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Abstract

The objective of this project was to quantify the difference between two planar

domains with finitely prescribed matching points. To this end, we use gradient flows

to obtain a homotopy of quasiconformal mappings between the two shapes, find a

canonical minimizer for maximal infinitesimal stretching and rotation, and take the

distortion of the minimizer as a measure of the difference between the two planar

shapes. In our approach, numerical implementation is applied to get better insight

of the long-time behavior of the gradient flow.
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2 Introduction

In the book On Growth and Form by the Scottish mathematical biologist D’Arcy

Wentworth Thompson [Thompson, 1942], a theory of transformation was introduced

to characterize the change of shape and size during the growing process of an organism.

In this theory, a grid method was applied to capture the descriptive and predictive

properties underlying biological shapes via grid coordinates deformations.

The objective of this project was to generalize Thompson’s problem mathematically

and to come up with a new method to quantify the difference between two planar shapes

(domains) with finitely prescribed matching points. To this end, we use quasiconformal

maps between two planar shapes, preserving the landmark points. More specifically, the

image of an infinitesimally small circle under such a map yields information on its local

shear and distortion, and we consider various functional of these quantities to measure

the difference in shapes between the two regions through the map.

Since there are infinitely many quasiconformal maps relating two given shapes,

we need to find a canonical choice for such map to eliminate any ambiguity. In our

approach, we use gradient flows to obtain a homotopy of quasiconformal mappings and

simultaneously computing their maximal infinitesimal stretching and rotation at each

time. As the flow decreases the mean distortion of the map, plausibly it may be used to

find a canonical minimizer for such a functional. Once this is accomplished, we finally

use the quasiconformal map with the smallest measure of shear as the optimal map,

and we take the corresponding distortion as a measure of the difference between the

two planar shapes. This approach is based on work of Capogna and Raich [Capogna

and Raich, 2012], where the short time existence of the flow is proved. Since there are

no results on the long time behavior we resort to numerical experiment to gain better

insight on this problem.

There is a broad scientific literature on this problem. In particular, we were inspired

by a recent paper of Gareth Wyn Jones and L. Mahadevan. In Jones and Mahadevan’s

work [Jones and Mahadevan, 2013], they aim to find a quasiconformal map that varies

as little as possible in space and also minimizes an integrated squared-gradient of both

shear and distortion. In the absence of any rigorous existence result, they use numerical

experiments to analyze the problem.
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3 Preliminaries on Quasiconformal Mappings in Plane

In this section we introduce the elementary definitions and important facts of conformal

mappings and quasiconformal mappings. As most of our discussions are in complex

forms, some basic review of complex variables and functions are also covered. The

standard reference for this section includes [Ahlfors, 1953], [Ahlfors and Earle, 1966],

[Capogna, 2014], [Jeffrey, 2005], [Jones and Mahadevan, 2013], [Recktenwald, 2004], and

[Vuorinen, 1988].

3.1 Conformal Mappings

We shall start with the definition of conformal mappings in plane. The terminologies

and the complex notations introduced in this subsection will be frequently used through

this essay.

3.1.1 What is a Conformal Mapping in Plane

Definition 3.1. Let u : Ω → Ω′ be a homeomorphism, where Ω,Ω′ ⊂ R2 are two

domains in the plane. Suppose u(x, y) = (u1(x, y), u2(x, y)). We say u is conformal if

it satisfies the following conditions:

(1) u ∈ C1, i.e., all first order partial derivatives of u = (u1, u2) are

continuous in Ω.

(2) The Jacobian determinant of u is non-zero for all points in Ω, i.e.,

∀(x, y) ∈ D,

Ju(x, y) = det

[
∂u1

∂x
∂u1

∂y
∂u2

∂x
∂u2

∂y

]
(x, y) 6= 0.

(3) ∀(x, y) ∈ D,∀~h ∈ R2,

‖du(x, y)~h‖ = |du(x, y)|o ‖~h‖, (3.1)

where du is the Jacobian matrix of u.

Remark. The matrix norm in equation (3.1) is referring to the operator norm. For a

given 2× 2 matrix A, the corresponding operator norm |A|o is defined via

|A|o := sup
‖~v‖=1
~v∈R2

‖A~v‖.
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The somewhat more familiar matrix norm to most us is the Hilbert-Schmidt norm, which

is defined via

|A| :=

√√√√ 2∑
i,j=1

A2
ij .

The definitions of the two norms can directly extend to n-dimensional case.

Let’s see some specific examples of conformal mappings. A series of basic examples

in general Rn case can be found in [Vuorinen, 1988].

Example 3.1. Define u : R2 → R2 via u(x, y) = (3x, 3y). This is a stretching mapping

by a factor k > 0 (here, k = 3). For instance, the image of point (−1, 2) is point (−3, 6).

Figure 1: The image of a rectangle under the example stretching

Let’s verify that u is conformal.

1. Here, u1 = 3x and u2 = 3y. The first order partial derivatives are ∂xu
1 = 3, ∂yu

1 =

0, ∂xu
2 = 0 and ∂yu

2 = 3, all of which are continuous in R2.

2. From the first order partial derivatives that we have got above, it follows that the

Jacobian determinant

Ju = det

[
∂xu

1 ∂yu
1

∂xu
2 ∂yu

2

]
= det

[
3 0

0 3

]
= 9 6= 0.
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3. Let ~h = (h1, h2) ∈ R2 be given. Then

‖du(x, y)~h‖ =

∥∥∥∥∥
[

3 0

0 3

][
h1

h2

]∥∥∥∥∥ = 3

∥∥∥∥∥
[
h1

h2

]∥∥∥∥∥ = 3
√
h2

1 + h2
2 = 3‖~h‖,

and

|du(x, y)|o ‖~h‖ = sup
~v=(v1,v2)∈R2

‖~v‖=1

∥∥∥∥∥
[

3 0

0 3

][
v1

v2

]∥∥∥∥∥ ‖~h‖ = sup
~v=(v1,v2)∈R2

‖~v‖=1

3 ‖~v‖ ‖~h‖ = 3‖~h‖.

Therefore,

‖du(x, y)~h‖ = |du(x, y)|o ‖~h‖.

Hence, the stretching u with respect to factor k = 3 is a conformal mapping. Indeed,

every stretching on the plane is conformal.

Example 3.2. Define u : R2 → R2 via

u(x, y) =

[
cos(π3 ) − sin(π3 )

sin(π3 ) cos(π3 )

][
x

y

]
=

[
1
2 −

√
3

2√
3

2
1
2

][
x

y

]

This is a rotation mapping which rotates points counter-clockwise through an angle π
3

(radian) about the origin. For instance, the image of point (2, 0) is point (1,
√

3).

Figure 2: The image of a hexagon under the example rotation

Let’s verify that u is conformal.
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1. Here, u1 = 1
2(x −

√
3y) and u2 = 1

2(
√

3x + y). The first order partial derivatives

are ∂xu
1 = 1

2 , ∂yu
1 = −

√
3

2 , ∂xu
2 =

√
3

2 and ∂yu
2 = 1

2 , all of which are continuous

in R2.

2. From the first order partial derivatives that we have got above, it follows that the

Jacobian determinant

Ju = det

[
∂xu

1 ∂yu
1

∂xu
2 ∂yu

2

]
= det

[
1
2 −

√
3

2√
3

2
1
2

]
= 1 6= 0.

3. Let ~h = (h1, h2) ∈ R2 be given. Then

‖du(x, y)~h‖ =

∥∥∥∥∥
[

1
2 −

√
3

2√
3

2
1
2

][
h1

h2

]∥∥∥∥∥ =
1

2

∥∥∥∥∥
[
h1 −

√
3h2√

3h1 + h2

]∥∥∥∥∥ =
1

2

√
4h2

1 + 4h2
2 = ‖~h‖,

and

|du(x, y)|o ‖~h‖ = sup
~v=(v1,v2)∈R2

‖~v‖=1

∥∥∥∥∥
[

1
2 −

√
3

2√
3

2
1
2

][
v1

v2

]∥∥∥∥∥ ‖~h‖ = sup
~v=(v1,v2)∈R2

‖~v‖=1

‖~v‖ ‖~h‖ = ‖~h‖.

Therefore,

‖du(x, y)~h‖ = |du(x, y)|o ‖~h‖.

Hence, the counter-clockwise rotation u with respect to an angle π
3 about the origin is a

conformal mapping. Indeed, every rotation on the plane is conformal.

Before introducing more about conformal mappings, let us first review some algebra

facts, which will help us in subsequent proofs.

Lemma 3.1. Let A be an n × n matrix, and let ~v, ~w ∈ Rn be two vectors. Then we

have

〈A~v, ~w〉 = 〈~v,AT ~w〉,

where 〈·, ·〉 is the inner product.

Proof.

〈A~v, ~w〉 =

n∑
i=1

(A~v)i ~wi =

n∑
i=1

 n∑
j=1

Aij~vj

 ~wi =

n∑
i,j=1

Aij~vj ~wi =

n∑
j=1

~vj

(
n∑
i=1

Aij ~wi

)

=
n∑
j=1

~vj

(
n∑
i=1

ATji ~wi

)
=

n∑
j=1

~vj(A~w)j

= 〈~v,AT ~w〉.
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Lemma 3.2. Let A be an n× n symmetric matrix (i.e., A = AT ). Then

trace
(
AAT

)
= |A|2 = trace

(
ATA

)
.

Proof. Suppose A = (aij)n×n. Then

trace
(
AAT

)
= trace

( n∑
k=1

aikajk

)
n×n

 =

n∑
i,k=1

a2
ik = |A|2

Since |AT |2 = |A|2, then

trace
(
AAT

)
= trace

(
ATA

)
.

From the third condition of the definition of conformal homeomorphisms, ‖du~h‖ =

|du|o ‖~h‖, we do the following computations:

‖du~h‖2 = |du|2o ‖~h‖
2

〈du~h,du~h〉 = |du|2o 〈~h,~h〉

〈(du)Tdu~h,~h〉 = 〈|du|2o Id~h,~h〉

〈
[
(du)Tdu− |du|2o Id

]
~h,~h〉 = 0.

Since ~h ∈ R is arbitrary, we have that

(du)Tdu = |du|2o Id. (3.2)

Then we take determinants of both sides of equation (3.2) and get

det
(
(du)Tdu

)
= det

(
|du|2o Id

)
(det du)2 = |du|4o .

Thus, |du|2o = |det du| . Substituting for |du|2o in equation (3.2) gives us

(du)Tdu = |det du| Id. (3.3)

We conclude that, when u is conformal,
duTdu

| det du|
equals the 2× 2 identity matrix.
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3.1.2 Complex Variables and Functions

As we are talking about mapping in plane, alternatively, it is natural to use the complex

notations. Let’s first recall some facts about complex variables and functions.

A complex number in the Cartesian representation is generally written as z = x+ iy,

and the correspongding complex conjugate is defined as z = x− iy. Conversely, the real

part and the imaginary part of a complex number can be represented as x =
z + z

2
and

y =
z − z

2i
, respectively. In conclusion, if we are given an ordered pair (x, y) as the real

and imaginary parts of a complex number, we can find a unique pair (z, z), and vice

versa.

Consider two complex planes, z-plane and w-plane. Let w = f(z) = u(x, y)+iv(x, y)

be a function that assigns each point z = x + iy in the domain D on the z-plane to a

unique point w = u + iv on the w-plane. According to the one-to-one correspondence

between (x, y) and (z, z), we can describe the complex function as w = w(z, z) (for

convenience we still denote the function by w) and get the following partial derivatives:

∂w

∂z
=
∂u

∂x

∂x

∂z
+
∂u

∂y

∂y

∂z
+
∂v

∂x

∂x

∂z
+
∂v

∂y

∂y

∂z

=
1

2

∂u

∂x
+
−i
2i

∂u

∂y
+
i

2

∂v

∂x
+

i

2i

∂v

∂y

=
1

2
(ux − iuy + ivx + vy),

∂w

∂z
=

1

2
(ux + iuy + ivx − vy),

∂w

∂z
=

1

2
(ux − iuy − ivx − vy),

∂w

∂z
=

1

2
(ux + iuy − ivx + vy).

Definition 3.2. The system of the following two equations which involves the first order

partial derivatives of u(x, y) and v(x, y),

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

is called the Cauchy-Riemann equations.

Remark.
∂w

∂z
= 0 is an equivalent representation of the Cauchy-Riemann equations.



WPI MQP B’16 – D’17 9

Indeed, if
∂w

∂z
= 0, then both the real and imaginary parts of it are zeros, i.e., ux −

vy = 0 and uy +vx = 0. Conversely, if the Cauchy-Riemann equations are satisfied, then
∂w

∂z
= 0 + i0 = 0.

