% 100.0% 98.8% 99.4% 98.6% 97.4% 99.7% 98.8%

502.gcc_r 76.2% 85.9% 90.9% 96.4% 99.5% 100.0% 96.1% 98.0% 92.9%

505.mcf_r 61.3% 71.5% 76.6% 87.1% 98.7% 100.0% 90.1% 95.2% 85.1%

507.cactubssn_r 100.0% 100.0% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9% 99.9%

510.parest_r 89.9% 95.5% 98.0% 99.7% 100.0% 95.4% 90.7% 99.5% 96.1%

519.lbm_r 89.0% 92.9% 95.1% 97.6% 99.7% 100.0% 99.1% 99.6% 96.6%

520.omnetpp_r 100.0% 99.3% 98.5% 97.1% 92.7% 85.4% 80.6% 98.0% 94.0%

523.xalancbmk_r 92.7% 94.3% 94.5% 96.7% 99.4% 97.2% 94.8% 100.0% 96.2%

549.fotonik3d_r 52.7% 75.0% 82.7% 91.5% 98.7% 100.0% 92.3% 97.2% 86.3%

554.roms_r 72.9% 91.7% 97.8% 100.0% 92.8% 75.6% 73.3% 98.4% 87.8%

average 83.2% 90.6% 93.4% 96.5% 98.1% 95.2% 91.4% 98.6% 93.4%

Table 7: DPL Performance Comparison Against the Optimal Aggressiveness Degree within each Workload.

36

We note a few interesting observations about the results shown in Tables 6 and 7.

Observation 1: The average performance of the both the static configurations and the ADM agent against
the optimal configuration within a workload on the ACL prefetcher is 84.4% while the DPL prefetcher is
93.4%.

Reasoning: This shows that changing the aggressiveness of the ACL prefetcher has greater impact on
performance than the DPL prefetcher. The intuition why this is true is because the ACL prefetcher is
more active than the DPL prefetcher, thus, the aggressiveness of this prefetcher will cause a significant
increase or decrease in number of prefetches, which is the fundamental reason for performance change.

Observation 2: The maximum between-workload average for the ACL prefetcher is degree two at 92.1%.

Reasoning: This is a valuable observation because it shows that there is a maximum of 7.9% performance
improvement that can be captured if the agent correctly adjusts the prefetcher degree. The reason this
observation occurs is because workloads like 500.perlbench_r and 510.parest_r perform well at
aggressiveness degree 2, while workloads like 520.omnetpp_r and 519.lbm_r perform poorly at
aggressiveness degree 2. If all workloads performed well with aggressiveness degree 2, then there would
be no need for a dynamic agent, however, since there is a 7.9% performance drop on average, a dynamic
agent can perform well. The ADM agent captured much of the realizable performance gains, reducing the
performance variance against the optimal to 98.5%.

Observation 3: The maximum between-workload average for the DPL prefetcher is degree 8 at 98.1%.

Reasoning: In contrast to Observation 2, Observation 3 highlights the reason why the ADM agent does
not show as significant performance increase for the DPL prefetcher as it does for the APL prefetcher.
Since aggressiveness degree 8 is already close to optimal with only a 1.9% performance improvement
potential, the ADM agent can only achieve a maximum performance speedup of under 2% by correctly
adjusting the prefetcher degree. The ADM agent captures a small amount of performance improvement,
outperforming the static aggressiveness degree 8 by 0.6%.

8.5 Results for ADM agent applied to both the APL and the DPL Prefetchers

The dual ADM agents converged to the globally optimal aggressiveness degree configuration for
both the APL and DPL prefetchers, and in some cases found a higher performing configuration than the
static aggressiveness degrees.

We classified each workload based on its optimal static aggressiveness degree for the APL/DPL
prefetchers using the results visualized in Figure 6: 500.perlbench_r, 507.cactuBSSN_r, and
523.xalancbmk_r are low-aggressiveness; 502.gcc_r, 505.mcf_r, 510.parest_r, 549.fotonik3d_r, and
554.roms_r are mid-aggressiveness; 519.lbm_r is high-aggressiveness; and 520.omnetpp_r is a no
prefetching workload. The ADM agent converged to each class of aggressiveness degrees, within 3% of
the optimal configuration for 500.perlbench_r, 505.mcf_r, 507.cactuBSSN_r, 510.parest_r and 519.lbm_r.
The agents exceeded performance of the static configurations for 502.gcc_r and 523.xalancbmk_r.

