
Project Number: RL1-P009

Blinding Silence
A Sound-Based Puzzle Game

Interactive Media and Game Development

A Major Qualifying Project Report
submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Ryan Bedell
Elliot Borenstein
Drew Hickcox

Lukas Wong-Achorn

Advised by

Professor Jennifer deWinter
Professor Robert W. Lindeman

ii

Abstract
for the development of

Blinding Silence: A Sound Based Puzzle Game
By

Ryan Bedell, Elliot Borenstein, Drew Hickcox, Lukas Wong-Achorn

This is an Interactive Media and Game Development Major Qualifying Project report, focusing on the
state and development of a video game based on Terathon’s C4 Engine. The game, titled Blinding
Silence, is a single player game with a unique sound-based visual aesthetic and Wiimote-based control
scheme.

This document discusses the state, development, and original design of the game Blinding Silence.
Blinding Silence has a unique control scheme that uses two Wiimotes and an infrared LED headset for in-
game navigation. The game also has a unique visual design where every noise makes a burst of light,
allowing players to “see” sound. Through these the player solves physical puzzles.

The player controls a blind man with a mysterious staff he uses as a cane. The world has been taken over
by darkness, with people endlessly repeating the same task forever. The man discovers he can influence
people with sound and begins uncovering the chain of events that led to the catastrophe.

 Blinding Silence has a visual style indentified by its sound-based lighting. Models are viewed in
silhouette, which removes the importance of textures and increases the importance of models. Humans in
Blinding Silence have exaggerated physical characteristics to compensate for this.

iii

Acknowledgements
Team Uncertainty would like to thank our advisors Professors deWinter and Lindeman for being critical
when we really needed it. We would also like to thank Joshua Luther and Andrew Tremblay for
volunteering as talent for motion capture and animatic purposes. We would like to thank all our testers,
especially Andrew Tremblay, Morgan Quirk, and Adam Pastorello who lent their likenesses to our
presentation.

A special thanks is extended to Graham Pentheny, whose ideas early on in the design phase were
influential in the eventual design of Blinding Silence.

Finally we thank Team Blackfire (Joe Alea, Garret Doe, Sarah Gilkey, Chris Williams, and Francis
Williams), for developing alongside us for all four terms and for being supportive throughout our friendly
rivalry.

iv

Table of Contents
Abstract ... ii
Acknowledgements .. iii
Table of Contents ... iv

List of Figures .. vi
List of Tables .. vii
1. Introduction ... 1

1.1 Descriptions .. 1

1.2 Audience ... 1

1.3 Location .. 1

1.4 Controls ... 1

1.5 Innovation ... 1

2 Game Design .. 2

2.1 Story .. 2

2.1.1 Game story ... 2

2.1.2 In-game story elements .. 2

2.2 Gameplay .. 3

2.2.1 Overview .. 3

2.2.2 Interface ... 4

2.2.3 Sounds .. 6

2.3 Level components ... 6

2.3.1 Actors ... 7

2.3.2 Objects ... 10

2.4 Levels .. 12

3. Artistic Design .. 13

3.1 Visual Style ... 13

3.1.1 Technical Implementation of Sonar Vision ... 15

3.2 Level Design ... 22

3.2.1 Layout .. 22

3.2.2 Resources ... 23

3.2.3 Structures ... 24

3.2.4 Crystals .. 24

3.2.5 Force Fields .. 25

3.2.6 Switches ... 26

3.3 Character Design ... 26

3.3.1 Harvester .. 27

3.3.2 Craftsman ... 27

v

3.3.3 Operator ... 28

3.3.4 Carrier .. 29

3.4 Animation ... 29

3.4.1 Stock animation ... 29

3.4.2 Studio Setup ... 30

3.4.3 Capture and Cleanup .. 30

3.4.4 Integration .. 30

3.5 Storytelling and Instructions ... 30

3.5.1 Animatics ... 31

3.5.2 Stills ... 32

3.6 Acoustic Vision ... 32

3.6.1 Voice Acting .. 33

3.7 Artistic Tools .. 33

3.7.1 Integration and Level Pipeline ... 33

4. Technical Design .. 39

4.1 C4 Engine.. 39

4.2 Technical overview ... 39

4.2.1 Interfacing with Wiimote ... 39

4.2.2 Sound Design ... 40

4.2.4 AI ... 42

5. Project development .. 48

5.1 Design ... 48

5.2 Development ... 48

5.3 Conclusion .. 48

Appendix A: Original story

Appendix B: Zimri background and script
Appendix C: Asset Lists

Appendix D: Reference and Concept Art
Appendix E: Introductory Animatic Scrip

Appendix F: Introductory Animatic Storyboards

Appendix G: Original Game Design Document

vi

List of Figures
Figure 1: In-game story ... 3
Figure 2: In-game objective summary .. 4
Figure 3: In-game control instructions .. 5
Figure 4: In-game harvester screen ... 7
Figure 5: In-game operator screen .. 8
Figure 6: In-game carrier screen ... 9
Figure 7: In-game craftsman screen .. 10
Figure 8: Actor resources .. 11
Figure 9: Non-interacting objects ... 11
Figure 10: In-game crystal screen ... 12
Figure 11: The World as Seen By the Player .. 13
Figure 12: Simple Example of Visual Style .. 14
Figure 13: Fresnel augmentation; Standard on the left, changes on the right ... 16
Figure 14: Pulsing Shader ... 18
Figure 15: Sonar Vision with Standard Point Lights .. 20
Figure 16: Sonar Vision with Custom Attenuation Texture ... 21
Figure 17: Attenuation Texture Stretching ... 22
Figure 18: A completed level .. 23
Figure 19: An example of resources ... 24
Figure 20: Stone and wood fences .. 24
Figure 21: A large crystal ... 25
Figure 22: A force field ... 25
Figure 23: A stone switch ... 26
Figure 24: Harvester ... 27
Figure 25: Craftsman .. 28
Figure 26: Operator ... 28
Figure 27: Carrier .. 29
Figure 28: Animatic Progression .. 31
Figure 29: Example Styles .. 32
Figure 30: Marker Creation Tool .. 34
Figure 31: Level Layout Tool ... 35
Figure 32: Level Exporting Tool .. 36
Figure 33: Wiimote distortion ... 40
Figure 34: Sound reception flow ... 41
Figure 35: State machine diagram without global states .. 43
Figure 36: State machine diagram with global states.. 44
Figure 37: Unsmoothed path ... 45
Figure 38: Path smoothing ray casting .. 46
Figure 39: Removing a point .. 46
Figure 40: Ray cast with colliding object ... 46
Figure 41: Smoothed path ... 47

vii

List of Tables
Table 1: Sounds and associated colors .. 6

1

1. Introduction
Blinding Silence is a computer game designed by a team of Worcester Polytechnic Institute students as a
Major Qualifying Project.

1.1 Descriptions
Use the power of sound to save a world on the brink of madness!

Blinding Silence is a game where the player utilizes the ability to see sound to solve physical puzzles.
With unique “sonar vision,” puzzle elements come to life in a system of interacting elements. A wave of
darkness has fallen over the land, and as the light wanes, so too does free will. Humans are mindlessly
repeating the same motions forever. The player controls a blind man saved by chance, influencing the
mindless humans through sonic interaction, altering their tasks in order to solve puzzles. The player
solves puzzles, breaks the crystals keeping the world in thrall, and helps to bring light back to a land of
darkness!

1.2 Audience
The intended audience of Blinding Silence is the subset of puzzle game players willing to explore a
unique interface. As many puzzle games employ unique interfaces as game or individual puzzle
mechanics, this should be a large subset of puzzle game players. A large secondary audience is game
players of all sorts who are interested in exploring Blinding Silence’s unique visual aesthetic.

1.3 Location
Blinding Silence takes place in a forest that has been nearly clear cut by mindless drones. Enough trees
still stand that bursts of light still silhouette dead branches reaching into the sky. Although there are
natural elements left in the world, most of them have been transformed by humans to serve a purpose—
stumps, square-cut rocks, and piles of logs.

1.4 Controls
The player physically has:

• Infrared LED Glasses
• A cane Wiimote housing with nunchuck attachment

These devices allow for head tracking and visceral interaction for creating sounds in-game, creating a
uniquely intuitive game experience. It is possible to play with a mouse and keyboard as an alternative.

1.5 Innovation
The main game mechanic in Blinding Silence is its unique visual style, which draws attention to puzzle
elements while facilitating the interaction of those elements. The physical control system of the game is
also original, offset by the familiar experience of deciphering and influencing working systems.

2

2 Game Design
This section covers the game design that went into Blinding Silence, the design elements that were
planned to be incorporated but were cut due to time constraints, and the rationale for those decisions.

2.1 Story
A lengthy background and story was initially developed for inclusion into Blinding Silence. Although
time constraints led to the majority of the story being cut, a distilled version of the player’s motivations
and goals was incorporated in the instructions. Appendix A contains the original backstory for Blinding
Silence, as incorporated into the initial design document.

Section 2.1.1 describes the game’s story as designed to be included in the game and rationale for
removing it, while Section 2.1.2 explains what is included in the game.

2.1.1 Game story
The story of Blinding Silence was designed to be delivered in three ways: an introductory cut-scene,
personal accounts told by rescued workers at the end of levels, and various comments made by the cane.

The introductory cut-scene was initially an animatic—a video style combining still images, a few
graphical elements, and a verbal narration. The player’s cane was sentient, taking the name Zimri and
guiding the player at various points throughout the game.

The opening animatic and Zimri’s consciousness was cut due to a lack of time. Although player direction
and sense of place had been rooted in the player’s interaction with Zimri, the team decided to replace the
story and introduction elements with a comprehensive instructions screen to maximize time spent on more
crucial art elements.

Personal accounts were removed from Blinding Silence when the complicated and confusing soul stealing
mechanic was removed from the design, and relative levels of success were no longer present in
gameplay.

For further explanation of animatics see Section 3.5.1 and Appendix B

2.1.2 In-game story elements
Development of Blinding Silence took a lot longer than initially planned. The game did not end up
reaching feature freeze until halfway through the third term of development. As a result, the non-critical
animatics were trimmed down until they were summarized as a few short sentences that make up the first
page of instructions, as shown in Figure 1. Although this is not ideal, the story of Blinding Silence is
secondary to gameplay. Further expansion of Blinding Silence is unlikely to increase the amount of story
exposition.

3

Figure 1: In-game story

2.2 Gameplay
This section describes the interaction the player has with Blinding Silence, as well as the elements in the
game that are interacted with, and the rationale for the elements’ inclusion.

2.2.1 Overview
Each puzzle in Blinding Silence is a miniature machine. The player’s goal in each level is to alter the
machine such that a certain action is repeated. Once the repeated action is in place, the player can strike
the level’s crystal and move on to the next level.

As shown in Figure 2, to solve puzzles the player must reverse engineer the system starting from the
operator or operators that block off the level’s crystal. This requires the player to make a mental map of
every level, figuring out how to maneuver actors to achieve a winning state. This process is well
supported by the visual style of Blinding Silence, since all actors that would need to be moved are making
the only lights the player can see.

To facilitate solutions, Blinding Silence has controls in place to help the player orient in levels, and its
very levels are designed in such a way as to focus the player into paying attention to relevant game
objects.

4

Figure 2: In-game objective summary

2.2.2 Interface
The controls of Blinding Silence were some of the earliest established aspects of the game. Having direct
control over the in-game cane as well as head tracking was included in the earliest design documents as a
unique feature of the game. The in-game page explaining the controls can be seen in Figure 3.

5

Figure 3: In-game control instructions

2.2.2.1 Wiimote cane
The Wiimote cane consists of two parts. The Wiimote is used to control the in-game cane, which the
player uses to make sounds that affect level elements and allow the player to see. The nunchuck
attachment allows the player to move, and also has the ability to send out loud pulses of light that
illuminate the world for the player to get his or her bearings.

The nunchuck attachment’s analog stick provides “tank control” over movement—the player can move
forward, backward, and turn. While this is somewhat limiting, it is augmented with control over the first
person camera.

Pulsing functionality was added after the first round of developer testing of levels, as establishing the
character’s place in the world was immediately apparent as needed for understanding where a level’s
elements had been placed.

2.2.2.2 Head tracking
A second Wiimote pointed at the player’s head combined with infrared LED-adorned glasses allows for
simple head tracking to be accomplished. The player controls the first person camera by moving his or her
head vertically and horizontally. Smaller movements can be accomplished by tilting up, down, or to the
sides.

6

This head tracking simplifies the process of orientating in a level. The player can look left and right while
walking, which helps the player identify objects and their placement in the world. This added support is
necessary due to the pulsing nature of lighting in Blinding Silence—every bit of help in identifying where
objects are speeds up the crucial step of figuring out how the levels are set up.

2.2.3 Sounds
Sounds in Blinding Silence are the light by which the player sees. This mixture of senses was inspired in
part by synesthesia, and in part to combine sight and sound in order to make a unique gameplay
experience.

As sounds create bursts of light, player attention is drawn to any game element that makes sounds. These
are limited to actors and switches, which are the elements that players actually need to interact with. In
this way, play attention is drawn directly to puzzle elements in every level.

As shown in Table 1: Sounds and associated colors, sounds are based on the underlying material
properties of the object being struck.

Table 1: Sounds and associated colors

Material Color

Wood

Stone

Metal

Dirt

Crystal

Every object in the game either corresponds to one of these sounds or is assumed to be dirt. Categorizing
sounds in such a way simplifies interactions for the player, allowing for a range of sound creation to be
associated with a limited set of interactions. While the actual sound of chopping wood is very different
from that of hammering wood, the light created is the same.

The first two sounds are the sounds that actors—the mindless drones that serve as puzzle elements—
respond to. All actors have a similar but separate response to wood and stone sounds, generally moving to
a corresponding resource. This was decided early on, as providing two inputs for every actor allows
puzzles to become complicated in design while remaining simple in theory.

Metal and dirt sounds have similar functionality, which is very little. They serve to provide illumination
and concept reinforcement. Actor footsteps create dirt noises, which helps players track where a moving
actor is without affecting the system.

Crystals have their own special sound, which separates them from the rest of the sounds in the game.

Player interaction is performed entirely through using the cane to create sounds. The cane creates a sound
based on the material of the object struck.

2.3 Level components
This section describes the various components that can be found in the levels of Blinding Silence. Every
component is placed using custom tools created to speed up the art asset pipeline.

7

2.3.1 Actors
Actors are the actual puzzle elements of Blinding Silence. Actors endlessly repeat an action until they
hear a sound and switch where they are acting, only to mindlessly repeat an action once again. The main
differences between actors are what places they perform their actions, what actions they perform when
they get there, and how they respond to different sounds.

2.3.1.1 Harvesters
Harvesters are the most straightforward actor in Blinding Silence, and as such they are the first actor that
the player interacts with. Harvesters interact with trees and boulders, which they move to when they hear
wood and stone sounds, respectively. As shown in Figure 4, harvesters replace their left hand with the
appropriate tool as they work. This theme is repeated in all other actors, and was intended to show that
over time the mindless drones have become one with their tools.

Figure 4: In-game harvester screen

2.3.1.2 Operators
Operators are the focal actors of every level. Operators stand by a switch, and are unique in that they have
an idle period during which they do nothing. As a balancing factor in this, the operator’s switch emits the
sound that the operator needs to hear, as shown in Figure 5.

Once the operators hear the appropriate sound, they interact with the lever in front of them. This opens a
gate in the level, although the gate will close again. Only by having another actor create a recurring sound
near the operator can the player pass through the gate.

8

Figure 5: In-game operator screen

2.3.1.3 Carriers
Carriers move between two different resources, which makes their responses to wood and stone sounds
slightly more complicated. The carrier moves to a log or stone pile, and moves to a wood or stone hopper.
If the carrier hears the opposite sound from what he is working on, he will drop whatever he is carrying
and switch targets. However if he is carrying wood or stone and hears the same sound, the carrier will
switch between corresponding hoppers.

As shown in Figure 6, the carriers have both hands replace by oversized claws. While in constant light
this makes a carrier look cartoonish while carrying a log or stone, in the pulsing darkness of Blinding
Silence it has the effect of making carriers seem almost spidery.