Definition 3.3. If f(z) is defined at z = z0 and in some open set containing z0 (which

is also called a neighborhood of z0), we say f is differentiable at z0 if the limit

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0

exists. We call f ′(z0) the derivative of f at z0.

Definition 3.4. If, for some domain Ω ⊂ C, f is differentiable at every point of Ω, then

f is said to be analytic or holomorphic in Ω.

After the review of complex variables and functions, we now introduce the following

two theorems, which are not only basic but also extremely important in complex analysis.

The detailed proofs and other related theorems and corollaries can be found in [Jeffrey, 2005].

Theorem 3.1. If the two real-valued functions u(x, y) and v(x, y) in f(x+iy) = u(x, y)+

iv(x, y) are both of C1 class in the domain Ω (which means that their first order partial

derivatives are continuous in Ω), and if the Cauchy-Riemann equations are satisfied,

then f is holomorphic in Ω.

Theorem 3.2. A holomorphic function w = f(z) is conformal at any point where

f ′(z) 6= 0. Conversely, every conformal mapping w : C→ C that has continuous partial

derivatives is holomorphic.

3.1.3 Local Properties under a Planar Mapping

In this small subsection we shall talk about properties of the image of an infinitesimally

small circle under a planar mapping. The reason why we are concerned about it is that

this image reflects local shear and distortion properties of the planar mapping. Although

this section is mainly talking about conformal mappings, here we shall broaden our scope

and start with a general planar mapping. The property of conformal mappings will be

included in the discussion of general mappings, and we shall see that conformality is a

rigid property which does not approve local shears.

Let’s start with dw, the infinitesimal change of w. If there is only a change in dx,

then dw = w(x+ dx, y)− w(x, y) = (w(x, y) + wx(x, y)dx)− w(x, y), and thus,

dw = wxdx.
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In general, for dw = w(x + dx, y + dy) − w(x, y), we add and subtract w(x, y + dy) at

the same time and do the similar computations to get

dw = wxdx+ wydy.

Likewise, when the mapping is represented by w = w(z, z), we have

dw = wzdz + wzdz.

We notice that dw is an affine mapping, and that∣∣∣∣|wz| − |wz|∣∣∣∣|dz| 6 |dw| 6 ∣∣∣∣|wz|+ |wz|∣∣∣∣|dz|.
An infinitesimally small circle on the complex plane can be described in the exponential

form dz = dreiθ. We want to know the image of the circle under the complex map

w : C→ C.
In the polar representation, dz = dre−iθ. If we set wz = |wz|eiα and wz = |wz|eiβ,

where |wz|, |wz| are the moduli, and α, β are the arguments of wz and wz, respectively,

then
dw = wzdz + wzdz

= |wz|eiαdreiθ + |wz|eiβdre−iθ

= dr(|wz|ei(α+θ) + |wz|ei(β−θ))

= drei(
α+β
2

)(|wz|ei[θ−
β−α
2

] + |wz|e−i[θ−
β−α
2

]).

For Aeiφ +Be−iφ, where A,B ∈ R and φ is a variable, we write it in the polar form

and get

Aeiφ +Be−iφ = A(cosφ+ i sinφ) +B(cosφ− i sinφ)

= (A+B) cosφ+ i(A−B) sinφ.

Let x := (A+B) cosφ, and also let y := (A−B) sinφ. Then we notice that

x2

(A+B)2
+

y2

(A−B)2
= 1,

which represents an ellipse (ifB 6= 0) or a circle (ifB = 0). Since drei(
α+β
2

)(|wz|ei[θ−
β−α
2

]+

|wz|e−i[θ−
β−α
2

]) is of the same format of expression as Aeiφ + Be−iφ, we infer that, if

|wz| 6= 0, the image of the circle dz = dreiθ under the complex map w : C → C is an

ellipse such that
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1. its long axis is at an angle
α+ β

2
to the horizontal, and

2.
|wz|+ |wz|
|wz| − |wz|

is its ratio of long axis to short axis.

Figure 3: Mapping an infinitesimal circle onto an ellipse

Denote this ratio of axes by

Dw :=
|wz|+ |wz|
|wz| − |wz|

.

Remark. Dw = 1 if and only if wz = 0.

Indeed, if Dw = 1 (which means that the image is still a circle), then we have that

wz = 0, the Cauchy-Riemann equations. Conversely, if wz = 0, then Dw = 1.

Moreover, we infer from the Cauchy-Riemann equations, theorems 3.1, and theorem

3.2 that, for conformal mappings, infinitesimal circles are to be mapped to circles, and

that Dw = 1.

The maximal dilatation on Ω ⊂ C is given by

K := sup
Ω
Dw = sup

Ω

|wz|+ |wz|
|wz| − |wz|

,

and we will use it as the dilatation of a diffeomorphism when we solve the Grötzsch

Problem.
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3.1.4 Composite Functions

In this subsection we shall discuss about the composition of two complex functions and

their derivatives. In addition, we shall prove that two

Let Ω ⊂ C be open, and let f : Ω → f(Ω) and g : f(Ω) → C be two complex

functions. Suppose that f1 and f2 are the coordinate functions of f , and that g1 and

g2 are the coordinate functions of g.

From the previous discussion about complex functions , we know that

fz =
1

2

[
(f1
x + f2

y ) + i(f2
x − f1

y )
]
,

fz =
1

2

[
(f1
x − f2

y ) + i(f1
y + f2

x)
]
,

fz =
1

2

[
(f1
x − f2

y )− i(f1
y + f2

x)
]
,

fz =
1

2

[
(f1
x + f2

y )− i(f2
x − f1

y )
]
,

from which we observe that
fz = (fz),

fz = (fz).
(3.4)

Using z and ζ to denote the variables on Ω and f(Ω), respectively, we obtain the

following derivatives for the composition of g and f by the Chain Rule:(g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)fz,

(g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)fz.

Substituting the results from equations (3.4) into the expressions of the two partial

derivatives gives us (g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)(fz),

(g ◦ f)z = (gζ ◦ f)fz + (gζ ◦ f)(fz).
(3.5)

The Jacobian determinant of f is

Jf = det

[
fz fz

fz fz

]
= det

[
fz fz

(fz) (fz)

]
= |fz|2 − |fz|2.

Solving for gζ ◦ f and gζ ◦ f from the system of equations (3.5) gives
gζ ◦ f =

1

Jf

[
(g ◦ f)z(fz)− (g ◦ f)z(fz)

]
,

gζ ◦ f =
1

Jf
[(g ◦ f)zfz − (g ◦ f)zfz] .
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Now if g = f−1, then g ◦ f = z, and thus g ◦ fz = 1 and g ◦ fz = 0. Hence,
(f−1)ζ ◦ f =

(fz)

Jf
,

(f−1)ζ ◦ f = − fz
Jf
.

3.2 Statement of Riemann Mapping Theorem

One formulation of the famous Riemann Mapping Theorem is stated as follows. A

complete investigation can be found in the first section of Chapter 6 in [Ahlfors, 1953].

Theorem 3.3 (Riemann Mapping Theorem). Let Ω be a simply connected region in

plane, and letD be the unit disk. Fix ω1, ω2, ω3 ∈ ∂Ω and d1, d2, d3 ∈ ∂D, counterclockwise

oriented.

(1) There is a conformal mapping from Ω to D.

(2) There is a unique conformal mapping f : Ω→ D that satisfies f(ωi) = di, i = 1, 2, 3.

Remark. The formal definition of simply connectedness requires background in fundamental

group and group theory. We shall not precisely stating it here but instead give a general

idea. Roughly speaking, a space X is said to be simply connected if any closed curve in

X can shrink into a single point in X.

3.3 Grötzsch Problem

Consider two rectangles, R and R′, with counterclockwise prescribed vertices O,A,B,C

and O′, A′, B′, C ′, respectively. Let the vertices O and O′ coincide with the origins, and

also let the sides of R and R′ parallel to the corresponding axes, as indicated in Figure

4. Suppose that |OA| = a, |OC| = b, |O′A′| = a′, and |O′C ′| = b′, where | · | denotes the

length of a line segment, such that
a

b
6= a′

b′
; in other words, R and R′ are not similar.

As we previously discussed about conformal mappings, we naturally ask “Can there

be a conformal diffeomorphism from R to R′ that maps edges to edges, respectively?”

We will find the answer in the end of this section.

The very instuitive example of diffeomorphisms from R to R′ that satisfies the above

conditions is the affine mapping

u =
a′

a
x and v =

b′

b
y.
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Figure 4: Two rectengles R and R′

Using w = u+ iv, x =
z + z

2
, and y =

z − z
2i

, we can write the mapping differently:

w =
1

2

[(
a′

a
+
b′

b

)
z +

(
a′

a
− b′

b

)
z

]
.

Recall that the dilatation of a mapping is

K = sup
Ω

|wz|+ |wz|
|wz| − |wz|

.

Direct calculations give us the dilatation of the affine mapping as follows:

K =


a′b

b′a
if

a

b
<
a′

b′

ab′

ba′
if

a′

b′
<
a

b
.

(3.6)

Note that the dilatation of such a affine mapping is greater than 1, as long as the

two rectangles are not similar.

Theorem 3.4. The dilatation of every possible diffeomorphism from R to R′ that maps

edges to edges is greater than or equal to both
a′b

b′a
and

ab′

ba′
.

Said differently, the dilatation of the affine mapping, (3.6), is the smallest among the

dilatations of all possible competitors.

Proof. Let w : R → R′ be a diffeomorphism that maps edged to edges. Let w(x, y) =

u(x, y) + iv(x, y).
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We have known that
∂w

∂z
=

1

2
(ux − iuy + ivx + vy),

∂w

∂z
=

1

2
(ux + iuy + ivx − vy), and

thus,

wz + wz = ux + ivx, (3.7)

|wz|2 − |wz|2 = uxvy − uyvx =
ux uy

vx vy
= Jw.

Since u(0, y) = 0, u(a, y) = a′, we integrate u(x,y) along the boundary of R and get∫
∂R
u(x, y) dy = a′b.

By Stokes’ theorem, we have that∫
∂R
u(x, y) dy =

∫
R
∂xu(x, y) dxdy.

Since ux is the real part of wz + wz, then

a′b =

∫
R

Re(wz + wz) dxdy.

If we let p, q ∈ C, then Re(p + q) = Re(p) + Re(q) 6
√

Re(p)2 +
√

Re(q)2 6√
Re(p)2 + Im(p)2 +

√
Re(q)2 + Im(q)2 = |p|+ |q|. Therefore,

a′b 6
∫
R
|wz|+ |wz| dxdy. (3.8)

By Hölder’s Inequality, we have that

a′b 6
∫
R

1 · (|wz|+ |wz|) dxdy

6

(∫
R

12 dxdy

) 1
2
(∫

R
(|wz|+ |wz|)2 dxdy

) 1
2

= [Area(R)]
1
2

(∫
R

(|wz|+ |wz|)2 dxdy

) 1
2

.

(3.9)

Let K denote the dilatation of w, and then K = sup
R

|wz|+ |wz|
|wz| − |wz|

. Thus,

|wz|+ |wz| =
|wz|+ |wz|
|wz| − |wz|

· (|wz| − |wz|)

6 K (|wz| − |wz|).

Now, if we times (|wz|+ |wz|) on both sides of |wz|+ |wz| 6 K (|wz| − |wz|), we get

(|wz|+ |wz|)2 6 K
(
|wz|2 − |wz|2

)
= K (Jw).
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Hence, we get

a′b 6
√

Area(R)

√∫
R
K (Jw) dxdy

=
√
K ·Area(R)

√∫
R

1 · (Jw) dxdy

=
√
K ·Area(R)

√∫
R′

1 dxdy

=
√
K ·Area(R) ·Area(R′)

=
√
K · ab · a′b′

(3.10)

and thus, (a′b)2 6 K · ab · a′b′, which gives

K >
a′b

b′a
.

If we revert the role of z and w, we shall obtain the other inequality

K >
ab′

ba′
.

Therefore, the affine mapping has the minimal dilatation among all diffeomorphisms

from R to R′ that map edges to edges.

Now we ask another natural question: “Is there any other diffeomorphism, satisfying

all the conditions, that share the same dilatation as the affine mapping?” The answer is

given by the following theorem.

Theorem 3.5. If a diffeomorphism from R to R′, mapping edges to edges, has a

dilatation equal to (3.6), then it is the affine mapping. In other words, the affine mapping

is the only such map that has the dilatation in (3.6).

Proof. Based on the inequalities we proved in Theorem 3.4, we now need to determine

when each of these equalities holds.