37

Figure 6: IPC performance comparison normalized to no prefetching for prefetcher aggressiveness degrees applied
both APL and DPL prefetchers.

The ADM agent performed the worst on 520.omnetpp_r, with a 9.2% decrease in performance
against the optimal static configuration for this benchmark, ACL aggressiveness degree zero, DPL
aggressiveness degree zero. This decrease in performance is explained in part by taking random actions, a
feature of Random-Action Annealing. This hyperparameter was initialized to 8% random actions. When
the ADM agents took a random action and left the degree 0 state, the performance was immediately
negatively impacted. This brief period of degree 1 for either ACL or DPL prefetchers significantly
decreased the overall performance of the agent.

Another interesting workload was 554.roms_r because the DPL prefetcher had a large impact on
its performance relative to other workloads. Three static configurations outperformed the others: ACL1-
DPL1, ACL1-DPL4, ACL4-DPL1. Low to mid aggressiveness prefetcher configurations performed well.
The higher performing configurations were when the ACL prefetcher is low aggressiveness and the DPL
prefetcher is mid-aggressiveness or vice versa. We do not see perfect convergence for 554.roms_r
because finding this unique configuration is difficult in a dynamic environment. Any time the ACL
prefetcher and the DPL prefetcher explored higher aggressiveness states simultaneously, the performance
was negatively impacted. This is another reason why the ADM agent did not have a higher performance
that was closer to the optimal static configuration.

A dual Q-learning aggressiveness tuner applied to the APL prefetcher and DPL prefetcher on
average performs 17% better than the average of the static aggressiveness configurations, and 4.2% better
than the optimal static aggressiveness configuration (APL degree 1, DPL degree 4). Furthermore, the Q-
learning approach has the lowest variance from the optimal configuration, on average 2.6% of the
optimal, while the best average static configuration performs 7.3% of the optimal configuration on
average.

8.6 Impact of Optimization Techniques on Improving Convergence

In this section, we examine the impact of the optimization techniques described in Section 6.4,
specifically analyzing 507.cactuBSSN_r, 500.perlbench_r, and 523.xalancbmk_r. 507.cactuBSSN_r is an
interesting workload because it has one aggressiveness configuration that is significantly better than all
the others and the IPC performance has very little variance during execution. 500.perlbench_r is an

38

interesting workload because it has discontinuities in IPC every 1 million instructions. An agent operating
on 500.perlbench_r needs to demonstrate fast convergence and learn new policies quickly when faced
with a changing environment.

8.6.1 507.cactuBSSN_r: Random Action Annealing and Top Down Convergence

 The first two optimization techniques we implemented were Random Action Annealing (RAA)
and Top Down Convergence (TDC). Figure 7 illustrates the impact of these optimization techniques.
Notice that the region of interest shown in this example uses 2250 Q-table updates. For a full workload
analysis, we used 40,000-100,000 Q-table updates. We used a shorter region of interest to conduct faster
testing which helped us rapidly develop the optimization techniques in Sniper. A shorter testing period
also clarifies how the agent is performing at a finer granularity.

Figure 7: ADM agent with RAA and TDC. The graph compares the ADM agent’s performance against two static
configurations, ACL degree 1, ACL degree 4 and ACL degree 16. The performance of each run is normalized

against ACL degree 1 shown as the top light gray line with performance of 1.0. ACL degree 4 is the second best
static degree at 75% of the performance of ACL degree 1, and ACL degree 16 is the worst performance at 30% of

ACL degree 1.

The preliminary exploratory effects of Random-Action Annealing are not clear for this workload
because it is only applied for the first 128 updates. During these updates, the agent randomly explored its
environment, first at the lower aggressiveness degrees, then the higher aggressiveness degrees. The agent
could take a random action 8% of the time after the first 128 updates. Random-Action Annealing had
minimal effect on performance because there were no discontinuities during the execution of this
workload. In a later example using 500.perlbench_r, Random-Action Annealing had a much clearer effect
on performance because of major IPC discontinuities every 1000 updates.