9

Figure 6: In-game carrier screen

2.3.1.4 Craftsmen
Craftsmen are similar to harvesters in that they move to one type of resource and stay there. The wood
resource they work on is a scaffold, and the stone resource is a large square-cut stone. However, the
craftsman goes to the opposite resource type to the sound he hears. As explained in Figure 7, he goes to
work on the stone material when he hears wood, and wood material when he hears stone.

10

Figure 7: In-game craftsman screen

2.3.2 Objects
There are several other elements present in levels besides actors. These serve to direct actors and players
as barriers, focal points of work, and as objects the player must strike in order to create sounds.

2.3.2.1 Actor resources
There are five wood and five stone resources, shown in Figure 8, that correspond with various actors.
These each make the corresponding sound when struck, allowing the player to move actors to similar
points simply by striking the resource they are working on. This works unless there is no other viable
point for the actor to go to, in which case the actor will ignore the sound.

11

Figure 8: Actor resources

2.3.2.2 Barriers
Various objects block the path of actors and the player, and examples of these can be seen in Figure 9.
Metal and stone fences block off the level-ending crystal, mark the outside of the level, and divert actors
over long spaces. Chopped up tree trunks also litter the area. These not only cause the levels to be more
interesting to traverse, but allow the player more opportunities to create sounds they want. Actors will not
interact with stumps or stone walls, but they will respond to sounds created by hitting them.

Figure 9: Non-interacting objects

2.3.2.3 Crystals
Reaching the crystal is the goal of every level. When all the operators are being correctly triggered, the
player can strike the level’s crystal and move on to the next level. This provides visceral satisfaction as
reward for completing a level. To enforce the reward, some levels have a large crystal at the end, shown
in Figure 10, which dwarf both the smaller crystals and the player.

12

Figure 10: In-game crystal screen

2.4 Levels
Levels in Blinding Silence are set up to slowly expose players to the different kinds of actors found in the
game. Over the game’s eight levels a maximum of two different types of moving actors can be found at a
time. This was planned due to time constraints; around halfway through development it became apparent
that there would not be much time to spend developing levels. Rather than further confuse the player with
complicated puzzles on top of a unique lighting system and original control system, levels are designed to
ease players into the game.

If any future development would be done on Blinding Silence, it would focus mainly on expanding the
levels.

13

3. Artistic Design
Blinding Silence puts the player inside the mind and perspective of a blind man who can “see” sound. To
convey this sensation of synesthesia, sounds which occur in the game world are coupled with a visual
representation of the “sound wave” as a form of illumination, as shown in Figure 11. As such, the artistic
style favors the significance of shape and silhouette over that of surface and texture. Color in Blinding
Silence is uniform and simple; objects do not have their own color, but instead are tinted based on the
sounds which the player is hearing. This strengthens the bond between the visual and auditory elements of
the game, immersing the player in a unified aesthetic.

Figure 11: The World as Seen By the Player

A full asset list is available in Appendix C. Reference and concept art can be seen in Appendix D.

3.1 Visual Style
The player is blind but can see the world through the use of Sonar Vision. All sound in the world is
visible, and the louder the sound, the brighter the visibility of the object to the player. Ambient sound
sources and background noise create dim lighting of the surrounding area while individual and distinct
sounds create visible waves that illuminate anything they hit. The player sees objects hit by these waves
mainly by illumination of object edges. Objects tend to have a silhouetted look with little detail visible
inside of the visible edges, as can be seen in Figure 12.

14

Figure 12: Simple Example of Visual Style

Each type of material is associated with a particular color; objects made of wood produce one color,
impacts on dirt another, ambient noise a third, and the like. When placed against a dark background, the
distinct and bright colors are plainly visible, allowing the player to easily localize the source of the sound.
Also, by learning to recognize the different colors and their meanings, the player can quickly assess the
world around him.

As an example, the player moves within audible range of a harvester who is repetitively striking his axe
against a tree. The area around the harvester has a level of orange ambient illumination as his constant
hammering has created a resonance in the area. However, this is a very dim illumination. Each time the
harvester strikes the tree, the area immediately around him brightens considerably and slowly fades to its
ambient level until the next strike. At the same time, when the tree is struck, it creates a wave of sound
that moves away from it, illuminating in orange everything that it touches but with decreasing intensity
the farther it moves from the tree. Shortly after becoming illuminated, the objects start to fade back to
darkness. In this way, the player is able to localize the source of the sound (the harvester will always have
some level of illumination, brighter than the edges of the waves he creates), while also being able to see
his surroundings as the pulses illuminate the world.

15

In addition to loud sounds that illuminate large swaths of the world to the player, the world will also
contain objects that produce sound constantly, but on a much smaller scale. For instance, active power
crystals vibrate, and energized force fields hum. These smaller objects will not produce enough sound to
illuminate the area around them, but will instead have constant ambient illumination allowing the player
to have static reference points within the world, while he influences and moves the larger sound
producing entities. For added visual interest and realism, the footsteps of actors in the world also create
visible sound. While the illumination generated is not strong enough to light up a large area, it can help
the player to determine where actors are, and what paths they are taking at a given time.

3.1.1 Technical Implementation of Sonar Vision
To represent sound visibly, Blinding Silence uses and augmentation to the standard C4 lighting and
rendering engine. In addition, every object in the world uses a specialized shader, similar to a Fresnel
shader.

3.1.1.1 Augmented Fresnel Shader
The Fresnel shader illuminates the edges of the object, while providing less illumination to details on the
portions of the object facing the player. It does this primarily by using the inverted tangent view direction
between each world point and the player camera, causing those points that face toward the camera to be
darkest and those perpendicular to the camera’s view to be brightest. This helps to provide the silhouetted
art style for the game. The standard implementation of this type of shader has been enhanced to include
normal mapping, allowing for added model complexity and detail in the silhouettes. A detailed
description of the standard Fresnel shader, and its implementation, can be found on the C4 Engine wiki1

To help add increased detail to the world, we augmented the standard Fresnel implementation with a
normal map.

.

Figure 13, on the next page, shows how this was achieved. On the left side is the standard
implementation, sending the z value of the tangent view direction into an invert node. On the right, a
normal map is sampled and the dot product is calculated between it and the tangent view direction. The
normal map is multiplied by a constant prior to the dot product as a method of controlling the intensity of
the effect.

1 http://www.terathon.com/wiki/index.php/Building_a_Fresnel_shader

16

Figure 13: Fresnel augmentation; Standard on the left, changes on the right

17

3.1.1.2 Pulsing Shader
Some objects in the world have a form of constant illumination. In particular, the crystals that are the goal
of every level needed to be visible for the player to know where his goal was. However, we wanted these
ambient sources to still have a dynamic look to them, so we created another offshoot of the Fresnel
shader. This pulsing portion of the shader, seen in Figure 14, on the next page, smoothly ramps up to full
brightness, and then smoothly ramps back down to a set intensity. C4’s shader editor provides a node
called Shader Time, which generates a ramp from 0 to 1 linearly every 120 seconds. The portion on the
left of the figure takes this value, and uses it to calculate the same 0 to 1 ramp over a different period of
time (in this case every three seconds). This doesn’t create a smooth pulse in intensity, as the value
immediately jumps back to 0 once it reaches 1. The right side of the figure shows how the shader adjusts
to smoothly ramp up to 1 and back down to 0. The Set If Greater Equal node will output a 1 if the input
value is greater than 0.5, and a 0 otherwise. If the value is between 0 and 0.5, the lower portion of the
figure will output the value directly, ramping from 0 to 0.5. If the value is greater than 0.5, then the upper
portion will create an output, subtracting the input value from 1 to provide an output that ramps down
from 0.5 to 0. This produces a value that smoothly ramps between 0 and 0.5, and then back down. The
last step is to multiply this output by a chosen value to produce the desired range. For example, to ramp
from 0 to 1 and back, the output would be multiplied by 2.

18

Figure 14: Pulsing Shader

19

3.1.1.3 Visible Sound Emitters
The most difficult effect to create was the sound waves illuminating the world. In the design phase, it was
suggested that the ideal method of implementation was to have sound-emitting entities spawn spherical
lights that grow outward. As they grow, the intensity of the light decreases, and they are removed from
the world once they reach an intensity of zero. Rather than just illuminating within the entire sphere, only
the outer shell of the sphere should emit light, imitating the nature of a sound wave; only the objects
within this shell would be given illumination while objects that had already passed through it would
return to darkness. This could either be implemented using a spherical volumetric light, or by using a
texture map on the light. We determined that the above method was not possible using the stock
capabilities of C4’s lighting system, and the developer of the engine cautioned against implementation of
the volumetric light shells described above, citing excessive computational expense.

We continued to explore other options, and an idea was proposed to create the effect using a custom
shader. Under this design, the engine would pass in the location of the sound emitter, along with its inner
and outer radii. The shader would then interpolate the world-space position of each vertex, and perform a
distance calculation between each fragment and the emission source. If the fragment was within the
source’s radii, it would calculate some amount of self illumination to multiply by the Fresnel portion of
the shader. This design would also allow the player to see through un-illuminated objects by killing any
fragment not within illumination range, which could help add to the visual complexity of the game.
Unfortunately, though this method is possible in general, it came with two problems. The first was the
simple fact that C4 does not allow for the creation of custom vertex shaders and does not publish the
fragment location to the shader editor. The second problem was that this solution only works for a single
emission source. It could be extended to use more than one source, but this would always be a fixed value
and could cause the shader to quickly become too complex for real-time rendering. After some
discussion, we eventually decided to stop pursuing this method.

Through early prototyping, we discovered that using two point lights per emission, one large and one
small, created an effect similar to the one described. As such, the initial builds of Blinding Silence
spawned standard point lights that increased in radius as they decreased in intensity until being removed
from the world, as seen in Figure 15. This solution provided an acceptable compromise between the
artistic vision and the real world technical limitations, but still did not fully generate the desired effect.

20

Figure 15: Sonar Vision with Standard Point Lights

Late in production, between C and D terms, we decided to revisit the effect. After researching the
intricacies of C4’s lighting system, it was discovered that the attenuation for lights in the engine is
controlled by a simple 3D texture that is pre-computed at runtime and then used by every light.
Eventually, we were able to modify the attenuation texture to generate an effect that resembled the
volumetric light shells described in the original design. The original texture was normalized to falloff
from an intensity of 1 at the center to an intensity of 0 at the edge of a circular radius. We used this
normalized value as input to a pair of linear functions that ramped the texture up to 1 at an arbitrary
distance from the center, and then ramped it back down to 0 to create the shell. This worked quite well
and generated the effect we wanted, seen in Figure 16.

21

Figure 16: Sonar Vision with Custom Attenuation Texture

However, this attenuation texture is global to all point lights, and we still wanted the use of a standard
point light for certain effects. We decided to create a second texture that would use the original falloff
calculation, and then modified the internal shader code of C4’s cube lights, allowing us to use both the
original and custom attenuation textures at the same time. In the end, we were able to create the desired
volumetric effect with zero additional rendering cost compared to using standard point lights.

3.1.1.4 Visible Sound Emitter Limitations
There are some drawbacks to using the method we finally settled on. One such drawback is that using this
method removes the ability to use shadow-mapped cube lights. This didn’t affect our game since we don’t
use any shadows, but others using this method would need to further augment the engine to accept a third
type of point light.

The other main drawback is that the attenuation textures generated are global to all lights of a given type.
This means that the falloff of each light’s shell is not directly controllable. The biggest result of this fact is
that the larger the light’s radius gets, the larger the size of the light shell. Figure 17 shows two lights, one
with a small radius and one with a large radius. Ideally, the thickness of the lit area should remain
constant, but as the light grows the attenuation texture is stretched and begins to create a thicker and less
distinct ring. Given the nature of our lighting effect, including how fast the lights fade out and the limited
radii to which they grow, the problem is not sufficiently noticeable though. It should be possible to

22

improve the visibility, either by having several different pre-computed textures or by somehow
dynamically changing the attenuation texture for a given light as it grows.

Figure 17: Attenuation Texture Stretching

3.2 Level Design
Blinding Silence takes place within a forest on the outskirts of a city. The areas surrounding the city are
being industrialized, so the levels are populated with workers and rudimentary structures. Each level also
has a crystal in it which the player must reach to complete the level. This crystal is enclosed by fences,
accessible only via switch-controlled force fields.

3.2.1 Layout
Because the sound interactions are dependent upon distances, the placement of objects and actors in the
levels is very important. A view of a completed level layout can be seen in Figure 18. Level design begins
with the inclusion of puzzle-critical elements. Supplementary objects are then placed to populate the
environment, and much care must be taken to preserve the solution to each puzzle when doing so. Each
level has a boundary consisting of a series of fences which keep the player within the confines of the
puzzle.

23

Figure 18: A completed level

Supplementary actors can be placed outside this boundary without interfering with the puzzle. So long as
they are placed out of range of any potential sounds created by the player or puzzle-critical actors, they
will not effect the gameplay. However, when placing external interactibles, care must be taken to ensure
that actors inside the puzzle area will not attempt to walk through the fences to use them. These
supplementary actors are used to provide ambient noise and additional lights.

3.2.2 Resources
Wood and stone exist in several forms within the game world. There are two types of trees throughout the
forest, as well as their harvested remains. Logs are stacked in piles near trees and stumps, and also on top
of wooden pallets near structures. Stone in its raw form are large boulders, and harvested stone can be
found in piles of smaller rocks or in large metal hoppers. Resource deposits are infinite; the number of
visible logs or stones does not change when one is added to or removed from a pile. Figure 19 shows a
selection of resources in the game.

24

Figure 19: An example of resources

3.2.3 Structures
The two manmade wooden structures in the game world are the scaffold and the wooden fence. The
scaffold is a simple construction of wooden planks, part of some larger structure which has not yet taken
shape. The wooden fence, seen on the right of Figure 20, consists of posts with slats for horizontal
wooden beams. Some large stones have been cut into more usable block shapes, and other smaller ones
have been stacked to form rudimentary barriers, as seen on the left of Figure 18. There is also a metal
chain-link fence which encloses the crystal in each level.

Figure 20: Stone and wood fences

3.2.4 Crystals
There are two types of the crystals which are found at the end of each level, one small and one large.
They are embedded into bases which harness power from them. The bases are semi-organic and have
partially grown into the ground around them. Crystals "vibrate" and emit their own noise which
illuminates them somewhat. Large crystals are used in levels which end a series of like puzzles. Figure 21
shows an example of the large crystal, as seen in game.

25

Figure 21: A large crystal

3.2.5 Force Fields
Every crystal enclosure is accessible via an energy force field. They appear as shimmering bars between a
pair of posts, which impede the player and emit a dull humming noise while active. Every force field is
connected to a switch controlled by an operator. Figure 22 shows an example of a force field protecting a
crystal.

Figure 22: A force field

26

3.2.6 Switches
There are two types of switches, one made out of wood and one of stone. They include a receptacle into
which an Operator can insert his lever attachment, not unlike a keyhole. Each lever also has a moving
mechanical portion, involving pieces moving up and down the supports and generating a material
appropriate noise on each fall. This makes the switch self illuminating, allowing the player to easily
determine which switches are available in a given level. Figure 23 shows an example of a stone switch.

Figure 23: A stone switch

3.3 Character Design
The four characters in Blinding Silence are different types of workers who were once the humans
responsible for the industrialization and development of the forest in which the game takes place. Their
productive efforts have devolved into mindless repetition of the tasks they were given, their purpose
forgotten but their muscle memory intact. The artistic style of Blinding Silence does not provide much

27

detail to the player, so the characters must be clear and recognizable. More so than in most games, it is
important for the shape and actions of the characters to be obvious from their silhouette alone. The tools
which were once grasped in human fingers have been fastened to their arms to expedite the drones' labor.
These exaggerated elements allow the player to easily recognize the different entities around him.

Characters in Blinding Silence are based on generic human forms, which feature realistic proportions
along with a single exaggerated element. As they have been doing their jobs repetitively for a long time,
they have started to change so as to do the job better, and their form reflects this fact. Each type of actor
also has distinguishing clothing and props so that the player can recognize them at a glance. Any
character needing to switch between multiple props, namely the craftsman and harvester, do so by
removing the attachment on their arm and replacing it with another.

All bipedal characters use a single unified skeletal rig, allowing for transfer of animation between all
characters. All bipeds are based on the same basic mesh with a socket on an arm to hold props, and a hand
on the other. They differ only in clothing worn and props used. The one exception is the Carrier whose
mesh has two sockets instead of a hand.

