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NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND 

BIOCHEMICAL REACTION SYSTEMS 

 

ABSTRACT 
 

The present research study is comprised of two main parts. 

The first part aims at the development of a systematic system-theoretic framework 

that allows the derivation of optimal chemotherapy protocols for HIV patients. The 

proposed framework is conceptually aligned with a notion of continuous-time model 

predictive control of nonlinear dynamical systems, and results in an optimal way to 

control viral replication, while maintaining low antiretroviral drug toxicity levels. This 

study is particularly important because it naturally integrates powerful system-theoretic 

techniques into a clinically challenging problem with worldwide implications, namely the 

one of developing chemotherapy patterns for HIV patients that are effective  and do not 

induce adverse side-effects. 

The second part introduces a new digital controller design methodology for 

nonlinear (bio)chemical processes, that reflects contemporary necessities in the practical 

implementation of advanced process control strategies via digital computer-based 

algorithms. The proposed methodology relies on the derivation of an accurate sampled-

data representation of the process, and the subsequent formulation and solution to a 

nonlinear digital controller synthesis problem. In particular, for the latter two distinct 

approaches are followed that are both based on the methodological principles of 

Lyapunov design and rely on a short-horizon model-based prediction and optimization of 

the rate of “energy dissipation” of the system, as it is realized through the time derivative 

of an appropriately selected Lyapunov function. First, the Lyapunov function is 

computed by solving the discrete Lyapunov matrix equation. In the second approach 

however, it is computed by solving a Zubov-like functional equation based on the 

system’s drift vector field.  Finally, two examples of a chemical and a biological reactor 

that both exhibit nonlinear behavior illustrate the main features of the proposed digital 

controller design method. 
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1 INTRODUCTION TO NONLINEAR PROCESS CONTROL: THE 
CONTINUOUS-TIME AND IN DISCRETE-TIME CASES 

 

 

In the field of chemical engineering, most physical and chemical processes exhibit 

complex nonlinear behavior, as it is commonly the case for chemical or biochemical 

reactors, distillation columns, separation units, etc. Traditionally however,  to control the 

operation of a chemical process system, a linear process model, obtained either though 

linearization or direct identification methods , is typically used as the basis for the 

development of the associated control law. (Corriou, 1996).  As a result, new stringent 

performance requirements for tighter control imposed on the majority of processes, 

spawned extensive research efforts for the development of nonlinear process control 

strategies and algorithms that could directly cope with process complexity and 

nonlinearities. Among the different techniques currently available for nonlinear process 

control, the one whose main principles will be adopted in the present study, is a 

continuous-time model predictive approach, that leads to the explicit and analytical 

derivation of nonlinear control laws for open-loop stable, single-input single-output 

processes in the presence of input constraints (Soroush and Kravaris, 1996). The 

methodology developed by Soroush and Kravaris was even applicable for processes with 

deadtime, but here, we will only focus on the minimization of a quadratic performance 

index in the presence of input constraints and penalty on the controller action in the 

derivation of the model predictive control law. Please notice that one major contributor to 

the success of model predictive control is the ability to handle constraints ( Bequette, 

2003). As stated earlier, a key feature of the derived model predictive control law is that 

the intuitive optimization problem has an explicit analytical solution with interesting 

properties. 

 

Model predictive control techniques are based on the explicit use of a process model for 

the prediction of the future trend of the process behavior, and the calculation of a 

sequence of controller actions, minimizing a desirable performance index over a certain 

time horizon (Soroush and Kravaris, 1996). Because of model errors or process 
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disturbances, there is a deterioration of the quality of the output prediction as the 

prediction horizon becomes larger. There is also a significant computational effort, 

needed to solve numerically the optimization problem online, especially for the case of 

large horizons. In view of these considerations, Soroush and Kravaris sought a simple 

output-prediction equation, that explicit captures the effect of the manipulated variable u 

on the controlled variable y, while maintaining satisfactory accuracy in the nonlinear 

regime. 

 

The first part of the thesis is the application of this methodology to an important societal 

problem. As the understanding of the biochemical and biological Human 

Immunodeficiency Virus (HIV) advances, researchers are able to develop better 

antiretroviral medications, which have substantially improved life expectancy for HIV 

infected patients. However, current anti-HIV drugs do not completely eradicate the virus, 

but slow its course thanks to long periods of treatment (AIDSInfo, 2004, Johns Hopkins 

University Division of Infectious Diseases and AIDS Service, 1999). Continuous 

administration of antiretroviral drugs leads to serious drug toxicity, resulting in forced 

therapy ceased, and consequent viral rebound (Carr and Cooper, 2000).  

The problem of developing optimal chemotherapy protocols in the presence of side-

effects and toxicity constraints is formulated and solved based on a continuous-time 

model predictive approach for nonlinear systems, similar in spirit to the one developed by 

Soroush and Kravaris. 

This chapter is subdivided into sub-sections that first enable the reader to become 

familiar with the mechanism of HIV viral replication and drug therapy before simulating 

the optimal drug dosage dictated by the control law derived. 

 

The second part of the thesis rests on the same theoretic ideas, but is developed in the 

discrete time domain, since the primary focus is the systematic development of a 

nonlinear digital controller synthesis method that can be algorithmically implemented in 

practice with the aid of a computer. It has to be pointed out that another interesting 

feature of model predictive control is that is inherently suitable for digital applications in 

the discrete-time domain (Bequette, 2003). Indeed, at each time step, k, the optimization 
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problem is solved. A quadratic objective function based on output predictions over a 

prediction horizon of P time steps is minimized by a selection of manipulated variables 

moves over a control horizon of M control moves, as shown on Figure 1. 

 

 
Figure 1: Basic concept of model predictive control 

( from Process Control: modeling, design and simulation, B.W. Bequette, 2003 ) 
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After uk is implemented, the measurement at the next time-step, yk+1 is obtained. 

Corrections for error can be performed, in case the measured output is different from the 

model predicted value. A new optimization problem is then solved, again (Bequette, 

2003). However, models used for calculating the predicted values of the process outputs 

limit its applications to open-loop stable processes (Bequette, 2003). 

The approach typically followed for the design of a digital controller is to obtain a 

discrete-time process model (sampled-data representation) from a continuous-time 

model, and then, synthesize a discrete-time controller (Franklin et al. ,1992, Soroush and 

Kravaris, 1992, Hernandez and Arkun, 1993). Due to the difficulty of exactly computing 

the matrix exponential that generates the exact discrete-time model, an approximate 

discrete-time process is chosen most of the time (Nešić, Teel and Kokotović, 1999). The 

discretization procedure should posses the following characteristics: simplicity, 

convergence (convergence of the approximate solution to the exact solution of the 

differential equation) and stability (avoidance of possible error propagation along the 

sequence of time steps). Standard numerical simulations methods like Euler or Runge-

Kutta meet these criteria, as long as the time-step of the algorithm remains small 

compared to the fastest time constant of the original continuous-time process model. 

(Kazantzis and Kravaris, 1999) 

 

Here we will use the Euler discretization method for the original continuous-time process 

model to get the approximate discrete-time process model. The popularity of Euler 

approximate discrete-time modeling techniques for digital controller design is primarily 

due to the fact that it is the simplest approximate model that preserves the structure of the 

continuous-time model (Nešić and Teel, 2004). This however requires fast sampling, 

which can eventually become a problem since it may lead to nonminimum-phase 

behavior in discrete-time. On the other end of the sampling spectrum, large sampling 

periods may arise in many industrial control problems as either a technical or physical 

limitation on the system under consideration (Kazantzis and Kravaris, 1999, Nešić and 

Teel, 2004).  
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In the present study, two approaches for the derivation of a nonlinear control law that can 

be digitally implemented are presented, both based on the methodological principles of 

Lyapunov design and relying on a short-horizon model-based prediction and optimization 

of the rate of “energy dissipation” of the system, as it is realized through the time 

derivative of an appropriately selected Lyapunov function. First, the Lyapunov function 

is computed by solving the discrete Lyapunov matrix equation (in a discrete-time analogy 

of Kazantzis and Kravaris, 1999). In the second approach, it is computed by solving a 

Zubov-like functional equation based on the system’s drift vector field (in a discrete-time 

analogy of Dubljević and Kazantzis, 2002). The latter becomes particularly important 

because it enhances convergence properties and accuracy, especially in the case of highly 

nonlinear systems, or large sampling periods due to inherent process limitations. Indeed, 

this objective can be attained by increasing the truncation order of the Taylor series 

expansion of the Lyapunov function solution to the above Zubov-like functional 

equation.  

Finally, two examples of chemical reaction systems exhibiting nonlinear behavior are 

considered to illustrate the main aspects of the proposed approach. 
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2 NONLINEAR CONTROL TECHNIQUES FOR HIV 
CHEMOTHERAPY OPTIMIZATION 

 

 

2.1 Problem overview 
 

 

Currently, Highly Active AntiRetroviral Therapy (HAART) does not eradicate the 

HIV virus, but only slows the course of the disease by preventing virus replication. 

However, maintaining high drug dosages for long periods of time is not the best strategy.  

Prolonged periods of continuous drug therapy is rarely experienced by patients 

undergoing HAART. Furthermore, discontinuation of treatment is triggered by adverse 

side effects prompted by antiretroviral drug administration and a majority of patients well 

tolerates minor side effects (AIDSInfo, 2004 ). However, some side effects which have 

unbearable physical and psychological implications on a patient’s life have been present 

in a small but significant percentage of patients. These conditions include, but are not 

limited to, lipodystrophy, insulin resistance (and in extreme cases, diabetes), osteopenia, 

lactic acidaemia and other metabolic complications, as it will be discussed later (Carr and 

Cooper, 2000, Highleyman, 1998). 

 

Quite a few strategies have been developed to deal with the aforementioned problem of 

drug toxicity. One of them is to treat particular side effects’ symptoms with additional 

medications. This approach however, imposes the drug burden on patients. 

Other types of strategies include the method of Structured Treatment Interruption (STI): a 

strategy based on periodic on-off HAART periods, as well as new schemes involving 

Therapeutic Drug level Monitoring (TDM) (Velez Vega, 2002). 

 

The proposed approach developed here offers a systematic framework for the 

development of a comprehensive drug administration policy. This is realized through the 

formulation and solution of a chemotherapy optimization problem: maximization of the 
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benefits of therapy (CD4+  T Cells count increases and viral load decrease) and 

minimization of its adverse effects. 

 

The drug dosage optimization problem is formulated and solved in accordance to the 

methodology of a continuous-time model predictive control framework for nonlinear 

systems (Soroush and Kravaris ,1996). 

By using an appropriate model for viral load, immune system response and side effects 

behavior, an optimized chemotherapy scheme is presented based on a quadratic output 

function (or map) which represents a maximization of the total number of healthy T cells 

and liver cells. 

This formulation of the optimization problem enhances the requirements of rapid 

regulation of the output towards the attainment of the target values for T and liver cells, 

while also penalizing aggressive chemotherapy patterns. 

The solution of this optimization problem consists of an expression for the “optimal” 

chemotherapy strategy. 

 

At this point, it would be methodologically appropriate to provide some information 

about HIV and the currently implemented treatment strategies in clinical practice. 

 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

15

 

2.2 Current HIV drug chemotherapy protocols 
 

 

The acquired immunodeficiency syndrome (AIDS) is the term given to the most 

advanced stages of HIV infection. HIV gradually kills T cells, and results in a weakened 

immune system. The individual is then subject to opportunistic infections caused by other 

viruses or bacteria, which by themselves result in aggravated illnesses that lead to death. 

(AIDSInfo, 2004). 

 

 

2.2.1 HIV life cycle 

 

The HIV mechanism of infection is complex, and what follows is a summary of 

the relevant literature, especially from the Johns Hopkins University Division of 

Infectious Diseases and AIDS Service (1999) and AIDSInfo (2004). 

HIV begins its infection of a susceptible host cell by binding to the CD4 receptor on the 

host cell, and then fuses to the cell. CD4 is present on the surface of many lymphocytes, 

which are a critical part of the body's immune system.  

Once fusion takes place, HIV enters the cell by injecting a single stranded RNA, which is 

converted into double stranded DNA by reverse transcription. An enzyme in HIV called 

reverse transcriptase is necessary to catalyze this conversion of viral RNA into DNA.  

After entering the host’s nucleus, this viral DNA can be integrated into the genetic 

material of the cell with the aid of the integrase enzyme.  

Activation of the host cells results in the transcription of viral DNA into messenger RNA 

(mRNA), which is then translated into viral proteins. The new viral RNA forms the 

genetic material of the next generation of viruses.  



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

16

The viral RNA and synthesized protein chains associate at the cell membrane and form 

an immature virus.  

Following assembly at the cell surface, the virus then buds forth from the cell and is 

released to infect another cell, after having been rendered completely functional with the 

help of the protease enzyme, which cuts chains into specific proteins.  

 

 
Figure 2.1: HIV life cycle 

(from http://www.aids.org/factSheets/400-HIV-Life-Cycle.html ) 
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2.2.2 Currently administered antiretroviral drugs 

 

The understanding of the HIV lifecycle helped to develop medications that 

contain HIV infection. (AIDSInfo, 2004, Johns Hopkins University Division of Infectious 

Diseases and AIDS Service, 1999) 

Anti-HIV medication approved by the U.S. Food and Drug Administration (FDA) are 

divided into four categories, depending on their particular mechanism of action against 

viral replication. 

Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) work by blocking the 

step, where the HIV genetic material is converted from RNA into DNA. Nucleoside 

Transcriptase Inhibitors are faulty versions of building blocks that HIV needs in order to 

produce more copies of itself. When HIV uses an NRTI instead of a normal building 

block, reproduction of the virus is stalled. 

Nucleotide Reverse Transcriptase Inhibitors behave similar to Nucleoside Transcriptase 

Inhibitors. The difference between the two is their activation process: nucleosides require 

three phosphorylations for activation, while nucleotides require only two. 

Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) bind to and disable reverse 

transcriptase, a protein that HIV needs to make more copies of itself. 

Protease Inhibitors (PIs) bind to the protease and it result in the rupture of intracellular 

proteins, meaning that defective non-infectious virions are produced by the cells.  

A new king of drug is still in the experimental phase: Fusion Inhibitors are under study as 

a new way to block the fusion and attachment steps of HIV life cycle. 
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Table 2.1 : List of antiretroviral medications and their generic and trade names. 
 