There are three inequalities involved in the proof above; they are (3.8), (3.9), and

(3.10). Let’s discuss the condition for equality of each case.

First, for (3.8) to attain equality, we must have

Re(wz + wz) = |wz|+ |wz|. (3.11)
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Since this equality involves Re(wz+wz) = Re(wz)+Re(wz) =
√

Re(wz)2 +
√

Re(wz)2 =√
Re(wz)2 + Im(wz)2 +

√
Re(wz)2 + Im(wz)2 = |wz|+ |wz|, we can conclude that

Im(wz) = 0 and Im(wz) = 0. (3.12)

Recall that wz =
1

2
(ux − iuy + ivx + vy) and wz =

1

2
(ux + iuy + ivx − vy). Then (3.12)

shows that wz = 1
2(ux + vy)

wz = 1
2(ux − vy)

(3.13)

and uy − vx = 0

uy + vx = 0.
(3.14)

The system (3.14) shows that uy = 0 and vx = 0.

To have equality in (3.9), we need that

|wz|+ |wz| = constant inR. (3.15)

Combining the results from (3.11) and (3.15) gives us that

Re(wz + wz) = constant inR. (3.16)

We have known in (3.7) that

wz + wz = ux + ivx,

and therefore, (3.16) is equivalent to

ux = constant inR. (3.17)

Moreover, since vx = 0, we actually have

wz + wz = ux.

Hence,

|wz|+ |wz| = Re(wz + wz) = ux. (3.18)

Last, to obtain equality in (3.10), we need

(|wz|+ |wz|)2 = K
(
|wz|2 − |wz|2

)
.
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Canceling (|wz|+ |wz|) from both sides gives us that

|wz|+ |wz| = K (|wz| − |wz|) .

By (3.15), we directly have K (|wz| − |wz|) = constant inR, and as a result,

|wz| − |wz| = constant inR. (3.19)

Then (3.13), (3.17), and (3.19) together shows that

vy = constant inR. (3.20)

Using what we have obtained, we can deduce from the equation (|wz| + |wz|)2 =

K
(
|wz|2 − |wz|2

)
that

|wz|2 − |wz|2 = K−1(|wz|+ |wz|)2

⇒ 1

4
(ux + vy)

2 − 1

4
(ux − vy)2 = K−1(ux)2

⇒ uxvy = K−1(ux)2

⇒ ux = Kvy.

All together, we have that 
uy = 0, ux = constant in R

vx = 0, vy = constant in R

ux = Kvy.

Therefore, w must have the form

w = αx+ iβy,

where α and β are constants that match the values for the affine mapping.

Now we can imply that there is no conformal diffeomorphism from R to R′ that maps

edges to edges, respectively. Indeed, the conformality would require the dilatation to be

equal to 1, which is less than the dilation of the affine mapping – contradicting the fact

that stated in Theorem 3.4.
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3.4 Quasiconformal Mappings

The conformality of conformal mappings is a quite stringent property; though it is

desired, in most cases, we cannot find a mapping to meet the requirements. For

example, we have seen that there is no conformal diffeomorphism between non-similar

rectangles that maps edges to edges, respectively. In similar cases where conformality

is not achievable, we aim at finding a mapping that is, in some sense, as conformal as

possible. Thus, we are going to talk about quasiconformal mappings and also make it

more precise about how we quantify “how far” a quasiconformal mapping is from being

conformal.

Let’s first recall our previous discussion in section 3.1.2. If we have an infinitesimally

small circle dz = dreiθ, then a complex mapping w : C→ C will map it into an ellipse

dw = drei(
α+β
2

)(|wz|ei[θ−
β−α
2

] + |wz|e−i[θ−
β−α
2

]),

whose ratio of long axis to short axis is

Dw =
|wz|+ |wz|
|wz| − |wz|

.

Moreover, we have seen that for conformal mappings, the ratio is 1 and the image is still

a circle.

In this section we are going to talk about another special case in which the ratio Dw

is bounded.

3.4.1 What is a Quasiconformal Mapping in Plane

Let’s first introduce two terminologies.

We set

µ :=
wz
wz

(3.21)

and call it the complex dilatation, or the first complex dilatation. From the modulus

of µ, |µ| = |wz|
|wz|

, we notice that

1 + |µ| = |wz|+ |wz|
|wz|

,

1− |µ| = |wz| − |wz|
|wz|

,

which gives that
1 + |µ|
1− |µ|

=
|wz|+ |wz|
|wz| − |wz|

.
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Hence, we obtain a new representation of Dw, which is

Dw =
1 + |µ|
1− |µ|

.

Next, we set

ν :=
wz

(wz)
(3.22)

and call it the second complex dilatation. Since |wz| = |wz|, then

|µ| = |ν|.

Definition 3.5. Let Ω ⊂ C be open, and let w : Ω→ C be a diffeomorphism. Then w

is said to be quasiconformal if

Dw =
|wz|+ |wz|
|wz| − |wz|

is bounded in Ω. Furthermore, if there exists a specific K ∈ R such that Dw 6 K, then

w is said to be K-quasiconformal .

Remark. For a K-quasiconformal mapping, the induced condition for |µ| and |ν| is that

|µ| = |ν| 6 K−1
K+1 < 1.

Therefore, if the dilatation of the mapping w,

Kw := sup
Ω
Dw = sup

Ω

|wz|+ |wz|
|wz| − |wz|

,

exists, then w is Kw-quasiconformal.

Remark. A 1-quasiconformal mapping is conformal.

Example 3.3. Let w(x, y) := 9x+ iy. In complex notation (using w for convenience),

one has that

w(z, z) = 9(
z + z

2
) + i(

z − z
2i

) = 5z + 4z.

Thus,

Dw =
|wz|+ |wz|
|wz| − |wz|

=
5 + 4

5− 4
= 9.

Therefore, w is a quasiconformal mapping. Furthermore, it is 9-quasiconformal.

Now with the definition of quasiconformal mappings, we return to the Grötzsch

Problem and conclude that there exists a K-quasiconformal mapping from R to R′ if

and only if
1

K
6
a′b

b′a
6 K.

Since this chain of inequalities is symmetric, we derive from it that the inverse of a

quasiconformal mapping is still quasiconformal.
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3.4.2 The Geometric Definition

We notice that in Definition 3.5 of quasiconformal mappings, we pre-require that the

mapping w to be a diffeomorphism. In fact, this condition of differentiability is not

natural, and sometimes, not necessary. In other words, this definition is not broad

enough to include various examples that are useful in mathematics; we shall remove

this condition of differentiability and give an equivalent definition of quasiconformal

mappings.

Definition 3.6. Let Ω ⊂ C be open, and let w : Ω → C be a homeomorphism. Let

z ∈ Ω be a point, and let r ∈ R be positive. Set

L(z, r) := sup
z′∈Ω

‖z−z′‖6r

‖w(z)− w(z′)‖,

and set

l(z, r) := inf
z′∈Ω

‖z−z′‖>r

‖w(z)− w(z′)‖.

Define H(z, w) via

H(z, w) := lim sup
r→0

L(z, r)

l(z, r)
.

We say w is quasiconformal if there exists a real number H > 1 such that

H(z, w) 6 H <∞

for all z ∈ C.

3.4.3 Beltrami and Conjugate Beltrami Equations

From (3.21) and (3.22), the definitions of the first complex dilatation and the second

complex dilatation of w, we obtain the following partial differential equations for w:

∂w

∂z
= µ(z, z)

(
∂w

∂z

)
,

∂w

∂z
= ν(z, z)

(
∂w

∂z

)
,

which are called the Beltrami equation and the Conjugate Beltrami equation, respectively.
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Let κ := Re(ν), the real part of ν, and let λ := Im(ν), the imaginary part of ν. Using

w = u+ iv, z = x+ iy, and ν = κ+ iλ, we obtain

∂w

∂z
=

1

2
(ux + iuy + ivx − vy)

=
1

2

[(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+
∂v

∂x

)]
,

∂w

∂z
=

1

2
(ux − iuy + ivx + vy)

=
1

2

[(
∂u

∂x
+
∂v

∂y

)
− i
(
∂u

∂y
− ∂v

∂x

)]
,(

∂w

∂z

)
=

1

2

[(
∂u

∂x
+
∂v

∂y

)
+ i

(
∂u

∂y
− ∂v

∂x

)]
.

Then the Conjugate Beltrami equation

∂w

∂z
= ν(z, z)

(
∂w

∂z

)
can be expressed as

1

2

[(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+
∂v

∂x

)]
= (κ+ iλ)

1

2

[(
∂u

∂x
+
∂v

∂y

)
+ i

(
∂u

∂y
− ∂v

∂x

)]
.

Cancelling
1

2
from both sides gives[(

∂u

∂x
− ∂v

∂y

)
+ i

(
∂u

∂y
+
∂v

∂x

)]
= (κ+ iλ)

[(
∂u

∂x
+
∂v

∂y

)
+ i

(
∂u

∂y
− ∂v

∂x

)]
. (3.23)

The real part of the right hand side of equation (3.23) is

κ

(
∂u

∂x
+
∂v

∂y

)
− λ

(
∂u

∂y
− ∂v

∂x

)
,

while the imaginary part of the right hand side is

λ

(
∂u

∂x
+
∂v

∂y

)
+ κ

(
∂u

∂y
− ∂v

∂x

)
.

Let them equal the two corresponding parts of the left hand side of equation (3.23), and

we get a system of two equations
(1 + κ)

∂v

∂y
+ λ

(
−∂u
∂y

)
= (1− κ)

∂u

∂x
− λ∂v

∂x
,

λ
∂v

∂y
+ (1− k)

(
−∂u
∂y

)
= −λ∂u

∂x
+ (1 + κ)

∂v

∂x
.



WPI MQP B’16 – D’17 23

Solve for
∂v

∂y
and

(
−∂u
∂y

)
to get


∂v

∂y
=

[(κ− 1)2 + λ2]
(
∂u
∂x

)
− 2λ

(
∂v
∂x

)
1− (κ2 + λ2)

,(
−∂u
∂y

)
=
−2λ

(
∂u
∂x

)
+ [(κ+ 1)2 + λ2]

(
∂v
∂x

)
1− (κ2 + λ2)

.

Therefore, we have rewritten the Conjugate Beltrami equation as a system of partial

differential equations
∂v

∂y

−∂u
∂y

 =


(κ− 1)2 + λ2

1− (κ2 + λ2)

−2λ

1− (κ2 + λ2)

−2λ

1− (κ2 + λ2)

(κ+ 1)2 + λ2

1− (κ2 + λ2)



∂u

∂x
∂v

∂x

 .
Now if we set

A :=
(κ− 1)2 + λ2

1− (κ2 + λ2)
,

B :=
−2λ

1− (κ2 + λ2)
,

C :=
(κ+ 1)2 + λ2

1− (κ2 + λ2)
,

we can rewrite the system of equations in a more concise form:
∂v

∂y

−∂u
∂y

 =

[
A B

B C

]
∂u

∂x
∂v

∂x

 . (3.24)

We shall return to this form in next chapter.
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4 Methods in Jones-Mahadevan Paper

In this chapter, we shall summarize the work of Jones and Mahadevan in their recent

paper [Jones and Mahadevan, 2013] which inspires our work in the next chapter. Specifically,

we shall explain their approach to the problem and extend the mathematical ideas

underlying the core part.

4.1 Problem Description

In [Jones and Mahadevan, 2013], the authors want to quantify the difference between

two planar shapes (domains) with finitely prescribed matching points. To this end, they

construct quasiconformal mappings between two planar shapes, preserving the landmark

points. Additionally, boundary points are supposed to remain on the boundary of the

target shape (not necessarily fixed). In this way, the parameter field underlying an

appropriate quasiconformal manifests the difference as desired.

Let’s translate the problem into mathematical language (notations that have been

introduced in the preliminary chapter are continued to be used here. )

Given two planar shapes, Ω0 and Ω1, together with a finite number of landmark

points, say {(x̂i, ŷi)}Ni=1 for some N ∈ N, in the domain shape Ω0, and correspondingly,

{(ûi, v̂i)}Ni=1 in the target shape Ω1, a quasiconformal mapping w = (u, v) : Ω0 → Ω1

that preserves the matching of all the landmark points is desired. Further, since solving

the conjugate Beltrami equation,

∂w

∂z
= ν(z, z)

(
∂w

∂z

)
,

can give a quasiconformal mapping, with κ := Re(ν) and λ := Im(ν), a distribution of

κ(x, y) and λ(x, y) satisfying ûi = u(x̂i, ŷi;κ, λ; ∂Ω1)

v̂i = v(x̂i, ŷi;κ, λ; ∂Ω1)

for all i ∈ {1, 2, ..., N} is desired.