3.3.1 Harvester
The Harvester’s job is to reap nature’s resources, providing the workers with their supply of wood and
stone. With his axe attachment he chops at trees which will never fall, and his pickaxe attachment is for
mining stone. He wears a hard hat and sports a large exaggerated lumberjack beard. Figure 24 shows the
Harvester, as a concept on the left and as a final model on the right.

Figure 24: Harvester

3.3.2 Craftsman
The Craftsman, seen in Figure 25, is responsible for building the various manmade structures found in the
game world. He relentlessly works at wooden scaffolds or stone blocks, without making any actual
progress in either case. He wears a hard hat, and a pair of safety goggles. When working on wood, he uses

28

a hammer attachment and holds the structure with his left hand. When working on stone, he uses a mallet
attachment and holds a chisel in his left hand.

Figure 25: Craftsman

3.3.3 Operator
The Operator, Figure 26, is in charge of controlling access to the various power crystals throughout the
levels by means of activating and deactivating force fields. He stands at his assigned switch and activates
it by inserting his lever attachment. He wears a hard hat and sunglasses. When not actively pulling his
lever, he stands idly and waits to hear the sound that will activate him.

Figure 26: Operator

29

3.3.4 Carrier
The Carrier, Figure 27, is charged with the transportation of resources. Materials (wood and stone)
collected by the Harvesters must be administered to Craftsmen building structures. The Carrier hauls logs
and stones from pick-up points to drop-off points across levels. When laden with a load, he walks half as
fast and his gait changes to match the weight and position of what he is carrying. In his right arm is a claw
for carrying logs over his shoulder. In his left arm is a four-pronged grabber for carrying stones at his
side, similar to the grabbing arm in arcade machines.

Figure 27: Carrier

3.4 Animation
In a world with little visual detail, accurate movement is important to help maintain believability. The
diverse range of characters and interactions in Blinding Silence required large amounts of high quality
animation, which would have been difficult to achieve in a short development time if created by hand.
Instead, animation was created using motion capture data, allowing for both increased realism and
decreased development time.

3.4.1 Stock animation
Various sources online provide access to free motion capture data. Originally, we had planned to get
much of our animations from this freely available data. We were under the impression that this data
would have already been cleaned and would save a great deal of time in creating the animations.
Unfortunately, when we started looking through the available data, we found that there were very few
animations that were on our list of requirements. Of the ones that were, they were all useless for our
purposes for one reason or another. In the end, we chose to stop trying to find pre-captured animations,
and chose to capture all of them ourselves.

30

3.4.2 Studio Setup
The WPI HIVE2 lab owns two PhaseSpace3

3.4.3 Capture and Cleanup

 motion capture systems that were not in use at the start of the
project. Over the course of B term, we tested various ways of setting up the systems to produce optimal
data. Due to the physical constraints of the space available to us, we were never able to find a
configuration that would produce perfect data. In the end though, using a combination of the cameras
from both capture systems, we were able to capture data that was clean enough to be processed for our
animations.

Near the end of B term, once the system was able to produce usable data, we had an actor from an on-
campus improv group come in and perform the motions we needed. We ended up capturing almost 12Gb
of data over 36 takes.

From the end of B term through to the first weeks of C term, the data was cleaned in Motionbuilder. This
was very time consuming work because the data was not very clean, particularly due to an important
marker that had come un-plugged in the first few takes of the capture and was not noticed until much
later. This caused the right arm to often solve improperly. In addition, the setup we used for capture of the
hands resulted in very dirty data that often required hours of intricate work to resolve.

The final result of the motion capture was roughly 20 animations spread over the 4 actor types.

3.4.4 Integration
Initially, we simply put each animation into the engine in its entirety. However, most of the animations
required that some action be performed by the game part-way through playback. For instance, footsteps
must be emitted at the proper times, and a harvester needs to emit a sound when he hits a tree. Since C4
only provides a callback for the completion of an animation, we decided to split each animation into two
pieces. At the completion of the appropriate segment, the engine takes the proper action and then plays
the other portion of the animation as needed.

The other concern with animations had to do with blending between them. C4 is advertised as having an
animation blending mechanism that will smoothly blend from one animation to the next. For this reason,
we chose not to make individual blending animations for each state change. Unfortunately, after several
attempts, we found that the C4 blending did not work properly. By that time it was too late to devote
further resources to creating all of the animations need for state changes. As it turned out, due to the
inherently dark nature of our game, the player is rarely able to see the state change well enough to notice
the lack of animation blending, so we eventually chose to leave the animations as they were rather than
trying to schedule time to find a better solution to the blending problem.

3.5 Storytelling and Instructions
In the original design of the game, we wrote a detailed backstory that explained why the world was as the
player saw it, along with a story arc and end-game. We planned to deliver the story through video and

2 http://web.cs.wpi.edu/~gogo/hive/
3 http://www.phasespace.com/

31

assorted stills. Due to time, we had to cut the videos and boiled the story down to its essence as stills
bundled with the instructions.

3.5.1 Animatics
Instead of using live cut scenes, the story of Blinding Silence was to be told through an introductory
animatic, stills shown between each level, and a final animatic at the end of the game. The content of
these was to come from two sources: first, rendered stills of certain in-game objects would be used to help
maintain the connection to the game world. Second, photographs would be used to provide the settings of
the animatics, along with objects and places that do not appear in the game. This content would then be
composited and animated to match narrated voice-overs of the player’s cane. The images would then have
various filters and effects applied to give them a distinctive visual look, similar in style to the visuals
found in-game. The introductory animatic script and storyboards can be found in Appendix F and
Appendix G, respectively.

Figure 28 shows an example of portions of an animatic depicting darkness and silence falling across the
world. Proceeding from ‘a’ to ‘d’, the city goes from completely realistic to a look that better fits the
game world as seen by the player.

Figure 28: Animatic Progression

Figure 29 shows different variations in world style, stylizing a real image of a forest in a way that is
closer to the simplified look of the in-game world. They range from very detailed and realistic in ‘a’, to
very stylized and sparsely detailed in ‘d’, with images ‘b’ and ‘c’ providing more intermediate levels of

32

detail. The amount of detail in any given shot would have varied between these styles, depending on the
tone and content at that time. Animated characters would then be added to these images, and colored
sound-waves overlaid to help reinforce the image and the connection to the in-game world.

Figure 29: Example Styles

3.5.2 Stills
Because the animatics and in-game narration were both cut from the game, the story of Blinding Silence
was abbreviated and bundled with instructions regarding the controls, rules, and mechanics. This
information takes the form of a series of stills given to the player in the form of a slide show. These stills
(which appear in Section 2) consist of pictures, either taken from screenshots of Blinding Silence or
modified stock images, alongside text describing the aforementioned information. Effort was taken to
maintain a coherent style among these stills and with the style of the game as a whole, particularly other
UI elements. Contextual stills were created to display messages regarding events such as level
completion, as well as the credits and integrated into user interface code.

3.6 Acoustic Vision
Blinding Silence does not have a traditional sound score. All sounds that the player hears, even ambient
sounds, are connected to a visible cue in the game world. Through the use of a global game clock, these
sound effects are constrained to a particular rhythm. This effectively creates dynamic game "music" based
upon the positions and states of the player and level entities.

33

Sound effects were created using a mixture of audio recorded by the team and royalty free sound effects
from online libraries. The manipulation of real life sounds to give them a more instrumental feel enhances
the audible experience and compensates for the intentional lack of pre-composed music. The sound of a
pick axe striking a stone with a constant timing becomes a percussive beat in the "song" generated by the
level.

In addition, sounds are further associated with their visual counterparts through the use of color. Sound
waves which illuminate the world are colored; each type of sound is represented with a distinct hue,
allowing the players to identify level elements both audibly and visibly.

3.6.1 Voice Acting
We originally planned to have the player’s cane act as a mentor through the game, teaching him how to
interact with the world and revealing new pieces of the story to him. Even the animatics would be told
from the perspective of the cane as an immortal being. To this end, we found a student to provide voice
acting and began to draft the various scripts of necessary dialog. Several takes of the introduction
animatic were recorded, but they were never processed and finished because more important issues arose.
Once it became clear that there wasn’t time, the dialog and voice-overs were cut from the game and
replaced with text in the instructions.

3.7 Artistic Tools
Levels in Blinding Silence were created using a combination of Autodesk Maya4 and the C45 level editor.
Characters and props were created in Zbrush6, and optimized for importation using Maya. Animations
were created using a combination of Maya and Motion Builder7, along with motion capture data gathered
specifically for the project. Adobe Photoshop8 was used for 2D content as needed, including the menu
interface and a limited number of textures; there was little demand for textures as the look of that game
was primarily achieved through the creation of custom shaders. Finally, the planned animatics were to be
created using Adobe After Effects9

3.7.1 Integration and Level Pipeline

, but they were eventually cut due to time constraints.

Integration of game assets and levels was accomplished using a series of tools built in both Maya and C4.
The C4 world editor can be difficult to use when trying to layout levels. Tasks that may normally take a
few seconds in a standard DCC10

4 http://www.autodesk.com/maya

 application often end up requiring significantly more time and effort.
Maya, on the other hand, is a very powerful tool that makes level layout very quick. However, when using

5 http://www.terathon.com/c4engine
6 http://www.pixologic.com/zbrush
7 http://www.autodesk.com/motionbuilder
8 http://www.adobe.com/products/photoshop
9 http://www.adobe.com/products/aftereffects/
10 DCC stands for ‘Digital Content Creation’ and is used here to refer to standard applications used
by the gaming industry for generating visual and artistic content.

34

Maya for level layout, the designer has no access to important C4 structures such as markers and world
referencing. The tools we created were designed to create a bridge between these two applications,
allowing the designer to leverage the efficiency of Maya while retaining the ability to utilize various C4
specific constructs.

3.7.1.1 Asset Setup
One important aspect of C4 is the concept of referencing worlds into a main scene. The level designer can
place markers at a series of locations and set them to all reference the same world. By creating these
references, the engine can conserve resources and be more efficient compared to having discrete
duplicates of a given piece of geometry. Referencing a single world also provides an added benefit in that
changes to an object that appears multiple times in each level need only be made in a single file, as the
changes will be propagated to any level referencing that file. We wanted to find a way to let the designer
place these, and similar, sorts of markers in Maya built levels.

Maya provides a node type called a locator, which is used for the sole purpose of defining a transform in
the world in the same way that C4’s markers do. We decided that these locators would be the best choice
for the Maya end of the marker placement pipeline. By naming them in a specific manner, we were then
able to export them and let the C4 importer determine the appropriate type of marker to place in the world
(see section 3.1.1.3). We created a tool in Maya, seen in Figure 30, which will generate an appropriately
named locator at the scene origin, which could then be used to determine placement of that object in C4.
The tool will also add special flags to the markers, allowing the exporter to easily find them later. The
user chooses a C4 marker type (locators, references, or a model), gives the marker a name, and assigns it
a unique four character identifier that C4 can recognize. The name output from the settings in the figure
would be “LOCATOR_1234_Marker”.

Figure 30: Marker Creation Tool

To create the actual C4 assets, the artist follows the standard C4 pipeline of exporting the desired objects
from Maya and importing into a C4 world file. No special steps are needed in the editor. All of the data
needed for the custom pipeline lives in the Maya locator markers, and not in the imported C4 worlds
being referenced.

35

3.7.1.2 Level Creation and Exporting
The next step was to create some way for the level designer to place objects in the world. As in C4, Maya
also includes a referencing mechanic that allows files to be referenced into a scene. Using Maya’s
referencing system seemed to be the best choice, but forcing the designer to manual find the right files
each time would be tedious and would make the process very slow. Realizing this, a second tool was
designed that would provide a list of objects that C4 is setup to import, allowing the designer to easily
choose the required object without having to know what file Maya was actually referencing.

Figure 31 shows the final version of the tool that was created. The user can select from three lists
(Locator, Reference, Model), corresponding to the three types of markers being imported by C4. The user
then selects the desired object and presses the “Add Chosen Object” button to reference it to the scene’s
origin. Due to the nature of Maya’s reference system, standard object deletion and duplication breaks the
link between the source file and the reference. To combat this issue, the tool also includes buttons to
perform helper functions, such as easily removing a reference and duplicating one or more references
while maintaining their positions. Finally, it includes a button at the top named “Scene Setup” which will
perform a series of operations on a default Maya scene to adjust it to match the requirements of the C4
importer.

Figure 31: Level Layout Tool

36

Once the designer has completed a level, he must export it in a way that C4 will be able to understand.
Simply exporting the references will not work because each piece of referenced geometry would be
converted into discrete duplicates. Instead, it is necessary to export the locators that were setup in the
individual referenced worlds. This is where the final Maya tool, shown in Figure 32, is used. By pressing
the “Group/Populate” button, the tool will search through the entire scene graph for markers with certain
custom flags on them. For each one it finds, it will check another flag to determine which type of marker
it corresponds to and will add a copy of that locator to a group. When the process is complete, all of the
locators have been duplicated and placed into one of three groups based on their marker type. The user
can then select these groups, and any custom geometry added to the level, and export using the standard
Collada exporter as usual. The other buttons shown in the tool will perform the individual steps of the
process, if needed.

Figure 32: Level Exporting Tool

3.7.1.3 C4 Importing
The stock C4 importer is capable of recognizing Maya locators and will turn them into locator markers if
their name begins with “MARKER_”. Using this basic functionality, we created three additional
keywords to accept: “LOCATOR_”, “REFERENCE_”, and “MODEL_”. If any of these are found, the
importer will strip out the keyword and create an appropriate marker of the given type. The process of
creating each type of marker is slightly different.

3.7.1.3.1 Locator Markers
Locator markers are the easiest to import, as the name is simply divided and each part is put into a
specific spot in the marker. Using the example from section 3.7.1.1, “LOCATOR_1234_Marker”, the
importer will create a locator marker with a type of ‘1234’, and will give it the name “Marker”.

3.7.1.3.2 Reference Markers
Reference markers are more complicated. These markers need to store a file path to the world they are
supposed to reference. However, trying to store the full file path in the name presents a number of issues
in both Maya naming and in determining the length of the path name. Instead, the four character identifier
is used to reference a string table. In this table is a list of identifiers and the file paths they correspond to.
Once the file path is found, a reference marker is created that points to this path, and is named in the same
manner as locator markers. If the identifier is not listed in the table, a reference marker is still created but
it will be set to not reference any world.

37

3.7.1.3.3 Models
In C4, model types are four character identifiers that are registered with the engine on startup. Once again,
the name used to import the marker can simply store an identifier. When importing a model locator, the
importer will ask the engine to provide an instance of the model registered with the given identifier. If
found, the model will be named as with the other two types and will be added to the world. If the given
type is not registered with the engine, the importer will generate what is known as a “generic model”,
which will initially be set to a blank model type.

3.7.1.4 Future Work
In general, the pipeline we created helped to drastically speed up the creation of levels as intended.
However, the tools are not perfect and it would be useful to implement certain extensions should the tools
be used for future work.

3.1.1.4.1 Hard-Coded Values
In their current state, the tools require a non-trivial amount of work if an asset changes type or a new asset
is added. On the Maya side, the Markers stored in the referenced files describe how the engine should
interpret them on import, and have to be manually replaced if changes need to be made. Also, the lists of
available assets and their location in the placement tool are hard coded Python dictionaries that must be
manually kept up to date. On the C4 end, the model registrations and the referencing string table have to
be manually kept in sync with the data being output by Maya.

An ideal solution to the problem would be to keep a data base of assets, storing their identifier, marker
type, and file locations for both Maya and C4. In this way, a single user interface could be used to register
assets with both Maya and C4, allowing for simpler maintenance.

3.7.1.4.2 Placement and Manipulation
In the current implementation, new assets are initially placed at the scene origin. This can become
aggravating as the designer must navigate back to the origin any time a new object is created. The
problem is somewhat mitigated by the ability to duplicate groups of assets in place, but this feature
doesn’t help new asset creation. A possible extension to solve the issue would be to allow the designer to
click on the location where the object should be placed, possibly with the option of randomized rotation
and automation of sinking the object into the ground. A tool like this would allow for much faster
placement of objects; for instance, a forest of semi-randomized trees could be placed with a series of
clicks, rather than manually duplicating and transforming each tree by hand.

