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Abstract 

This PhD dissertation investigates the relationship between Indoor Environmental Quality (IEQ) 

and human cognitive performance, addressing critical knowledge gaps with significant 

implications for various domains, such as the in-car environment, driving performance, and 

secondary cognitive task performance (e.g., navigation) during driving. My research comprises 

three distinct projects, each contributing to a comprehensive understanding of this complex 

relationship. The first project involves a systematic literature review that emphasizes the 

substantial impact of IEQ factors, including indoor air quality, thermal environments, lighting 

conditions, noise condition, and non-light visual factors, on cognitive performance. These findings 

underscore the paramount importance of monitoring and enhancing these environmental aspects 

to sustain optimal cognitive proficiency. The review work inspired me to resolve the 

inconsistencies in results identified in the literature through rigorous experimental design and 

neuroimaging techniques. In particular, the second project of this dissertation investigates the 

effects of CO2 levels and body odors on driving performance using a driving simulator, areas not 

extensively explored previously. Using electroencephalography (EEG) and functional near-

infrared spectroscopy (fNIRS), the study reveals the influence of these factors on driving and 

cognitive performance. Most specifically, it was found that body odor positively affects N-back 

task response accuracy while elevated CO2 up to 3500 ppm does not reduce driving performance 

significantly. The study notes that body odor decreases (θ+α)/β and θ/β ratios, suggesting 

heightened alertness and attention. The third project focuses on the impact of thermal environment, 

interior lighting at night, and their interplay (Hue-Heat Hypothesis) on driving performance. While 

the results do not support Hue-Heat Hypothesis) in general and report limited impact of interior 

lighting at night, enhanced temperature exhibits a significant influence on drivers’ in-car 

environment perception, physiological states, and deterioration on N-back task response accuracy. 

Additionally, increased temperatures correlate with higher EEG Delta band power spectral density 

and reduced Beta, indicating diminished mental engagement during driving. Collectively, this 

dissertation documents variations in driving data, survey responses, task performance, 

physiological states, and brain responses under different conditions. My dissertation fills crucial 

gaps in our understanding of how CO2 levels, body odor, interior lighting at night, and temperature 

influence driving performance and secondary cognitive task related to driving. The findings 

contribute to ongoing efforts to optimize the in-car environment for enhanced driving experiences. 

Future investigations will aim to classify brain responses and physiological reactions to varied air 

quality, interior lighting, and temperature conditions.
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Chapter 1: Introduction 

1.1. Problem statement 

The relationship between Indoor Environmental Quality (IEQ) and human cognitive functions 

has been a focal point of scholarly interest over recent years, as highlighted by numerous studies 

(Allen et al., 2016a; Coley et al., 2007a; Hygge & Knez, 2001a; Mendell & Heath, 2005a; 

Witterseh et al., 2004a). Cognitive functions encompass the brain-based capabilities necessary for 

carrying out tasks across a spectrum of complexity (Angevaren et al., 2008). These functions are 

crucially linked to learning, memory, reasoning, and problem-solving processes, with each 

function playing a vital role in assimilating new information (Staal, 2004). Given the considerable 

amount of time individuals spend indoors for educational or professional purposes, the IEQ can 

markedly influence cognitive functions, thereby affecting learning outcomes and work 

productivity. Previous literature reviews have categorized IEQ factors into several key areas, 

including indoor air quality (IAQ), thermal conditions, lighting, acoustics, office design and layout, 

biophilia and views, aesthetics, and the location and facilities available, underscoring their 

significant impact (Al Horr et al., 2016a; Fisk & Seppanen, 2007; Frontczak & Wargocki, 2011). 

The relationship between IEQ factors and cognitive function has been extensively studied; 

however, the results have frequently been inconsistent, especially in terms of how indoor air 

quality (IAQ) or thermal conditions affect cognitive functions. A potential reason for this 

variability is the limitations of traditional research methodologies, attributed to variations in 

research methodologies, participant demographics, the complexity of environmental settings, and 

constraints in measurement approaches (Hygge & Knez, 2001a; Mendell & Heath, 2005a; 

Witterseh et al., 2004a). Additionally, the utilization of surveys or computerized cognitive 

assessments, which may not effectively measure real-time brain activity or capture the nuanced 

effects of indoor environmental conditions on cognitive processes. 

In addition, the earlier investigations predominantly took place within building environments. 

One example is the research on body odor that is a unique identifier of an individual and comprises 

a complex mix of numerous volatile organic compounds (VOCs) across various chemical classes 

(Gallagher et al., 2008). Their presence offers a crucial measure of air quality degradation in 

vehicle cabins due to passenger metabolism. Nevertheless, the impact of body odor on driving 

performance has been rarely studied. Driving performance encompasses the driver’s capability to 

safely and efficiently maneuver the vehicle, make timely decisions, and react appropriately to 

diverse driving scenarios (Savino, 2009).  

Heat and light have been separately identified as factors influencing cognitive function (Keis et 

al., 2014a; Knez, 1995; Schiavon et al., 2017a; F. Zhang & Dear, 2017). Additionally, the hue-

heat hypothesisHeat and light have been separately identified as factors influencing cognitive 

function (Keis et al., 2014a; Schiavon et al., 2017a; F. Zhang & Dear, 2017) [ref].  Additionally, 

the hue-heat hypothesis that the color temperature of lighting can elicit perceptual and emotional 

reactions similar to those experienced with actual temperature changes (Mogensen & English, 

1926), suggests a potential interactive effect on cognitive function.  The hypothesis has been 

thoroughly investigated across various fields such as experimental psychology, applied 

psychology, and psychological ergonomics, focusing on how color temperatures might influence 

thermal comfort and perception (Berry, 1961; Fanger et al., 1977; Huebner et al., 2016; Toftum et 

al., 2018; Winzen et al., 2014). Therefore, despite the limited number of studies, the literature has 

reported the interactive effects of temperature and light on cognition in buildings perception 

(Huebner et al., 2016; Toftum et al., 2018; Winzen et al., 2014). In nowadays, interior ambient 

lighting has recently become a feature of luxury vehicles, aimed at enriching the driving experience 
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and eliciting positive emotional responses from occupants (T. Kim et al., 2021; Park et al., 2016). 

Prior studies have demonstrated that interior ambient lighting, even when positioned outside the 

direct line of sight, can positively affect several facets of the driving context (Caberletti et al., 2010; 

van Huysduynen et al., 2017). However, more research is needed to better understand the impact 

of temperature, lighting and their interaction on driving performance. 

Exploring the impact of in-car air quality, lighting conditions, and thermal environment, on 

drivers’ cognitive state and driving performance is of crucial for public safety. Optimizing the car-

cabin physical environment can potentially reduce car accidents that led to 2.1 million emergency 

department visits for injuries in one year, 2020 (CDC, 2023).  

1.2. Research Objectives 

This dissertation seeks to understand the intricate relationship between IEQ factors—such as 

air quality, thermal conditions, and lighting—and cognitive functions critical to learning and work, 

with a particular focus on driving performance. By addressing limitations in current research 

methodologies and employing neuroimaging tools like Electroencephalography (EEG) and 

functional Near-Infrared Spectroscopy (fNIRS), the dissertation endeavors to provide deeper 

insights into how IEQ impacts driving and cognitive performance, contributing to a broader 

understanding of environmental influences on human cognitive processes. 

 

The overall objectives of this dissertation can be summarized as: 

1) Bridge the divide between the IEQ factors and human cognitive performance, as well as 

discern whether distinct cognitive functions exhibited varying responses to diverse indoor 

environmental conditions. 

2) Explore the impact of car-cabin physical environment, specifically focusing on CO2 levels, 

body odors, thermal environment, and interior night lighting on driving performance and 

cognition. 

 

One investigation supports the first objective: 

A) In this investigation of review work, my research delved into various aspects of this 

relationship, aiming to comprehend how factors such as ventilation, thermal conditions, 

noise, and lighting impact cognitive function. Additionally, I sought to discern whether 

distinct cognitive functions, encompassing attention, perception, memory, language, and 

higher-order skills, exhibited varying responses to diverse indoor environmental conditions. 

This review work applies a specific text-mining approach to extract knowledge from 

thousands of identified and relevant published papers. My research also pursued the 

identification of limitations within prevailing IEQ and cognition studies, thus providing a 

roadmap for future research endeavors.  

 

Two investigations support the second objective: 

B) The first investigation was dedicated to exploring the impact of car-cabin variables, 

specifically focusing on CO2 levels and body odors emanating from both drivers and/or 

passengers, on driving performance and cognition. Furthermore, I harnessed physiological 

sensors to scrutinize the influence of CO2 and body odor on drivers’ cognitive performance 

and physiological states. In light of this challenge, I employed two powerful and 

complementary neuroimaging techniques, namely EEG and fNIRS. My primary research 

question was to scrutinize the intricate interplay between CO2 concentrations, body odors, 
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and their influences on driving performance using a driving simulator, as well as subjective 

evaluations of the environment. 

 

C) In the second investigation, I aimed to investigate the effect of temperature and interior 

lighting at night on driving performance, as well as the validation of the Hue-Heart 

Hypothesis within the context of driving. I systematically manipulated temperature and 

lighting conditions within the car cabin to observe their effects on driving performance, 

driver acceptance of the environment, alertness, and mood.  

 

This dissertation provides a summary of the interconnections between the three investigations 

described in Error! Reference source not found.. Each investigation also resulted in one or more m

anuscripts, presented in condensed form in the Summary of Methods and Research (Chapter 3) 

and in full in Appendices A-E. In Appendix A, the journal article “How indoor environmental 

quality affects occupants’ cognitive functions: A systematic review” (published in Building and 

Environment), addresses the goals described in Objective 1, Investigation A. In Appendix B, the 

journal article “Air quality in the car: how CO2 and body odor affect drivers’ cognition and driving 

performance?” addresses the research goals described in Objective 2, Investigation B (published 

in Science of Total Environment). In Appendix C, the manuscript “Can EEG and fNIRS detect the 

effects of CO2 exposure on drivers’ cognition and driving performance?” In Appendix C, the 

manuscript “The influence of in-car air quality on drivers’ brain states with hybrid fNIRS and EEG” 

(in preparation for submission to Neuroimaging) addresses the research goals described in 

Objective 2, Investigation B. In Appendix D, the article “Interactive Effects of Interior Ambient 

Light and Thermal environment on Comfort, Emotion, and Driving Performance” (in preparation 

for submission to Science of Total Environment) addresses research goals of Objective 2, 

Investigation C. 

 
Figure 1. Illustration of the connections between the three research investigations conducted in 

the dissertation. The items with light blue color filled are included in this dissertation. 
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Chapter 2: Literature Review 

     This chapter provides a summary of selected sections from the literature reviews related to all 

the investigations detailed in Appendices A – D. 

2.1. Indoor Environmental Quality 

Given the considerable time individuals spend indoors for education or work, especially during 

the pandemic lockdowns, the quality of the indoor environment (IEQ) plays a crucial role in 

influencing occupants’ cognitive functions, subsequently affecting their learning and work 

performance. Comprehensive reviews (Al Horr et al., 2016a; Fisk & Seppanen, 2007; Frontczak 

& Wargocki, 2011) have categorized the factors contributing to IEQ into several key areas, 

including indoor air quality (IAQ), thermal conditions, lighting, acoustics, office layout, biophilic 

design and external views, aesthetic appeal, as well as the building’s location and available 

amenities. These factors collectively represent the major elements that impact the well-being and 

cognitive performance of indoor occupants. 

A significant volume of research has demonstrated that factors such as poor indoor air quality  

(Mendell & Heath, 2005b), inadequate ventilation (Allen et al., 2016b; Coley et al., 2007b), 

unsuitable thermal conditions (Cui et al., 2013a; Lan et al., 2010), lighting condition (Hygge & 

Knez, 2001b), noise environment (Jahncke et al., 2011; Sundstrom et al., 1994), and layout of 

indoor space (Haynes, 2008) can negatively impact both learning and work performance. Despite 

the comprehensive insights provided by these and other key studies on the subject (Choi et al., 

2014; Haverinen-Shaughnessy & Shaughnessy, 2015; Servilha et al., 2014; Wargocki & Wyon, 

2007), there is a noted gap in their analysis concerning the differentiation of cognitive task types. 

This differentiation is critical because the influence of indoor environmental quality (IEQ) on 

performance may vary markedly across different cognitive tasks. For example, evidence suggests 

that simpler tasks might be less affected by environmental factors such as noise and temperature 

compared to more complex tasks (Hancock & Vasmatzidis, 2003; van Kempen et al., 2010) 

For the indoor air quality, both CO2 and body odor are two popular chemicals which are the 

metabolic products exist in the indoor environment. Increased CO2 levels within buildings have 

been linked to a higher incidence of acute health symptoms (Apte, 2000; Erdmann et al., 2002) 

and adverse impacts on mental capabilities (Bloch-Salisbury et al., 2000; Scully et al., 2019; 

Twardella et al., 2012a). Elevated levels of CO2 have been linked to reductions in human 

performance, notably in a variety of cognitive assessments. Research focusing on how CO2 affects 

cognitive abilities in indoor environments suggests that even at levels below 5000 parts per million 

(ppm), the exposure can lead to immediate health concerns such as headaches, lethargy, and 

irritation of the eyes, nasal passages, and respiratory system (Daisey et al., 2003; Scully et al., 

2019). These symptoms have been found to lessen as CO2 concentrations decrease, even at levels 

under 800 ppm. Thus, CO2’s role extends beyond a simple indicator of IAQ to that of a direct 

contaminant. This distinction highlights CO2 not just as a measure of pollutant exposure and 

ventilation efficiency but as a contributing factor to health and cognitive issues. CO2 

concentrations indoors are typically detrimental to the work performance and health of occupants, 

with levels under 1000 ppm considered safe, whereas concentrations of 2000 ppm or more are 

deemed unsanitary. The American Conference of Governmental Industrial Hygienists (ACGIH) 

has established a threshold of 5000 ppm CO2 as the maximum allowable occupational exposure 

over an 8-hour time-weighted average, aimed at preventing serious health issues such as narcosis, 

enhanced respiratory activity, and asphyxiation (Assessment, 2009b). For the in-car environment, 

research by Fruin et al. (2011) into air quality within aircraft cabins during flight revealed that CO2 

levels could surpass 2500 ppm within 15–20 minutes in stationary vehicles with two occupants 
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under recirculated air conditions, yet stayed below 800 ppm in vehicles in motion with outside air. 

In vehicles, CO2 levels tend to rise due to occupants’ exhalation, especially when heating, 

ventilation, and air conditioning (HVAC) systems are set to recirculate air. In such scenarios, CO2 

concentrations can easily exceed 3000 ppm in fully occupied vehicles with closed windows 

(Hudda & Fruin, 2018; Shu et al., 2015). However, for moving vehicles with even slightly opened 

windows, CO2 accumulation is generally minimal, illustrating the effectiveness of natural 

ventilation in maintaining air quality. 

Beyond CO2, the process of metabolism in humans also produces distinctive body odors. These 

odors serve not only as personal identifiers but are comprised of a diverse array of volatile organic 

compounds (VOCs) spanning various chemical categories (Gallagher et al., 2008). The spectrum 

of chemical emissions from human sources, including CO2, VOCs, and bioaerosols, is intrinsically 

linked to metabolic activities (Pandey & Kim, 2011; J. Wang et al., 2014). Such emissions, 

originating from both human breath and skin, play a role in altering the chemical composition of 

indoor environments, thereby exacerbating issues related to indoor air quality. 

The thermal environment, defined as the indoor conditions that influence heat transfer, directly 

impacts an individual’s thermal perception and consequently their overall thermal comfort. This 

comfort is subjectively assessed based on the ambient thermal conditions (ANSI/ASHRAE, 2017). 