4.2 Optimization Schemes

Theoretically, the continuity of κ(x, y) and λ(x, y) together with the finite number of

constrains will produce infinitely many eligible quasiconformal mappings. However,
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most of them do not reflect the difference between the two regions correctly. So, among

all possibles mappings, the optimal one is desired. A natural question is: what is the

criterion to select the optimal mapping? The construction of a criterion takes time

and effort. We shall describe the proposals tested in [Jones and Mahadevan, 2013] and

explain the related mathematical idea.

Recall that if |wz| 6= 0, the image of the circle dz = dreiθ under a complex map

w : C→ C is an ellipse with

Dw :=
|wz|+ |wz|
|wz| − |wz|

.

as its ratio of long axis to short axis. With the previously defined second complex

dilatation, ν :=
wz

(wz)
, the ratio can also be expressed as

Dw =
1 + |ν|
1− |ν|

.

To read the differences between the shapes of two domains from a collection of

possible quasiconformal mappings, the extreme one with minimum maximum degree

of local shear is concerned. Thus, the first proposal of Jones and Mahadevan is that

the maximum value of |ν| on Ω0 be minimized. However, in their trials, perturbations

of κ and λ (the real and imaginary parts of ν, respectively) result in an unchanged

maximum value of |ν|, and thus, the scheme fails to find a direction towards a solution.

Next, the proposal to minimize [
∫

Ω0
|λ|p dS]

1
p is experimented numerically. Considering

the relation between the Lp norm and the L∞ norm, when p goes to infinity, the value will

approach the maximum value of |ν|. New issues appear in this trial: the optimal solution

has special values of |ν| near landmark points, whereas positions of these constraints are

supposed to be arbitrary. After they minimize the gradient of |ν| =
∣∣∣√κ2 + λ2

∣∣∣, they

obtain an optimal solution with constant |ν| across Ω0. As the local shear property of a

quasiconformal mapping can be revealed in the corresponding ν, the optimal mapping

will have a constant local shear. The problem with that scheme is that the angle of

local shear cannot be controlled. To avoid drastic variation of the angle of local shear,

Jones and Mahadevan turn to minimize the gradients of both κ and λ. So, they set the

objective function

I =

∫
Ω0

(|∇κ|2 + |∇λ|2) dS.

In this case, a pair of functions (κ, λ) that minimizes the objective function is desired.

Also, the matching of landmark points is required in the process. Then, with the pair



WPI MQP B’16 – D’17 26

(κ, λ), the optimal mapping can be solved from the conjugate Beltrami equation, wz =

ν(z, z)(wz). This is the finally settled scheme.

4.3 Variational Principle

The last scheme introduce above is theoretically feasible. However, deriving a quasiconformal

mapping from a conjugate Beltrami equation is non-trivial. A further method to compute

a solution is needed in current step. We shall discuss about it in this section. Besides the

work of Jones and Mahadevan, the standard reference here also includes [Garabedian, 1970].

In the subsection 3.4.3, we have converted the conjugate Beltrami equation,

∂w

∂z
= ν(z, z)

(
∂w

∂z

)
,

into a system of partial differential equations as follows:
∂v

∂y

−∂u
∂y

 =

[
A B

B C

]
∂u

∂x
∂v

∂x

 , (4.1)

where 

A =
(κ− 1)2 + λ2

1− (κ2 + λ2)
,

B =
−2λ

1− (κ2 + λ2)
,

C =
(κ+ 1)2 + λ2

1− (κ2 + λ2)
.

Based on that, a functional is introduced in Jones-Mahadevan paper as follows:

F [u, v] :=
1

2

∫
Ω0

(
A|∇u|2 + 2B∇u · ∇v + C|∇v|2

)
dS. (4.2)

In the corresponding appendix of [Jones and Mahadevan, 2013], it is proved that if

a homeomorphism w = (u, v) : Ω0 → Ω1 minimizes F in (4.2), then it is also a solution

to the system of equations in (4.1). Therefore, with a known value of second complex

dilatation, ν = κ+iλ, if we can find the minimizer function of F , then we simultaneously

derive a quasiconformal mapping from a conjugate Beltrami equation.

Let’s consider the minimization of the functional F through variational method.

Suppose a minimizer exists. Define a one-variable function f via

f(s) := F [u+ sũ, v + sṽ],
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where w̃ := (ũ, ṽ) is an admissible test mapping from Ω0 to Ω1. If (u, v) is a minimizer

among all competitors (i.e., possible homeomorphisms from Ω0 to Ω1), then

F [u, v] 6 F [u+ sũ, v + sṽ], ∀s,

same as

f(0) 6 f(s), ∀s.

Hence we must have

0 = f ′(0) = lim
s→0

f(s)− f(0)

s

= lim
s→0

F [u+ sũ, v + sṽ]−F [u, v]

s
.

As F [u, v] = 1
2

∫
Ω0

(
A|∇u|2 + 2B∇u · ∇v + C|∇v|2

)
dS, one shall have

0 =
d

ds

∫
Ω0

[A(∇u+ s∇ũ) · (∇u+ s∇ũ) + 2B(∇u+ s∇ũ) · (∇v + s∇ṽ)

+ C(∇v + s∇ṽ) · (∇v + s∇ṽ)]

∣∣∣∣
s=0

dS

=

∫
Ω0

d

ds
[A(∇u+ s∇ũ) · (∇u+ s∇ũ) + 2B(∇u+ s∇ũ) · (∇v + s∇ṽ)

+ C(∇v + s∇ṽ) · (∇v + s∇ṽ)]

∣∣∣∣
s=0

dS

=

∫
Ω0

[A∇ũ · (∇u+ s∇ũ) +A(∇u+ s∇ũ) · ∇ũ

+ 2B∇ũ · (∇v + s∇ṽ) + 2B(∇u+ s∇ũ) · ∇ṽ

+ C∇ṽ · (∇v + s∇ṽ) + C(∇v + s∇ṽ) · ∇ṽ]

∣∣∣∣
s=0

dS

s=0
=

∫
Ω0

[2A∇ũ · ∇u+ 2B∇ũ · ∇v + 2B∇ṽ · ∇u+ 2C∇ṽ · ∇v] dS

= 2

∫
Ω0

[∇ũ · (A∇u+B∇v) +∇ṽ · (B∇u+ C∇v)] dS

So, if (u, v) is a minimizer of F , then for every possible admissible test mapping (ũ, ṽ) :

Ω0 → Ω1 that is not independent at the boundary, one has that∫
Ω0

[∇ũ · (A∇u+B∇v) +∇ṽ · (B∇u+ C∇v)] dS = 0.

Let

δF :=

∫
Ω0

[∇ũ · (A∇u+B∇v) +∇ṽ · (B∇u+ C∇v)] dS.
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Then, in Jones and Mahadevan’s method, a minimizer w = (u, v) is found by setting

δF = 0.

In trial changes, with a guess of ν = κ+ iλ, a series of perturbations of κ and λ are

made in order to minimize

I =

∫
Ω0

(
|∇κ|2 + |∇λ|2

)
dS

with the constraints that the solution of each corresponding conjugate Beltrami equation,

w = (u, v), which is solved from

δF = 0,

satisfies that

w(x̂i, ŷi) = (ûi, v̂i), i = 1, ..., N.

4.4 Numerical Implementation

Numerically, the scheme is implemented through a finite-element method.

The first step is to introduce a triangulation of the domain Ω0. Suppose there are

NI nodes in the interior and NB nodes on the boundary. In addition, suppose the image

of the NI interior vertices under w = (u, v) are indexed as

{(u1, v1), (u2, v2), ..., (uNI , vNI )}.

For boundary points, we first parametrize the boundary of Ω1 by uB : [0, 2π] → Ω1,

and then for each point j of the NB nodes on ∂Ω0 (j = 1, 2, ..., NB), give it a specific

value θj ∈ [0, 2π] of the parametrizing variable. After that, suppose the image of the

NB boundary vertices under w = (u, v) are indexed as

{(uB(θ1), vB(θ1)), (uB(θ2), vB(θ2)), ..., (uB(θNB ), vB(θNB ))}.

Let {φi(x, y)}NIi=1 and {φBj(x, y)}NBj=1 be two collections piecewise affine basis functions.

That is, for each interior point i, φi is affine on its corresponding triangles such that

φi(i) = 1 and φi(k) = 0 for k 6= i; each φBj has the same property with respect to

boundary nodes. If the triangulation mesh size is h, then the corresponding discretized
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expressions of the mapping are

uh(x, y) :=

NI∑
i=1

uiφi(x, y) +

NB∑
j=1

uB(θj)φBj(x, y),

vh(x, y) :=

NI∑
i=1

viφi(x, y) +

NB∑
j=1

vB(θj)φBj(x, y).

Likewise, discretize κ and λ by

κh(x, y) :=

NI+NB∑
t=1

κtφt(x, y)

λh(x, y) :=

NI+NB∑
t=1

λtφt(x, y).

According to the discretization of (u, v), the admissible test mapping (ũ, ṽ) mentioned

in previous is obtained by making perturbations to the coefficients {ui}NIi=1, {vi}NIi=1, and

{θj}NBj=1, and thus,

ũh =

NI∑
i=1

ũiφi(x, y) +

NB∑
j=1

θ̃ju
′
B(θj)φBj(x, y),

ṽh =

NI∑
i=1

ṽiφi(x, y) +

NB∑
j=1

θ̃jv
′
B(θj)φBj(x, y).

Recall that the goal is to find the minimizer of the discretized

Ĩ =

∫
Ω0

(
|∇κh|2 + |∇λh|2

)
dS

with the constraints that the solution of each corresponding conjugate Beltrami equation,

w = (u, v), which is solved from

δF = 0,

satisfies that

w(x̂i, ŷi) = (ûi, v̂i), i = 1, ..., N.

Considering the expression of δF ,

δF =

∫
Ω0

[∇ũ · (A∇u+B∇v) +∇ṽ · (B∇u+ C∇v)] dS = 0,
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we first do some necessary calculations with respect to the discretized terms as follows:

∇uh =

NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj

∇vh =

NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

∇ũh =

NI∑
i=1

ũi∇φi +

NB∑
j=1

θ̃ju
′
B(θj)∇φBj

∇ṽh =

NI∑
i=1

ṽi∇φi +

NB∑
j=1

θ̃jv
′
B(θj)∇φBj

Now we can obtain that∫
Ω0

[
∇ũh · (A∇uh +B∇vh)

]
dS

=

∫
Ω0

(
NI∑
m=1

ũm∇φm +

NB∑
n=1

θ̃nu
′
B(θn)∇φBn

)A
 NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj


+ B

 NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

 dS
=

∫
Ω0

(
NI∑
m=1

ũm∇φm +

NB∑
n=1

θ̃nu
′
B(θn)∇φBn

)[
∇φi

(
A

NI∑
i=1

ui +B

NI∑
i=1

vi

)
dS

+ ∇φBj

A NB∑
j=1

uB(θj) +B

NB∑
j=1

vB(θj)

 dS
=

∫
Ω0

(
NI∑
m=1

ũm∇φm +

NB∑
n=1

θ̃nu
′
B(θn)∇φBn

)[
NI∑
i=1

(Aui +Bvi)∇φi

+

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS
=

NI∑
m=1

ũm

∫
Ω0

∇φm

 NI∑
i=1

(Aui +Bvi)∇φi +

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS
+

NB∑
n=1

θ̃n

∫
Ω0

u′B(θn)∇φBn

 NI∑
i=1

(Aui +Bvi)∇φi +

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS.
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Likewise,∫
Ω0

[
∇ṽh · (B∇uh + C∇vh)

]
dS

=

NI∑
m=1

ṽm

∫
Ω0

∇φm

 NI∑
i=1

(Bui + Cvi)∇φi +

NB∑
j=1

[BuB(θj) + CvB(θj)]∇φBj

 dS
+

NB∑
n=1

θ̃n

∫
Ω0

v′B(θn)∇φBn

 NI∑
i=1

(Bui + Cvi)∇φi +

NB∑
j=1

[BuB(θj) + CvB(θj)]∇φBj

 dS
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Combine them together to get the discretized counterpart of δF :

δFh =

∫
Ω0

[
∇ũh · (A∇uh +B∇vh) +∇ṽh · (B∇uh + C∇vh)