 

 

Nucleoside/ Nucleotide Reverse Transcriptase 
Inhibitors 

 

zidovudine/Retrovir (AZT, ZDV)  

didanosine/Videx, Videx EC (ddI)  

zalcitabine/HIVID (ddC)  

stavudine/Zerit (d4T)  

lamivudine/Epivir (3TC)  

abacavir/Ziagen (ABC)  

tenofovir DF/Viread (TDF)  

 
 

 

 

Protease Inhibitors  

 

 

indinavir/Crixivan  

ritonavir/Norvir  

saquinavir/Invirase, Fortovase  

nelfinavir/Viracept  

amprenavir/Agenerase  

lopinavir/ritonavir, Kaletra  

 
 

 

Non-Nucleoside Reverse Transcriptase 
Inhibitors  

 

nevirapine/Viramune (NVP)  

delavirdine/Rescriptor (DLV)  

efavirenz/Sustiva (EFV)  

 
 

Fusion Inhibitors 

 

 

enfuvirtide/Fuzeon (T-20)  

 

 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

19

With current antiretroviral medications, HIV infection can be contained. 

However, a lot of research has still to be done before the AIDS epidemic is brought under 

control. One important goal is to design new, more potent medications that are easier to 

take and have fewer side effects. Also, a better understanding of the HIV infection 

mechanism could help create a vaccine.( Johns Hopkins University Division of Infectious 

Diseases and AIDS Service, 1999) 

The recommended treatment for HIV is a combination of three or more drugs. In general 

taking less than three drugs is not recommended because the decrease in viral load would 

probably be only temporary. However, each HAART regimen is adapted to the individual 

patient. (AIDSInfo, 2004) 

 

 

2.2.3 HIV modeling 

 

 

As scientists increasingly enhance their understanding on the behavior of HIV, it 

became possible for the scientific community to propose a multitude of models 

characterized by various degrees of complexity and drugs taken (Perelson and Nelson, 

1999). 

 

In particular, the group by Perelson has developed through intensive research efforts a 

substantial body of work on how to model HIV dynamics.  

 

There are two types of mechanisms which have proven successful in accounting for 

several features of HIV infection: target-cell limited models and immune control models. 

Briefly, target-cell models assume that viral replication is essentially limited by the 

amount of uninfected T cells and account for immune responses through a constant death 

rate of infected T cells. Immune response models are based on the natural response of 

cytotoxic T cells lymphocytes , which eliminate productively infected T cells prior to 

viral evacuation form the cell. 
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Target cell limited models are also commonly used.  

 

The one which was chosen for the purpose of this study is a rather simple nonlinear 

model comprised of four nonlinear differential equations. 

It was first developed by Perelson, Kirschner and DeBoer (1993) and was further 

improved/refined by Fister, Lenhart and McNally (1998). Recently, it has been slightly 

modified by Velez Vega (2002) in order to offer convenient units : cell/day.  

 

In the model, the following notation was used: 

_ T represents uninfected CD4+  T Cells 

_ T* represents latently infected T cells 

_ T** represents actively infected T cells 

_ V represents the viral load. 

 

The control variable has been denoted u and represents the strength of drug dosage, so 

that when u = 1, chemotherapy is 100% effective and no infection takes place. 
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Table 2.2 illustrates the meaning and values of the parameters used in the model for HIV 

dynamics. 
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Table 2.2: parameters used for HIV dynamics model 

Parameter Value 

µT :    Death rate of T cells,  unassociated 

         with viral infection. 

0.02 day-1 

µb :    Death  rate  of  T  cells  associated 

          with viral induced cell lysis. 

0.24 day-1 

µv :    Death rate of V 2.4 day-1 

K1 :    Rate of T cell infection by virus 2.4×10-5 mm3. day-1 

K2 :    Rate of T* activation to T** 3×10-3 day-1 

r :       Rate of T cell growth 3×10-2 day-1 

N :     Number of virions produced by T** 1200 

Tmax : Maximum T cell level 1500 mm-3 

s :       Source term for T 10 day-1 (mm-3)2 

Vb :    Blood volume 5×106 mm3 

 

 

Simulations were run for a period of 500 days without any therapy being applied. The 

results are given in Figure 2.2, and plotted as cell or virion density. 

The initial conditions used are : T(0) =1000 Vb cells,  T*(0) = 10 Vb cells, T**(0) = 0.1 Vb 

cells and V(0) = 50 Vb virions. 
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Figure 2.2 : HIV dynamics with no therapy applied 
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2.2.4 Side effects modeling 

 

Nowadays, serious toxicity with antiretroviral drugs is a topic of high controversy 

in the treatment of HIV disease. Some of the negative side effects are serious, even life-

threatening, but taking anti-HIV medications is necessary to control the reproduction of 

the virus, and thus slow the progression of the disease. 

 

This section presents the ideas developed by Camilo Velez Vega in 2002, and does not 

intend to be exhaustive.  

 

 

2.2.5 Side effect mechanisms  

 

In this section, the hypothesis that natural HIV disease progression has an effect 

on the syndromes observed is not considered here. 

Here are some of the most commonly observed drug toxicities, which have been 

summarized by Carr and Cooper (2000). Some complementary information coming from 

AIDSInfo has been added. 

 

 

2.2.5.1 Mitochondrial toxicity 
 

The major toxicities linked to NRTI and NtRTI therapy, especially over the long-

term, are thought to be secondary to inhibition of mitochondrial DNA polymerase, 

resulting in impaired synthesis of mitochondrial enzymes that generate ATP. This results 

in myopathy, neuropathy, hepatic steatosis and lactic acidaemia, pancreatitis and possibly 

peripheral lipoatrophy. A cause is probably because NRTIs and NtRTIs are typically 

administered in therapeutically inactive forms and need to be phosphorylated by cellular 

enzymes into their active forms. The management of mitochondrial toxicity is generally a 

cessation of the causative drug (Carr and Cooper , 2000). 
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2.2.5.2 Lipodystrophy syndrome 
 

Body fat redistribution has been observed on patients who had been on long-term 

protease inhibitor therapy. The main clinical features are peripheral fat loss in the face 

and limbs, and central fat accumulation (the “buffalo hump”, fat accumulated at top of 

the back, and “protease paunch”, a pad of fat that develops behind the stomach muscles). 

Recently, lipoatrophy has been associated with low-grade lactic acidaemia and liver 

dysfunction. The metabolic features include hypertriglyceridaemia, 

hypercholesterolaemia, insulin resistance, diabetes or lactic acidaemia. Furtermore, these 

effects are linked to an increase in cardiovascular disease and the pathogenesis of the 

syndrome is unclear. One possibility is that PI inhibits lipogenesis. Moreover, there is no 

proven therapy for the lipodystrophy syndrome. (Project Inform, 1998, Carr and Cooper , 

2000). 

 

 

2.2.5.3 Hypersensitivity 
 

Drug hypersensitivity usually manifests itself as an erythematous, maculopapular, 

pruritic and confluent rash. Fever can precede the rash. NNRTIs are common 

antiretroviral drugs that cause hypersensitivity, which is rare with NRTIs or PIs. 

Suggested causes include long duration and high doses of therapy, or degree of 

immunodeficiency. Usually, antiretroviral hypersensitivity resolves spontaneously, 

despite continuation of therapy (Carr and Cooper , 2000). 

 

 

2.2.5.4 Bone marrow suppression 
 

Bone marrow toxicity can be caused by several drugs ( AZT and several anti-

cancer drugs). This is particularly a problem since damage to the bone marrow 
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jeopardizes the ability to produce new blood cells. This can result in anemia, leucopenia, 

neutropenia and thrombocytopenia (Highleyman, 1998). 

 

 

2.2.6 Model for side effects affecting the liver 

 

All side antiretroviral drugs can cause side effects involving the liver ( 

Highleyman, 1998). 

It is assumed that drug toxicity for our model is caused by NRTI, and more specifically 

through AZT therapy, associated with mitochondrial toxicity. 

Even though other organs can be similarly affected by drug therapy, it is only considered 

that liver dysfunction poses considerable limitations to the therapy implemented. 

This syndrome progression is directly linked to the hepatic steatosis evolution: this will 

be modeled as a gradual liver cell dysfunction. 

Also, a simple liver regeneration term is added to the model in order to account for liver 

regeneration when drug dosage is lowered or suspended (Velez Vega, 2002). 

 

( ) ( )( ) ( )
4444 34444 2144 344 21

onregenerati cellliver 

max

depletion cellliver 

max 1 XXktutuXCk
dt
dX

rse −⋅−+⋅−=
     (2.2) 

with ( ) maxmax

max

510 XXX
X

kr +−
=  

 

Table 2.3: parameters used for side effects model 

Parameter Value for AZT 

Cmax :  Maximum allowable drug concentration 600 mg .day-1 

Xmax :  Maximum number of liver cells 109  

kse :      Depletion rate 2.2831×10-6 mg-1 

 

The rate constant kse has been calculated such that for full chemotherapy, the amount of 

dysfunctional cells is 50% in 500days. 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

26

 

2.2.7 Pharmacokinetics models 

 

 

In the majority of mathematical models available for HIV dynamics, the treatment 

effect is considered constant. However, the treatment effect changes over time, most 

probably because of pharmacokinetic variations, imperfect adherence, drug resistant 

mutations, etc. Dixit and Perelson (2004) developed a model for the treatment effect 

which combines drug pharmacokinetics and intracellular delays. The model they 

developed is a two compartment pharmacokinetic model: 

_ the blood compartment, which determines how much of the drug is absorbed from the 

gut to the blood. 

_ the cell compartment, which determines the intracellular drug concentrations, since, 

depending on the nature of the drug, they are either administered in active or inactive 

forms, and thus need to be transformed by cellular enzymes into their active forms.  

 

 

However, for the sake of simplicity, a simpler one compartment model was used, so that 

the efficacy of the treatment using AZT is defined using plasma concentrations of the 

drug, as it was done by Y. Huang et al. (2003). 

 

Their model assumes an one-compartment model with first-order absorption and 

elimination, and it also assumes that the pharmacokinetic parameters remain constant. 

Considering ( )tCa  to be the apparent concentration in the absorption depot and ( )tC  to 

be the plasma concentration at time t, the model can be expressed as follows: 

 

For the non-steady state at a dosage time t = tl : 
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For the steady state at a dosage time t = tl : 

( ) [ ]( )

( ) [ ]( ) [ ]( )[ ]11

1

exp1exp1

exp1

−−

−

−−−−−×
−






=

−−×




=

ττ

τ

ae
ea

a

c

l
l

a
c

l
la

kk
kk

k
V

FDtC

kV
FDtC

   (2.4) 

 

Between dosage times , tl < t < tl+1  

( ) ( ) ( )[ ] ( ) ( )[ ] ( )[ ]{ }lale
ea

a
lalel ttkttk

kk
k

tCttktCtC −−−−−×
−

+−−= expexpexp  (2.5) 

 

with ,...2,1,0, =ltl   are the times at which the dose is taken, and ( ) ca VFDtC 00 = and 

( ) 00 =tC . 

 

Y. Huang et al. (2003) also introduced the idea that the phenotype marker IC50 (which 

represents the 50% inhibitory concentration of the drug) changes over time due to the 

emergence of drug resistant mutations. They proposed the following simple function:   
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The explanation of the different parameters is given in Table 2.3.  
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Table 2.3: Parameters used for pharmacokinetics model 

Parameter Value for Zidovudine(AZT) 

Dl :   doses  200 mg 

ka :   absorption rate 0.5 h-1 

ke :   elimination rate 
c

l
e V

Ck = =1 h-1 

Cl:    systemic clearance  1.6 L/h/kg  

Vc :   apparent volume of distribution 1.6 L/kg 

F:     absolute bioavailability 0.64 

τ :     dosing interval 8 h 

I0 :     initial 50% inhibitory concentration 0.013 mg/L 

Ir :  50% inhibitory concentration after 

emergence of mutations 

1.17 mg/L 

tr  :   time at which the resistant mutations 

dominate 

84 days 

φ  :   conversion factor between in vivo 

and in vitro studies 

1 

(from GlaxoSmithKline, Product Information for Retrovir®) 

 

According to the prescribing information for Retrovir® ( zidovudine ), the relationship 

between the in vitro susceptibility of HIV to reverse transcriptase inhibitors and the one 

in vivo has not been established, that is why the value φ = 1 was assumed for the purpose 

of the study. 

 

Even though most highly active antiretroviral therapy (HAART) nowadays consists of a 

combination of drugs, a drug efficacy function was used for a single antiretroviral agent, 

as assumed in the HIV dynamics model. 

 

( ) ( )
( ) ( )tCtIC
tCt
+⋅

=
50ϕ

γ         (2.7) 
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The simulations are given considering an individual weighing 70 kg, and assuming 

perfect adherence (the individual takes at the regular dosing interval the prescribed dose). 
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Figure 2.3 : simulation for normal AZT treatment regimen 

 

 

 

2.3 Optimization method description 
 

 

The proposed system-theoretic chemotherapy optimization method is based on a 

nonlinear, single-input / single-output model-based continuous time model predictive 

approach( Soroush and Kravaris, 1996). 

 

An explicit analytical expression is derived for the optimal chemotherapy protocol, on the 

basis of the available model for HIV dynamics. One of the inherent assumptions of the 

proposed approach is that the nonlinear dynamic model needs to be stable. However, HIV 

natural disease progression can be approximated by a stable model, because of pseudo-

steady state T cell levels. 

 

 

Some preliminary concepts are stated before deriving the optimal chemotherapy protocol. 
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2.3.1 Lie derivatives 

 

Given a nonlinear system of the following form: 
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The Lie derivative of h with respect to f  is defined as follows: 
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In the same way, since the above definition produces a scalar quantity, higher order and 

mixed order derivatives can be defined recursively ( l = 1, 2, ….) as shown below: 

 

Lie derivative of hLl
f  with respect to f : ( )hLLhL l

ff
l
f =+1     (2.10) 

Lie derivative of hLl
f  with respect to g : ( )hLLhLL l

fg
l
fg =  

 

 

2.3.2 Relative degree 

 

Consider a nonlinear input-driven dynamical system as in equation (2.8). 

Define r as the minimum order of the output derivative.  
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The first order derivative of y with respect to time is expressed in terms of the Lie 

derivatives: 
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 (2.11) 

 

From the above equations, it is clear that Lgh determines whether or not the input u will 

affect dtdy . 

If 0≠hLg , the first order derivative of the system output is indeed affected by the input. 

Thus, 1=r . 

 

However, in the case where 0=hLg , the first order derivative of the system output is not 

affected by the input. 

Thus, the calculation of the second order derivative is required: 
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In this case, the term hLL fg  determines whether or not the input u will affect 22 dtyd . 

If 0≠hLL fg , then the relative degree of the system is 2=r . 
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If 0=hLL fg , the same procedure is performed until the rth order output derivative is 

affected by the input : 01 ≠− hLL r
fg . 