Lighting significantly impacts human circadian rhythms and cognitive performance, primarily 

through its intensity, color, and distribution  (Keis et al., 2014a). It serves as a powerful zeitgeber, 

synchronizing endogenous circadian rhythms with the external environment and is key in 

enhancing visual comfort and cognitive functions  (Ochoa & Capeluto, 2006; Shieh & Lin, 2000; 

Zhou & Rau, 2018). Natural daylight, combining direct and indirect sunlight, is optimal for color 

rendering and matches the human visual system closely (D. H. W. Li, 2010). 

2.2. Cognition 

Cognitive capabilities comprise essential brain-based abilities that facilitate the execution of 

activities ranging from the simplest to the most complex tasks (Angevaren et al., 2008). These 

capabilities encompass learning, memory, reasoning, and problem-solving, each crucial for 

absorbing new information (Staal, 2004). Studies in neuroscience have established that cognitive 

performance correlates with activities in specific brain areas, highlighting their fundamental role 

in cognitive processes (Hampson et al., 2006; Stevens, 2009). This research focusing on car-cabin 

environments primarily investigates cognitive capabilities like attention, perception, memory, and 

advanced cognitive skills. 

Attention is the mental faculty that allows individuals to focus on specific information elements 

while disregarding others (M. Eysenck, 2012). It is classified into sustained attention, which 

pertains to maintaining focus over prolonged periods (Barkley, 19970101; Hancock, 2013; Sarter 

et al., 2001a), selective attention, which involves filtering out distractions(Corbetta et al., 1991; 

Duncan, 1984; Fockert et al., 2001; Green & Bavelier, 2003), and divided attention, which deals 

with handling multiple tasks at once (Castel & Craik, 2003; McDowd & Craik, 1988; Somberg & 

Salthouse, 1982). Tools such as the Continuous Performance Task (CPT) (Shalev et al., 2011), 

reaction time assessments (Saltzman & Garner, 1948), Stroop tasks (C. M. MacLeod, 1992), the 

attention network test (J. W. MacLeod et al., 2010), and the dot-probe task (Fockert et al., 2001) 

are utilized to evaluate attention. Attention’s capacity is limited; multitasking is challenging unless 

the task is well practiced, allowing for automatic processing (Cowan, 2001). 

Perception involves the cognitive processes that detect, organize, identify, and interpret sensory 

inputs to make sense of the environment (Schacter et al., 2019). It serves as a crucial link to our 

surroundings, fundamental to daily activities. While some studies separate perception from 
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cognition (Montemayor & Haladjian, 2017; Tacca, 2011), it is generally seen as a part of cognition, 

significantly influenced by an individual’s expectations and prior knowledge (Coren, 2012; Matlin, 

2009). 

Memory is the cognitive function that encodes, stores, retrieves, and acquires knowledge when 

needed (Tse et al., 2007). It forms a vital part of our cognitive framework, critical for personal 

identity, learning, and the continuity of consciousness (M. W. Eysenck & Brysbaert, 2018a; 

Hancock, 2015). It includes explicit memory, involving conscious recall, and implicit memory, 

which functions without conscious knowledge (Roediger III et al., 2017). 

Higher order cognition encompasses a complex and varied range of mental processes including 

reasoning, conceptualization, critical thinking, decision-making, and creativity. This level of 

cognition facilitates the understanding and execution of the necessary steps for problem-solving, 

exploring new learning areas, and engaging in creative thought (Akella, 2019). Central themes in 

higher order cognition research include executive functions, reasoning, planning, and problem-

solving. Executive functions represent a group of intricate cognitive processes that assist 

individuals in managing their thoughts, skills, behaviors, and actions to achieve specific goals 

(Friedman et al., 2006). Essential executive functions include cognitive inhibition, cognitive 

flexibility, and emotional control, while advanced activities like reasoning, planning, problem-

solving, and decision-making involve multiple underlying processes operating concurrently (Chan 

et al., 2008; Diamond, 2013). Reasoning is the process through which problems are resolved by 

forming logical connections among different elements of the problem (Zimmerman, 2000), serving 

as a fundamental component of intelligent thought. Planning involves setting and achieving goals 

through the formulation of strategies and selection of actions based on expected outcomes (Hayes-

Roth & Hayes-Roth, 1979), playing a crucial role in attention shifting, decision-making, self-

regulation, and monitoring. Problem-solving is a critical skill that encompasses the creation and 

selection of solutions, relying on mental strategies and heuristics, and is influenced by physical 

health (Diamond, 2013). Research has shown that indoor environmental conditions such as 

lighting, noise, and temperature can significantly impact problem-solving abilities (Hygge & Knez, 

2001b; Knez, 1995; Knez & Kers, 2000a). 

2.3. Driving and associated secondary task 

Driving performance involves a driver’s capability to operate a vehicle safely and efficiently, 

requiring skills such as effective vehicle control, quick decision-making, and responsive actions 

to various driving situations (Savino, 2009). Impairments in cognitive functions can lead to a 

decline in these abilities, which can be objectively measured through metrics related to the 

vehicle’s operation and the driving environment. The change in driving performance can be 

detected through various metrics related to the vehicle and the environment. To measure driving 

performance, driving speed and speed variability (Baron & Kalsher, 1998, 1998; Ott et al., 2008), 

distance from the vehicle in front (Baron & Kalsher, 1998, 1998), lateral position within the lane 

(Caberletti et al., 2010; Ott et al., 2008), measuring break reaction time (Raudenbush et al., 2009) 

have been used. This research used the speed variability and lateral position within the lane to 

measure the driving performance. 

N-back task is one of the most common tasks involving working memory to impose an 

additional mental workload for the cognition assessment (Mehler et al., 2012). It is wide used as 

the secondary task during driving task. In the n-back task, participants listened to single-digit 

numbers and responded verbally with the number presented in n-positions before (n-back) the 

current number, right after it is read. 
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2.4. Effects of IEQ on cognition  

2.4.1. Evidence in buildings 

Indoor air quality, a pivotal facet of IEQ, exerts a significant influence on cognitive 

performance, as highlighted by research demonstrating the substantial impact of indoor air 

pollutant levels on cognitive functions (J. Chen & Schwartz, 2009; Chiu et al., 2013; Cleary et al., 

2018a; Kicinski, Vermeir, Van Larebeke, Den Hond, Schoeters, Bruckers, Sioen, Bijnens, Roels, 

& Baeyens, 2015). Research consistently highlights the substantial impact of indoor air pollutants 

on cognitive functions such as attention (J. Chen & Schwartz, 2009), perception (Coley et al., 

2007a), and memory (Ailshire & Crimmins, 2014a). 

Elevated indoor pollutant levels are linked to a noticeable decline in cognitive abilities, 

underscoring the importance of monitoring and enhancing air quality. Prior studies have shown 

that exposure to increased CO2 can impair essential cognitive functions, including attention, 

decision-making, and perception (Norbäck et al., 2013; Scully et al., 2019). For instance, Satish et 

al. (2012) demonstrated that decision-making capabilities were compromised at CO2 

concentrations of 1000 ppm and 2500 ppm compared to 600 ppm, with 22 participants exposed to 

three different CO2 levels for 2.5 hours from a controlled source. Their findings revealed a 

significant downturn in cognitive performance as CO2 levels increased, particularly at 2500 ppm 

and in tasks requiring greater cognitive effort. Similarly, Allen et al. (2016) reported that cognitive 

performance in decision-making tasks diminished for 24 individuals in environments with raised 

CO2 levels (550, 945, and 1400 ppm) over an eight-hour period, noting a 21% decrease in cognitive 

scores for every 400 ppm rise in CO2 concentration. Scully et al. (2019) explored the impact of 

CO2 on mental efficiency, physiological states, and perceived air quality across a range from 600 

to 5000 ppm. This research noted an uptick in self-reported fatigue and a downturn in concentration 

abilities after 2 to 3 hours of exposure to CO2 levels exceeding 1200 ppm. All these findings above 

underscore CO2 not merely as a benign marker of potential air pollutants but as an active 

environmental stressor. Nevertheless, the evidence regarding CO2’s effect on attention spans is 

mixed. For instance, Twardella et al. (2012) observed that while high CO2 concentrations in 

educational settings did not significantly impair students’ overall attention span, there was a 

noticeable decrease in performance accuracy for tasks requiring focused attention, like character 

processing, suggesting that air quality can subtly influence cognitive functions.  

Despite the limited research on the effects of body odor on the productivity of individuals in 

dense indoor settings, it is essential to understand their role in air pollution within enclosed spaces 

such as vehicle cabins, which is significantly influenced by the metabolic processes of occupants. 

While numerous studies have explored the emission of body odors and their influence on the 

perceived quality of air (Assessment, 2009a; Fanger, 1988; Kruza & Carslaw, 2019), only a 

handful have delved into the specific effects of body odors on immediate health symptoms and 

performance amidst exposure to other pollutants. A particular field study (Assessment, 2009a) 

investigating volatile body odor emissions from students in a classroom setting noted 12 organic 

compounds during lecture sessions. This study also highlighted periods of examinations as times 

when students exhibited heightened stress compared to during lectures, resulting in a 43% increase 

in classroom CO2 concentration under examination conditions (up to 700 ppm) compared to lecture 

environments. Gall et al. (2020) conducted a groundbreaking study on body odor emissions, 

focusing specifically on the rates of isoprene emission during stress versus relaxation. Their 

findings suggest that stress conditions lead to a significant increase in isoprene emissions. 

Cecchetto et al. (2019) provided insights into the influence of body odor on decision-making, 
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demonstrating that body odors could subtly sway moral judgments by intensifying the emotional 

experience during the decision-making process, even when the odors are not consciously detected. 

Research has demonstrated that thermal conditions significantly affect cognitive functions, such 

as attention, memory, and high-order cognitive skills, though results vary. For instance, one study 

found that 117 high-school students performed worse on attention tests under uncomfortable 

thermal conditions (Mazon, 2014). Another experiment showed optimal test results at 26 ℃ when 

students could adjust their own fan, unlike at 23 ℃ or 29 ℃ (Schiavon et al., 2017a). Additionally, 

rapid temperature increases from 22 °C were linked to improved concentration in one study (F. 

Zhang & Dear, 2017), while another reported better attention at 16 °C compared to higher 

temperatures of 26 °C and 36 °C (Hu & Maeda, 2020). However, tests like the cursor positioning 

and star count showed no significant differences in attention across various temperatures (Tanabe 

& Nishihara, 2004). Optimal memory performance was recorded between 22 °C and 26 °C (Cui 

et al., 2013a). Even in extreme conditions of 43.3/27.8 °C (dry/wet bulb), university students’ 

short-term memory did not significantly differ from performance in a comfortable 26.7/17.2 °C 

environment (Wing & Touchstone, 1965). However, at very high temperatures of 48.9/31.1 °C, 

memory recall declined. Memory performance was stable between 16.7 °C and 32.2 °C but 

deteriorated above 32.2 °C to 35 °C. No significant correlations were found between thermal 

conditions and memory in studies across six temperature cycles (F. Zhang & Dear, 2017). These 

observations underscore the complexity of how thermal environments affect cognitive functions, 

suggesting a need for further study to clarify these relationships. Thermal comfort significantly 

affects higher cognitive functions, with warmer temperatures associated with quicker reaction 

times. Working memory, evaluated using a forward digit span test, deteriorated in cooler (21.7 °C) 

and warmer conditions (28.6 °C) compared to a neutral temperature (25.2 °C) (X. Wang et al., 

2019). Participants performed tasks faster at 32 °C than at lower temperatures (27, 24, and 19 °C) 

(Lan et al., 2009a), possibly due to a desire to complete tasks quickly in uncomfortable conditions 

or increased metabolic activation (Hancock, 1993). Another study noted faster task execution as 

temperatures rose (Holland et al., 1985), though the optimal processing speed was observed at 

26 °C (Schiavon et al., 2017a), indicating that 26 °C might be ideal for cognitive performance. 

The influence of indoor lighting on cognitive performance is substantial, as noted by Wang et 

al. (2021). Properly configured lighting setups are known to boost focus, visual perception, and 

memory retention (El-Nasr et al., 2009; Huang et al., 2015a; Mohebian et al., 2018a; Mott et al., 

2012a), whereas poor lighting conditions are linked to decreased cognitive abilities (Keis et al., 

2014b; Kretschmer et al., 2012a). This underscores the importance of developing precise lighting 

strategies. Recent studies have shown that the spectrum, timing, and duration of light exposure can 

affect alertness and mood, leading to the development of new metrics based on radiometric 

quantities (Bansal et al., 2017; H. Li et al., 2017; Price et al., 2019). The impact of lighting on 

attention varies, with some studies indicating gender differences and interactions with 

environmental conditions. For example, a correlated color temperature of 4,300K improved 

sustained attention in undergraduates (Huang et al., 2015b), and changes in illuminance influenced 

attention differently depending on room temperature (Mohebian et al., 2018b). Dynamic lighting 

adjustments have been shown to enhance performance in visual tasks (El-Nasr et al., 2009), yet 

some studies found no significant effects of lighting on children's concentration or night shift 

workers’ attention (Mott et al., 2012b). Memory performance can also be influenced by light, with 

specific color temperatures affecting mood and cognitive tasks (Knez, 1995; Knez & Enmarker, 

1998). While cool-white lighting may impair long-term memory recall compared to warm-white, 

the effects of blue-enriched lighting on memory tasks in students showed no significant impact 
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(Keis et al., 2014a). Additionally, interactions between light and other environmental factors like 

noise were generally not significant, except for gender-specific effects on mood and memory under 

different light conditions (Knez, 1995). In problem-solving tasks, the color temperature of lighting 

can play a role, with “warm” white light (3,000K) being conducive to better performance. 

Moreover, people generally find high-frequency lighting more pleasant, potentially enhancing 

their problem-solving abilities (Knez, 2014). 

Temperature and lighting might have interactive effects of human’s perception, namely “hue-

heat hypothesis.” It suggests that color perception can affect thermal comfort and sensations. This 

suggests that lighting with varied color temperatures might evoke sensations of warmth or coolness 

that diverge from the actual temperature, thereby affecting the perceived environment. This 

hypothesis has attracted considerable interest due to its implications in environmental psychology 

and design. This hypothesis has been substantiated through various studies (Berry, 1961; Fanger 

et al., 1977; Huebner et al., 2016; Toftum et al., 2018; Winzen et al., 2014), highlighting the 

potential of color to impact our sensation of temperature. This enhancement is attributed to its 

positive effects on drivers’ perceptions, notably in terms of the perceived spaciousness of the 

interior and their capacity to regulate the environment within the vehicle. The interplay between 

light color and thermal sensation introduces a layer of complexity in understanding how the 

physical driving environment affects drivers’ comfort, emotional state, and performance. Research 

efforts in this domain have sought to ascertain whether specific wavelengths of light or color can 

induce feelings of warmth or coolness in individuals. A key investigation by Fanger and colleagues 

(1977), involving a small cohort of 16 individuals, revealed only a slight variance in thermal 

sensation—specifically, a 0.48 °C difference—when contrasting environments illuminated by blue 

versus red light. This finding highlights the subtle yet measurable impact that lighting color can 

have on human thermal perception. Similarly, an investigation conducted within an aircraft cabin 

by Winzen et al. (2014) found that yellow light created a sensation of warmth compared to blue 

light, impacting the perception of indoor temperature. Huebner et al. (2016) observed considerable 

differences in thermal perception across a range of correlated color temperatures (CCT) from 2700 

K to 6500 K, particularly noting that individuals tended to wear more clothing under cooler lighting 

conditions. Toftum et al. ( 2018) pinpointed that the influence of correlated color temperature 

(CCT) on thermal sensation becomes significant in thermally neutral environments but diminishes 

when individuals are already feeling slightly warm or cool. This phenomenon is attributed to the 

predominant role of the body’s heat balance in dictating thermal responses under such conditions. 

These intricate interactions between light and thermal environments underscore the complexity of 

the physical driving environment’s effects on driver comfort, emotional well-being, and 

performance. 