]
dS

=

NI∑
m=1

ũm

∫
Ω0

∇φm

 NI∑
i=1

(Aui +Bvi)∇φi +

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS
+

NI∑
m=1

ṽm

∫
Ω0

∇φm

 NI∑
i=1

(Bui + Cvi)∇φi +

NB∑
j=1

[BuB(θj) + CvB(θj)]∇φBj

 dS
+

NB∑
n=1

θ̃n

∫
Ω0

∇φBn

Au′B(θn)

 NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj


+ Bu′B(θn)

 NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

 dS
+

NB∑
n=1

θ̃n

∫
Ω0

∇φBn

Bv′B(θn)

 NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj


+ Cv′B(θn)

 NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

 dS
=

NI∑
m=1

ũm

∫
Ω0

∇φm

 NI∑
i=1

(Aui +Bvi)∇φi +

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS
+

NI∑
m=1

ṽm

∫
Ω0

∇φm

 NI∑
i=1

(Bui + Cvi)∇φi +

NB∑
j=1

[BuB(θj) + CvB(θj)]∇φBj

 dS
+

NB∑
n=1

θ̃n

∫
Ω0

[Au′B(θn) +Bv′B(θn)]∇φBn

 NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj


+ [Bu′B(θn) + Cv′B(θn)]∇φBn

 NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

 dS.
If for each m ∈ {1, 2, ..., NI} and n ∈ {1, 2, ..., NB} we set

S1
m :=

∫
Ω0

∇φm

 NI∑
i=1

(Aui +Bvi)∇φi +

NB∑
j=1

[AuB(θj) +BvB(θj)]∇φBj

 dS,
S2
m :=

∫
Ω0

∇φm

 NI∑
i=1

(Bui + Cvi)∇φi +

NB∑
j=1

[BuB(θj) + CvB(θj)]∇φBj

 dS,
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and

S3
n :=

∫
Ω0

[Au′B(θn) +Bv′B(θn)]∇φBn

 NI∑
i=1

ui∇φi +

NB∑
j=1

uB(θj)∇φBj


+ [Bu′B(θn) + Cv′B(θn)]∇φBn

 NI∑
i=1

vi∇φi +

NB∑
j=1

vB(θj)∇φBj

 dS,
then we obtain 2NI +NB finite-element equations

S1
m = 0,

S2
m = 0,

S3
n = 0,

for 2NI +NB coefficients: {ui}NIi=1, {vi}NIi=1, and {θj}NBj=1.

Remark. The A,B,C shown above in this subsection are actually generated from the

corresponding κh and λh. They can be understood as Ah, Bh, Ch.

With the above notations, we can restate the optimization process. Now the objective

is to find the minimizer of

Ĩ =

∫
Ω0

(
|∇κh|2 + |∇λh|2

)
dS

via perturbations of coefficients ui, vi, θj , κt, and λt, such that

S1
m = 0, S2

m = 0, S3
n = 0,

and also that

(uh, vh)(x̂i, ŷi) = (ûi, v̂i), i = 1, ..., N.

After introducing the algorithm, the optimization problem now can be implemented

via computer programs such as triangulation code, mesh generator, and optimization

code. For a deep understanding of the programs that have been applied in Jones

and Mahadevan’s work, please find [Persson and Strang, 2004] and [Gill et al., 2005],

which are from the original code authors. Moreover, a step-by-step description of the

optimization procedure can be found in [Jones and Mahadevan, 2013], Appendix B.
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5 Alternative Approach

We observe from Jones and Mahadevan’s method that their optimization process involves

4th degree of derivatives, and therefore, when it comes to numerical implementations, the

error will be multiplied. So, we want to come up with an alternative approach such that

a lower order of derivative will be involved in order to reduce the error in approximation.

In this chapter, we shall present a different method that quantifies the difference

between two planar shapes with finitely prescribed matching points. Inspired by the

work in [Jones and Mahadevan, 2013] and [Capogna and Raich, 2012], here we also use

quasiconformal maps to reflect information about local shear and distortion, and we

consider various functional of these quantities to measure the difference. To eliminate

ambiguity, we aim to find a canonical quasiconformal map relating two given shapes

among infinitely many choices and then take the corresponding distortion as a measure

of the difference between the two planar shapes.

5.1 Notations

In this section we introduce several important notations that will be used in the rest of

this chapter when describing the idea of our approach.

For a planar mapping u, let

g :=
duTdu

|det du|
.

The dilation of u is defined as
√

trace(g). By Lemma 3.2, we have that

√
trace(g) =

|du|
(det du)

1
2

.

Define the distortion tensor of u at a point of differentiability x ∈ R2 via

S(g) := g − trace(g)

n
Id.

Now if we denote the eigenvalues of g by 0 6 λ1 6 λ2, then

λ1λ2 = det(g) = det

(
duTdu

|det du|

)
=

det(duTdu)

(det du)2
=

(det du)2

(det du)2
= 1.

Further, if g is diagonal, i.e.,

g = Λ :=

[
λ1 0

0 λ2

]
,
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then

S(Λ) = Λ− trace(Λ)

2
Id

=

[
λ1 0

0 λ2

]
− λ1 + λ2

2

[
1 0

0 1

]

=

[
λ1−λ2

2 0

0 −λ1−λ2
2

]
.

Thus,

|S(Λ)|2 =

(
λ1 − λ2

2

)2

+

(
−λ1 − λ2

2

)2

=
(λ1 − λ2)2

2
=

1

2
(λ1 + λ2)2 − 2λ1λ2.

|S(Λ)|2 =
1

2

[
trace(Λ)2 − 4

]
.

As g is a symmetric matrix (i.e., gT = g), we can find a 2×2 matrix Q with QTQ = Id

such that QgQT = Λ, and thus,

trace(g) = trace(gId) = trace(gQTQ) = trace(QgQT ) = trace(Λ) = λ1 + λ2.

We observe that S(g) =

(
g − trace(g)

2
Id

)
is also symmetric. Moreover,

QS(g)QT = QgQT −Qtrace(g)

2
IdQT =

[
λ1 0

0 λ2

]
−

[
λ1+λ2

2 0

0 λ1+λ2
2

]
= S(Λ).

Hence, for a general g, we have

|S(g)|2 = trace(S(g)S(g)T )

= trace(S(g)S(g)TQTQ)

= trace(QS(g)S(g)TQT )

= trace(QS(g)QTQS(g)TQT )

= trace
[(
QS(g)QT

) (
QS(g)QT

)T ]
= trace[S(Λ)S(Λ)T ]

= |S(Λ)|2

Therefore,

|S(g)|2 =
1

2

[
trace(Λ)2 − 4

]
=

1

2

[
trace(g)2 − 4

]
.
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With the discussions of g and S(g) above, one can conclude that a planar diffeomorphism

u is conformal if and only if S(g) = 0 (2× 2 zero matrix) and if and only if trace(g) = 2

(g = Id indeed).

We have introduced the definition of a quasiconformal mapping in plane in section

3.4. Now let’s introduce an equivalent definition, which will be the start point of our

approach to quantify the difference between two given planar shapes.

Definition 5.1. A diffeomorphism u : Ω0 → Ω1 is said to be quasiconformal if

K(u,Ω0) :=

∥∥∥∥∥ |du|
(det du)

1
2

∥∥∥∥∥
L∞

<∞.

We call K(u,Ω0) the maximal dilation of u.

In general, K(u,Ω0) >
√

2. The equality holds if and only if u is conformal.

5.2 Scheme Frame

We first restate here that our objective is to obtain a quantified difference between

these two shapes. Given two planar shapes Ω0 and Ω1 and a finite number of landmark

points, we can build infinitely many quasiconformal mappings between Ω0 and Ω1 with

these landmark points matched. Suppose {uα}α∈J is the collection of all those possible

quasiconformal mappings. For each uα, there is a corresponding maximal dilation

K(uα,Ω0), which measures the distortion of the mapping. Roughly speaking, our idea is

to first find a uβ in {uα}α∈J such that K(uβ,Ω0) 6 K(uα,Ω0) for all α ∈ J , and then we

use the dilation of the minimizer, K(uβ,Ω0), as the quantified difference between these

two planar shapes.

5.3 Lp Gradient Flow Approach

In order to find the minimizer of

∥∥∥∥ |du|
(det du)

1
2

∥∥∥∥
L∞

,we can equivalently turn to find the

minimizer of ∥∥∥∥ |du|2(det du)

∥∥∥∥
L∞

.

We first study the corresponding Lp problem. That is, we want to find a critical mapping

of the following functional ∫
Ω0

|du|2p

(det du)p
dz.
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By classical variational method, we can obtain the Euler-Lagrange equation for this

functional, which is a system of two equations

(Lpu)i = 0, i = 1, 2,

where

(Lpu)i = 2p∂j
(
[trace(g)]p−1(du−1)TS(g)

)
ij
, i, j = 1, 2,

and the explicit forms of g and S(g) can be found in the above subsection 5.1. More

detailed explanation about this variational problem part can be found in the 8th chapter

of [Capogna, 2014].

Now we let p→∞ in order to go back to the original problem. That is, we want to

solve the system of equations

(L∞u)i = 0, i = 1, 2. (5.1)

However, the major obstacle to achieve our goal in this process is that we currently are

not clear about the existence of equation (5.1).

To continue in this method, we introduce a time variable t based on the work of

[Capogna, 2014], build a quasiconformal diffeomorphism u0 that satisfies all the required

conditions, and then apply the gradient flow approach to study the following initial value

problem ∂tu = −Lpu in Ω0 × (0, T ),

u = u0, at Ω0 × {t = 0}.

It has been proved in [Capogna and Raich, 2012] that in a short time, we can obtain

a homotopy class of quasiconformal mappings with the same domain and range. Since

the flow decreases the mean distortion over time, for a feasible value of T , we let t→ T

in order to find a canonical minimizer of mean dilation. After that we let p→∞ so as

to go back to the L∞ problem. Then the distortion of the minimizer shall be used as a

measure of the difference between the two planar shapes that we want to compare.

Since the long-time behavior of the gradient flow is not clear, we resort to numerical

experiment with Matlab programming to study the problem.

In our numerical trials with Matlab, we observe that, since (Lpu)i (i = 1, 2) are

second order, nonlinear, system of differential operators, it will take a long time to

process the implementation in Matlab. So, we want to take a linear flow approach,

which will be more efficient.
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Since the algorithm and programming of the numerical implementation in Matlab

corresponding to the Lp flow can be build on from the one corresponding to the linear

flow approach that we are going to apply, and since most of us may be more familiar

with this linear flow, we shall first explain the numerical part of the linear flow and then

revisit the nonlinear flow.

5.4 Heat Gradient Flow Approach

To begin with, we first present how we find this alternative linear flow approach and

why these two methods are equivalent.

5.4.1 Relation with the Lp Gradient Flow

For U : D1 → D2, a quasiconformal diffeomorphism, the inverse mapping, U−1, is

well-defined, and

U−1(U(z)) = z, ∀z ∈ D1,

U(U−1(ζ)) = ζ, ∀ζ ∈ D2.

By the changing of variable ζ = U(z), we obtain that∫
D2

∣∣∣∣d[U−1(ζ)]

dζ

∣∣∣∣2
o

dζ =

∫
D1

∣∣∣∣d[U−1(U(z))]

dζ

∣∣∣∣2
o

det

(
dU(z)

dz

)
dz.

Since 
d[U−1(U(z))]

dζ
=

(
dU(z)

dz

)−1

,

det

(
dU(z)

dz

)
=

1

det
(

dU(z)
dz

)−1 ,

then ∫
D2

∣∣∣∣d[U−1(ζ)]

dζ

∣∣∣∣2
o

dζ =

∫
D1

∣∣∣∣(dU(z)
dz

)−1
∣∣∣∣2
o

det

[(
dU(z)

dz

)−1
] dz.

That is, ∫
D2

∣∣dζ(U−1)
∣∣2
o

dζ =

∫
D1

| (dzU)−1 |2o
det [(dzU)−1]

dz.

Moreover, in the 2× 2 matrix case,

| (dzU)−1 |2o
det [(dzU)−1]

=
|dzU |2o

det [dzU ]
.
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It follows that ∫
D2

∣∣dζ(U−1)
∣∣2
o

dζ =

∫
D1

|dzU |2o
det [dzU ]

dz, (5.2)

which shows that minimizing the Dirichlet energy of U−1 (the left hand said) is the same

as minimizing the L2 norm of the mean dilation of dzU (the right hand side).

In the two-dimensional case, the relation between the Hilbert-Schmidt norm and the

operator norm is that, if A is a real-valued 2× 2 matrix, then

|A|2

detA
=
|A|2o

detA
+

1
|A|2o
detA

. (5.3)

Since the function K 7→ K+ 1
K is monotonic in [1,∞), then the minimization problems in

the Hilbert-Schmidt norm and in the operator norm shall have the equivalent solution.

