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Abstract 
Mathematics, physics, biology, and computer science are combined to create computational 

modeling, which studies the behaviors and reactions of complex biomedical problems. Modern 

biomedical research relies significantly on realistic computational human models or “virtual humans”. 

Relevant study areas utilizing computational human models include electromagnetics, solid mechanics, 

fluid dynamics, optics, ultrasound propagation, thermal propagation, and automotive safety research. 

These and other applications provide ample justification for the realization of the Visible Human Project® 

(VHP)-Female v. 4.0, a new platform-independent full body electromagnetic computational model. 

Along with the VHP-Female v. 4.0, a realistic and anatomically justified Dynamic Breathing 

Sequence is developed. The creation of such model is essential to the development of biomedical devices 

and procedures that are affected by the dynamics of human breathing, such as Magnetic Resonance 

Imaging and the calculation of Specific Absorption Rate. The model can be used in numerous application, 

including Breath-Detection Radar for human search and rescue.  

I defend: 

1. Creation of the breathing sequence on the CAD model VHP-Female v3.1 

2. Development of the full-body CAD model VHP-Female v4.0 
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I. Chapter 1: Introduction and Review of Prior Work 

1.1. Development of Human Model 
Virtual humans are full-body human models which can be brought to “life” in the computer. A 

high-resolution model includes in excess of 200 individual tissue parts and all major body systems. There 

are about 40 detailed anatomical virtual humans in the world to date (see Table 1.1). These models are 

increasingly used in regulatory safety research and modern biomedical design since they respond in a 

similar manner to real humans.  
Table 1. 1. Major Anatomical Full-Body Human Models for CEM and Radiological Simulations (After 2004) [1] 

Entity/Country Model Name  G/A/H/W Da TYPE RES, mm2 FV D 

IT’IS Found. Switzerland Glenn m/84/173/61.1 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland FATS m/37/182/119 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland DUKE m/34/177/70.3 N V/S 0.5x0.5x1.0h  

0.9x0.9x2b  

Y Y 

IT’IS Found. Switzerland ELLA f/26/163/57.3 N V/S 0.5x0.5x1.0h  

0.9x0.9x2b 

Y Y 

IT’IS Found. Switzerland LOUIS m/14/168/49.7 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland BILLIE f/11/149/34.0 N V/S 0.5x0.5x1.0h  

0.9x0.9x2b 

Y Y 

IT’IS Found. Switzerland EARTHA f/8/136/29.9 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland DIZZY m/8/137/25.4 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland THELONIOUS m/6/115/18.6 N V/S 0.5x0.5x1.0h  

0.9x0.9x2b 

Y Y 

IT’IS Found. Switzerland ROBERTA f/5/109/17.8 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N Y 

IT’IS Found. Switzerland NINA f/3/92/13.9 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N N 

IT’IS Found. Switzerland CHARLIE f/8w/na/4.3 N V 0.5x0.5x1.0h  

0.9x0.9x2b 

N N 

China Acad. of Tel. Res. CHINESE MALE m/35/172/64 Y V/S/CA

D 

1x1x1 N N 

China Acad. of Tel. Res. CHINESE 

FEMALE 

f/22/162/54 Y V/S/CA

D 

1x1x1 N N 
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Huazhong Univ, China CDH M2 m/166 Y V/S/CA

D 

0.1x0.1x0.2 N N 

Huazhong Univ, China CHINESE REF. 

MAN  

m/166 Y S/CAD 2x2x2 N Y 

Natl. Inst. of Inform. and 

Comm. Technol., Japan 

NAGAOKA MAN 

(TARO) 

m/22/173/65 N V 2x2x2 N N 

Natl. Inst. of Inform. and 

Comm. Technol., Japan 

NAGAOKA 

WOMAN 

f/22/160/53 N V 2x2x2 N N 

ETRI, Korea KOREAN MAN m/21/176/67 N V 1x1x1 (head) 

3x3x3 (body) 

N N 

ETRI, Korea KOREAN CHILD m/7/122.4/25.5 N V 1x1x3 N N 

Nat. Radiological Protection 

Board, UK 

NAOMI f/23/163/60 N V 2x2x2 N N 

REMCOM, PennState Male/Female m/f Y V 5x5x5 (both) N Y 

CST AG, Germany BABY f/8w/57/4.2 N V 0.85x0.85x4 N N 

CST AG, Germany CHILD f/7/115/21.7 N V 1.54x1.54x8 N N 

CST AG, Germany DONNA f/40/176/79 N V 1.88x1.88x10 N N 

CST AG, Germany EMMA f/26/170/81 N V 0.98x0.98x10 N N 

CST AG, Germany GUSTAV m/38/176/69 N V 2.1x2.1x8 N N 

CST AG, Germany LAURA f/43/163/51 N V 1.88x1.88x5 N N 

CST AG, Germany HUGO, posable m/38/187/113 Y V 1x1x1 N Y 

U Texas Austin, USA AUSTIN MAN m/38/187/113 Y V 1x1x4 Y Y 

U Texas Austin, USA AUSTIN 

WOMAN 

f/60/162/88 Y V 1x1x4 Y Y 

Duke University Medical 

Center, USA 

XCAT FAMILY Orig: f/60/162/88 

m/38/187/113 

Y CAD, 

NURBS 

variable Y Y 

NEVA EM LLC, WPI, 

BIDMC 

VHP-Female  f/60/162/88 Y CAD variable    

Abbreviations: G/A/H/W – Gender/Age/Height/Weight; Da - Original image dataset made available for 

independent evaluation (Y/N); TYPE (V – voxel; S – surface-based model, but without explicit FEM 

compatibility; CAD – surface-based FEM-compatible model); RES – Lowest image resolution (before or 

after postprocessing) of the model declared by the provider (h=head, b=body); FV - Free version for 

available (Y/N); D – Deformable/posable  (Y/N); 

 

However, the majority of these available virtual humans are voxel models made of millions of small equal 

cubes or bricks. Voxel models cannot be simulated with the Finite-Element Method (FEM). Voxel 

models are also “cast in stone”; they cannot be easily deformed. Therefore, there is a need for Computer 

Aided Design (CAD) human models made of surface-based objects – individual tissues and tissue parts – 

and compatible with the FEM. The CAD virtual humans can breathe like real humans, move like real 

humans, and can also suffer from injuries and have various implants.  

In electromagnetics applications, performance safety and evaluations of medical devices are developed 

with computational human model [2]. These devices include electrophysiology monitoring devices such 

as Electroencephalogram (EEG), Electrocardiogram (ECG), Magnetoencephalography (MEG), and 

Magnetic Resonance Imaging (MRI) systems, MR conditional implanted devices, radiofrequency 
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ablation, optical coherence tomographic devices, fluorescence spectroscopy devices, laser surgery 

devices, and optical therapy devices. Moreover, computational human models are used in antenna 

research such as the safety and performance evaluations of cellphone radiation, implanted antennas, and 

microwave imaging systems. 

One major application area is the impact of MRI, cellphones, and electromagnetic radiation on the human 

body. There are only a few anatomical true-CAD virtual humans in the world directly applicable to 

electromagnetic safety and performance evaluations. Those are the XCAT Family of Dr. W. P. Segars 

(Duke) and the Chinese Male/Female from China Academy of Tel. Research. The XCAT family based on 

B-spline modeling has limited tissue parts.  

 

1.2. Use of the model 
Regulatory organizations (e.g. FDA, FCC, or IEC) require the determination of the Specific 

Absorption Rate (SAR) for safety assessment of biomedical electromagnetic devices prior to going to 

market. Such devices include MRI coils, Electroencephalography (EEG), Electrocardiography (ECG), 

Magnetoencephalography (MEG), brain-computer interfaces, MR conditional passive or active implanted 

devices, neurostimulators and electrical stimulators, devices for radio frequency ablation, cellphone 

antennas, and on-body and implanted antennas.  

However, SAR measurements are not easily performed for human subjects in-vivo. To put it simply, we 

cannot drill a hole in a body to do the necessary measurements. Therefore, SAR and device performance 

estimates are typically derived from Computational Electromagnetics (CEM) simulations performed with 

virtual humans. Other emerging applications include modern automotive safety studies especially related 

to self-driving cars. Although vehicular crash safety performances are evaluated with crash test dummies 

regulated by federal agencies (U.S. Dept. of Transportation Fed. Highway Administration), it is believed 

that the impact biomechanics with CAD virtual humans would provide significantly better understandings 

of injury mechanisms. 

Many in the industry and academia today either lack CAD human models or use non-anatomical models, 

resulting in a need that is either met inadequately or not met at all. Accurate virtual humans are difficult 

and time consuming to create. Consequently, the models are expensive – for example, a license to use the 

modern virtual human family product from the IT’IS Foundation of Switzerland can easily run up to 

$60,000 annually.  

The need for CAD virtual human body models in industry and academia is currently met on a very limited 

basis. Examples of prospective customers are: MathWorks, Inc [3]; COMSOL, Inc [4]; ANSYS, Inc [5]; 

CST AG [6]; IMST GmbH [7]; Remcom, Inc. [8]; Altair Engineering, Inc. [9]; Toyota Central R&D 

Labs, Inc. [10] 

To demonstrate that the model is able to satisfy this need, Fig. 1.1 compares two recent virtual human 

models. On the left, a soldier CAD model (called anatomy avatar) from the U.S. Army Research Institute 

of Environmental Medicine (March 2016, [11]) is shown. Such models could make an impact on the 

design of military gear, protective equipment and vehicles, and other applications across military 

medicine [11]. On the right, the CAD VHP-Female v.3.1 model is shown (March 2016) with the 

resolution of 1-7 mm and 250 individual parts, including blood vessels and state-of-the art peripheral 

nerves. Although the USARIEM model is subject-specific, which makes its semi-automatic construction 

much more complicated, the difference in the anatomical quality and accuracy of both models is 

remarkable. 
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Figure 1. 1. A) Left – soldier CAD model from U.S. Army Research Institute of Environmental Medicine (March 2016); b) Right 

– VHP-Female v. 3.1 CAD human model with major blood vessels and peripheral nerves. 

 

1.3. Advantages of VHP Female 
A. Cross-platform compatibility of our CAD models  
The majority of available domestic and international human models are voxel models. The voxel 

model is a very large set of very small cubes – unit cells – with different material properties 

characterizing different tissues. This means that every tissue is a volume inside a watertight curved shell 

consisting of many small triangles. The voxel human models can be simulated with the help of time-

domain electromagnetic solvers but cannot be simulated via Finite-Element Modeling (FEM). The CAD 

models, on the other hand, are appropriate for both FEM and time-domain methods, and are thus cross-

platform (ANSYS Electronic Desktop, MATLAB, CST, FEKO). In other words, CAD models are 

compatible with the simulation software of all target customers. The significance of this critical feature is 

validated by the ability to serve all targeted customers simultaneously. 

B. Anatomical accuracy of our CAD models  

The existing VHP-Female human model has 26 tissues and 250 tissue parts; the resolution in the 

cranium is 1-3 mm, and 1-7 mm in the main body.  

C. True CAD of our models  

Even though the IT’IS Foundation models look excellent at first sight [12], they are not true CAD 

models. The shells representing different tissues are not watertight and intersect. A joint check of the 

DUKE model with ANSYS, Inc. [12] generated approximately 100 intersection/non-manifold errors. 

Therefore, these models are not FEM compatible and their parts cannot be 3D printed. The significance of 

this feature is validated by the fact that existing educational and commercial models run flawlessly using 

FEM – the major simulation tool for biomechanics and other applications – and by the fact that any part 

of them could be 3D printed (have previously printed femur bones for experimental analysis).  

D. Dynamic behavior of the CAD models  
The real human in-vivo is a dynamic model subject to breathing, blood flow, and movement. The 

respiratory motion is one major cause of image blurriness in MRI systems, even with respiratory triggered 

sequences. The Swiss Virtual Family mentioned above does not have this difficult and complicated model 

extension.  

E. Access to the original image dataset 
All virtual humans are constructed by segmentation of a stack of images. For models, the original 

high-resolution image dataset is available to any user or to any interested person through the U.S. 

National Library of Medicine [13]. However, all full-body models distributed by IT’IS Foundation, 

Switzerland do not make the original datasets available to users. Therefore, we simply do not know their 

a) b)



5 
 

anatomical accuracy. The significance of this feature might potentially result in making models to be a 

completed standard for radio-frequency safety estimates. 

1.4. Human Model Construction 
Computational phantoms or virtual humans are created via a set of 3D mathematical algorithms 

commonly called image segmentation. Segmentation is one of the most studied problems in the field of 

biomedical image analysis. Consider one body image (a slice in the xy-plane) in Fig. 1.2a which shows a 

cross-section of a human leg, including the patella [14]. The complete stack of images continues in the z-

direction. A skilled operator traces the patella boundary with a set of discrete points in the xy-plane (a 

polygon) shown by crosses in Fig 1.2a. A z-coordinate corresponding to the global coordinate system is 

added. Then, another cross-sectional image is traced, and all 3D points are collected, image by image. 

The end result is a complete patella boundary in three dimensions given in the form of a point cloud 

shown in Fig. 1.2b. This process is known as manual segmentation, still the “gold standard” of image 

segmentation. Other tissues are segmented similarly. The inner volume of the point cloud is either empty 

or can be filled with a set of (uniformly distributed) inner nodes. In the latter case, we arrive at a 

volumetric voxel model of a tissue, which is a typical final result of image segmentation. A large number 

of such volumes may exist, either interconnected or separate. 

 

Figure 1. 2. A) – Image of a patella with a traced boundary; b) – resulting point cloud; c) – patella CAD model; d) – patella 

voxel model. 

 A true CAD model must meet the following conditions: 

A. It must be watertight, i.e. it does not have surface holes 

B. The surface of the mesh must be manifold. A mesh is 2-manifold if every node of the mesh has a 

disk-shaped neighborhood of triangle, which can be continuously deformed to an open disk. 

Every edge of a 2-manifold mesh is a manifold edge with only two attached triangles. All other 

meshes are non-manifold meshes and are not suitable for FEM analysis. Fig. 1.3 gives examples 

of a non-manifold mesh with a non-manifold edge and a non-manifold mesh with a non-manifold 

node. [15] 

C. Different tissue meshes (in Fig. 1.4) must not intersect 

 



6 
 

 

Figure 1. 3. A) – Examples of a manifold edge; b) – non-manifold edge, and  c) – non-manifold node. 

 

 
Figure 1. 4. VHP-Female CAD representation 

 

  

c) non-manifold nodea) manifold edge b) non-manifold edge



7 
 

References 

 

[1]. A. Nazarian et al, “Application of Virtual Humans in Medial Research: VHP-Female 

CAD Model” AP Magazine Article  

[2]. U.S. Food and Drug Administration, Center for Devices and Radiological Health 

“Reporting of Computational Modeling Studies in Medical Device Submissions: Draft 

Guidance for Industry and Food and Drug Administration Staff,” Jan 17th 2014.   

[3]. MathWorks, Inc. Available: http://www.mathworks.com/ 

[4]. COMSOL, Inc., Available: https://www.comsol.com/ 

[5]. ANSYS Website. Available: http://www.ansys.com/ 

[6]. Computer Simulation Technology (CST) Allgemeine Gesellschaft (AG) Website. 

Available: https://www.cst.com/ 

[7]. IMST GmbH Website. Available: https://www.imst.de/ 

[8]. Remcom, Inc. Available: http://www.remcom.com/ 

[9]. Altair Engineering, Inc. Available: http://www.altair.com/  

[10]. Toyota Central R&D Labs., Inc. Available: http://www.tytlabs.com/  

[11].  USARIEM Models. Available: https://www.rt.com/usa/338688-us-army-avatar-soldiers/ ; 

http://www.army-technology.com/news/newsus-army-to-develop-3-d-full-anatomy-

avatar-of-soldiers-4859541  

[12].  Available: http://www.itis.ethz.ch/virtual-population/virtual-population-cvip-vip/cvip3-

and-vip1/duke/duke-cv3-1-1/ 

[13]. M. J. Ackerman, “The Visible Human Project,” Proc. IEEE, vol. 86, no. 3, pp. 504-511, 

1998. Available: https://www.nlm.nih.gov/research/visible/visible_human.html 

[14]. V. Spitzer, M. J. Ackerman, A. L. Scherzinger, and D. W. Whitlock, “The Visible 

Human Male: A Technical Report,” J. of the Amer. Medical Informatics Assoc., vol. 3, 

no. 2, pp.118-130, 1996. 

[15]. S. N. Makarov et al, “Virtual Humans Models for Electromagnetic Studies and Their 

Applications,” 

[16]. IT’IS Foundation. Available: http://www.itis.ethz.ch/virtual-population/  

[17]. IT’IS Foundation: Services. Available http://www.itis.ethz.ch/services/  

[18]. J. Yanamadala, V.K. Rathi, S. Maliye, H.A. Win, A.L. Tran, M. K. Kozlov, G.M. 

Noetscher, A. Nazarian, and S.N. Makarov, “Segmentation of the Visible Human 

Project® (VHP) Female Cryosection Images within MATLAB® Environment,” 23rd  

International Meshing Roundtable (IMR23), London, England, Oct. 12-15, 2014. 

Available: http://www.imr.sandia.gov/papers/imr23.html  

[19]. A. M. Helderman, N. S. Thang, T. Dolma, T. T. Trinh, M. W. Piazza, J. Zhang, S. Xie, J. 