2.4.2. Evidence in car cabins 

The impact of the vehicle cabin environment on cognitive abilities can detrimentally affect the 

driving performance. Consequently, creating a comfortable interior environment within the vehicle 

cabin has garnered attention, particularly in the realm of luxury vehicles. Research indicates that 

driving performance is intricately linked to various factors within the vehicle cabin, such as air 

quality, thermal conditions, lighting, and acoustics (Chowdhury, 2015; Morris & Pilcher, 2016; 

van Huysduynen et al., 2017; C. Wang et al., 2024). The degradation of a driver’s cognitive 

functions can precipitate a drop in driving performance. This decline can be quantitatively assessed 

using several vehicles and environmental metrics. Key performance indicators include driving 

speed and its variability, the following distance to the vehicle ahead, the vehicle’s lateral 

positioning within its lane, and the driver’s brake reaction time. These metrics have been adopted 
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in the research by Baron and Kalsher (1998), Beh and Hirst (1999), Caberletti et al. (2010), Ott et 

al.(2008), and Raudenbush et al. (2009) offering a framework to evaluate driving performance 

objectively. 

Research has demonstrated the significant role that air quality inside vehicles plays in affecting 

driver performance. A study by Raudenbush et al. (2009) examined the effects of exposing drivers 

to three different olfactory conditions: peppermint, cinnamon, and a control group with no odor. 

The findings revealed that exposure to cinnamon and peppermint scents resulted in heightened 

alertness levels, a reduction in the perceived effort and time required to perform driving tasks, and 

less frustration with the driving process. In a parallel investigation, Baron & Kalsher (1998) 

evaluated how a pleasant scent environment impacts drivers’ cognitive abilities, alertness, mood, 

and perceived task load. This study found notable improvements in both the drivers’ performance 

and their state of alertness. These investigations collectively highlight the potential of utilizing 

specific scents within the vehicle environment to positively influence driver alertness and overall 

performance. 

Thermal environment within the vehicle cabin plays a significant role in the effect on driving 

and cognitive performance. Nazi et al. (2015) conducted an analysis comparing driving 

performance across three distinct temperature settings to assess the influence of thermal comfort. 

Their research identified a notable impact of temperature on the variability of driving speed, 

highlighting temperature's significant role in driving performance dynamics. Further supporting 

this, Daanen et al. (2003) suggested that optimal driving performance might be achieved by 

maintaining a neutral temperature within the vehicle, pointing to the potential benefits of thermal 

regulation on driver efficiency. In a study analyzing traffic collision data, Hou et al. (2022) found 

a correlation between ambient temperatures and an increased likelihood of motor vehicle accidents 

in cities like New York and Chicago, potentially indicating the broader implications of temperature 

on road safety. Additionally, the interior lighting of a vehicle has been acknowledged as a factor 

that can affect driving performance, suggesting that both thermal and lighting conditions inside a 

vehicle play crucial roles in influencing driver behavior and safety. 

Interior lighting serves to indirectly light the passenger area of a vehicle, playing a crucial role 

in enhancing both the subjective experience and objective visual capabilities of the occupants. The 

vehicles often incorporate interior ambient lighting as a means to enhance the driving experience 

and evoke a positive emotional response in the driver (Park et al., 2016). Studies (Caberletti et al., 

2010; van Huysduynen et al., 2017) have shown that ambient lighting can positively affect users’ 

experiences by being pleasant, informative, and/or alleviating boredom. This form of lighting is 

essential not just for improving the aesthetic and subjective impression of the vehicle’s interior but 

also for boosting visual performance. Research by Caberletti et al. (2010) highlighted that interior 

lighting, even outside the direct line of sight, can significantly enhance perceptions of space, safety, 

functionality, and the quality of the vehicle’s interior. Furthermore, Liu et al. (2021) found that the 

correlated color temperature of light could impact drivers’ reaction times and pupil sizes, pointing 

to the tangible effects of lighting conditions on driver safety and performance. This body of 

research underlines the importance of developing optimized vehicle lighting systems that not only 

improve the driving experience but also potentially enhance driver safety and vehicle functionality, 

as evidenced by other studies (Kretschmer et al., 2012a; Lan et al., 2009b, 2011a; Mott et al., 

2012a). 

2.5. Multimodal physiological measurements for cognition and driving 

The relationship between cognitive abilities and driving performance has been extensively 

studied, with neuroimaging technologies like EEG and fNIRS providing invaluable insights. EEG 
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has emerged as a pivotal tool in the exploration and understanding of cognitive processes (Alsuradi 

et al., 2020; Kaur & Kaur, 2015; Niedermeyer & da Silva, 2005). This non-invasive technique 

records electrical activity in the brain, offering insights into neural dynamics across various 

cognitive states and functions. The application of EEG in cognitive science has significantly 

contributed to the understanding of the brain’s operational mechanisms during different tasks, 

enabling researchers to examine the correlations between brain activity and cognitive performance 

more closely. EEG stands out for its exceptional temporal resolution, capturing the brain’s 

electrical activity and changes in neural oscillations in real-time, making it ideal for investigating 

dynamic cognitive processes (Alsuradi et al., 2020; Niedermeyer & da Silva, 2005). Research 

employing EEG has significantly contributed to understanding the brain’s operational mechanisms 

across different cognitive tasks, highlighting its versatility in cognitive research (M. X. Cohen, 

2014). Simultaneously, fNIRS measures changes in cerebral blood flow and hemoglobin 

concentrations using near-infrared light, providing crucial insights into cortical hemodynamics and 

thus serving as a valuable adjunct to EEG in understanding cognitive processes (Yücel et al., 2021). 

fNIRS offers several advantages, including portability, and absence of electromyographic (EMG) 

and blink interference, while its signals are closely related to the blood oxygen level dependent 

(BOLD) signals from functional magnetic resonance imaging (fMRI), the gold standard in cerebral 

hemodynamics assessment (Huppert et al., 2006; Strangman et al., 2002). The integration of EEG 

and fNIRS provides deeper insights into the brain’s neural dynamics associated with various 

cognitive functions, as evidenced by research from the studies (Aghajani et al., 2017; Ahn et al., 

2016; He et al., 2019; Y. Liu et al., 2017; Unni et al., 2017). This underscores the complementary 

strengths of EEG and fNIRS in providing a comprehensive view of the brain’s response to 

environmental and cognitive stimuli. The synergistic combination of EEG and (fNIRS has 

emerged as a notably advanced neuroimaging technique, surpassing the accuracy of each modality 

used independently. 

EEG and fNIRS have been used to provide insights into how IEQ influence cognitive processes 

for a long time due to their portability and minimal setup requirement. The quality of indoor 

environments has a pronounced impact on cognitive function, affecting attention, memory, and 

decision-making processes. Factors such as air quality, lighting, and temperature have been 

extensively studied for their effects on cognitive performance, with emerging research employing 

EEG or fNIRS to investigate these relationships further (Lan et al., 2011a; J. Lee et al., 2022; M. 

Sharooni et al., 2023). In a study focusing on the effects of CO2 on daytime sleepiness, Jin et al. 

(2022) found that EEG sensitivity was significantly altered by a brief exposure to high CO2 levels 

(40,000 ppm), yet the duration of exposure had no impact. This led to the suggestion that EEG 

might not effectively detect sleepiness caused by CO2 exposure due to its high sensitivity to 

environmental CO2 concentrations. Conversely, employing EEG alongside other modalities has 

revealed the adverse effects of elevated CO2 levels on cognitive functions such as working memory, 

mental workload, and visual concentration (J. Lee et al., 2022). Historically, despite evidence 

suggesting even low CO2 concentrations can influence physiological responses, including EEG 

signals (Jacobson et al., 2019; R. J. Thomas, 2014), environmental CO2 has not been widely 

acknowledged as a contributing factor to physiological artifacts in EEG studies (Xu et al., 2011). 

Another study identified by Snow et al. (2019) who reported a lack of significant correlation 

between EEG-detected brain activity, self-reported sleepiness, and CO2 levels, despite observing 

a connection between sleep duration and EEG patterns. The study by M. Sharooni et al. (2023) 

demonstrated promising results in using fNIRS to recognize individual thermal sensations and 

comfort conditions, marking a significant advancement in environmental control strategies. By 
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accurately interpreting brain signals related to thermal experiences, fNIRS offers an innovative, 

objective method to assess indoor thermal comfort. 

This multimodal approach has been widely used in driving studies to detect changes in drivers' 

physical states across various driving tasks. Nguyen et al. (2017) explored the detection of driver 

drowsiness, a critical factor in automobile accidents, by integrating EEG and fNIRS technologies. 

Their findings revealed significant variations in oxyhemoglobin levels and beta band power within 

the frontal lobe when comparing awake to drowsy states. These changes serve as early drowsiness 

indicators, appearing before observable signs such as the first eye closure, offering a potential 

method for early detection of drowsiness. Otmani et al. (2005) investigated the effects of partial 

sleep deprivation and prolonged driving on driver alertness and performance. Their study found 

that sleep deprivation primarily influenced the drivers’ sleepiness levels (measured by the 

Karolinska Sleepiness Scale, KSS) without significantly affecting the (alpha+theta) spectral power 

in EEG recordings. However, extended driving durations impacted both sleepiness levels and EEG 

spectral power, indicating the combined effect of fatigue and driving duration on alertness and 

performance. Unni et al. (2017) focused on assessing cognitive working memory load during real-

world driving scenarios using fNIRS. Their research accurately predicted changes in working 

memory load across participants, demonstrating the effectiveness of fNIRS in monitoring 

cognitive load in dynamic environments. In a driving context, Unni et al. (2017) demonstrated the 

efficacy of fNIRS in monitoring brain activation and accurately predicting working memory load, 

achieving a mean Pearson correlation of 0.61 between the induced and predicted loads. He et al. 

(2019). further explored the differentiation of cognitive task loads during simulated driving by 

analyzing EEG signals. Their study confirmed the ability to distinguish between varying levels of 

cognitive load and validated that a modified n-back task could effectively increase cognitive load, 

as indicated by changes in EEG power in the alpha band. These studies collectively highlight the 

critical impact of cognitive functions on driving performance and the potential of EEG and fNIRS 

technologies in enhancing our understanding of this relationship, offering pathways to improve 

driver safety through early detection and intervention strategies. 

For the EEG features analysis, utilization of Power Spectral Density (PSD) analysis as a key to 

explore cognitive performance metrics. The PSD computation for each dataset was performed with 

the MNE software (Gramfort et al., 2013), adhering to protocols set forth by Gramfort et al. (2014). 

This procedure segmented brain activity into four principal frequency bands: delta (δ) (1–4 Hz), 

theta (θ) (4–8 Hz), alpha (α) (8–13 Hz), and beta (β) (13–30 Hz), using the Welch wavelet 

transform technique as specified by Al-Fahoum & Al-Fraihat (2014). Welch’s technique was 

instrumental in deriving the power within these bands, highlighting the total spectral power as well. 

The analysis gave particular attention to the theta band, recognized for its links to sleep necessity 

by the studies (Aeschbach et al., 1997; Buckelew et al., 2009; Cajochen et al., 1995), and the alpha 

band, associated with drowsiness as noted in studies  (Kecklund & Åkerstedt, 1993; Simon et al., 

2011) and cognitive functions such as memory performance (Klimesch, 1999). Furthermore, 

variations in mental workload were observed to affect theta and alpha bands as reported by 

Borghini et al. (2014), while changes in beta band activity were tied to arousal and stress levels 

(Kuo et al., 2016; J. Zhang et al., 2021). Delta band activity, relevant for its role in complex 

cognitive task engagement and sensory integration, was also examined (Dimitriadis et al., 2010). 

It may also play a role in processing complex tasks (Harmony, 2013), underscoring its significance 

in attention and response to olfactory stimuli. In addition to PSD values, ratio indices such as α/β, 

(θ+α)/β, θ/β, and (θ+α)/(β+α) were also calculated to enhance the differentiation between 

cognitive states. This approach was informed by studies (Eoh et al., 2005; Jap et al., 2009; Wen & 
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Aris, 2020) , which highlighted the value of these ratios in reflecting mental attentiveness and 

cognitive processing capacity. These indices were chosen for their reduced sensitivity to noise and 

increased specificity. The study of Hasegawa and Oguri (2006) shows distinct links between α 

(indicative of relaxation) and β (associated with stimulation) brain activities. It employs the α/β 

ratio to monitor ongoing shifts in mental attentiveness. The θ/β in EEG studies (Clarke et al., 2019), 

initially thought to represent arousal in Attention-Deficit/Hyperactivity Disorder (AD/HD), is now 

believed to indicate cognitive processing capacity. Furthermore, the EEG probes' regions of 

interest (ROI) were categorized into frontal, central, and parietal areas, as depicted in Figure 2 of 

Liang et al. (Liang et al., 2018). This segmentation allowed for a nuanced analysis of brain activity 

patterns across different regions, providing a comprehensive view of the cognitive effects 

associated with various driving conditions. 

For the fNIRS features, hemoglobin oxygenation (HbO) and deoxygenation (HbR) statistics are 

frequently utilized as key features within the field and noted by von Lühmann et al. (von Lühmann 

et al., 2020; Yücel et al., 2021). The fNIRS features from various parameters, including the 

amplitude of HbO and HbR, the slope of these values, the temporal gap between their positive and 

negative peaks, and their maximum or minimum values recorded. The feature extraction was 

meticulously tailored to the regions of interest (ROI) within the brain and differentiated across 

various driving scenarios. Specifically, the brain ROIs were categorized into the prefrontal cortex 

(PFC), left prefrontal cortex (LPFC), and right prefrontal cortex (RPFC). This categorization 

allowed for a detailed analysis of cognitive load and brain activity patterns across different 

segments of the prefrontal cortex. 
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Chapter 3: Methods 

This chapter provides a summary of the methods employed in all the investigations presented 

in Appendices A-E of this dissertation. 

3.1. Systematic literature review regarding the effects of IEQ on cognition 

To enhance comprehension of the relationship between IEQ and cognitive performance, we 

categorized IEQ factors into five primary categories: IAQ, thermal environment, noise, lighting, 

and non-light visual factors, which were then correlated with six cognitive functions: attention, 

perception, memory, language function, higher-order cognitive skills, and social cognition. It’s 

important to note that this review did not encompass transient indoor environmental factors like 

music and natural soundscapes, despite acknowledging their potential cognitive benefits. This 

decision was based on the variable and often inconclusive evidence regarding their impact on 

cognitive functions (Hallam et al., 2002; Huang & Shih, 2011; Newbold et al., 2017; Proverbio et 

al., 2018; Thompson et al., 2012). Furthermore, the review excluded discussions on the influence 

of IEQ on the cognitive development of children (Dadvand et al., 2015). To thoroughly explore 

the impact of indoor environmental quality (IEQ) on cognitive performance, my research 

methodology involved a comprehensive search strategy and a two-pronged review approach. The 

initial phase comprised a broad search across several databases and sources, including Google 

Scholar, ScienceDirect, Springer, NCBI, ASHRAE, and proceedings from the Indoor Air and 

Healthy Buildings conferences. Subsequently, the analysis of the gathered literature was conducted 

using two distinct methods: a traditional manual review and a modern, data-driven text-mining 

review.  

The manual review meticulously evaluated studies for their direct insights into the relationship 

between specific IEQ factors and cognitive functions, detailing the experimental designs, 

measurement tools, and key findings. Despite its labor-intensive nature, this method allowed for a 

detailed quantitative synthesis of research findings, following the precedents set by in review 

studies (Y. Li et al., 2007; Sundell et al., 2011). The literature was selected based on its explicit 

examination of the IEQ-cognition relationship, drawing from an array of scientific journals, 

conference proceedings, and relevant books, adhering to a set of predefined criteria. For the 

literature search, an initial scan utilized keywords associated with cognitive performance, such as 

“cognitive performance,” “performance tasks,” “cognitive function,” “productivity,” along with 

specific cognitive abilities like “attention,” “perception,” “memory,” “language function,” and 

“higher order cognitive skills.” For IEQ factors, keywords included “IAQ,” “ventilation,” “thermal 

environment,” “noise,” “lighting,” and “non-light visual factors.” The selection of papers adhered 

to strict inclusion and exclusion criteria to ensure the relevance and quality of the included studies. 