Hence, by the change of variable, we obtain an identity between mean dilation and

Dirichlet energy. To put it differently, in order to minimize the mean dilation of a

quasiconformal diffeomorphism, we can instead minimize the Dirichlet energy of the

inverse map.

Since the inverse of a quasiconformal diffeomorphism is also quasiconformal, we

finally settle at a new (and equivalent) problem to find the minimizer of∫
Ω0

|du|2 dz,

with boundary condition prescribed by having Ω0 being mapped to Ω1, instead of

minimizing ∫
Ω0

|du|2

det (du)
dz.

By variational method, we obtain the Euler-Lagrange equation in this case, which is a

system of heat equations

∆u = 0.

Then we introduce time variable t and apply the gradient flow method to study the

initial value problem ∂tu = ∆u in Ω0 × (0, T ),

u = u0 at Ω0 × {t = 0}.
We want to find a canonical minimizer of mean dilation, and then we take the dilation

of the minimizer as a quantified difference between two planar shapes.

Likewise, we shall apply numerical implementations to find the desired quantified

difference value. We will first introduce common numerical methods dealing with heat

equations, and then study the heat gradient flow in numerical experiments.
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5.4.2 The One-Dimensional Heat Equation

In the study of partial differential equations (PDE), the topic about heat equations is

basic and appears in the beginning part of many PDE books. Roughly speaking, a

familiar two-dimensional heat equation describes how temperature gradually changes

(decreases, in most cases) over time at different locations of a given area. We shall

introduce our algorithms together with implementations on Matlab in this subsection.

We start with the one-dimensional heat equation, and the schemes involved will be the

essential foundation for us to tackle the further two-dimensional case.

The general format of the heat equation is

ut − α∆u = 0, (5.4)

where u = u(x, t) is a real-valued function of the spacial variable x and the time variable

t, α is a constant named thermal diffusivity (which is a property of the material of the

object in the practical sense), and the Laplacian is taken with respect to x.

In our one-dimensional problem, x is in R, and we may assume that the thermal

diffusivity is 1 for convenience. Thus, the heat equation becomes

∂u

∂t
=
∂2u

∂x2
, 0 6 x 6 L, t > 0, (5.5)

where L is a constant number. Furthermore, the equation is subject to some initial and

boundary conditions.

Recall the definition of derivatives in Calculus. For a one-dimensional function f ,

we obtain the slope of the secant line passing through points (x1, f(x1)) and (x2, f(x2))

by computing
f(x2)− f(x1)

x2 − x1

(without loss of generality, we assume that x1 < x2.) If the distance between x1 and

x2 is sufficiently small (i.e., ∆x := x2 − x1 is sufficiently close to 0 from the right), we

roughly take the difference quotient

f(x1 + ∆x)− f(x1)

∆x

as the slope of the tangent line (if not vertical) at the point (x1, f(x1)). The idea of the

difference quotient inspires us to turn the continuous differential equation problem into

a discrete approximation.
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In the numerical implementation, we require the time domain to be finite, say, [0, T ].

We divide the spacial domain [0, L] and the time domain [0, T ] uniformly into (N1 − 1)

and (M − 1) sub-intervals, respectively (N1,M ∈ Z+). Therefore, we get N1 nodes on

[0, L], of which the distance between each pair of adjacent nodes, ∆x, is equal to L
N1−1 .

Denote these spacial nodes by

xi = (i− 1)∆x, i = 1, 2, ..., N1.

Similarly, we obtain the uniformly divided time domain [0, T ] with the following M

nodes

tm = (m− 1)∆t, m = 1, 2, ...,M,

where ∆t = T
M−1 . Here we start the subscripts of the two sequences both from 1 because

we want to keep consistent with the indexing format of Matlab.

For convenience, we use the notation umi instead to denote u(xi, tm), the value of

u evaluated at location node xi and time node tm. Assume the initial condition is

u(x, 0) = f0(x), and the boundary conditions are u(0, t) = u0 and u(L, t) = uL. Then,

from Taylor series and the difference quotient that we discussed above, we have that

∂u

∂t

∣∣∣∣
xi,tm

=
um+1
i − umi

∆t
+O(∆t). (5.6)

Remark. Alternatively, we can use ∂u
∂t

∣∣
xi,tm

=
um+1
i −um−1

i
2∆t + O(∆t2), the first order

central difference, or ∂u
∂t

∣∣
xi,tm

=
umi −u

m−1
i

∆t + O(∆t), the first order backward difference,

while the difference quotient we used in (5.6) is called the first order forward difference.

To learn more about the outcomes through the other two kinds of differences and the

one we have chosen, please read the article [Recktenwald, 2004].

The discrete approximation for the quadratic derivative ∂2u
∂x2

(i.e., the left side of the

heat equation (5.5)) is not trivial. We shall process it in the following steps.

We will be evaluating at time node tm; for convenience, we shall omit specific mention

of tm in the parentheses after u when no confusion will be caused. We first get the Taylor

series

u(xi+1) = u(xi + ∆x) = u(xi) + ∆x
∂u

∂x

∣∣∣∣
xi

+
(∆x)2

2

∂2u

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · (5.7)

The substitution of ∆x with −∆x gives

u(xi−1) = u(xi −∆x) = u(xi)− ∆x
∂u

∂x

∣∣∣∣
xi

+
(∆x)2

2

∂2u

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · (5.8)
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We add the two equations (5.7) and (5.8) together to get

u(xi+1) + u(xi−1) = 2u(xi) + (∆x)2∂
2u

∂x2

∣∣∣∣
xi

+O(∆x2),

from which we obtain the difference approximation of ∂2u
∂x2

as follows:

∂2u

∂x2

∣∣∣∣
xi,tm

=
umi−1 − 2umi + umi+1

(∆x)2
+O(∆x2). (5.9)

If both ∆t and ∆x are sufficiently small, we can omit the two error parts of (5.6) and

(5.9) and then substitute them into the heat equation (5.5) to obtain

um+1
i − umi

∆t
=
umi−1 − 2umi + umi+1

(∆x)2
,

and finally,

um+1
i = umi +

∆t

(∆x)2

(
umi−1 − 2umi + umi+1

)
.

Therefore, the values of u evaluated at three adjacent location nodes at the same time

node tm can be combined to compute u(xi, tm+1).

5.4.3 The Two-Dimensional Heat Equation Implementation

In the two-dimensional case, the function u is of the spatial variable (x, y) and the time

variable t. Still, we assume that the thermal diffusivity is 1 for convenience. Then our

heat equation is
∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
. (5.10)

In this case, we continue using the uniform divisions of the spatial interval [0, L]

in the x-direction and of the time domain [0, T ]. In addition, we assume the spatial

interval in the y-direction is [0, H] and we divide it uniformly into (N2−1) sub-intervals

(N2 ∈ Z+). Therefore, we get N2 nodes on [0, H], and the distance between each pair

of adjacent nodes is ∆y := H
N2−1 . Denote these spacial nodes by

yj = (j − 1)∆y, j = 1, 2, ..., N2.

Moreover, we use the notation umi,j to denote u(xi, yj , tm), the value of u evaluated at

location node (xi, yj) and time node tm.

We directly take advantage of the results we have got from the one-dimensional part

and obtain the following discrete approximation equation

um+1
i,j − umi,j

∆t
=
umi−1,j − 2umi,j + umi+1,j

(∆x)2
+
umi,j−1 − 2umi,j + umi,j+1

(∆y)2
.
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Hence,

um+1
i,j = umi,j +

∆t

(∆x)2
(umi−1,j − 2umi,j + umi+1,j) +

∆t

(∆y)2
(umi,j−1 − 2umi,j + umi,j+1). (5.11)

In order to solve the two-dimensional equation numerically in Matlab, we shall do

some slight change to the equation (5.11) and make some assumptions which can help

simplify our computation as well as to make the problem numerically doable.

First, we set

a :=
∆t

(∆x)2
, b :=

∆t

(∆y)2
, c := 1− 2a− 2b.

Then the equation (5.11) becomes

um+1
i,j = a(umi−1,j + umi+1,j) + b(umi,j−1 + umi,j+1) + cumi,j .

As the values of ∆x and ∆y are both very small, we may set them to be equal in the

Matlab programming (i.e., ∆x = ∆y). Thus, a = b, c = 1− 4a and

um+1
i,j = a(umi−1,j + umi+1,j + umi,j−1 + umi,j+1) + cumi,j . (5.12)

This equation will be the core part of our Matlab program.

As for the initial condition and boundary conditions, we assume that

u(x, y, 0) = sin(
πx

L
) + sin(

πy

H
),

u(0, 0, t) = 0,

u(L,H, t) = 0;

in addition, we set L = H = 1 and will be computing in the time interval [0, 0.2].

The complete Matlab source code is presented below. This program not only gives

a huge matrix of values of u evaluated at each node but also provides an animation

of the gradually decreasing temperature on different locations of the given region over

time. We also present several screen shots from the animation in Figure 5.

1 % The Two-Dimensional Heat Equation Implementation with MATLAB

2 clear;

3 close all;

4 clc;

5

6 xL = 1; %
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7 yL = xL; % spatial & time domain

8 tEnd = 0.2; %

9

10 xNum = 50; % spacial:

11 yNum = xNum; % number of nodes

12

13 dx = xL/(xNum-1); % spacial:

14 dy = yL/(yNum-1); % distance b/w nodes

15

16 tNum = 100; %

17 dt = tEnd/(tNum-1); % time:

18 while dt≥(dx*dy)ˆ2/(2*((dx)ˆ2+(dy)ˆ2)) % number of nodes

19 tNum = tNum+10; % distance b/w nodes

20 dt = tEnd/(tNum-1); % (satisfying stability)

21 end %

22

23 a = dt/(dx)ˆ2; %

24 b = dt/(dy)ˆ2; % coefficients

25 c = 1 - 2*a - 2*b; %

26

27 x = linspace(0,xL,xNum)';

28 y = linspace(0,yL,yNum);

29 t = linspace(0,tEnd,tNum);

30 U = zeros(xNum,yNum,tNum);

31

32 U(:,:,1) = sin(pi*x/xL)*sin(pi*y/yL); % initial condition

33

34 %DISCRETE APPROXIMATION

35 for m=1:tNum-1

36 for i = 2:xNum-1

37 for j = 2:yNum-1

38 U(i,j,m+1) = a*(U(i-1,j,m)+U(i+1,j,m)) ...

39 + b*(U(i,j-1,m)+U(i,j+1,m)) ...

40 + c*U(i,j,m);

41 end

42 end

43 end

44

45 % PLOTTING PART

46 for m=1:tNum

47 [Y,X]=meshgrid(y,x);

48 surf(X,Y,U(:,:,m));
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49 colormap(jet);

50 shading interp;

51 caxis([0,1]);

52 colorbar;

53 axis([0 1 0 1 0 1]);

54 pause(0.001); % pause to give a dynamic visualization

55 end

Figure 5: Heat distribution over time

5.4.4 MATLAB Simulation of the Heat Gradient Flow

With all these discussion about heat equations above, now we can start to set up the

model for the heat gradient flow.

Suppose that we have a function U : D1 → D2 such that

U(x, y, t) =
(
U1(x, y, t), U2(x, y, t)

)
,

where D1, D2 are two regions on the plane, and (U1, U2) is the pair of coordinate

functions of U . Same as the condition of the previous two-dimensional heat equation,
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here x and y are the spatial variables, while t is the time variable. What’s more, in our

simplified case, the domain D1 is the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1),

and the image D2 is the square with vertices (0, 0), (1, 0), (1, 2), (0, 2). The model we are

going to set up is supposed to give us a dynamic visualization of the change of

|dU |2

det(dU)
(5.13)

over time, under the condition that∂tU1 = ∆U1,

∂tU
2 = ∆U2,

(5.14)

where the Laplacian is taken with respect to (x, y). What’s more, the initial function at

time t = 0 is U1(x, y, 0) = x+ noise,

U2(x, y, 0) = 2y + noise.

Remark. The noise we use in the Matlab program has zero-value boundary entries

and very small entries inside. The construction is listed in the source code from line 34

to line 47.

We have studied the two equations in (5.14) in the preceding part and know how to

implement the numerical approximation in Matlab. As for the term in (5.13) that we

want to visualize, since

dU =

[
U1
x U1

y

U2
x U2

y

]
,

we shall apply the idea of difference quotient again to each partial derivative and then

combine them together into (5.13).

Let’s consider another problem. Although we can use the discrete approximation

from the previous implementation, the boundary condition in this example model calls

for our attention, and we shall discuss it in detail.