The Top Down Convergence method had a strong impact on performance for this workload.
Using Top Down Convergence, the agent initialized all the values in its Q-table higher than expected. To
accomplish this, the ADM agent first discovered an average initial IPC of 1.0 for 507.cactubssn_r using

39

the default aggressiveness degree 1. The agent increased this value by 20% and initialized all the rewards
in the Q-table to a value of 1.2. This value is appropriate for a Top Down Convergence initialization
because 1.2 is greater than all static configuration rewards so all states are being “pulled down”. If the
agent was initialized to a static configuration degree of four, then then the preliminary calculated IPC
would have been around 0.8 so the scaled initialization value would have just been high enough for Top
Down Convergence to work well indicating that a scaling factor of 20% works well for this workload.

Here we analyze how the agent acted during discrete update periods. During update periods 0 –
490, the agent had the opportunity to explore through random actions and learn characteristics about its
environment. The agent mostly explored the mid-aggressiveness degrees. After 490 updates, the agent
decreases its aggressiveness and learned the benefit of low aggressiveness. The agent remained in this
state for 300 updates. Then the agent had a sequence of random actions and explored higher aggressive
configurations. This is where the Top Down Convergence method fails.

After 800 updates the agent explores the higher aggressiveness states and becomes “stuck”
because the state transitions “increase aggressiveness” was not pulled down to the correct reward value.
In fact, the transition actions at degree two and three only received five total updates from updates 500 to
1000. Furthermore, the “increase aggressiveness” action updates between 800 – 1000 were receiving
rewards still influenced by the lower aggressiveness, biasing the reward values higher than expected,
causing the agent to appear “stuck” at degree four.

Top Down Convergence ensures that the agent explores each state at least once. This led to the
initial success where the agent found the correct aggressiveness degree, but then failed through a
sequence of random actions which caused the agent to become “stuck” at degree four. Over a longer
period, the agent will become “unstuck” by “pulling down” the degree 2 and 3 “increase aggressiveness”
actions to its actual reward; however, we need the agent to converge on an optimal configuration faster.
We improve the agent using the Set on Increase or Decrease optimization technique.

8.6.2 507.cactuBSSN_r: Set on Increase or Decrease

 The next set of optimization technique implemented was Set on Increase or Decrease (SID).
Figure 8 illustrates the impact of this optimization technique when combined with RAA and Top Down
Convergence.

The results shown in Figure 8 show oscillations between the high aggressiveness degrees and low
aggressiveness degrees. Oscillations occur because both low and high aggressiveness rewards are being
“pulled down” simultaneously. Once the low-aggressiveness state becomes less profitable, the agent
changes to the high-aggressiveness degree, until the high-aggressiveness state becomes less profitable.
Then the agent changes back to the low-aggressiveness degree. This process repeats until the high-
aggressiveness is proven to be worse than low-aggressiveness, where the agent converges to the optimal
solution.

40

Figure 8: ADM with RAA, TDC, and SID.

The Set on Increase or Decrease technique reduces the search space of the agent by two-thirds
since it no longer learns the increase or decrease actions, rather sets them based on the next state non-
transition reward. This significantly impacts the time to converge on the optimal result. In this example,
we used a small learning rate of 0.01. This was a mistake because it required hundreds of updates to “pull
down” each reward to the correct value to prove that one state is significantly better than the others. The
agent converged after 1500 updates because the agent had to test the high and low aggressiveness degrees
many times before proving the high aggressiveness was not beneficial.

In later tests we increased the learning rate to 0.6 which reduced the oscillations to one to two
instead of six. The test with the small learning rate is a great example to demonstrate the impact of the Set
on Increase or Decrease technique and its interactions with Top Down Convergence.

8.6.3 507.cactuBSSN_r: Quick Convergence Update and Stay 6

The last optimization techniques we implemented dubbed Quick Convergence Update (QCU) and
Stay 6 (SS) prevented the agent form exploring states if one state proved to be worse than an known
states. This final example combines all the techniques previously mentioned – Random-Action
Annealing, Top Down Convergence, and Set on Increase or Decrease. Now, the ADM agent quickly
realizes which aggressiveness degree is optimal. Figure 9 shows the performance of the ADM agent
where it only explored the mid-aggressiveness once before identifying that low aggressiveness is optimal.

The Quick Convergence Update is the driving force behind stopping the oscillations because it
caused the agent to realize when one set of actions was worse than other actions. In this case, the agent
proved that the mid-aggressiveness degree was worse than the low-aggressiveness degrees, so the agent
updated all the increase or decrease values appropriately, directing the agent by weighting actions towards
the maximum attainable reward. ADM converges after 200 updates using these techniques.