Also, due to the nature of referencing in Maya, the designer can select each piece of an asset instead of
only selecting the parent node that should be used for placement. It would be useful to find a way to
encapsulate the referenced objects such that the designer can only see the single node used for
manipulation and placement.

3.7.1.4.3 Connections
C4’s editor allows the designer to create connections between game objects that can then be accessed in
code. We chose not to design this functionality into the Maya tools because it was not needed for this
project. In the initial plan, any necessary connections would be made based on the proximity of certain
objects to one-another. However, once we started to make levels we realized that it was important to have

38

control over how objects were connected. Unfortunately, it was too late to design a way of creating
connection from within Maya, and so they have to be made once the level is imported into C4. In the
future it would be useful to have this functionality available in Maya so that levels don’t need further
editing once they are imported into C4.

3.1.1.4.4 Controllers and Properties
C4’s editor also allows for the ability to add controllers and properties to objects, and adjust their
attributes. Initially, we had intended to not have customizable attributes on the controllers; the game
would assign the controller based on model type and would then use object proximity to make any other
decisions. As with connections, it soon became apparent that we needed to have control over various
attributes of the controllers. We also added several custom property types to the game that needed to be
set during level creation. It would be useful to create a way of registering controllers and properties with
Maya and exporting them in a way that C4 can later interpret.

39

4. Technical Design
This section contains all relevant design challenges and solutions, as well as all relevant diagrams and
charts, and justifies our technical design choices.

4.1 C4 Engine
We chose the C4 engine for four reasons:

• Every team member worked with C4 before
• C4 has a dedicated developer community
• C4 supports 3D sound
• Terathon provides full access to engine source code

4.2 Technical overview
This section will summarize the technical achievements accomplished during the development of
Blinding Silence.

4.2.1 Interfacing with Wiimote
A way of interfacing with Wiimotes was required for this project. The Tech team decided to choose
WiiYourself version 1.14 Beta, a native C++ Wiimote Library. WiiYourself allowed us to easily integrate
Wiimote support into C4.

4.2.1.1 Basic Wiimote functionality
The WiiYourself library provides direct access to the data state of the Wiimote, which allowed us to
directly monitor the buttons and analog stick. Every engine tick the Wiimote state is checked, and any
relevant change in state is dealt with by other functions.

4.2.1.2 IR Data Receivers
IRDataReceiver is a generic class for handling IR data coming in from the Wiimotes. The receiver class
has a one-to-one relationship with each Wiimote; IRDataReciever takes in up to four points and stores
them for later access. This class also dynamically resizes the distance between tracked points, which helps
regulate the changes of position of the points in order to smooth in-game mappings.

We used this class to both track head movement and the Wiimote held by the player. They are dealt with
identically by this class, and are handled separately by the WiiCaneController and WiiCameraController.

There is a small amount of distortion effect, shown in Figure 33, as the wiimote is moved due to the effect
of mapping data from a 2D plane onto a sphere. We mitigate this effect by taking the average of two
points on the plane when calculating rotation, which lowers the effect of the distortion.

40

This checkerboard represents the data points we are
getting.

This checkerboard represents the data points when they
are mapped two a sphere. As you can see, a distortion
effect occurs that gets worse as you aproach the edges.

Figure 33: Wiimote distortion

4.2.2 Sound Design
Gameplay in Blinding Silence focuses on sounds being constantly emitted and received by both the player
and actors. To do this, the property BSMaterialProperty is associated with every object in the game. There
is a type of BSMaterialProperty for every class of sound in the game—wood, stone, metal, dirt, and
crystal. Any object without an associated BSMaterialProperty is assumed to be dirt.

Blinding Silence contains two classifications of engines in order to facilitate sounds and actors’ responses
to them. The sound engine manages the sounds themselves, and the resource engine manages objects that
actors will interact with.

4.2.2.1 Sound Engine
The sound engine handles sound for the game. It is responsible for notifying actors when they hear
sounds. Actors register themselves with the sound engine when the game is loaded. The sound engine is
responsible for keeping track of registered entities and destroying old sounds.

The sound engine tracks a list of sounds and sound receivers. The sound engine is notified every time a
sound is made, and creates the appropriate sound and related light as appropriate based on the sound
information passed to it. Every frame the sound engine checks how far sounds have traveled, updating the
lights and notifying actors as appropriate. This concentrates sound-based responsibilities into one easily
tracked class.

During development the sound engine was purposefully not made a singleton class to allow for multiple
systems of sounds that do not interact to exist in the same level. For example, all of the “background”
actors performing actions outside the playable area could be hooked up to a second sound engine in order
to remove the possibility of accidental interaction. Although Blinding Silence does not currently support

41

this functionality, keeping this as an option makes development of more complicated levels a practical
possibility.

Figure 34 shows the steps Blinding Silence goes through to generate its sounds.

Figure 34: Sound reception flow

42

1. A sound message is passed to the sound engine
2. The sound engine passes the sound message to the actor controller
3. The actor controller passes the sound message its state machine
4. The state machine passes the sound message to the current global state
5. The global state queries the resource engine for a new resource
6. The resource engine returns a valid resource, and the global state locks the state machine
7. The old global state unlocks the state machine.

4.2.2.2 Resource Engine
The resource engine is responsible for keeping track of all in game resources. When an actor needs a new
resource, it queries the resource engine with a resource type and a material type. If there is a free resource
available, the engine returns the resource. If there isn’t a resource, it returns null.

In game resources automatically register themselves with the resource engine when a level is loaded. The
resource engine tracks types of resources as separate lists in order to expedite access. Lists are split based
on the associated resources’ BSMaterialProperty as well as the actors that check with them.

The resource engine is also not a singleton, and as with the sound engine this allows for situations where
actors are set up on different systems of resources. While this might only be used for unrelated actors in
the case of the sound engine, discrete resource engines could be used to create complicated puzzles where
actors are separated by barriers.

4.2.4 AI
This section describes the logic behind the non-controlled characters present in Blinding Silence called
‘actors.’

4.2.4.1 Overview
Puzzle elements in Blinding Silence are “mindless” workers that wander the environment performing
actions repeatedly. These actors perform actions in response to sound stimuli. Blinding Silence
implements a state machine to handle the actors, functionality in place to deal with both the sound and
resource engines in order to change what they are doing.

4.2.4.2 State Machine
Each actor in the game has a State Machine, which stores the actor’s current state and handles the process
of transitioning from one state to another. Each State Machine has two states, a global state and a local
state. The global state is executed before the normal state is executed, once per frame.

The State Machine also supports message passing. When the State Machine receives a message it passes
it to the current global state to be handled. If the global state is unable to handle the message, the message
is then passed to the local state to be handled.

The State Machine supports a form of locking. When locked, a state machine is unable to dispatch
SoundMessages to the states. This prevents the changing of global states during critical animations, such
as when harvesters change between an axe and a pickaxe, or when carriers drop logs.

43

4.2.4.2 Messaging System
The implementation of the state machine includes a message passing system. Messages are dispatched to
the actor’s global state first. If the global state is unable to handle the message received, the state machine
dispatches it to the local state.

Setting up the message system this way interfaces with increasingly complicated layers of states to
provide for specialized states that handle special instances. During development this was used to solve a
variety of challenges; for example, operators do not transition back after their DoAction state. A special
Operator::Wait state was created for the operator to switch to, which required a specialized DoAction
state as well. Messages are simply passed down until they either find the state that deals with the message
or returns that the message was not handled.

4.2.4.3 Global States
Global states store state transition logic that would otherwise have to be in every state. Including global
states cuts the number of states we need in half. Consider Figure 35.

Harvester
MoveStone

Harvester
DoActionStone

Stone
Start

HarvesterChange
PropStone

Receives Wood
 Sound Message

Receives Wood
 Sound Message

Actor at targetRecieves Stone
 Sound Message

Recieves Stone
 Sound Message

Harvester
MoveWood

Harvester
DoActionWood

HarvesterChange
PropWood

Receives Stone
 Sound Message

Receives Stone
 Sound Message

Receives Animation Done Message
Actor at target

Receives Animation Done Message

Recieves Wood
 Sound Message

Recieves Wood
 Sound Message

Receives Animation Done Message

Wood
Start

Figure 35: State machine diagram without global states

There are a large number of transitions in this diagram. There are also a large number of duplicate states
whose only difference is containing wood- or stone-specific state transition data. The solution is not
elegant and the number of transitions increases exponentially with the number of states, which is difficult
to debug and worse to expand upon.

44

Now, compare this with Figure 36:

Harvester Stone

ActorChange
Prop

Receives Wood
Sound Message

Receives Animation
Complete MessageActorMove

On State Enter

ActorDoAction

Receives Stone
Sound Message

Actor at target

Harvester Wood

ActorChange
Prop

Receives Stone
Sound Message

ActorMove

On State Enter

ActorDoAction

Receives Wood
Sound Message

Actor at target

Receives Animation
Complete Message

Figure 36: State machine diagram with global states

Not only do the global states simplify the process and remove redundant states, but the state transition
process becomes linear. Global states are traversed in a consistent fashion, which allows for specialization
of certain local states to handle variables set and removed at the beginning and end of global states, as
well as further state specializations.

4.2.5.3 Local States
Local states are where the implementation of what an actor does is stored. Local states control the running
of actor’s animations as well as the timings of his actions. We strove to make the local states as generic as
possible so they could be re-used between actors.

In certain cases specialized non-generic states were necessary. These states are switched to in place of
generic local states, and contain functionality specialized to certain situations. This was extremely useful
during development, as basic actor functionality was put in place immediately, and writing specialized
local states could be done modularly as features were added to Blinding Silence.

4.2.5.4 Navigation Mesh
Blinding Silence uses a fast, open source library called Recast11 to automatically generate its navigation
meshes for levels. Blinding Silence uses a plugin12

Recast creates a navigation mesh over a voxel mold created from level geometry. The mesh is made up of
convex polygons to facilitate path finding. The Recast plugin is run once to create the nav mesh, and then
saves that navigation mesh. While this limits levels to containing non-dynamic navigation, it lends itself
to the non-singleton resource and sound engine techniques discussed earlier.

 by C4 developer Marko Ludolph to integrate Recast
with C4.

11 http://code.google.com/p/recastnavigation/
12 http://www.terathon.com/forums/viewtopic.php?f=4&t=7793&p=76102

45

4.2.4.5 Path Finding
Blinding Silence uses Recast’s sister library Detour, found at the same location, for its path finding.
Detour is designed to work with the navigational meshes generated by Recast, and uses the same plug-in
developed by Marko Ludolph to integrate with C4. Detour finds a path based on provided start and end
points. Blinding Silence creates splines for the actors to follow for the following reasons:

• Splines can be quickly drawn from a series of navigation polygons
• Splines can be cached to speed up rapid destination transitions
• Steering forces are more useful for dynamic pathing, which is not necessary due to the

static nature of the navigation mesh and actors not reacting to anything other than sounds
• Splines reinforce the ‘mindless’ nature of the actors

Detour takes an array and fills that array with a series of contiguous navigation polygons starting from the
closest polygon and ending on the closest polygon that can be pathed to. This means that in cases where a
resource is on the other side of a barrier, Detour will find the closest point on the available navigation
mesh to the provided destination. Detour does not determine whether or not a point can be pathed to, so
further logic must be applied in order to avoid actors walking through walls and other objects. Blinding
Silence solves this problem through level design augmented with pathing error testing.

4.2.4.6 Path Smoothing
As Detour returns a list of navigational polygons, Blinding Silence incorporates path generation and
smoothing in order to provide actors with a path to follow. Paths generated by Detour may not be optimal,
so Blinding Silence uses path smoothing to make paths look more natural.

In Figure 37, you can see the
original path before path
smoothing.

Figure 37: Unsmoothed path

46

The first step is to cast a ray from
P1 to P3. If the ray does not collide
with something, as in Figure 38,
we know P2 was not necessary for
navigation

Figure 38: Path smoothing ray casting

There was no collision when we
cast the ray. This means that P2 is
unnecessary and we can remove it
from the path, as shown in Figure
39.

Figure 39: Removing a point

We now repeat the first step,
except this time we cast the ray to
P4. In Figure 40, this results in a
collision.

Figure 40: Ray cast with colliding object

47

We collided with an object when
ray casting to P4, so the final path
is P1, P3, P4. Figure 41 shows the
final path returned.

Figure 41: Smoothed path

48

5. Project development
This section describes the process of developing Blinding Silence from term A term 2009 to D term 2010.

5.1 Design
Before the first term of the project, development on the Blinding Silence MQP was divided into three
sections. As Blinding Silence was originally planned to be developed over three terms, each section
directly corresponded to a single term. A term was reserved for designing the game, B term for
development, and C term for game testing and refinement.

A term progressed as planned. By the end of the term we produced a design document that fully described
our game, which can be found in Appendix G. However at the end of A term the team revisited the design
and concluded it was too complicated. As a result of this, the soul stealing mechanic was removed from
the game, and a few levels were drawn up to mirror this.

5.2 Development
Over B term development was constantly one week behind schedule. Although the project planning had
been set up to allow for this, winter break came on with similar results. When C term started, the game
was still not at a playable state due to several critical bugs.

The entirety of C term was taken over by development. While the game was always about a week away
from being playable (and therefore testable), non-critical improvements to the game both pushed back
addressing present critical bugs and created new ones as fast as the old critical bugs were addressed. Near
the end of C term it was clear that the game would need further development before it would be feature
complete, let alone playable. In response to this we extended development into D term.

In order to extend into D term, the team had to reserve only 1/6th credit to avoid conflict with other
classes. This caused the first few weeks of D term to progress with only minimal work spent on Blinding
Silence. However, the team got together over one weekend and brought the game to a playable state,
including running a few rounds of ad-hoc testing with available test volunteers. The results of these tests
indicated that not only was Blinding Silence fun and intuitive as the original document had focused on,
but the extra term spent developing had paid off in quality of the final product.

5.3 Conclusion
Although Blinding Silence did not achieve feature freeze until a few weeks before the end of D term, the
game ended up being quite well received both on project presentation day and with testers. The original
design was overly ambitious, but taking more time to develop into a product close to the original design
has proven to be successful, and if the project had been cut down in scope to stick to the development
timeline, the final product might not have been nearly so well received.

Though parts of the original design were cut, namely the Wii MotionPlus and animatics, their absence
does not detract from the game as a whole. Instead removing these potential bottlenecks when we did
allowed us to push through and create a solid game. Even without them, the development of Blinding
Silence required the creation and integration of many complex systems that the team had never worked
with before. Even without the delays, it is apparent that the proposed design could not have been easily
completed in just two terms of development.

49

In the end, the team met the majority of the goals that were laid out. We created a fun and interesting
game that challenges players to think outside of their normal playing habits. Everyone who has tried
Blinding Silence has enjoyed it, which means that the overall development was, in fact, a success.

A-1

Appendix A: Original story
In the beginning, Olome formed from nothing. It formed in such a way that the great light was always
shining on the northern hemisphere, and never on the south. It was here that the First Ones came upon the
world, and took it as their own. They set the world spinning so that for 4 hours a point on the northern
hemisphere was dark, and for 4 hours the south was light. They then build their homes in the north, and
lived in peace with the world.

Over time, however, the First Ones lost their knowledge. They began discovering things once forgotten,
and expanding, losing their touch with the land. The people became greedy, and were different. It was
into this world that Jabin was born.

Jabin was always a loner, never quite getting along with others. He has the double curse of being blind
and extremely intelligent, which may seem a gift to offset a disadvantage, but Jabin’s peers lacked
empathy for these sorts of things. The child-raising traditions of Jabin’s hometown placed him
unsupervised with many other youngsters, who quickly decided his seeming arrogance and thorough
unwillingness to play physical games made him an uninteresting companion, and the attitude prevailed
into adulthood. Jabin grew up apart from society, and when the time came to choose his life as a grown
man, he left the town behind him and entered the forest as a hermit. Although such a choice was rare, it
was not unheard of, and none could convince Jabin to stay in relative safety.