Laboratory-based studies were required to be conducted in controlled environmental settings, 

while field studies needed detailed quantification of environmental factors. Exclusions were made 

for studies lacking quantitative IEQ measurements or those that did not assess cognitive 

performance under varying IEQ conditions with statistical analysis. The focus was narrowed to 

studies examining specific cognitive functions. Only performance tests that directly assessed these 

functions were considered, excluding those that combined multiple cognitive assessments without 

individual function scores. My review of indoor environmental quality (IEQ) and its impact on 

cognition revealed inconsistent findings, ranging from significant associations (both positive and 

negative) to no detectable link. Some studies showed mixed outcomes across different tests and 

participant groups. To quantify these relationships, we ranked the association between IEQ and 

cognitive performance on a scale from 0 to 2: “0” indicates no association, “1” represents mixed 
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results, and “2” signifies a clear, significant association (p < 0.05). Cases without reported p-values 

were marked as “N/A,” providing a structured summary of the varying effects of IEQ on cognition. 

Recognizing that many studies offer indirect insights into the IEQ-cognition nexus, a text-

mining review was employed to uncover underlying associations within the vast body of literature. 

This innovative approach facilitated the extraction of nuanced information from thousands of 

studies, complementing the direct evidence gleaned from the manual review  (J. Thomas et al., 

2011). It is a specialized branch of data mining, is adept at processing both unstructured and semi-

structured text data sources, turning them into analyzable datasets (Fan, n.d.). Recognized for its 

ability to uncover meaningful patterns and insights from naturally written documents (Tan, 1999). 

this approach proves indispensable for conducting comprehensive literature reviews, especially 

when dealing with voluminous data beyond manual analysis capabilities. Employing this 

technique allowed us to efficiently parse through unstructured texts, successfully condensing and 

visualizing critical insights. Initially, we pinpointed 8,133 studies linking IEQ and cognition 

through their abstracts or keywords, utilizing a specific search strategy on Scopus. Subsequently, 

we employed VOSviewer (van Eck & Waltman, 2009) to map out the relationships within our 

dataset, revealing key patterns between IEQ and cognition. This tool highlighted how certain 

concepts, like ventilation and indoor air quality, are interconnected. Additionally, it helped identify 

emerging research areas by analyzing trends in keyword occurrences over time. 

3.2. Effects of CO2 and body odor on driving and secondary task performance 

3.2.1. Experiment design 

3.2.1.1. Participants 

We enrolled 25 students from Worcester Polytechnic Institute (WPI) through posters and emails, 

with the study's procedures, risks, and participant responsibilities detailed in an IRB-approved 

consent form, approved by WPI’s Institutional Review Board (IRB-19-0672). Prior to inclusion, 

candidates underwent a screening for simulator sickness—a condition affecting 2%-8% of 

individuals during simulations with extensive maneuvers (Akinwuntan et al., 2005)—using the 

Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993), a standard tool for assessing 

susceptibility to simulator-induced discomfort (Balk et al., 2017). Due to symptoms of simulator 

sickness, four from the initial 29 were excluded, leaving 25 participants (15 males, 10 females, 

aged 18-22, mean age 19.88). A G*Power analysis (Faul et al., 2007) indicated a required sample 

of 19 (ANOVA: Repeated measures, within factors with effect size of 0.25 and power of 0.8) to 

adequately assess the effects of six CO2 and body odor scenarios, considering this a study of six 

separate conditions. 

3.2.1.2. Driving simulator and in-car environment setup 

The experiment setup closely mimic conditions of a congested two-lane road, gathering detailed 

data on metrics like speed, acceleration, lane positioning, and steering behavior. The setup 

included a driving simulator featuring a control computer loaded with Carnetsoft’s software (Wim 

van Winsum, Groningen, the Netherlands), three projectors, a curved screen, Logitech G29 

controls, an audio setup, and a simulated car interior. This system, powered by a computer with a 

GeForce GTX 770 GPU and an i7-9790 CPU running Windows 10 PRO with 32 GB RAM, 

projected a broad 210º view across three screens positioned around the driver (Figure 2) (C. Wang 

et al., 2024). The driving interface included a Logitech G29 steering wheel and pedals, providing 

realistic feedback and controls for the simulation. Additionally, a footswitch was integrated for 

cognitive task inputs, which will be detailed later. The simulator’s audio capabilities enhanced the 

realism with sounds of engine operations and tire movements. 
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Figure 2. Panorama of the driving simulator cabin (~ 2.94 m3) and screen; The cabin was made 

of a metal frame, polyethylene boards, and clear acrylic plexiglass plastic boards. The seat was 

adjusted to make the participant’s line of sight fall on the focal point on the apparent horizon 

line in the in-car environment displayed on this monitor 

 

The experimental setup was equipped with a Fantech SH–56 CFM HRV for ventilation and a 

LEVOIT H13 air purifier to ensure air quality, maintaining cabin temperature and humidity at 24 

± 1 °C and 47 ± 2%, respectively. CO2 concentrations within the car cabin were precisely regulated 

to 800, 1800, and 3500 ppm using a CO2 meter, allowing for a detailed evaluation of its effects on 

driving performance and cognitive abilities. Additionally, the environment was altered with two 

body odor conditions by placing worn T-shirts within the cabin, a technique commonly used in 

olfactory research. Participants experienced one of the predetermined CO2 levels during each 

session, with CO2 measurements taken near the breathing zone using a CM-0001 CO2 Sampling 

Data Logger (CO2 METER), ensuring an accuracy of about ±30 ppm. The desired CO2 levels were 

achieved by introducing CO2 from an Airgas cylinder into the cabin, with natural exhalation 

accounting for the lowest CO2 condition. This method of adjusting CO2 for examining its influence 

on indoor environments aligns with established research protocols (Allen et al., 2016a; Satish et 

al., 2012a; X. Zhang et al., 2017a). 

This investigation included two conditions regarding body odor within the vehicle: one with 

additional body odor not originating from the driver, and one without. Additional odor was 

introduced by placing six previously worn T-shirts in the vehicle, a method commonly adopted in 

olfactory studies (Haze et al., 2001; Munk et al., 2000; Rathinamoorthy & Thilagavathi, 2016). 

These T-shirts were provided by six healthy individuals (4 males, 2 females), aged 28 to 38 years 

(average age: 32.3 ± 4.5). Donors, confirmed as non-smokers without health conditions or 

medication that could alter olfactory perception, followed strict dietary and hygiene protocols to 

ensure odor consistency. Written consent was secured from each. They avoided alcohol, smoking, 

and specific foods, using fragrance-free body wash and towels laundered with unscented detergent 

for T-shirt pre-washing. The shirts, worn for over 12 hours post-shower, were collected over two 

days. Donors stored their T-shirts in odorless bags before lab submission, with all samples kept in 

a dark, dry place to avoid degradation. 
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In my research, we opted not to directly measure Volatile Organic Compounds (VOCs) within 

the car’s interior during tests. Instead, my focus was on analyzing the chemical composition of 

body odor from worn T-shirts—one from a male and another from a female—without intending 

to link body odor levels to driving performance explicitly. Given the volatile nature of VOCs, we 

hypothesized their presence in the air, emanating from the T-shirts placed in the vehicle. For 

comparison, a clean shirt was also analyzed to serve as a control for baseline VOCs or similar 

compounds. Taking into account that body odor originates from various body regions (Natsch et 

al., 2006; Pandey & Kim, 2011), we prepared fabric samples from the chest, back, and armpit areas 

of the worn shirts and a clean shirt, each measuring 5 cm² and weighing between 440.7 and 472.8 

mg. Using cotton samples from a clean shirt previously studied for VOCs on carpets (Katsoyiannis 

et al., 2008), we established a VOC baseline. Samples were individually extracted with methanol 

in glass bottles, then agitated on a shaker for 12 hours, and the solution was reduced to 1.5 ml for 

analysis by GC-MS (Agilent) using specific operational settings. VOC identification involved 

matching retention times with known standards and NIST spectral libraries. This methodology 

allowed us to select VOCs based on their presence in worn versus clean shirts, verifying each 

compound’s profile against existing literature on skin volatiles. 

Participants undertook a modified N-back task during the simulations to evaluate their working 

memory and cognitive abilities. These simulations were set on a digitally created two-lane road, 

each lane being 3.35 meters wide. The scenario featured a heavily trafficked highway demanding 

high-speed navigation, including frequent lane shifts, congestion, and the need for passing. 

Conducted under simulated daylight conditions free from weather-related visibility issues, such as 

fog or rain, each session was designed to last around 20 minutes. 

The driving simulator was deployed to collect vehicle dynamics and positioning at 10 Hz, 

capturing key metrics such as speed, both forward and sideways, acceleration, steering behavior, 

and how much the vehicle strayed from its lane, as outlined in Appendix B (Appendix) Tables S1. 

Measures of sideways movement, lane positioning variance, and steering adjustments shed light 

on the driver's precision and identified common driving errors, especially regarding side control 

(Oron-Gilad et al., 2008). The deviation from the lane center and its variability, particularly 

measured while in the right lane to exclude the influence of overtaking, were analyzed to gauge 

lateral vehicle control. Steering variability also served as a gauge for the influence of 

environmental factors on driving (Thiffault & Bergeron, 2003). 

3.2.1.3. Secondary task and questionnaires 

The N-back task, essential for evaluating working memory and cognitive abilities during 

driving assessments, was adapted from a verbal variant detailed by Mehler et al. (2012). To 

circumvent potential interference from facial movements, not considered in my study, I employed 

a version similar to that by Solovey et al. (2014). In this adaptation, participants responded to 

numbers 0-9 shown on a screen at regular intervals while driving, identifying if the current number 

matched one shown N steps earlier, with “N” remaining fixed in a session to adjust task difficulty, 

as depicted in Figure 3 (C. Wang et al., 2024). The task, divided into 2-back, 1-back, and 0-back 

challenges, formed six sessions with tasks assigned randomly. Each session started with 

instructions, followed by the presentation of 16 numbers for response within set timeframes, 

concluding with a 140-second driving phase. Developed in Python, this program recorded each 

number’s display time, session type, participant reaction time, and target status for analysis, 

treating missed targets as errors, thus measuring cognitive efficiency. 
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Figure 3. Example of N-back experimental paradigm to manipulate cognitive workload (C. Wang 

et al., 2024) 

 

The study involved two questionnaires: a demographic one capturing age, gender, and driving 

history, and another assessing sleepiness, emotions, perceived air quality, and workload during 

tests. The Stanford Sleepiness Scale (SSS) (Hoddes et al., 1973) quantified alertness levels, the 

Self-Assessment Manikin (SAM) (Bradley & Lang, 1994) measured emotions across various 

scales, and the NASA-TLX evaluated workload across six dimensions (mental, physical, temporal 

demand, performance, effort, and frustration) (Hart, 2006), allowing participants to rate each on a 

scale of 1 to 7. Additionally, perceptions and acceptability of air quality were also assessed, 

reflecting participants’ subjective evaluations. 

3.2.1.4. EEG and fNIRS setup and data acquisition 

Brain activity was captured using the g.Nautilus Research fNIRS-8 wireless headset and 

processed via the g.tec MATLAB-Simulink software, allowing for the simultaneous recording of 

EEG and fNIRS signals. The setup featured sixteen EEG channels and eight fNIRS channels, 

supported by low-power transmitters for EEG/fNIRS data. EEG electrode placement covered key 

brain regions including the frontal, central, and parietal areas, based on the International 10/10 

system (Jasper, 1958), as displayed in Figure 5. The fNIRS optodes targeted the prefrontal cortex 

(PFC) with specific placements and utilized continuous-wave laser diodes at 760 nm and 850 nm 

for accurate brain activity measurement. The headset and optodes were affixed to the participant's 

head, with data relayed via Bluetooth to MATLAB for analysis, incorporating filters and settings 

to refine the data capture process, such as a 752 Hz sampling rate and specific bandpass and notch 

filters to enhance signal clarity. The system’s design aimed to minimize motion artifacts and 

ensured snug cap fitting to reduce data distortion from movements or obstructions like hair. 

This technology provided detailed monitoring of the PFC, critical for evaluating working 

memory. It combined EEG’s broad coverage with fNIRS’s focused analysis on the PFC, ensuring 

high-quality signals and efficient setup. The integration of EEG and fNIRS allowed for 

comprehensive brain activity analysis, with external markers synchronized for task initiation and 

completion signals, facilitating precise data collection throughout each n-back task session. 

3.2.1.5. Procedure 

Participants attended the lab four times (Figure 4) (C. Wang et al., 2024). The initial visit 

involved training on the driving simulator, an introduction to its controls, and a check for simulator 

sickness. Over the next three visits, they engaged in driving tasks under varying CO2 conditions, 
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with each visit consisting of two driving sessions—one with clean and the other with worn T-shirts 

in the cabin, presented in random order. The sequence of CO2 exposure and T-shirt conditions was 

blinded, and the gap between visits averaged approximately one week (6.96 ± 2.87 days) with a 

minimum three-day break to ensure data reliability. 

For the latter three visits, upon arrival, participants reported their sleep quality and sleepiness. 

Equipped with various sensors, they entered the simulator for an 18-minute driving task 

interspersed with six N-back tasks to vary cognitive demands. Following the drive, they exited to 

complete a survey on their current state and perceptions regarding air quality, which was deemed 

to be as effective as completing it inside the cabin. This interim allowed for the T-shirts to be 

exchanged. Participants then repeated the driving task under the same conditions. After completing 

all sessions, they received a debrief and compensation. 

 

 
Figure 4. Experimental procedure (C. Wang et al., 2024) 

 

3.2.2. Analysis of driving behaviors, secondary task performance, and survey responses 

This research analyzed driving performance through metrics such as vehicle speed, acceleration, 

lane positioning, steering activity, and yaw rate, while cognitive effects of CO2 and body odor 

were gauged using N-back task performance in terms of reaction times and accuracy. The variation 

in participants' sleepiness levels across driving tasks was determined by comparing pre- and post-

task sleepiness survey scores. Emotional state, perceived air quality, and acceptance levels were 

evaluated through survey responses. Cognitive load during the tasks was measured using the 

NASA-TLX method (Hart, 2006), following the methodology of Al-Shargie et al. (2017). 

To examine the influence of CO2 levels or body odor on both driving and cognitive performance, 

we applied the Aligned Rank Transform (ART) two-way ANOVA with subsequent post-hoc tests, 

aligning with methods frequently used for analyzing group differences in studies (Durner, 2019; 

Elkin et al., 2021). Non-parametric data determined by the Shapiro-Wilk test were analyzed at a 
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0.05 significance threshold. This statistical analysis was performed using the R software (version 

4.2.3) (R Core Team, 2013). 

3.2.3. Physiological data analysis 

3.2.3.1. Preprocessing 

For EEG data preprocessing in this research, we utilized MNE-Python (Gramfort et al., 2013), 

following a detailed methodology (Gramfort et al., 2014). This process involved identifying 

defective EEG channels and replacing them through spherical spline interpolation (Perrin et al., 

1989) based on nearby functional sensors. Data were simplified by resampling to 500 Hz and then 

averaged for reference. A third-order Butterworth filter limited frequencies between 0.5 Hz and 

30 Hz to diminish high-frequency noise (Kar et al., 2010). Eye movement and blink-related 

artifacts were excluded, with Independent Component Analysis (ICA) aiding in physiological 

noise reduction (Delorme & Makeig, 2004). 

fNIRS data were first converted from “.mat” to “.nirs” format using a converter for 

compatibility with Homer3 (Huppert et al., 2009), and then to ".snirf" for subsequent analyses. 