41

Figure 9: Performance graph of ADM with the stay 6 algorithm.

 The combination of Quick Convergence Update and Stay Six is powerful because it forces the
agent to learn the “real reward” at all states it encounters before proceeding to other states. In this case,
the agent explored degree zero, one, and two, three and four. Then the agent did a Quick Convergence
Update where it realized that degrees two, three and four were performing worse than the next lower
degree. The Quick Convergence Update indicated to the agent that exploring higher aggressiveness
degrees would likely be worse than the states already explored. The Quick Convergence Update updated
all the increase and decrease aggressiveness actions appropriately to direct the agent back to the low
aggressiveness states and away from the higher aggressiveness states.

 Notice around update 2000 that the agent demonstrates lower performance for a short period of
time. This is because the agent took consecutive random actions towards higher aggressiveness states.
The agent did not perform better in these states and the agent returned to the optimal low aggressiveness
degree.

Figure 10: Performance of ADM agent with all optimization techniques over time.

42

These optimization techniques had a profound impact on the performance of the ADM agent.
Figure 10 shows the final performance graph of the ADM agent for the execution of the full region of
interest in 507.cactuBSSN_r.

Notice that the ADM agent converges on the optimal aggressiveness degree for the region of
interest. At Q-table update 5000, 10000, 13000, 15000, and 20000 the program has discontinuities. This is
due to a change in program behavior. At these points, the ADM agent adapted to the new environment,
learning new reward values and proving the degree it was already in was optimal. The optimal static
prefetcher configuration was degree 1 and the ADM agent reached 99.9% of the optimal static
performance.

8.6.4 500.perlbench_r: All optimization Techniques

The 500.perlbench_r workload from the SPEC suite exhibits significant performance drop every
1 million instructions and the performance between different aggressiveness degrees is minimal.
Performance changes are issues for the ADM agent because it triggers the Random-Action Annealing and
Top Down Convergence to reset the table and enter an exploration phase. We show that our Q-learning
optimization techniques convergence towards the highest performing configuration despite these
challenges.

Figure 11: 500.perlbench_r with all optimization techniques.

The results in Figure 11 show the ADM agent converged on the optimal configuration between
updates 0 to 1000. During this phase, the optimal configuration was static degree 4. The agent took
around 500 updates to converge on this configuration. The reason why it took longer to converge was
because the performance variance was similar at degrees one, two, three, and four. This made it difficult
for the agent to decide if changing aggressiveness was beneficial.

After the first major performance change, the optimal degree changed from degree four to degree
one. The agent also recognized the performance spike around the 1000th update, thus the agent

43

reinitialized the Q-table using the Top Down Convergence method with Random-Action Annealing
exploration enabled. We can see that the agent quickly converged on the optimal solution between
updates 1000 and 1900.

After the second major performance change, the agent randomly explored higher aggressiveness
states. The performance decreased from updates 1900 to 2200 which the agent learned. Then at update
2200 a Quick Convergence Update occurred and the agent rapidly converged on the higher performing
lower aggressiveness state. The reason why the agent needed the Quick Convergence Update to converge
on the optimal configuration was because the performance in each configuration are too similar. The Set
on Increase or Decrease technique has a 1% performance improvement requirement in order to change
states (as described in Section 6.4.4). In this case, the only way for the agent to converge optimally was
via a Quick Convergence Update.

The third major performance change occurred around update 2850. The agent reset its table
values and enabled exploration. The agent learned by update 3000 that aggressiveness degree four is
optimal. At update 3300 the agent has a sequence of performance calculations indicating the low
aggressiveness states were performing worse than they should have. The agent learned these worse
performing values and selected actions directing the agent away from the optimal low aggressiveness
configuration. Since 500.perlbench_r has high performance variance relative to the average performance
of the other static configurations, it difficult for the agent to learn optimal configurations. Between update
3300 and 3450 the agent selected random actions and learned performance values that directed the agent
away from low aggressiveness. Then the performance returned to normal and the agent relearned which
aggressiveness state was optimal and returned to the low aggressiveness states. A similar problem
occurred around update 4200 where a sequence of low performance causes the agent to think the current
state was performing worse than the surrounding states. In either case, the agent converged to the optimal
configuration after about 75 updates. 500.perlbench_r is a good example of how the ADM agent can
converge on an optimal solution despite challenges of low performance variance and major performance
discontinuities.