It was in the forest Jabin found the staff. He had lived a few years in seclusion, learned sounds to avoid,
smells to approach. He had never before heard the high-pitched buzz that called to him that day, and
cautiously investigated. Curiously, although he could easily tell the direction from which the sound was
coming, it never seemed to get louder. Jabin nearly fell when he bumped into a three-foot staff sticking
straight out of the ground. Reaching out to the source of the sound, Jabin discovered the top of the staff
had some sort of cut precious gem seemingly growing out of it. Jabin hardly registered that the ringing
sound had ceased, due largely to the fact that a voice was speaking to him.

Jabin could not tell a direction the voice was coming from—the voice seemed to come from inside his
mind. It announced itself as a remnant of the First Ones, and informed him that difficult times were
approaching. Jabin quickly realized the staff was speaking to him, and over time he learned to trust the
voice.

During the next few weeks Jabin noticed a change overcome him. He was hearing sounds from farther
away than he used to, and slowly he was recognizing exactly what was making the sounds. Within a few
days of this discovery Jabin realized he could tell the surroundings of the sound as well. It was that night
the darkness came.

Jabin wasn’t sure how he knew it was darkness, but it was undeniable. A warm clammy calm swept
through the forest, sounding quite the opposite of a breeze of wind. Rather than rustling the leaves of the
trees, total silence swept across the woods, moving from south to north and dampening everything in its
path. When the silence reached him, Jabin felt the air turn warm, but his body turned cold and began
shivering. An almost painful burst of heat shot up the arm holding the staff, and shot down his veins to
the rest of his body. Jabin had a moment to attempt to process what had happened, before he emptied the
contents of his stomach onto the ground.

A-2

Once he had his breathing back under control, Jabin realized the darkness was sweeping north, toward his
hometown. Wasting no time, Jabin set off to make sure his family was all right. Tapping the staff in front
of himself like a cane, he lit up the darkness and wandered into the night.

Jabin was unprepared for what he discovered in his hometown. Although he knew it should be daytime,
he felt no sun and could smell no rain. Although he was blind, he knew he would find no people around
the moment he stepped onto the main road through town. There was no noise coming from the town at all,
and he could locate no bodies. What he did find was the effect of many feet traveling in the direction of
the nearby city. Having no real choice, Jabin stole some abandoned food and followed the trail.

The trail took him into the forest, away from the area he had called home for the past few years. The
thought of traveling somewhere completely new was daunting, but his thoughts were lightened when he
heard a sound coming from down the path. He rushed to meet it, excited for what he might find.

B-1

Appendix B: Zimri background and script
Zimri is a sentient stave. He originally was a crewmember of the Tenacious, a space ship transporting a
human colony through space. Unfortunately, a technical malfunction caused the crew to end their journey
in an inhospitable system. In order to create a planet capable of supporting life, the crew smashed their
ship into a relatively small planet.

The ship was organic, a living creature capable of travelling the stars. It fused with the planet, using the
same technology used for artificial gravity to preserve the lives of the passengers. The passengers were
then deposited on the planet, along with some of the crew. There they made their homes.

Some crewmembers remained to watch over and assist the ship in its transformation of the planet. Zimri
was one of these. Near the end of his life he fused his consciousness with that of a tree near the edge of
the southern continent, watching over the shores. Over time he developed his relationship with the planet,
and grew minor psychic abilities. When the descendents of the passengers returned, Zimri was used for
building and firewood. He saved a single branch, being carried by a returning craftsman to the northern
continent where the people lived.

He was left behind and waited for the right person to come by. Through his connection with the planet he
knew an evil was coming. Luckily, he found an appropriate companion before it was too late. The story
he tells is as the humans know it, many generations later.

Animatic script:
In the beginning time, Olome was born of the darkness and light. The first ones learned to live in balance
with the two forces, and the world settled into equilibrium.

On the light side, the first ones of Olome grew and advanced, but were careful never to disturb the
Balance.

On the dark side the forests grew dense, and there was only silence.

None who ventured into the forests ever returned the same.
As generations passed, the knowledge of the first ones faded, and the Balance was forgotten.

Civilization on Olome began to expand. Humans consumed their resources at an unsustainable rate.
Economic collapse seemed inevitable, until a breakthrough was made:

A new type of crystal was found, and scientists learned that it could produce unimaginable levels of
power.

Soon the cities flourished once again, and the human expansion continued. However, even this new
resource was finite, and was soon nearly depleted. The human ‘solution’ to this problem caused the
darkness that now envelops you.

You, Jabin—a man without the power of sight—were still able to see the corruption of your civilization.
Turning to the forests, you left humanity behind.

That is when our paths crossed.

I am a remnant of the first ones. When we met, I was not strong enough to talk to you, but the actions of
those you left have changed that.

B-2

In the dark forests, they discovered a new source of crystals, even stronger than the last, and they began to
use these crystals throughout their domain.

By doing so, they have re-introduced the darkness to the light; the equilibrium is broken. Now the
darkness has spread over all of Olome, and the world you knew has ground to a halt.

We must venture through the forest and reach the city you left. There we can find the source of the
darkness, and attempt to restore the Balance.

You must do this, or Olome will wither and die in darkness.

C-1

Appendix C: Asset Lists
These are the final asset lists for the game, based on the lists made in the initial design phase. The status
column lists assets as follows: A “C” indicates that the asset was planned in the design phase and has
been completed and included in the final game; an “X” indicates that the asset was planned but was cut
from the game for some reason and never completed; an “N” indicates that the asset was not originally
planned but has since been added based on ongoing development needs.

Visual Art
 Description Status

Human

Base Mesh
Base human mesh for all human characters. Includes arm stump for
attachments C

One-socket mesh
Mesh for actors with attachments on one arm only (operator, harvester,
craftsman) C

Two-socket mesh Mesh for actors with attachment points on both arms (carrier) C

Biped rig Generic biped rig C

Animation

Chop tree Harvester chopping a tree C

Mine stone Harvester mining C

Pickup wood Carrier grabbing wood C

Drop wood at pile Carrier dropping wood at a pile C

Drop wood
anywhere Carrier dropping wood and switching to stone C

Pickup stone Carrier grabbing stone C

Drop stone at pile Carrier dropping stone at a pile C

Drop stone
anywhere Carrier dropping stone and switching to wood C

Hammer wood Craftsman working on wood C

Chisel Stone Craftsman working on stone C

Walk Basic walk C

Craftsman Chisel
Walk

Basic walk, but with a hand in a grasping position to hold the
chisel C

C-2

Walk with wood Carrier walking with wood C

Walk with stone Carrier walking with stone C

Pull lever Operator using lever-arm C

Idle 1 Basic idle X

Idle 2 Basic idle with foot tapping X

Harvester Change
prop

Pass hand behind back, and bring it to the front again with a
new prop C

Craftsman Change
prop (x2)

As with the harvester, but the craftsman needs to swap in and
out of holding a chisel for stone work C

Props

Cane Player's cane C

Axe Harvester's tool for trees C

Pick-axe Harvester's tool for stone mining C

Claw Carrier's tool for carrying wood (2 hooks) C

Grabber Carrier's tool for carrying stone (4 hooks) C

Chisel Craftsman's tool for stone-work C

Mallet Craftsman's tool for stone-work C

Hammer Craftsman's tool for wood-work C

Lever Operator's prop for activating things C

Clothing

Hard hat Head-gear for all workers C

Hard hat with glasses Special hard hat for operator C

Beard Large, exaggerated beard for harvester C

Safety goggles/eye
attachment Craftsman's eye-gear C

Tool belt Craftsman's tool belt X

Levels

Forest Content

Lush trees Tall, healthy trees with leaves (2 variations X

Dead trees Short, dead trees, skinny (2 variations) C

C-3

Stumps Stumps; not harvestable (2 variations) C

Boulders Very large rocks mined by Harvesters C

Rocks Small rocks scattered around the landscape X

Small crystals Small sized crystals at the end puzzles C

Large crystals Larger crystals at the end of puzzles C

Resources

Log Logs carried by Carriers C

Log pile Wood pickup points for Carriers C

Log pallet Wood dropoff point for Carriers C

Stone Stones carried by Carriers C

Stone pile Stone pickup points for Carriers C

Stone hopper Stone dropoff point for carriers C

Industrial Structures

Wood fences
Fences blocking the player, but that the player can see
through C

Stone fences Fences blocking the player and that he cannot see through C

Metal fences
Fences blocking interactors from leaving a puzzle are. No
effect on the player and cen be seen past C

Force field doors Block players but can be turned off - effect C

Electric wire support
system

Support towers/telephone poles for wire routing between
crystals and the things they power

C, but not used
in game

Wood switch Switch made of wood (with animation) C

Stone switch Switch made of stone (with animation) C

Wood structure
Simple wood structures under construction by Craftsmen (3
variations) piece of fence C

Cut stone
Partially shaped block of stone being worked on by
Craftsmen C

Bridge
Bridges over rivers, potentially blocked by forcefields. 3
variations: wood, stone and metal X

Mine structure
Structure, slightly embdded in the environment, holding the
boulders to be mined X

C-4

UI

Main menu The main menu screen C

Choose level The level selection screen C

Options The options screen C

Graphics The graphics settings screen C

Sounds The sound settings screen X

Shaders

Character shaders Shaders, tweaked for color C

Environment shader Specific shader to help environment visibility and interest C

River shader Specific shader for rivers, which constantly emit sound X

Crystal Shader Shader that pluses the ambient visibility of the crystal N

Animatics

Intro Tells the background story of the world X

Credits Simple credits screen C

Images

 Instructions Imagery to teach the player about the world and how to play N

Completion Screens shown at completion of a level or the game N

Logo Looping movie on the main screen of the game’s logo N

C-5

Audio

Asset Description Status

Sound Effects

Chop wood Hit wood with axe C

Hit wood Hit wood with cane C

Hammer wood Hit wood with hammer C

Mine stone Hit stone with pickaxe C

Hit stone Hit stone with cane C

Chisel stone Work on stone with chisel C

Hit crystal Hit crystal with cane C

Hit metal Hit metal with cane C

Hit leaves Hit leaves with cane X

Hit ground Hit ground with cane C

Footstep, ground Walk on ground C

Footstep, wood Walk on wood X

Footstep, stone Walk on stone X

Footstep, metal Walk on metal X

Footstep, ground, loud Stomp on ground C

Footstep, wood, loud Stomp on wood X

Footstep, stone, loud Stomp on stone X

Footstep, metal, loud Stomp on metal X

Water splash Object dropped into river X

River ambient River flowing X

Pull lever Gears clicking C

Lever sound, wood Wood sliding and colliding C

Lever sound, stone Stone sliding and colliding C

Force field ambient Machine humming C

Force field turn on Ascend flange slide C

Force field turn off Descend flange slide C

Deaf noise High pitch ringing X

C-6

Crystal smash Shattering crystal C

Dialogue

Intro Animatic narration C, but not used

Other Staff dialogue X

C-7

Marker Types

This table lists the various markers used throughout the game, and their associated IDs.

Asset Marker Type Marker ID

Characters

Carrier Model carr

Craftsman Model crft

Harvester Model harv

Lever Puller Model optr

Level Assets

crystal_large Reference 0000

crystal_small Reference 0001

stone_wall Reference 0002

wood_fence Reference 0003

force_field Model door

stone lever Reference 0005

log Reference 0006

log_dropoff Reference 0007

log_pickup Reference 0008

power_pole Reference 0009

scaffold Reference 0010

boulder Reference 0011

cut_stone Reference 0012

stone Reference 0013

stone_dropoff Reference 0014

stone_pickup Reference 0015

stump Reference 0016

stump_big Reference 0017

tree Reference 0018

tree_big Reference 0019

wood_fence_open Reference 0020

C-8

stone_wall_open Reference 0021

force_field_emitter Model ffem

metal_fence Reference 0023

wood lever Reference 0024

Resources

Interaction Location Locator iloc

Item Locator Locator itml

Socket Locator Locator socl

Stone Locator Locator stnl

Log Locator Locator logl

Spawn Locator Locator spwn

Right Foot Locator Locator righ

Left Foot Locator Locator left

D-1

Appendix D: Reference and Concept Art

Characters

D-2

D-3

Forest

D-4

http://media.photobucket.com/image/forest/alexv888/dark_forest.jpg

http://fc03.deviantart.com/fs19/f/2007/238/8/f/Forest_1_by_stock_feele.jpg

D-5

http://upload.wikimedia.org/wikipedia/commons/6/6a/The_lumberjack_was_here.jpg

http://upload.wikimedia.org/wikipedia/commons/c/c4/MUWO4193.JPG

http://upload.wikimedia.org/wikipedia/commons/6/62/Contrasting_Tree_Types_Coexist_in_a_Forest.jpg

D-6

http://www.timhaufphotography.com/gallery/Panoramas/pan0508/SouthAfricaMkuzeGiantFigTreeForest
243_lg.jpg

http://upload.wikimedia.org/wikipedia/commons/d/db/Zrywka_drewna_776.jpg

http://pearl7.files.wordpress.com/2008/11/tree-stump.jpg

D-7

http://www.geocities.com/tyedye776967/river_log.jpg

D-8

Cane

http://www.swords24.eu/images/products/en/Cold_Steel_African_Walking_Stick.jpg

Props

http://www.wealddown.co.uk/images%20shop/434-1USAFellingAxe81cm.JPG

D-9

http://upload.wikimedia.org/wikipedia/commons/3/36/Chisel_wood_24mm.jpg

Clothing

http://upload.wikimedia.org/wikipedia/commons/c/c9/Chainsaw_helmet.jpg

D-10

http://www.rd.com/images/tfhimport/2000/Jun00_Using_Tools/20000601_Using_Tools_page001img001
_size2.jpg

http://www.singlesourcesupply.com/_wizardimages/Hard%20Hat%20John%20Deere.jpg

D-11

Crystals

D-12

E-1

Appendix E: Introductory Animatic Script

Blinding Silence Introductory Animatic

Open to a black screen with the words 'Blinding Silence' in white block text, which then disolve to match
the pointelized style of the animatic. Shortly after, the text disperses into blobs of white, undulating and
floating in the sea of blacks and greys. As the dialog proceeds, the blobs coalesce into a planet that is
covered in undulating dark and light blobs.

(2)In the first time, Olome was born of the darkness and light. Over time, the first ones learned to live in
balance with the two forces,

The blobs seperate, with the dark one moving to the bottom of the planet and the light ones to the top.

(3)and the world settled into equilibrium.

Additive fade into and untouched grassy knoll in 4a. Then, in 4b, one or more people dissolve onto the
same knoll farming. They are lightly detailed, implying that they are still pure and embracing the ballance
and the light side they live on. Finally, in 5, basic structures have begun to appear in the background, and
farming has progessed into a man chopping at tree. Then fades to black.

(4a)On the light side, (4b)the people of Olome grew and advanced, (5)but were careful never to disturb
the Balance.(Black)

Fade up to a dense forest of inumerable trees, stretching out into the distance and fading into darkness.
Ove the course of the text, the trees grow taller upward, and vines creep over them. The image is very
dark and detailed, and should be forboding.

(6)On the dark side, the forests grew dense, and there was only silence.

Fade to an opening in the trees, filled with abosolute darkness that is pulsing out to the surounding trees.
The image slowly zooms into the opening as the text proceeds, and should feel even more forboding than
the last image. Then fade to black.

(7)None who ventured in, ever returned the same.(8/Black)

E-2

Switch back to the image of the planet. The undulating light on the top is starting to fade and darken.
Small cities begin to appear on the light side.

(9)As the years passed, the balance was forgotten.

Fade to an image of a small glade of trees, that change one by one into stumps as a pile of logs grows in
the front. Buildings and infrastructure begin to appear in the background and the land starts to look
desolate.

(10)Civilization on Olome began to expand and consumed their recources at an unsustanable rate.
Economic collapse seemed inevitable, until a breakthrough was made:

Fade to a large crystal on black background. Very clean crystal with little detail, not corrupted. In 11b, the
crystal starts to pulse energy, and maybe fades into a basic version of the structure used to sap power in
the game.

(11a)A new type of crystal was found, (11b)and scientists learned that it could produce unimaginable
levels of power.

Fade back to the view of the planet. Cities continue to expand on the light side, and the light continues to
darken. Darkness from the bottom starts to seep upward. Fade to black.