The Homer3 MATLAB toolbox was applied to correct motion and physiological artifacts and to 

process hemodynamic signals. We calculated relative changes in hemoglobin concentrations using 

the modified Beer-Lambert law (mBLL) and a differential path length factor (DPF) of 4 (Cope et 

al., 1988; Kocsis et al., 2006), with DPF of 4 (Scholkmann & Wolf, 2013), detailed in Appendix 

B Table 1. Channels showing abnormal signals were excluded after a visual check. We addressed 

motion artifacts through several methods, including channel rejection and wavelet transformation, 

and filtered physiological noise like respiratory and heart rate fluctuations. To minimize the 

influence of confounding variables like CO2-induced vessel changes, we subtracted the global 

mean from the signal of interest, acknowledging physiological noise as a significant factor in 

fNIRS recordings. 

The hemodynamic response function (HRF) was derived from the processed fNIRS data using 

the general linear model (GLM) approach which was favored for its capacity to better manage 

physiological noises by incorporating them as variables in the HRF calculation (Yücel et al., 2021). 

Brain activity was inferred from shifts in oxygenated (HbO) and deoxygenated hemoglobin (HbR), 

as well as total hemoglobin (HbT) levels, indicating changes in cerebral blood flow and 

oxygenation. Based on the seminal studies by Sitaram et al (2007) and Kwong et al. (1992), these 

shifts in hemoglobin concentrations served as the primary measures of brain activation in my 

analysis. Average HbO and HbR concentrations per channel, defined by specified Regions of 

Interest (ROIs) as illustrated in Figure 5, were systematically calculated for detailed evaluation. 
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Figure 5. Graphical representation of the EEG/fNIRS probe array and optodes 

 

3.2.3.1. Processing and analysis 

For the 18-minute EEG recordings taken during each driving session, we processed the data to 

extract features indicative of brain activity under varied conditions, utilizing the MNE software 

(Gramfort et al., 2014). Power spectral density (PSD) analysis segmented into delta (δ), theta (θ), 

alpha (α), and beta (β) frequency bands was performed using Welch’s wavelet transform method 

(Al-Fahoum & Al-Fraihat, 2014). This included a 2-second sliding window with overlapping 

halves to derive mean power values in the α band for EEG evaluation, employing a moving average 

to eliminate noise. Welch’s method helped compute power across these bands and the total band 

power—the aggregate of powers across all bands. The selection of θ and α bands was based on 

their association with sleep need and alertness, respectively, in driving contexts (Aeschbach et al., 

1997; Buckelew et al., 2009; Cajochen et al., 1995), while changes in β band power were linked 

to arousal and stress (Kuo et al., 2016; J. Zhang et al., 2021), and δ band activity related to attention 

and sensory processing (Dimitriadis et al., 2010). Additionally, ratio indices like α/β were included 

to refine analysis accuracy, offering insights into mental states of relaxation and stimulation, and 

indicating cognitive processing abilities as per recent findings (Clarke et al., 2019; Eoh et al., 2005; 

Jap et al., 2009; Wen & Aris, 2020). These indices, showing less susceptibility to noise, were 

analyzed across “frontal,” “central,” and “parietal” brain regions as defined in Liang et al. (2018). 

I utilized measurements of oxygenated (HbO) and deoxygenated hemoglobin (HbR) as key 

indicators, following the approach in the previous studies (von Lühmann et al., 2020; Yücel et al., 

2021). My focus was on the amplitude, slope, peak timing differences, and extreme values of HbO 

and HbR signals during N-back tasks. I also calculated their average amplitudes throughout each 

driving session as features, consistent with previous research methodologies. Similar to EEG data 

analysis, we extracted fNIRS features for specific regions of interest (ROIs) in the brain, including 

the prefrontal cortex (PFC), left prefrontal cortex (LPFC), and right prefrontal cortex (RPFC), 

based on Li et al. (2019). These features were analyzed at the channel level for each driving session 

to determine the impact of different driving conditions. 

Six unique environmental settings were created for participants, combining varying CO2 

concentrations with or without added body odor. Driving scenarios were split into “single-task,” 

focusing exclusively on driving, and “dual-task,” which added an N-back cognitive task. Each 

scenario was broken down into twelve sub-sessions, half dedicated to each task type, labeled from 

“1st sd” to “2nd sd” for single-task and “1st dd” to “2nd dd” for dual-task sessions. We analyzed 
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the effect of CO2 and odor on brain function by examining regional brain activity and at the probe 

level, utilizing EEG and fNIRS data outlined in the feature extraction methodology. Figure 6 

visually summarizes how each environmental scenario impacted driving-related cognitive 

performance. We applied the Aligned Rank Transform (ART) two-way ANOVA with Bonferroni 

adjustment for further analysis (Durner, 2019; Elkin et al., 2021). This statistical approach, widely 

recognized for its efficacy in comparing multiple groups, revealed non-normal data distribution as 

per the Shapiro-Wilk test. We set the significance threshold at 0.05 for testing the hypotheses, 

performing the analysis using the R software (version 4.2.3) (R Core Team, 2013). 

 

 
Figure 6. Integration figure of the features used in the ANOVA. “sd” refers to “single-task 

driving” and “dd” stands for “dual-task driving”. Trace the lines originating from left to right 

are the environmental conditions, task type, EEG and fNIRS brain regions and channels, features 

used to measure cognitive performance. 

 

3.3. Effects of thermal environment and lighting on driving and secondary task performance 

3.3.1. Experiment design 

3.3.1.1. Participants 

Seventy-two individuals (52 males, 20 females) aged between 18 and 32 years (average age 

22.3 ± 1.69), holding valid driving licenses, were recruited from Worcester Polytechnic Institute 

(WPI) via email and poster advertisements. They all signed a consent form approved by WPI’s 

Institutional Review Board (IRB-22-0299), which detailed the study's procedures, risks, and 

participant obligations. Prior to their inclusion, candidates underwent a screening for simulator 

sickness, a condition that can affect 2% to 8% of individuals during simulations, especially in 

scenarios involving numerous turns and stops (Akinwuntan et al., 2005). The Simulator Sickness 

Questionnaire (SSQ) (Kennedy et al., 1993) a widely used tool comprising 16 items to gauge 

symptoms like headache, nausea, and blurred vision, was employed. Participants rated their 

symptoms shortly after the simulation. Due to simulator sickness, six out of an initial 78 were 
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excluded, leaving seventy-two eligible participants for the study. A power analysis conducted with 

G*Power 3.1 (Faul et al., 2007), presented in Fig. S1 of the Appendix, helped determine a 

statistically significant sample size of 19 for analyzing four different lighting conditions at a single 

temperature, considering this as four separate trial conditions. This analysis aimed for an effect 

size of 0.25 and a power level of 0.8. Participants were advised to abstain from alcohol, nicotine, 

and caffeine both on the day of and the day before their session and to ensure they were well-

rested. They received $15 per hour for their participation, with the possibility of earning up to an 

additional $15 as a performance incentive. 

3.3.1.2. Driving simulator and in-car environment setup 

The driving simulator setup was similar to the previous investigation on CO2 and body odor. In 

this subsection, I only focus on the major differences and uniqueness in the experimental setup. 

The Assetto Corsa video game (Simulazioni, 2014) was utilized to simulate driving conditions 

and assess performance. The simulated environment featured a nocturnal drive through the LA 

Grand Canyons, mimicking the actual terrain and roadways of the San Gabriel Mountains in 

California. The primary route extended over 42km, with the total distance reaching 47km when 

accounting for additional paths and detours. Conducted under night conditions devoid of any 

weather-related visibility issues, each trial spanned a minimum of 9 minutes on this consistent 

route. Drivers navigated this night-time course under uniform luminance conditions of 0.6 cd/m2 

from the screen, optimizing visibility in the absence of natural light, in line with findings from 

Easa et al. (2010). regarding the diminished impact of ambient light during daytime. 

The driving simulator was used to record vehicle position and movement at 10 Hz, tracking 

forward velocity (limited to 100 km/h or 62.1 mph), longitudinal and lateral acceleration, steering 

wheel angles, RPM, and yaw rate for performance assessment. I analyzed variations in speed and 

acceleration to identify driving impairments. The mean speed and its variability were also studied 

to understand vehicle behavior (Ting et al., 2008; X. Yan et al., 2014). Metrics like lateral velocity 

and steering were analyzed to determine driver precision and identify navigational errors, 

emphasizing lateral vehicle control as highlighted in earlier research (Oron-Gilad et al., 2008; Son 

et al., 2011; Thiffault & Bergeron, 2003). 

In my study, cabin temperature and lighting were controlled variables, studied through a 3 x 4 

factorial design to assess their effects on driving quality and satisfaction. Temperatures were set 

to 18 °C, 23 °C, and 28 °C using an HVAC system, based on ASHRAE 55 standards (Kelechava, 

2024) which consider various factors like metabolic rate, clothing insulation, air speed, and 

humidity. Four lighting colors—red (Figure 7), blue, warm white, and cool white—were chosen, 

with LED strips placed in strategic cockpit locations identified by prior research (Caberletti et al., 

2010; Schellinger et al., 2006), ensuring a brightness level of 1.5 lx at eye level to not affect vision 

contrast significantly (Park et al., 2016). 
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Figure 7. Simulated car-cabin lighting 

 

Cabin environmental conditions such as temperature, humidity, VOCs, CO2, PM2.5 levels, and 

lighting were constantly tracked. A ventilation rate of 18 ach, appropriate for speeds of 45-60 mph, 

kept CO2 levels at approximately 800 ppm to avoid impairing cognitive abilities (Satish et al., 

2012a). Tasks included primary driving responsibilities and a secondary N-back task to assess 

working memory during driving.  

3.3.1.3. Secondary task and questionnaire 

To simulate real-life driving situations that necessitate working memory and executive function, 

such as navigation and traffic monitoring, we also incorporate the N-back task used in the previous 

study in this project. But only 2-back was conducted by the drivers during the driving task. A 60-

second driving interval followed each 2-back task. It logged number timings, session type, 

response times, and target accuracy, noting missed targets as incorrect. This data, crucial for 

assessing cognitive efficiency, was saved for analysis. 

In this study, participants filled out two surveys. The initial survey collected basic demographic 

data including age, gender, and driving history. The second aimed at understanding participants' 

perceptions, focusing on aspects like lighting comfort vote (LCV), lighting brightness vote (LBV), 

lighting acceptance vote (LAV), thermal comfort vote (TCV), thermal sensation vote (TSV), and 

thermal acceptance vote (TAV) (Brambilla et al., 2020; Golasi et al., 2019; Winzen et al., 2014). 

Responses were recorded on a 7-point scale from -3 to +3 for both lighting and thermal conditions. 

Questions also included inquiries about sleep quality the night before and alertness levels before 

and after the drive, assessed by the Stanford Sleepiness Scale (SSS) using a scale from “very alert” 

to “very sleepy” (Hoddes et al., 1973). Emotional reactions to the driving environment were 

evaluated with the Self-Assessment Manikin (SAM) for valence, arousal, and dominance (Bradley 

& Lang, 1994). The NASA Task Load Index (NASA-TLX) was used to assess task workload, 

looking at stress, workload, and fatigue across six dimensions: mental and physical demand, 

temporal demand, performance, effort, and frustration, rated on a scale from 1 to 7 (Hart, 2006). 

3.3.1.4. EEG and fNIRS setup and acquisition 

I also measured brain activity by using the device in the previous project. The set up of 

g.Nautilus Research fNIRS-8 wireless headset and g.tec MATLAB-Simulink software were same 

to the parameters used in the previous study, allowing for the simultaneous recording of EEG and 

fNIRS signals. 
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3.3.1.5. Procedure 

Participants attended a preliminary session for simulator sickness screening and familiarization 

with the driving simulator’s operation and study protocols. After providing informed consent, they 

scheduled the main experimental session. In preparation for this session, they were advised to 

maintain normal eating and sleeping patterns and avoid medications, alcohol, or significant 

physical activity for 24 hours beforehand. The experiment employed a single-blind design, 

assigning participants to temperature settings via block randomization and organizing four driving 

tasks under different lighting conditions in a random sequence based on the Latin Square Design, 

as detailed in Figure 8. Each simulation lasted around 10 minutes, a duration consistent with 

similar studies (Jeihani et al., 2017; Saxby et al., 2007), incorporating a secondary 2-back cognitive 

task. Following each drive, participants filled out surveys on tablets set to dark mode to minimize 

light exposure from the screen. Lighting conditions were adjusted for the subsequent task 

immediately after survey completion, and cell phone and other electronic device use were strictly 

prohibited during the experiment to ensure undivided attention to the tasks. 

 

 

 
Figure 8. Experimental procedure 

3.3.2. Analysis of driving behaviors, secondary task performance, and survey responses 

My study aimed to analyze how temperature and light color affect driving performance and 

their subsequent effects on environmental satisfaction, secondary task performance, and 

physiological responses. I utilized a two-pronged analytical method for a thorough analysis. 

A two-way ANOVA was initially conducted to assess the direct effects of temperature and light 

on driving metrics, providing a basic comparative analysis. However, ANOVA’s limitations in 

fully characterizing driving behavior necessitated further examination through machine learning 

techniques, enhancing the ability to classify driving styles and predict performance variations. By 

integrating ANOVA with machine learning, I developed a sophisticated model to understand 

driving dynamics in varying environmental conditions. This combination allowed for a detailed 

exploration of how specific environmental factors like temperature and light influence driving 

behavior, leading to a more accurate prediction and analysis of their impact on real-world driving 

performance. 
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3.3.2.1. Two-way ANOVA 

Statistical analyses were conducted to compare environmental satisfaction, driving actions, N-

back task outcomes, workload, and survey feedback under different lighting and temperature 

settings. Key metrics for driving performance included speed (up to 100 km/h), longitudinal and 

lateral accelerations, steering dynamics, and yaw rate, with their averages and variability 

quantifying performance. Secondary task performance were gauged through reaction times and 

accuracy in 2-back tasks, with sleepiness levels derived from Stanford Sleepiness Scale (SSS) 

responses. Survey data provided insights into emotional state, environmental perception, and 

satisfaction. Cognitive load was measured using the NASA-TLX method, as established by Al-

Shargie et al. (2017). 

Statistical analyses were performed to evaluate survey feedback and driving metrics under 

varied lighting and thermal settings. Linear regression helped control individual variances, with 

residuals analyzed for objective comparison (Kliegl et al., 2011; Van Dongen et al., 2004). 

Normality was verified via the Shapiro-Wilk test. For skewed data, the Aligned Rank Transform 

(ART) ANOVA was used to detect group differences (Durner, 2019; Elkin et al., 2021), targeting 

variances in survey and driving data relative to temperature changes. The significance threshold 

was 0.05, with R software (version 4.2.3) (R Core Team, 2013) facilitating the analysis. 

3.3.2.2. Driving style classification and prediction using ML 

My study employed a machine learning process to investigate how temperature and light color 

within the car environment affect driving styles using a two steps approach. The first layer 

categorized driving styles from collected data, while the second layer recognized driving behaviors 

influenced by in-car temperature and light color. 

In the first layer, I categorized driving styles using unsupervised learning algorithms and driving 

data, specifically speed, longitudinal acceleration, and lateral acceleration. I averaged these 

variables by each driving session of 288 tasks and adjusted for individual differences by including 

interaction terms with demographic and driving history data. This approach helped identify distinct 

driving styles, such as aggressive, moderate, and conservative (Chu et al., 2017; Deng et al., 2017; 

Palat et al., 2019; F. Yan et al., 2019), using K-Means clustering for its effectiveness in grouping 

data by feature similarities. The method relied on unsupervised learning to uncover natural patterns 

in the data, using scikit-learn for model application and Silhouette Coefficient (Luan et al., 2012) 

for evaluating clustering success, selecting a K-value over 0.5 to signify robust cluster 

differentiation. 

In the second layer, the classification from Layer I was used to label data, integrating with in-

car temperature and light color to train the classification model. The Random Forest (RF) method, 

known for its efficacy in data mining and classification, was selected. Leave-one-subject-out cross-

validation evaluated the model’s accuracy. I analyzed how temperature and light color affect 

driving, categorizing temperature into three levels and light color into four, to reflect actual driving 

conditions. This step allowed detailed examination of driving behaviors under varying 

environmental settings. Model performance was rigorously evaluated using metrics like confusion 

matrix, accuracy, precision, recall, and F-measure, helping to confirm the model’s ability to 

accurately identify different driving styles influenced by temperature and light conditions. 