8.6.5 523.xalancbmk: Regions with Different Optimal Configurations

The ADM agent significantly outperformed all static aggressiveness configurations for
523.xalancbmk. This is because the workload has multiple regions of interest that have different optimal
configurations. Figure 12 shows the performance of the workload over time.

The three graphs in Figure 12 show the IPC performance of the various static configurations and
the ADM agent. The middle graph shows how the ADM agent adjusted the ACL prefetcher
aggressiveness over time and the bottom graph shows how the ADM agent adjusted the DPL prefetcher
aggressiveness over time. This workload has two distinct regions separated at update 22500. Between
updates 0 to 22500 the workload performed better with a high ACL aggressiveness. The agent learned
this configuration and maintained a higher aggressiveness throughout the region. Then after update
22500, the optimal ACL aggressiveness changed to a lower aggressiveness. Again, the agent adapted to
this change and maintained a low ACL aggressiveness. The DPL prefetcher did not have a significant
impact on performance for this workload. Traces for other workloads are shown in Appendix D.

44

Figure 12: Performance of 523.xalankbmk_r. The top graph shows the performance, the middle graph shows the
APL prefetcher configuration, and the bottom graph shows the DPL prefetcher configuration.

45

8.7 Key Findings

 The key findings for this report are separated into two categories, general findings about Q-
learning and prefetchers, and specific findings from detailed experiments. The first general finding for
this work is that the ADM agent can successfully converge on an optimal hardware configuration to gain
performance improvements if they exist. We showed this using the prefetcher aggressiveness degree
parameter via experiments in single prefetcher and dual prefetcher implementations. The results of these
experiments demonstrated a 6.5% performance increase over the optimal static configuration for the
ADM agent only applied to the ACL prefetcher, a 0.5% performance increase over the optimal static
configuration for the ADM agent only applied to the DPL prefetcher, and a 4.2% performance increase
over the optimal static configuration for the ADM agent applied to both the DPL and APL prefetcher.

 A second general finding is that between-workload variance is necessary to see performance
improvements. This was realized in the single prefetcher experiments where the ADM agent applied to
the ACL prefetcher showed higher performance improvements than the DPL prefetcher. This was a direct
result of the between workload variance of the ACL prefetcher being significantly higher than the
between workload performance of the DPL prefetcher.

These two general findings provoke future research into other hardware performance parameters.
If between-workload performance variance exists for a hardware parameter, then a Q-learning manager
will be able to find the optimal hardware configuration.

 Each optimization technique accounts for a specific finding. First, Top Down Convergence
ensures that the agent explores each state at least once. This is a useful algorithm compared to the normal
initialization method because instead of “pulling up” each state, the states are all “pulled down” giving all
states the opportunity to demonstrate their performance. Second, Random Action Annealing helps an
agent explore its environment and leave configurations leading to shoulder or plateau performances. This
is a significant improvement on general hill climbing which cannot explore outside of shoulders or
plateaus easily. Next, the Set on Increase or Decrease technique reduces the search space of the agent by
two-thirds since the agent no longer learns the increase or decrease actions. This reduction in search space
dramatically decreases the time to converge on an optimal configuration, making this a significant
optimization technique. A fourth specific finding is the Quick Convergence Update, which is the driving
force behind stopping oscillations due to Top Down Convergence and Set on Increase or Decrease
because it caused the agent to realize when one set of actions is worse than other actions. This technique
allows for exploring, but then after a Quick Convergence Update, the agent rapidly converges on the
current optimal configuration. Finally, the Stay Six technique is powerful because it forces the agent to
learn the “real reward” at all states it encounters before proceeding to other states.

46

9 Conclusion

In this work, we propose a method for managing a prefetchers aggressiveness titled ADM. An
ADM agent quickly converges to the optimal prefetcher configuration using minimal hardware overhead
and latency. We employ Q-learning to find the optimal prefetcher aggressiveness policy for multiple
prefetchers at run-time. We wrap the foundational Q-learning algorithm to improve convergence
using seven optimization techniques: alternating rewards, random action annealing, top down
convergence, set on increase or decrease, quick convergence update, and stay six.

We evaluated the ADM agent using 10 prefetch sensitive workloads from the SPEC CPU2017
suite. The ADM agent demonstrated a 4.2% higher speedup than the best static hardware configuration,
with a 2.6% average variance from the optimal prefetcher aggressiveness degree.