Yanamadala, and S. N. Makarov, “Using MATLAB® Platform for Image Segmentation 

and FEM-Compatible Triangular Surface Mesh Generation –Vertebral Column of Visible 

Human Project – Female”, 37th Annual Int. Conf. of the IEEE Engineering in Medicine 

and Biology Society (EMBC 2015), Milano, Italy, Aug. 25-29 2015, pp. 3237-3241. 

[20]. J. Yanamadala, G. Noetscher, V. Rathi, S. Maliye, H.A. Win, A.Le Tran, X.J. Jackson, 

A.T. Htet, M. Kozlov, A. Nazarian, S. Louie, and S. Makarov, “New VHP-Female V. 2.0 

Full-Body Computational Phantom and Its Performance Metrics Using FEM Simulator 

ANSYS HFSS,” 37th Ann. Int. Conf. of the IEEE Eng. In Medicine and Biology Soc. 

(EMBC 2015), Milano, Italy, Aug. 25-29 2015, pp. 3237-3241. 

[21]. H. Tankaria, X.J. Jackson, R. Borwankar, G.N.K. Srichandhru, A.L. Tran, J. 

Yanamadala, G. M. Noetscher, A. Nazarian, S. Louie, and S.N. Makarov, “VHP-Female 

http://www.mathworks.com/
https://www.comsol.com/
http://www.ansys.com/
https://www.cst.com/
https://www.imst.de/
http://www.remcom.com/
http://www.altair.com/
http://www.tytlabs.com/
https://www.rt.com/usa/338688-us-army-avatar-soldiers/
http://www.army-technology.com/news/newsus-army-to-develop-3-d-full-anatomy-avatar-of-soldiers-4859541
http://www.army-technology.com/news/newsus-army-to-develop-3-d-full-anatomy-avatar-of-soldiers-4859541
http://www.itis.ethz.ch/virtual-population/virtual-population-cvip-vip/cvip3-and-vip1/duke/duke-cv3-1-1/
http://www.itis.ethz.ch/virtual-population/virtual-population-cvip-vip/cvip3-and-vip1/duke/duke-cv3-1-1/
https://www.nlm.nih.gov/research/visible/visible_human.html
http://www.itis.ethz.ch/virtual-population/
http://www.itis.ethz.ch/services/
http://www.imr.sandia.gov/papers/imr23.html


8 
 

Full-Body Human CAD Model for Cross-Platform FEM Simulations – Recent 

Development and Validations,” 38th Annual Int. Conf. of the IEEE Engineering in 

Medicine and Biology Society (EMBC 2016), Orlando, FL, Aug. 16-20 2016. 

[22]. H. Tankaria, X.J. Jackson, R. Borwankar, G.N.K. Srichandhru, A.L. Tran, J. 

Yanamadala, S.N. Makarov, and A.-P. Leone, “Full-Body FEM Pregnant Woman Model 

and Applications,” 38th Annual Int. Conf. of the IEEE Engineering in Medicine and 

Biology Society (EMBC 2016), Orlando, FL, Aug. 16-20 2016. 
  



9 
 

II. Chapter 2: Mesh Processing Algorithms 

Introduction 
 

This Chapter reviews selected basic facts related to triangular surface mesh generation for 

computational electromagnetics problems. Understating mesh generation, mesh properties, possible mesh 

errors, and the process of adaptive mesh refinement is an important part of any intelligent electromagnetic 

computations. Most of the materials in this chapter are attributed to my Advisor Sergey Makarov’s book: 

S. N. Makarov, G. N. Noetscher, and A. Nazarian, “Low-Frequency Electromagnetic Modeling 

for Electrical and Biological Systems Using MATLAB”, Wiley, New York, June 2015, 648 p., 

Chapter 2. Triangular surface mesh generation.  

Section 2.1 defines a triangular mesh, discusses structured and unstructured meshes, introduces the 

meaning of a 2-manifold mesh, and gives the metrics for triangle quality, triangle size, and mesh 

uniformity.  

Section 2.2 introduces the basic 2D Delaunay triangulation algorithm. It gives examples of unconstrained 

and constrained Delaunay triangulation. It also introduces three-dimensional tetrahedral mesh generation. 

Perhaps the most important part of this section is three-dimensional surface mesh generation applied in 

particular to biomedical imaging. Biomedical imaging methods and image processing represent a huge 

and rapidly developing area of research.  

Section 2.3 begins with a discussion of basic mesh operations (translation, rotation, scaling). Laplacian 

smoothing is then studied, including several permutations of the algorithm. Section 2.3 introduces 

Boolean mesh operations. Section 2.3 finishes with the description of two “collision” algorithms: ray-

triangle intersection and segment-triangle intersection.  These algorithms have a broad application space. 

For example, they may be used to find surface normal vectors and evaluate intersections of two distinct 

triangular surface meshes, triangle by triangle.  The latter method is the foundation for performing 

Boolean operations on realistic surface meshes of human tissues.   

Section 2.4 introduces perhaps the most important computational aspect of mesh transformation: the 

process of adaptive mesh refinement. The physical motivation for adaptive mesh refinement is discussed. 

Laplacian smoothing may be employed to maintain mesh quality.  
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2.1. Triangular mesh and its quality 

2.1.1. Arrays of vertices and faces. Structured meshes 

Arrays of vertices and faces 

A triangular surface mesh is the base of any surface representation including various numerical 

methods in electrical and biomedical engineering, computer graphics, etc. Consider a planar rectangle on 

the size a×b in the xy-plane shown in Fig. 2.2. The goal is to “cover” its surface with triangles – 

simplexes in 2D. Many ways of doing so exist. One such way is shown in Fig. 2.1. 

 

 

Figure 2. 1. Mesh generation for a planar rectangle. 

We first define uniformly spaced x-nodes and uniformly spaced y-nodes. Assume that there are 1xN  

nodal points along the x-axis and 1yN  nodal points along the y-axis. In Fig.2.1, 3,3  yx NN . In a 

general case, one has 
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            (2.1) 

There is a common way of describing triangular meshes, which originates from old NASTRAN programs 

written in the 1970s and 1980s. In order to define a triangular mesh, we need the array of vertices (or 

nodes), P. This array consists of rows; every row includes three Cartesian coordinates of the 

corresponding nodal point. The row number in array P is simply the vertex number. Further, we need an 

array of faces (or triangles), t also called connectivity matrix. This array also consists of rows; every row 

includes three integer numbers of triangle vertices; each such number is simultaneously the row number 
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of the array P. The row number in the array t is the number of the triangular face. For the mesh shown in 

Fig. 2.1, there are 16 nodes and 18 triangles, giving:  
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Structured mesh 

The triangular mesh shown in Fig. 2.1 is called a structured surface mesh.  In a structured mesh, 

the indices of the neighbor vertices for any particular vertex could in principle be calculated using a 

simple addition rule – see Fig. 2.1 and Eq. (2.2). As long as this rule is known, the array of triangular 

patches, t, is not really necessary.  However, in unstructured meshes, studied in the next section, we must 

use a list of each node’s neighbors – the connectivity array, t.   

Non-uniform mesh 

Often, it is desired to increase the triangle density close to the certain areas, for example, close to 

rectangle edges. In this case, Eqs. (2.1), which are the generating equations for nodal points, may be 

modified accordingly. For example, the generator  
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will create the triangular mesh shown in Fig. 2.2. Note that the array, t, remains the same for meshes in 

both Fig. 2.1 and Fig. 2.2.  



12 
 

 

 

Figure 2. 2. Mesh generation for a planar rectangle with non-uniform nodes. 

Mesh storage formats 

Many modern mesh storage formats also include edge information. For example, the winged edge 

format used in computer graphics for each edge gives: two vertices of the edge, two faces attached to the 

edge, and the four edges attached to the edge of interest. Indeed, the edge information can be retrieved 

from the face information and vice versa. The above format is only valid for manifold meshes as 

explained in the following text.  

2.1.2. A 3D triangular mesh. 2-Manifold meshes 

When a third spatial coordinate z is added to the array of nodes in Eq. (2.2), a 3D triangular mesh 

is obtained. Figure 2.3 shows a triangular mesh for a sphere. This mesh has also been generated “by 

hand”. The idea here is to use an initial octahedron mesh, then divide each edge of the mesh, and push all 

the new vertices in the direction of their outer normal so that they all belong to the sphere surface. This 

process is repeated as long as necessary. A problem with the triangular mesh shown in Fig. 2.3 is in 

slightly different triangle sizes on the sphere surface, which is a deficiency if a uniform mesh is needed 

with the approximately equal triangles.  
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Figure 2. 3. A) – A 3D triangular mesh for a sphere with 512 triangles – a 2-manifold mesh; b) – manifold edge; c) – 

non-manifold edge; d) – non-manifold node. 

The 3D triangular meshes are most important for the numerical analysis, computer graphics, and pattern 

recognition. The following two properties are of note: 

1. A 3D triangular mesh usually represents a physical solid object. Therefore, it must be watertight, 

i.e., does not have missing triangles (surface holes).  

2. The surface of a well-behaved triangular mesh in 3D must satisfy one critical condition, which is 

the so-called manifold condition. A mesh is 2-manifold if every node of the mesh has a disk-

shaped neighborhood of triangles – see Fig. 2.3a. This neighborhood can be continuously 

deformed to an open disk. Every edge of a 2-manifold mesh is a manifold edge – see Fig. 2.3b – 

with only two attached triangles.  

3. All other meshes are non-manifold meshes. Fig. 2.3c gives an example of a non-manifold mesh 

with a non-manifold edge. A non-manifold mesh with a non-manifold node is shown in Fig. 2.3d.  

The non-manifold meshes cannot be used for the numerical analysis, in most of the cases. Therefore, they 

must be healed prior to computations.  

The definition of 2-manifold meshes is derived from the definition of 2-manifold surfaces. A surface is 2-

manifold if and only if for each point r on the surface there exists an open ball with center r and 

sufficiently small radius so that the intersection of this ball and the surface can be continuously deformed 

to an open disk [1].   

 

2.1.3. Triangle quality and mesh quality 

The triangular mesh should be used to obtain a solution to differential or integral equations. The 

long narrow triangles seen in particular in Fig. 2.2 are generally not desirable since electric charge and 

current distributions may significantly vary along their lengths. Such a feature is in contradiction with the 

general idea of surface discretization, where we typically assume that the electric (or other) parameters 

are approximately constant for every small triangle.  
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The best triangle is an equilateral triangle, with all three triangle angles equal to 60 degrees, i.e. 

 60 . In reality, the mesh cannot consist of only equilateral triangles. The quality of the 

triangular element is therefore introduced, which is essentially a measure of the deviation from an 

equilateral triangle. One common quality measure is the ratio between the radius of the inscribed circle 

(times two), inr , and the radius of the circumscribed circle, outr , – see Fig. 2.4.  

 

 

 

Figure 2. 4. Radii of the inscribed circle (largest circle contained in the triangle) and the circumscribed circle 

(smallest circle containing the triangle), respectively, for a right-angled isosceles triangle. inr  is called the inradius 

and outr  is  the circumradius. 

The quality factor q is expressed by [2]: 
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where cba ,,  are the triangle sides. Another useful expression is [2]:  
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                             (2.5) 

The overall quality factor of the entire triangular mesh may be the lowest q-factor of an individual 

triangle in the mesh. For example, the mesh shown in Fig. 2.3 has an overall mesh quality 0.83. 

Alternatively, a histogram may be used, which displays the number of triangles of a certain quality. The 

quality factor introduced above is not the only quality measure. Many other measures of element quality 

exist [3], [4], [5]. 

2.1.4. Triangle size and mesh uniformity 

A natural measure of triangle size is the radius of the circumscribed circle, outr  in Fig. 2.4 [6]. 

Such a radius is half of the longest edge for degenerate triangles. For equilateral triangles with side a,  

3/arout                                                                                                                             (2.6)  
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2.2. Delaunay triangulation and three dimensional volume and surface meshes 

2.2.1. Structured vs. unstructured meshes 

Triangular meshes can be categorized as structured or unstructured. Figs. 2.1 and 2.2 of the 

previous section illustrate examples of structured meshes. According to Ref.[7], “structured meshes 

exhibit a uniform topological structure that unstructured meshes lack. A functional definition is that in a 

structured mesh, the indices of the neighbors of any node can be calculated using simple addition, 

whereas an unstructured mesh necessitates the storage of a list of each node’s neighbors.” An example of 

the structured mesh is given by Eqs. (2.2) of section 2.1. There, all rows of the triangle array t are 

computed analytically.  

The structured surface meshes might be used for simple geometries (a rectangle or a brick in 3D). 

Inclusion of non-trivial (polygonal or curved) boundaries usually results in the unstructured meshes. 

Furthermore, the unstructured meshes can provide finer resolution in certain (sometimes not a priori 

known) domains of interest. In what follows, we will study the unstructured meshes.  

2.2.2. Mesh generation and its properties   

Surface mesh generation is a creation of an array of nodes, P, for a geometrical structure and 

subdivision of this structure into small planar triangles described by the array t. There are several 

desirable properties of mesh generation [7]:   

1. The triangles should not intersect the boundaries (in other words, should “respect” the 

boundaries). Consecutive triangle edges should approximate actual curved boundaries by closest 

piecewise-linear boundaries. 

2. The mesh generation should offer as much control as possible over the sizes of elements in the 

mesh. This control means the ability to grade from small to large triangles over a relatively short 

distance. 

3. A third (most difficult) goal of mesh generation is that all the triangles should have a relatively 

high quality as described in section 2.1.  

 

2.2.3. Delaunay triangulation in two dimensions 

According to Ref.[8], “despite an abundance of recent work on procedures of generating good 

triangulation, none of the modern approaches compare in elegance and generality to a procedure 

developed over fifty years ago by the Russian mathematician Delaunay. Delaunay [9] derived a simple 

procedure for triangulating an arbitrary set of points on a plane in such a way that the sum of minimum 

angle(s) in each triangle would be maximized. Since finite-element solutions are most accurate with 

nearly equilateral triangle grids, and since the Delaunay triangulation procedure comes as close as 

possible to this, it is an excellent method to use with the finite-element method.” More precisely, the 

Delaunay triangulation in two dimensions maximizes the minimum angle of all the angles of the triangles 

in the triangulation [7]. In other words, it maximizes minimum triangle quality of the mesh according to 

Eq. (2.5).  

2.2.4. Algorithm  

Assume that we have the array of nodes, P shown by small circles in Fig. 2.5.  We need an array 

of nonintersecting triangles, t.  The following theorem applies: “Three points 321 ,, ppp  are vertices of 

the same triangle of the Delaunay triangulation of P if and only if the circle through 321 ,, ppp  (the 

circumcircle of triangle 321 ,, ppp ) contains no point, P, in its interior. Points on the circle boundary are 

permitted.” 
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This theorem is illustrated in Fig. 2.5. Triangle 321 ,, ppp  in Fig. 2.5a is Delaunay since its circumcircle 

is empty (does not contain any other nodes of P). However, triangle 321 ,, ppp  in Fig. 2.5b is not 

Delaunay since its circumcircle contain another node.  

One popular algorithm for computing Delaunay triangulation is the edge flip demonstrated in Fig. 2.5. It 

begins with an arbitrary triangulation. Then, we use the following theorem: “An edge of the triangulation 

is Delaunay if and only if there exists an empty circle that passes through its vertices.” 

Thus, we check every edge in an arbitrarily-created mesh. If this edge is not Delaunay, such as the edge  

31 , pp  in Fig. 2.5b, we simply flip it as shown in Fig. 2.5a. The flipped edge 32 , pp  is Delaunay. The 

algorithm requires )( 2nO  edge flips for a set P of n points [7].  

 

 

Figure 2. 5. A) – Delaunay triangulation of a set of four nodes; b) – non-Delaunay triangulation of the same node set. 

 

The Delaunay triangulation of a given vertex set is unique. The triangle test or the edge test uniquely 

determines if the triangle or an edge is a part of the triangulation. The known exceptions are a line with 

more than two points on it, a circle with more than three points on it and no points inside, a sphere with 

more than four points on its surface and no points inside, and a few other similar cases [7].  

Many algorithms compute the Delaunay triangulation by a fast check of whether there is a node inside a 

triangle in question or not. Today, the Delaunay triangulation of set P of n points in the plane can be 

computed in O (nlog (n)) expected time, using O (n) expected storage – see, for example Ref. [10].  The 

online documentation, algorithms, and examples are given in Ref.[11].  

2.2.5. Constrained Delaunay triangulation explained through an example 

The Delaunay triangulation should respect the boundary of the object. Therefore, it may start with 

the explicit definition of the boundary nodes and the boundary edges. The explicit inclusion of boundary 

edges is not necessary.   However, for non-convex boundaries and multiple boundaries the explicit 

inclusion of the boundary edges is a must. The Delaunay triangulation constructed in this manner is the 

constrained Delaunay triangulation. Figure 2.6 shows an example [12]. In Fig. 2.6a, we have a polygon 

with eight boundary nodes and no interior nodes. An application of Delaunay triangulation gives the mesh 
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in Fig. 2.6b, which does not respect the boundaries. When, however, the boundary edges are forced to be 

a part of the Delaunay triangulation, the mesh of Fig. 2.6c is obtained. The boundary is respected, but 

there are extra triangles. They are excluded from the mesh by checking the in/out (Boolean) status with 

respect to a closed boundary of an object – see Fig. 2.6d. Hence, the mesh of a non-convex polygon has 

been created.  