2.3.3 Description of the control law 

 

 

The approach by Soroush and Kravaris (1996) allows to account for deadtime. 

However, in this study, the focus is on a delay-free system. 

 

Consider a nonlinear dynamical system of the form: equation set (2.8) 
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Consider also that 0≠hLg  ( 1=r ) and y is desired to follow a specified trajectory dy . 

 

The speed of the output response, dtdy , is affected by the input in such a way that it is 

possible to enforce a particular desirable trajectory on y.  

For a given set point ysp, dy  starts from the actual value of y at an arbitrary time t0 and 

follows an exponential trajectory to the stated value of ysp . 

Considering a proportionality constant γ, this translates into the following equations: 

 

( )

( ) ( )00 tyty
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d
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d

d

=

=+γ
         (2.13) 

 

Developing the Taylor series expansion of dy  around t0 and using the above equation: 
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For “small” 0tt − , the above can be approximated as follows: 
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Also, it is possible to express the actual behavior of the output y by a Taylor-Lie series 

expansion, truncated for small values of 0tt − :  
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The following pointwise optimization problem can be formulated: 
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subject to the constraints : maxmin uuu ≤≤  

 

 

Using the expressions for ( ) ( )tyty d and  in the above performance index/criterion one 

obtains: 
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The value of ( )0tu  which minimizes J is obtained as follows: 
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Solving for ( )0tu  and denoting 2
0

2
2

tt
qp

−
=  leads to the following chemotherapy 

protocol: 
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Since 0t  is completely arbitrary, the control law (2.20) can be written as : 
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The clinical interpretation of the tunable parameters introduced in the above expression 

for the optimal chemotherapy protocol is the following: 

_ γ is related to the speed of the response: if γ increases, the chemotherapy becomes more 

aggressive. 

_ p accounts for penalization of excessively high levels of the chemotherapy administered 

.  

Similarly, this procedure can be applied for processes for which 0=hLg  i.e for 2≥r . In 

general, for a system of relative order r, the following expression can be derived : 
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2.4 Derivation of the model optimization equations 
 

 

Our simple model for HIV dynamics has been studied under 2 different minimization 

criteria. 

 

 

2.4.1 Optimization A 

 

Optimization A represents HIV chemotherapy optimization without minimization 

of liver cell depletion 

Since, side effects are not included in this optimization, the dynamic model is the same as 

the set of equations (2.1). 
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   (2.1) 

 

The quadratic output function selected represents a meaningful quantifiable measure of 

the absolute deviation of T cells from the maximum T cell count. 

( ) ( )2
max TTty −=          (2.23) 

This way, the optimization aims at the minimization of the distance between y and dy , 

forcing T to Tmax as fast as possible, and ysp is set to 0. 
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Calculation of the Lie derivatives gives: 
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Since, 0≠hLg  for arbitrary values of the state variables, the relative order is 1=r . 

These equations are placed in the derived optimal chemotherapy expression, 

appropriately modified to accommodate clinically meaningful units. 
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Please notice, that as expected in actual practice, the chemotherapy variable u is subject 

to hard constraints that reflect actual technical and physical limitations encountered 

during the chemotherapy administration cycle. 

 

 

2.4.2 Optimization B 

 

Optimization B stands for HIV chemotherapy optimization with concurrent 

minimization of liver cell depletion. 
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A fifth differential equation is added to the four differential equations  of the postulated 

model for HIV in order to account for the liver side effects. 
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with ( ) maxmax

max

510 XXX
X

kr +−
=  

 

The output is defined as: 

( ) ( ) ( )2
max

2
max XXTTty −+−=        (2.28) 

 

The distance from the actual to the desired output is minimized, so that the actual T cell 

count is driven to its maximum value Tmax , while at the same time, the actual number of 

functional liver cells is also driven to its maximum Xmax. 

 

A simple calculation of the associated Lie derivatives gives: 
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Since, 0≠hLg , the relative order is 1=r  and the control law is formalistically identical 

to the one developed earlier. 
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In this case, parameter p is now understood as an additional penalization attempt for high 

values of u, since side effects are now explicitly constrained by the presence of liver cells 

in the output function. 

 

 

2.5 Simulations 
 

 

The numerical simulation results were obtained using a MATLAB code.  

The initial conditions used are :  T(0) =700Vb cells,  T*(0) = 20 Vb cells, T**(0) = 0.2 Vb 

cells V(0) = 50 Vb virions and X(0) = 109 cells. 

On the plots, the following notation is used: 

Optimization A = HIV chemotherapy optimization without minimization of liver cell 

depletion 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

40

Optimization B= HIV chemotherapy optimization with minimization of liver cell 

depletion 

 

 

2.5.1 Behavior of HIV model with therapy optimization 

 
 

2.5.1.1 Influence of the parameters p and γ 
 

The graphs below represent the results obtained for the optimizations A (left) and 

B (right) for varying values of p at γ =100. 
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Figure 2.4: comparison of optimizations A and B for varying values of p at γ =100. 

 

 

On the last two graphs of Figure 2.4, those which represent the input, p =5 was not 

represented, since the resulting chemotherapy pattern was unacceptably aggressive. This 

issue will be discussed later. 

 

 

The graphs (Figure 2.5) below represent the results obtained for the optimizations A (left) 

and B (right) for varying values of γ at p =200. 
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Figure 2.5: comparison of optimizations A and B for varying values of γ at p =200. 
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2.5.1.2 Saturation function : 0≤ u ≤1 
 

In this case, the constraints chosen for u naturally reflect its intrinsic meaning: 

effectiveness should be constrained between 0 and 100%. 

 

The proposed chemotherapy pattern becomes:  
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Here, a first comparison between the two optimization criteria is realized for a given set 

of parameters (γ and p). 

On the same graph and for the same set of parameters the dynamics of the states of 

interest ( T, V, u and X ) are plotted  for Optimizations A and B, as shown in Figure 2.6. 
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Figure 2.6: Comparison of optimizations A and B for 0≤ u ≤1 

 

It can already be seen that the difference between the two optimization criteria is small. 

The difference lies in the length of time for which u =1. Optimization B accounts for side 

effects, thus a high drug regimen can not be administered for too long. This results in a 

smaller largest deviation of X from its maximum value Xmax:  8% instead of 10%. 

 

 

2.5.1.3 Saturation function: 0.3≤ u ≤0.9 
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For a given set of parameters (γ and p), the graphs below (Figure 2.7) show the 

difference between the 2 types of optimization considered. On the same graph and for the 

same set of parameters the dynamics of each state for optimizations A and B are plotted. 
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On the left, the plots are for the control law including a more severely constrained u in 

the saturation function applied, namely: 0.3≤ u ≤0.9 . 

The plots on the right are given for comparison: chemotherapy patterns including a 

saturation function with: 0.0≤ u ≤1.0 . 

 

0 50 100 150 200 250 300 350 400 450 500
600

700

800

900

1000

1100

1200

ce
lls

 T
/m

m
3

t days

γ = 100  p2 = 200  Saturation function : 0.3<u<0.9

optim A

optim B

 
0 50 100 150 200 250 300 350 400 450 500

600

700

800

900

1000

1100

1200

ce
lls

 T
/m

m
3

t days

γ = 100  p2 = 200  Saturation function : 0.0<u<1.0

optim A

optim B

 

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lo
g(

V
/m

m
3)

t days

γ = 100  p2 = 200  Saturation function : 0.3<u<0.9

optim A

optim B

 
0 50 100 150 200 250 300 350 400 450 500

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

lo
g(

V
/m

m
3)

t days

γ = 100  p2 = 200  Saturation function : 0.0<u<1.0

optim A

optim B

 

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

in
pu

t 
u 

=
A

Z
T

t days

γ = 100  p2 = 200  Saturation function : 0.3<u<0.9

optim A

optim B

 
0 50 100 150 200 250 300 350 400 450 500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

in
pu

t 
u 

=
A

Z
T

t days

γ = 100  p2 = 200  Saturation function : 0.0<u<1.0

optim A

optim B

 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

46

0 50 100 150 200 250 300 350 400 450 500
9.3

9.4

9.5

9.6

9.7

9.8

9.9

10
x 10

8

X
 li

ve
r 

ce
lls

 

t days

γ = 100  p2 = 200  Saturation function : 0.3<u<0.9

optim A

optim B

 
0 50 100 150 200 250 300 350 400 450 500

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10
x 10

8

X
 li

ve
r 

ce
lls

 

t days

γ = 100  p2 = 200  Saturation function : 0.0<u<1.0

optim A

optim B

 
Figure 2.7: comparison of optimizations A and B for different saturation functions. 

] 

 

As seen in the case of 0.0≤ u ≤1.0, the difference between the two types of optimization 

considered is small. The difference when 0.3≤ u ≤0.9 is even smaller: the difference in 

the deviation of X from its maximum value Xmax for A and B is not significant, because 

the applied chemotherapy is more severely constrained. However, when 0.3≤ u ≤0.9 the 

largest deviation of X from its maximum value Xmax (regardless of A or B approaches) is 

smaller than the one observed for 0.0≤ u ≤1.0.  
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2.6 Conclusions 
 

 

The simulation results presented in the previous section helped to illustrate the 

relevant behavior features of the optimization methods A and B, and also the effect of the 

associated chemotherapy parameters. 

 

By taking a look at Figure 2.4, it can be demonstrated that an increase in the value of the 

penalty input parameter p causes a lower final T cell count but a higher final viral load. 

This is due to the fact that if p increases, high chemotherapy strength is penalized. Thus, 

the value of u is maintained at u = 1 for a shorter period of time. This is equivalent to a 

less aggressive therapy: even though there is a slight decline in the T cell count levels and 

a boost in the viral load, liver cell counts are slightly higher. 

 

 

By taking a look at Figure 2.5, it can be shown that an increase in the value of the 

parameter γ  also causes a decline in the T cell count levels as well as a boost in the viral 

load. Furthermore, high liver cell counts are reached faster. This is due to the fact that the 

speed of the response is forced to approach the set point at a speed with proportionality 

constant γ1 . Consequently, greater values of γ  will slow the response, driving the 

system further from the desired optimal values. This is equivalent to a less aggressive 

therapy:  there is a decrease in the T cell count levels, an increase in the viral load, and 

liver cell counts are slightly higher. 

 

The different approaches for the optimization of the drug schedule ( A and B ) illustrate 

the general behavior of the model and allow for several conclusions with respect to the 

specific problem of interest. 
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Because the optimization criteria in the optimization B account for side effects, liver cell 

counts (representing the drug toxicity) will reach regeneration in a faster way than in the 

approach A. 

 

It can already be seen that the difference between the two optimization criteria is small. 

The difference lies in the length of time for which u =1. Optimization B accounts for side 

effects, thus a high drug regimen can not be administered for too long. This results in a 

smaller largest deviation of X from its maximum value Xmax:  8% instead of 10% as it can 

be seen on Figure 2.6 . 

So, the optimization criteria used for the optimization B clearly limit liver cell depletion 

within a narrower range, and force liver cell dynamics to its original level, irrespective of 

the values of the parameters (input penalty p and speed γ ). 

This illustrate that it is possible to envisage drug regimen which would be efficient 

towards the disease, but which would minimize serious side effects. 

 

 

Another interesting feature of the present study was to investigate the influence of the 

constraints on the proposed chemotherapy pattern. The choice for u to be constrained 

between 0 and 1.0 was dictated by its physical meaning: an efficacy is constrained 

between 0 and 100%. The choice for u to be constrained between 0.3 and 0.9 was 

dictated by pharmacokinetic studies. 

A benefit of having a narrower range for u is that u is always related to the drug dose 

administered, as seen in the pharmacokinetic model section. This means that the 

fluctuations in the drug dosage regimen will be less dramatic, and easier to administer for 

a specific patient. 

 

 

Considering Figure 2.7, it can be seen that there is no significant difference in the results 

obtained using the different saturation functions (in the constraints: 0.0≤ u ≤1.0 and 0.3≤ 

u ≤0.9 ), especially for T cell counts and viral load . However, there is definitely a 
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difference for the liver cell counts. When more drastic constraints are used in the 

derivation of the control law, liver cell depletion becomes less important:  

_ For optimization A: the largest deviation of X from its maximum value Xmax is of 6% 

when 0.3≤ u ≤0.9, compared to 16% when 0.0≤ u ≤1.0. 

_ For optimization B : the largest deviation of X from its maximum value Xmax is less than 

6% when 0.3≤ u ≤0.9, compared to 10% when 0.0≤ u ≤1.0. 

 

A slightly less aggressive drug regimen leads to the same performances in terms of 

slowing the progression of the disease, but generates less side effects. 
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2.7 Discussion 
 

 

The global picture presents a tradeoff between efficiency towards the progression 

of the disease and side effects due to drug administration, as it was first presented by 

Camilo Velez Vega in 2002. 

 

The question which arises is when is it more important to maintain slightly higher levels 

of uninfected T cells than high number of functional liver cells? 

Indeed, this question arises for the practitioner as one of the reasons why there is a need 

to change a drug regimen: drug toxicity creates side effects that make it difficult for a 

patient to take the drugs, and regimen failure, which means that the drugs are not working 

well enough. 

A useful strategy for graphical observation of the tradeoff between increased T cell levels 

and increased liver cell counts can be implemented following the methodology presented 

by Kazantzis et al. (1999) : calculating a performance index ( )( )[ ]∫
∞

⋅−=
0

2 dttxhyspISE  

and infinity input norm 
[ )

( )tuu
t ∞∈

∞
=

,0
sup  for each selection of p and γ . This analysis is 

not developed here, since additional improvements need to be done on the model. 

The practitioner criterion would reflect the question stated above, and dictate the drug 

regimen for a patient accordingly by manipulation of the tunable chemotherapy 

parameters. The optimal schedule suggested could be an optimization of type B with 

rather low p and γ , and 0.3≤ u ≤0.9, so that liver cell counts are maintained within 10% 

of the maximum level, while T cell counts and viral load exhibit behaviors very close to a 

continuous maximum chemotherapy schedule. 

 

However, the model which was used to represent HIV dynamics is rather simple 

compared to the more detailed and refined models developed recently, which account for 
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time varying parameters (Huang et al, 2003 ) or intracellular delays (Banks et al, 2002 or 

Nelson and Perelson, 2002) 

The choice of this model for the study was motivated by simplicity, and it has also been 

studied previously by Denise Kirschner and her group for the purposes of developing an 

optimal chemotherapy strategy. However, some extra features were added, namely the 

incorporation of a side effect model and the idea of time-varying drug exposures. 