3.3.3. Physiological data analysis 

For EEG and fNIRS data preprocessing in this research, I adopted the same approach in the 

previous study to preprocess the raw data. For the processing, I employed a consistent 

methodology to extract features from preprocessed EEG and fNIRS physiological signals with the 



27 

 

previous studies. I then applied a two-way Aligned Rank Transform (ART) ANOVA to analyze 

each feature across different conditions by temperature and lighting condition. 
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Chapter 4: Result and Discussion 

This chapter discusses results and findings from the literature review work of Papers A. 

4.1. A systematic literature review 

4.1.1. Summary of the manual review 

In a thorough review of major findings in 66 studies on the association of IEQ factors and 

cognition, the tabulated results of all the reviewed studies might not easily generate a clear “big 

picture. This is because many studies reported contradictory findings. Therefore, we calculated the 

percentage of studies that revealed statistically significant association (with the assigned rating 

“2”) between a particular IEQ factor and a cognitive function. Moreover, the percentage of studies 

showing both statistically significant association (with the assigned rating “2”), no statistical 

association (with the assigned rating “0”), mixed association (with the assigned rating “1”), and 

“N/A” to denote the significance level if a study did not report p values.  Table 1 (C. Wang et al., 

2021) list the percentage of studies reporting different levels of statistical significance studies on 

the association of IEQ factors and cognition. Table 1 demonstrates that the most studied cognitive 

functions are memory, high order cognitive skills, and attention, and that the most examined IEQ 

factors in the literature are thermal environment, noise, and IAQ. Overall, IEQ is associated with 

almost all cognitive functions to different extents except that few studies were reported on 

perception with a few exceptions. The results, including a classification of IEQ factors and 

cognitive functions, are summarized in Figure 1 of Appendix A 

Table 1. Percentage of studies reporting different levels of statistical significance for the 

associations between IEQ and cognition provides a summary of the cognitive tasks evaluated, 

mapped to the respective cognitive functions. The results in Table 1 suggest extensive 

inconsistencies in the relevant literature, especially regarding the effects of IAQ or thermal 

environment on cognition. For example, 50% of the 16 reviewed studies indicated either a 

statistically significant association (level “2”) or a mixed association (level “1”) between thermal 

environment and memory, while only 20% of the studies confirmed a statistically significant 

association (level “2”). Where over five studies exist, significant links are noted: 50% for indoor 

air quality (IAQ) impacting higher cognitive skills, 71.4% for noise affecting memory, and 66.67% 

for noise influencing language function. However, minimal associations are observed between 

IAQ and memory, and the thermal environment’s effect on attention, memory, and higher 

cognitive skills shows low percentages, highlighting inconsistencies, particularly in the thermal 

environment's impact on cognition. These disparities could stem from various factors, including 

experimental design and measurement techniques. 

The table also averages the influence of IEQ elements across cognitive functions, showing noise 

affects cognition in 57% of the cases, much higher than IAQ or thermal elements (below 20%). 

This suggests noise more consistently affects cognitive performance, possibly due to its recent 

prevalence in modern environments. While memory and language are notably impacted, less than 

half of the studies show a clear effect of IAQ or thermal conditions on cognitive function, 

indicating a lack of consensus in the field. 
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Table 1. Percentage of studies reporting different levels of statistical significance for the associations between IEQ and cognition 

 

⸸ “Perc. of sig.”: the percentage of all reviewed studies in Appendix I Tables A2-A6 reporting a significant association only (with the 

rating “2”); “Perc. of mixed”: the percentage of studies revealing a mixed association (with the assigned rating of “1”). The description 

of different rating levels can be found in Section 3.1. “# of studies”: the total number of reviewed studies containing all ratings (“0”, 

“1”, “2”, and “NA”).  
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Perc.  
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mixed  

# of 

studi

es 

Perc

. of 

sig.  

Perc. 

of sig. 

or 

mixed 

Attention 20% 20% 6 10% 30% 11 25% 25% 5 33% 34% 6 50% 50% 5 28% 31% 

Perception 0 0 1 0 50% 3 NA NA 0 0 67% 3 NA NA 0 25% 38% 

Memory 0 25% 8 14% 36% 16 71% 29% 8 29% 28% 7 0 100% 1 23% 43% 

Language 

function 

0 0 2 33% 0% 4 67% 33% 10 50% 0% 2 0 100% 1 30% 26% 

Higher order 

cognitive skills 

50% 33% 8 19% 50% 17 20% 40% 5 33% 0% 6 50% 0% 2 34% 25% 

Column 

average 

14% 15% 
 

15% 33% 
 

57% 25% 
 

29% 32% 
 

25% 63% 
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4.1.2. Keyword co-occurrence patterns 

For the co-occurrence analysis, the result displayed by Figure 9 (C. Wang et al., 2021) illustrates 

the publication trends and knowledge frameworks based on keyword co-occurrence over various 

time frames, using the proximity of circles to indicate the frequency of keyword co-occurrence in 

the literature; closer circles signify higher co-occurrence rates. Utilizing a smart local moving 

algorithm optimized the keyword display within each circle (VOSviewer Manual, n.d.). Circle 

sizes depict the relative frequency of article citations per keyword, and color coding identifies 

thematic clusters, employing similarity visualization (VOS) (Eck et al., 2010). The initial related 

research dates back to 1932, with a notable surge in publications linking Indoor Environmental 

Quality (IEQ) and cognitive studies, reaching 684 publications in 2019, as detailed in Figure 8a. 

Subsequent figures, 8b through 8d, map out the conceptual linkages between IEQ and cognitive 

function across three distinct time spans: 1932–2010, 2011–2015, and 2016–2020, averaging 

around 3000 papers per interval. These diagrams, which build on a comprehensive manual review, 

highlight two prominent trends: thematic clusters in cognition and environment, differentiated by 

colors indicating various aspects like age, gender, and mental health conditions. These graphical 

representations, particularly in Figures 8b to 8d, trace the thematic shifts in research, marking the 

emergence of terms like “sound,” “light,” and “noise” in 2011–2015, and shifting focus towards 

“air pollution,” “temperature,” and “ventilation” after 2016. Concurrently, cognitive research 

broadened to include terms like “reading,” “social cognition,” and “language,” reflecting the field's 

evolving focus. Additionally, a recurring association of music with cognitive aspects underscores 

a consistent interdisciplinary interest across the analyzed periods. 
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Figure 9. The number of publications and knowledge landscapes obtained from keyword co-

occurrence analysis. a) The temporal number distribution of publications (The figure does not 

display the only paper published before 1958); b) keyword co-occurrence network with 

publications between 1932 and 2010 (n = 3421); c) keyword co-occurrence network with 

publications between 2011 and 2015 (n = 2464); d) keyword co-occurrence network with 

publications between 2016 and 2020 (n = 2956) 
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4.2. Air quality and driving study 

This chapter discusses results from the experimental work of Papers B and C on the effect of 

CO2 and body odor in the vehicle cabin on driving performance, cognitive performance, and 

physiological signal change. 

4.2.1. Environmental measurement 

Average CO2 concentrations recorded were 786.42 ± 106.57 ppm (Mean ± SD) at low, 1815.00 

± 80.63 ppm at middle, and 3504.41 ± 149.39 at high levels. The study includes identifying volatile 

organic compounds (VOCs) from body odor in worn T-shirts, comparing these with clean ones, 

and found that worn T-shirts contained significantly higher levels of specific VOCs. Chemical 

analysis, restricted to two donors, identified unique body odor-related compounds in the worn 

shirts. A total of 26 distinct chemicals were detected in female donors’ shirts and 19 in male 

donors’, with 12 chemicals, like aldehydes and benzene, commonly present across both genders’ 

samples, underscoring their association with body odor. For more information, please refer to my 

previous publication (C. Wang et al., 2024). 

4.2.2. Driving performance 

The study assessed the effects of varied CO2 concentrations and body odor presence on driving 

dynamics, particularly speed and steering behaviors. It focused on variables like speed and 

acceleration averages and variations, lateral movements, steering actions, and yaw rates. Through 

two-way ANOVA, it explored the repercussions of differing CO2 levels and body odor on these 

driving metrics. According to the data, changes in CO2 or the presence of body odor didn’t notably 

alter driving performance metrics. Results from the two-way ANOVA in Table 2 (C. Wang et al., 

2024) indicated driving data metrics. 

Specifically, average speeds were stable across CO2 scenarios, showing minor fluctuations 

around 52 mph. Variability in speed also remained consistent, indicating unaffected driver speed 

control. Statistical analysis revealed no significant changes in speed due to CO2 (mean speed: F(2, 

144) = 0.03, p > 0.05; speed variation: F(2, 144) = 0.41, p > 0.05) or body odor effects. Similar 

stability was noted in acceleration metrics, with ANOVA findings indicating a lack of significant 

impact from CO2 or body odor on both the average and variability of acceleration. Furthermore, 

the interaction between CO2 levels and body odor showed no significant effect on the driving 

performance indices analyzed. 

Lateral control, indicative of a driver’s ability to maneuver the vehicle side-to-side on the road, 

was assessed through metrics like lateral acceleration, lane deviation, steering, and yaw rate. 

Observations revealed consistent lane deviations across CO2 conditions—1.256 m, 1.217 m, and 

1.184 m for low, medium, and high levels respectively (Appendix B Table 2). Statistical analysis 

showed no significant CO2 effect on lane deviation’s mean or variation. Body odor presence 

slightly altered the lane deviation mean from 1.172 m to 1.222 m, yet this was not statistically 

significant. Lateral acceleration showed a slight peak of 0.152 m2/s at high CO2 levels, but again, 

ANOVA confirmed no significant changes across different CO2 environments. Similarly, the 

analyses for steering and yaw rate metrics indicated no substantial variations due to either CO2 

levels or body odor. The lack of significant findings from ANOVA for these lateral control 

measures implies no discernible interaction between CO2 concentration and body odor affecting 

these specific driving performance aspects. 
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Table 2. Two-way Analyses of Variance of driving performance indices at different CO2 levels 

and environments with or without body odor 

 Param

eters 
Source Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partial 

Eta 

Squared 

Speed 

(m/s) 

Mean CO2 121.480 2 60.740 0.031 0.969 0.247 

Body odor 248.327 1 248.327 0.127 0.722 0.506 

CO2 * Body odor 121.333 2 60.667 0.031 0.969 0.247 

S.D. CO2 1578.520 2 789.26 0.406 0.667 0.591 

Body odor 0.167 1 0.167 0.001 0.993 0.001 

CO2 * Body odor 1090.773 2 545.387 0.281 0.755 0.409 

Accel

eratio

n 

(m2/s) 

Mean CO2 2061.280 2 1030.640 0.533 0.588 0.522 

Body odor 504.167 1 504.167 0.260 0.611 0.128 

CO2 * Body odor 1384.413 2 692.207 0.357 0.700 0.350 

S.D. CO2 2144.160 2 1072.080 0.553 0.576 0.823 

Body odor 144.060 1 144.060 0.074 0.786 0.055 

CO2 * Body odor 317.213 2 158.607 0.081 0.922 0.122 

Lane 

deviat

ion 

(m) 

Mean CO2 2142.720 2 1071.360 0.564 0.570 0.268 

Body odor 1980.167 1 1980.167 1.054 0.306 0.247 

CO2 * Body odor 3886.573 2 1943.287 1.035 0.358 0.485 

S.D. CO2 766.240 2 383.120 0.198 0.821 0.303 

Body odor 190.407 1 190.407 0.098 0.754 0.075 

CO2 * Body odor 1573.32 2 786.660 0.406 0.667 0.622 

Steeri

ng 

(degre

e) 

Mean CO2 4876.360 2 2438.18 1.273 0.283 0.724 

Body odor 1072.007 1 1072.007 0.552 0.457 0.159 

CO2 * Body odor 789.88 2 394.940 0.203 0.817 0.117 

S.D. CO2 1088.920 2 544.460 0.349 0.706 0.432 

Body odor 988.167 1 988.167 0.690 0.407 0.392 

CO2 * Body odor 443.560 2 221.780 0.144 0.866 0.176 

Yaw 

rate 

(rad/s) 

Mean CO2 5075.68 2 2537.84 1.326 0.269 0.836 

Body odor 117.927 1 117.927 0.061 0.806 0.020 

CO2 * Body odor 879.613 2 439.807 0.226 0.798 0.145 

S.D. CO2 2708.040 2 1354.020 0.708 0.494 0.852 

Body odor 144.060 1 144.060 0.074 0.786 0.045 

CO2 * Body odor 324.520 2 162.260 0.084 0.920 0.102 

Latera

l 

accele

ration 

(m2/s) 

Mean CO2 3485.080 2 1742.540 0.909 0.405 0.752 

Body odor 636.540 1 636.540 0.329 0.567 0.137 

CO2 * Body odor 513.760 2 256.880 0.132 0.877 0.111 

S.D. CO2 601.000 2 300.500 0.154 0.857 0.717 

Body odor 172.807 1 172.807 0.089 0.766 0.206 

CO2 * Body odor 64.653 2 32.327 0.017 0.983 0.077 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

4.2.3. N-back task performance 

Results from the two-way ANOVA indicated reaction time and response accuracy metrics. The 

response accuracy varying between 90.67% and 93.45%, was stable across CO2 levels (F(2, 144) 

= 1.29, p > 0.05) (Table 3). Similarly, CO2 concentration changes did not notably impact reaction 
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times, which remained steady at about 0.58 to 0.59 seconds (F(2, 144) = 2.88, p > 0.05). Body 

odor’s influence on reaction times was negligible (F(1, 144) = 0.80, p > 0.05). However, body 

odor presence reduced response accuracy from 93.17% to 91.102%, marking a significant change 

(F(1, 144) = 9.21, p < 0.01). No substantial interaction was observed between CO2 levels and body 

odor for reaction time (F(2, 144) = 2.43, p > 0.05) or accuracy (F(2, 144) = 0.23, p > 0.05). The 

effect of CO2 on reaction time exhibited a very large effect size (0.818), despite the p-value being 

slightly above 0.05. Although the results did not achieve statistical significance, the substantial 

effect size provides preliminary evidence of CO2’s impact. This suggests that the sample size may 

have been too small, which could be considered a limitation of our study. 

 

Table 3. Two-way Analyses of Variance of response accuracy and reaction time of N-back tasks 

at different CO2 levels and environments with or without body odor 

Parameters Source Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partial 

Eta 

Squared 

Response 

accuracy 

(%) 

CO2 162608.1 2 81304.05 1.292 0.275 0.156 

Body odor 574058.8 1 574058.8 9.210 0.002** 0.552 

CO2 * Body odor 303702.4 2 151851.2 2.427 0.089 0.292 

Reaction 

time (s) 
CO2 388713 2 194356.5 2.880 0.057 0.818 

Body odor 54568.96 1 54568.96 0.804 0.370 0.115 

CO2 * Body odor 31745.6 2 15872.8 0.234 0.792 0.067 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

4.2.4. Task Load Index, sleepiness, and emotion 

NASA-TLX ratings from Appendix B (Appendix Tables S2 and S3) under varied CO2 and body 

odor scenarios revealed minimal impact on task load, as determined by two-way ANOVA. Mental 

demand was consistent across CO2 levels (low CO2: 3.50, medium CO2: 3.68, high CO2: 3.46), 

with body odor effect insignificant (with odor: 3.59, without odor: 3.51). Medium CO2 conditions 

experienced the highest temporal demand (2.72) and the lowest self-assessed performance (2.64), 

whereas body odor slightly lowered temporal demand (2.44) and improved performance (2.747). 

Frustration levels rose with increased CO2 and presence of body odor, suggesting minor variances 

in certain subscales due to environmental factors. Varying CO2 levels had no significant effect on 

drivers’ mental demand (F(2, 144) = 0.62, p > 0.05, η² = 0.28). Likewise, the presence of body 

odor did not significantly alter mental demand ratings (F(1, 144) = 0.67, p > 0.05, η² = 0.59). 