(12)Soon, their cities flourished once again, and their expansion continued. But even this resource was
finite, and was soon nearly depleted.(Black)

Close in on a back/side view of a non-descript head, suggested to be Jabin. In 14, zoom out to show the
figure (Jabin) looking back down a path at the city he has just left. It is surrounded by a wall and a very
desolate landscape.
(13)You, Jabin, a man without the power of sight, (14)were still able to see the corruption of your
civilization, and left it behind you.(Black)

Fade to black, then:

That is when our paths crossed.

Fade up to a picture of the staff, slowly zooming in.

E-3

(15)I am a remnant of the first ones. When we met, I was not strong enough to talk to you, but the actions
of those you left have changed that.

Switch back to the earlier view of the entrance to the dark forest (from storyboard 7), and slowly zoom
toward the darkness. In 17, change to a view inside the forest of crystals on the ground. These are corrupt,
and much darker/more detailed than the earlier one.

(16)Deep in the dark forests, they discovered a (17)new source of crystals, even stronger than the last, and
they began to use these crystals throughout their domain.

Back to the image of the planet. The cities have grown to be huge, and the darkness moves upward from
the bottom to start engulfing the entire planet, though doesn't finish in this view. Then fade to black.

(18)By doing so, they have re-introduced the darkness to the light, and have broken the equilibrium. Now
the darkness has spread over all of Olome, and the world you knew has ground to a halt.(Black)

Fade up to a view of a forest from the light side. It is not as corrupt as the one from the dark side, but it
has been engulfed in the darkness. In the distance is a faintly visible/pulsing city. Zoom slowly toward the
city.

(19)We must venture through the forest, and reach the city you left. There we can find the source of the
darkness, and attempt to restore the Balance.

Back to the view of the planet. The darkness completes its spread and engulfs the entire planet. Fade to
black.

(20)You must do this, or Olome will wither and die in the darkness.(Black)

F-1

Appendix F: Introductory Animatic Storyboards

F-2

F-3

F-4

F-5

G-1

Appendix G: Original Game Design Document
The design of Blinding Silence changed greatly during development. This appendix contains the design
document as it was written at the end of A term 2009, the first term of the project. The largest changes
were the removal of the soul stealing mechanic and the simplification of level elements.

2. Gameplay Design
Blinding Silence consists mainly of physical puzzles that rely heavily on the concept of seeing sound. The
player will discover the game’s story as puzzles are completed.

2.1 Story
Blinding Silence takes place on a fictional planet. Although many things are familiar, there is a constant
theme of unbridled capitalism that runs throughout the world.

2.1.1 Backstory
In the beginning, Olome formed from nothing. It formed in such a way that the great light was always
shining on the northern hemisphere, and never on the south. It was here that the First Ones came upon the
world, and took it as their own. They set the world spinning so that for 4 hours a point on the northern
hemisphere was dark, and for 4 hours the south was light. They then build their homes in the north, and
lived in peace with the world.

Over time, however, the First Ones lost their knowledge. They began discovering things once forgotten,
and expanding, losing their touch with the land. The people became greedy, and were different. It was
into this world that Jabin was born.

Jabin was always a loner, never quite getting along with others. He has the double curse of being blind
and extremely intelligent, which may seem a gift to offset a disadvantage, but Jabin’s peers lacked
empathy for these sorts of things. The child-raising traditions of Jabin’s hometown placed him
unsupervised with many other youngsters, who quickly decided his seeming arrogance and thorough
unwillingness to play physical games made him an uninteresting companion, and the attitude prevailed
into adulthood. Jabin grew up apart from society, and when the time came to choose his life as a grown
man, he left the town behind him and entered the forest as a hermit. Although such a choice was rare, it
was not unheard of, and none could convince Jabin to stay in relative safety.

It was in the forest Jabin found the staff. He had lived a few years in seclusion, learned sounds to avoid,
smells to approach. He had never before heard the high-pitched buzz that called to him that day, and
cautiously investigated. Curiously, although he could easily tell the direction from which the sound was
coming, it never seemed to get louder. Jabin nearly fell when he bumped into a three-foot staff sticking
straight out of the ground. Reaching out to the source of the sound, Jabin discovered the top of the staff
had some sort of cut precious gem seemingly growing out of it. Jabin hardly registered that the ringing
sound had ceased, due largely to the fact that a voice was speaking to him.

Jabin could not tell a direction the voice was coming from—the voice seemed to come from inside his
mind. It announced itself as a remnant of the First Ones, and informed him that difficult times were
approaching. Jabin quickly realized the staff was speaking to him, and over time he learned to trust the
voice.

G-2

During the next few weeks Jabin noticed a change overcome him. He was hearing sounds from farther
away than he used to, and slowly he was recognizing exactly what was making the sounds. Within a few
days of this discovery Jabin realized he could tell the surroundings of the sound as well. It was that night
the darkness came.

Jabin wasn’t sure how he knew it was darkness, but it was undeniable. A warm clammy calm swept
through the forest, sounding quite the opposite of a breeze of wind. Rather than rustling the leaves of the
trees, total silence swept across the woods, moving from south to north and dampening everything in its
path. When the silence reached him, Jabin felt the air turn warm, but his body turned cold and began
shivering. An almost painful burst of heat shot up the arm holding the staff, and shot down his veins to
the rest of his body. Jabin had a moment to attempt to process what had happened, before he emptied the
contents of his stomach onto the ground.

Once he had his breathing back under control, Jabin realized the darkness was sweeping north, toward his
hometown. Wasting no time, Jabin set off to make sure his family was all right. Tapping the staff in front
of himself like a cane, he lit up the darkness and wandered into the night.

Jabin was unprepared for what he discovered in his hometown. Although he knew it should be daytime,
he felt no sun and could smell no rain. Although he was blind, he knew he would find no people around
the moment he stepped onto the main road through town. There was no noise coming from the town at all,
and he could locate no bodies. What he did find was the effect of many feet traveling in the direction of
the nearby city. Having no real choice, Jabin stole some abandoned food and followed the trail.

The trail took him into the forest, away from the area he had called home for the past few years. The
thought of traveling somewhere completely new was daunting, but his thoughts were lightened when he
heard a sound coming from down the path. He rushed to meet it, excited for what he might find.

2.1.2 Game story arc
The player learns the game’s story by completing levels. Each time the player strikes a level-ending
crystal, all the Actors whose souls the player did not collect will wake up and tell the player a part of the
story. The more people the player ‘saves,’ the more detail the player will learn about an aspect of the
story. However, only a relatively conservative number of Actors must survive for the gist of the story
segment to be conveyed.

As the story is told by individuals who have been stuck in the darkness, the player is hearing a story about
past events.

2.2 Gameplay Overview
A player has one goal and two tasks in each level of Blinding Silence. The player’s goal is to get to the
end of the level where a mystical crystal lies. The crystal can restore light to the world and ‘fix’ any Actor
the player did not affect. To accomplish this, the player does two things: observe the puzzle, and interact
with it. Through this, the player can solve each puzzle in a number of ways.

2.2.1 Observation
Each puzzle in Blinding Silence is a miniature machine. Actors are going about their tasks accomplishing
a goal such as carrying logs or cutting down a tree. In order to solve puzzles, the player must first get an
idea of what is going on. This is not arbitrary; as the elements can get fairly complicated in their
interactions, special effort will be made to stress the importance of observation to the player.

G-3

2.2.2 Interaction
Once the player has an idea of what they want to do, they can go and change the status quo. The effect the
player has can rapidly snowball into altering the entire puzzle, so timing and choosing the right
interaction is crucial. As there will be multiple ways to solve each puzzle, some solutions affect fewer
Actors, and through that save a greater number when the crystal is reached. Players can emit sounds to
influence all Actors within a certain range, or simply stop one Actor (if they can reach him). Only through
interaction can the player change the puzzle in such a way as to allow progression to the crystal.

2.3 Hardware
Blinding Silence will have a variety of control devices for interaction with the character.

2.3.1 Wiimote cane
The main method of control will be a cane-like Wiimote housing, complete with nunchuck attachment.
The nunchuck will control walking forward and backward, as well as turning. The cane itself will be
swung about in a variety of circumstances to create sounds and otherwise interact.

2.3.2 Head-tracking glasses
To add another level of control to an otherwise limited movement scheme a pair of safety glasses with
infrared LEDs will be used in tandem with another Wiimote for basic head tracking. The camera will pan
and tilt to a limited degree in response to player head movement. This will give players an easy way to
quickly check multiple puzzle elements.

2.4 Interactions
The player has a set of interactions he can use to affect the game world. Proper timing and intelligent
utilization of these interactions is the main method of solving almost every puzzle.

2.4.1 Cane whack
By swinging the Wiimote cane, the player can hit certain surfaces and objects with the cane, causing the
most common sounds the player interacts with. The player can also hit both types of crystals found in
Blinding Silence, listed later in this section.

2.4.2 Sonar pulse
By making noises into the microphone, the player can create a burst of sound right where Jabin is
standing. This causes a small amount of light with which the player can see the immediate surroundings.

4.4.3 Reset scream
By emitting a loud constant noise into the microphone for several seconds, the player can trigger a reset
scream, which is a blinding burst of light that blanks out the screen and causes a high-pitched ringing
sound to dominate the audio. After a second, the screen slowly clears and hearing slowly returns. The
player has been moved to the beginning of the level, and all puzzle elements have been reset to where
they started. Also, the screen clears faster if the player shakes their head.

2.5 Actors

G-4

Actors are the puzzle elements that interact with the environment, the player’s noises, and each other.
Actors react to wood and stone sounds, regardless of the sound’s source. There are four actors and each
respond to sounds differently, as shown in Table 1.

Table 2: Actors

Sound Harvester Carrier
(empty)

Carrier
(wood)

Carrier
(stone)

Craftsman Operator

Wood Next tree Nearest
wood pile

Nearest wood
drop

Nearest wood
pile

Next stone
workpoint

Pull next wood
lever

Stone Next mine Nearest
stone pile

Nearest stone
pile

Nearest stone
drop

Next wood
workpoint

Pull next stone
lever

2.5.1 Harvester
The harvester chops or picks away at a tree or stone, moving only in response to stimulus. When the
harvester hears a sound, he moves to the nearest unoccupied resource or the same type as that sound.

2.5.2 Carrier
The carrier transports materials from one pile to another. The carrier switches piles based on what kind of
sound he hears, and can be directed long distances without ever finding a pile to drop a resource. When
not carrying anything, the carrier will go to the nearest pile of the type that matches the sound heard.
When already carrying, upon hearing the same sound as the resource he is carrying he will switch to the
next closest drop-off point. If the sound heard is different from what he is carrying, he will drop what he
is carrying and go to the nearest pickup pile corresponding to the sound.

2.5.3 Craftsman
The craftsman has two types of working spaces that function opposite of the harvester; the craftsman
moves to the opposite kind of position as the sound he hears. This allows for puzzle elements to interlock
without moving each other constantly.

2.5.5 Operator
The operator pulls levers in levels, opening doors and activating other objects. The type of lever he pulls
corresponds directly with the type of sound he hears.

2.6 Objects
Objects are the puzzle elements that react to player or actor interaction, but do nothing on their own.

2.6.1 Actor Objects
Actor objects are the objects that actors work on directly. As shown on Table 2, there are two types of
each actor object, a stone version and a wood version. Each makes a stone or wood sound when struck by
the player, and has one type of actor that interacts with it.

Table 3: Actor Objects

Object On player hit Interacting Actor

G-5

Tree Wood Harvester(wood)

Boulder Stone Harvester(stone)

Wood pickup Wood Carrier(wood)

Stone pickup Stone Carrier(stone)

Wood dropoff Wood Carrier(wood)

Stone dropoff Stone Carrier(stone)

Wood structure Wood Craftsman(stone)

Cut stone Stone Craftsman(wood)

Wood switch Wood Operator(wood)

Stone switch Stone Operator

2.6.2 Barriers
Barriers are objects that impede the player’s progress.

2.6.2.1 Fences
Fences are the most common barrier, separating the puzzles from levels, and the player from the crystals.
 There are three types of fences: wood, stone, and metal.

Wood fences can be seen through, and make a wood sound when struck. Broken sections of wood fences
are worked on by the craftsman identically to a wood structure.

Stone fences cannot be seen through, and make a stone sound when struck.

Metal fences make a metal sound when struck, and outline the puzzles. These are used to separate the
puzzles form the rest of the level, so actors don’t interact with trees or other objects outside the level.

2.6.2.2 Force fields
Force fields are gates in fences. When a force field is on, it is impassable. Force fields are on by default,
and turn off when the corresponding switch is pulled by an operator. Force fields turn off when the small
crystal in their puzzle is deactivated, and emit a small force field sound when struck.

2.6.2.3 Wire supports
Wire supports are wooden poles that hold wires. The wires stretch from switches to their corresponding
force field door, and from small crystals to the level’s large crystal. The poles emit a wood sound when
struck, and the wires emit a small force field sound.

2.6.2.4 Rivers
Rivers are uncrossable barriers. They emit a water sound when struck.

2.6.2.5 Bridges
Bridges cross rivers. There are stone, wood, and metal bridges, which emit the corresponding sounds
when struck.

G-6

2.6.3 Crystals
There are two types of crystals; striking a crystal is a constant goal for the player.

2.6.3.1 Small crystals
Small crystals are the goals of each puzzle. When the player gets to a small crystal and strikes it, it emits a
large pulse of crystal sound and powers down all the force fields in the puzzle.

2.6.3.2 Large crystals
Large crystals are the goals of each level. After all the small crystals are powered down and the player
strikes the large crystal, a massive pulse of crystal sound is emitted, which causes the player to
functionally go blind, and ends the level.

G-7

3. Artistic Design
Blinding Silence will be viewed from the perspective of a blind man who can “see” sound. Reflected
sound provides the listener with details of both shape and distance, but not of color or texture. As such,
the visible detail of the world around the player will be minimal, and the shapes will have to be
exaggerated to ensure that the player can understand what he is seeing.

A full asset list is available in Appendix A. Reference and concept art can be seen in Appendix B.

3.1 Artistic Tools
Levels in Blinding Silence will be created using a combination of Autodesk Maya13 and the C414 level
editor. Characters and props will be created in Zbrush15, and optimized for importation using Maya.
Animations will be created using a combination of Maya and Motion Builder16, along with motion
capture data from various sources. Adobe Photoshop17 will be used for 2D content as needed, particularly
for interface and GUI elements, though there will be little demand for textures as the look will be
primarily achieved through custom shaders. The custom shaders will be created within the C4 shader
editor. Finally, the animatics will be created using Adobe After Effects18

3.2 Sonar Vision

.

The player is blind but can see the world through the use of Sonar Vision. All sound in the world is
visible, and the louder the sound, the brighter the visibility of the object to the player. Ambient sound
sources and background noise will create dim lighting of the surrounding area while individual and
distinct sounds will create visible waves that illuminate anything they hit. The player will see objects hit
by these waves mainly by illumination of object edges. Objects will tend to have a silhouetted look with
little detail visible inside of the visible edges, as can be seen in Figure 9.

13 http://www.autodesk.com/maya
14 http://www.terathon.com/c4engine
15 http://www.pixologic.com/zbrush
16 http://www.autodesk.com/motionbuilder
17 http://www.adobe.com/products/photoshop
18 http://www.adobe.com/products/aftereffects/

G-8

Figure 42: Simple Example of Visual Style

Each type of material will be associated with a particular color; objects made of wood produce one color,
impacts on dirt another, ambient noise a third, and the like. When placed against a dark background, the
distinct and bright colors will be plainly visible, allowing the player to easily localize the source of the
sound. Also, by learning to recognize the different colors and their meanings, the player can quickly
assess the world around him.

As an example, the player moves within audible range of a harvester who is repetitively striking his axe
against a tree. The area around the harvester has a level of orange ambient illumination as his constant
hammering has created a resonance in the area. However, this is a very dim illumination. Each time the
harvester strikes the tree, the area immediately around him brightens considerably and slowly fades to its
ambient level until the next strike. At the same time, when the tree is struck, it creates a wave of sound
that moves away from it, illuminating in orange everything that it touches but with decreasing intensity
the farther it moves from the tree. Shortly after becoming illuminated, the objects will start to fade back to
darkness. In this way, the player is able to localize the source of the sound (the harvester will always have
some level of illumination, brighter than the edges of the waves he creates), while also being able to see
his surroundings as the pulses illuminate the world.