 

The analysis presented using this model provides a simple framework for the testing and 

the development of an optimal chemotherapy strategy. However, its simplicity and a lack 

of an explicit integration of a variability  factor amongst patients makes the model 

appropriate only for an insightful unraveling of basic trends during the administration 

stage of chemotherapy protocols, and should only be viewed as such from a clinical point 

standpoint. Further studies need to be conducted using a more sophisticated (mechanism, 

classes of drugs used…) model to represent HIV dynamics under antiretroviral therapy.  

Also, a more realistic side effect model should be developed in order to account for other 

serious sources of drug toxicity which should be taken into account in such a 

chemotherapy optimization attempt. 

 

The more complex the model is (HIV dynamics, side effects), the better the 

representation of the actual course of the disease is (more accurate). However, this 

represents a challenge since more sophisticated models contain a lot of parameters which 

need to be calibrated by the clinical practitioner since each patient has a particular 

sensitivity to drug administration. 
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NOMENCLATURE 
 

 

Cmax    Maximum allowable drug concentration 

Cl   Systemic clearance 

Dl    Doses 

F   Absolute bioavailability 

( ) ( )xgxf ,   Vector fields in standard state – space description of a continuous-

time nonlinear system. 

I0 , Ir    50% inhibitory concentrations (initial and after emergence of 

mutations) 

K1, K2    Reaction Rates associated with HIV dynamics 

kse , kr   Reaction rates associated with the side effects model 

ka , ke    Reaction rates associated with the pharmacokinetics model 

( )xhL f   Lie derivative of the scalar field h with respect to the vector field f 

N    Number of virions produced by T** 

r    Rate of T cell growth 

s    Source term for T 

T   Uninfected CD4+  T Cells 

T*     Latently infected T cells 

T**     Actively infected T cells 

Tmax    Maximum T cell level 

tr    Time at which the resistant mutations dominate 

u    Manipulated input 

V    Viral load. 

Vb    Blood volume 

Vc    Apparent volume of distribution 

Xmax   Maximum number of liver cells 
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Greek letters: 

 

µT    Death rate of T cells,  unassociated with viral infection. 

µb    Death  rate  of  T  cells  associated with viral induced cell lysis 

µv    Death rate of V 

τ    Dosing interval 

φ     Conversion factor between in vivo and in vitro studies 
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3  NONLINEAR DIGITAL CONTROL SYSTEMS FOR COMPLEX 
CHEMICAL PROCESSES 

 

 

3.1 Introduction 
 

 

Most textbooks about process control focus mainly on continuous systems 

although, in practice, controllers are implemented digitally (Bequette, 2003). The 

physical inputs and outputs are continuous, but manipulated input changes are made at 

discrete time intervals, and measured outputs are available at discrete sample times. 

 

Two alternative approaches could be followed in the design of digital computer-control 

systems (Kazantzis and Kravaris, 1999) : 

 

1. From a continuous-time model, synthesize a continuous-time controller in 

accordance to established methodologies. Then, discretize the developed 

controller, and implement it digitally through fast sampling, by applying the 

methodological principles of the discrete-equivalent design. (Franklin et al. ,1992) 

This method is extensively used by control engineers. 

2. From a continuous-time model, obtain a discrete-time process model. Then, 

synthesize a discrete-time controller (Franklin et al. ,1992, Soroush and Kravaris, 

1992, Hernandez and Arkun, 1993). 

 

The last approach deals right at the beginning with the issue of sampling. Furthermore, 

notice that both approaches introduce time-discretization at a certain stage, as Figure 3.1 

illustrates. 
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Figure 3.1 : Alternative approaches for the design of digital control systems. 

(Kazantzis and Kravaris, 1999) 

 

Time-discretization is a particularly challenging problem in the field of nonlinear 

systems. Traditional methods involve numerical simulation techniques such as Euler or 

Runge-Kutta, but the accuracy of the resulting approximate discrete-time system depends 

on the sampling period (Kazantzis and Kravaris, 1999). 

 

The popularity of the Euler approximate discrete-time model for controller design can be 

attributed to the fact that it is the simplest approximate model that preserves the structure 

of the original continuous-time model (Nešić and Teel, 2004). 

This however requires fast sampling, which can eventually become a problem since it 

may lead to nonminimum-phase behavior in discrete-time. On the other end of the 

sampling spectrum, large sampling periods may arise in many industrial control problems 

as either a technical or physical limitation on the system under consideration (Kazantzis 

and Kravaris, 1999, Nešić and Teel, 2004).  
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The proposed digital controller design methodology is a two-step one: first a discrete-

time model is obtained using Euler’s discretization method, and in a second step, a 

nonlinear controller is synthesized in the discrete-time domain. In particular, two 

approaches are followed and presented, that are both based on the methodological 

principles of Lyapunov design and relying on a short-horizon model-based prediction and 

optimization of the rate of “energy dissipation” of the system, as it is realized through the 

time derivative of an appropriately selected Lyapunov function. First, the Lyapunov 

function is computed by solving the discrete Lyapunov matrix equation (in a discrete-

time analogy of Kazantzis and Kravaris, 1999). In the second approach, it is computed by 

solving a Zubov-like functional equation based on the system’s drift vector field (in a 

discrete-time analogy of Dubljević and Kazantzis, 2002).  

 

 

Two examples are considered that illustrate the proposed approach: a Van de Vusse 

chemical reaction system in a continuous-stirred tank reactor (CSTR), and a biochemical 

reaction scheme taking place in a biological CSTR. 

 

 

3.2 Mathematical preliminaries 
 

 

A comprehensive presentation of the subsequent theoretical developments requires 

a review of basic notions and techniques associated with Lyapunov stability analysis for 

nonlinear autonomous systems. In particular, the background presented here involves the 

application of Lyapunov’s direct method to analyze the asymptotic stability 

characteristics around a reference equilibrium point as well as how to estimate the size of 

the stability region (Kazantzis and Kravaris, 1999). 
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3.2.1 Euler discretization 

 

Consider the single input - single output nonlinear process with a state space 

description of the form: 

( ) ( )
( )xhy

uxgxfx
=

⋅+=
•

          (3.1) 

where x ∈ ℜn is the vector of state variables, u ∈ ℜ is the manipulated input and y ∈ ℜ is 

the (controlled) output variable. 

It is assumed that f(x), g(x) are smooth vector fields on ℜn and h(x) a smooth scalar field 

on ℜn. For a fixed value of the output setpoint, ysp, a reference equilibrium point (xo,uo) 

may now be defined: 

( ) ( )
( )osp

ooo

xhy
uxgxf

=
⋅+=0

         (3.2) 

 

A sampled-data representation of system (1) can be obtained using Euler’s discretization 

method and expressed in the following form: 

 

( ) ( ) ( )( ) ( )( ) ( )[ ] ( ) ( )( )
( ) ( )( )kxhky

kukxkukxgkxfkxkx
=

=⋅+⋅++=+ ,11 ϕδ
    (3.3) 

 

where δ is the sampling period. Please notice, that in order to ensure numerical stability 

and accuracy of the above discretization scheme, a typical value of δ selected is assumed 

to be between five and ten times smaller than the process dynamic constant: 

( )Amax10
1
λ

δ
⋅

= , with A being the Jacobian matrix at (xo,uo). 

 

It is easy to prove that the continuous-time system and the resulting discrete-time system 

have the same equilibrium characteristics, and therefore the same equilibrium manifold. 

It is moreover assumed, that for the autonomous open-loop discrete system: 
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( ) ( ) ( )( ) ( )( )[ ] ( )( )
( ) ( )( )kxhky

kxukxgkxfkxkx o

=
=⋅+⋅+=+ ϕδ1

     (3.4) 

all the eigenvalues of the discrete Jacobian Matrix, δ⋅+= AIAd , have magnitudes less 

than one, 1<iλ with i=1..n, where 
( ) ( )

o
oo u

x
xg

x
xf

A ⋅
∂

∂
+

∂
∂

= and I  is the identity matrix.  

This is mathematically guaranteed if A is Hurwitz (stable process) and the discretization 

step small enough. It should be pointed out, that the above does not pose a restriction, 

since for an unstable process a pre-stabilizing controller can be used to render A Hurwitz. 

(Slotine and Li, 1991). 

 

 

3.2.2 Quadratic Lyapunov function 

 

Since A  is assumed Hurwitz, one can invoke standard converse Lyapunov 

Theorems to prove the existence of a Lyapunov function ( )xV  (Kazantzis and Kravaris, 

1999). 

Consider now the discrete quadratic Lyapunov function: 

 

( )( ) ( )( ) ( )( )o
T

o xkxPxkxkxV −⋅⋅−=
2
1       (3.5) 

 

where P  is a positive definite symmetric matrix and  the unique solution of the discrete 

Lyapunov equation (Elaydi, 1999): 

 

QPAPA d
T
d −=−⋅⋅          (3.6) 

 

with Q being a positive definite symmetric matrix.  

The choice of Q  is at this point arbitrary, but it may be proven that for any 0>γ , there 

exists 0>δ  such that the rate of change of the discrete Lyapunov function along the 

trajectory of the unforced system (3.4) satisfies the following inequality: 
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( )( ) ( ) ( )( ) 2

2max
2

min 2 od xxAPPQkxV −⋅⋅⋅+⋅+−≤∆ γλγλ    (3.7) 

 

Choosing: ( ) ( ) 02max
2

min <⋅⋅+⋅+− dAPPQ γλγλ      (3.8) 

it is ensured that ( )( )kxV∆  is negative definite for all x  in : δ<−
2oxx , and according 

to Lyapunov’s direct method, the equilibrium point xo is locally asymptotically stable. 

Typically, as in the present study, we choose IQ =* (Khalil, 2001).  

 

 

3.2.3 Zubov’s method 

 

Consider now the following functional equation: 

 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )
( ) 0

1

0 =
−=−⇔−=−+

xV
xQxVxVkxQkxVkxV ϕ

   (3.9) 

 

where ℜ→ℜnV : is the unknown solution, and ( )xQ  is a positive definite real analytic 

scalar function defined on nℜ  with ( ) 00 =xQ  and 0
0

=






∂
∂

xx
Q . 

Notice that, by construction, the rate of change ( )( )kxV∆  is negative definite since ( )xQ  

is positive definite: 

( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) 01 <−=−=−+=∆ kxQkxVkxVkxVkxVkxV ϕ
  (3.10) 

Therefore, ( )xV  is a suitable Lyapunov function candidate for the autonomous system 

(3.4). In such a case, the stability property of dynamics (3.4) and standard converse 

Lyapunov stability theorems for nonlinear discrete dynamical systems imply the 

existence of a Lyapunov function that satisfies the functional equation (3.9).  

It should be emphasized that the above construction represents exactly the discrete-time 

analog of Zubov’s PDE, which was developed for the explicit computation of Lyapunov 

functions for nonlinear dynamical systems modeled through ODEs in the continuous-time 

domain. 
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3.2.3.1 Existence and uniqueness of solution 
 

Theorems (O’Shea, 1964, Kazantzis, 2001, Kazantzis & Kravaris, 2001 and Kazantzis, 

2002) guarantee the existence and uniqueness of a locally analytic solution ( )xV  of the 

functional equation (3.9) in the vicinity of the reference equilibrium point xo. 

 

 

3.2.3.2 Solution method 
 

Since ( )xϕ , ( )xQ  and the solution ( )xV  are locally analytic, it is possible to calculate the 

solution ( )xV  as a multivariate Taylor series around the equilibrium point of interest 

x=xo. 

 

The proposed solution method can be realized trough the following steps (as a discrete-

time analogy of Kazantzis et al., 2005): 

_ Expand ( )xϕ , ( )xQ  and the unknown solution ( )xV  in multivariate Taylor series and 

insert them into functional equation (3.9). 

_ Equate the Taylor coefficients of the same order of both sides of functional equation 

(3.9). 

_ Derive a hierarchy of linear recursion formulas through which it is possible to calculate 

the Nth order coefficient of ( )xV  given the Taylor coefficients up to order N-1 that have 

been computed in previous recursive steps. 

 

It is possible to explicitly derive the aforementioned recursive formulas and present them 

in a mathematically compact form if tensorial notation is used: 

_ the partial derivatives of the µ-th component ( )xf µ  of a vector function ( )xf  evaluated 

at x=xo are denoted as follows: 
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( )

( )

( ) ....,0
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0
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0

etcx
xxx

f
f

x
xx

f
f

x
x
f

f

kji

ijk

ji

ij

i

i

∂∂∂

∂
=

∂∂

∂
=

∂

∂
=

µ
µ

µ
µ

µ
µ

    (3.11) 

_ the standard summation convention where repeated upper and lower tensorial indices 

are summed up. 

 

Under the above notation, the unknown solution ( )xV  of the functional equation (3.9) 

represented as a multivariate Taylor series has the following form: 

( ) ( ) ( )( )
( ) ( )

0,0,11

21

0,220,11

21

0,11

1

....
!

1

....
!2

1
!1

1

...
NN

N
iiii

iii

iiii
ii

ii
i

xxxxV
N

xxxxVxxVxV

−−+

++−−+−=
    (3.12) 

As mentioned above, the Taylor series expansions of ( )xϕ , ( )xQ  and ( )xV  are inserted 

into functional equation, and the coefficients of the same order are equated. 

Since ( ) ( ) 000 =
∂
∂

= x
x
QxQ , ( )xV  does not have linear terms in x : ( ) 00 =

∂
∂ x

x
V , or 

equivalently : niV i ,...,1for0 1
1 == . 

Furthermore, the following relation for the N-th order coefficients can be obtained: 

LL

L

L
L

L iim
j

N

L
Nmmm

mm

m
j

jj QV .....

1
....

.....0

..... 1

21
1

1

1

1 −=⋅⋅⋅∑ ∑
=

=+++
≤≤≤

ϕϕ       (3.13) 

where nii N ,...,1,....,1 =  and N ≥ 2.  

Note that the second summation symbol in the above expression means summing up the 

relevant quantities over the 
!!

!

1 Lmm
N
⋅⋅⋅

 possible combinations to assign the N indices 

( Nii ,....,1 ) as upper indices to the L positions 
LL jj ϕϕ ⋅⋅⋅ with m1 of them being put in the 

first position, m2 of them in the second position, etc 







=∑

=

L

i
i Nm

1
. 
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It is important to notice that the above expression represents a set of linear algebraic 

equations in the unknown coefficients NiiV ,...,.1 . This is precisely the mathematical reason 

that enables the proposed method to be easily implemented using a symbolic software 

package.  

Indeed, a MAPLE code has been developed to automatically compute the Taylor 

coefficients of the unknown solution ( )xV  of the Zubov-like functional equation (3.9) for 

the examples studied later. 