We extended the functionality of an ADM agent to multiple prefetchers by proposing the idea of
alternating rewards using a weighted moving average of the three most recent updates. This method helps
solve the “temporal reward” issue with which agent caused the reward. It also supports synergism
between the two agents, encoding the positive or negative interactions between the two agents. We
learned through experimentation that a dynamic prefetcher optimization agent is better than a static
configuration. This agent is a reasonable solution to optimizing the prefetcher aggressiveness
degree because it only requires a few states and actions, thus requiring minimal hardware. Future work for
this project is to develop a hardware implementation.

47

10 References

[1] Intel 2016. Intel 64 and IA-32 Architectures Developer’s Manual: Volume 3C. Intel

[2] Shih-wei Liao, Tzu-Han Hung, Donald Nguyen, Chinyen Chou, Chiaheng Tu, and Hucheng Zhou. 2009.
Machine Learning-based Prefetch Optimization for Data Center Applications. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis (SC ’09). 1-10.

[3] Saami Rahman, Martin Burtscher, Ziliang Zong, and Apan Qasem. 2015. Maximizing Hardware Prefetch
Effectiveness with Machine Learning. In Proceedings of the 17th International Conference on High Performance
Computing and Communications. 383-389

[4] Vish Viswanathan. 2014. Disclosure of H/W Prefetcher Control on some Intel Processors. Technical Report.
Intel.

[5] Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers,” ISCA 1990.

[6] A. E. Papathanasiou and M. L. Scott. Aggressive prefetching: an idea whose time has come. Hot Topics in
Operating Systems, 2005.

[7] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N Patt. 2007. Feedback Directed Prefetching: Improving
the Performance and Bandwidth-Efficiency of Hardware Prefetchers. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA). 63–74.\

[8] Seth H. Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L. Scott, Aamer Jaleel, Shih-Lien
Lu, Kingsum Chow, and Rajeev Balasubramonian. 2014. Sandbox Prefetching: Safe Run-time Evaluation of
Aggressive Prefetchers. In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA). 626–637.

[9] J. Hiebel et al. Machine learning for fine-grained hardware prefetcher control. Proc. ICPP, p. 3, 2019.

[10] Saami Rahman et al. “Maximizing hardware prefetch effectiveness with machine learning”. In: High
Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security (CSS), 2015 IEEE 12th International Conferen on Embedded Software and Systems (ICESS),
2015 IEEE 17th International Conference on. IEEE. 2015, pp. 383–389.

[11] Bellman, Richard. The theory of dynamic programming. Bull. Amer. Math. Soc. 60 (1954), no. 6, 503--515.
https://projecteuclid.org/euclid.bams/1183519147

[12] William Hasenplaugh, Pritpal S. Ahuja, Aamer Jaleel, Simon Steely Jr., and Joel Emer. The gradient-based
cache partitioning algorithm. ACM Trans. Archit. Code Optim. 8, 4, Article 44 (January 2012), 21 pages.
DOI:https://doi.org/10.1145/2086696.2086723

[13] A. Aziz, M. Cireno, E. Barros and B. Prado, "Balanced Prefetching Aggressiveness Controller for NoC-based
Multiprocessor", SBCCI '14 Proceedings of the 27th Symposium on Integrated Circuits and Systems Design, 2014.

[14] Ankur Limaye and Tosiron Adegbija. A workload characterization of the spec cpu2017 benchmark suite. In
Performance Analysis of Systems and Software (ISPASS), 2018 IEEE International Symposium on, pages 149–158.
IEEE, 2018.

[15] Biswabandan Panda. 2016. SPAC: A Synergistic Prefetcher Aggressiveness Controller for Multi-Core Systems.
IEEE Trans. Comput. 65, 12 (Dec 2016), 3740–3753

48

[16] Biswabandan Panda and Shankar Balachandran. 2015. CAFFEINE: A utility-driven prefetcher aggressiveness
engine for multicores. ACM Trans. Archit. Code Optim. 12, 3, Article 30 (August 2015), 25 pages. DOI:
http://dx.doi.org/10.1145/2806891

[17] Shiori Sagawa et al. “Distributionally Robust Neural Networks for Group Shifts: On the Importance of
Regularization for Worst-Case Generalization”. In: International Conference on Learning Representations. 2020.

[18] Amir-massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis, University of Alberta,
2011b.