Sleepiness and emotional data from Appendix B (Appendix Table S7), post-analyzed through 

two-way ANOVA, showed negligible influence from CO2 and body odor. Sleepiness levels, 

increasing slightly but insignificantly with CO2, were insignificantly altered by body odor (F(1, 

144) = 0.17, p = 0.021), maintaining stable emotional ratings of valence and dominance. Notably, 

body odor caused a slight and significant increase in negative arousal (F(1, 144) = 4.70, p = 0.032), 

pointing to discomfort. No significant CO2 and body odor interaction on sleepiness or emotions 

was observed, indicating their limited effect on these aspects during driving. 

4.2.5. EEG results 

For the entire driving session, Table 4 shows two-way ART ANOVA findings for power 

spectral density (PSD) of brainwave bands and band power ratio indices impacted by CO2 levels 

or body odor. The table focuses on significant findings from the in-car environment’s effect on 
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PSD, highlighting only 2 out of 160 comparisons showing significant effects for band PSD, and 5 

out of 160 comparisons for band ratios. Analysis of PSD during driving sessions across frontal, 

central, parietal regions, and a combined all categories revealed no significant changes due to CO2 

or body odor. However, a specific observation at the PZ channel indicated a significant increase 

in the δ band PSD with body odor presence (F(1, 144) = 8.024, p = 0.005). Analysis across brain 

regions (frontal, central, parietal, and combined all) during driving sessions found no substantial 

impact of CO2 or body odor on band power ratio indices. However, focusing on specific EEG 

channels, AF3 and FC4 showed notable changes. At AF3, significant alterations were seen in the 

α+θ/β and θ/β ratios due to CO2 variations (F(1, 144) = 5.235, p = 0.007, and F(1, 144) = 4.722, p 

= 0.011, respectively). The α+θ/β ratio at AF3 changed across CO2 levels (800 ppm: 6.491, 1800 

ppm: 8.388, 3500 ppm: 8.651 μV2/Hz). At FC4, significant CO2-related differences appeared in 

θ/β and α+θ/β (F(2, 144) = 4.988, p = 0.008, and F(2, 144) = 4.712, p = 0.011, respectively), with 

interactions between CO2 and body odor also affecting the α+θ/β ratio (F(2, 144) = 5.271, p = 

0.006). 

 

Table 4. Two-way ART ANOVA of EEG different frequency band PSD and ratio indices of bands 

PSD at different CO2 levels and environments with or without body odor across the driving 

sessions 

Note: “Interaction” denotes the interaction between the CO2 and body odor. * denotes p value less 

than 0.05, ** denotes p value less than 0.01. This table only shows the significant results. 

 

In the single-task driving analysis, CO2 levels showed no significant impact on the PSD across 

all frequency bands within different ROIs. The presence of body odor similarly had no substantial 

effect on PSD values in these areas. From the Table 4, Channel C1, however, displayed a 

significant change in δ-band PSD with body odor (F(1, 144) = 6.779, p = 0.010). No significant 

changes were observed in band power ratio indices across the ROIs due to CO2 or body odor. 

Nevertheless, channel AF3 exhibited a marked change in the (α+θ)/β ratio due to varying CO2 

levels (F(1, 144) = 4.754, p = 0.010), indicating that CO2 concentration had a significant effect. 

In the dual-task driving sessions, which integrated different N-back task levels, the analyses of 

various brain regions and channels revealed no significant alteration in the power spectral density 

(PSD) bands or ratio indices due to CO2 levels or body odor presence. This observation was further 

delineated through graphical representations in Figure 10 and Figure 11, showcasing the brain’s 

topographical and heatmap analyses of EEG ratio indices under varying conditions, respectively. 

The 0-back task analysis pinpointed that body odor prominently influenced the ratio indices across 

Driving 

session 

Source Feature Chan

nel 

Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partial 

Eta 

Square

d 

Entire Body odor δ PZ 8532.913 1 8532.913 8.024 0.005** 0.956 

Single-task Body odor δ C1 7871.268 1 7871.268 6.779 0.010* 0.597 

Entire CO2 (α+θ)/β AF3 14011.64 2 7005.819 5.235 0.007** 0.810 

Entire CO2 θ/β AF3 12694.13 2 6347.066 4.722 0.011* 0.801 

Entire CO2 (α+θ)/β FC4 12839.89 2 6419.944 4.988 0.008** 0.460 

Entire Interaction (α+θ)/β FC4 13133.45 2 6566.723 5.271 0.006** 0.471 

Entire CO2 θ/β FC4 11825.92 2 5912.96 4.712 0.011* 0.476 

Single-task CO2 (α+θ)/β AF3 12027.78 2 6013.89 4.754 0.010* 0.873 
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different brain regions or channels, whereas CO2 levels or their interaction with body odor 

displayed negligible effects. Similar observations were made during the 1-back task, where no 

notable changes in ratio indices due to CO2 concentrations were detected across the brain’s entirety. 

Body odor presence was consistently influential, affecting these ratios across different regions or 

channels during the 1-back task, without significant CO2 and body odor interaction. In the 2-back 

task scenario, a nuanced examination of the environmental conditions’ impact on the ratios, 

particularly for (α+θ)/β and θ/β, showed distinct differences attributable to CO2 levels, confirming 

their influence during this task complexity. The body odor’s presence notably differentiated the 

ratios, underscoring a discernible impact during the 2-back task, yet without significant interplay 

with CO2. This effect was particularly evident in the heatmap analysis, which underscored the ratio 

indices' changes due to body odor across specific channels. 

 

 
 

Figure 10. Brain topography of (α+θ)/β during the dual-task session in various conditions 
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Figure 11. p-value heatmap of EEG ratio indices across various brain ROIs (all, frontal, parietal, 

occipital) during different N-back tasks under various conditions. Each column corresponds to 

a specific N-back task complexity (0-back, 1-back, 2-back from left to right). The x-axis labels 

represent the different EEG features assessed, while the y-axis labels denote the distinct ROIs. 

“Interaction” is the interactive effect between CO2 and body odor. “A” denotes all regions of 

brain, “F” denotes frontal region of brain, “C” denotes central region of brain, and “P” denotes 

parietal region of brain. The color scale on the right denotes p-value ranges, with the red-framed 

boxes highlighting statistically significant changes where p < 0.05. 

 

During various driving tasks, changes in EEG band power spectral density (PSD) and ratio 

indices were noted, particularly influenced by CO2 levels or body odor presence. Notably, delta 

(δ) band alterations during different driving tasks suggest potential cognitive state modifications 

due to body odor. Shifts in theta (θ) and alpha (α) bands are recognized markers of sleepiness or 

alertness, reflecting cognitive state variations (Borghini et al., 2014; Buckelew et al., 2009; 

Klimesch, 1999). Additionally, beta (β) band elevation has been linked to increased stress or 

arousal levels (Kuo et al., 2016; J. Zhang et al., 2021). Zhang et al. (2021) reported significant 

EEG β power rise with increased CO2, indicating altered cognitive states. In line with these, my 

study observed a θ power rise and β power decrease under high CO2, resonating with Jin et al. 

(2022). This study further revealed the nuanced (α+θ)/β ratio changes, suggesting these ratios may 

more accurately mirror cognitive state shifts during driving, influenced by environmental factors 

like CO2. These findings underline the ratio indices’ sensitivity in detecting cognitive adjustments, 

offering a refined lens to assess cognitive state changes, particularly in driving contexts influenced 

by varying CO2 concentrations. 

In different difficulty level N-back tasks, unlike integrated dual-task driving, body odor 

significantly influenced EEG ratio indices, specifically altering δ band’s PSD in targeted channels. 

This effect was not observed in integrated dual-task sessions. δ band activity, critical for focused 

mental engagement, is thought to suppress external sensory distractions, aiding concentrated effort 
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(Dimitriadis et al., 2010), and possibly engages with complex cognitive tasks (Harmony, 2013). 

This points to the δ band’s significance in attentional processes and its sensitivity to olfactory 

stimuli. The analysis showed that body odor presence led to changes in the (α+θ)/β and θ/β ratios 

across certain N-back tasks, with a lower (α+θ)/β ratio suggesting heightened alertness and a 

reduced θ/β ratio indicating improved attention. Additionally, we examined how CO2 levels and 

body odor together influenced EEG signals during different driving tasks. There was no clear 

interactive effects emerged. During different N-back tasks, body odor significantly altered the 

(α+θ)/β and θ/β ratios across various brain regions, pointing to nuanced effects of environmental 

factors on cognitive engagement during these tasks. 

4.2.6. fNIRS results 

The fNIRS data assessment focused on the behavior of HbO and HbR levels during various 

driving sessions, including single-task and dual-task scenarios. I conducted a two-way ART 

ANOVA to examine how CO2 levels and body odor affected these hemodynamic responses. 

Across all examined ROIs and channels, the study found no significant alterations in HbO levels 

attributable to CO2 or body odor. As a result, the specific ANOVA data is not included, given its 

lack of statistical significance. In the context of single-task driving, analysis showed that both CO2 

levels and body odor presence had no significant effect on the fNIRS measurements across any of 

the ROIs or channels. Table 5 detail the changes in brain activity through fNIRS measurements 

under different CO2 concentrations and body odor conditions during the N-back tasks. In the 1-

back task, the combined effects of CO2 and body odor were significant on HbO at channel 6 and 

HbR at channel 7, with relevant mean values across CO2 levels showing distinct differences. These 

changes were statistically significant for both HbO at channel 6 (F(1, 144) = 4.588, p = 0.012) and 

HbR at channel 7 (F(1, 144) = 5.435, p = 0.005). During the 2-back task, HbT levels at channel 7 

varied significantly with CO2, marked by distinct mean HbT values at different CO2 levels, 

demonstrating significant CO2 influence (F(2, 144) = 4.929, p = 0.009). Although there were no 

remarkable differences in HbO or HbR levels across ROIs in all N-back tasks, the CO2-related 

change in HbT at channel 7 indicates specific hemodynamic reactions to varying CO2 levels. The 

fNIRS results did not show much variation between conditions, unlike the EEG data. Figure 12 

displays the brain topography of HbO concentration during dual-task sessions under various 

conditions. The figure does not show significant differences in HbO concentration across most 

brain regions under different conditions during N-back tasks. 

 

Table 5. Two-way ART ANOVA of fNIRS features at different CO2 levels and environments with 

or without body odor during N-back tasks 

Note: “Interaction” denotes the interaction between the CO2 and body odor. * denotes p value less 

than 0.05, ** denotes p value less than 0.01 

 

Drivin

g 

sessio

n 

Source Valu

e 

Feat

ure 

Ch

an

nel 

Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partia

l Eta 

Squar

ed 

1-back Interaction HbO conc 6 14115.64 2 7057.82 4.588 0.012* 0.674 

1-back Interaction HbR conc 7 16613.04 2 8306.52 5.435 0.005** 0.789 

2-back CO2 HbT conc 7 14835.18 2 7417.591 4.929 0.009** 0.686 
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Figure 12. Brain topography of HbO concentration during dual-task session in various 

conditions 

4.2.7. Limitation and recommendations 

In this research, six driving-behavior parameters collected from a driving simulator were 

analyzed to evaluate driving performance. The study found mixed effects of increased CO2 levels 

and body odor presence on driving skills. The rigor and validity of this investigation can be 

improved concerning the factors including sample size, driving environment complexity, CO2 and 

body odor levels, exposure time, simulation-based experimental design, and the brain monitoring 

technology used. These factors are believed to contribute to the variability seen in the research 

findings. 

The study estimated the required sample size assuming a significant effect size of 0.25 and 

plans to increase this size to enhance statistical validity in future research. The current research 

population was limited to young and inexperienced drivers, affecting performance diversity. 

Future research should include a wider age range to better gauge the effects of CO2 and body odor 

on driving skills across different age groups. 

While this study examined CO2 and body odor’s effects on driving, factors like Air Exchange 

Rate (AER) and vehicle interior chemicals might also play a role. Since body odor encompasses 

various compounds that could impact driving ability, these elements might interact with the 

investigated factors, affecting driving experience and proficiency. Therefore, exploring the 

combined influence of CO2, body odor, AER, and other chemicals on driving performance is 

complex and merits further detailed study. 

In my study, the highest CO2 level tested was 3500 ppm, a concentration that may not have 

been high enough to significantly alter driving performance or brain activity detected through EEG 

and fNIRS within short exposure times. Literature suggests that driving duration influences 

performance (Antonson et al., 2009; Law et al., 2010; Thiffault & Bergeron, 2003; Ting et al., 

2008), prompting a need to examine the effects of longer exposure to CO2 and body odor on driving. 

Future research should investigate these factors over extended periods or at elevated CO2 levels to 

discern their full impact. Over long driving sessions, subtle effects noted in brief exposures could 

become more pronounced or alter in nature. The CO2 concentrations used here, though, mirror 

those found in real-world environments. 
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The current study’s use of a driving simulator may not fully capture the nuances of real-world 

driving, potentially affecting the generality of the results. The freeway driving scenario employed 

was relatively straightforward and might not sufficiently challenge drivers of different skill levels. 

To enhance the assessment of CO2 and body odor on driving performance, subsequent studies 

should consider more complex and realistic driving conditions. 

In the research, post-driving surveys assessing sleepiness, emotions, perceived and accepted air 

quality, and workload were completed immediately after each driving session outside the cabin, 

coinciding with experimental setup changes. This timing raises the question of whether 

assessments made outside the vehicle truly reflect in-car experiences, introducing potential biases 

or inaccuracies that future research should address. 

A significant methodological limitation was not using short separation channels in fNIRS data 

acquisition, essential for separating physiological signals from cerebral activity. This limitation, 

along with environmental influences, could confound fNIRS measurements. The employed fNIRS 

device missed capturing essential short-distance channel data, crucial for filtering out 

physiological noise (Yücel et al., 2021). 

This study advances the understanding of how CO2 and body odor impact neurophysiological 

responses during driving, paving the way for enhanced safety of driving and potentially other 

vehicle operating through the optimization of physical environment.  
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4.3. Effects of thermal environment and interior lighting 

This chapter discusses results from the experimental work of Papers D on the effect of thermal 

environment, interior lighting conditions at night, and their interaction in the vehicle cabin on 

driving performance, secondary task performance, and environmental perception metrics. 

4.3.1. Environmental perception 

In this study, I explored how temperature settings (18 °C, 23 °C, 28 °C) and light colors (blue, 

red, warm white at 2700 K, and cool white at 5000 K) affect passenger satisfaction in a vehicle’s 

interior. I assessed variables like comfort and acceptance related to lighting and temperature. 

Utilizing two-way ANOVA, the influence of these environmental elements on car cabin 

satisfaction was analyzed, with findings summarized in Table 6, showing satisfaction levels under 

different light and temperature scenarios. The analysis pinpointed that temperature notably alters 

thermal sensation, evidenced by significant differences (F(2, 168) = 106.172, p < 0.01) among the 

temperature conditions. The indoor temperature of 23 °C resulted in the highest comfort level. 

Both thermal comfort and acceptance significantly changed with temperature variations (thermal 

comfort: F(2, 168) = 6.604, p < 0.01, η² = 0.711; thermal acceptance: F(2, 168) = 10.903, p < 0.01; 

thermal sensation (F(2, 57) = 106.172, p < 0.01, η² = 0.974), with the proportion of variance 

explained by temperature in these measures being considerable. These effects demonstrate that 

temperature is a critical factor in both the physical and perceptual aspects of environmental comfort. 