 

 

3.2.3.3 Local positive-definiteness of the solution ( )xV  
 

Let: 

( ) ( ) ( )
( ) ( ) ( ) ( )xQxxQxxxQ

xxxAxx
T +−⋅⋅−=

+−⋅+=

00

00 ϕϕ
       (3.14) 

with ( )xϕ  and ( )xQ  real analytic and : ( ) ( ) ( ) ( ) 00000 =
∂
∂

=
∂
∂

== x
x
Qx

x
xQx ϕϕ  

Furthermore, the solution ( )xV  can be represented as follows: 

( ) ( ) ( ) ( )xVxxPxxxV T +−⋅⋅−= 00        (3.15) 

where ( ) ( ) ( ) 002

2

00 =
∂
∂

=
∂
∂

= x
x
Vx

x
VxV       (3.16) 

Thus, that matrix P satisfies the following Lyapunov matrix equation: 

QPAPAT −=−⋅⋅          (3.6) 

This coincides with the one encountered in the linear case. Under the assumptions stated, 

the above matrix equation admits a unique, positive-definite and symmetric solution P, 

and therefore, ( )xV  is locally positive definite and a Lyapunov function for the controlled 

system dynamics. 

 

 



NONLINEAR CONTROLLER SYNTHESIS FOR COMPLEX CHEMICAL AND BIOCHEMICAL REACTION SYSTEMS 
 

Sophie Leising                                     Worcester polytechnic Institute                                   Spring 2005 

65

3.2.4 Quadratic estimates of the stability region 

 

It has already been shown that in a small neighborhood of the equilibrium point 

xo, ( )( )kxV∆  is a negative definite quadratic function. Note that if ( )( )kxV∆ <0 in the 

entire state-space, then global asymptotic stability is established for system (3.4). 

Assuming that ( )( )kxV∆  is a continuous function that changes sign at certain points in 

state-space, we may conclude that there will be a set of points olM , where ( )( )kxV∆  

vanishes: 

( )( ){ }0=∆ℜ∈= kxVxM n
ol        (3.17) 

Moreover, it is assumed that the change of sign for ( )( )kxV∆  occurs at the above set of 

points. Consider now a point 
∧

x  in olM  with its distance from ox being minimum: 

min2
min dxxxx ooMolx

=−=−
∧

∈
       (3.18) 

Points having this property can be found either: 

(i) by numerically solving the following nonlinear programming problem: 

2
min oMolx

xx −
∈

 subject to the following set of constraints ( )( ) oxxkxV ≠=∆ ,0  

or: 

(ii) for a 2-dimensional system, by plotting the ( )( ) 0=∆ kxV and ( )( ) ckxV ≤  

surfaces and graphically extracting the necessary information. 

 

The largest ball ( )mindB in which ( )( )kxV∆  is negative definite, is tangent to the 

( )( ) 0=∆ kxV  surface at 
∧

x  (Perlmutter, 1972):  

( ) { }min2min dxxxdB o
n ≤−ℜ∈=        (3.19) 

 

A positively invariant set cΩ  is now sought, in order to provide a simple estimate of the 

stability region. For a quadratic Lyapunov function (3.5), a set that exhibits the desired 

properties is: 
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( )( ){ }ckxVx n
c ≤ℜ∈=Ω         (3.20) 

 

whenever cΩ  is constrained in ( )mindB . 

For cΩ  to be a subset of ( )mindB , one can choose: ( ) 2
minmin dPc ⋅< λ   (3.21) 

(Khalil, 2001). 

 

We conclude that for a selection of the matrix IQ =*  and the corresponding matrix P , 

solution of the discrete Lyapunov matrix equation, a simple quadratic estimate of the 

stability region can be provided by the set cΩ , with c satisfying the inequality (3.21). 

 

Remark: The results in this section have been presented in reference to the open-loop 

system. Because this analysis is generic in nature, it will also be used later on for the 

closed-loop system resulting from the application of the control law, which will be 

derived in the next section. 

 

 

 

3.3 Formulation of the energy-predictive control problem and 

derivation of the control law 
 

 

Soroush and Kravaris addressed the derivation of a continuous-time, nonlinear 

control law for an open-loop single-input single-output process through a model 

predictive approach which minimizes an appropriate quadratic performance index, which 

contains both an error term accounting for the mismatch between the predicted output 

and a desired reference trajectory, as well as an input penalty term (Soroush & Kravaris, 

1996).  

 

Similar ideas will influence the development of a digital energy-predictive control 

scheme in our approach. 
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The discrete Lyapunov function V(x(k)) is associated with the "unforced" autonomous 

system (3.4). The field of mechanics postulates that the energy content of a mechanical 

system driven by an external frictional force can be realized through an energy function 

that corresponds to its autonomous dynamics and it is a monotonically decreasing 

function of time (Goldstein, 1980). In our case, the frictional force is the input variable: 

unexpected disturbances drive the system far from the design steady state conditions, and 

the objective is to derive a control law driving the system back to the desired steady state 

in a smooth, fast and reliable fashion. 

 

In light of the above considerations and within a similar in spirit framework of analysis to 

the one presented in (Kazantzis, N. and Kravaris, C. 1999), the ensuing theoretical 

developments are feasible. 

 

Assuming that the full state-vector is measurable and ( ) 0≠xVLg  (relative degree 1=r  ) 

, the derivation of a simple and explicit short-horizon prediction equation for ( )( )kxV  can 

be obtained by using Taylor series. 

 

In particular, the following prediction equation for ( )( )kxV  is valid for the small time 

interval [ ]tto , , with δoo kt =  and ( )δ1+= okt  such that the sampling period 

0.1<<−= ottδ . 

 

( )( ) ( )( ) ( )( ) ( ) ( )( )[ ] ( )21 δοδ +⋅⋅++=+ ogoofoo kxVLkukxVLkxVkxV   (3.22) 

Eq (14) implies that: 

 

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )[ ] δ⋅⋅+=−+=∆ ogoofoo kxVLkukxVLkxVkxVkxV 1   (3.23) 

 

As the above equation indicates, for a given point δoo kt = , the manipulated input u(ko)  

directly affects the speed of evolution of ( )( )kxV . Keeping in mind that a quadratic 
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Lyapunov function can be viewed as a suitable measure of the distance between the 

current position of the system in state-space and the equilibrium point ox , the speed of its 

evolution in time can provide a measure of the speed of the system’s response as it 

approaches ox . Since the manipulated input u directly influences the speed of the 

evolution of ( )( )kxV , an optimization problem can be formulated in order to synthesize 

an optimal control law that enforces the system’s Lyapunov function to evolve according 

to a prescribed dynamic fashion, such that the desired trajectory is postulated as follows: 

 

( ) ( )

( ) ( )( )

( )( ) ( )( ) ( ) ( )
( )( ) ( )( ) ( )( )





==

+−⋅=+
⇒







=

−=

oood

odod

ood

d
d

kxVkxVkxV

akxVkxV

txVtV

tVa
dt

tdV 222 11 δοδ
  (3.24) 

where ( )( )kxVd  is a reference trajectory, evolving with a speed of a2. Using appropriate 

terminology from the field of mechanics, the dynamic equation (3.24) essentially 

describes the desirable rate of energy dissipation of the system. 

 

The ( )2δο  truncation of equation (3.24) leads to: 

( )( ) ( )( ) ( )δ211 akxVkxV ood −⋅=+       (3.25) 

 

A quadratic performance index that consists of an error term accounting for the mismatch 

between the predicted behavior of ( )( )kxV  and the reference trajectory ( )( )kxVd , as well 

as an input penalty term is proposed. The optimization problem has the following simple 

structure: 

 

( )
( )( ) ( )( ) ( ){ }22211min ooodokou

ukuqkxVkxV −++−+
ℜ∈

    (3.26) 

subject to the constraints:  maxmin uuu ≤≤  
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where •  is any function norm over a finite and small time interval for which the short-

horizon prediction equation (3.22) is fairly accurate. Note that uo is the equilibrium value 

of the manipulated input, which is determined by the set point ( )spoosp yuuy =: . 

 

Inserting expressions (3.22) and (3.25) for ( )( )kxV  and ( )( )kxVd  respectively into (3.26) 

gives: 

( )
( ) ( ) ( ){ }

( )
( ) ( ) ( ) ( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( )[ ]( ) ( )

( )
( ) ( ) ( ) ( )[ ] ( )

( )
( ) ( ) ( ) ( )[ ] ( )













−+++⋅=





 −+++⋅⋅=





 −+++⋅⋅=





 −+⋅++⋅=





 −+⋅+−⋅−=





 −+⋅+−−−=

−++−+

ℜ∈

ℜ∈

ℜ∈

ℜ∈

ℜ∈

ℜ∈

ℜ∈

2
2

222

22222

2222

2222

2222

2222

222

min

min

min

min

min

1min

11min

ooogoofokou

ooogoofokou

ooogoofokou

ooogoofokou

ooogoofokou

ooogoofookou

ooodokou

ukuqkVLkukVLkVa

ukuqkVLkukVLkVa

ukuqkVLkukVLkVa

ukuqkVLkukVLkVa

ukuqkVLkukVLkVa

ukuqkVLkukVLkVkVa

ukuqkVkV

δ

δ

δ

δδ

δδ

δδ

 

 

The optimization problem takes the form:  

 

( )
( )( ) ( )( ) ( )( ) ( ){ }2222min ooogoofokou

ukupkxVLukxVLkxVa −+⋅++
ℜ∈

  (3.27) 

where 222 δqp = . 

The above one-dimensional quadratic minimization problem is trivially solvable, with a 

solution of the following form: 

 

( ) ( ) ( )( )( )[ ] [ ]

( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]22

22

maxmax

maxmin

minmin

,

if
if

if
where,

og

oofogspo
oo

ooo

kxVLp

kxVakxVLkxVLyup
kxVkx

uwu
uwuw

uwu
wSkxVkxSku

+

+⋅−
=Ψ









≥
<≤

<
=Ψ=

  (3.28) 
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[ ]wS  is called the saturation function. 

 

Since the initial point kko =  is completely arbitrary, the following control law is then 

obtained, which will be applied at every time instant: 

 

( ) ( ) ( )( )( )[ ] [ ]

( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]22

22

maxmax

maxmin

minmin

,

if
if

if
where,

kxVLp

kxVakxVLkxVLyup
kxVkx

uwu
uwuw

uwu
wSkxVkxSku

g

fgspo

+

+⋅−
=Ψ









≥
<≤

<
=Ψ=

  (3.29) 

 

The above control law is a static feedback control law and contains two adjustable design 

parameters: 

 _ 2a that is associated with the rate of energy dissipation or the speed of the 

closed loop response, and 

 _ 2p  that is associated with the size of the input excursion from the equilibrium 

value uo. 

 

Including input constraints in the control law may lead to a performance loss if the 

controller is not tuned appropriately. However, it allows the control law to take into 

account inherent technical and/or physical limitations of the process, and thus make it 

more meaningful. 

 

 

In the absence of input constraints, the saturation function can be omitted. The resulting 

controller attains the following simpler form: 

 

( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]22

22

kxVLp

kxVakxVLkxVLyup
ku

g

fgspo

+

+⋅−
=     (3.30) 
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The effect of both tunable parameters on the closed-loop performance characteristics will 

be illustrated and discussed in a later section. 

 

 

3.4 Properties of the control law 
 

The investigation of the basic properties of the derived control law is presented in 

the absence of input constraints, that is omitting the saturation function. 

 

 

3.4.1 Continuity property 

 

Eq. (3.30) implies that the presence of 2p in the denominator prevents the input 

variable u(x(k)) from becoming unbounded. This property distinguishes the proposed 

control law from the one based on exact input/output linearization or model predictive 

control without input penalty. Notice, that this property holds true even in the presence of 

input constraints. 

 

 

3.4.2 Equilibrium properties of the closed-loop system 

 

Under the control law (3.30), the closed-loop system is: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]

( ) ( )( )kxhky

kxVLp

kxVakxVLkxVLyup
kxgkxfkxkx

g

fgspo

=













+

+⋅−
⋅+⋅++=+ 22

22

11 δ

           (3.31) 

 

And in particular for ( )( )kxV  given in Eq (3.5): 
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( ) ( ) ( )( ) ( )( ) ( )[ ]

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( ) ( )( )[ ]

( ) ( )( )kxhky
kxgPxkxp

xkxPxkxakxfPxkxkxgPxkxyup
ku

kukxgkxfkxkx

T
o

o
T

o
T

o
T

ospo

=
⋅⋅−+

−⋅⋅−+⋅⋅−⋅⋅⋅−−
=

⋅+⋅++=+

22

22

5.0

5.05.05.0

11 δ

 

It is seen that the point (xo,uo) is still an equilibrium point for the closed-loop 

system, and therefore, the control law (3.30) induces unity static gain at equilibrium 

spyy =  . Furthermore, it can be easily shown, that this property holds true even in the 

presence of input constraints. 

 

 

3.4.3 Local asymptotic stability of the closed-loop system 

 

The rate of change of the scalar function ( )( )kxV  in the discrete-time domain 

along the trajectories of the closed-loop system (3.31) is given by: 

 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ] ( )( )

( )( ) ( )( ) ( )( )[ ]
( )( )[ ] ( )( ) ( )( ) ( )( )[ ] δ

δ

⋅











++

+
−+=

⋅











⋅

+

+⋅−
+=

−+=∆

kxVakxVLukxVL
kxVLp

kxVL
kxVLukxVL

kxVL
kxVLp

kxVakxVLkxVLyup
kxVL

kxVkxVkxV

gof
g

g
gof

g
g

fgspo
f

2
22

2

22

22

1

           (3.32) 

 

Recall that stability analysis performed on the open-loop system indicated that for 

sufficiently small 1
2
<<− oxx  and 1<<δ , ( )( ) ( )( )kxVLukxVL gof ⋅+  behaves as a 

negative definite quadratic function. 

Since 
( )( )[ ]
( )( )[ ]22

2

kxVLp

kxVL

g

g

+
 is a smooth scalar field on ℜn that vanishes at oxx = , the 

quantity: 
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( )( )[ ]
( )( )[ ] ( )( ) ( )( ) ( )( )[ ]kxVakxVLukxVL
kxVLp

kxVL
gof

g

g 2
22

2

++
+

 is of the order of ( )3

2oxx −ο . 

 

Therefore, for sufficiently small 1
2
<<− oxx  and 1<<δ , ( )( )kxV∆  is negative 

definite, and locally, internal asymptotic for the closed-loop system is established. 

Since, closed-loop internal stability considerations play the key role in the development 

of efficient nonmimimum-phase compensation methods, the proposed control law can be 

implemented efficiently to digital control systems. The above stabilization property 

becomes particularly important for the (digital) nonminimum-phase compensation 

problem in the discrete-time domain, due to the well-known effect of sampling on the 

stability characteristics of zero-dynamics, and thus, the possibility of a continuous-time 

minimum-phase process to become nonminimum-phase under fast sampling and within a 

digital control system design framework .  

 

 

3.4.4 Enlargement of the stability region in closed-loop 

 

Evaluating the rate of change of the scalar function ( )( )kxV , ( )( )kxV∆ ,  in the 

discrete-time domain along a trajectory of the closed-loop system, it was shown that in a 

small neighborhood of xo, ( )( )kxV∆  behaves as a negative definite quadratic function. If 

( )( )kxV∆  does not change sign in the entire state-space, then the control law enforces 

asymptotic stability in the large. 

It is now assumed that ( )( )kxV∆  is a continuous function that changes sign at certain 

points in state-space. 

A new set clM  may now be defined for the closed-loop system, containing the points at 

which ( )( )kxVcl∆  vanishes: ( )( ){ }0=∆ℜ∈= kxVxM cl
n

cl     (3.33) 

 

It is moreover assumed that at the points contained in clM , ( )( )kxVcl∆  changes sign. 
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The analysis that follows will prove that the distance of any point of the set clM  from xo 

(closed-loop system), is larger than the corresponding distance of any point in olM  

(open-loop system). 

According to the methodology developed in Section II, this will lead to the conclusion 

that the proposed control law possesses the property of enlarging the quadratic estimates 

of the stability region.  

As it was previously shown, the zero points of ( )( )kxV∆  for the open-loop system are 

given by: 

( ) ( )

( ) ( ) ( )








=+=
∆

ℜ∈=

=
∆

⇒=∆

0

00

xVLuxVL
xV

xM

xV
xV

gof
oln

ol

ol
ol

δ

δ
     (3.34) 

For the closed-loop system, the points at which ( )( )kxV∆  vanishes are given by:  

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( )
( ) ( ){ }0

0

00 2
2

2

=Θ−ℜ∈=

=Θ−=

=⋅−+=
∆

⇒=∆

xxMxM

xxM

xVxVL
p
axVLuxVL

xV
xV

rol
n

cl

rol

ggof
cl

cl δ
  (3.35) 

where ( ) ( )[ ] ( ) ( )[ ] ( ) 01 22
2

2

>⋅=⋅=Θ xVxVL
r

xVxVL
p
ax g

d
gr  and 2

22

δδ
c

d
r

a
q

a
pr =







⋅

=





=  

 

Let a be a zero of ( )xM ol : ( ) 0=aM ol  

Since ( ) 0>Θ xr , it can be easily deduced that: ( ) ( ) ( ) 0<Θ−= xxMxM rolcl  for any x 

that satisfies 
22 oo xaxx −<− . Then, the control law (3.29) leads to global asymptotic 

stability for the closed-loop system. 

If for some c with 
22 oo xaxc −>− , ( ) ( ) ( ) 0>Θ−= ccMcM rolcl , 

 then there exists a point b which satisfies: ( ) ( ) ( ) 0=Θ−= bbMbM rolcl  with 

222 ooo xaxbxc −>−>− . 
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As a result, the control law (3.30) causes in this case an enlargement of the quadratic 

estimate of the stability region. 

 

Remark: Note that if for the open-loop system, xo is globally asymptotically stable: 

( ) 0<xM ol  for any nx ℜ∈ , it is also globally asymptotically stable for the closed-loop 

system under the control law (3.30), since ( ) 0>Θ xr . 

 

Eq. (3.34) indicates that the ratio of the two adjustable parameters of the control law 

(3.30), 
2







=

a
p

rd , influences the quadratic estimate of the closed-loop stability region.  

As the ratio dr decreases, the magnitude of the negative term ( ( ) 0<Θ− xr ) in Eq. (3.35) 

increases, leading to an increase of the size of the quadratic estimate of the stability 

region. 

Indeed, let rr <'  and  

( ) ( ) ( ) 0=Θ−= bbMbM rolcl ,        (3.36) 

( ) ( ) ( ) 0' =Θ−= ccMcM rolcl         (3.37) 

 with cb ≠ . Suppose that 
22 oo xbxc −<− . This would imply that: 

( ) ( ) ( ) 0<Θ−= ccMcM rolcl .        3.38) 

Since ( ) ( )cc rr 'Θ<Θ , inequality (3.37) yields: ( ) ( ) ( ) 0' <Θ−= ccMcM rolcl . (3.39) 

The latter result is in contradiction with Eq. (3.37). Therefore, 
22 oo xbxc −>− , 

resulting in a larger quadratic estimate of the stability region. 

 

 

3.4.5 Synthesis of a dynamic output feedback controller 

 

 

The synthesis of output feedback controllers for open-loop stable processes can be 

realized as a combination of state feedback control laws and open-loop state observers.  

Indeed, all states variables are rarely available for direct online measurement. 
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For the case of an open-loop stable process, the unmeasurable states can be reliably 

estimated through online simulation of the process dynamics: 

 

( ) ( ) ( )( ) ( )( ) ( )( )[ ] δ⋅⋅++=+ kwukwgkwfkwkw 1      (3.40) 

 

By combining the state feedback control law (3.30) with the observer dynamics (3.40) 

that reconstructs possibly unmeasurable states, a realization for a dynamic output 

feedback controller is obtainable: 

 

( ) ( ) ( )( ) ( )( ) ( )[ ]

( ) ( )( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]

( )( )kwhyyye

kwVLp

kwVakwVLkwVLkwheup
ku

kukwgkwfkwkw

spsp

g

fgo

−=−=

+

+⋅−+
=

⋅+⋅++=+

22

22

11 δ

   (3.41) 

 

The closed-loop system under the controller (3.41) takes the form: 

 

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]

( )( )kxhy

kwVLp

kwVakwVLkwVLkwhkxhyup
kwgkwfkwkw

kwVLp

kwVakwVLkwVLkwhkxhyup
kxgkxfkxkx

g
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           (3.42) 

 

Employing standard linear stability analysis, it is straightforward to show that the 

unforced closed-loop system ( constant=spy ) under the controller (3.41) is locally 

asymptotic stable. Algebraic details are omitted for brevity. 

Notice that the controller (3.41) is a model-state feedback controller depicted in Fig. 3.2.  

 

The main features and properties of the aforementioned controller structure have been 

identified and discussed in Coulibaly et al. (1992) and Kravaris et al. (1997). 
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Figure 3.2: Model state feedback controller. 
(adapted from Kazantzis and Kravaris, 1999) 

 

 

3.5 Illustrative Example I: Van de Vusse Reaction in a CSTR 
 

Consider a continuous stirred tank reactor, where the isothermal series/parallel Van 

de Vusse reaction (Wright and Kravaris, 1992) is taking place:






→

→→

DA

CBA
k

kk

3

21

2
 

The desired product is the component B, the intermediate component in the series 

reaction. Klatt and Engel (1998) note that the production of cyclopentenol from 

cyclopentadiene is based on such a reaction scheme A = cyclopentadiene, B = 

cyclopentenol, C= cyclopentanediol, and D = dycyclopentadiene. 

 

The rates of formation of species A and B are assumed to be: 

bbb

aaa

CkCkr

CkCkr

21

2
31

−=

−−=
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2
1
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The feed stream consists of pure A. The mass balances for species A and B are given by: 
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( ) ( )

( ) ( )bbb
b

aaaoa
a

CkCkVCF
dt

dC
V

CkCkVCCF
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dC
V

21

2
31

−+−=

−−+−=
      (3.43) 

where F is the inlet flowrate of A, V is the reactor volume which is considered to be 

constant during the operation, Ca and Cb are the concentrations of the species A and B 

inside the reactor and Cao =10 mol.l-1 is the concentration of A in the feed stream. 

We wish to maintain Cb at its set point, by manipulating the dilution rate VF .  

By letting: 

bba CyVFuCxCx ==== ,,, 21  

( ) ( ) ( )

( ) ( )

2

21221222211
2

21121111
2

1311
1

,,

,,

xy
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dt

dx

uxxgxxfuxxxkxk
dt
dx

o

=

⋅+=⋅−⋅−⋅=

⋅+=⋅−+⋅−⋅−=

   (3.44) 

 

The system is initially at steady state with x1,s=3.0 mol/l, x2,s=1.117 mol/l, us=34.28 h-1.  

It is now assumed that the system is subjected to a negative step change in the set point 

value from 1.117 to 1.05 mol/l.  

Accordingly, the new steady-state values are: x10=2.697 mol/l, x20= ysp=1.05 mol/l, 

u0=28.4228 h-1. 

 

Furthermore, it can be shown that for the chosen set of process parameters and steady-

state values the system is in the nonminimum-phase region (Wright & Kravaris, 1992). 

 

For the unforced system ( )ouu = , the Jacobian matrix A  evaluated at oxx = , is: 





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−

−
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A  

The eigenvalues of A  are: 
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
−
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=
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4229.128

λ ,  

which would lead to h
A

0001511.0
)(50
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max

==
λ

δ .  
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For convenience, we select the discretization step to be: h0001.0=δ . 

In order to check if the sampling period δ is small enough to guaranty numerical stability 

and high accuracy of the resulting sampled-data representation, we will compare the 

open-loop responses of the original continuous-time system with the ones based on the 

sampled-data representation obtained using Euler’s discretization method. 

 

 

3.5.1 Open-loop Responses 

 

A Matlab code (Matlab 7.0) was used for this comparison: the built-in ODE 

solver ode15s was used for the simulation using the continuous-time system. 
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o
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   (3.45) 

 

( ) ( ) ( )( ) ( )( )[ ]
( ) ( )( )kxhky

ukxgkxfkxkx o

=
⋅+⋅++=+ δ11

     (3.46) 

 

In the case of an open-loop system, we chose the input to be equal to u0=28.4228 h-1. 

The sampling period δ has been assumed to be less than fifty times smaller than the 

process dynamic constant, so that numerical stability is guarantied.  

( )Amax50
1
λ

δ
⋅

= = 0.00015 h h0001.0=⇒ δ . 
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Figure 3.3. : Open-loop response: check for the sampling period of the discretization 

 

The sampling period δ being small enough for the purposes of our study, will be 

considered in the sequel constant ( h0001.0=δ ). 

 

Table 3.1 summarizes the numerical values of the parameters which will be used in th 

present  study. 

 

Table 3.1: Numerical values of the Van de Vusse reaction in a CSTR 

Parameter Value 
k1  50 h-1 

k2  100 h-1 

k3  10 l.(mol . h)-1 

Ca
0 (inlet concentration of A) 10 mol.l-1 

ysp  1.05 mol.l-1 

x10 2.697 mol.l-1 

x20 1.05 mol.l-1 

u0 28.4228 h-1 

δ 0.0001 h 
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3.5.2 Estimation of the stability region size: 

 

 

For IQ =* , the discrete Lyapunov matrix equation (3.6) was solved in order to 

obtain the matrix P: 

 









=

18495.3946553.7
46553.786586.40

P   

The eigenvalues of P are: ( ) 







=

51272.32
53809.47

Pλ  

P is indeed a symmetric, positive definite matrix. 

 

The proposed quadratic Lyapunov function V is: 

 

( ) ( ) ( )( )
( )2

2

21
2

1

0515924819

0516969246553.7696924329320

.-x.

.-x.-x.-x.xV

⋅

+⋅+⋅=
 (3.47) 

 

In Fig. 3.4., the variation of the size of the stability region with respect to the ratio r is 

graphically presented. The stability region estimates have been evaluated by following 

the standard methodology presented in section II.  

 

A Maple code was used to graphically represent both the ( )( ) 0=∆ kxV and ( )( ) ckxV ≤  

surfaces. 
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Figure 3.4: Variation of the size of the stability region with r. 

 

As it is evident, the control law leads to an enlargement of the quadratic estimate of the 

size of the stability region, using the quadratic Lyapunov (3.47) and for decreasing values 

of the ratio 
2







=

a
p

rd . 

 

 

3.5.3 Closed-loop Responses: The effect of the controller parameters a2 and p2 

 

Let us now examine the closed-loop performance characteristics for the system 

under consideration, when the control law (3.29) is implemented and how they are 

influenced by the design parameters a2 and p2. 

The input constraints of the Saturation function in the controller (3.29) are defined as 

follows : 0min =u  and no maxu . This leads to the following controller to be implemented 

in our system: 
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In the formulation of the optimization problem in Section III, the parameters a2 and p2 

were associated with two main performance characteristics: 

 

 _ 2a : associated with the rate of energy dissipation or the speed of the closed loop 

response, that could be quantified through the ISE performance index: 

( )( )[ ]∑
∞

=

⋅−=
0

2

k

kxhyspISE δ         (3.49) 

 _ 2p  : associated with the size of the input excursion from the equilibrium uo , 

that could be quantified as follows: 

( )
[ )

( ) o
k

o ukuuku −=−
∞∈

∞
,0

sup        (3.50) 

 

As 2a  increases, the speed of the closed-loop response increases and the value of the 

ISE-index decreases. Moreover, since the increase of parameter 2a leads to a more 

aggressive controller, one intuitively expects larger input excursions from the value uo. 

.With regard to the 2p  parameter, an increase of 2p  would penalize input deviations 

from uo more severely and lead to larger value of the ISE-index, due to a more sluggish 

controller. Moreover, the augmentation of the closed-loop stability region favors the 

selection of a relatively large 2a  and/or a relatively small 2p . It is therefore apparent that 

the conflicting nature of the effect of 2a and 2p on the closed-loop performance 

characteristics results in a trade-off type of decision making concerning the values of the 

parameters. 
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Figure 3.5: Closed-loop responses for different values of 2a  and 2p . 

 

Notice the manifestation of the nonminimum phase behavior as it is realized through the 

display of inverse response characteristics in Fig. 3.5. 

 

The graphs in Fig. 5 depict the closed-loop responses for 2a = 10000 and 2q = 0.01, 

( )222 δqp = , 2a = 10000 and 2q = 0.1 and 2a = 40000 and 2q = 0.01 respectively. 

As 2a  increases, the controller becomes more aggressive and consequently the ISE-index 

decreases, while input deviations from uo become larger. If a larger value of 2p  were 

chosen, that would penalize deviations of u from uo more severely, a more aggressive 

controller could be then tolerated and therefore an increase of the speed of the response 

by increasing 2a  could be sought. 

As a result, there are alternate points in the parameter space ( 2a , 2p ) that entail similar 

closed-loop performance characteristics. 