[19] The Sniper Multi-Core Simulator. (2020, July 21). Sniper. Retrieved July 24, 2020, from
https://snipersim.org/w/The_Sniper_Multi-Core_Simulator

[20] Ice Lake (server) - Microarchitectures - Intel. (2020, September 9). WikiChip. Retrieved September 28, 2020,
from https://en.wikichip.org/wiki/intel/microarchitectures/ice_lake_(server)

[21] SPEC CPU 2017. (2019, September 9). Standard Performance Evaluation Corporation. Retrieved August 14,
2020, from https://www.spec.org/cpu2017/

[22] A. Navarro-Torres, J. Alastruey-Benede, P. Ibanez-Marin, and V. Vinals-Yufera, “Memory hierarchy
characterization of spec cpu2006 and spec cpu2017 on the intel xeon skylake-sp,” PLOS ONE, vol. 14, no. 8, pp. 1–
24, August 2019.

[23] W. Heirman, K. D. Bois, Y. Vandriessche, S. Eyerman, and I. Hur, “Near-side prefetch throttling: Adaptive
prefetching for high-performance many-core processors,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’18. New York, NY, USA: ACM, 2018, pp. 28:1–
28:11. [Online]. Available: http://doi.acm.org/10.1145/3243176.3243181

[24] F. Dahlgren, M. Dubois, and P. Stenstrom. Sequential Hardware Prefetching in Shared-Memory
Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1995.

[25] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009. Coordinated Control of Multiple
Prefetchers in Multi-Core Systems. In Proceedings of the International Symposium on Microarchitecture (MICRO).
316–326.

[26] W. Hasenplaugh et al., "The gradient-based cache partitioning algorithm", ACM Trans. on Arch. and Code
Opt., vol. 8, no. 4, 2012.

[27] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[28] Richard Bellman, Dynamic programming, Princeton University Press, Princeton, N. J., 1957. MR 0090477

49

Appendix A: Acronym List

Acronym Name
ADM Aggressiveness Degree Manager
DPL Data Prefetch Logic Prefetcher
ACL Adjacent Cache Line Prefetcher
AR Alternating Rewards
RAA Random Action Annealing
TDC Top Down Convergence
SID Set on Increase of Decrease
QCU Quick Convergence Update
SS Stay-Six
QoS Quality of Service
IPC Instructions Per Cycle
MIPS Millions of Instructions Per Second
Q-Learning Quality Learning
HC Hill Climbing
MLC Mid-Level Cache
LLC Last-Level Cache
PLRU Pseudo Least Recently Used
FDP Feedback Directed Prefetching
NST Near-Side Throttling
FS Fair Speedup
SPEC Standard Performance Evaluation Corporation

50

Appendix B: Sampling Regions for SPEC CPU2017

 500-perlbench
o 379 billion instructions executed
o 5 regions of interest
o 5.6 billion instructions executed in detailed mode

 502-gcc
o 235 billion instructions executed
o 5 regions of interest
o 3.5 billion instructions executed in detailed mode

 505-mcf
o 148 billion instructions executed
o 5 regions of interest
o 2.2 billion instructions executed in detailed mode

 507-cactuBSSN(220b?5?3300m)
o 220 billion instructions executed
o 5 regions of interest
o 3.3 billion instructions executed in detailed mode

 510-parest
o 660 billion instructions executed
o 5 regions of interest
o 7.9 billion instructions executed in detailed mode

 519-lbm
o 179 billion instructions executed
o 5 regions of interest
o 2.7 billion instructions executed in detailed mode

 520-omnetpp
o 123 billion instructions executed
o 1 regions of interest
o 1.8 billion instructions executed in detailed mode

 523-xalancbmk
o 500 billion instructions executed
o 5 regions of interest
o 5.0 billion instructions executed in detailed mode

 549-fotonik3d
o 200 billion instructions executed
o 2 regions of interest
o 2.0 billion instructions executed in detailed mode

 554-roms
o 289 billion instructions executed
o 5 regions of interest
o 2.9 billion instructions executed in detailed mode

51

Appendix C: Descriptions of SPEC CPU2017 Benchmarks

52

Appendix D: Traces of Workloads

500.perlbench_r

53

502.gcc_r

54

505.mcf_r

55

507.cactuBSSN_r

56

510.parest_r

57

519.lbm_r

58

520.omnetpp_r

59

523.xalancbmk_r

60

549.fotonik3d_r

61

554.roms_r