In our example, U : D1 → D2, we first parametrize ∂D1 by γ : [0, 1] → ∂D1, and

then we want

U(γ(s), t) ∈ ∂D2, ∀s ∈ [0, 1],∀t ∈ [0, T ].

That is, we want all boundary points mapped onto boundary points at any time node.

Hence, if we denote by ~n(U(γ(s), t)) the unit normal vector at point U(γ(s), t) ∈ ∂D2,
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we have that, ∀s, t,
(1)

d

ds
U(γ(s), t) ⊥ ~n(U(γ(s), t)),

(2)
d

dt
U(γ(s), t) ⊥ ~n(U(γ(s), t)).

Thus, the corresponding inner product is 0 in each case, and we obtain, ∀s, t,

〈dU |(γ(s),t) γ̇(s), ~n |U(γ(s),t〉 = 0, (5.15)

〈∂tU |(γ(s),t) , ~n |U(γ(s),t〉 = 0. (5.16)

In most cases, it takes some time to compute the unit normal vector, but since our D1

and D2 are rectangles with sides parallel to axes, there are in total only four normal

vectors we are going to use:

~n1 := (−1, 0), ~n2 := (0,−1), ~n3 := (1, 0), ~n4 := (0, 1).

In our model, we assume that horizontal sides are mapped to horizontal sides, and

that vertical sides are mapped to vertical sides. Let’s take the bottom side of D1 (i,e,

the line segment connecting (0, 0) and (0, 1)) for example. On the lower horizontal side

of the boundary, the second coordinate is constant, and therefore γ̇(s) = (1, 0)T . In

addition, the normal vector at any point on the bottom side is ~n2 = (0,−1). Then the

equation (5.15) becomes

〈

[
∂xU

1 ∂yU
1

∂xU
2 ∂yU

2

]
(γ(s),t)

[
1

0

]
,

[
0

−1

]
〉 = 0,∀s, t.

So,

〈

[
∂xU

1

∂yU
2

]
(γ(s),t)

,

[
0

−1

]
〉 = 0,

∂xU
2 |(γ(s),t) = 0,∀s, t,

which implies that U2 is constant in x over the lower horizontal side. Further, we

consider the equation (5.16), which now can be written as

〈 ∂
∂t

[
U1(γ(s), t)

U2(γ(s), t)

]
,

[
0

−1

]
〉 = 0, ∀s, t.

Hence,
∂

∂t
U2(γ(s), t) = 0, ∀s, t,
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from which we conclude that U2 is also constant in time t over the lower horizontal side.

Likewise, we can discuss the cases of the rest three sides of D1. In summary, we

obtain the result that

• U1 is constant in y and in t over vertical sides,

• U2 is constant in x and in t over horizontal sides.

Note that our discrete approximation only produces the interior points but tells

nothing about how boundary points changes over time. Now with the result we have

got in the above paragraph, we can combine it with the discrete step and notations we

used in the previous Matlab program to extend the approximation to boundaries. In

our case, we shall obtain

1. Over the left vertical side (i.e., j = 1),

U1(i, 1,m+ 1) = U1(i, 2,m+ 1) and U2(i, 1,m+ 1) = U2(i, 1,m).

2. Over the lower horizontal side (i.e., i = 1),

U1(1, j,m+ 1) = U1(1, j,m) and U2(1, j,m+ 1) = U2(2, j,m+ 1).

3. Over the right vertical side (i.e., j = yNum),

U1(i, yNum,m+ 1) = U1(i, yNum− 1,m+ 1) and

U2(i, yNum,m+ 1) = U2(i, yNum,m).

4. Over the upper horizontal side (i.e., i = xNum),

U1(xNum, j,m+ 1) = U1(xNum, j,m) and

U2(xNum, j,m+ 1) = U2(xNum− 1, j,m+ 1).

With the complete information of the discrete approximation of all points in the

domain, we now can implement our model in Matlab. The source code for this example

model is presented as follows, and some screen shots from the resulting dynamic graph

are listed in Figure 6.

1 % The Heat Flow Model Implementation with MATLAB

2 clear;

3 close all;

4 clc;

5

6 xL = 1; %
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7 yL = xL; % spatial & time domain

8 tEnd = 0.12; %

9

10 xNum = 20; % spacial:

11 yNum = xNum; % number of nodes

12

13 dx = xL/(xNum-1); % spacial:

14 dy = yL/(yNum-1); % distance b/w nodes

15

16 tNum = 10; %

17 dt = tEnd/(tNum-1); % time:

18 while dt≥(dx*dy)ˆ2/(2*((dx)ˆ2+(dy)ˆ2)) % number of nodes

19 tNum = tNum+10; % distance b/w nodes

20 dt = tEnd/(tNum-1); % (satisfying stability)

21 end %

22

23 a = dt/(dx)ˆ2; %

24 b = dt/(dy)ˆ2; % coefficients

25 c = 1 - 2*a - 2*b; %

26

27 x = linspace(0,xL,xNum)';

28 y = linspace(0,yL,yNum);

29 t = linspace(0,tEnd,tNum);

30

31 U1 = zeros(xNum,yNum,tNum);

32 U2 = zeros(xNum,yNum,tNum);

33

34 f = zeros(1,xNum);

35 g = zeros(1,yNum);

36 for i=2:xNum-1

37 f(i) = exp(-1/(i-1)ˆ2)*exp(-1/(xNum-i)ˆ2);

38 end

39 for j=2:yNum-1

40 g(j) = exp(-1/(jˆ2))*exp(-1/(yNum-j)ˆ2);

41 end

42 N = randn(xNum,yNum)/1000;

43 for j=1:yNum %

44 for i=1:xNum %

45 N(i,j) = f(i)*g(j)*N(i,j); % noise matrix

46 end %

47 end %

48
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49 for j=1:yNum %

50 for i=1:xNum %

51 U1(i,j,1) = x(i) + N(i,j); % initial condition with noise

52 U2(i,j,1) = 3*y(j) + N(i,j); %

53 end %

54 end %

55

56

57

58 for m=1:tNum-1

59 for j = 2:yNum-1

60 for i = 2:xNum-1

61 U1(i,j,m+1) = a*(U1(i-1,j,m)+U1(i+1,j,m)) ...

62 + b*(U1(i,j-1,m)+U1(i,j+1,m)) ...

63 + c*U1(i,j,m);

64 U2(i,j,m+1) = a*(U2(i-1,j,m)+U2(i+1,j,m)) ...

65 + b*(U2(i,j-1,m)+U2(i,j+1,m)) ...

66 + c*U2(i,j,m);

67 end

68 end

69

70 for i=1:xNum

71 U1(i,1,m+1)=U1(i,2,m+1);

72 U2(i,1,m+1)=U2(i,1,m);

73 U1(i,yNum,m+1)=U1(i,yNum-1,m+1);

74 U2(i,yNum,m+1)=U2(i,yNum,m);

75 end

76

77 for j=1:yNum

78 U1(1,j,m+1)=U1(1,j,m);

79 U2(1,j,m+1)=U2(2,j,m+1);

80 U1(xNum,j,m+1)=U1(xNum,j,m);

81 U2(xNum,j,m+1)=U2(xNum-1,j,m+1);

82 end

83 end

84

85 % ENTRIES OF dU

86 for m=1:tNum

87 for j = 1:yNum-1

88 for i = 1:xNum-1

89 U1x(i,j,m)=(U1(i+1,j,m)-U1(i,j,m))/dx;

90 U2x(i,j,m)=(U2(i+1,j,m)-U2(i,j,m))/dx;
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91 U1y(i,j,m)=(U1(i,j+1,m)-U1(i,j,m))/dy;

92 U2y(i,j,m)=(U2(i,j+1,m)-U2(i,j,m))/dy;

93 end

94 end

95 end

96

97 for m=1:tNum

98 for j = 1:yNum-1

99 for i = 1:xNum-1

100 du=[U1x(i,j,m),U1y(i,j,m);U2x(i,j,m),U2y(i,j,m)];

101 v(i,j,m)=(norm(du))ˆ2/(det(du)); % that we want to visulize

102 end

103 end

104 end

105

106 % ANIMATION

107 for m=1:10

108 [Y,X]=meshgrid(y(1:yNum-1),x(1:xNum-1));

109 mesh(X,Y,v(:,:,m));

110 colormap(jet);

111 shading interp;

112 caxis([0,1]);

113 axis([0 1 0 1 0 5]);

114 pause(0.1);

115 end

5.4.5 Example Tests

Here we test our Matlab program via three examples.

In our tests, we want to measure the difference between the unit square with a

rectangle, a parallelogram, and a shape obtained by moving the upper right vertex of

a unit square from coordinates (1, 1) to (2, 2) (suppose the lower left vertex is at the

origin). In our approach, we need to first construct an initial quasiconformal mapping

between the unit square and each of the three shapes. Thus, we call the unit square as

our reference domain. The rest three shapes are called given images.

These shapes can be found in figure 7.

For the case of the rectangle which has width 1 and length 3, the initial map

we construct is a one-direction stretching with function expression u(x, y) = (x, 3y).

From this initial map, we want to build the optimal map which is the minimizer of the



WPI MQP B’16 – D’17 52

Figure 6: Heat Flow Model Visualization

mean dilation. Since the initial mapping u here is harmonic, and therefore satisfies the

Euler-Lagrange equation, it is already a minimizer of mean dilation. We can also read

this information from the corresponding graph which plots the change of distortions: It

is a horizontal line, which means that the gradient flow does not produce any change. We

read that the dilation of the optimal mapping is 2.96, which measures the distortion of

the mapping, and as we mentioned before, we use it as the quantified difference between

the unit square and the rectangle.

In the second example, we want to measure the difference between the unit square and

the parallelogram in figure 7. In this example, the initial map we construct is u(x, y) =

(x, x + y), which is also harmonic, and thus satisfies the Euler-Lagrange equation. So,

it is already a minimizer of mean dilation. Similar to the first example, we do not

see dilation changes produced by the flow. And we take the dilation as the quantified

difference between these two shapes.

The third example is a little bit different. In figure 7, we can see that most of the

lower left part of the given image coincide with the unit square. In this example, the
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Figure 7: Three Example Tests via MATLAB Program
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initial function we construct is of expression u(x, y) =
(
(x2 + y2)x, (x2 + y2)y

)
. It is not

harmonic, and thus is not an optical one. So in this case the gradient flow decreases the

dilation over time. When the dilation is stable, we read the value, which is 1.46, and we

take it as the quantified difference.

5.5 Revisiting the Lp Gradient Flow: MATLAB Simulation

After investigating on the numerical approximation of the heat flow, we now introduce

the implementation of the Lp flow. Recall that the initial value problem we are working

on in this case is ∂tu = −Lpu in Ω0 × (0, T ),

u = u0, at Ω0 × {t = 0}.

In the heat flow approach, the counterpart problem is∂tu = ∆u in Ω0 × (0, T ),

u = u0 at Ω0 × {t = 0}.

As we can see, the difference between the two systems above is the right hand side of

the first equation. In later numerical approximations, we shall mainly focus on the core

part but omit some side parts since they have been discussed in the heat flow model.

In the algorithm of this model, we continue use the difference quotients to approximate

derivatives. The difference is that, here we use first order central difference instead of

first order forward difference in order to further reduce the possible error.

Recall that the explicit form of Lpu is

(Lpu)i = 2p∂j
(
[trace(g)]p−1(du−1)TS(g)

)
ij
, i, j = 1, 2,

where

g =
duTdu

|det du|
,

and

S(g) = g − trace(g)

n
Id.

Suppose u = (u1, u2). The Jacobian matrix of u

du =

[
∂xu

1 ∂yu
1

∂xu
2 ∂yu

2

]
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will be approximated via replacing each entry with corresponding difference quotient.

After that step, the corresponding approximations of trace(g), (du−1)T , and S(g) are all

ready. Now we set [
F11 F12

F21 F22

]
:= [trace(g)]p−1(du−1)TS(g).

Then we obtain the approximation of Lpu as follows

(Lpu)1 = 2p(∂xF11 + ∂yF12),

(Lpu)2 = 2p(∂xF21 + ∂yF22).

The four derivatives in the above expression of Lpu shall all be approximated by corresponding

difference quotients. Then, with ∂tu approximated by difference quotient, we can

complete the numerical implementation of∂tu = −Lpu in Ω0 × (0, T ),

u = u0, at Ω0 × {t = 0}.

in Matlab. The explicit core part can be found in the following source code from line

68 to line 107.

In addition to the difference of the core computation part between the two flows,

another different part is about the boundary condition.