 

Now, the influence of the addition of the saturation function in the derivation of the 

controller will be investigated. 

Consider now the input constraints of the saturation function in the controller (3.29) are 

as follows : 0min =u  and ( )0
1

max 260 uhu ≈= − . This leads to the following controller to 

be implemented in our system: 
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Figure 3.6: Comparison between two controllers: with and without input constraints. 

 

The difference between the two graphs in Fig. 3.6 (a2=40000, q2=0.001) for the same 

values of the control parameters is the addition of input constraints in the formulation of 

the control law: the graphs on the left hand-side were obtained using the controller (3.51) 

with 0min =u  and maxu = 60 h-1., whereas the ones on the right hand-side were obtained 

with the controller (3.30). 

The input, u, can’t be negative. Without this constraint, with (a2=40000, q2=0.001), we 

had ||u(k)-uo||∞ = 68.3248 h-1, which means u(k) being negative at some point. 
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This illustrates the point that including input constraints in the derivation of the control 

law allows to take into account limitations of the process. 

However, as described in Fig. 3.7, including input constraints , especially drastic ones, 

can lead to a loss of performance when an aggressive controller is applied, since the input 

will hit the constraints. 
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Figure 3.7: Influence of the Saturation function on the performance characteristics. 

 

 

Including input constraints in the control law may lead to a loss in performance, 

particularly when the controller is not properly tuned. However, it allows the control law 

to take into account some limitations of the process, and thus make it more meaningful. 

 

 

3.5.4 Results obtained using  Zubov’s method 

 

In Fig. 3.8., the variation of the size of the stability region with the ratio r are 

graphically presented. They have been evaluated by following the standard methodology 

presented in section II.  

A Maple code was used to graphically represent ( )( ) 0=∆ kxV and ( )( ) ckxV ≤  surfaces, 

the same method which was used to estimates the size of the stability region with the 

quadratic Lyapunov function. 
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Figure 3.8: Estimates of the stability region as r varies for the 4th order approximation of V 

 

 
Figure 3.9: Stability region size estimates for different orders of the Taylor approximation of V 

 

∆V(N=4)(x(k)) =0 

∆V(N=2)(x(k)) =0 

V(N=4)(x(k)) ≤ c’ 

V(N=2)(x(k)) ≤ c 
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As it is evident, the control law using the 4th-order Taylor series truncation (N=4) for the 

Lyapunov function leads to a significant enlargement of the estimate of the size of the 

stability region in comparison to the values obtained using the quadratic Lyapunov 

function Eq. 3.47. 
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Figure 3.10: Comparison of the results obtained for different orders of the Taylor approximation 

of V 

However, there is no significant difference in the performance characteristics obtained 

with the controllers derived using different truncation orders for the Taylor series. This is 

probably due to the mild process nonlinearity, which suggests, that even a lower 

truncation order would suffice to ensure acceptable closed-loop operation. Figure 3.10 

represents the performance characteristics for the controllers derived for N = 2, 3 and 4, 

for different sets of initial conditions than those defined earlier. 

 

 

In order to better illustrate the interests of the Zubov-like method, another example is 

addressed.  
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3.6 Illustrative Example II: A Biological Reactor 
 

 

Biochemical reactors are used in a wide variety of processes, from waste treatment 

to alcohol fermentation. Moreover, bioreactors represent challenging control problems, 

even in the case studied here with only a few variables, because of the nonlinearity 

related to their kinetics. Some interesting studies of controller design for bioreactors were 

conducted by Brengel and Seider (1989) Harris and Palazoğlu (1998) or Efe, Abadoglu 

and Kaynak (1999).  

 

The example considered here has already been studied because of its educational interest 

(Bequette, 2003).  

The specific growth rate chosen for the purpose of this study introduces substrate 

inhibition kinetics: 2
1

max

SkSk
S

m ⋅++
⋅

=
µ

µ  

 

Within a standard bioreactor modeling framework, biomass consumes substrate to 

produce more cells. Under standard assumptions, he mass balances for the biomass and 

substrate are given by: 

 

( ) [ ]2
1

max

2
1

max

SkSkY
SX

SSD
dt
dS

SkSk
SX

XD
dt
dX

m
f

m

⋅++
⋅⋅

−−⋅=

⋅++
⋅⋅

+⋅−=

µ

µ

      (3.52) 

 

where D is the dilution rate, X and S are the concentrations of the biomass and the 

substrate inside the reactor and Sf  is the concentration of substrate in the feed stream. 

Different control strategies have been used to control continuous bioreactors. Here, we 

wish to maintain X at its set point (output), by manipulating the dilution rate D  
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(manipulated input). The interesting feature with working with the dilution rate as the 

manipulated input is that the resulting dynamic model is independent of scale. 

 

By letting: 

XyDVFuSxXx ===== ,,, 21  

 

the above dynamic process equations become: 

 

( ) ( )

[ ] ( ) ( ) ( )

2

212212222
212

21max2

21121112
212

21max1

,,

,,

xy

uxxgxxfuxx
xkxkY

xx
dt

dx

uxxgxxfux
xkxk

xx
dt
dx

f
m

m

=

⋅+=⋅−+
⋅++

⋅⋅
−=

⋅+=⋅−
⋅++

⋅⋅
=

µ

µ

  (3.53) 

 

The system is initially at steady state with x1,s=1.530163g/l, x2,s= 0.174593 g/l, us=0.3 h-1.  

It is now assumed that the system is subjected to a positive step change in the set point 

value from 1.530163 to 1.58 g/l.  

Accordingly, the new steady-state values are: x10=1.58 mol/l, x20= ysp=0.05 mol/l, 

u0=0.154847 h-1. 

 

For the unforced system ( )ouu = , the Jacobian matrix A  evaluated at oxx = , is: 









−−

=
6513.83871.0
3986.30

A  

The eigenvalues of A  are: 







−
−

=
4965.8
1548.0

λ , which would lead to 

h
A

01176.0
)(10

1

max

==
λ

δ .  

For convenience, we assume now: h01.0=δ . 

 

In order to check if the sampling period δ is small enough to guarantee asymptotic 

stability, we will numerically compare the open-loop responses of the continuous-time 
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system with the ones generated by its sampled-data representation obtained using Euler’s 

discretization method. 

 

 

3.6.1 Open-loop Responses 

 

A Matlab code (Matlab 7.0) was used for this comparison. In particular, the built-

in ODE solver ode15s was used for the simulation of the dynamics of the continuous-

time system. 

 

( ) ( )

[ ] ( ) ( ) ( )

2

02122120222
212

21max2

0211211012
212

21max1

,,

,,

xy

uxxgxxfuxx
xkxkY

xx
dt

dx

uxxgxxfux
xkxk

xx
dt

dx

f
m

m

=

⋅+=⋅−+
⋅++

⋅⋅
−=

⋅+=⋅−
⋅++

⋅⋅
=

µ

µ

  (3.54) 

On the same graph, the response of the discrete-time process  model is also shown: 

( ) ( ) ( )( ) ( )( )[ ]
( ) ( )( )kxhky

ukxgkxfkxkx o

=
⋅+⋅++=+ δ11

     (3.55) 
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1.45
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1.55

1.6
 Open-loop response: check for the discretization

 time t (hr) 
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n 
X

 (
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l) 

xo = 1.5302 g/l
so = 0.17459 g/l

δ = 0.01 h
dX/dt = µ*S*X/(km+S+k1*S2) -X*Dss
dS/dt = -µ*S*X/(Y*(km+S+k1*S2))+ (Sf-S)*Dss

ISE trapez = 0.00021618(g/l)2*h

Euler

ode15s

 
Figure 3.11: Open-loop response: check for the sampling period of the discretization 
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Figure 3.11 shows that the sampling period determined previously is small enough  

Therefore, a value of h01.0=δ  is chosen for convenience. 

 

Table 3.2 summarizes the numerical values of the parameters which will be used in this 

study. 

 

Table 3.2: Numerical values of the bioreactor example 

Parameter Value 
k1  0.4545 L.g-1 

km  0.12 g.L-1 

µmax  0.53 h-1 

Sf   (feed substrate concentration) 4.0 g.l-1 

Y    (yield coefficient) 0.4 

ysp  1.05 gl.l-1 

x10 1.58 g.l-1 

x20 0.05 g.l-1 

u0 0.154847 h-1 

δ 0.01 h 

 

Here, only the Zubov-like method will be demonstrated, as it is relevant towards the 

purpose of our study. 

 

 

3.6.2 Results obtained using Zubov’s method 

 

This example is expected to better illustrate the importance of Zubov’s method, 

because of the stronger process nonlinearity.  

Consider now the input constraints of the saturation function in the controller (3.29) 

which are as follows : 0min =u  and no maxu . This leads to the following controller to be 

implemented in our system: (equivalent to Eq. 3.48) 
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( ) ( ) ( )( )( )[ ] [ ]

( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( )[ ]
( )( )[ ]22

22

min

minmin

,

if
if0

where,

kxVLp
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wuw
uwu

wSkxVkxSku

g

fgspo

+

+⋅−
=Ψ





≤
<=

=Ψ=

   (3.56) 

A MAPLE code (given in Annex) was used to automatically compute the Taylor 

coefficients of the unknown solution ( )xV  of the Zubov-like functional equation (3.9). 

 

( ) ( ) ( )( ) ( )  . - x. + . - x.- x. + . -  x. ,xxV  
2

221
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⋅⋅

⋅+⋅⋅+

⋅⋅

⋅⋅

⋅⋅⋅=

           (3.58) 

 

A Matlab code (Matlab 7.0) was used for evaluating the performance of the proposed 

digital controller (obtained using Equations 3.57 (N=2) and 3.58 (N=4) and the 

associated Lyapunov functions appearing in the proposed nonlinear controller 3.56) when 

implemented in the discrete-time model: 

 

( ) ( ) ( )( ) ( )( )[ ]
( ) ( )( )kxhky

ukxgkxfkxkx

=

⋅+⋅++=+ δ11
      (3.59) 

 

Figure 3.12 represents the performance characteristics for the controllers derived for N = 

2 and 4 as truncation orders for the Taylor series, and for different sets of parameter 

values a2 and q2. 

On the left: a2 =40 and q2 =0.1. On the right, a2 =400 and q2 =0.1, which represents a 

more aggressive controller, as seen previously. 
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Figure 3.12: Comparison of the results obtained for different truncation orders of the Taylor 

series approximation of V 

 

It is important to notice that for a more aggressive controller (right hand side of Figure 

3.12), the controller designed for N=2 does not exhibit operationally acceptable 

performance characteristics. The loss in terms of performance is such that the desired 

output set point value for X is not achieved. 

The manipulated input, in this case, constantly hits the constraint 0min =u . On the other 

hand, the controller designed using N=4 enables the system to reach the desired set point 

value ysp.  

 

However, the results obtained with a less aggressive controller (left hand side of Figure 

3.12) also help drawing some interesting conclusions. 

The performance characteristics, as reflected upon the value of the ISE and ||u(k)-uo||∞, 

support the claim that the controller designed for N=2 is better than the one designed 
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using N=4 as he truncation order: ysp is reached faster (lower value of the ISE index, for a 

value of ||u(k)-uo||∞ which seems reasonable). 

 

Nevertheless, the behavior of the manipulated input is smoother when N=4: it does not 

hit the constraint, and the value of ||u(k)-uo||∞ is small. Indeed, for N=2, the input 

oscillates between the constraint 0min =u  and other values, closer to u0. One can notice 

that the behavior tends to be the one observed in the case of a more aggressive controller. 

But here, the controller manages to achieve the goal spyX = . 

In a real process, it is impossible for the actuator to be able to follow the control moves 

generated by controller using the second order truncation of the Taylor series expansion 

of V . 

 

In this case, it appears that a higher order of the Taylor series approximation for V does 

definitely matter. 
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3.7 Conclusions 
 

 

A general framework for the development of a new synthesis approach for 

nonlinear process control, based on a notion of short-horizon energy-predictive control, 

was presented. 

The approach that was followed in the design of digital computer-control systems was to 

obtain the discrete-time process model directly from process model identification 

methods or via time-discretization of a continuous-time process model and then directly 

synthesize a discrete-time controller. 

The proposed approach, starting from a continuous-time process model that is discretized 

to obtain a discrete-time process model, follows the methodological principles of 

Lyapunov design and optimization of the rate of energy dissipation of the system, as it is 

realized through a suitably selected control Lyapunov function.  

The latter is computed either by solving the Lyapunov matrix equation, or for enhanced 

accuracy when coping with severe process nonlinearities, by solving a Zubov-like 

functional equation for the system’s drift vector shield. 

A state feedback control law with two tunable parameters was derived as the solution of 

an optimization problem, formulated on the basis of the Lyapunov function and closed-

loop performance considerations. 

Even though a systematic methodology was presented responding to the needs of 

optimizing the digitally controlled process dynamics, it should be emphasized that the 

responsibility of the process control engineer is not trivial. The choice of the tunable 

parameters as well as the choice of the input constraints of the saturation function 

included into the control law are important and should reflect the design objectives, as 

well as the restrictions of the process. 
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NOMENCLATURE 
 
 

 TA    Transpose of Matrix A 

( )mindB   Set defined by Eq. (3.19) 

aC    Concentration of species A ( Van de Vusse Example) 

oaC    Inlet concentration of species A ( Van de Vusse Example) 

D   Dilution rate ( Biological reactor Example) 

mind    Quantity defined by Eq. (3.18)  

-yye sp=   Error signal 

F    Flowrate ( Van de Vusse Example) 

( ) ( )xgxf ,   Vector fields in standard state – space description of a continuous-

time nonlinear system. 