In addition to loud sounds that illuminate large swaths of the world to the player, the world will also
contain objects that produce sound constantly, but on a much smaller scale. For instance, active power
crystals vibrate, and energized power lines hum. These smaller objects will not produce enough sound to
illuminate the area around them, but will instead have constant ambient illumination allowing the player
to have static reference points within the world, while he influences and moves the larger sound
producing entities.

3.2.1 Technical Implementation of Sonar Vision
To represent sound visibly, Blinding Silence will use the standard C4 lighting and rendering engine.
Every object in the world will use a specialized shader, likely similar to a Fresnel shader. The Fresnel
shader will illuminate the edges of the object, while providing less illumination to details on the portions
of the object facing the player. It does this primarily by using the inverted normal direction between each
vertex and the player camera, causing those vertices that point toward the camera to be darkest and those

G-9

perpendicular to the camera to be brightest. This will help to provide the silhouetted art style for the
game. The standard implementation of this type of shader will need to be enhanced to include normal and
parallax mapping to allow for added model complexity and detail in the silhouettes. Also, the shader will
be further enhanced to simulate sound absorbing objects, by factoring in the direction to a given light
source so that vertices on the opposite side from the light will not be illuminated.

The ideal method of implementation is to have sound-emitting entities spawn spherical lights that will
grow outward. As they grow, the intensity of the light decreases, and they are removed from the world
once they reach an intensity of zero. Rather than just illuminating within the entire sphere, only the outer
shell of the sphere should emit light, imitating the nature of a sound wave; only the objects within this
shell would be given illumination while objects that had already passed through it would return to
darkness. This could either be implemented using a spherical volumetric light, or by using a texture map
on the light.

The above method is not possible using the stock capabilities of C4’s lighting system, and the developer
of the engine has cautioned against implementation of the volumetric light shells described above, citing
excessive computational expense. As such, the initial builds of Blinding Silence will spawn standard point
lights that will increase in radius as they decrease in intensity until they are removed from the world.
Testing has shown that using two point lights per emission, one large and one small, create an effect
similar to the one described. This solution provides an acceptable compromise between the artistic vision
and the real world technical limitations. If time permits, an improved method may be designed and
implemented.

3.3 Level Design
The levels in the first episode of Blinding Silence will take place entirely outdoors, within a forest.
Following the story, the levels will progress from untouched forest to over-exploited clear-cut areas,
ending at the outskirts of the city.

3.3.1 Layout
Level creation and layout will be accomplished using a combination of Maya and C4’s native editor. All
mesh objects will be created in external programs, and then imported into C4 for use as instanced
reference objects. Wires, and similar objects, will be created in C4 using tube extruded along splines.
Finally, the base terrain for each level will be created using a combination of C4’s voxel terrain system
and sculpted planes in Maya. Markers will then be placed on the terrain, providing locations and
orientations for objects to be referenced into the game world. If feasible, the C4 world editor will be
included in the final build along with helpful tools for level creation by players.

3.3.2 Trees
There will be three varieties of tree within the world, each at a different level of growth. Each variety of
tree will have two model variations to help provide believability in the world. All three varieties are able
to be used by Harvesters to produce sound. Lush trees are tall, healthy, and covered with leaves. These
trees exist at the farthest points from human civilization, where their environment is just starting to be
exploited. Dead trees are much shorter, appearing much more sickly and skinny and without any leaves.
These trees appear further into the game, where the reach of civilization is greater. Finally, stumps are the
left over remains of trees that have been cut down. These exist throughout the world, and in greater
number the further the player proceeds.

G-10

3.3.3 Mines and Boulders
Boulders are massive pieces of stone found in and around mines, which the Harvesters use. There will be
two variations of the boulders. The mines are shallow recesses into the terrain, supported by a simple
wood structure and filled with rocks of various sizes. Only the large boulders are mineable by the
Harvesters.

3.3.4 Logs

Figure 43: Carrier objects

(See Figure 2) Logs are one of two resources carried by the Carriers. Log pickup points will simply be a
large pile of logs. This pile will not be neatly stacked. Conversely, log drop-off points will be neatly
stacked piles of logs on top of large industrial pallets. When a log is added to or removed from a pile, the
number of logs visible on the pile does not change; the resource is infinite.

3.3.5 Stones
Stones are the second resource used by the Carrier. While in transit, they resemble large roughly hewn
boulders. Pickup points are simple piles of these boulders, or varying sizes and shapes, while drop-off
points are large hoppers filled with them. See FIGURE.As with logs, stone resources are infinite.

3.3.6 Wood Structures
The wood structures are places in the level where the Craftsman works with wood. They are simple
structures made of planks and logs, and are part of some larger structure that has not yet taken shape.
They will often, but not always, be found near log drop-off points. There will be three variations.

3.3.7 Cut Stone
The cut stones are rocks that a Craftsman has begun to shape into a useable form, namely that of a block.
They will often be found near stone drop-off points.

G-11

3.3.8 Switches
The basic form of a switch is that of a podium with a receptacle on the side into which an Operator can
insert a lever. There are levers made of both wood and stone, which share the same basic form but which
have the different materials built up around them. Each lever also has a moving mechanical portion, the
most important part of which is a piece that moves up and down the podium support, generating a
material appropriate noise on each fall. This allows the switch to self illuminate so that the player can
determine what switches he has available.

3.3.9 Small Crystals

Figure 44: Small Crystal

The crystals found at the end of each puzzle are small and are embedded into a base that harnesses power
from them. They can be seen in Figure 3. The base is semi-organic and has partially grown into the
ground around it. All doors and switches within a given puzzle draw power from the small crystal and so
energized power lines will be coming out of the base.

3.3.10 Large Crystals

G-12

Figure 45: Large Crystal

Found at the end of each level, the large crystals seen in Figure 4 are massive, surrounded by lots of semi-
organic structures that are used to draw off power. Large numbers of cables hang from it, humming with
power and feeding into the structure around it. They also have power cables that connect to the small
crystals.

3.3.11 Fences
There are three types of fences to impede the path of the player; those made of wood, those made of stone
and those made of metal. Wooden fence segments will be constructed of wood slats, allowing the player
to see through the open spaces to the area on the other side. Stone fences will be solid walls of stone
blocks that the player cannot see through. Finally, metal fences are used to cordon off puzzle areas, but
are low and can still be seen past.

3.3.12 Force fields
Force fields are shimmering walls, emitting a dull humming noise while active, that impede the player.
When active, they are always visible but transparent. They are not affected by sound as they are not solid
objects, and will be rendered in the effects pass to generate the desired effect. Force fields are surrounded
by emitters, and will always be connected to a switch, as can be seen in Figure 5.

3.3.13 Wire Supports
Large telephone-pole like objects, used to support wires connecting crystals to the things that they power.

G-13

3.3.14 Rivers
Rivers provide a constant sound source, and will appear to the player as a glowing mass of shifting color.

3.3.15 Bridges

Figure 46: Bridge

Bridges provide a way for the player to cross rivers, potentially with a force field at one end. They are
simple structures, created either from wood slats, stone blocks or metal planks.

3.4 Character Design
The artistic style of Blinding Silence does not provide much detail to the player, so the characters must be
clear and recognizable. More so than in most games, it will be important for the shape and actions of the
characters to be obvious from their silhouette alone.

Characters in Blinding Silence will be based on generic human forms, which feature realistic proportions
along with a single exaggerated element. As they have been doing their jobs repetitively for a long time,
they have started to change so as to do the job better. Taking a Harvester chopping a tree as an example, a
man cutting a tree with an axe will appear to have a disproportionately large axe fused into his arm, in
place of his hands. This will allow the player to easily recognize the different entities around him. Each
type of biped character will also have distinguishing clothing and props so that the player can recognize
them at a glance. Any character needing to switch between multiple props, namely the builder and
harvester, will do so by removing the attachment on their arm and replacing it with another.

All bipedal characters will use a single unified skeletal rig, allowing for transfer of animation between all
characters. All bipeds will be based on the same basic mesh with a socket on the right arm to hold props,
and a hand on the left. They will differ only in clothing worn and props used. The one exception is the
Carrier who’s mesh will have two sockets instead of a hand.

G-14

3.4.1 Harvester

Figure 47: Harvester

The Harvester, shown in Figure 6, chops down trees and mines stone. His only article of clothing is a
large exaggerated beard on his face. He switched props between a cane an axe for trees and a pick-axe for
stone.

3.4.2 Craftsman

Figure 48: Craftsman

The Craftsman, shown in Figure 7, hammers nails into wooden structures and chisels stones into blocks.
He wears a pair of safety glasses, as well as a tool belt. When working on wood, he uses a hammer
attachment and holds the structure with his left hand. When working on stone, he uses a mallet attachment
and holds a chisel in his left hand.

G-15

3.4.3 Operator

Figure 49: Operator

The Operator’s (Figure 8) only job is to activate switches with his lever-arm attachment. He wears a hard
hat with sunglasses on it. When not actively pulling a lever or walking to one, he stands idly and taps his
foot to the game’s beat.

G-16

3.4.4 Carrier

Figure 50: Carrier

The carrier, shown in Figure 9, hauls logs and stone across levels. When laden with a load, he walks half
as fast and his gait changes to match the weight and position of what he is carrying. In his right arm is a
claw for carrying logs over his shoulder. In his left arm is a four-pronged grabber for carrying stones at
his side, similar to the grabbing arm in arcade machines.

3.5 Animation
In a world with little visual detail, accurate movement is important to help maintain believability. The
diverse range of characters and interactions in Blinding Silence require large amounts of high quality
animation, which is difficult to achieve in a short development time when created by hand. Instead,
animation will be created using motion capture data, allowing for both increased realism and decreased
development time. Stock animations that are appropriate to the game will be pulled from the free libraries
listed in Appendix C. All other data will be captured using PhaseSpace19 motion capture equipment
borrowed from the WPI HIVE20

3.6 Animatics

 lab.

Instead of using live cut scenes, the story of Blinding Silence will be told through an introductory
animatic and stills shown between each level. The content of these will come from two sources: first,
rendered stills of certain in-game objects will be used to help maintain the connection to the game world.

19 http://www.phasespace.com/
20 http://web.cs.wpi.edu/~gogo/hive/

G-17

Second, photographs will be used to provide the settings of the animatics, along with objects and places
that do not appear in the game. This content will then be composited and animated to match narrated
voice-overs of the staff. It will then have various filters and effects applied to give it a distinctive visual
look. The introductory animatic script and storyboards can be found in Appendix D and Appendix E,
respectively.

Figure 51: Animatic Progression

Figure 10 shows an example of portions of an animatic depicting darkness and silence falling across the
world. Proceeding from ‘a’ to ‘d’, the city goes from completely realistic to a look that better fits the
game world as seen by the player.

G-18

Figure 52: Example Styles

Figure 11 shows different variations in world style, stylizing a real image of a forest in a way that is
closer to the simplified look of the in-game world. They range from very detailed and realistic in ‘a’, to
very stylized and sparsely detailed in ‘d’, with images ‘b’ and ‘c’ providing more intermediate levels of
detail. The amount of detail in any given shot will vary between these styles, depending on the tone and
content at that time. Animated characters will then be added to these images, and colored sound-waves
overlaid to help reinforce the image and the connection to the in-game world.

3.7 Sound Vision
Blinding Silence will not have a traditional sound score. All sounds that the player hears, even ambient
sounds, will be connected to a visible cue in the game world. Through the use of a global game clock,
these sound effects will be constrained to a particular rhythm. This will effectively create dynamic game
music based upon the positions and states of the player and level entities.

To achieve this unique type of music, sound effects will be designed in accordance with the overall
audible experience, similar to the selection of instruments in an orchestra. Realistic sounds will be
recorded, then altered to result in a more exaggerated and instrumental feel. The sound of an axe hitting a
tree with a constant timing, for example, will become a percussive beat in the song generated by the level.

In addition, sounds will be further associated with their visual counterparts through the use of color.
Sound waves which illuminate the world will be colored; each type of sound will be represented with a
distinct hue, allowing the player to recognize level elements both audibly and visibly. The colors
corresponding to each sound type are shown in Table 5.

Table 2: Sound colors

Material Color

Wood

Stone

Metal

Water

Dirt

Crystal

Force field

3.7.1 Voice Acting
The player’s staff talks to him throughout the introductory animatic and the game. To this end, voice
acting will be recorded, and then processed to achieve an echoing and ghostly tone.

G-19

4. Technical Design
This section contains all relevant design challenges and solutions, as well as all relevant diagrams and
charts, and justifies our technical design choices.

4.1 Engine Choice
We have chosen the C4 engine for the following reasons:

C4 has a powerful, artist friendly shading engine
C4 has an active and helpful user community
C4 has well documented source code with tutorials and example code.
C4 has a versatile world editor.

4.2 Technical Aspects
This is a listing of the main technical aspects of the project.

4.2.1 Interfacing with Wiimote and Wii motion plus
Blinding Silence will use the WiiMoteLib library found at http://www.codeplex.com/WiimoteLib to
interface the WiiMote with C4. C4’s Message Manager will be used to pass messages from this library to
the Cane Controller.

4.2.2 Mapping the motion of the Wiimote to the in-game cane.
Once an interface between the Wiimote and the game has been established, the next challenge is mapping
the input to the in-game cane. This will have to be done in real time for one-to-one motion mapping to
seem smooth. The main challenge will arise when handling what happens when a user tries to swing the
cane through an in-game object. When this occurs, the in-game cane will get out of sync with the
Wiimote cane spatially. This could be corrected by keeping track of where the in-game cane would be had
it not impacted an object. Then, when the in-game cane's real position moves back into the area it should
be in, jump the cane to where it should be.

4.2.3 Interfacing with WiiMote for Head Tracking
Interfacing with the WiiMote for head tracking will also use WiiMoteLib. We will be using this only to
rotate the camera.

4.2.4 Interfacing with Microphone
C4’s built in sound input capabilities will be used to handle input from the microphone.

4.2.5 Interfacing Input with C4
(Figure 12) Blinding Silence has four different types of input: WiiMote and WiiMotion Plus data for the
cane, data from the WiiMote's infrared camera for head tracking, data from the Nunchuck for movement,
and data from the microphone to create sounds.

Raw data from these input devices are passed to classes in the input device interface layer. Here the data
is processed into a form more easily used. This data is then passed to the C4 Manager layer where it will
be routed to the controllers that need it. Data from the WiiMote will be passed to their corresponding
controllers through C4’s Message Manager. Nun Chuck Information and Microphone information are
passed to the player controller.

http://www.codeplex.com/WiimoteLib�

G-20

Figure 53: Input Flow

4.2.6 AI
(Figure 13) An engine for AI entities will control how an entity reacts to incoming sound stimuli.

G-21

Sound Data is passed to the Actor Controller, which queries its soul to get to the AI Engine. If there is no
soul, then there is no AI and therefore no way to get a reaction. If there is a soul, then the sound data is
passed to the AI Engine connected to the soul.

Figure 54: Actor Sound Flow

The Sound Data is then passed on to the AI Engine (Figure 14). The AI Engine queries its rules list to see
if any rules match the incoming stimuli. If the rule matches stimulus, it the checks the stimulus against the
rules condition graph. If the stimulus matches, the AI Engine applies the Rule’s Action Controller to its
Action List. The Action controller can add or remove action data from the Action List. When an actor
needs to determine what action to take next, the actor queries its AI Engine, which returns the Action
Data at the head of the Action List.

G-22

Figure 55: AI Engine

4.2.7 Interfacing AI Engine with event system
The AI Engine will be interfaced with the game engine's event system. This will happen through the
entity containing the AI Engine, which will be connected to the Sound Engine Controller. The Entity
containing the AI Engine will have registered itself with the Sound Engine Controller, whose job it is to
keep track of what entities need to know about sounds.

4.2.8 Determining which entities should receive incoming sounds
(See Figure 15) All entities that can receive sound will be registered with the Sound Engine Controller.
When an entity creates a Sound Data Object it is immediately passed to the Sound Engine Controller,
which will take that sound data and pass it to all the entities registered with it.

The Sound engine is also responsible for creating OmniSource nodes for the sound and point lights for the
light sources in the rendering engine.

G-23

Figure 56: Sound Flow

G-24

4.2.9 Lighting Engine

Blinding Silence will use point lights with a growing radius and a diminishing intensity to simulate the
“look” of the sound. This relatively straight forward lighting solution will allow the development team to
quickly create the lighting engine. Another solution that produces a better looking result can then be
implemented later if time allows. The generation and destruction of point lights are handled by the Sound
Engine (See figure 8).

Path finding
Blinding Silence will make use of a navmesh for the path finding of actors. This will allow actors to more
naturally move about the level. There is a free tool for automatically generating navmeshes in C4, found
here http://www.terathon.com/forums/viewtopic.php?f=4&t=7793.

Collada Importer Changes
Changes will be made to the World Editors Collada Importer to allow for the direct importation of
references markers from Maya. This will help improve the artists work flow. Currently the artists need to
place locator markers in Maya, and then manually play reference markers at their location in the world
editor if they want to make multiple instances of objects. This change will allow the artists to place the
reference markers directly in Maya, saving them a great deal of time.

4.3 Data Objects
In Blinding Silence all data will be encapsulated its own data object to increase the extendibility of the
game infrastructure.

4.3.1 Souls
Every actor in the game has a “soul”, a driving force that causes the
actor to react to stimuli and take actions in the world. Souls can and
sometimes need to be taken from actors. The player does this by
striking them with his staff. In this case the soul is “stored” in the
staff for later use. This use is either powering a small crystal or
destroying a large crystal.

Since a soul has so many uses, it will be
represented by its own data object. A soul object
will contain the reference to the actor's AI
Engine. Since an actor goes through its soul to get to its AI Engine,
removing the soul automatically removes the actor’s ability to respond to
stimuli. The soul also includes a reference to the entity it was originally
attached to, so that when souls are “returned” the engine knows where to put
them.

4.3.2 Cane

Soul Data Object
*ActorController origonalActor
*AIEngine aiEngine

http://www.terathon.com/forums/viewtopic.php?f=4&t=7793�

G-25

The cane is the player's main way of interacting with the world. The cane will only need to store two
pieces of custom data. The first piece of data the cane needs to store
is a list of souls currently stored within the cane. This information is
necessary to perform several cane specific actions, such as playing
the sound of the most recent stored soul or powering a crystal.

The second piece of data the cane needs to store is
its real world position and orientation. This is
necessary for re-syncing the real world cane with
the in game cane if the in game cane collides with
an object and the player continues swinging.

4.3.3 WiiMotion Plus Data
The WiiMotion plus is used in game to control the
cane. The data coming in from the Wiimote has six
values, linear acceleration in the x, y, and z
directions and rotation around the x, y, and z
axis. The WiiMotion Plus data object will
encapsulate this information for easy access and
transfer.

4.3.4 Wii Head Tracking Data
There will be head tracking information coming in
from a separate WiiMote from the cane. This data is
the location of two points in the xy plane. The Wii
Head Tracking Data Object will therefore contain
Point2D objects, which contain an x location and a
y location.

4.3.5 Pile Data
In the game world there are piles of specific
resources. These piles need to have a type, such
as wood or stone, and an amount of a resource in
the pile.

4.3.6 Action Data
Every action in game that an actor can take will
be encapsulated in a generic action data object.
This object contains type information, what
animation to play, and delay information.

4.3.7 Sound Data
Every sound has a set of information associated
with it. A sound has an origin which needs to be
stored, such as the tree a player hit. The sound
data contains an initial volume, determined by
the force at which the object was hit. The object
that was hit determines the type of the sound
made.

Cane Data Object
ArrayList<Soul> type
LocationObject realLocation

WiiMotion Plus Data Object
Float accelerationX
Float accelerationY
Float accelerationZ
Float yaw
Float pitch
Float roll

Head Tracking Data Object
Point2D point1
Point2D point2

Action Data Object
ActionType Type
Animation animation
Long delayTime

Pile Data Object
PileType type
Integer remaining

Sound Data Object
Point3D origin
String soundName
Float volume
*ActorController actor

G-26

A sound also knows what resource was hit, what sound is being played, and the
originating actor.

4.3.8 AI Engine Data
The AI Engine drives the stimulus response system
of an actor. The AI Engine needs to keep track of
a circular list of actions. It also needs to keep
track of a list of rules.

4.3.9 Rule Data
A rule encapsulates the stimulus/response system
for the AI Engine. A rule contains a stimulus, an
event that the actor containing the AI Engine
containing the rule needs to respond to. A rule
also contains a Condition Graph that checks to see
if the stimulus meets a set of perquisites. The
rule finally needs a set of action controllers.

4.3.10 Condition Graph Node
The condition graph is a binary tree of conditional values used by a
Rule in the AI Engine. A condition graph is a binary tree of conditionals applied to values of an input
sound stimulus in a rule to determine if the stimulus meets the necessary minimum criteria associated
with the rule. Each node has a type corresponding to one of the following:

A variable in the stimulus. This type has no children
A number. This type has no children.
A Boolean operator. This type has no children.

Figure 57: Example Condition Graph

Figure 16 shows how the condition if ((sound volume >= 30) && (sound type ==

AI Engine Data
CircularList<ActionData> aList
List<Rule> rules
ListNode head

Rule Data Object
SoundData stimulus
Condition Node head
List<ActionController> actions

G-27

wood)) would be described as a binary node tree.

4.4 Controllers
A controller is an object that takes an action on a piece of data. Not all
controllers listed here are C4 controllers. Those that are C4 controllers
list that they inherit from a C4 controller.
Controller Description Makes

Changes On
Recieves
Data From

Sends Data To Inherits
From

Player A Player
Controller
handles
moving the
players’ in-
game avatar
around.

Player
Entity

Input
Manager

 C4
Character
Controller

Actor A generic
controller
for in game
actor.
Handles
moving actor
entities
around the
level,
playing
animations,
and
generating
sound when
taking an
action.

Actor
Entity

Receives
Action Data
after
querying
the AI
Engine
Controller

Recieves
Sound Data
from Sound
Controller

Sends
location
information
to the
Sound
Controller

C4
Character
Controller

AI Engine
Controller

The AI
Engine
Controller
determines
what action
an actor
should
currently be
doing. The
AI Engine
also runs
Action
Controllers
when an
incoming
stimulus
meets the
requirements
in one of
its rules.

AI Engine
Data,
Action
Data

Receives
sound
stimulus
data from
the actor
controller

Send Action
Data to the
Actor
Controller

C4
Controller

Pile
Controller

This
Controller
modifies
pile data
when either

Pile Data Recieves
trigger
information
from a C4
Trigger

Sends resource
data to an
Actor entity

C4
Controller

G-28

a carrier or
a resource
gather does
add or
subtract
from a pile

when an
actor
approaches
the pile.

Mover
Controller

A mover
controller
controls
objects the
move either
a player
entity or an
actor entity
in some
fashion.
Entities are
unable to
move while
this is in
progress.

Player
Entity
Actor
Entity

Recieves
data from
Interactor
Controller
when the
InterActor
is used

 C4
Controller

Interactor
Controller

An
interactor
controller
controls
objects that
are
interactive,
such as
levers .
These levers
then cause
changes in
the
environment.

Interactor
Data

C4 actor
when
interacted
with

Mover
Controller

C4
Controller

Sound
Engine
Controller

All entities
able to hear
sound
register
with this
controller.
It then
routes
sounds to
entities
within range
of the
sound. The
Sound Engine
Controller
is also
responsible
for playing
the sounds
in game

Sound Data Controllers
of Entities
capable of
making
sound

Any controller
registered to
hear sound

Cane This control Cane Recieves Sends Sound C4 Capsule

G-29

Controller controls the
movement and
position of
the cane.
This
controller
also handles
 the
mapping of

Entity WiiMotion
Plus Data
from the
Message
Manager

Recieves
Collision
Data from
the C4
Collision
System

Data to the
Sound Engine
Controller

Collider

Resource
Controller

A resource
controller
handles the
storing of
resource
specific
data, as
well as
transferring
resources to
piles

Actor
Controller

Actor
Controller

 C4
Controller

Crystal
Controller

A Crystal
Controller
is the
controller
for all
Crystals

Crystal
Entity

Cane
Controller

 C4
Controller

Action
Controller

An action
controller
is a
controller
that
modifies the
action list
inside of an
AI Engine.
It can both
add and
remove data.

AI Data

Beat
Engine
Controller

The beat
engine
controller
keeps track
of what
musical beat
the engine
is on. Other
controllers
query it to
determine if
they should
take action.

Timing
Data

Actor
Entities
query the
Beat engine
to see if
they should
start their
action

Send
Information on
Current Beat
to Actor
Entities

G-30

G-31

5. Project Planning

5.1 Gantt Charts
Gantt charts are visual representation of schedules.

5.1.1 Overview
Figure 17 shows an overview of the Development and Testing phases, which occur over B and C terms.

Figure 58: Overview Gantt

5.1.2 First Playable
Figure 18 shows the programming team will be completing a playable build of Blinding Silence by
December 4th.

Figure 59: First Playable Gantt

5.1.3 Sounds and Voice Acting
Figure 19 shows the audio effects of the game will be incorporated by December 17th.

Figure 60: Sounds and Voice Acting Gantt

G-32

5.1.4 Models and Animation
Figure 20 shows the models and their animations will be completed by January 14th.

Figure 61: Models and Animation Gantt

5.1.5 Alpha and Feature Freeze
Figure 21 shows the programming team will complete an Alpha build by December 17th, and will spend
B-C break working on a feature freeze build.

Figure 62: Alpha and Feature Freeze Gantt

5.1.6 Animatics and Effects
Figure 22 shows the animatics and secondary visual effects will be completed over the end of B term and
the beginning of C term, straddling phases.

Figure 63: Animatics and Effects Gantt

G-33

6. Conclusion
Blinding Silence is a simple but fun puzzle game. Its straightforward puzzle elements are enhanced by the
control and viewing systems, which are unique enough to intrigue without distracting from the tasks at
hand. The development of Blinding Silence will be completed over the course of approximately 3 months,
leaving two months for thorough testing of the gameplay and puzzles.

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Descriptions
	1.2 Audience
	1.3 Location
	1.4 Controls
	1.5 Innovation

	2 Game Design
	2.1 Story
	2.1.1 Game story
	2.1.2 In-game story elements

	2.2 Gameplay
	2.2.1 Overview
	2.2.2 Interface
	2.2.2.1 Wiimote cane
	2.2.2.2 Head tracking

	2.2.3 Sounds

	2.3 Level components
	2.3.1 Actors
	2.3.1.1 Harvesters
	2.3.1.2 Operators
	2.3.1.3 Carriers
	2.3.1.4 Craftsmen

	2.3.2 Objects
	2.3.2.1 Actor resources
	2.3.2.2 Barriers
	2.3.2.3 Crystals

	2.4 Levels

	3. Artistic Design
	3.1 Visual Style
	3.1.1 Technical Implementation of Sonar Vision
	3.1.1.1 Augmented Fresnel Shader
	3.1.1.2 Pulsing Shader
	3.1.1.3 Visible Sound Emitters
	3.1.1.4 Visible Sound Emitter Limitations

	3.2 Level Design
	3.2.1 Layout
	3.2.2 Resources
	3.2.3 Structures
	3.2.4 Crystals
	3.2.5 Force Fields
	3.2.6 Switches

	3.3 Character Design
	3.3.1 Harvester
	3.3.2 Craftsman
	3.3.3 Operator
	3.3.4 Carrier

	3.4 Animation
	3.4.1 Stock animation
	3.4.2 Studio Setup
	3.4.3 Capture and Cleanup
	3.4.4 Integration

	3.5 Storytelling and Instructions
	3.5.1 Animatics
	3.5.2 Stills

	3.6 Acoustic Vision
	3.6.1 Voice Acting

	3.7 Artistic Tools
	3.7.1 Integration and Level Pipeline
	3.7.1.1 Asset Setup
	3.7.1.2 Level Creation and Exporting
	3.7.1.3 C4 Importing
	3.7.1.3.1 Locator Markers
	3.7.1.3.2 Reference Markers
	3.7.1.3.3 Models

	3.7.1.4 Future Work
	3.1.1.4.1 Hard-Coded Values
	3.7.1.4.2 Placement and Manipulation
	3.7.1.4.3 Connections
	3.1.1.4.4 Controllers and Properties

	4. Technical Design
	4.1 C4 Engine
	4.2 Technical overview
	4.2.1 Interfacing with Wiimote
	4.2.1.1 Basic Wiimote functionality
	4.2.1.2 IR Data Receivers

	4.2.2 Sound Design
	4.2.2.1 Sound Engine
	4.2.2.2 Resource Engine

	4.2.4 AI
	4.2.4.1 Overview
	4.2.4.2 State Machine
	4.2.4.2 Messaging System
	4.2.4.3 Global States
	4.2.5.3 Local States
	4.2.5.4 Navigation Mesh
	4.2.4.5 Path Finding
	4.2.4.6 Path Smoothing

	5. Project development
	5.1 Design
	5.2 Development
	5.3 Conclusion

	Appendix A: Original story
	Appendix B: Zimri background and script
	Animatic script:

	Appendix C: Asset Lists
	Visual Art

	Appendix D: Reference and Concept Art
	Characters
	Cane

	Appendix F: Introductory Animatic Storyboards
	/
	Appendix G: Original Game Design Document
	2. Gameplay Design
	2.1 Story
	2.1.1 Backstory
	2.1.2 Game story arc

	2.2 Gameplay Overview
	2.2.1 Observation
	2.2.2 Interaction

	2.3 Hardware
	2.3.1 Wiimote cane
	2.3.2 Head-tracking glasses

	2.4 Interactions
	2.4.1 Cane whack
	2.4.2 Sonar pulse
	4.4.3 Reset scream

	2.5 Actors
	2.5.1 Harvester
	2.5.2 Carrier
	2.5.3 Craftsman
	2.5.5 Operator

	2.6 Objects
	2.6.1 Actor Objects
	2.6.2 Barriers
	2.6.2.1 Fences
	2.6.2.2 Force fields
	2.6.2.3 Wire supports
	2.6.2.4 Rivers
	2.6.2.5 Bridges

	2.6.3 Crystals
	2.6.3.1 Small crystals
	2.6.3.2 Large crystals

	3. Artistic Design
	3.1 Artistic Tools
	3.2 Sonar Vision

	3.2.1 Technical Implementation of Sonar Vision
	3.3 Level Design
	3.3.1 Layout
	3.3.2 Trees
	3.3.3 Mines and Boulders
	3.3.4 Logs
	3.3.5 Stones
	3.3.6 Wood Structures
	3.3.7 Cut Stone
	3.3.8 Switches
	3.3.9 Small Crystals
	3.3.10 Large Crystals
	3.3.11 Fences
	3.3.12 Force fields
	3.3.13 Wire Supports
	3.3.14 Rivers
	3.3.15 Bridges

	3.4 Character Design
	3.4.1 Harvester
	3.4.2 Craftsman
	3.4.3 Operator
	3.4.4 Carrier

	3.5 Animation
	3.6 Animatics
	3.7 Sound Vision
	3.7.1 Voice Acting

	4. Technical Design
	4.1 Engine Choice
	4.2 Technical Aspects
	4.2.1 Interfacing with Wiimote and Wii motion plus
	4.2.2 Mapping the motion of the Wiimote to the in-game cane.
	4.2.3 Interfacing with WiiMote for Head Tracking
	4.2.4 Interfacing with Microphone
	4.2.5 Interfacing Input with C4
	4.2.6 AI
	4.2.7 Interfacing AI Engine with event system
	4.2.8 Determining which entities should receive incoming sounds

	Path finding
	Collada Importer Changes
	4.3 Data Objects
	4.3.1 Souls
	4.3.2 Cane
	4.3.3 WiiMotion Plus Data
	4.3.4 Wii Head Tracking Data
	4.3.5 Pile Data
	4.3.6 Action Data
	4.3.7 Sound Data
	4.3.8 AI Engine Data
	4.3.9 Rule Data
	4.3.10 Condition Graph Node

	4.4 Controllers

	5. Project Planning
	5.1 Gantt Charts
	5.1.1 Overview
	5.1.2 First Playable
	5.1.3 Sounds and Voice Acting
	5.1.4 Models and Animation
	/
	5.1.5 Alpha and Feature Freeze
	5.1.6 Animatics and Effects
	/
	6. Conclusion