We first consider nodes at the four corners. We take one corner for example, which

is shown in figure 8. We set the value of u at node (1, 1), (2, 1) and (1, 2) be constant

over time. For the node (2, 2), at each time step, the value of this node is the average of

the value at node (1, 1) and (3, 3). The rest three corner conditions will follow the same

pattern. The explicit information can be found in the source code from line 109 to line

157.

For the rest boundary nodes, we use the term, “the first layer”, to refer to the

outmost boundary. We set the value at the nodes of the first layer to be constant over

time. For the second layer, we set the value at each time step to be equal to the average

of the value of adjacent nodes from the first layer and the third layer at the immediate

previous time step. That is, for example,

u(5, 2, t+ 1) =
u(5, 1, t) + u(5, 3, t)

2
,

where t denoted the time step. The complete part can be found in the source code below

from between line 159 and line 186.
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Figure 8: Corner Condition Example

Beside the computation part, we also have a change in the form of the visualization of

the change of distortion. Instead of a plotting which is similar to figure 6, the visualized

result in this case is a 2D plot with the value of distortion versus time. The result is in

figure 9, and we can observe that the heat gradient flow does decrease the value of the

distortion over time as desired.

1 % The Lp Flow Model Implementation with MATLAB

2 clear;

3 close all;

4 clc;

5

6 xL = 1; %

7 yL = xL; % length

8 tEnd = 0.5; %

9

10 p = 2; % value of p

11

12 xNum = 30; %

13 yNum = xNum; % number of nodes

14 tNum = 50; %

15

16 epsilon = exp(-100);

17

18 dx = xL/(xNum-1); %

19 dy = yL/(yNum-1); % unit distance
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20 dt = tEnd/(tNum-1); %

21

22 x = linspace(0,xL,xNum)'; %

23 y = linspace(0,yL,yNum); % vector of coords of nodes

24 t = linspace(0,tEnd,tNum); %

25

26 f = zeros(1,xNum);

27 g = zeros(1,yNum);

28 for i=2:xNum-1

29 f(i) = exp(-2/(dx*(i-1)ˆ2)) * exp(-2/(dx*(xNum-i)ˆ2));

30 end

31 for j=2:yNum-1

32 g(j) = exp(-2/(dy*(j-1)ˆ2)) * exp(-2/(dy*(yNum-j)ˆ2));

33 end

34 N = randn(xNum,yNum)/10;

35 for j=1:yNum %

36 for i=1:xNum %

37 N(i,j) = f(i)*g(j)*N(i,j); % noise matrix

38 end %

39 end %

40

41 % initial condition with noise

42 for j=1:yNum

43 for i=1:xNum

44 U1(i,j,1) = 100*x(i) + N(i,j);

45 U2(i,j,1) = 100*(y(j)+x(i)) + N(i,j);

46 end

47 end

48

49 U1x = zeros(xNum-1,yNum-1,tNum-1);

50 U1y = zeros(xNum-1,yNum-1,tNum-1);

51 U2x = zeros(xNum-1,yNum-1,tNum-1);

52 U2y = zeros(xNum-1,yNum-1,tNum-1);

53

54 v = zeros(xNum-1,yNum-1,tNum-1);

55

56 F11 = zeros(xNum-1,yNum-1,tNum-1);

57 F12 = zeros(xNum-1,yNum-1,tNum-1);

58 F21 = zeros(xNum-1,yNum-1,tNum-1);

59 F22 = zeros(xNum-1,yNum-1,tNum-1);

60

61 F11 x = zeros(xNum-2,yNum-2,tNum-1);
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62 F12 y = zeros(xNum-2,yNum-2,tNum-1);

63 F21 x = zeros(xNum-2,yNum-2,tNum-1);

64 F22 y = zeros(xNum-2,yNum-2,tNum-1);

65

66 for m=1:tNum-1

67

68 for j=2:yNum-1

69 for i=2:xNum-1

70 % matrix consisting of difference quotients

71 U1x(i,j,m) = (U1(i+1,j,m)-U1(i-1,j,m))/(2*dx);

72 U1y(i,j,m) = (U1(i,j+1,m)-U1(i,j-1,m))/(2*dy);

73 U2x(i,j,m) = (U2(i+1,j,m)-U2(i-1,j,m))/(2*dx);

74 U2y(i,j,m) = (U2(i,j+1,m)-U2(i,j-1,m))/(2*dy);

75

76 % Jacobian matric

77 dU = [U1x(i,j,m),U1y(i,j,m); U2x(i,j,m),U2y(i,j,m)];

78

79 dU inv T = transpose(inv(dU+ epsilon * eye(2))); %

80 g = (transpose(dU)*dU)/(abs(det(dU))+epsilon); % for Lp(U)

81 S g = g - (trace(g)/2)*eye(2) ; %

82

83 F = trace(g)ˆ(p-1) * dU inv T * S g;

84

85 F11(i,j,m) = F(1,1);

86 F12(i,j,m) = F(1,2);

87 F21(i,j,m) = F(2,1);

88 F22(i,j,m) = F(2,2);

89 end

90 end

91

92 for j=3:yNum-2

93 for i=3:xNum-2

94 % matrix consisting of difference quotients

95 F11 x(i,j,m) = (F11(i+1,j,m)-F11(i-1,j,m))/(2*dx);

96 F12 y(i,j,m) = (F12(i,j+1,m)-F12(i,j-1,m))/(2*dy);

97 F21 x(i,j,m) = (F21(i+1,j,m)-F21(i-1,j,m))/(2*dx);

98 F22 y(i,j,m) = (F22(i,j+1,m)-F22(i,j-1,m))/(2*dy);

99 end

100 end

101

102 for j=3:yNum-2

103 for i=3:xNum-2
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104 U1(i,j,m+1) = U1(i,j,m) - dt*(-2*p)*(F11 x(i,j,m)+F12 y(i,j,m));

105 U2(i,j,m+1) = U2(i,j,m) - dt*(-2*p)*(F21 x(i,j,m)+F22 y(i,j,m));

106 end

107 end

108

109 % Corner Conditions

110 % NW corner of the grid

111 U1(1,1,m+1)=U1(1,1,1);

112 U1(1,2,m+1)=U1(1,2,1);

113 U1(2,1,m+1)=U1(2,1,1);

114

115 U2(1,1,m+1)=U2(1,1,1);

116 U2(1,2,m+1)=U2(1,2,1);

117 U2(2,1,m+1)=U2(2,1,1);

118

119 U1(2,2,m+1)=(U1(3,3,m+1)+U1(1,1,m+1))/2;

120 U2(2,2,m+1)=(U2(3,3,m+1)+U2(1,1,m+1))/2;

121

122 % NE corner of the grid

123 U1(1,yNum,m+1)=U1(1,yNum,1);

124 U1(2,yNum,m+1)=U1(2,yNum,1);

125 U1(1,yNum-1,m+1)=U1(1,yNum-1,1);

126

127 U2(1,yNum,m+1)=U2(1,yNum,1);

128 U2(2,yNum,m+1)=U2(2,yNum,1);

129 U2(1,yNum-1,m+1)=U2(1,yNum-1,1);

130

131 U1(2,yNum-1,m+1)=(U1(3,yNum-2,m+1)+U1(1,yNum,m+1))/2;

132 U2(2,yNum-1,m+1)=(U2(3,yNum-2,m+1)+U2(1,yNum,m+1))/2;

133

134 % SW corner of the grid

135 U1(xNum,1,m+1)=U1(xNum,1,1);

136 U1(xNum-1,1,m+1)=U1(xNum-1,1,1);

137 U1(xNum,2,m+1)=U1(xNum,2,1);

138

139 U2(xNum,1,m+1)=U2(xNum,1,1);

140 U2(xNum-1,1,m+1)=U2(xNum-1,1,1);

141 U2(xNum,2,m+1)=U2(xNum,2,1);

142

143 U1(xNum-1,2,m+1)= (U1(xNum,1,m+1)+U1(xNum-2,3,m+1))/2;

144 U2(xNum-1,2,m+1)= (U2(xNum,1,m+1)+U2(xNum-2,3,m+1))/2;

145
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146

147 % SE corner of the grid

148 U1(xNum,yNum,m+1)=U1(xNum,yNum,1);

149 U1(xNum,yNum-1,m+1)=U1(xNum,yNum-1,1);

150 U1(xNum-1,yNum,m+1)=U1(xNum-1,yNum,1);

151

152 U2(xNum,yNum,m+1)=U2(xNum,yNum,1);

153 U2(xNum,yNum-1,m+1)=U2(xNum,yNum-1,1);

154 U2(xNum-1,yNum,m+1)=U2(xNum-1,yNum,1);

155

156 U1(xNum-1,yNum-1,m+1)= (U1(xNum,yNum,m+1)+U1(xNum-2,yNum-2,m+1))/2;

157 U2(xNum-1,yNum-1,m+1)= (U2(xNum,yNum,m+1)+U2(xNum-2,yNum-2,m+1))/2;

158

159 % Boundary Conditions

160 for i=3:xNum-2

161 U1(i,1,m+1) = U1(i,1,1);

162 U2(i,1,m+1) = U2(i,1,1);

163

164 U1(i,2,m+1) = (U1(i,1,m)+U1(i,3,m))/2;

165 U2(i,2,m+1) = (U2(i,1,m)+U2(i,3,m))/2;

166

167 U1(i,yNum,m+1)=U1(i,yNum,1);

168 U2(i,yNum,m+1)=U2(i,yNum,1);

169

170 U1(i,yNum-1,m+1) = (U1(i,yNum,m)+U1(i,yNum-2,m))/2;

171 U2(i,yNum-1,m+1) = (U2(i,yNum,m)+U2(i,yNum-2,m))/2;

172 end

173

174 for j=3:yNum-2

175 U1(1,j,m+1) = U1(1,j,1);

176 U2(1,j,m+1) = U2(1,j,1);

177

178 U1(2,j,m+1) = (U1(1,j,m)+U1(3,j,m))/2;

179 U2(2,j,m+1) = (U2(1,j,m)+U2(3,j,m))/2;

180

181 U1(xNum,j,m+1)=U1(xNum,j,1);

182 U2(xNum,j,m+1)=U2(xNum,j,1);

183

184 U1(xNum-1,j,m+1) = (U1(xNum,j,m)+U1(xNum-2,j,m))/2;

185 U2(xNum-1,j,m+1) = (U2(xNum,j,m)+U2(xNum-2,j,m))/2;

186 end

187
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188 for j=2:yNum-1

189 for i=2:xNum-1

190 du=[U1x(i,j,m),U1y(i,j,m);U2x(i,j,m),U2y(i,j,m)];

191 v(i,j,m)=(norm(du))ˆ2/(det(du)); % distortion

192 end

193 end

194 end

195

196 % Change of the value of distortion over time

197 int v = zeros(1,tNum-1);

198 for m=1:tNum-1

199 for j=1:yNum-2

200 for i=1:xNum-2

201 int v(m) = int v(m) + abs(v(i,j,m))ˆ(p)*dx*dy;

202 end

203 end

204 int v(m)=(int v(m))ˆ(1/p);

205 end

206 time = linspace(0,1,tNum-1);

207 figure

208 plot(time,int v,'*');

Figure 9: Change of Distortion over Time
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6 Conclution

In conclusion, in order to quantify the difference between two given shapes on the plane

with a finite number of prescribed matching points, among infinitely many quasiconformal

maps relating the two shapes, we use gradient flows to obtain a homotopy of quasiconformal

mappings, decreasing the mean distortion of the map with the flow, find a canonical

minimizer for such a functional, and then use the distortion of the minimizer as the

quantified difference between the two planar shapes.

The gradient flows that we use in our approach include the Lp flow and the heat flow.

Both of them provide plausible solutions to the posed problem. As they are nonlinear and

linear flows, respectively, the time that the numerical implementation takes to process

are different.

Our work is inspired by [Jones and Mahadevan, 2013]. We come up with these

alternative methods because we want to lower the order of derivatives to reduce the

error from the numerical approximations. Our idea is plausible, but since there is no

specific example of implementation results in [Jones and Mahadevan, 2013], we are not

able to make a direct comparison to check if our method creates better accuracy or not.

The core numerical method we use in our implementation is that we use difference

quotients to approximate derivatives. Actually, the finite-element method, which is also

used in [Jones and Mahadevan, 2013], is supposed to give a higher accuracy and a better

result. This project can be extended via using this method.

Additionally, another possible improvement that can be made is that, in our approach,

we have to construct a quasiconformal mapping at the first step as the initial mapping

to start with, which is not easy in general cases. So, an improved approach which can

give the quantified difference between two given shapes without a prerequisite initial

mapping will directly provide the answer and help save the time of the whole process of

implementation.
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