( )xh    Scalar fields that determine the output map 

I    n-dimensional Identity matrix 

 k    Iteration 

 ik    Reaction rate constant ( Van de Vusse and Biological reactor 

Examples) 

( )xhL f   Lie derivative of the scalar field h with respect to the vector field f 

ol M    Set defined by Eq. (3.17)  

cl M    Set defined by Eq. (3.33)  

ar    Reaction rate of species A ( Van de Vusse Example) 

fS    Feed substrate concentration ( Biological reactor Example) 

 t    Time 

u    Manipulated input 

V    Lyapunov function 

x    Vector of state variables 

y    Process output 
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Y    Yield coefficient ( Biological reactor Example) 

 

Greek letters: 

 

 δ    Sampling period 

( ) Pλ    Eigenvalue of matrix P  

 cΩ    Set defined by Eq. (3.20)  

2
1

max

SkSk
S

m ++
=

µ
µ  Specific growth rate ( Biological reactor Example) 

 

 

Other symbols: 

 

 ∈    Belongs to 

 ℜ    Real line 

     nℜ    n-dimensional Euclidian space 

 
2

•    Euclidian norm in   nℜ  

 
∞

•    Max- norm in   nℜ  

 

Subscripts: 

 

min   Minimum 

max  Supremum 

sp  Set point value 
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APPENDICES 
 

 

MAPLE Code for the Van de Vusse Example  
 
> k1:=50: 
> k2:=100: 
> k3:=10: 
> Cao:=10: 
> ysp:=1.05: 
System of differential Equations 
> diff_x1:=-k1*x1-k3*x1^2+(Cao-x1)*u; 

 
> diff_x2:=k1*x1-k2*x2-x2*u; 

 
> desired_y:=x2; 

 
> solve({diff_x1=0, diff_x2=0, desired_y=ysp}); 

 
> x1o:=2.69688: 
> x2o:=1.0500: 
> uo:=28.42288: 
> f1:=proc(x1,x2) -k1*x1-k3*x1^2  end proc: 
> f2:=proc(x1,x2) k1*x1-k2*x2  end proc: 
> g1:=proc(x1,x2) (Cao-x1)  end proc: 
> g2:=proc(x1,x2) -x2  end proc: 
> df1x1:=proc(x1,x2) D[1](f1)(x1,x2) end proc: 
> df1x2:=proc(x1,x2) D[2](f1)(x1,x2) end proc: 
> df2x1:=proc(x1,x2) D[1](f2)(x1,x2) end proc: 
> df2x2:=proc(x1,x2) D[2](f2)(x1,x2) end proc: 
> dg1x1:=proc(x1,x2) D[1](g1)(x1,x2) end proc: 
> dg1x2:=proc(x1,x2) D[2](g1)(x1,x2) end proc: 
> dg2x1:=proc(x1,x2) D[1](g2)(x1,x2) end proc: 
> dg2x2:=proc(x1,x2) D[2](g2)(x1,x2) end proc: 
> with(LinearAlgebra): 
For the unforced system (u = uo), the Jacobian Matrix evaluated at x = xo : 
> Jacobian:= 
Matrix([[df1x1(x1o,x2o),df1x2(x1o,x2o)],[df2x1(x1o,x2o),df2
x2(x1o,x2o)]])+uo*Matrix([[dg1x1(x1o,x2o),dg1x2(x1o,x2o)],[
dg2x1(x1o,x2o),dg2x2(x1o,x2o)]]); 
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> with(LinearAlgebra):Eigenvalues(Jacobian); 

 
> Id:=Matrix(2,2, shape=identity): 
 
Lyapounov's Matrix Equation 
> A:=Matrix([[-132.360479999999996, 0.], [50., -
128.422879999999992]]); 

 
> At:=Transpose(A): 
> P:=Matrix(2,2,symbol=p,shape=symmetric) : 
> P . A + At . P ; 

 
> solve({-264.72096*p[1, 1]+100.*p[1, 2]=-1, -
260.78336*p[1, 2]+50.*p[2, 2]=0, -256.84576*p[2, 2]=-1}); 

 
> P := Matrix([[0.00405955, 0.0007465], [0.0007465, 
0.0038934]]); 

 
> Eigenvalues(P); 

 
deviation variables: x1= Ca-Cass, x2=Cb-Cbss 
> V_Lyap:=proc(x1,x2) 0.5*Vector [row] ([x1,x2]) .P 
.Vector([x1,x2]) end proc: 
> V_Lyap(x1,x2); 

 
> Lyap:=proc(x1,x2) x1*(0.2029775e-2*x1+0.37325e-
3*x2)+x2*(0.37325e-3*x1+0.194670e-2*x2) end proc: 
> expand(x1*(0.2029775e-2*x1+0.37325e-3*x2)+x2*(0.37325e-
3*x1+0.194670e-2*x2)); 
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> dVdx1:=proc(x1,x2) D[1](Lyap)(x1,x2) end proc: 
> dVdx2:=proc(x1,x2) D[2](Lyap)(x1,x2) end proc: 
> LfV:= proc(x1,x2) (dVdx1(x1,x2))*(-k1*(x1+x1o)-
k3*(x1+x1o)^2)+(dVdx2(x1,x2))*(k1*(x1+x1o)-k2*(x2+x2o)) end 
proc: 
> LfV(x1,x2); 

 

 
> LgV:= proc(x1,x2) (dVdx1(x1,x2))*(Cao-
(x1+x1o))+(dVdx2(x1,x2))*(-(x2+x2o)) end proc: 
> LgV(x1,x2); 

 
> Mol:= proc(x1,x2) LfV(x1,x2)+uo*LgV(x1,x2)end proc: 
> Mcl:= proc(x1,x2,r) Mol(x1,x2)-
(1/r)*(LgV(x1,x2))^2*V_Lyap(x1,x2) end proc: 
> with(plots): 
> display({contourplot(Lyap(x1,x2),x1=-100..50,x2=-
50..50,contours=[0.3,0.5,1,5],coloring=[blue,white]),contou
rplot(Mcl(x1,x2,10),x1=-100..50,x2=-50..50,contours=[0])}); 
 

 
 

The code for the Zubov-like method is not included for the Van de Vusse Reaction in a 

CSTR example. It is given for the Biological Reactor example. 
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MAPLE Code for the Biological Reactor Example  
 
> km:=0.12: 
> k1:=0.4545: 
> mu:=0.53: 
> Y:=0.4: 
> x2f:=4.0: 
> ysp:=1.58: 
System of differential Equations 
> diff_x1:=mu*x2*x1/(km+x2+k1*x2^2)-x1*u; 

 
> diff_x2:=-mu*x1*x2/(Y*(km+x2+k1*x2^2))+(x2f-x2)*u; 

 
> desired_y:=x1; 

 
> solve({diff_x1=0, diff_x2=0, desired_y=ysp}); 

 
> x1o:=1.58: 
> x2o:=0.05: 
> uo:=0.1548474: 
 
> f1:=proc(x1,x2) mu*x2*x1/(km+x2+k1*x2^2) end proc: 
> f2:=proc(x1,x2) -mu*x1*x2/(Y*(km+x2+k1*x2^2))  end proc: 
> g1:=proc(x1,x2) -x1  end proc: 
> g2:=proc(x1,x2) (x2f-x2)  end proc: 
> df1x1:=proc(x1,x2) D[1](f1)(x1,x2) end proc: 
> df1x2:=proc(x1,x2) D[2](f1)(x1,x2) end proc: 
> df2x1:=proc(x1,x2) D[1](f2)(x1,x2) end proc: 
> df2x2:=proc(x1,x2) D[2](f2)(x1,x2) end proc: 
> dg1x1:=proc(x1,x2) D[1](g1)(x1,x2) end proc: 
> dg1x2:=proc(x1,x2) D[2](g1)(x1,x2) end proc: 
> dg2x1:=proc(x1,x2) D[1](g2)(x1,x2) end proc: 
> dg2x2:=proc(x1,x2) D[2](g2)(x1,x2) end proc: 
 
For the unforced system (u = uo), the Jacobian Matrix evaluated at x = xo : 
> Jacobian:= 
Matrix([[df1x1(x1o,x2o),df1x2(x1o,x2o)],[df2x1(x1o,x2o),df2
x2(x1o,x2o)]])+uo*Matrix([[dg1x1(x1o,x2o),dg1x2(x1o,x2o)],[
dg2x1(x1o,x2o),dg2x2(x1o,x2o)]]); 
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> with(LinearAlgebra):Eigenvalues(Jacobian); 

 
> Id:=Matrix(2,2, shape=identity): 
 
> delta_vrai:=1/(10*8.5); 

 
> delta:=0.01; 

 
Lyapounov's Matrix Equation 
 
> A:=Jacobian: 
> Ad:=Id+delta*A; 

 
> with(LinearAlgebra):Adt:=Transpose(Ad): 
>  
> Pd:=Matrix(2,2,symbol=pi,shape=symmetric): 
> Adt . Pd . Ad - Pd ; 

 

 

 
> solve({-0.4e-9*pi[1, 1]-0.7742369016e-2*pi[1, 
2]+0.1498606950e-4*pi[2, 2]=-1, 0.3398586761e-1*pi[1, 1]-
0.866447089e-1*pi[1, 2]-0.3536276170e-2*pi[2, 2]=0, 
0.1155039198e-2*pi[1, 1]+0.6209128678e-1*pi[1, 2]-
.1655417623*pi[2, 2]=-1}); 

 
> Pd := Matrix([[ 335.4811425,129.2694896], [129.2694896, 
56.86784224]]); 

 
> with(LinearAlgebra):Eigenvalues(Pd); 
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> V_Lyap:=proc(x1,x2) 0.5*Vector [row] ([x1-x1o,x2-x2o]) 
.Pd .Vector([x1-x1o,x2-x2o]) end proc: 
 
> V_Lyap(x1,x2); 

> Lyap:=proc(x1,x2) (x1-1.530163)*(112.4046883*x1-
177.8314793+33.41476578*x2)+(x2-.174593)*(33.41476578*x1-
54.92118770+21.71421222*x2) end proc: 
> dVdx1:=proc(x1,x2) D[1](Lyap)(x1,x2) end proc: 
> dVdx2:=proc(x1,x2) D[2](Lyap)(x1,x2) end proc: 
> LfV:= proc(x1,x2) 
(dVdx1(x1,x2))*(f1(x1,x2))+(dVdx2(x1,x2))*(f2(x1,x2)) end 
proc: 
> LfV(x1,x2); 

 

 
> LgV:= proc(x1,x2) 
(dVdx1(x1,x2))*(g1(x1,x2))+(dVdx2(x1,x2))*(g2(x1,x2)) end 
proc: 
> LgV(x1,x2); 

Zubov functional equation 
>  
> x1s:=x1o: 
> x2s:=x2o: 
> fvs:=uo: 
> delta:=0.01: 
> readlib(mtaylor): 
> readlib(coeftayl): 
> with(LinearAlgebra): 
> x10:=0:x20:=0: 
> Q:=0.5*(x1^2+x2^2): 
F1:=x1+delta*(mu*(x2+x2s)*(x1+x1s)/(km+(x2+x2s)+k1*(x2+x2s)
^2)-(x1+x1s)*fvs):F2:=x2+delta*(-
mu*(x2+x2s)*(x1+x1s)/(Y*(km+(x2+x2s)+k1*(x2+x2s)^2))+(x2f-
x2-x2s)*fvs): 
>  
> N:=5: 
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> s:=mtaylor(V(x1,x2)-V(x10,x20)-D[1](V)(x10,x20)*x1-
D[2](V)(x10,x20)*x2,[x1=x10,x2=x20],N): 
> sp:=subs([x1=F1,x2=F2],s): 
> d:={}:q(1):={}: 
>  
> for j from 2 to N-1 do  
     for i from 0 to j do  
         p[i,j-i]:=(i!*(j-
i)!)*coeftayl(s,[x1,x2]=[x10,x20],[i,j-i]):  
         q(j):=q(j-1) union {p[i,j-i]}:  
         d:=d union q(j): 
     od: 
od: 
 
> pde:=mtaylor(sp-s+Q,[x1=x10,x2=x20],N):c:={}:r(1):={}: 
> for j from 2 to N-1 do  
    for i from 0 to j do  
       t[i,j-i]:=coeftayl(pde,[x1,x2]=[x10,x20],[i,j-i]):  
       r(j):=r(j-1) union {t[i,j-i]}:  
       c:=c union r(j):  
    od: 
od: 
> fin:=solve(c,d): 
> fin; 
>  

 

 

 

 

 
> mtaylor(f(x,y), [x,y], 5); 

 

 

 
>  
 deviation variables: 
 2nd order truncation 
> Vdev_quad:=proc(x1,x2) 0.5*335.4811454*x1^2 
+129.2694906*x1*x2 +0.5*56.86784297*x2^2 end proc: 
> Vdev_quad(x1-x1s,x2-x2s); 
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> dVdx1_2:=proc(x1,x2) D[1](Vdev_quad)(x1,x2) end proc: 
> dVdx2_2:=proc(x1,x2) D[2](Vdev_quad)(x1,x2) end proc: 
> LfV_2:= proc(x1,x2) 
(dVdx1_2(x1,x2))*(mu*(x2+x2s)*(x1+x1s)/(km+(x2+x2s)+k1*(x2+
x2s)^2))+(dVdx2_2(x1,x2))*(-
mu*(x2+x2s)*(x1+x1s)/(Y*(km+(x2+x2s)+k1*(x2+x2s)^2))) end 
proc: 
> LgV_2:= proc(x1,x2) (dVdx1_2(x1,x2))*(-x1-
x1s)+(dVdx2_2(x1,x2))*(x2f-x2-x2s) end proc: 
>  
>  
 4th order truncation 
> Vdev_4:=proc(x1,x2) 0.5*335.4811454*x1^2 
+129.2694906*x1*x2 +0.5*56.86784297*x2^2 + 1/6*(-
23.51610814)*x1^3+1/2*(-.1397250168)*x1^2*x2+1/2*(-
36.03084504)*x1*x2^2 +1/6*(48.51889251)*x2^3 + 
1/24*(66.96998161)*x1^4+ 
1/6*(.3843165256)*x1^3*x2+1/4*(66.08120420)*x1^2*x2^2 
+1/6*(-40.05615398)*x1*x2^3 +1/24*(38.22278055)*x2^4 end 
proc: 
> Vdev_4(x1-x1s,x2-x2s); 

 

 

 

 
> dVdx1_4:=proc(x1,x2) D[1](Vdev_4)(x1,x2) end proc: 
> dVdx2_4:=proc(x1,x2) D[2](Vdev_4)(x1,x2) end proc: 
> LfV_4:= proc(x1,x2) 
(dVdx1_4(x1,x2))*(mu*(x2+x2s)*(x1+x1s)/(km+(x2+x2s)+k1*(x2+
x2s)^2))+(dVdx2_4(x1,x2))*(-
mu*(x2+x2s)*(x1+x1s)/(Y*(km+(x2+x2s)+k1*(x2+x2s)^2))) end 
proc: 
> LgV_4:= proc(x1,x2) (dVdx1_4(x1,x2))*(-x1-
x1s)+(dVdx2_4(x1,x2))*(x2f-x2-x2s) end proc: 
>  
>  
>  
> with(plots): 
Warning, the name changecoords has been redefined 
 
> display({contourplot(Vdev_quad(x1,x2),x1=-20..10,x2=-
20..20,contours=[1000,5000],coloring=[blue,white]),contourp
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lot(Vdev_4(x1,x2),x1=-20..10,x2=-
20..20,contours=[1000,5000],coloring=[red,white])}); 
 
 

 
 
 
 
 

 

 