 

 

 

Figure 2. 6. Top – unconstrained Delaunay triangulation of a non-convex polygon; bottom – constrained Delaunay 

triangulation with boundary edges included into the mesh and removal of unnecessary triangles. 

Note that reference [13] discusses edge-flip based algorithms for updating and constructing constrained 

Delaunay triangulations and constrained regular triangulations. A large collection of mesh generators can 

be found in online Ref. [14]. 

2.2.6. Delaunay triangulation in three dimensions (tessellation or tetrahedralization) 

Given a set of points P in 3D one can build a tetrahedralization of the convex hull (or a convex 

envelope) that is, a partition of this convex volume into 17quine17dral, in such a way that the 

circumscribing sphere of each tetrahedron does not contain any other point of P than the vertices of this 

tetrahedron, Such a tetrahedralization is called a 3D Delaunay triangulation or tessellation or 

tetrahedralization [17]-[20]. Under non degeneracy assumptions (no three points on a line, etc.) it is 

unique. Many different techniques have been proposed for the computation of Delaunay triangulation in 

3D [15]-[17]. One flipping-based algorithm is as follows [17], [18]. At the beginning the triangulation is 

initialized as a single tetrahedron, with vertices “at infinity”, that contains all points of P. At each step a 

new point from P is inserted and the corresponding tetrahedron, in which this point lies, is split. Then, the 

Delaunay property is re-established by “flipping” 17quine17dral. This method is thus similar to the 2D 

triangulation method described above in Fig. 2.5. 

2.2.7. Three-dimensional surface mesh generation  

This problem is perhaps one of the most complicated tasks of mesh generation. An example is 

biomedical imaging, which is a very large area of research. A workflow for computational biomedical 

phantoms is a set of 3D mathematical surface meshing algorithms for anatomical structures, which are 

extracted from medical imaging data. This data includes Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), etc. A typical sequence for three-dimensional triangular surface mesh 

generation in particular includes: 
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1. Algorithm(s) for image registration and segmentation – creating a dense point cloud in the form of 

a shell corresponding to the boundary of a 3D shape from a stack of images [19]-[22] – see Fig. 2.7. 

2. Algorithm(s) for surface reconstruction/extraction – creating a triangular surface mesh 

corresponding to this point cloud [20], [23]-[27] – see Figure 2.7b. 

3. Algorithms for healing the resulting mesh [20], [23]-[27], mesh smoothing, and coarsening [28], 

[35] – see Fig. 2.7b. 

 
 

Figure 2. 7. Illustration of three-dimensional surface mesh generation for a pelvic bone from the stack of images 

from the Visible Human (VHP) Project using MATLAB tools.  Only a part of the original point cloud, which is the 

starting point of mesh generation, is shown in Fig. 2.7a. 

2.2.8. Algorithms for three-dimensional surface mesh generation   

A naïve but straightforward and simple way is to apply a 3D Delaunay triangulation to a point 

cloud, create a tetrahedral mesh, and extract the surface (boundary) faces. Unfortunately, most of the 

tessellation methods create a final convex tetrahedral mesh, which will mask all non-convex details in 

Fig. 2.7b. Therefore, this method works only for convex objects without holes. For arbitrary bodies, the 

problem greatly complicates. A very important concern is noise present in real scanned 3D data. Given 

that the entire problem is very complex, only a brief outline of two methods are discussed: a sculpting-

based volumetric method [17] and a region-growing surface method – the ball-pivoting method [25]. 

 

Volumetric method 

In sculpting-based methods, a volume tetrahedralization is computed from the data points, 

typically the 3D Delaunay triangulation. This may be done by surrounding the original dataset by a shield 

of extra points – see Fig. 2.8a where a projection of a 3D problem is shown. Tetrahedra are then removed 

from the convex hull to extract the original shape. It is easy to remove the 18quine18dral, which contain 

boundary nodes. It is difficult to remove other 18quine18dral under question. The concept is shown in 

Fig. 2.8a. A certain distance function from the domain surfaces [17] should be available and applicable.  
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Figure 2. 8. Two methods of three-dimensional mesh generation. In Fig. 2.8a, only a projection of a tetrahedral mesh 

is shown. 

Region-growing surface method (ball pivoting) 

The principle of the Ball-Pivoting Algorithm (BPA) is shown in Fig. 2.8b, cited in Ref.[25].  

Three points form a triangle if a ball of a user-specified radius  touches them without containing any 

other point. Starting with a seed triangle, the ball pivots around an edge ab (i.e. it revolves around the 

edge while keeping in contact with the edge’s endpoints) until it touches another point c, forming another 

triangle. The rotation direction is shown in Fig. 2.8b. The process continues until all reachable edges have 

been tried, and then starts from another seed triangle, until all points have been considered. Parts of the 

surface mesh so created are then stitched together. 

Oversampling 

For both methods, oversampling (creation of a very large dense nodal set P) may be a big plus. 

However, the oversampling is limited by the image resolution and other factors.  

 

2.3. Mesh operations and transformations 
 

2.3.1. Topology-preserving mesh transformations 

 

Once created, a triangular mesh (more specifically, the array of vertices P) as a whole could be 

subject to a shift, rotation, or other operations in 3D. A third coordinate may need to be added to a 2D 

surface mesh; the starting point is to use 0)3(:, P . Most common mesh operations include mesh 

translation, rotation, scaling, and deformation. Those operations correspond to the translation, rotation, or 

deformation of the original object. It is important to emphasize that the array of faces or triangles, t, 

always remains the same.  Mesh translation (shift) is the movement as a whole, along some vector

),,( zyx . It is given by:  

 

zPPyPPxPP  )3(:,)3(:,,)2(:,)2(:,,)1(:,)1(:,         (2.7) 
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Another simple operation is mesh scaling. Mesh scaling by the factor ),,( zyx SSS  in three dimensions is 

done according to: 

 

)3(:,)3(:,),2(:,)2(:,),1(:,)1(:, PSPPSPPSP zyx          (2.8) 

 

Mesh rotation about the x-axis by angle   following the right-hand rule is given by: 

 

)3(:,cos)2(:,sin)3(:,

)3(:,sin)2(:,cos)2(:,

)1(:,)1(:,

PPP

PPP

PP











                                            (2.9) 

 

Mesh rotation about the z-axis by angle   is given by a similar expression: 

 

)2(:,cos)1(:,sin)2(:,

)2(:,sin)1(:,cos)1(:,

)3(:,)3(:,

PPP

PPP

PP











                                          (2.10) 

 

A very efficient method for rotating an entire mesh in space, given an arbitrary axis with the unit vector k 

and an angle of rotation   is the Rodrigues’ rotation formula. It has the form (noting that rotation about 

the axis follows the right-hand rule): 

 

)cos1(sin)(cos rowwisenew   KKPKPP                               (2.11) 

 

Here, × denotes the cross-product and array K has the same dimensions as P; it consists of the required 

number of copies of the vector k. Array K   also has the same dimensions as P; it contains three identical 

columns of dot products rowwise)( PK  . The symbol   means Hadamard product (element by element 

multiplication). 

 

2.3.2. Necessity of mesh smoothing 

 

Often, the (constrained) 2D Delaunay triangulation algorithm for planar meshes is readily 

available, in particular using the basic MATLAB platform. Then, a mesh for a 2D convex or any non-

convex complicated shape represented by multiple polygonal boundaries might be created as follows: 

 

1. We select a larger domain of a simple shape that contains all boundaries (a rectangle, circle, etc.). 

We fill this domain with nodes distributed either randomly or, alternatively, as nodes of 

equilateral triangles of a certain size excluding the nodes outside the domain. The resulting node 

array is P.  

 

2. We analytically specify the required boundary nodes, bP , and the corresponding boundary edges, 

C. The boundary nodes are put up front in the resulting node array, ];[ PPP b , in order to keep 

the connectivity in C. This is a very critical step. 

 

3. We apply the constrained Delaunay triangulation with constrains on C and select subdomains if 

necessary. Such subdomains may be, for example, electrodes attached to a conducting object. 
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2.3.3. Topology-preserving Laplacian smoothing  

 

According to Ref.[32], “there are mainly three types of mesh improvement methods: (1) 

refinement or coarsening, (2) edge swapping, and (3) mesh smoothing. The refinement and the coarsening 

mainly try to optimize the mesh density, while edge swapping and mesh smoothing mainly aim to 

optimize the shape regularity. There are mainly two types of smoothing methods, namely Laplacian 

smoothing and optimization-based smoothing.”  

 

In its basic form, Laplacian smoothing implies moving each vertex to the arithmetic average of 

the neighboring vertices while keeping the boundary nodes and boundary connectivity (boundary edges) 

unchanged as shown in Fig. 2.9. In other words, a free vertex of the mesh is simply relocated to the 

centroid of the vertices connected to that vertex. In Fig. 2.9, the node 5p  is moved to the average of the 

neighboring points 4321 ,,, pppp . In this way, the local triangle quality greatly improves. Indeed, in 

order to perform the smoothing we should know the neighboring nodes (neighboring triangles) for every 

mesh node. 

 

 

 

 
 

Figure 2. 9. Concept of Laplacian smoothing. 

 

Reference [34] provides a comprehensive overview of different Laplacian smoothing methods. Some of 

them are briefly listed below.  

 

Standard Laplacian smoothing shown in Fig. 2.9: 

 





ijij ppp

jp
k

p
,

* 1
                                            (2.12) 

 

where i  is the “star” of the vertex ip  having k points and 
*p is the new location of ip .  

 

 

Lumped Laplacian smoothing, 
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



ijij ppp

ji p
k

pp
,

* 1

3

2

3

1
                                           (2.13) 

 

Centroid Voronoi Tessellation (CVT) smoothing utilizing attached triangle centers jt  and areas jA , 

 

 jjj AAtp /*
                                                       (2.14) 

 

Weighted Centroid of Circumcenters (WCC) smoothing utilizing attached triangle circumcenters jc  and 

areas jA , 

 

 jjj AAcp /*
                                                       (2.15) 

Equally-weighted versions of Eqs (2.14), (2.15) may be used.  

 

 

2.3.4. Laplacian smoothing with re-triangulation. Iterative algorithm 

 

After the creation of the initial mesh, the Laplacian smoothing of any type is applied to all free 

nodes except the boundary nodes. After that, the constrained Delaunay triangulation with the constraints 

is defined. Then, the Laplacian smoothing is applied again and the process repeats itself iteratively. One 

measure of convergence is the control of the resulting mesh quality. The process may be stopped when 

the triangle quality ceases to increase or it oscillates about a certain value. Note that the Laplacian 

smoothing does not necessarily converge except for the algorithm Lumped Laplacian smoothing [30].  

 

There are two techniques to calculate new positions,
*p . The first method is to modify all 

positions by one step. This method is called the simultaneous version. The second variant is to update the 

new positions of 
*p  immediately. This variant is called the sequential version. In this latter case, a 

position 
*p  may not solely depend on the “set” of old positions but can also depend on previously 

calculated new positions. The Laplacian algorithm Standard Laplacian smoothing has the property that 

the limits of the two techniques are the same if they exist [30]. 

 

 

2.3.5. Weaknesses of Laplacian smoothing 

The Laplacian smoothing algorithm described in previous subsections has the following weaknesses:  

1. It is a local algorithm with fixed boundary nodes; therefore it is not able to provide high-quality 

uniform meshes from an arbitrary set of given nodes. If the nodes were initially concentrated in 

one local area, they will stay there forever.  

2. For the same reason, it is not well suited for creating high-quality, non-uniform meshes with 

different triangle sizes from a given set of data points; 

3. The proper handling of boundary nodes is an important subject. The method of fixed nodes used 

in this subsection is definitely not the best; it only works when the length of a boundary edge is 

approximately the best anticipated edge length for a given mesh. Also, intersecting boundaries 

require special care. 

 

Laplacian smoothing in three dimensions 
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An undesirable effect is also the obvious “shrinkage” of 3D triangular surface meshes after 

Laplacian smoothing; the entire 3D mesh actually becomes smaller that it is in reality after several 

iterations [30]. A simple algorithm to avoid the shrinkage has been developed [30]. The idea is to push the 

modified points toward the previous points and the original points of the mesh.  

 

2.3.6. Boolean operations with meshes  

Combining multiple meshes into one mesh 

Consider two non-intersecting meshes 11 , tP  and 22 ,tP . The meshes are combined into one mesh 

following the rule: 

 

 12121 ;],;[ ntttPPP                                                                    (2.16) 

 

This rule is easily extended to three and more meshes. Here,  1n  is the number of nodes in the first mesh.  

 

Constructive solid geometry  

Boolean operations with simple shapes in 2D and 3D are a part of Constructive Solid Geometry 

(CSG) or Constructive Volume Geometry (CVG) algorithms [37]-[39], also implemented in MATLAB 

[38] for simple shapes. This very interesting subject is beyond the scope of the present section.  

 

Boolean operations with realistic 3D surface meshes 
While the CSG works quite well for simple shapes, union, subtraction, and intersection of two 

realistic 3D surface meshes is a very difficult task [40]-[44]. All intersecting triangles have to be 

identified, properly split, and re-triangulated in some way or other.  

 

Boolean operations with 2D surface meshes 
The problem simplifies in two dimensions where we only need to split intersecting edges. If a 

function that checks the in/out status of a node in an arbitrary polygon is readily available, the Boolean 

operations may be implemented with the explicit boundary descriptions (through given boundary nodes 

and edges). This is the case with the basic MATLAB package where such a function is inOutStatus of the 

class DelaunayTri. An outer boundary (outer polygon enclosing all objects) must be given. 

 

 

2.3.7 Collision algorithms for 3D surface meshes 

 

Algorithms that find ray-triangle, segment-triangle, and triangle-triangle intersections [40]-[48] 

are in particular a basic component of all collision detection data in computer animation.  As far 

computational purposes are concerned, these algorithms allow us to: 

1. Find outer surface normal vectors for a 3D shell; 

2. Perform the inside/outside check for an arbitrary node;  

3. Perform Boolean operations (union, subtraction, intersection) on realistic 3D surface meshes 

[40]-[44] including meshes of various tissues obtained from the medical image data.  

 

Ray-triangle intersection with Mӧller and Trumbore algorithm [47] 

This algorithm is perhaps most common. We define a ray, )(tR  as dOR  tt)( where O  is 

the origin of the ray and d is the normalized direction vector. We define a triangle by three vertices: 1p , 

2p and 3p . We define the point, )υ,uT( on the triangle as: 

 

321 υu)υu1()υ,u pppT(                                  (2.17) 
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where )υ,u( are barycentric coordinates, which, by definition, meet the following conditions:  

 

,0u ,0  1u .                    (2.18) 

 

To find the intersection point between the ray and the triangle, Eqs. (2.17), (2.18) are to be solved 

simultaneously, which yields 

 

O 321 υu)υu1( pppd  t                                            (2.19) 

 

Rearranging the terms leads to the matrix equation, 

 

  2pOeed 





















u

t

21                                                       (2.20) 

 

where 1e  = 2p - 
1p  and 

2e  = 3p - 
1p . By solving Eq. (2.20) , we can find the barycentric coordinates 

)υ,u(  and the distance, t , from the ray origin to the intersection point. The solution to Eqs. (2.20) is 

obtained using the Cramer’s rule: 
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
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                                         (2.21) 

 

where
1pOtvec  ,  2edpvec   ,  1etvecqvec   and

1epvec det . Fig. 2.10a illustrates the 

implementation of this algorithm in MATLAB for a ray passing through a human eye surface mesh. The 

intersection points are marked.  
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Figure 2. 10. A) – Ray-triangle intersection for a human eye; b) – segment-triangle intersection. 

 

Segment –triangle intersection 

The same algorithm applies (an alternative is the algorithm of Ref. [46], which projects the point 

and triangle onto a 2D coordinate plane where inclusion is tested.). Similar to the ray-triangle intersection, 

we find the point(s) of intersection but the distance of this point from the origin should be less than or 

equal to the length of the segment. Fig. 2.10b illustrates the implementation of this algorithm in 

MATLAB for a ray passing through a human eye surface mesh. The intersection points are marked.  

 

Triangle – triangle intersection and mesh – mesh intersection  

A triangle is a set of three segments. Therefore, a triangle-triangle intersection problem can be 

reduced to the segment-triangle intersection problem considered previously. However, separate fast 

algorithms may be developed too [44], [47].  Next, the mesh-mesh intersection problem can be reduced to 

the triangle-triangle intersection problem since every mesh is a combination of triangles. Consider a 

master mesh X and a slave mesh Y. Both meshes are 2-manifold. For any triangle from the master mesh 

there exist three different intersection cases as shown in Fig. 2.11. Cases #1 and #3 in Fig. 2.11 would 

become equivalent if we could treat the master and slave meshes as one set of triangles.  
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Figure 2. 11. Three types of intersection of a triangle from a master mesh X with various triangles of a slave mesh Y. 

Cases #1 and #3 are equivalent if we treat the master and slave meshes as one set of triangles. 

 

With reference to Fig. 2.11 we could formulate one possible mesh-mesh intersection algorithm as follows:  

1. For each triangle of the master mesh under question, we find intersecting edges ,...3,2,1, iei  in 

Fig. 2.25. 

2. Next, we apply a constrained 2D Delaunay triangulation to triangle’s plane and subdivide the 

master triangle into sub-triangles, which respect intersections.  

3. The same procedure is applied to each triangle under question of the slave mesh.  

4. We construct refined master and slave meshes, which respect all intersections.  

5. Boolean operations on meshes are performed by checking in/out status of separate triangles.  

Apparently, the above algorithm is quite slow. However it is simple and makes use of the existing 

constrained 2D Delaunay triangulation in MATLAB.  

 

Other algorithms implemented in MATAB 

MATLAB central provides a number of related vectorized scripts – see [48], [49]– for ray-

triangle and segment-triangle intersection. 

 

2.3.8. Checking in/out status and finding outer normal vectors for 2-manifold 3D surface meshes 

 

In/out status 

Assume that an observation point in Fig. 2.12a lies outside a 2-manifold shell in three 

dimensions. A ray emanating from this point may or may not intersect this mesh. However, the number of 

intersections will always be even: 0, 2, 4, etc. Similarly, if the observation point lies inside the shell, the 

number of intersections will always be odd: 1, 2, 3, etc.   
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Figure 2. 12. Checking in/out status for a 2-manifold mesh. Only mesh cross-section is shown. 

 

The critical point is that we do not have to check all rays; this can be done only once (excluding some 

degenerate cases). Therefore, a single ray can be constructed that points toward the center of a selected 

triangle in the mesh. Then, the ray-triangle intersection algorithm shown in Fig. 2.12 is applied and the 

number of intersections is counted.  

 

Finding outer normal vectors  

The normal vector is defined as the normalized cross-product of two triangle edges; its sign is 

important. To select only the outer normal vector, we may set an observation point slightly above each 

triangle center, in the direction of the normal vector. If this point is outside the mesh, the normal direction 

is correct. If not, the direction is reversed.  

 

2.4. Adaptive mesh refinement and mesh decimation 
Theory of adaptive mesh refinement in applications to the Boundary Element Method (BEM) or 

the Method of Moments (MoM) is developed in many references – see, for example, [50]-[58]. Its 

detailed analysis is not the subject of this section. This theory depends on the particular method used for 

computations. Here, we present one simple concept. This concept implies the MoM/BEM Galerkin 

method with the accurate calculation of potential integrals, makes it possible to evaluate the electric 

potential and the field at any point of the conducting (metal) boundary or dielectric/magnetic boundary. 

This also utilizes the simple mesh generation methods described in this Chapter.   

2.4.1. Concept of adaptive mesh refinement 

 

As an example, we consider a surface of a metal object in the electrostatic case. Such a surface 

always possesses a given potential/voltage value. However, the charge distribution is to be evaluated 

numerically, for every surface triangle. After the numerical solution for the charge distribution is 

complete, the electric potential may be computed back. Some possible steps for adaptive mesh refinement 

are then as follows: 

 

(1a) Finding local solution error – collocation method. First, an error of the numerical solution must be 

found for every triangle in the mesh. In the collocation method [50], [52], [53] the electric potential on the 

object surface is matched to a given potential value, e.g. 1 V only for the collocation nodes (positions) – 
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typically triangle centers or vertices. A relative potential (or charge/electric field) mismatch for other 

positions could be used as a local error indicator [50], [52], [53]. An excellent early paper on the local 

error behavior is Ref.[50].  

 

(1b) Finding local solution error – Galerkin method. In the Galerkin method, there are no collocation 

nodes. However, once the numerical solution is available, the potential and the field may still be 

recalculated at any point of the boundary. Consider the boundary of a metal object with the constant 

impressed potential of 1 V. Using the existing BEM solution, the electric potential values are recalculated 

at every triangle center separately.  Those values are never 1 V but rather slightly vary about this value. 

The corresponding absolute difference is an error.   

 

(2) Using tangential electric field 

A similar treatment applies to the tangential electric field, which must be zero at the metal surfaces (for 

example, at triangle centers), but is never really zero. The corresponding absolute deviation is again an 

error. For dielectric-dielectric interfaces, the error in the boundary condition for the normal E-field 

component may be computed; for magnetic boundaries, the error in the normal H-field is found to be 

more complicated and physically justified; this is the subject of a separate discussion.   

 

(3) Triangle refinement. Triangles with the largest error (say for example the worst 15% of the total 

number of triangles) are refined by introducing new mesh nodes exactly at the centers of their edges as 

shown in Fig. 2.13. Two scenarios are possible: a) three new nodes at three edges of any triangle in 

question and b) new nodes only on the boundary edges and on edges adjacent to the two triangles in 

question. All boundary nodes including the old and new ones may be put up front in the new node array 

P. 

 

(4) Mesh refinement. Constrained Laplacian smoothing described in the previous section may be applied 

to the new node array P. The Laplacian smoothing may involve Delaunay triangulation(s). The boundary 

nodes are not subject to movement. If an inner node crosses the boundary, it is deleted.  In the present 

section, this method will be developed only for a circle and rectangle, but it is applicable to any polygonal 

domain.  

 

(5) Iterative adaptive mesh refinement. The numerical solution is calculated again and the process 

repeats itself until a stop criteria defined by the algorithm designer is met.  
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Figure 2. 13. Two scenarios of edge subdivisions for triangles with the largest error. 

 

Note that the adaptive mesh refinement implies final meshes with very different triangle sizes; the 

max/min triangle size ratio is at least 10:1 and routinely reaches 100:2. Another feature of the iterative 

procedure is reusing the previous meshes. (see Fig. 2.14) 
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Figure 2. 14. Iterative meshes in the adaptive mesh refinement process. Left column shows the error plot at the 

previous iteration step; right column – the mesh refined according to this error. 

2.4.2. Mesh decimation 

 

Quite often, a dense mesh in certain areas is not required. Depending on factors including the 

problem geometry, field gradient, and value of the error function, large triangles may provide an adequate 

solution, enabling reduction of the problem size and an increase in the speed of the calculation. The 

process of reducing mesh density in certain areas is known as mesh decimation. One popular algorithm 

for mesh decimation is the (incremental) edge collapse schematically shown in Fig. 2.15a (see, for 

example, Ref. [7]). Two nodes 21, pp of an edge (usually the shortest edge in the area of interest) are 

replaced by one node 12p at the edge center and the mesh topology is updated. Yet another algorithm is 

the vertex removal schematically shown in Fig. 2.15b. Node 1p  and all triangles attached to this node are 

removed and the resulting hole is re-triangulated.  
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Figure 2. 15. A) – Edge collapse method; b) – vertex removal. 
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III. Chapter 3: Development of Breathing Sequence 
 

An approximate method to model respiratory motion in a CAD human model subject to 

electromagnetic (or acoustic, thermal) finite-element analysis is suggested and described. Its concept 

implies using affine transformations, which are implemented in commercial FEM software packages, in 

the form of a parametric sweep. This method does not require multiple copies of the CAD model or 

multiple project files. It enables use of arbitrary sampling times and an automatic reposition of on-body 

and in-body devices. The method was applied to the platform-independent full-body electromagnetic 

computational model Visible Human Project® (VHP)-Female v. 3.1. Examples of scattering calculations 

and MRI Coil application will be given. 

 

3.1. Background 
Human respiration is the exchange of air between the lungs and the ambient atmosphere. The 

section below briefly summarizes some major facts pertinent to our study. 

Mechanics. Respiratory mechanics represent a complex multi-object deformation process. It 

predominantly involves the non-rigid motion of the (i) diaphragm, (ii) thoracic cage including ribs, 

cartilage, and sternum, (iii) lungs, (iv) heart, (v) liver, (vi) kidneys, and (vii) intestine. For inhalation, the 

diaphragm contracts and pushes the contents of the abdomen in the inferior direction as shown in Fig. 3.1 

[1] and Fig. 3.2 [2]. Simultaneously, the external intercostal muscles expand the rib cage and slightly raise 

it. For exhalation, the diaphragm and the external intercostal muscles relax.  

 

 
Figure 3. 1. (a) Maximum exhalation position; (b) Maximum inhalation position, after [1]. 

 

Diaphragm motion. Respiration is chiefly driven by the diaphragm with primary motion in the 

superior-inferior direction; total travel is estimated as 10-30 mm during quiet breathing [1]. Other studies 

report 20±7.0 mm average [2]. A simplified 1D diaphragm motion, )(tx , is non-harmonic, and the 

exhalation portion dominates the inhalation. Given the exhalation at origin of a healthy subject in normal 

condition, one has  

 

tAtx 4cos)(                                                                      (3.1) 

 

where A is the corresponding amplitude [3],[4]. Furthermore, the respiratory motion often exhibits 

hysteresis in space, with an amplitude on the order of 2-4 mm [1]. 

Adjacent tissues. Closely adjacent structures (i.e., liver, etc.) show comparable motion amplitudes. 

Furthermore, the following motion amplitudes have been observed for a healthy subject (cf. a review in 

Ref. [1]): 

- Motion with an average amplitude of 12mm in the lung for tissue parts not attached to rigid structures; 

- 1-25 mm superior-inferior motion of the kidneys, 13 mm superior-inferior motion of the spleen, 2-8 

mm motion of the heart (the heart motion is mostly a simple rigid-body translation [5], [6]), and 1-7 

mm motion of the trachea; 
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- 13 mm superior-inferior motion of the spleen. 
 

 
Figure 3. 2. Respiratory motion captured via MRI retrospective gating and averaging over multiple cycles, 

after [2]. The green contour indicates lung volume at maximum exhalation. 

 

Thoracic cage kinematics. During respiration, the ribs rotate about an axis through their costal 

necks to affect the anteroposterior and transverse diameters of the thoracic cavity as shown in Fig. 3.3 

[5],[7]. 

 

 
Figure 3. 3. Motion of the ribs during respiration, after [5],[7]. The ribs rotate about an axis through their 

costal neck. 

 

CAD B-Spline modeling. Modeling of the breathing cycle to date has been mostly performed via 

deformable NURBS surfaces (B-splines) for the lungs and surrounding tissues. The changes the phantoms 

undergo are then typically splined over time to create time continuous 4D respiratory models [5],[8],[9], 

which indeed utilize free-form deformations. 

Challenges of FEM CAD Modeling. Commercial FEM codes do not operate with B-spline 

surfaces but rather with triangulated surfaces and tetrahedral/hexahedral volumes. This is in particular 

valid for most frequency-domain electromagnetics solvers such as ANSYS EM Suite/Maxell 3D and CST 

Microwave Studio. Therefore, a free-form breathing sequence has to be ultimately converted to a (large) 

discrete series of separate (full-body) triangulated CAD models, even if the original data were in the form 

of parametric B-splines. Generally, this conversion requires ssignificant additional meshing times. 

The size of one detailed FEM full-body model is quite large (about 200-1000 Mbytes in ANSYS) 

and a computation with 20-30 such models would be a significant challenge from several points of view. 

For example, a user will need to create, run, and then post-process a number of large distinct project files, 

each of which must replicate his own excitation setup (e.g. a coil, an antenna, or a radar) and employ a 

new human model.  
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3.2. Approach 
Built-in affine transformations. A commercial CEM package typically includes a set of nine 

affine transformations:  

 3 translations (in the x, y, z directions); 

 3 rotations (about the x, y, z axes); 

 3 directional scaling transformations (along the x, y, z axes); 

applicable to any object (including a triangular tissue mesh) or to a group of objects and in the form of a 

parametric sweep. These transformations can be performed in either global or local coordinate systems. 

The user can initialize a discrete generic global variable, Nnxn ,...,0,  , define object geometry 

parameters as certain unique functions of nx , and then move/rotate/deform every object of a multi-object 

structure independently within the framework of the same project file. 

Approach. Built-in parameterized affine transformations to construct breathing cycles (quiet, 

deep, shallow) were applied using only one base full-body human model and using only one project file. 

Along with the base static human CAD model, this project file includes a parametric sweep or sweeps 

modeling deformations of involved tissues. Such an approach is not exact, but it may have sufficient 

accuracy when the parametric sweep is carefully designed. It will allow us to employ any temporal 

resolution, which is impossible with discrete models. To construct an anatomically relevant breathing 

cycle, the project aim is to follow the anatomical data collected from Refs. [1]-[9] as close as possible. 

Challenges. To design an FEM-compatible and anatomically justified multi-tissue affine 

parametric sweep, a very extensive preprocessing of the static human CAD model is necessary, which is a 

significant undertaking. 

 

3.3. Selecting a sweeping variable 

The natural sweeping variable nx  is proportional to the diaphragm motion. Since the breathing 

cycle is periodic, only one period T  must be considered. According to Eq. (1), physical time, t, is 

expressed through a sweep variable Nnxn ,...,0,  by  
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This result can be programmed in MATLAB as 

 

E = 11; t_=0:E; T = 1; t = T*(pi/2-acos((t_/E).^0.25))/pi; plot(t_, t, ‘-*’); grid on; 

 

Table 3.1 gives the corresponding numerical time values. Sweeping variable nx  runs from zero to N=11 

in twelve uniform steps. Its zero value corresponds to maximum exhalation; its maximum value of 11 

corresponds to maximum inhalation.  

 

Table 3. 1. Time values in terms of period, T, corresponding to the sweeping variable Nnxn ,...,0, 

for N=11. 

nx  t/T 

0 0.0000 

1 0.1850 

2 0.2265 

3 0.2571 

4 0.2830/ 



39 
 

5 0.3066 

6 0.3292 

7 0.3515 

8 0.3747 

9 0.4000 

10 0.4308 

11 0.5000 

10 0.5692 

9 0.6000 

8 0.6253 

7 0.6485 

6 0.6708 

5 0.6934 

4 0.7170 

3 0.7429 

2 0.7735 

1 0.8150 

0 1.0000 

 

Higher N values can be considered for a better accuracy.  

 

3.4. Static CAD model 
As a base human model at maximum exhalation, the VHP-Female v.3.1 CAD model, 

(http://www.nevaem.com/) shown in Fig. 3.4, was chosen. The model has 26 individual tissues, 270 

individual tissue parts, major blood vessels and peripheral nerves, and a superior resolution in the spinal 

cord/cranium. The sweep for the respiratory motion will be implemented for the BASE model versus 

ACCURATE model (Section 4.14). Only the results for the BASE model will be reported here.  

The subject is a ~60 year old white female with a height h of 162 cm measured from top of the 

scalp to the average center of both heels. The body mass M, computed using standard tissue densities [11] 

and assigning the average body shell, which includes internal tissues, the density of muscle, is ~88 kg. 

The computed BMI is ~33.5 (moderately obese). The subject has a heart pathology. 

 

http://www.nevaem.com/
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Figure 3. 4. Static VHP-Female v.3.1 CAD model at maximum exhalation (http://www.nevaem.com/). 

http://www.nevaem.com/
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3.5. Respiratory cycle and CAD tissues affected by respiratory motion 
The overall change in lung volume is set at 0.32 L, which is close to a normal-to-shallow 

breathing sequence for this subject. Default temporal resolution includes 12 discrete uniform steps from 0 

to 11 in steps of 1 from maximum exhalation to maximum inhalation. The default full cycle includes 23 

discrete steps. Breathing cycles with finer resolution may be trivially constructed. 

The following major set of tissue parts (35 in total) are affected by the respiratory motion: 

- Lungs; 

- Ribcage with 24 ribs (every rib is moved independently); 

- Thoracic cage cartilage; 

- Sternum; 

- Pectoralis muscles (major/minor); 

- Abdominal muscles; 

- Erector spinae muscles; 

- Heart (muscle); 

- Liver; 

- Stomach; 

- Outer shell – average body; 

- Outer shell – fat; 

- Outer shell – skin. 

These objects are transformed so that there are no intersections between any of them at any time moment, 

with the minimum deformation factors. These transformations are to be performed in global or local 

coordinate systems. 

3.6. Required accuracy – total body mass 
Since the respiratory motion modeled with multiple deformed CAD objects is an approximation, 

a requirement should be made with regard to the total mass error. It is required that the maximum relative 

body mass variation shall not exceed 0.1% during the entire respiratory cycle.  

3.7. Algorithm 
Below, suggested kinematics and dynamics for the individual tissues are reviewed. All 

quantitative approximations and the final formulas are thoroughly described in Appendix A. Note that the 

sequence below is the development sequence. In actual implementation of the respiratory sequence in 

CEM software, all motions of different objects occur in parallel.  
 

Lung dynamics. This is the first deformation step described in detail in Appendix A. In a local co-

ordinate system associated with the top of the lung, the lung is deformed in all three directions and is 

moved in one direction in order to guarantee the expected diaphragm movement of 20 mm and 

simultaneously the volume change of 0.32 L, while maintaining anatomically sound overall deformations. 

Thoracic cage kinematics. This is the second deformation step. Since the rotation axes are very 

loosely defined for the actual anatomical data, we have rotated each rib pair about a fixed axis passing 

through the heads of two ribs (the end parts closest to the spine). We have also rotated slightly the rib 

pairs about the vertical axis. Thus, every rib pair is subject to rotation about two axes. All permissible 

variations of rotation angles have been tested, for every rib pair, in order to satisfy two criteria: (i) avoid 

intersections with the lung; and (ii) stay as close to the lung as possible.  

Sternum/cartilage dynamics. This is the next deformation step. The sternum is subject to a 

translation motion, without rotation. Fixed control points on its surface are introduced. Those control 

points, along with the rib tips, form lines, along which the corresponding cartilage parts will further be 

deformed (moved and expanded).  
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Muscles dynamics. In this case, we apply rotations, movements, and slight deformations. The goal 

is to minimize overall movement while avoiding intersections with the thoracic cage.  

Heart kinematics. The heart is moved in two directions (along top to bottom axis and back to 

front axis) without rotations and deformations. The cardiac cycle is not considered. 

Liver/stomach kinematics. Liver and stomach are moved in two respective directions and are 

slightly deformed; see Appendix A. 

Outer full-body shells. This is the only case where we cannot apply affine transformations. 

However, we may apply Boolean operations with the tissue CAD objects. A number of deformed chests 

objects are created internally, and then they are united with the otherwise static full-body shells. This 

operation requires greater care since we have two very closely spaced (1 mm) body shells.  

 

3.8. Polynomial interpolation with MATLAB Curve Fitting Tool 
After a discrete set of affine transformations has been established, this set was converted to 

polynomials using the MATLAB Curve Fitting Tool applicable to any temporal resolution and reported in 

Appendix A. The polynomial approximations have been independently tested with a fine grid. As an 

example, Table 3.2 reports affine polynomial approximations for several muscles. Note that the dynamic 

variable t in Table 3.1 is not the actual time, but is proportional to the diaphragm motion )(tx  in Eq. 

(3.1). Affine transformations are performed with local coordinate system or global coordinate system. 

Local coordinate system of each object is its center (mean(x,y,z)). 

Table 3. 2. Affine transformations of some muscles (inhalation only) of the VHP-Female model. 

Muscles 
Polynomials of deformation factors  

(angles are recorded in degrees) 

Pectoralis 

minor 

(in local 

Coordinate

System) 

𝐿𝑒𝑓𝑡 

Rot z 
−7.149𝑒 − 5 ∗ 𝑡6 +  0.00252 ∗ 𝑡5 − 0.03393 ∗ 𝑡4 +  0.2181 ∗ 𝑡3  

− 0.681 ∗ 𝑡2 +  1.406 ∗ 𝑡 +  0.005579 

Move 

y 

0.0002042 ∗ 𝑡6 − 0.007194 ∗ 𝑡5 + 0.09695 ∗ 𝑡4 − 0.6231 ∗ 𝑡3

+  1.946 ∗ 𝑡2 − 4.016 ∗ 𝑡  − 0.01594 

Scale 

y 

2.042𝑒 − 7 ∗ 𝑡6 − 7.194𝑒 − 6 ∗ 𝑡5 + 9.695𝑒 − 5 ∗ 𝑡4 − 0.0006 ∗ 𝑡3

+ 0.001946 ∗ 𝑡2 − 0.004 ∗ 𝑡 + 0.999984 

𝑅𝑖𝑔ℎ𝑡 

Rot z 
1.083𝑒 − 05 ∗ 𝑡6 +  8.348𝑒 − 05 ∗ 𝑡5  − 0.00957 ∗ 𝑡4 +  0.1344 ∗ 𝑡3  

− 0.7021 ∗ 𝑡2 +  1.774 ∗ 𝑡 +  0.01398 

Move 

y 

−3.095𝑒 − 5 ∗ 𝑡6 − 0.0002385 ∗ 𝑡5 +  0.02734 ∗ 𝑡4 − 0.3841 ∗ 𝑡3

+  2.006 ∗ 𝑡2 − 5.067 ∗ 𝑡 − 0.03994 

Scale 

y 

3.09𝑒 − 8 ∗ 𝑡6 − 2.385𝑒 − 7 ∗ 𝑡5 + 2.73𝑒 − 5 ∗ 𝑡4  − 0.00038 ∗ 𝑡3

+ 0.002 ∗ 𝑡2 − 0.005067 ∗ 𝑡 + 0.99996 

Pectoralis 

major 
𝐿𝑒𝑓𝑡 

Move 

z 

−0.00013 ∗ 𝑡6 +  0.004709 ∗ 𝑡5 − 0.0656 ∗ 𝑡4 + 0.4366 ∗ 𝑡3  − 1.388

∗ 𝑡2 +  2.397 ∗ 𝑡 − 0.005142 
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(in local 

Coordinate

System) 

Move 

y 

−0.05 + 0.0002525 ∗ 𝑡6 − 0.00914 ∗ 𝑡5 +  0.1272 ∗ 𝑡4  − 0.8445 ∗ 𝑡3

+  2.673 ∗ 𝑡2 − 4.721 ∗ 𝑡 +  0.01132  

Scale 

y 

2.6𝑒 − 7 ∗ 𝑡6  − 9.418𝑒 − 6 ∗ 𝑡5 +  0.0001312 ∗ 𝑡4 − 0.00087 ∗ 𝑡3

+  0.0028 ∗ 𝑡2 − 0.0048 ∗ 𝑡 +  1.00001028 

𝑅𝑖𝑔ℎ𝑡 

Move 

z 

−4.642𝑒 − 05 ∗ 𝑡6 + 0.001553 ∗ 𝑡5 − 0.02174 ∗ 𝑡4 + 0.1655 ∗ 𝑡3  

− 0.6858 ∗ 𝑡2 + 1.801 ∗ 𝑡 +  0.02082 

Move 

y 

9.284𝑒 − 05 ∗ 𝑡6  − 0.003107 ∗ 𝑡5 +  0.04348 ∗ 𝑡4 − 0.331 ∗ 𝑡3

+  1.372 ∗ 𝑡2 − 3.602 ∗ 𝑡 − 0.04165 

Scale 

y 

9.284𝑒 − 8 ∗ 𝑡6 − 3.107𝑒 − 6 ∗ 𝑡5 + 4.348𝑒 − 5 ∗ 𝑡4 − 0.00033 ∗ 𝑡3

+  0.00137 ∗ 𝑡2 − 0.0036 ∗ 𝑡 + 0.99995835 

Erector 

Spinae  

(in local 

CS) 

𝐿𝑒𝑓𝑡 

Scale 

y 

8.987𝑒 − 06 ∗ 𝑡6  − 0.0003339 ∗ 𝑡5 +  0.004839 ∗ 𝑡4  − 0.03445 ∗ 𝑡3

+  0.1242 ∗ 𝑡2 − 0.2474 ∗ 𝑡 + 0.998756 

Scale 

x 

4.493𝑒 − 06 ∗ 𝑡6 − 0.0001669 ∗ 𝑡5 +  0.00242 ∗ 𝑡4 − 0.01723 ∗ 𝑡3

+ 0.06208 ∗ 𝑡2 − 0.1237 ∗ 𝑡 + 0.9993778 

Move 

y 

−1.123𝑒 − 05 ∗ 𝑡6 −  0.0004174 ∗ 𝑡5 + 0.006049 ∗ 𝑡4 −  0.04307

∗ 𝑡3 + 0.1552 ∗ 𝑡2 −  0.3093 ∗ 𝑡 −  0.3093 

𝑅𝑖𝑔ℎ𝑡 

Scale 

y 
−0.02 ∗ 𝑡 + 1 

Scale 

x 
−0.02 ∗ 𝑡 + 1 

Move 

y 
−0.05 ∗ 𝑡 

Abdominal 

(in global 

CS) 

Move z 0.09091 ∗ 𝑡 ∗ 10−3 

Move y −0.35 ∗ 𝑡 ∗ 10−3 
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3.9. Results 
The corresponding full-body VHP-Female model with the embedded respiratory motion in the 

form of a parametric sweep described in Appendix A has been independently realized in  

- ANSYS Electronics Desktop software package 

- CST Studio Suite software package 

- MATLAB  

The maximum body mass variation during the entire respiratory cycle is 80 g, which is less than 0.1% 

of the total body mass. The parametric sweep may be adjusted/modified at any time in response to further 

anatomical evaluations and customer needs. 

 

3.10. RF test at 300 MHz 
The problem geometry is shown in Fig. 3.5. An incident plane wave at 300 MHz has a horizontal 

polarization. The simulations have been performed in ANSYS HFSS with three adaptive mesh refinement 

passes and with the final meshes approaching 1M 44quine44dral.  

Near field. Fig. 3.5 shows the near-field results at three observation points given a 1 V/m incident 

wave. The scattered field is plotted. In the illuminated zone, the co-pol near field data may vary by about 

3% due to the respiratory motion. In the shadow zone, the corresponding variation is negligibly small. 

Cross-polarization components may exhibit considerably larger relative near-field variations.  

 

Figure 3. 5. Scattered field in the Fresnel region at 300 MHz. 

RCS (Radar Cross Section). RCS is the measure of a target’s ability to reflect radar signals in the 

direction of the radar receiverFig 3.6 shows the monostatic RCS of the heterogeneous breathing VHP-

Female Model during the respiratory cycle. The RCS variations are about 1%.  
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Figure 3. 6. Monostatic RCS during the respiratory cycle. 

3.11. MRI Coil Application 
Any RF MRI coil such as a high-pass birdcage coil shown in Fig. 3.7 is a familiar LC resonator 

[14]. The number of distinct coil resonances is equal to the number of the tuning capacitors (“springs”) in 

Fig. 3.7. The resonances appear in pairs corresponding to the pairs of upper and lower capacitors in Fig. 

3.7 Magnetic fields of each pair of resonant models are perpendicular to each other. When combined, 

these two perpendicular fields create a circular polarization [12]. 

In order to find all resonances of the coil and then select the main resonant mode pair, we will 

consider the coil in Fig. 3.7 as a generic N-port linear network. Every tuning capacitance is now 

becoming an independent port driven by an RF generator. The N-port network is routinely modeled in 

any commercial CEM software at the known resonant frequency. As a result, an impedance matrix Ẑ is 

obtained, which relates port voltages V⃗⃗  and currents I . The N distinct coil resonances correspond to N 

eigenvalues and N eigenvectors of the impedance matrix Ẑ, very similar to the eigenvalues of the stiffness 

matrix in mechanical engineering of lumped resonant systems. We find those eigenvalues in MATLAB. 

The pair of desired resonant modes must generate a magnetic field that is as homogeneous as 

possible within the coil. In this case, the current distribution I  for every mode in the pair must be a 

sinusoidal function of the polar angle φ around the coil with exactly one period. The corresponding mode 

strength is computed via a Fourier coefficient. The analysis of mode strength will show two nearly equal 

clear peaks (10-50 times higher than the rest of the values) corresponding to the two desired modes. 

In practice, only a limited number of ports are driven (typically two or four). In order to obtain an 

“ideal” solution exactly corresponding to the two resonant modes, we will drive all ports and assume 

ideal port matching to the characteristic impedance. Given the known impedance (and scattering) 

matrices, this condition yields all port sources necessary to excite the best possible 𝑩1
+. 
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Figure 3. 7. Generic high-pass birdcage MRI RF coil. Tuning capacitors and/or driving ports are marked green. 

We constructed and simulated models mimicking maximum exhalation ( 0nt ), zero pressure 

gradient ( 5nt ), and maximum inhalation ( 11nt ) using the perfectly matched RF coil model. This 

method uses a resonant-model of a coil optimally driven at all possible ports. The coil is loaded with a 

dynamic virtual human VHP-Female v. 4.0 (height 162cm/weight 88 kg). Each tissue has been 

augmented with accurate material properties. 

Table 3.3 shows averaged simulation results for the virtual human VHP-Female 4.0 in a high-pass 

full body birdcage coil shown in Fig. 3.7 at 1.5 T field (64 MHz) at the shoulder landmark. The coil has 

16 rungs, 32 matching capacitors (each of which can be connected to a driving port), the diameter of 640 

mm and the length of 689 mm, which is close to the dimensions given in Ref. [13]. Below, we present 

resonant capacitance values of the high-pass MRI coil in Fig. 3.7. Our numerical results from Table 3.3 

obtained with FEM software ANSYS Electronics Desktop reveal that coil detuning due to respiration is 

generally very small. The maximum deviation occurs somewhere in between maximum exhalation and 

minimum inhalation.  

Table 3. 3. Computed resonant capacitance values for a perfectly-tuned loaded high-pass full-body birdcage coil during the 

respiratory cycle. 

 Max 

exhalation  

( 0nt ) 

Intermediate 

time 

( 5nt ) 

 Max 

inhalation  

( 11nt ) 

Resonant 

Capacitance 

Mode 1 (pF) 

112.0477 112.0863 112.0467 

Resonant 

Capacitance 

Mode 2 (pF) 

112.2804 112.3204 112.2538 

 

A series of figures illustrating Specific Absorption Rate (SAR) variations for various breathing 

times is given in Table 3.4.  
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Table 3. 4. SAR 10g plot 

Model 
SAR: Max exhalation 

( 0nt ) 

SAR: Zero pressure 

gradient 

( 5nt ) 

SAR: Max inhalation 

( 11nt ) 

 

   

 

Finite-element simulations performed for the anatomically realistic breathing cycle provided quantitative 

estimates of MRI RF coil detuning. Results demonstrate that detuning is quite small. Such a result is 

qualitatively expected since the respiratory motion causes negligibly small changes in the body mass.  
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IV. Chapter 4: Development of VHP Female 4.0 and Review of Prior Work 

4.1. Review of Prior Work 

4.1.1. Source 

 The VHP-Female CAD model is a full-body computational human model based on the open-

source Visible Human Project®-Female cryosection dataset of the U.S. National Library of Medicine 

(NLM) [1]. Fig. 4.1 shows an example of the color cryosection image.  

 

 
 

Figure 4. 1. Abdominal image of the cryosection dataset. 

4.1.2. Construction 

 The model includes more than 250 parts that were created with manual and semi-automatic 

image segmentation, in particular via ITK-SNAP [2], [3] and MATLAB. Mesh processing algorithms [4]-

[6] were developed for surface extraction and mesh healing. The VHP-Female v.3.0 is distributed in the 

form of 3D CAD objects. Each 3D CAD object is a triangular surface mesh as consisting of triangle 

vertices, t, and vertex coordinates, P. Fig. 4.2 shows an example of the intestine object with triangular 

mesh.  
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Figure 4. 2. Small and large intestines, and the rectum – derived from Visible Human Project® Female. 

 

4.1.3. Model anatomy and materials 

 The model was assigned tissue properties from the IT’IS database, which covers the frequency 

band from 10 Hz to 100 GHz [7].  

 

4.1.4. Three previous model versions 

A. VHP-Female version 3.0 BASE (DOI:10.20298/VHP-Female-V.3.0-BASE) 

VHP-Female 3.0 Base is the master model version, which serves as the base for the creation of 

the two previous versions. It has 26 individual tissues and 216 separate tissue parts with approximately 

160,000 triangular facets in total.  

 

B. VHP-Female version 3.0 SMOOTH (DOI:10.20298/VHP-Female-V.3.0-SMOOTH) 

 The SMOOTH version is similar to the BASE version but all tissue objects were smoothed to 

avoid sharp edges and reduce file size. The total number of triangular facets is about 600,000. This 

version is primarily intended for more accurate SAR calculations.  

 The differences between BASE and SMOOTH models are demonstrated in Fig. 4.3. It shows 

the same view of the cardiovascular system for BASE and SMOOTH models, respectively. Fig. 4.4 

shows thorax of the SMOOTH model.  

 

C. VHP-Female version 2.2 (DOI:10.20298/VHP-Female-V.2.2) 

 This is VHP-Female version 3.0 BASE with all individual muscles removed (except for the 

cardiac muscle). The average body object may now be assigned muscle properties.  

 

 

a) b)

P1959

P1960

P1961

t = ...

2013    1920 1931 1933

2015    1959 1960 1961

     ...

P =  ...

1959 0.1841 0.0242 0.8655

1960 0.1821 0.0293 0.8621

1961 0.1823 0.0325 0.8671

     ...
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Figure 4. 3. Right –BASE model v. 3.0; Left –the SMOOTH model v.3.0. 

 
 

Figure 4. 4. Thorax of the SMOOTH model V. 3.0 with some objects removed for clarity. 



52 
 

 
Figure 4. 5. Anterior view of the VHP-Female computational smooth model v. 3.1 within MATLAB. Illustration of tissue object development 

from cryosection images and 3D printed femur model is shown. Fat and some muscles are not shown. 
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Figure 4. 6. A) Graphical representation of sciatic nerves in the lower pelvic region; b) Illustration of sciatic nerves in the cryosection image 

from the original dataset; c) Graphical and realistic illustration of radial, median, and ulnar nerves in the forearm region. 

4.2. VHP 3.1 

4.2.1. Peripheral Nervous System and Cardiovascular System 

Version VHP-Female v.3.1 includes a state of the art peripheral nervous system which 

currently comprises of the radial, median, ulnar (brachial plexus) and sciatic nerves (sacral 

plexus) segmented over large lengths. The inclusion of cauda equina along with the brachial 

plexus and sacral plexus is the first of its kind, a unique feature of the VHP-F v3.1 model. This 

peripheral nervous system can be used to study and model various electrical stimulation systems 

operating on peripheral nerves. Note that a high-resolution human-head model developed in [8] 

has the detailed representation of twelve cranial nerves. 

N. sciatic

a)

b)

N. sciatic

N. sciatic N. sciatic

N. radial

N. median

N. ulnar

c)
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Figure 4.6 shows the graphical cartoon representations of the sciatic nerve, as well as 

radial, median, and ulnar nerves along with the corresponding anatomical counterparts identified 

in the cryosection images from the VHP-Female image dataset. The nerve tissues were registered 

and segmented via segmentation algorithms developed in MATLAB. The final triangular tissue 

mesh structure was built upon the existing point cloud, in the form of connective cylindrical 

elements with varying radii and lengths. The traditional ball-pivoting algorithm is not effective; 

it generated results with a low mesh quality since the nerves are extremely thin as compared to 

other tissues. Table 4.1 summarizes the existing nervous tissues and other nervous tissues 

considered for future development. 

 
Table 4. 1. Nerves in VHP-Female v. 3.1. 

Tissue Name Triangle 

Size 

Mesh  

Quality 

Minimum 

Edge Length 

Median Nerve left 520 7.14E-7 0.39E-3 

Median Nerve Right 492 5.24E-4 0.64 

Sciatic Nerve left 946 9.63E-4 0.60 

Sciatic Nerve right 932 7.23E-2 0.59 

Radial Nerve left 762 8.24E-6 0.03 

Radial Nerve right 476 2.66E-3 0.34 

Ulnar Nerve left 476 1.90E-2 0.57 

Ulnar Nerve right 540 4.51E-6 0.02 

Peroneal Nerve left  

Peroneal Nerve right  

Femoral Nerve left  

Femoral Nerve left  

Saphenous Nerve left 

Saphenous Nerve right 

 

 

 

Under development 

4.2.2. Muscular System 

Along with the heart muscle, the muscular system includes major skeletal muscles (32 in total) in 

the form of separate objects. All muscle objects are contained within the average body object depicted in 

Fig. 4.5. Table 4.2 summarizes the muscle and other enhancements in VHP-Female v.3.1 as compared to 

VHP-Female v.2.0. 
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Table 4. 2. Major Improvements in VHP-Female v. 3.1 

List of improvements 

1 Development of sciatic nerve, ulnar nerve, radial nerve, and 

median nerve for the right and left sides, respectively (state-of-

the-art). Addition of spinal cord cauda 55quine.  

2 Expansion of systemic venous system.  

3 Addition of erector spinae left and erector spinae right. 

4 Addition of pectoralis major left, pectoralis major right, 

pectoralis minor left, and pectoralis minor right. 

5 Addition of abdominals left bottom, abdominals left middle, 

abdominals left top, abdominals right bottom, abdominals right 

middle, and abdominals right top.  

6 Improvement of ribs left2, ribs left7, ribs left8, ribs left9, ribs 

right2, ribs right7, ribs right8, and ribs right9 along with 

respective cartilages. Separation of clavicle left, clavicle right 

from the rib cage. 

7 Development of forearm flexors left and right, respectively. 

8 Anatomical accuracy of Grey Matter/White 

Matter/Intestine/Bladder improved. 

9 Development of spleen. 

10 Sharp corners have been smoothed, which improves the 

numerical accuracy. 

4.2.3. Smoothed Model and Base Model 

The VHP-Female v.3.1 model includes two versions: BASE (~160,000 facets) and SMOOTH (a 

smoothed version for more accurate SAR calculation with ~640,000 facets). The corresponding doi 

numbers (related to version 3.0) are as follows: 

DOI:10.20298/VHP-Female-V.3.0-BASE 
DOI:10.20298/VHP-Female-V.3.0-SMOOTH 

  The BASE and SMOOTH versions of the model have the same number of tissues and identical 
topology. The corresponding surface deviation between the two models does not exceed 0.2-1 mm on flat 
surfaces, but may be as high as 2-7 mm for sharp edges and corners.  

  During electromagnetic simulations the surface charge density formally becomes singular at any 
edge (not necessarily sharp) of a triangular mesh with non-planar triangles. For sharper edges and large 
adjacent triangles, this local (electrostatic) effect becomes quite significant and may lead to non-physical 
field/current peaks [9]. This deficiency has been addressed in the smooth version.  

4.3. Improvements of VHP 3.1 and the creation of VHP Female 4.0 
Some tissues were re-segmented to improve anatomical accuracy of the VHP 3.0 model. These 

tissues were segmented by a group of undergraduate students, led by Dr. Noetscher and Dr. Yanamadala, 

during Summer 2016. They include: cranium system, 3-piece hand phalanges, more accurate version of 

ribcage, ulna radius bones, humerus bones, along with nerve system: median nerves, peripheral nerves, 

radial nerves, and ulnar nerves. These tissues (which include resolving intersections, non-manifold edges, 

and registering them into correct anatomical positions in VHP model) were post-processed during the 

course of this thesis with SpaceClaim, MATLAB, and finally validate the new model, VHP Female 4.0, 

in ANSYS HFSS. 
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4.3.1. VHP Female 4.0 Accurate 

The VHP Female 4.0 Accurate model has 703,804 triangles in total. The list of updated tissues is 

showed in table 4.3. 

Table 4. 3. List of updated triangular surface meshes – version Accurate 4.0 

Legend: 

Hard tissues Soft tissues Individual muscles Cartilage Nervous tissues 

 
Mesh 

no Tissue name 

Triangle 

size Mesh quality 

Min. Edge 

Length Tissue Type 

1 

VHP Hands1 

1Phalange left 336 0.561483603 1.304314414 Bone 

2 

VHP Hands1 

1Phalange right 482 0.378796118 0.638968718 Bone 

3 

VHP Hands1 

2Phalange left 214 0.597801938 0.930630174 Bone 

4 

VHP Hands1 

2Phalange right 488 0.38328069 0.699838528 Bone 

5 

VHP Hands1 

3Phalange left 162 0.223276291 0.919268845 Bone 

6 

VHP Hands1 

3Phalange right 238 0.452761662 0.703404769 Bone 

7 

VHP Hands2 

1Phalange left 554 0.444626812 0.840372777 Bone 

8 

VHP Hands2 

1Phalange right 590 0.239003725 0.458872814 Bone 

9 

VHP Hands2 

2Phalange left 362 0.276602112 0.875563174 Bone 

10 

VHP Hands2 

2Phalange right 392 0.334744462 0.960809081 Bone 

11 

VHP Hands2 

3Phalange left 206 0.35070248 1.017620025 Bone 

12 

VHP Hands2 

3Phalange right 240 0.30728027 0.598465013 Bone 

13 

VHP Hands3 

1Phalange left 446 0.543485609 1.206987764 Bone 

14 

VHP Hands3 

1Phalange right 504 0.272527569 1.003718792 Bone 

15 

VHP Hands3 

2Phalange left 444 0.418436275 0.97062073 Bone 

16 

VHP Median Nerve 

left 520 7.14E-07 0.000393 Nerves 

17 

VHP Median Nerve 

Right 492 0.000525 0.641692 Nerves 
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18 

VHP Peripheral 

Nerve left 946 0.000964 0.600546 Nerves 

19 

VHP Peripheral 

Nerve Right 942 0.037591 0.592834 Nerves 

20 

VHP Radial Nerve 

left 762 8.24E-06 0.028498 Nerves 

21 

VHP Radial Nerve 

Right 476 0.002656 0.337785 Nerves 

22 VHP Ulnar Nerve left 476 0.019017 0.571556 Nerves 

23 

VHP Ulnar Nerve 

right 540 4.51E-06 0.018062 Nerves 

24 VHP Humerus left 3312 0.145005 1.220145 Bone 

25 VHP Humerus right 1634 0.071029 1.374185 Bone 

26 VHP Ulna Radius left 2020 0.029373 1.193387 Bone 

27 

VHP Ulna Radius 

right 2168 0.002459 0.847576 Bone 

 

Fig. 4.7 depicts the upper body of VHP Female 4.0 Model 
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Figure 4. 7. VHP Female 4.0 Accurate Model 

4.3.2. VHP Female 4.0 Coarse 

The VHP Female 4.0 Coarse model has 239,750 triangles in total. The list of updated tissues is 

showed in Table 4.4. The nerve system is not smoothed in this model since smoothing creates many non-

manifold edges for these particularly thin objects. 
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Table 4. 4. List of updated triangular surface meshes – version Coarse 4.0 

Mesh 

no Tissue name 

Triangle 

size Mesh quality 

Min. Edge 

Length Tissue Type 

1 

VHPC Hands1 

1Phalange left 84 0.176998 2.690592 Bone 

2 

VHPC Hands1 

1Phalange right 164 0.061583 0.504562 Bone 

3 

VHPC Hands1 

2Phalange left 56 0.302763 1.449309 Bone 

4 

VHPC Hands1 

2Phalange right 122 0.151791 1.311807 Bone 

5 

VHPC Hands1 

3Phalange left 50 0.058059 1.007602 Bone 

6 

VHPC Hands1 

3Phalange right 62 0.207892 1.223796 Bone 

7 

VHPC Hands2 

1Phalange left 148 0.194523 0.857429 Bone 

8 

VHPC Hands2 

1Phalange right 180 0.086288 0.391133 Bone 

9 

VHPC Hands2 

2Phalange left 94 0.035919 1.534043 Bone 

10 

VHPC Hands2 

2Phalange right 108 0.155599 0.98453 Bone 

11 

VHPC Hands2 

3Phalange left 60 0.189769 0.949441 Bone 

12 

VHPC Hands2 

3Phalange right 66 0.096104 1.966641 Bone 

13 

VHPC Hands3 

1Phalange left 114 0.20466 2.057431 Bone 

14 

VHPC Hands3 

1Phalange right 130 0.171594 1.868806 Bone 

15 

VHPC Hands3 

2Phalange left 122 0.116624 1.099541 Bone 

16 

VHP Median Nerve 

left 520 7.14E-07 0.000393 Nerve 

17 

VHP Median Nerve 

Right 492 0.000525 0.641692 Nerve 

18 

VHP Peripheral 

Nerve left 946 0.000964 0.600546 Nerves 

19 

VHP Peripheral 

Nerve Right 942 0.037591 0.592834 Nerves 

20 

VHP Radial Nerve 

left 762 8.24E-06 0.028498 Nerves 

21 

VHP Radial Nerve 

Right 476 0.002656 0.337785 Nerves 

22 VHP Ulnar Nerve left 476 0.019017 0.571556 Nerve 

23 VHP Ulnar Nerve 540 4.51E-06 0.018062 Nerve 
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right 

24 VHPC Humerus left 832 0.090109 1.926172 Bone 

25 VHPC Humerus right 542 0.007326 0.785727 Bone 

26 

VHPC Ulna Radius 

left 532 0.019598 1.731927 Bone 

27 

VHPC Ulna Radius 

right 576 0.032006 1.322617 Bone 

28 

VHPC Cartilage1 

Left 218 0.024327 0.546884 Cartilage 

29 

VHPC Cartilage1 

Right 264 0.00421 0.629753 

 

Cartilage 

30 

VHPC Cartilage2 

Left 212 0.003714 0.268947 

 

Cartilage 

31 

VHPC Cartilage2 

Right 236 0.007489 0.176654 

 

Cartilage 

32 

VHPC Cartilage3 

Left 264 0.007836 0.415367 

 

Cartilage 

33 

VHPC Cartilage3 

Right 298 0.007715 0.566641 

 

Cartilage 

34 

VHPC Cartilage4 

Left 302 0.014622 0.831348 

 

Cartilage 

35 

VHPC Cartilage4 

Right 370 0.015893 0.625633 

 

Cartilage 

36 

VHPC Cartilage5 

Left 410 0.002503 0.625342 

 

Cartilage 

37 

VHPC Cartilage5 

Right 340 0.007511 0.990092 

 

Cartilage 

38 

VHPC Cartilage6 

Left 380 0.003614 0.508669 

 

Cartilage 

39 

VHPC Cartilage6 

Right 305 0.006257 0.258616 

 

Cartilage 

40 VHPC Sternum 2622 0.001007 0.124601 Bone 
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Figure 4.8 shows the VHPC 4.0 model, and Fig. 4.9 demonstrates the 3-piece phalanges hand 

 

Figure 4. 8. VHP Female Coarse Model 
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Figure 4. 9. VHPC 4.0 Right hand: 3-piece phalanges 
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V. Chapter 5: Future VHP-Female Applications 
 

5.1. Extended CAD virtual family 
Fig. 5.1a-c shows the concept of the extended virtual family. It is based on NEVA EM CAD body shell 

library.  

 

Figure 5. 1. Concept of the extended virtual family. 

a) accurate anatomical 
    cranium model: skull, CSF shell
    grey matter, white matter, 
    cerebellum, ventricles, tonque, 
    jaw, teeth, air cavity, eyes

b) anatomical body shells

Volume occupied by 
average body tissue

Volume occupied by 
average body tissue

Volume occupied by 
fat tissue

Volume occupied by 
skin tissue

c) skin shell, fat shell, 
and average-body shell 
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This anatomical shell library has been created via a 3D full-body laser scanner from CyberWare located at 

the US Army Natick Soldier Research, Development, and Engineering Center, Natick, MA and then 

accurately processed in MATLAB. The original scan resolution is 1.0 mm. Assume that a customer 

manufacturing body area networks needs a model of 30 year old person circled in Fig. 5.1b. Then,  

A. Along, with the scanned shell, first create two anatomically-relevant inner body shells as 

described below and shown in Fig. 5.1c.  

B. Next, embed a detailed cranium/cerebral cortex model adopted from either base anatomical 

member of the virtual family into the inner shell via a set of affine transformations as described 

below and shown in Fig. 5.1a.  

5.1.1. Comparison with the existing “poser” approach 

This concept is fundamentally different from the standard approach today, which implies using a 

human model “poser”. This approach typically employs only one model, but subject to full-body free-

form deformations. Examples include advanced posers of ZMT-Zurich MedTech AG (Switzerland) [1] 

and VariPose of REMCOM [2]. The human-body poser may transform a standing person into a sitting 

one, indeed. However, it could hardly transform a 60 year old male into a 20 year young female while 

maintaining a realistic body composition including body fat distribution. In contrast to this, our approach 

will be significantly more realistic, but it will require more efforts.  

5.1.2. Anatomical origin and justification of our approach – cranium/head model 

 Ongoing discussions with the staff of Max Planck Institute for Human Cognitive and Brain 

Sciences, Leipzig, Germany (Dr. M Kozlov, Dr. N. Weiskopf, and PD Dr. S. Geyer) reveal that the 

standard (most common) scalp thickness from MRI data is approximately 5 mm. This data has been 

obtained from the analysis of approximately 3,000 T1/T2 MRI head datasets. The further suggestion is to 

have 2 mm avg body, 2 mm fat, and 1 mm skin (2+2+1 =5 mm total) for three shells around the skull. The 

same three shells should continue around the entire body, but the fat thickness will indeed be quite 

different. Using this model, the expected unique skull shape (including frontal bone, two parietal and 

temporal bones) will be established from the 3D laser head scan surface minus 5 mm. Then, a set of affine 

and free-form transformations will be applied to the anatomical model of cranium/cerebral cortex to 

register the model for the given body shell.  

5.1.3. Anatomical origin and justification of our approach – fat distribution model 

 Fat pattering in adult male and female subjects of different ages has been an active area of 

research for a long time [3]. To construct the unique fat shell, the average data available for four different 

age groups and at 9 different body locations will be used.  

5.1.4. Topology of the entire virtual family 

The CAD virtual family will possess the following topological characteristics necessary for cross-

platform compatibility: 

1. Every original tissue triangular surface mesh will be strictly 2-manifold [4] or thin-shell. 

2. No original tissue triangular surface mesh will have any triangular facets in contact with other tissue 

surfaces. In other words, there will always be a (small) gap of a minimum of 1 mm between the 

distinct tissue surfaces. Physically, this gap represents thin membranes separating distinct tissues and 

is therefore anatomically correct. 

3. At the same time, there will exist tissues fully enclosed within each other, such as the white matter 

inside the gray matter, cancellous bone inside a cortical bone shell, etc.  

4. Every original tissue triangular surface mesh will have nearly the same segmentation accuracy 

(resolution) and the minimum surface triangular mesh size allowed.  

5. Every original tissue triangular surface mesh will possess the maximum possible average triangle 

quality (defined as twice the ratio of incircle radius to circumcircle radius).  
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6. Every tissue triangular surface mesh will be made available in open-source basic CAD body 

geometry formats: STL and PLY, as well as in in MATLAB format. 
 

5.1.5. Creating a new member of the family 

 In order to perform the initial 

registration of the cranium and intracranial 

volume with a particular body shell, a 

complete set of affine transformations will be 

used: three translations, three rotations, and 

three uniform scaling operations similar to the 

methodology of breathing human model. This 

step will overlap the head of the average-body 

shell and the skull with the minimum surface 

deviation error.  

After that, deformations in the normal 

directions will be applied with a variable 

scalar amount of deformation, )(0 rd , equal 

to the normal distance between the skull of 

the base model and the average-body shell of 

the model under test, for every small solid 

angle with the origin at the center of gravity.  

An amount of deformation will be locally 

applied to every intracranial tissue (CSF shell, 

grey matter, white matter, cerebellum, 

ventricles, etc.) and will decrease as 

000 /))(()( rrrrr  dd  where 0r  is the 

center of gravity of the cranium. Fig. 5.2 

shows a final product of such operation for a 

test case: the cranium accurately registered 

with a test shell human model under study 

containing three shells: skin, fat, and average body. In accordance with the discussion given above, the 

average scalp thickness will always be fixed at 5 mm. It is hardly possible to perform this operation in 

professional mesh processing software packages such as SpaceClaim of ANSYS. Center of gravity of an 

object can be found by: 

 iii AA /*0 rr  

Where ri is coordinate of the center of triangle I, and Ai is the area of triangle i.  

Skin object

Fat object

Average body object

Outer skull surface

~1 mm

~2 mm

~2 mm

Volume occupied by skin

Volume occupied by fat

Volume occupied by average body

Cranium and intracranial volume

~2 mm

a)

b)

~1 mm

~2 mm

~2 mm

Figure 5. 2. Cranium registered with a three-shell human body 

model. ©NEVA EM. 
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5.1.6. Constructing “onion” full-body shells for a new member of the extended family 

To construct the unique average 

body/fat shells, the average data available 

for at least four different age groups and at 9 

different body locations (cf. [3] and other 

sources) will be used. Table 5.1 lists average 

male fat distribution at different ages for 

different body regions. The most outer body 

shell (skin) and construct the next (fat) shell 

will be created first, based on the fixed skin 

thickness of 1mm. Skin volume is the 

volume between skin and fat shells. To do so 

normal deformations in the direction of the 

inner normal vector will be applied. Areas of 

special concern are head (lips, ears), 

underarms, fingers, toes and the 

reproductive organs. These areas typically 

need special healing operations. After the 

second fat shell has been created, 

deformations in the normal directions, 

described in the previous section will be applied with a variable scalar amount of deformation, )(0 rd , 

obtained from interpolation of the data given in Table 5.1 (for a male shell). This will result in an average 

body shell; the volume between the fat shell and the average body shell will be fat (cf. Fig. 5.1c). Mesh 

healing will be again necessary in critical 

areas listed above. Fig. 5.3 shows a final 

product of such operations for a test case. The 

average-body inner shell (Fig. 5.3a) is within 

the fat shell (Fig. 5.3b or Fig. 5.3c depending 

on the required fat volume), which, in turn, is 

within the skin shell separated by 1 mm. The 

result is shown in Fig. 5.3d. The skin shell 

cannot be seen due to its small thickness. 

5.2. Conclusion and Future Work  
In this chapter, the future potential 

developments of the platform-independent 

full-body electromagnetic model, the Visible 

Human Project® (VHP)-Female V.4.0, 

originated from the U.S. National Library of 

Medicine, are described. This Visible Human 

Project® (VHP)-Female V.4.0 has formed a 

platform to build a family of models, 

including adult male, adult woman and 

children with variable BMI. Various 3D custom implant models such as pacemakers/pulse generators, can 

be registered into the VHP-F model for device modeling studies. 

  

Table 5. 1. Average male fat distribution (fat shell thickness in mm 

for different body locations) [3]. 

Measurements  20-29 30-39 40-49 50- 

Deltoid 14.8 18.6 18.7 18.3 

Lateral Arm 4.2 4.7 4.3 5.1 

Medial Arm 3.2 3.3 3.4 4.1 

Illiac  13.5 17.9 20.8 21.3 

Trochanteric 12.3 16.6 17.5 18.4 

Posterior leg 6.5 7.3 6.9 8.2 

Anterior Leg 2.8 2.8 2.6 2.8 

Medial Leg 5.0 6.3 6.2 7.3 

Lateral Leg 4.1 5.3 4.5 4.7 

 

a) b)b) c) d)

Figure 5. 3. Construction of body shells for a test case.  
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Appendix A: Realization of the Respiratory Cycle for the VHP-Female CAD 

Model 
Note: all coordinates and transformations are reported in millimeter, all rotation are reported in 

degree. 

1. Lung Deformation Sequence   
New global coordinate system: Lung_CS. The origin is located at (0, max (Py), max (Pz)) with 

P being the point cloud of the lungs. The origin coordinates are given by 

𝑋 =  0, 𝑌 =  122.8347, 𝑍 =  −131.3727                  (1) 

 

Scaling in Lung_CS over 𝑁 (𝑁 = 11) iterations total: 

(Resulting Parametric Sweep in ANSYS) 

- 10% size increase in the z-direction: lung_scalez = (1 +
0.1

N
)
t

  

- 1% size increase in the x-direction: lung_scalex =  (1 +
0.01

N
)
t

 

- 1% size increase in the y-direction: lung_scaley =  (1 +
0.01

N
)
t

 

 

Variable t (sweeping variable, not time!) is running from 0 to N. This will result in the overall 

volume change from 2.22 L to 2.54 L, i.e. 0.32 L. Other sequences may be constructed in a 

similar fashion. 

 

Translation in 𝐋𝐮𝐧𝐠_𝐂𝐒 over 𝑁  iterations total (𝑁 = 11): 

Resulting Parametric Sweep in ANSYS 

- 3 mm overall in the y-direction:  lung_movey = −
3

N
∗ t ∗ 10−3 (m) 

Rotation: None 

2. Ribs Deformation Sequence 
New global coordinate system: None 

Scaling: None 

Translation: None  

Rotation: Every rib is rotated individually for a particular lung deformation so that there are no 

intersections between ribs and lungs given the minimum separation distance. Two rotation 

angles are used:  

 - Rotation about a rib axis, which is created by connecting two control points of two 

adjacent ribs closest to the vertebral column; 
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- Rotation about the z-axis, in a new local CS, which is obtained by translation the origin 

of the global CS to the rib control point(s) (individually for every rib) 

Control points: Closest points to the vertebral column. 

Definition of rotation angles:  

𝜃 – Rotation angle about the rib axis, which results in an upward motion of the rib pair 

𝜑 – Rotation angle about the local z-axis, which results in an outward motion of the rib pair 

 

Table A1. Ribs Deformation Sequence – Table of Computed Control Points (mm) 

 

Table A2. Ribs Deformation Sequence – Table of Rotation Angles (deg.) extracted from 

MATLAB   

Iter. #/Rib pair # 1 2 3 4 5 6 7 8 9 10 11 

nR  = 1 
Ѳ 0.1667 0.3333 0.6667 0.8333 1.1667 1.5000 2.3333 3.0000 3.6667 4.3333 4.8333 

φ 0.0800 0.1600 0.3200 0.4000 0.5600 0.7200 1.1200 1.4400 1.7600 2.0800 2.3200 

nR  = 2 
Ѳ 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000 3.3333 3.6667 4.0000 

φ 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000 0.8800 0.9600 

Coord. 

/Rib pair # 1 2 3 4 5 6 7 8 9 10 11 

 

12 

X 

44.690 43.810 43.42 

 

44.11 

 

39.57 

 

32.07 

 

30.61 

 

34.9 

 

34.31 

 

35.91 

 

46.5 

 

54.13 

 

-27.49 

 

-19.62 

 

-17.15 

 

-18.25 

 

-13.45 

 

-4.1 

 

-1.296 

 

-0.242 

 

-1.062 

 

-2.352 

 

-10.33 

 

-21.09 

 

Y 

58.37 

 

80.38 

 

91.95 

 

104.3 

 

107.7 

 

104.5 

 

106.3 

 

103.3 

 

102.7 

 

106.3 

 

112.5 

 

109.3 

 

61.14 

 

76.38 

 

93.32 

 

100.7 

 

106.7 

 

102.6 

 

106.3 

 

106.9 

 

102.9 

 

103 

 

108 

 

115.1 

 

Z 

-117.2 

 

-131.4 

 

-149.7 

 

-167.3 

 

-187.8 

 

-215.3 

 

-233.8 

 

-260.5 

 

-281.3 

 

-306.4 

 

-334 

 

-367.3 

 

-121.7 

 

-134 

 

-156.6 

 

-170 

 

-192.2 

 

-217.8 

 

-232.7 

 

-257 

 

-279.9 

 

-304.8 

 

-334 

 

-365.4 
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nR  = 3 
Ѳ 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 6.0000 6.5000 

φ 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000 0.8800 0.9600 1.0400 

nR  = 4 
Ѳ 0.6667 1.3333 2.0000 2.6667 3.3333 4.0000 4.6667 5.3333 6.0000 6.6667 7.3333 

φ 0.0800 0.1600 0.2400 0.3200 0.4000 0.4800 0.5600 0.6400 0.7200 0.8000 0.8800 

nR  = 5 
Ѳ 0.4167 0.6250 0.8333 1.0417 1.4583 1.8750 2.0833 2.5000 2.9167 3.1250 3.3333 

φ 0.8000 1.2000 1.6000 2.0000 2.8000 3.6000 4.0000 4.8000 5.6000 6.0000 6.4000 

nR  = 6 
Ѳ 0.2500 0.9583 1.6667 2.3750 3.0833 3.7917 4.5000 5.0000 5.2500 5.5000 5.7500 

φ 0.4000 1.5333 2.6667 3.8000 4.9333 6.0667 7.2000 8.0000 8.4000 8.8000 9.2000 

nR  = 7 
Ѳ 0.5833 0.8750 1.1667 1.4583 1.7500 2.0417 2.3333 2.6250 2.9167 3.2083 3.5000 

φ 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.2000 3.6000 4.0000 4.4000 4.8000 

nR  = 8 
Ѳ 0.6667 1.0000 1.3333 1.6667 2.0000 2.3333 2.6667 3.0000 3.3333 3.6667 4.0000 

φ 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.2000 3.6000 4.0000 4.4000 4.8000 

nR  = 9 
Ѳ 0.3750 0.7500 1.1250 1.5000 1.8750 2.2500 2.6250 3.0000 3.3750 3.7500 4.1250 

φ 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.2000 3.6000 4.0000 4.4000 

nR  = 10 
Ѳ 0.4167 0.8333 1.2500 1.6667 2.0833 2.5000 2.9167 3.3333 3.7500 4.1667 4.5833 

φ 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.2000 3.6000 4.0000 4.4000 

nR = 11 
Ѳ 0.2292 0.4583 0.6875 0.9167 1.1458 1.3750 1.6042 1.8333 2.0625 3.6667 6.1875 

φ 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 3.2000 5.4000 

nR = 12 
Ѳ 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 4.5000 5.0000 5.5000 

φ 0.4000 0.8000 1.2000 1.6000 2.0000 2.4000 2.8000 3.2000 3.6000 4.0000 4.4000 

 

Table A3. Ribs Deformation Sequence – Polynomials of Rotation Angle –Resulting 

Parametric Sweep in ANSYS  

Rib pair # Polynomials of Rotation Angle (deg) 

nR  = 1 
Ѳ 5.901e − 05 ∗ t6 −  0.002019 ∗ t5 +  0.02502 ∗ t4 −  0.1346 ∗ t3 +  0.3259 ∗ t2 −  0.08703 ∗ t +  0.006159  

φ 0.0001035 ∗ t6 − 0.00367 ∗ t5 +  0.0489 ∗ t4 −  0.3052 ∗ t3 +  0.9405 ∗ t2 − 1.114 ∗ t +  0.5939   

nR  = 2 
Ѳ 0.3333*t 

φ 0.08*t 

nR  = 3 Ѳ 0.5*t 
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φ 0.08*t 

nR  = 4 
Ѳ 0.6667 *t 

φ 0.08*t 

nR  = 5 
Ѳ −1.844e − 05 ∗ t6 +  0.0004494 ∗ t5 − 0.003782 ∗ t4 +  0.01514 ∗ t3 − 0.03083 ∗ t2 +  0.4792 ∗ t − 0.001689  

φ −3.54e − 05 ∗ t6 +  0.0008629 ∗ t5 −  0.007261 ∗ t4 +  0.02908 ∗ t3 −  0.0592 ∗ t2 +  0.4488 ∗ t −  0.003243 

nR  = 6 
Ѳ 0.45*t 

φ 0.4*t 

nR  = 7 
Ѳ 0.2917*t 

φ 0.4*t 

nR  = 8 
Ѳ 0.3333*t 

φ 0.4*t 

nR  = 9 
Ѳ 0.375*t 

φ 0.4*t 

nR  = 10 
Ѳ 0.4*t 

φ 0.4167*t 

nR = 11 
Ѳ 2.986e − 05 ∗ t6 − 0.00111 ∗ t5 +  0.01608 ∗ t4 − 0.1145 ∗ t3 +  0.4126  ∗ t2 −  0.09056  ∗ t − 0.004135  

φ 2.156e − 05 ∗ t6 −  0.000801 ∗ t5 +  0.01161 ∗ t4 −  0.08265 ∗ t3 +  0.2979 ∗ t2 +  0.01943 ∗ t −  0.002985  

nR = 12 

Ѳ 0.25*t 

φ 0.5 ∗ 𝑡 

 

3. Sternum Deformation Sequence   
New global coordinate system: 𝐒𝐭𝐞𝐫𝐧𝐮𝐦_𝐂𝐒. The origin is located at ((3*(min (Px)+max 

(Px)/5), max (Py), (3*max (Pz)/5)) with P being the point cloud of the sternum. The origin 

coordinates are given by 

𝑋 =  20.78, 𝑌 =  −28.86, 𝑍 =  −290.3   

           

Scaling: None  

Translation: None  

Rotation in 𝐒𝐭𝐞𝐫𝐧𝐮𝐦_𝐂𝐒: one degree about the new global y-axis over 𝑁 (𝑁 = 11) iterations 

total. 

Resulting Parametric Sweep in ANSYS 

sternum_rot =  0.09091 ∗ 𝒕 
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4. Cartilage Deformation Sequence (implemented in MATLAB)  
New global coordinate system: None 

              

Scaling: Two movement vectors are determined for every cartilage component at each iteration 

which will decide its scaling factor as follows: 

nmVectorMovementNew


  

omVectorMovementOld


  

||
||

0m
m

FactorScaling n  

|| n

n

m
m

VectorScaling


  

 

Translation: A translation vector determines the movement of the cartilage for every iteration, 

given by:  

0mmVectornTranslatio n


  

 

Rotation: The rotation axis and the rotation degree is given by: 

   ||||cos 00

1 mmmmVectorRotation nn


 

 

no mmAxisRotation


  

 

Table A4. Cartilage Deformation Sequence – Table of Rotation Angles (radians) 

#Iteration 

no./#cartilage 

pair 
1 2 3 4 5 6 7 8 9 10 11 

Left1 0 0 0.01445 0.01388 0.01334 0.03706 0.03272 0.07020 0.01471 0.00713 0.00692 

Right1 0 0 0.01445 0.01388 0.01334 0.03706 0.03272 0.07020 0.01471 0.00713 0.00692 

Left2 0 0.02217 0.02194 0.02169 0.02143 0.02114 0.02084 0.02053 0.02021 0.01988 0.01954 

Right2 0 0.02287 0.02281 0.02272 0.02260 0.02246 0.02230 0.02211 0.02190 0.02167 0.02142 

Left3 0 0.03000 0.02975 0.02945 0.02910 0.02870 0.02826 0.02779 0.02728 0.02674 0.02618 

Right3 0 0.02900 0.02858 0.02813 0.02763 0.02710 0.02655 0.02597 0.02537 0.02476 0.02413 
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Left4 0 0.03671 0.03598 0.03517 0.03430 0.03338 0.03242 0.03142 0.03041 0.02939 0.02837 

Right4 0 0.03461 0.03470 0.03470 0.03461 0.03443 0.03416 0.03381 0.03338 0.03288 0.03231 

Left5 0 0.01392 0.01361 0.01331 0.02113 0.02019 0.01195 0.01883 0.01801 0.01073 0.01049 

Right5 0 0.01605 0.01575 0.01544 0.02521 0.02417 0.01399 0.02263 0.02167 0.01262 0.01234 

Left6 0 0.00617 0.00610 0.00603 0.00596 0.00590 0.00583 0.00577 0.00571 0.00565 0.00559 

Right6 0 0.01445 0.01388 0.01334 0.03706 0.03272 0.07020 0.01471 0.00713 0.00692 0.00672 

 

Table A5. Cartilage Deformation Sequence – Table of Expansion Factor (only the 

difference) 

#Iteration 

no./#cartilage 

pair 
1 2 3 4 5 6 7 8 9 10 11 

Left1 0 0.002864 0.004915 0.003289 0.005533 0.005889 0.013425 0.012064 0.012891 0.013652 0.011283 

Right1 0 0.003292 0.005705 0.003689 0.006288 0.006622 0.015209 0.013425 0.014189 0.014884 0.012137 

Left2 0 0.005041 0.005525 0.005993 0.006444 0.006876 0.007290 0.007685 0.008061 0.008417 0.008753 

Right2 0 0.001314 0.001875 0.002430 0.002978 0.003518 0.004046 0.004562 0.005064 0.005552 0.006023 

Left3 0 0.003696 0.004616 0.005512 0.006378 0.007211 0.008008 0.008765 0.009481 0.010153 0.010781 

Right3 0 0.006657 0.007496 0.008297 0.009057 0.009774 0.010446 0.011073 0.011653 0.012188 0.012677 

Left4 0 0.009183 0.010484 0.011701 0.012829 0.013864 0.014804 0.015651 0.016405 0.017069 0.017648 

Right4 0 0.001770 0.000510 0.000766 0.002033 0.003287 0.004517 0.005714 0.006871 0.007980 0.009035 

Left5 0 0.010654 0.010767 0.010868 0.023283 0.023299 0.011074 0.023284 0.023185 0.011103 0.011113 

Right5 0 0.009079 0.009300 0.009506 0.020776 0.021132 0.010164 0.021585 0.021758 0.010557 0.010633 

Left6 0 0.007867 0.007894 0.007918 0.007940 0.007959 0.007977 0.007992 0.008006 0.008017 0.008027 

Right6 0 0.019481 0.019443 0.019386 0.062856 0.061347 0.165538 0.035730 0.016683 0.016521 0.016358 

 

5. Muscle Deformation Sequence (Pectoralis Major, Pectoralis 

Minor, Abdominal Muscles, and Erector Spinae)  
New local coordinate systems: A local coordinate system is defined for each muscle using a 

simple translation. The origins are located at (min(Px), max (Py), max (Pz)) with P being the 

point cloud of each left muscle and (max(Px), max (Py), max (Pz)) of each right muscle. 

Abdominal muscles are only transformed with respect to the global coordinate system: the origin 

at (0, 0, 0) 
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Table A6. Origin coordinates for the local coordinate systems. 

Muscle Local X (mm) Local Y (mm) Local Z (mm) 

Pectoralis Minor Left 89.03 27.64 -201.93 

Pectoralis Minor Right -56.28 29.22 -189.24 

Pectoralis Major Left 18.83 76.19 -192.42 

Pectoralis Major Right 14.82 -31.92 -197.71 

Erector Spinae Left 0  146.73 -450.22 

Erector Spinae Right 0  146.79 -453.65 

 

Scaling in local 𝐂𝐒s: See the following tables for individual muscles 

Translation in local 𝐂𝐒𝐬: See the following tables for individual muscles 

Rotation in local 𝐂𝐒s: See the following tables for individual muscles 

 

Table A7. Deformation factors for Pectoralis Minor Left Muscle. All angles are recorded in 

degrees 

Configuration number Rotation about Z axis 

(Ѳ) 

Movement in Y 

direction 

Scaling in Y 

direction 

1 0.9545 -2.7273 -0.0027 

2 1.2727 -3.6364 -0.0036 

3 1.9091 -5.4545 -0.0055 

4 2.2273 -6.3636 -0.0064 

5 2.8636 -8.1818 -0.0082 

6 3.1818 -9.0909 -0.0091 

7 3.8182 -10.9091 -0.0109 

8 4.1364 -11.8182 -0.0118 

9 4.4545 -12.7273 -0.0127 

10 5.0909 -14.5455 -0.0145 

11 5.4091 -15.4545 -0.0155 
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Table A9. Deformation factors for Pectoralis Minor Right Muscle. All angles are recorded 

in degrees 

Configuration number Rotation about Z axis 

(Ѳ) 

Movement in Y 

direction 

Scaling in Y 

direction 

1 1.2727 -3.6364 -0.0036 

2 1.5909 -4.5455 -0.0045 

3 1.9091 -5.4545 -0.0055 

4 2.2273 -6.3636 -0.0064 

5 2.5455 -7.2727 -0.0073 

6 3.1818 -9.0909 -0.0091 

7 3.8182 -10.9091 -0.0109 

8 4.4545 -12.7273 -0.0127 

9 5.0909 -14.5455 -0.0145 

10 5.4091 -15.4545 -0.0155 

11 6.0455 -17.2727 -0.0173 

 

Table A10. Deformation factors for Pectoralis Major Left Muscle. All angles are recorded 

in degrees 

Configuration number Movement in Z direction Movement in Y 

direction 

Scaling in Y 

direction 

1 1.3636 -2.7273 -0.0027 

2 1.8182 -3.6364 -0.0036 

3 2.2727 -4.5455 -0.0045 

4 2.7273 -5.4545 -0.0055 

5 3.6364 -7.2727 -0.0073 

6 4.0909 -8.1818 -0.0082 

7 5.0000 -10.0000 -0.0100 

8 5.4545 -10.9091 -0.0109 

9 5.9091 -11.8182 -0.0118 
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10 6.3636 -12.7273 -0.0127 

11 7.2727 -14.5455 -0.0145 

 

Table A11. Deformation factors for Pectoralis Major Right Muscle. All angles are recorded 

in degrees 

Configuration number Movement in Z direction Movement in Y 

direction 

Scaling in Y 

direction 

1 1.3636 -2.7273 -0.0027 

2 1.8182 -3.6364 -0.0036 

3 2.2727 -4.5455 -0.0045 

4 2.7273 -5.4545 -0.0055 

5 3.1818 -6.3636 -0.0064 

6 3.6364 -7.2727 -0.0073 

7 4.0909 -8.1818 -0.0082 

8 5.0000 -10.0000 -0.0100 

9 5.4545 -10.9091 -0.0109 

10 5.9091 -11.8182 -0.0118 

11 6.8182 -13.6364 -0.0136 

 

Table A12. Deformation factors for Erector Spinea Left Muscles. All angles are recorded in 

degrees. 

Configuration number Scaling in Y direction Scaling in X 

direction 

Movement in Y 

direction 

1 -0.1600 -0.0800 0.2000 

2 -0.2000 -0.1000 0.2500 

3 -0.2400 -0.1200 0.3000 

4 -0.2800 -0.1400 0.3500 

5 -0.3200 -0.1600 0.4000 

6 -0.3600 -0.1800 0.4500 
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7 -0.4000 -0.2000 0.5000 

8 -0.4400 -0.2200 0.5500 

9 -0.4800 -0.2400 0.6000 

10 -0.5200 -0.2600 0.6500 

11 -0.5600 -0.2800 0.7000 

 

Table A13. Deformation factors for Erector Spinea Right Muscles. All angles are recorded 

in degrees. 

Configuration number Scaling in Y direction Scaling in X 

direction 

Movement in Y 

direction 

1 -0.0200 -0.0200 0.0500 

2 -0.0400 -0.0400 0.1000 

3 -0.0600 -0.0600 0.1500 

4 -0.0800 -0.0800 0.2000 

5 -0.1000 -0.1000 0.2500 

6 -0.1200 -0.1200 0.3000 

7 -0.1400 -0.1400 0.3500 

8 -0.1600 -0.1600 0.4000 

9 -0.1800 -0.1800 0.4500 

10 -0.2000 -0.2000 0.5000 

11 -0.2200 -0.2200 0.5500 

 

Table A14. Deformation factors for Abdominal Muscles in the global coordinate system 

(mm) 

Configuration 

number 

Movement in Z 

direction 

Movement in Y 

direction 

1 -0.0909 -0.0909 

2 -0.1818 -0.1818 

3 -0.2727 -0.2727 
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4 -0.3636 -0.3636 

5 -0.4545 -0.4545 

6 -0.5455 -0.5454 

7 -0.6364 -0.6363 

8 -0.7273 -0.7272 

9 -0.8182 -0.8181 

10 -0.9091 -0.9090 

11 -1.0000 -1.0000 

 

Table A15. Muscles Deform – Polynomials of Deformation Factors 

Parametric sweep in ANSYS 

Muscles 
Polynomials of Deformation Factors  

(Angles are recorded in deg) 

Pectoralis 

minor 

(in local CS) 

𝐿𝑒𝑓𝑡 

Rot z 
−7.149𝑒 − 5 ∗ 𝑡6 +  0.00252 ∗ 𝑡5 − 0.03393 ∗ 𝑡4 +  0.2181 ∗ 𝑡3  − 0.681 ∗ 𝑡2 

+ 1.406 ∗ 𝑡 +  0.005579 

Move 

y 

0.0002042 ∗ 𝑡6 − 0.007194 ∗ 𝑡5 + 0.09695 ∗ 𝑡4 − 0.6231 ∗ 𝑡3 +  1.946 ∗ 𝑡2 

−4.016 ∗ 𝑡  − 0.01594 

Scale 

y 

2.042𝑒 − 7 ∗ 𝑡6 − 7.194𝑒 − 6 ∗ 𝑡5 + 9.695𝑒 − 5 ∗ 𝑡4 − 0.0006 ∗ 𝑡3 + 0.001946 ∗ 𝑡2 

−0.004 ∗ 𝑡 + 0.999984 

𝑅𝑖𝑔ℎ𝑡 

Rot z 
1.083𝑒 − 05 ∗ 𝑡6 +  8.348𝑒 − 05 ∗ 𝑡5  − 0.00957 ∗ 𝑡4 +  0.1344 ∗ 𝑡3  − 0.7021 ∗ 𝑡2 

+ 1.774 ∗ 𝑡 +  0.01398 

Move 

y 

−3.095𝑒 − 5 ∗ 𝑡6 − 0.0002385 ∗ 𝑡5 +  0.02734 ∗ 𝑡4 − 0.3841 ∗ 𝑡3 +  2.006 ∗ 𝑡2 

−5.067 ∗ 𝑡 − 0.03994 

Scale 

y 

3.09𝑒 − 8 ∗ 𝑡6 − 2.385𝑒 − 7 ∗ 𝑡5 + 2.73𝑒 − 5 ∗ 𝑡4  − 0.00038 ∗ 𝑡3 + 0.002 ∗ 𝑡2 − 

0.005067 ∗ 𝑡 + 0.99996 

Pectoralis 

major 

(in local CS) 

𝐿𝑒𝑓𝑡 

Move 

z 

−0.00013 ∗ 𝑡6 +  0.004709 ∗ 𝑡5 − 0.0656 ∗ 𝑡4 + 0.4366 ∗ 𝑡3  − 1.388 ∗ 𝑡2 

+ 2.397 ∗ 𝑡 − 0.005142 

Move 

y 

−0.05 + 0.0002525 ∗ 𝑡6 − 0.00914 ∗ 𝑡5 +  0.1272 ∗ 𝑡4  − 0.8445 ∗ 𝑡3 +  2.673 ∗ 𝑡2  

−4.721 ∗ 𝑡 +  0.01132 

Scale 

y 

2.6𝑒 − 7 ∗ 𝑡6  − 9.418𝑒 − 6 ∗ 𝑡5 +  0.0001312 ∗ 𝑡4 − 0.00087 ∗ 𝑡3 +  0.0028 ∗ 𝑡2 

−0.0048 ∗ 𝑡 +  1.00001028 

Right 
Move 

−4.642𝑒 − 05 ∗ 𝑡6 + 0.001553 ∗ 𝑡5 − 0.02174 ∗ 𝑡4 + 0.1655 ∗ 𝑡3  − 0.6858 ∗ 𝑡2 
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z +1.801 ∗ 𝑡 +  0.02082 

Move 

y 

9.284𝑒 − 05 ∗ 𝑡6  − 0.003107 ∗ 𝑡5 +  0.04348 ∗ 𝑡4 − 0.331 ∗ 𝑡3 +  1.372 ∗ 𝑡2 

−3.602 ∗ 𝑡 − 0.04165 

Scale 

y 

9.284𝑒 − 8 ∗ 𝑡6 − 3.107𝑒 − 6 ∗ 𝑡5 + 4.348𝑒 − 5 ∗ 𝑡4 − 0.00033 ∗ 𝑡3 +  0.00137 ∗ 𝑡2 

−0.0036 ∗ 𝑡 + 0.99995835 

Erector 

Spinae (in 

local CS) 

𝐿𝑒𝑓𝑡 

Scale 

y 

8.987𝑒 − 06 ∗ 𝑡6  − 0.0003339 ∗ 𝑡5 +  0.004839 ∗ 𝑡4  − 0.03445 ∗ 𝑡3 +  0.1242 ∗ 𝑡2 

−0.2474 ∗ 𝑡 + 0.998756 

Scale 

x 

4.493𝑒 − 06 ∗ 𝑡6 − 0.0001669 ∗ 𝑡5 +  0.00242 ∗ 𝑡4 − 0.01723 ∗ 𝑡3 + 0.06208 ∗ 𝑡2 

−0.1237 ∗ 𝑡 + 0.9993778 

Move 

y 

−1.123𝑒 − 05 ∗ 𝑡6 −  0.0004174 ∗ 𝑡5 + 0.006049 ∗ 𝑡4 −  0.04307 ∗ 𝑡3 + 0.1552 ∗ 𝑡2 

− 0.3093 ∗ 𝑡 −  0.3093 

Right 

Scale 

y 
−0.02 ∗ 𝑡 + 1 

Scale 

x 
−0.02 ∗ 𝑡 + 1 

Move 

y 
−0.05 ∗ 𝑡 

Abdominal 

(in global CS) 

Move z 0.09091 ∗ 𝑡 ∗ 10−3 

Move y −0.35 ∗ 𝑡 ∗ 10−3 

 

6. Heart Deformation Sequence  
New local coordinate systems:  According to literature, the pumping motion of the heart is 

independent of breathing. As a result, the heart object will only be transformed to avoid 

intersection with lungs in breathing sequence, with respect to the origin of the global coordinate 

system (0, 0, 0). 

 

Table A16. Deformation factors for heart. 

Configuration 

number 

Movement in Z 

direction 

Movement in Y 

direction 

1 -0.15 -0.05 

2 -0.3 -0.1 

3 -0.45 -0.15 

4 -1.5 -0.5 

5 -2.85 -0.95 
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6 -4.35 -1.45 

7 -5.7 -1.9 

8 -7.2 -2.4 

9 -8.7 -2.9 

10 -10.05 -3.35 

11 -11.55 -3.85 

 

Table A17. Parametric sweep in ANSYS 

Heart Polynomials of Deformation Factors 

Move 
𝑍 −6.672e − 06 ∗ t6 + 0.0008203 ∗ t5  − 0.02038 ∗ t4 +  0.2019 ∗ t3 − 0.917 ∗ t2 +  0.7346 ∗ t − 0.03539  

Y 2.451e − 06 ∗ t6 − 8.201e − 05 ∗ t5 + 0.0009 ∗ t4 − 0.0015 ∗ t3 − 0.04611 ∗ t2 +  0.03447 ∗ t − 0.0046  

 

7. Liver Deformation Sequence  
New local coordinate systems:  The liver object is deformed to avoid intersection with lungs in 

breathing sequence, with respect to the origin of a local coordinate system: (0, max (Py), max 

(Pz)) 

 

Table A18. Local coordinate system. 

 Local X (mm) Local Y (mm) Local Z (mm) 

Liver 0 120.136 -373.331 

 

Table A19. Deformation factors for liver 

Configuration 

number 

Movement in Z 

direction 

Movement in Y 

direction 

Scale in Z direction 

1 -0.18 -0.04 -0.001 

2 -0.36 -0.8 -0.002 

3 -1.44 -0.32 -0.008 

4 -2.52 -0.56 -0.014 

5 -3.6 -0.8 -0.020 

6 -5.04 -1.12 -0.028 
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7 -6.48 -1.44 -0.036 

8 -7.92 -1.76 -0.044 

9 -9.36 -2.08 -0.052 

10 -10.8 -2.4 -0.060 

11 -12.24 -2.72 -0.068 

 

Table A20. Parametric sweep in ANSYS 

Liver Polynomials of Deformation Factors 

Move 
𝑍 −6.672e − 06 ∗ t6 + 0.0008203 ∗ t5  − 0.02038 ∗ t4 +  0.2019 ∗ t3  − 0.917 ∗ t2 + 0.7346 ∗ t − 0.03539 

Y 2.451𝑒 − 06 ∗ 𝑡6 − 8.2𝑒 − 05 ∗ 𝑡5 + 0.0009106 ∗ 𝑡4 − 0.001488 ∗ 𝑡3 − 0.0461 ∗ 𝑡2 + 0.0344 ∗ 𝑡 − 0.004638 

Scale Z 6.1𝑒 − 8 ∗ 𝑡6 − 2.05𝑒 − 6 ∗ 𝑡5 + 2.7𝑒 − 5 ∗ 𝑡4 − 3.7𝑒 − 5 ∗ 𝑡3  − 0.00115 ∗ 𝑡2 +  0.00086 ∗ 𝑡 + 0.99989 
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8. Skin Shell Deformation 

First, the skin shell deformation starts with a generation of N chest objects for each step via 

non-rigid transformations. This process was accomplished in MATLAB. A deformed chest 

region is defined as  

 

141.3𝑚𝑚 < 𝑃(: ,1) < 173.4𝑚𝑚 

𝑃(: ,2) < 64𝑚𝑚 

−330.6𝑚𝑚 < 𝑃(: ,3) < −150.6𝑚𝑚 

 

All nodes in the chest region of the skin shell are selected and transformed in the y-direction 

using the following equation: 

 

𝑃(: ,2) = 𝑃𝑏𝑎𝑠𝑒(: ,2) −
10

𝑁
∗ 𝒕 ∗ 𝑠𝑖𝑛(𝑃(: ,3) − min (𝑃(: ,3)))  

 

We chose nodes in the chest region so that 𝑃(: ,3) − min (𝑃(: ,3)) goes from 180 to 0. Therefore, 

nodes that are closer to the upper and lower boundaries of the region will move less than the 

nodes that are closer to the center. With maximum inhalation, the center node of the chest region 

will move by 10mm in the Y direction. Thus, only coordinates of nodes belonging to the chest 

area are changed. Also, the connectivity matrix, t, of the entire skin shell still remains the same. 

As a result, 11 skin shell objects with different chest regions will be generated. 

 Second, these new skin shells are subtracted from the original skin shell in HFSS, which 

results in N smaller deformed chest objects. These chest objects are spaced evenly (400mm in Y 

direction) in front of the original shell and then united. A moving box is carefully designed so 

that it covers only one chest object at any time instant t. Then, the intersection is performed. The 

process is illustrated in Fig A1. 

Box original position is given by:  −300mm , (200 − 𝒕 ∗ 400) ∗ 10−3, −350mm  
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Fig A1. A box is carefully designed so that each iteration covers only one chest object at a time. 

 

An intersection operation is performed with the box and the chest array object, which results in 

one chest object for a particular time t. Finally, the chest object is moved and a unite operation is 

performed with the original skin shell (shown in Fig A2).  

  

Fig A2a. Skin Shell with t = 0 Fig A2b. Skin Shell with t = 11 

 

 