The influence of lighting perception showed subtler differences, particularly in relation to 

temperature changes (F(2, 168) = 3.912, p = 0.021, η² =  0.567), indicating that variations in 

temperature can influence how bright a space is perceived to be by occupants. Analysis indicated 

minimal effects of lighting condition on perceptions of light comfort, brightness, and acceptance, 

as well as thermal attributes (light comfort: F(3, 296) = 0.595, p = 0.619; light brightness: F(3, 296) 

= 0.863, p = 0.461; light acceptance: F(3, 296) = 0.445, p = 0.721; thermal comfort: F(3, 296) = 

0.778, p = 0.507; thermal sensation: F(3, 296) = 0.687, p = 0.561; thermal acceptance: F(3, 296) = 

0.104, p = 0.958). Additionally, the interaction between temperature and light color was not found 

to be significant in any of the domains (all interaction p-values > 0.05). This suggests that the 

perception of light comfort, brightness, and acceptance is predominantly influenced by 

temperature rather than the color of light, and that the color of light does not modulate the effect 

of temperature on these perceptions. 

 

Table 6. Two-way ART ANOVA of environment perception at different temperatures and lighting 

conditions 

 Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 
Light 

comfort 
T 1070.771 2 535.385 0.074 0.928 0.021 

Light color 12771.03 3 4257.009 0.595 0.619 0.251 

T * Light color 36966.19 6 6161.031 0.871 0.517 0.728 

Light 

brightness 
T 54844.56 2 27422.28 3.912 0.021* 0.567 

Light color 18471.75 3 6157.25 0.863 0.461 0.191 

T * Light color 23379.81 6 3896.635 0.547 0.772 0.242 

Light 

acceptance 
T 17152 2 8576 1.202 0.302 0.278 

Light color 9554.75 3 3184.917 0.445 0.721 0.155 

T * Light color 34978.66 6 5829.777 0.824 0.552 0.567 

Thermal 

comfort 
T 90863.15 2 45431.57 6.604 <0.01** 0.711 

Light color 16680.69 3 5560.231 0.778 0.507 0.131 
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T * Light color 20203.76 6 3367.293 0.472 0.829 0.158 

Thermal 

sensation 
T 864922.9 2 432461.5 106.172 <0.01** 0.974 

Light color 14749.86 3 4916.62 0.687 0.561 0.017 

T * Light color 8674.167 6 1445.694 0.201 0.976 0.010 

Thermal 

acceptance 
T 145485.8 2 72742.91 10.903 <0.01** 0.860 

Light color 2244.444 3 748.1481 0.104 0.958 0.013 

T * Light color 21509.86 6 3584.977 0.503 0.806 0.127 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

The research challenges the hue-heat hypothesis by showing that light color does not 

significantly affect thermal perception. The results in the Table 6 indicated that thermal sensation 

vote (TSV) was not significantly affected by the light color, which contradicts the conventional 

association of color temperature with thermal sensation (Chinazzo et al., 2021; Itten, 1997; Winzen 

et al., 2014). In the Table 1 of Appendix D, despite differing light conditions, light comfort vote 

(LCV) was consistent, but cool white light was preferred for brightness vote (LBV), with blue 

light leading in acceptance vote (LAV). These findings align with studies suggesting blue-enriched 

light improves thermal comfort (Bellia et al., 2021; Brambilla et al., 2020). Contrary to 

expectations,  

The study’s results also highlight the influence of experimental settings and the need for a more 

nuanced understanding of how light color and temperature interact to affect thermal perception. 

Despite existing theories, the findings suggest that ambient temperature and light color 

independently influence perception, necessitating further investigation into their specific effects 

during night driving. 

The impact of temperature on visual perception, covering aspects like comfort, brightness, and 

acceptance, was found to be insignificant, reinforcing the notion that within a certain range, 

temperature does not alter visual perception significantly (H. Wang et al., 2018). The study 

underscores a complex relationship between thermal and lighting conditions, where temperature 

primarily influences comfort, challenging prior assumptions of direct correlations between light 

color and thermal sensation. 

4.3.2. Driving performance 

The study assessed the effects of temperature (18 °C, 23 °C, 28 °C) and light color (blue, red, 

warm white at 2700 K, cool white at 5000 K) on driving performance, analyzing speed, 

acceleration, rpm, steering, pitch, lateral acceleration, gas pedal usage, and roll. Descriptive and 

inferential statistics, presented in Tables 3 of Appendix D and Table 7, were used to evaluate these 

effects. Speed, acceleration, and rpm showed little change across temperatures, with speed 

averages near 68 m/s. Steering, lateral acceleration, gas pedal usage, and roll remained consistent 

across temperatures, indicating minor thermal impact on these metrics. However, pitch showed 

significant temperature sensitivity (F(2, 288) = 5.099, p < 0.01), suggesting temperature's influence 

on vehicle dynamics. 

Temperature also affected speed variability (F(2, 288) = 4.026, p = 0.019) and gas pedal usage 

variance (F(2, 288) = 3.395, p = 0.035), pointing to altered driving behavior under different thermal 

conditions. Roll variability was significant with temperature (F(2, 288) = 4.105, p = 0.018), 

indicating its impact on vehicle control. 

Light color slightly influenced driving speed, especially under red lighting, but did not 

significantly affect other performance metrics. No substantial interaction between temperature and 
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light color on driving performance was found, highlighting their independent effects on driving 

dynamics. 

 

 

Table 7. Two-way Analyses of Variance of driving performance indices at different temperatures 

and lighting conditions 

 Param

eters 
Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 
Speed 

(m/s) 

Mean T 14452.31 2 7226.156 1.009 0.366 0.502 

Light color 2681.25 3 893.75 0.124 0.649 0.093 

T * Light color 11647.31 6 1941.219 0.271 0.950 0.405 

S.D. T 56148.4 2 28074.2 4.026 0.019* 0.635 

Light color 20536.72 3 6845.574 0.963 0.411 0.232 

T * Light color 11796.78 6 1966.131 0.275 0.948 0.133 

Accel

eratio

n 

(m2/s) 

Mean T 3293.943 2 1646.971 0.229 0.795 0.076 

Light color 29142.25 3 9714.083 1.370 0.252 0.673 

T * Light color 10849.15 6 1808.191 0.252 0.958 0.251 

S.D. T 28798.08 2 14399.04 2.030 0.133 0.821 

Light color 1604.5 3 534.833 0.074 0.974 0.046 

T * Light color 4658.896 6 776.483 0.108 0.995 0.133 

Rpm Mean T 214.146 2 107.073 0.015 0.985 0.011 

Light color 340.083 3 113.361 0.016 0.997 0.017 

T * Light color 19153.28 6 3192.214 0.448 0.846 0.972 

S.D. T 32827.27 2 16413.64 2.321 0.100 0.326 

Light color 25878.58 3 8626.194 1.213 0.305 0.267 

T * Light color 42030.58 6 7005.096 0.994 0.430 0.417 

Steeri

ng 

(degre

e) 

Mean T 19673.52 2 9836.76 1.393 0.250 0.294 

Light color 19562.9 3 6520.965 0.920 0.432 0.292 

T * Light color 27749.58 6 4624.929 0.657 0.684 0.414 

S.D. T 7676.646 2 3838.323 0.543 0.582 0.268 

Light color 2182.583 3 727.528 0.103 0.958 0.076 

T * Light color 18801.87 6 3133.645 0.444 0.849 0.656 

Pitch 

(rad/s) 

Mean T 70687.52 2 35343.76 5.099 <0.01** 0.472 

Light color 32404.69 3 10801.56 1.527 0.208 0.216 

T * Light color 46711.34 6 7785.223 1.108 0.358 0.312 

S.D. T 26309.31 2 13154.66 1.862 0.157 0.574 

Light color 13782.36 3 4594.12 0.648 0.585 0.300 

T * Light color 5777.785 6 962.964 0.135 0.992 0.126 

Latera

l 

accele

ration 

(m2/s) 

Mean T 14674.08 2 7337.042 1.034 0.357 0.296 

Light color 12309.97 3 4103.324 0.575 0.632 0.248 

T * Light color 22664.41 6 3777.402 0.532 0.784 0.456 

S.D. T 23736.9 2 11868.45 1.667 0.191 0.822 

Light color 658.472 3 219.491 0.030 0.993 0.023 
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T * Light color 4496.326 6 749.388 0.104 0.996 0.156 

Gas 

pedal 

Mean T 9601.583 2 4800.792 0.675 0.510 0.246 

Light color 6259.361 3 2086.454 0.292 0.831 0.160 

T * Light color 23179.2 6 3863.2 0.547 0.772 0.594 

S.D. T 47689.15 2 23844.57 3.395 0.035* 0.867 

Light color 1395.806 3 465.269 0.065 0.978 0.025 

T * Light color 5906.882 6 984.480 0.137 0.991 0.107 

Roll 

(rad/s) 

Mean T 30156.9 2 15078.45 2.126 0.121 0.425 

Light color 34853.53 3 11617.84 1.642 0.180 0.491 

T * Light color 5951.222 6 991.8704 0.138 0.991 0.084 

S.D. T 57427.27 2 28713.64 4.105 0.018* 0.844 

Light color 3095.361 3 1031.787 0.143 0.934 0.045 

T * Light color 7523.222 6 1253.87 0.175 0.983 0.111 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

The study assessed how environmental factors like temperature and light color influence driving 

dynamics. Temperature changes showed a minor impact on driving parameters such as 

acceleration, rpm, and steering angle, which stayed consistent across temperatures. Significant 

changes in pitch and variations in speed, gas pedal usage, and roll under different temperatures 

indicate an influence on vehicle dynamics. This complements existing research that acknowledges 

temperature’s effect on driving behaviors. The slight speed increased under red lighting, hinting 

at its potential impact on speed management. This finding dovetails with prior studies, like those 

by Caberletti et al. (2010), noting minimal effects of light conditions on driving. The anticipated 

interplay between temperature and light color did not significantly affect driving metrics, pointing 

to their independent roles in driver behavior. 

4.3.3. N-back task performance 

The study explored how ambient temperature and interior light color affect cognitive functions 

during driving, focusing on reaction time and response accuracy in N-back tasks. Data were 

gathered across three temperature settings (18 °C, 23 °C, and 28 °C) and four lighting conditions 

(blue, red, warm white—2700 K, and cool white —5000 K), as shown in Table 4 of Appendix D. 

Temperature had a significant effect on response accuracy (F(2, 1728) = 3.886, p = 0.022), with 

accuracy peaking at 23 °C (93.605%) and dropping significantly at 28 °C to 80.422%. This 

suggests that higher temperatures impair cognitive accuracy. Reaction times, however, showed 

little variation with temperature, indicating a consistency in cognitive processing speed across 

different thermal environments. The quickest average reaction time was recorded at 23 °C (0.661 

s), but the variance was not statistically meaningful (F(2, 1728) = 1.803, p = 0.167). As for the 

impact of light color, blue lighting was associated with the highest response accuracy (93.673%), 

pointing to its beneficial effects on cognitive performance. In contrast, warm white light resulted 

in the lowest accuracy (90.934%), potentially hinting at increased cognitive load or distraction. 

Reaction times remained stable across different lighting scenarios, suggesting that cognitive speed 

is unaffected by changes in lighting color. 

 

Table 8. Two-way Analyses of Variance of response accuracy and reaction time of N-back tasks 

at different temperatures and lighting conditions 
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Parameters Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 

Response 

accuracy 

(%) 

T 53829.4 2 26914.7 3.886 0.022* 0.592 

Light color 17893.56 3 5964.519 0.846 0.470 0.197 

T * Light color 19218.7 6 3203.117 0.456 0.840 0.211 

Reaction 

time (s) 
T 25646.81 2 12823.41 1.803 0.167 0.799 

Light color 3225.389 3 1075.13 0.149 0.930 0.100 

T * Light color 3223.618 6 537.270 0.075 0.998 0.100 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Our study probed the impacts of ambient temperature and light color on essential cognitive 

functions during driving, particularly focusing on response accuracy and reaction times in N-back 

tasks. Findings pointed to temperature's notable effect on response accuracy, with the highest 

accuracy at 23 °C, hinting at an optimal thermal range for cognitive tasks, consistent with prior 

research (Lan & Lian, 2009; Schiavon et al., 2017b; C. Wang et al., 2021). This underscores the 

need for optimal ambient conditions to boost cognitive functioning. Despite varying temperatures, 

reaction times exhibited stability, implying cognitive resilience to environmental fluctuations, 

likely due to the adaptive nature of cognitive processing. Light color influenced cognitive accuracy, 

yet its impact on reaction time was minimal, indicating consistent cognitive processing speeds 

across lighting conditions, resonating with earlier studies (Hawes et al., 2012a; Kretschmer et al., 

2012a). Notably, higher CCT lights improved response accuracy, suggesting that specific light 

wavelengths might enhance brain activity. In contrast, lower CCT lights decreased accuracy, 

possibly inducing cognitive fatigue or distraction  (Chellappa et al., 2011; Y. Li et al., 2021; Mehri 

et al., 2023), highlighting how light temperature can affect cognitive performance. 

The investigation did not find significant interactions between temperature and light color on 

cognitive functions, indicating their independent influence without synergistic interactions, which 

differs from findings suggesting combined environmental effects on cognition (Seyedrezaei et al., 

2023). 

4.3.4. Task load index, comfort, sleepiness, and emotion 

Appendix D Tables S2 and S3 detail how ambient temperature and light color affect drivers’ 

task load perceptions, as gauged by the NASA-TXL index covering mental demand, physical 

demand, temporal demand, performance, effort, and frustration. A increase in mental demand 

ratings with temperature rise was noted, peaking at 28°C, indicating enhanced cognitive strain. A 

reduction in perceived performance effectiveness at this temperature suggests a negative impact 

on task execution. These findings highlight the complex relationship between environmental 

conditions and cognitive load, confirmed by significant changes in temporal demand and 

performance. 

Lighting effects were nuanced, with red light slightly increasing mental demand and effort, 

while blue light maintained moderate task load levels. The analysis showed no significant 

interaction between temperature and light color on mental or physical demand, indicating their 

independent effects on perceived task load. Statistical analysis emphasized the temperature's 

influence on temporal demand and frustration (p < 0.05 for temporal demand; p < 0.01 for 

frustration). Significant temperature-related differences in performance (p < 0.01) further illustrate 

how environmental settings can impact perceived efficacy and cognitive load. 
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Appendix D Tables S4 and S5 present an analysis of how varying temperatures (18°C, 23°C, 

28°C) and lighting (blue, red, warm white at 2700 K, cool white at 5000 K) impact participants’ 

comfort, sweating levels, sleepiness, and emotions, showcasing the influence of these 

environmental factors on comfort and cognitive state. The study found that comfort levels were 

highest at a moderate temperature of 23°C, with significant temperature-related variations (p < 

0.05) emphasizing temperature's strong influence on comfort. At 28°C, sweating increased notably 

(M = 2.563), with a significant temperature effect on sweating (p < 0.01). Sleepiness showed a 

slight increase at this temperature (M = 3.052), suggesting a potential trend for more sleepiness as 

temperatures rise, though not statistically significant (p = 0.080). Emotional state measures, 

covering valence, arousal, and dominance, remained steady across temperatures, indicating that 

emotional impacts may be subtle or complex. Regarding light color, its effect on comfort, 

sleepiness, and sweating was minimal, with no significant changes in emotional states across 

different lighting scenarios. This suggests that temperature has a more substantial effect on these 

aspects. Additionally, the interaction between temperature and light color showed no significant 

effect on comfort, sweating, sleepiness, or emotions (p > 0.05), pointing to temperature as the 

primary factor affecting perceived comfort rather than a combination of both environmental 

elements. 

Statistical analyses revealed temperature’s significant effect on temporal demand and 

frustration, highlighting its influence on perceived task urgency and emotional stress. The 

observed correlation between temperature and perceived performance underscores the need for 

optimal cabin conditions to enhance driver wellbeing and efficiency. Moderate temperatures, 

especially around 23°C, were preferred for comfort, aligning with prior research (Cui et al., 2013b; 

Nicol & Humphreys, 2002a; Z. Wang et al., 2018), while increased sweating at 28°C highlighted 

the thermal stress of warmer environments. The increasing sleepiness as temperature rising 

suggested complex thermal-cognitive interactions. Emotionally, the study found consistent states 

regardless of environmental changes, indicating a potential robustness of emotional responses to 

such conditions, or necessitating finer detection methods. