
General-Purpose Computing on Graphics Processing Units 

for Storage Networks 

 

 

A Major Qualifying Project Report 

submitted to the Faculty of  

Worcester Polytechnic Institute 

in partial fulfilment of the requirements for the 

Degree of Bachelor of Science 

By 

 

 

__________________________________  

Adam Chaulk 

 

 

__________________________________  

Andrew Paon 

 

 

 

 

 

Date: March 15, 2014 

Sponsoring Organization: EMC Corporation 

__________________________________  

Professor Emmanuel O. Agu, Advisor  



 

2 
 

1 ABSTRACT 
The purpose of this Major Qualifying Project was to investigate different areas in which 

Graphics Processing Units (GPUs) could be used by EMC to increase performance. The project 

researched various CUDA GPU programming tools and libraries that could be of use to EMC. 

CUDA implementations of linear algebra operations such as dot products, matrix multiplication, 

and SAXPY, which were of interest to multiple teams at EMC, were investigated. Finally, this 

paper discusses a SQLite3 virtual table using CUDA to accelerate SQL queries.   

   



 

3 
 

2 ACKNOWLEDGEMENTS 
We would like to thank the following people, without whom our project would not have been 
possible. 

Professor Emmanuel Agu, whose quick feedback and critical insights kept us focused from the 

beginning. 

Jon Krasner, whose vision and big-picture perspective lent purpose to our time on this MQP. 

Steve Chalmer, whose technical expertise and willingness to answer all our questions helped us 
to accomplish more than we could have by ourselves. 

  



 

4 
 

TABLE OF CONTENTS 
1 ABSTRACT.................................................................................................................................. 2 

2 ACKNOWLEDGEMENTS............................................................................................................. 3 

TABLE OF FIGURES .......................................................................................................................... 6 

3 INTRODUCTION......................................................................................................................... 7 

3.1 The Goal of this MQP ......................................................................................................... 7 

4 BACKGROUND........................................................................................................................... 8 

4.1 EMC .................................................................................................................................... 8 

4.2 Databases ........................................................................................................................... 8 

4.2.1 Relational Databases ................................................................................................... 8 

4.2.2 SQL ............................................................................................................................... 9 

4.2.3 Overview of Relational Database Management Systems ......................................... 11 

4.2.4 SQLite......................................................................................................................... 11 

4.3 Classification of Machine Architectures .......................................................................... 11 

4.3.1 Single Instruction – Single Data ................................................................................. 12 

4.3.2 Single Instruction – Multiple Data ............................................................................. 12 

4.4 GPU .................................................................................................................................. 13 

4.4.1 History of the GPU ..................................................................................................... 13 

4.4.2 Graphics Operations on GPUs ................................................................................... 14 

4.4.3 General Purpose GPU Programming ......................................................................... 14 

4.4.4 CPU vs. GPU ............................................................................................................... 15 

4.4.5 GPGPU Applications .................................................................................................. 15 

4.4.6 GPGPU Restrictions ................................................................................................... 16 

4.5 CUDA ................................................................................................................................ 16 

5 METHODOLOGY ...................................................................................................................... 18 

5.1 Research ........................................................................................................................... 18 

5.1.1 Tools & libraries ......................................................................................................... 18 

5.1.2 CUDA by Example ...................................................................................................... 20 

5.1.3 Udacity Intro to Parallel Programming ...................................................................... 20 

5.1.4 Using SQLite............................................................................................................... 21 

5.2 Environment..................................................................................................................... 22 



 

5 
 

5.2.1 VirtualBox and Debian ............................................................................................... 22 

5.2.2 SSH ............................................................................................................................. 22 

5.2.3 GPU Information........................................................................................................ 22 

5.3 Linear Algebra Tests ......................................................................................................... 23 

5.3.1 Dot Products .............................................................................................................. 24 

5.3.2 Matrix Multiply .......................................................................................................... 24 

5.3.3 SAXPY ......................................................................................................................... 24 

5.3.4 Linear Algebra Test Parameters ................................................................................ 25 

5.4 Virtual Tables ................................................................................................................... 25 

6 RESULTS .................................................................................................................................. 27 

6.1 Linear Algebra Results...................................................................................................... 27 

6.1.1 Dot Products .............................................................................................................. 27 

6.1.2 Matrix Multiply .......................................................................................................... 28 

6.1.3 SAXPY ......................................................................................................................... 29 

6.1.4 Column-major vs. row-major .................................................................................... 29 

6.2 Implementing the Virtual Table ....................................................................................... 30 

6.2.1 Stripping down book example................................................................................... 30 

6.2.2 Memory management............................................................................................... 31 

6.3 Virtual Table Results ........................................................................................................ 32 

7 CONCLUSIONS......................................................................................................................... 34 

7.1 Viability of leveraging the GPU ........................................................................................ 34 

7.2 OpenCL ............................................................................................................................. 34 

8 BIBLIOGRAPHY ........................................................................................................................ 35 

9 APPENDIX A: TABLE OF TOOLS AND LIBRARIES ...................................................................... 38 

 

  



 

6 
 

TABLE OF FIGURES 
Figure 1. Example relational database table .................................................................................. 8 

Figure 2. Example table schema ..................................................................................................... 9 

Figure 3. Single Instruction, Single Data ....................................................................................... 12 

Figure 4. Single Instruction, Multiple Data ................................................................................... 13 

Figure 5. DirectX Graphics Pipeline [15] ....................................................................................... 14 

Figure 6. Data Transfer between CPU & GPU ............................................................................... 16 

Figure 7: Methodology Overview ................................................................................................. 18 

Figure 8: CUDA Spreadsheet Snippet............................................................................................ 19 

Figure 9: CUDA Lesson Plan .......................................................................................................... 21 

Figure 10: Information of GPU used in this Project ...................................................................... 23 

Figure 11: Dot Product Algorithm ................................................................................................. 27 

Figure 12: Matrix Multiplication Algorithm .................................................................................. 28 

Figure 13: Integer SAXPY Algorithm.............................................................................................. 29 

Figure 14: GPU/CPU Insertions Benchmark .................................................................................. 33 

Figure 15: GPU/CPU Insertions Benchmark (zoomed)  ................................................................. 33 

  



 

7 
 

3 INTRODUCTION 
With the advancement of computing technologies and the need for computational power, 

companies are looking for methods to increase performance. General-purpose computing on 

graphics processing units, known as GPGPU, allows developers to utilize graphics processing 

units (GPUs) to accelerate computation tasks. NVIDIA’s Compute Unified Device Architecture 

(CUDA), is a parallel computing language that enables a significant performance increase 

through the use of GPUs. As GPUs became more widely used, programmers leveraged their 

capabilities for problems such as floating-point arithmetic, matrices and vectors, and other 

parallelizable operations. Now, companies such as EMC Corporation, are searching for ways 

GPUs can be applied to enhance the performance of their products. This Major Qualifying 

Project (MQP) entails applying GPGPU and CUDA to the storage world. 

3.1 The Goal of this MQP 
Listed below are the major goals of this project: 

 Research CUDA tools and libraries for GPU programming 

 Program GPUs using CUDA for linear-algebra operations and benchmark performance 

 Explore performance enhancements for SQL queries using SQLite 

 Implement a SQLite virtual table with CUDA  



 

8 
 

4 BACKGROUND 

4.1 EMC 

This project is sponsored by EMC Corporation.  EMC, founded in 1979 [1], provides IT solutions 

to businesses, such as data storage, cloud computing, and information security.  The company 

currently has a market capitalization of approximately 58 billion dollars  [2], and is one of the 

world’s largest providers of data storage solutions.  Some of their competitors in this area 

include companies such as HP, Dell, IBM, and Cisco [3]. 

4.2 Databases 

At its core, a database is just an organized collection of digital data.  Database management 

systems provide an interface that allows users to add, view, and modify data within the 

database.   

4.2.1 Relational Databases 

One common type of database is the relational database, which is based on E.F. Codd’s 

relational model of data [4].  Codd represents all data as sets of primitive data types and their 

associations.  In a relational database, data is stored in a collection of tables.  Figure 1 shows a 

sample layout of a table in a relational database. 

Students 

Student_ID Lname Fname City Major 

1 Chaulk Adam Boston Computer Science 
2 Paon Andrew Providence Computer Science 

Figure 1. Example relational database table 

 

 



 

9 
 

A relational database is made up of a list of rows, or entries.  There are two entries in Figure 1, 

and each contains information about one student.  Each entry in a table has the same data 

structure [5], or schema.  The schema for the table in Figure 1 is described in Figure 2. 

Field name Data Type 

Student_ID INTEGER 

Lname STRING 

Fname STRING 

City STRING 

Major STRING 

Figure 2. Example table schema 

 

Each element of the schema describes one column in the table.  Thus, the first element in every 

row is an integer valued student ID number; the second column is a string for last name, etc. 

4.2.2 SQL 

Structured Query Language, or SQL, was developed in 1974 by scientists at the IBM research 

laboratory [6].  SQL is a declarative language used to manage data in a relational database.  The 

commands in SQL are divided into two main categories: the Data Definition Language (DDL) and 

the Data Manipulation Language (DML) [7].   

The DDL is used to express the structure of the information contained in a database.  In order to 

create a table structured like that in Figure 1, a user would use the CREATE command. 

CREATE Table Students  
{ 



 

10 
 

  Student_ID INTEGER,  
  Lname TEXT, 
  Fname TEXT, 
  City TEXT, 
  Major TEXT 
}; 
 

 

In contrast, the DML is used to modify the data contained in a database.  This data abides by 

the outline created using the DDL.  For example, if the user wished to add a new student to the 

table defined in Figure 1, they would use the INSERT command.  This statement enables the 

user to add a new row to the table.  

INSERT INTO Students VALUES(3, “Smith”, “John”, “Worcester”, “ECE”); 

Via the use of the SELECT command, the DML also allows the retrieval of rows that have already 

been added.  In order to retrieve all records stored in the database, a user would likely use the 

following command. 

SELECT * FROM Students; 

 

This project, which is primarily intended as a proof of concept, concerns itself mainly with the 

use of SQL INSERT and SELECT statements.  SQL offers many other capabilities, including the 

editing of data already added to the database through the use of the UPDATE command and 

the removal of data from the database through the use of the DELETE command. 



 

11 
 

4.2.3 Overview of Relational Database Management Systems 

There is an assortment of Relational Database Management Systems (DBMS) that implement 

SQL commands and Codd’s relational model.  Some of the most prevalent systems include 

Oracle, Microsoft SQL Server, PostgreSQL, and SQLite [8].  

Oracle and Microsoft SQL Server Databases are proprietary enterprise-grade database 

solutions.  They are intended to handle vast amounts of data stored centrally on a database 

server [9] [10].  PostgreSQL is an open-source DBMS; it boasts enterprise-grade power and 

exceptional SQL standards compliance [11].   

4.2.4 SQLite 

The implementation chosen for this project is SQLite, version 3.7.6.3.  SQLite is an open source 

DBMS that is fundamentally different from the implementations discussed above.  Instead of 

following a client-server model, it is meant to “provide local data storage for individual  

applications and devices” [12].  It claims to compete not with the larger scale server-client 

database systems discussed previously, but with the fopen() system call.  It is used in many 

areas, including embedded systems, small websites, and data analysis.  However, SQLite is not 

well suited for most networking applications, high concurrency, or data sets larger than a 

terabyte.  Given these simplifications, SQLite is much more lightweight than other DBMSs 

available.  This fact makes it more straightforward for a developer to understand and make 

changes to the system.  

4.3 Classification of Machine Architectures 

In 1966, Michael J. Flynn proposed a classification for computer architectures.  The system 

describes the number of concurrent operations and the amount of data the instructions 



 

12 
 

operate on.  The classification is broken into four classes: Single Instruction – Single Data (SISD), 

Single Instruction – Multiple Data (SIMD), Multiple Instruction – Single Data (MISD), and 

Multiple Instruction, Multiple Data (MIMD) [13].  This project will focus on two of these 

architectures, namely SISD and SIMD. 

4.3.1 Single Instruction – Single Data 

The simplest of Flynn’s classifications, SISD, is implemented as a single core processor.  In this 

architecture, single machine instructions are run sequentially on single pieces of data in 

memory.  Figure 3 demonstrates this behavior; each arrow signifies a single instruction, and 

each instruction is executed at a different point on the arbitrary time scale. 

 

Figure 3. Single Instruction, Single Data 

 

4.3.2 Single Instruction – Multiple Data 

In contrast to the traditional CPU SISD architecture the SIMD architecture executes a single 

instruction on multiple memory locations in parallel (SIMD).  Figure 4 demonstrates this 

behavior; it shows the data at each location in memory being operated on simultaneously.   



 

13 
 

 

Figure 4. Single Instruction, Multiple Data 

 

This design is implemented by a piece of hardware called the Graphics Processing Unit, or GPU. 

4.4 GPU 

4.4.1 History of the GPU 

GPUs, known colloquially as video cards, emerged out of necessity in the early 1990s to 

accelerate the 2d graphics in GUI systems like Microsoft Windows.   At a similar time, a 

company called Silicon Graphics released a programming interface called OpenGL to its graphics 

hardware.  They did this for two ends: to popularize 3d graphics, and to secure OpenGL a place 

as the industry standard in graphics programming [14]. 

In 2001, NVIDIA released their GeForce 3 series chip, which implemented Microsoft’s DirectX 

8.0.  This meant their hardware contained programmable vertex and pixel shaders, which 

allowed developers some precise control over the actual operations being performed on the 

GPU [14]. 



 

14 
 

4.4.2 Graphics Operations on GPUs 

GPUs can now be used to speed up graphics as well as non-graphics tasks.  Graphics operations 

are achieved by processing data through a pipeline of smaller, parallelizable tasks.  Figure 5 

demonstrates the DirectX pipeline as an example of a graphics pipeline.   

 

Figure 5. DirectX Graphics Pipeline [15] 

A simplified diagram of the OpenGL graphics pipeline is shown in Figure 5, and is at a level of 

depth adequate for this explanation [16].  Each stage of the graphics pipeline is very similar in 

concept, so the Vertex Processing stage is chosen for further analysis.  The primary purpose of 

the Vertex Processing stage is to transform the information in a vertex data structure to a 

location on-screen [17].  This is accomplished through the use of a program called the vertex 

shader.  One instance of the vertex shader is run on the GPU for each vertex element to be 

displayed [18].  Ideally, every vertex would be operated on in parallel, but this is limited in 

practice by the number of cores available on the GPU.  

4.4.3 General Purpose GPU Programming 

These shaders expect to receive graphics data (e.g. color, location) as arguments, and expect to 

return modified graphical data as outputs.  However, within the shader, these values are simply 

arbitrary numeric values on which the programmer can perform arbitrary operations.  



 

15 
 

Developers soon began to write code in the shaders for more generic number-crunching tasks, 

by transferring arbitrary information posing as graphical information back and forth between 

the CPU and GPU.  This was the birth of General Purpose GPU (GPGPU) Programming [14]. 

4.4.4 CPU vs. GPU 

The modern CPU typically has a higher clock rate than the GPU.  While the current generation 

Intel and AMD processors typically have clock rates on the order of 3-4GHz [19] [20], current 

NVIDIA cards like the GeForce GTX 980 falls just over 1GHz [21].  However, while a CPU will 

likely have 2-4 processing cores, a GPU may have as many as 1-2 thousand [21].  Each of these 

cores is lower power than a CPU core, and thus is suited to less complex operations.  GPUs work 

well in environments where many small tasks can be performed in parallel to achieve some 

larger goal. 

4.4.5 GPGPU Applications 

Many numerical algorithms can be made faster through GPGPU programming.  Successful 

acceleration has been achieved in the areas of crypto-currency mining, scientific computing, 

image processing, and many others [22].   

GPUs have been successfully used to speed up many diverse applications.  For instance, there 

exists a program called cRARk, whose purpose is to crack forgotten passwords on Windows RAR 

archives.  Developed by a man named Pavel Semjanov, this program runs on any modern 

NVIDIA GPU [23].  CRARk boasts a speedup from 283 password checks per second on traditional 

CPU-based methods to 4281 per second on GPUs [24]. 



 

16 
 

NVIDIA lists a wide variety of GPGPU applications on their website [25].  Some of the more 

interesting uses include: acceleration for MATLAB (up to 22 times speedup) [26], a molecular 

dynamics simulator called LAMMPS (up to 18 times speedup) [27], and a life sciences 3D 

visualizer called Amira (up to 70 times speedup) [28]. 

4.4.6 GPGPU Restrictions 

Perhaps the largest restriction on the processing of a GPU is data transfer rate between the 

CPU and GPU [29].  In order for the GPU to process data, the CPU must transfer data from its 

memory across the computer’s bus to GPU memory.  This is a slow process, and must be 

repeated in the opposite direction once the GPU has finished its work.  Figure 6 illustrates these 

transfers. 

 

Figure 6. Data Transfer between CPU & GPU 

 

Consequently, the use of the GPU is best suited in situations where many operations can be 

performed on data, with relatively few data transfers.  Otherwise, the relative processing speed 

on the GPU may become irrelevant due to the transfer overhead. 

4.5 CUDA 

In 2006, NVIDIA Corporation released CUDA (Compute Unified Device Architecture) as a 

platform for general purpose parallel computing using their GPUs.  CUDA allows the 



 

17 
 

programmer to interface with the GPU using extensions to the C programming language.  This 

code is compiled to PTX, which is CUDA’s instruction set architecture, through the use of nvcc: 

NVIDIA’s proprietary compiler.  The language is based on three key abstractions: its hierarchy of 

thread groups, shared memory between threads, and barrier synchronization. 

From a developer’s perspective, the primary difference between ANSI C and CUDA C is the 

introduction of a semantic element called a kernel.  A kernel, which is a small program that is 

run on the GPU rather than the CPU, introduces a double angle bracket syntax that defines the 

amount of parallelism [30]. 

 cudaFunc<<N, M>>(); 

In the above code, cudaFunc is the name of a pre-defined kernel function, M is the number of 

threads to instantiate, and N is the number of parallel executions per thread.  If N=3 and M=4, 

the kernel would run twelve times: three times for each of four threads.  A function definition is 

denoted as a kernel with the __global__ qualifier.  A function that is declared __global__ can be 

called from the CPU or the GPU, but is always run on the GPU [30]. 

In addition to __global__, CUDA defines new function qualifiers __device__ and __host__.  The 

__device__ qualifier is used in the definition of a function that both runs on and is called from 

the GPU; this keyword can also be used to declare a variable stored in GPU memory.  On the 

other hand, __host__ is used to designate a function that both runs on and is called from the 

CPU [30]. 

  



 

18 
 

5 METHODOLOGY 
Figure 7 gives an overview of the procedures taken in order to achieve a working virtual table.  

 

Figure 7: Methodology Overview 

 

5.1 Research 

The first phase of the project consisted of researching CUDA, SQLite, and GPGPU in general. The 

sections below outline the steps taken to gain an understanding of the technologies prevalent 

to this MQP.  

5.1.1 Tools & libraries 

As a first step into the world of CUDA, the first major accomplishment was researching many of 

the tools and libraries available.  These components were organized in a spreadsheet, and split 

into three key sections: infrastructure, libraries, and tools.  The three categories are listed in 

ascending order of abstraction: infrastructure APIs are low-level building blocks, and libraries 

are higher-level collections of infrastructure components.  The tools category is an assortment 

of programs used to improve the CUDA programming experience (e.g. IDEs and profilers). The 

complete spreadsheet is available in Appendix B, but a small snippet is shown below. 

CUDA Libraries Research 

Linear Algebra Tests

Virtual Table Research

Virtual Table Implementation



 

19 
 

General Libraries 

Name Description URL 

AmgX  
 acceleration in the computationally intense 
linear solver portion of simulations 

https://developer.nvidia.com/a
mgx 

ArrayFire  
 GPU function library, including functions for 
math, signal and image processing, statistics 

https://developer.nvidia.com/ar
rayfire 

cuBLAS  
GPU-accelerated version of the complete 
standard BLAS library 

https://developer.nvidia.com/cu
blas 

cuBLAS-XT  
  set of routines which accelerate Level 3 BLAS 
(Basic Linear Algebra Subroutine) 

https://developer.nvidia.com/cu
blasxt 

CUDA Math 
Library  

 collection of standard mathematical functions, 
providing high performance on NVIDIA GPUs 

https://developer.nvidia.com/cu
da-math-library 

CULA Tools  
 dramatically improve the computation speed of 
sophisticated mathematics 

https://developer.nvidia.com/e
m-photonics-cula-tools 

Figure 8: CUDA Spreadsheet Snippet 

The following sections contain tools, libraries, and resources directly of interest to this project. 

5.1.1.1     cuBLAS 

cuBLAS, or the CUDA Basic Linear Algebra Subroutines (cuBLAS) library, is a GPU-optimized set 

of Linear Algebra functions.  Just as Thrust is a CUDA analogue to the C++ STL, cuBLAS is based 

on Intel’s MKL BLAS. cuBLAS boasts support for all standard BLAS routines, as well as 

tremendous speedup. cuBLAS was used in the tests to perform matrix multiplication, 

specifically using the cublasSgemm() function. This is useful because this function performs the 

matrix multiplications and allows us to transpose the matrices all in one function call.  

5.1.1.2     Thrust 

One of the most prevalent API sets available is Thrust.  Thrust is a library that closely emulates 

the C++ Standard Template Library.  One useful element of Thrust is the provision of data 

structures, such as vectors, that can be created in CPU or GPU-space. The Thrust library was 

specifically used in the GPU integer SAXPY algorithm in order to create and populate vectors on 

the CPU and GPU, and performing vector transformations.  



 

20 
 

5.1.1.3     Nsight 

 Nsight is a CUDA development platform released by NVIDIA, with editions for Visual Studio and 

Eclipse.  This is a useful tool, containing features like GPU-oriented debugging functionality and 

code profiling. Because much of this development was performed on a virtual machine, Nsight 

was not directly used in this project.   

5.1.2 CUDA by Example 

CUDA by Example [31] is a book written by senior developers of the CUDA platform team.  It 

contains lessons and examples aimed to get readers working with CUDA as quickly as possible.  

In order to gain as much knowledge in this area as possible, a schedule of chapters to read was 

designed in order to complete the book in its entirety by the end of the MQP. 

5.1.3 Udacity Intro to Parallel Programming 

Udacity offers an introductory-level course on Parallel Programming.  Although this course does 

not dive as deeply into the language as CUDA by Example, it is a useful resource that should 

provide much insight prior to the start of coding.  A lesson plan from this course was arranged 

to supplement the readings from CUDA by Example, as shown in Figure 9. 



 

21 
 

 

Figure 9: CUDA Lesson Plan 

 

5.1.4 Using SQLite 

The main resource used to gain a proper understanding of certain aspects of SQLite was Jay A. 

Kreibich's text, Using SQLite [31]. This book outlines uses of SQLite, the SQL language, APIs 

available, the C programming interface, as well as other topics. The main interest in this book, 

however, were chapters nine and ten. These sections outlined SQLite functions and extensions, 

as well as virtual tables and modules, which directly pertain to this project. The examples 

provided in the chapters proved to be a substantial resource for developing a custom virtual 

table.  



 

22 
 

5.2 Environment 

The following sections describe the environment uses to complete this project. 

5.2.1 VirtualBox and Debian 

Because of the complexity of installing CUDA on a Windows machine, VirtualBox and a Linux 

distribution were required. Debian 7 was the Linux version chosen.  

5.2.2 SSH 

The local machines used did not have a GPU, so an external resource to run the CUDA code was 

necessary. The remote machine all of the code ran on was a SUSE Linux machine. SSH was used 

to gain terminal access to modify and run code.  

5.2.3  GPU Information 

The CUDA installation provides a useful program called deviceQuery that provides all of the 

necessary information about the GPU installed in the machine. Figure 10 shows the output of 

program for the GPU used in this project. 



 

23 
 

 

Figure 10: Information of GPU used in this Project 

 

5.3 Linear Algebra Tests 

A first area of investigation was to find the types of problems most likely to yield the most 

performance improvements, specifically linear algebra operations. These types of problems 

directly apply to different users in EMC, specifically the FAST(Fully Automated Storage Tiering) 

Engine and the meta-data paging developers. The FAST team runs algorithms that determine 

which back-end devices data lives on, ranging from solid-state drives, Serial Attached SCSI (SAS) 

drives, and Serial ATA (SATA) drives. The meta-data paging team develops algorithms to ensure 

the meta-data associated with active drives are already in memory, using a variety of database 

algorithms to keep track of this data.   



 

24 
 

5.3.1 Dot Products 

The first test performed was the integer dot product algorithm. The dot product is calculated 

with the formula below, given two vectors X and Y with a size of N: 

𝑋 ∙ 𝑌 = 𝑋1 ∗ 𝑌1 + 𝑋2 ∗ 𝑌2 +. . . +𝑋𝑁 ∗ 𝑌𝑁   

This test was completed by starting with a size of N=100, and incrementing by 1000 until N < 

100100. The dot product is one type of linear algebra operation that could be useful to some of 

the meta-data paging developers at EMC, who run algorithms to determine if meta-data is 

already in memory. 

5.3.2 Matrix Multiply 

The second test executed to become accustomed to programming in CUDA was the matrix 

multiplication algorithm. This test uses the CUBLAS, a commonly used Linear Algebra 

Subroutine library, for matrix functions, providing an easy interface to run operations on 

matrices with C code. A major issue was the column ordering of the matrices. The CUBLAS 

library uses column ordering, while C matrices are stored in row order. Hence, a function was 

needed to transpose the matrices when the matrices are transferred onto the GPU, and 

transpose the data again once it is transferred onto the host. Square matrices were used in this 

example (NxN). 

5.3.3 SAXPY 

SAXPY (Single-Precision A·X Plus Y) is a combination of scalar multiplication and vector addition. 

The chart below shows the timing for running { (a* X) + Y } using on both the CPU and GPU 

using the thrust library functions. Thrust here is used to generate the CPU and GPU vectors, and 

performs the transformation operations for the GPU. In this graph, the y-axis is a log scale in 



 

25 
 

milliseconds. The vectors the vector size on the x-axis ranges from 100 to 100100 in increments 

of 1000. Below is the function used to calculate SAXPY on the CPU. 

void saxpy_cpu_float(float A, thrust::host_vector<float>& X, 
thrust::host_vector<float>& Y) 

{ 

  for(int i = 0; i < X.size(); i++) 

  { 

    Y[i] = (A * X[i]) + Y[i]; 

  } 

} 

5.3.4 Linear Algebra Test Parameters 

The table below represent parameters used for each linear algebra test ran. 

Type Range Increment Value Data Type 

Dot Product 100-100100 1000 Vector 

Matrix Multiply 10-1000 25 Square Matrix (NxN) 

SAXPY 100-100100 1000 Vector 
 

5.4 Virtual Tables 

Virtual tables are described as an extension to SQLite that allows a developer to define table 

structure and behavior through C code. When running typical SQL commands, virtual tables use 

custom implemented functions to process the data. This allows  a CUDA implementation to 

perform tailored operations on datasets. Custom virtual table implementations are known as 

modules. The author [31] explains two primary examples of SQLite modules, both of which 

proved to be quite useful references for this implementation. Finally, SQLite provides the ability 

to develop and load extensions, which consists of custom functions and virtual tables packaged 

into one bundle. Modules can be developed then load and run through the SQLite shell. The 

table below shows the parameters used to test the CPU vs. GPU comparison for SQLite insert 

statements.  



 

26 
 

 

  

 

 

 

 

 

 

 

 

 

Table 1: Parameters for SQLite Insertion Benchnmark 

 

  

Elements CPU GPU Ratio 
(GPU/CPU) 

10 54.546 46.655 0.855333 

50 55.836 51.607 0.92426 

100 63.451 55.617 0.876535 

500 76.378 76.987 1.007974 

1000 80.424 111.846 1.390704 

5000 190.073 362.673 1.908072 

10000 377.843 618.979 1.638191 

50000 1621.624 3319.754 2.047179 

100000 2716.473 6451.976 2.37513 

500000 13766.28 29348.19 2.13189 

1000000 30754.51 60059.45 1.952867 



 

27 
 

6 RESULTS 

6.1 Linear Algebra Results 

The following sections show the performance increases found from CPU to GPU for linear 

algebra operations. These performance increases shown below are important for the FAST(Fully 

Automated Storage Tiering) Engine and the meta-data paging teams. 

6.1.1 Dot Products 

As Figure 11 shows, GPUs perform at a relatively consistent level, while the CPU increases 

logarithmically as the number of elements in the vector increases.  Even as the vector size 

increases, the GPU performs at a steady pace. Vector size represents the number of elements in 

each of the two vectors input into the dot product algorithm. The crossover point in which the 

GPU outperforms the CPU occurs at a vector size of around 200 elements. 

 

Figure 11: Dot Product Algorithm 

 

vector size  ≈  200 



 

28 
 

6.1.2 Matrix Multiply 

Figure 12 shows the results from the matrix multiplication test.  As can be observed, the GPU 

again significantly outperforms the CPU in linear algebra operations. Here, the GPU shows a 

logarithmic type of curve, but still overcomes the CPU by factors of ten. The crossover point in 

which the GPU outperforms the CPU occurs at a matrix size of 25x25. 

 

Figure 12: Matrix Multiplication Algorithm 

matrix size  ≈  25x25 



 

29 
 

6.1.3 SAXPY 

Figure 13 shows that whenever the size of the vectors is over about 40 entries, it is much faster 

to use the GPU. Similar to the other tests, the GPU performs at a relatively steady rate. The 

vector size in this test refers to the number of elements in the two input vectors for the SAXPY 

algorithm. The crossover point in which the GPU outperforms the CPU occurs at a vector size of 

around 400 elements. 

 

Figure 13: Integer SAXPY Algorithm 

 

6.1.4 Column-major vs. row-major 

When writing CUDA code concerning matrices, the ordering of the matrix must be considered. 

The CUBLAS matrixes functions require column-major ordering, while C and C++ want row-

major ordering. Hence, a transpose operator is required for CUBLAS when transferring data to 

the GPU, and the data must be converted to its original ordering when it returns to the CPU.  

vector size  ≈  400 



 

30 
 

Concerning the virtual table ordering, column major tables will speed up operations such as 

"like" and "match," since whole chunks of column data can be examined in parallel. This will 

also avoid the need to transpose the database storage from CPU memory to GPU memory, 

since the data will be put directly into the GPU. 

6.2 Implementing the Virtual Table 

The next major step in the project was the implementation of a virtual table with GPU 

functionality. The following sections outline the steps taken to complete that goal.  

6.2.1 Stripping down book example 

Virtual tables are fairly complex, and inherently difficult to debug.  Each virtual table extension 

must implement a subset of virtual table functions (e.g. xCreate, xConnect, xDisconnect, etc.) 

depending on its purpose.  To start, SQL functions needed to be mapped to CUDA, determining 

a minimal, working set of required virtual table functions. This was accomplished by starting 

with the virtual table example, "dblist.c," from Chapter 10 of Using SQLite. The dblist module 

provided from the book takes the “PRAGMA  database_list” SQLite command output and 

presents it as a table. The purpose of this module is to show the necessary functions needed for 

a SQLite module. 

 The next step, for testing purposes, was a function call to the matrix tests described above.  

This allowed for CUDA code to be called within SQLite, as shown below. 

sqlite3> select doMatrixTest() from sql_database_list where name=”main”; 

In order to determine which virtual table functions were necessary, print statements were 

added within each function to show when it was being called. In order to create a barebones 



 

31 
 

module, extraneous function implementations were removed and code simplifications were 

made. In the end, the functions that needed to be implemented were xConnect, xOpen, xFilter, 

xNext, xEof, and xColumn. The following section shows a step-by-step example of how these 

functions are used.  

The xConnect() function is used to create a virtual table, and is called in response to the 

“CREATE VIRTUAL TABLE” statement. This function also establishes a connection to the newly 

created virtual table. The xOpen() function is used to create a new cursor for reading  or writing 

to the virtual table.  The xFilter() function is used to search the virtual table. This function takes 

in the cursor opened by xOpen(), as well as a search index chosen by the xBestIndex() function. 

The xFilter() and xBestIndex() functions are the primary areas in which query optimization 

occurs. xNext() is used by the xFilter() function and advances the virtual table cursor the next 

row. xColumn() is called multiple times per row, as it extracts the value of the N-th column for 

the current row. Finally, the xEof() function determines if the cursor points to a valid row of 

data. Hence, this function is called after every xFilter() and xNext() call.  

The custom virtual implementation used in this project uses  these functions described above, 

and removed non-essential functions. This allowed for the above functions to be implemented 

with CUDA code. 

6.2.2 Memory management 

One concern with virtual table performance is memory management. Because column-based 

ordering is required for the GPU implementation, memory management becomes considerably 

more complicated than row-based models. Hence, the memory management overhead cannot 



 

32 
 

be greater than the performance gains from the column-based pattern matching. To achieve 

this, each column must be contiguous in memory. This becomes difficult, as it is uncertain how 

many rows may be added, which may lead to a large number of memory reallocations.  

For the CPU implementation, memory is allocated based on a fixed amount defined in a 

constant. This approach is inefficient, but makes it easier to manage than having varying table 

sizes. The GPU table is designed to be relatively more efficient, since it uses  a column-major 

ordering.  This ordering allows for more efficient memory access for parallel searching and 

pattern matching, achieving performance gains over normal C row-major ordering. The GPU still 

uses a pre-allocated limit to the number of rows that the table can use. This technique is 

necessary in order to maintain contiguous memory and limits reallocation. If this strategy was 

not used, continuous memory allocations would cause fragmentation in the memory space 

available and non-contiguous memory would result in a significant performance hit for parallel 

searching.  The major penalty on the GPU side occurs when string data is transferred from the 

CPU to the GPU and back. Because of this performance loss, it may be an improvement to 

perform the searches on the CPU.  

6.3 Virtual Table Results 

In order to test the effectiveness of a CUDA SQLite virtual table, a set of benchmarks were run 

in order to see the GPU comparison. As Figure 14 shows, the CPU significantly outperforms the 

GPU as the number of rows increase. This may be due to the memory transfer across the PCI 

barrier. A more optimized memory model would greatly increase the effectiveness of this 

study, but this implementation did not focus on code optimization as much as developing a 

working virtual table.  



 

33 
 

 

 

Figure 14: GPU/CPU Insertions Benchmark 

Figure 15 shows a zoomed-in version of Figure 14, giving a clearer view of the compressed 

range of data points from 10-10000 rows. 

 

Figure 15: GPU/CPU Insertions Benchmark (zoomed) 

 

0

10000

20000

30000

40000

50000

60000

70000

1 10 100 1000 10000 100000 1000000

Ti
m

e
 (

m
s)

Number of Rows

GPU/CPU Insertions Benchmark

CPU

GPU

0

100

200

300

400

500

600

700

1 10 100 1000 10000

Ti
m

e
 (

m
s)

Number of Rows

GPU/CPU Insertions Benchmark (zoomed)

CPU

GPU



 

34 
 

7 CONCLUSIONS 

7.1 Viability of leveraging the GPU 

Based on the linear algebra tests and the SQLite virtual table implementation, this proof of 

concept project could be useful in multiple areas in EMC. As stated above, the FAST Engine and 

the meta-data paging developers could benefit from the linear algebra and other types of 

problems. Using certain libraries, such as the Thrust or CUBLAS libraries could also be 

advantageous for some of their applications. The SQLite virtual table could also be of use for 

the meta-data paging team, as well as future work involving a complete port of SQLite to CUDA. 

This step would be time consuming, but beneficial for those users.  

7.2 OpenCL 

OpenCL is an open-source alternative to CUDA.  It was developed by KHRONOS Group, well 

known as the developers of OpenGL.  It will be wise for the successors in this project to 

consider migrating the existing codebase from CUDA to OpenCL.  This provides a few key 

advantages; first and foremost is its multi-vendor support.  Though CUDA claims more frequent 

updates than OpenCL, its use implies that only NVIDIA GPUs can be used.  On the other hand, 

OpenCL boasts an ability to run code on any modern GPU [32].  

  



 

35 
 

8 BIBLIOGRAPHY 
 

[1]  "Milestones: 1979-1989," EMC, 2015. [Online]. Available: 

http://www.emc.com/corporate/emc-at-glance/milestones/milestones-1989-1979.htm. 

[Accessed 1 March 2015]. 

[2]  "EMC: Summary for EMC Corporation Common Stock," Yahoo Finance, 1 March 2015. 

[Online]. Available: http://finance.yahoo.com/q?s=EMC. [Accessed 1 March 2015]. 

[3]  "EMC Competitors," Yahoo Finance, 1 March 2015. [Online]. Available: 
http://finance.yahoo.com/q/co?s=EMC+Competitors. [Accessed 1 March 2015]. 

[4]  E. F. Codd, "Relational completeness of data base sublanguages," Prentice-Hall, 1972. 

[5]  S. S. L. Edd Dumbill, "An Incredibly Brief Introduction to Relational Databases: Appendix B - 

Learning Rails," in Learning Rails, O'Reilly Media, 2008, p. 448. 

[6]  R. F. B. Donald D. Chamberlin, "SEQUEL: A STRUCTURED ENGLISH QUERY LANGUAGE," IBM 

Research Laboratory, San Jose, California, 1974. 

[7]  "SQL Commands," Art Branch Inc., [Online]. Available: http://www.sqlcommands.net/. 

[Accessed 2 March 2015]. 

[8]  "DB-Engines Ranking - popularity ranking of relational DBMS," solid IT, 2015. [Online]. 

Available: http://db-engines.com/en/ranking/relational+dbms. [Accessed 2 March 2015]. 

[9]  "Database 12c | Oracle," Oracle, 2015. [Online]. Available: 
https://www.oracle.com/database/index.html. [Accessed 2 March 2015]. 

[10]  "SQL Server 2014 | Microsoft," Microsoft, 2015. [Online]. Available: 

http://www.microsoft.com/en-us/server-cloud/products/sql-server/. [Accessed 2 March 
2015]. 

[11]  "PostgreSQL: About," The PostgreSQL Global Development Group, 2015. [Online]. 

Available: http://www.postgresql.org/about/. [Accessed 2 March 2015]. 

[12]  D. R. Hipp, "Appropriate Uses for SQLite," [Online]. Available: 

http://sqlite.org/whentouse.html. [Accessed 2 March 2015]. 

[13]  M. J. Flynn, "Some Computer Architectures and Their Effectiveness," IEEE Transactions on 

Computers, Vols. c-21, no. 9, pp. 948-960, 1972.  

[14]  E. K. Jason Sanders, CUDA By Example, Boston: Pearson Education, Inc., 2011.  



 

36 
 

[15]  "Direct 3D Architecture," 2015. [Online]. Available: https://i-msdn.sec.s-

msft.com/dynimg/IC412590.png. [Accessed 2 March 2015]. 

[16]  "Rendering Pipeline Overview - OpenGL," 1 January 2015. [Online]. Available: 
https://www.opengl.org/wiki/Rendering_Pipeline_Overview. [Accessed 2 March 2015]. 

[17]  "Graphics Pipeline Definition from PC Magazine Encyclopedia," PCMag Digital Group, 2015. 

[Online]. Available: http://www.pcmag.com/encyclopedia/term/43933/graphics -pipeline. 

[Accessed 2 March 2015]. 

[18]  "Vertex Shader - OpenGL.org," 16 January 2015. [Online]. Available: 
https://www.opengl.org/wiki/Vertex_Shader. [Accessed 2 March 2015]. 

[19]  "5th Generation Intel Core i7 Processors," Intel Corporation, [Online]. Available: 

http://www.intel.com/content/www/us/en/processors/core/core-i7-processor.html. 

[Accessed 2 March 2015]. 

[20]  "AMD Phenom II Processors," Advanced Micro Devices, Inc, 2015. [Online]. Available: 

http://www.amd.com/en-us/products/processors/desktop/phenom-ii. [Accessed 2 March 

2015]. 

[21]  "GeForce GTX 980 | Specifications | GeForce," NVIDIA Corporation, 2015. [Online]. 

Available: http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-

980/specifications. [Accessed 2 March 2015]. 

[22]  "GPGPU.org :: General Purpose computation on Graphics Processing Units," 2015. [Online]. 
Available: http://gpgpu.org/. [Accessed 3 March 2015]. 

[23]  P. Semjanov, "cRARk - freeware RAR password recovery," 25 July 2014. [Online]. Available: 

http://www.crark.net/#purpose. [Accessed 3 March 2015]. 

[24]  N. Mohr, "Do more with graphics: power up with GPGPU," TechRadar, 3 February 2013. 

[Online]. Available: http://www.techradar.com/us/news/computing-components/graphics-
cards/do-more-with-graphics-power-up-with-gpgpu-1128214. [Accessed 3 March 2015]. 

[25]  "GPU Applications | High Performance Computing," NVIDIA Corporation, 2015. [Online]. 

Available: http://www.nvidia.com/object/gpu-applications.html. [Accessed 3 March 2015]. 

[26]  "MATLAB Acceleration on Tesla and Quadro GPUs," NVIDIA Corporation, 2015. [Online]. 

Available: http://www.nvidia.com/object/tesla-matlab-accelerations.html. [Accessed 3 

March 2015]. 

[27]  "LAMMPS Molecular Dynamics Simulator," Sandia, 2015. [Online]. Available: 



 

37 
 

http://lammps.sandia.gov/. [Accessed 3 March 2015]. 

[28]  "Amira 3D Software for Life Sciences," FEI, 2015. [Online]. Available: 

http://www.fei.com/software/amira-3d-for-life-sciences/. [Accessed 3 March 2015]. 

[29]  M. Harris, "How to Optimize Data Transfers in CUDA C/C++," NVIDA Corporation, 4 

December 2012. [Online]. Available: http://devblogs.nvidia.com/parallelforall/how-

optimize-data-transfers-cuda-cc/. [Accessed 3 March 2015]. 

[30]  "Programming Guide :: CUDA Toolkit Documentation," NVIDIA Corporation, 1 August 2014. 

[Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-
guide/#axzz3TLxREdNg. [Accessed 3 March 2015]. 

[31]  J. A. Kreibich, Using SQLite, Sebastopol, CA: O'Reilly, 2010.  

 

 

  



 

38 
 

9 APPENDIX A: TABLE OF TOOLS AND LIBRARIES 
Infrastructure 

Name Description URL 

GPUDirect  

 Enables 3rd party network adapters and other 
devices to directly read and write CUDA host 
and device memory on NVIDIA Tesla™ and 
Quadro™ products. GPUDirect technology also 
includes direct transfers between GPUs 

https://developer.nvidia.com/gp
udirect 

LLVM  

 open source compiler infrastructure on which 
NVIDIA's CUDA Compiler (NVCC) is based on. 
Developers can create or extend programming 
languages with support for GPU acceleration 
using the CUDA Compiler SDK 

https://developer.nvidia.com/cu
da-llvm-compiler 

MPI Solutions for 
GPUs  

 enables applications threads to communicate 
across compute nodes, supports GPU 
accelerated nodes 

https://developer.nvidia.com/m
pi-solutions-gpus 

OpenACC  

  collection of compiler directives to specify 
loops and regions of code in standard C, C++ 
and Fortran to be offloaded from a host CPU to 
an attached accelerator 

http://www.openacc-
standard.org/ 

Thrust  

open source library of parallel algorithms and 
data structures. Perform GPU accelerated sort, 
scan, transform, and reductions with just a few 
lines of code 

https://developer.nvidia.com/th
rust 
https://code.google.com/p/thru
st/ 

 General Libraries 

Name Description URL 

AmgX  
 acceleration in the computationally intense 
linear solver portion of simulations 

https://developer.nvidia.com/a
mgx 

ArrayFire  
 GPU function library, including functions for 
math, signal and image processing, statistics 

https://developer.nvidia.com/ar
rayfire 

cuBLAS  
GPU-accelerated version of the complete 
standard BLAS library 

https://developer.nvidia.com/cu
blas 

cuBLAS-XT  
  set of routines which accelerate Level 3 BLAS 
(Basic Linear Algebra Subroutine) 

https://developer.nvidia.com/cu
blasxt 

CUDA Math 
Library  

 collection of standard mathematical functions, 
providing high performance on NVIDIA GPUs 

https://developer.nvidia.com/cu
da-math-library 

CULA Tools  
 dramatically improve the computation speed of 
sophisticated mathematics 

https://developer.nvidia.com/e
m-photonics-cula-tools 

cuDNN  
GPU accelerated library of primitives for deep 
neural networks 

https://developer.nvidia.com/cu
DNN 

cuFFT  
 simple interface for computing FFTs up to 10x 
faster 

https://developer.nvidia.com/cu
fft 

cuRAND  
 library performs high quality GPU accelerated 
random number generation (RNG) 

https://developer.nvidia.com/cu
rand 

cuSPARSE   collection of basic linear algebra subroutines https://developer.nvidia.com/cu



 

39 
 

used for sparse matrices  sparse 

Geometry 
Performance 
Primatives(GPP)  

 geometry engine that is optimized for GPU 
acceleration 

https://developer.nvidia.com/ge
ometric-performance-primitives-
gpp 

HiPLAR  

 (High Performance Linear Algebra in R) delivers 
high performance linear algebra (LA) routines 
for the R platform for statistical computing 

https://developer.nvidia.com/hi
plar 

IMSL Fortran 
Numerical 
Library  

  set of mathematical and statistical functions 
that offloads work to GPUs 

https://developer.nvidia.com/im
sl-fortran-numerical-library 

KALDI  
 The CUDA matrix library seamless wrapper of 
CUDA computation 

http://kaldi.sourceforge.net/cud
amatrix.html 

Labview  

 LabView enables engineers and scientists to 
create applications using a powerful high level 
programming language and advanced tools 

http://zone.ni.com/devzone/cda
/tut/p/id/11972 

MAGMA   collection of next gen linear algebra routines 
https://developer.nvidia.com/m
agma 

Math Premium  

 takes advantage of the NVIDIA CUDA 
architecture to dramatically accelerate 
mathematics on the .NET platform 

https://developer.nvidia.com/n
math 

Mathematics  

 Mathematicia by Wolfram is a comprehensive 
technical computing solution ,enabling complex 
computational applications to be build 

https://developer.nvidia.com/m
atlab-cuda 

Matlab  
 Matlab  by Mathworks, has native support for 
CUDA in the Parallel Computing Toolbox 

https://developer.nvidia.com/m
atlab-cuda 

NPP  

 accelerated library with a very large collection 
of 1000's of image processing primitives and 
signal processing primitives 

https://developer.nvidia.com/np
p 

NVBIO  

 C++ framework for High Throughput Sequence 
Sequence Analysis for both short and long read 
alignment 

https://developer.nvidia.com/nv
bio 

OpenCV  
 open source library for computer vision, image 
processing and machine learning 

https://developer.nvidia.com/op
encv 

Paralution  

  library for sparse iterative methods with 
special focus on multi-core and accelerator 
technology such as GPUs 

https://developer.nvidia.com/pa
ralution 

 Tools 

Name Description URL 

Allinea DDT  

 single tool that can debug hybrid MPI, OpenMP 
and CUDA applications on a single workstation 
or GPU cluster 

https://developer.nvidia.com/all
inea-ddt 

CUDA-GDB  

 debugging experience that allows you to debug 
both the CPU and GPU portions of your 
application simultaneously 

https://developer.nvidia.com/cu
da-gdb 



 

40 
 

CUDA-
MEMCHECK  

 Identifies memory access errors in your GPU 
code and allows you to locate and resolve 
problems quickly. reports runtime execution 
errors, identifying situations that could result in 
an “unspecified launch failure” error while your 
application is running 

https://developer.nvidia.com/C
UDA-MEMCHECK 

NVIDIA CUDA 
Profiling Tools 
Interface (CUPTI)  

 performance analysis tools with detailed 
information about GPU usage in a system 

https://developer.nvidia.com/cu
da-profiling-tools-interface 

NVIDIA Nsight  
 Development platform, debugging and profile 
tools http://www.nvidia.com/nsight 

NVIDIA Visual 
Profiler  

 performance profiling tool to give feedback to 
optimize CUDA aplications 

https://developer.nvidia.com/nv
idia-visual-profiler 

PAPI CUDA 
Component  

 hardware performance counter measurement 
technology for the NVIDIA CUDA platform which 
provides access to the hardware counters inside 
the GPU. Provides detailed performance 
counter information regarding the execution of 
GPU kernels 

https://developer.nvidia.com/pa
pi-cuda-component 

TAU 
Performance 
System  

  profiling and tracing toolkit for performance 
analysis of hybrid parallel programs written in  
CUDA, and pyCUDA., and HMPP  

http://www.cs.uoregon.edu/res
earch/tau/home.php 

TotalView  

GUI-based tool that allows you to debug one or 
many processes/threads with complete control 
over program execution 

https://developer.nvidia.com/to
talview-debugger 

VampirTrace  

 performance monitor which comes with CUDA,  
and PyCUDA support to give detailed insight 
into the runtime behavior of accelerators. 
Enables extensive performance analysis and 
optimization of hybrid programs. 

https://developer.nvidia.com/va
mpirtrace 

 

 

 

 

 

 

 

 


	1 ABSTRACT
	2 ACKNOWLEDGEMENTS
	TABLE OF FIGURES
	3 INTRODUCTION
	3.1 The Goal of this MQP

	4 BACKGROUND
	4.1 EMC
	4.2 Databases
	4.2.1 Relational Databases
	4.2.2 SQL
	4.2.3 Overview of Relational Database Management Systems
	4.2.4 SQLite

	4.3 Classification of Machine Architectures
	4.3.1 Single Instruction – Single Data
	4.3.2 Single Instruction – Multiple Data

	4.4 GPU
	4.4.1 History of the GPU
	4.4.2 Graphics Operations on GPUs
	4.4.3 General Purpose GPU Programming
	4.4.4 CPU vs. GPU
	4.4.5 GPGPU Applications
	4.4.6 GPGPU Restrictions

	4.5 CUDA

	5 METHODOLOGY
	5.1 Research
	5.1.1 Tools & libraries
	5.1.1.1     cuBLAS
	5.1.1.2     Thrust
	5.1.1.3     Nsight

	5.1.2 CUDA by Example
	5.1.3 Udacity Intro to Parallel Programming
	5.1.4 Using SQLite

	5.2 Environment
	5.2.1 VirtualBox and Debian
	5.2.2 SSH
	5.2.3  GPU Information

	5.3 Linear Algebra Tests
	5.3.1 Dot Products
	5.3.2 Matrix Multiply
	5.3.3 SAXPY
	5.3.4 Linear Algebra Test Parameters

	5.4 Virtual Tables

	6 RESULTS
	6.1 Linear Algebra Results
	6.1.1 Dot Products
	6.1.2 Matrix Multiply
	6.1.3 SAXPY
	6.1.4 Column-major vs. row-major

	6.2 Implementing the Virtual Table
	6.2.1 Stripping down book example
	6.2.2 Memory management

	6.3 Virtual Table Results

	7 CONCLUSIONS
	7.1 Viability of leveraging the GPU
	7.2 OpenCL

	8 BIBLIOGRAPHY
	9 APPENDIX A: TABLE OF TOOLS AND LIBRARIES

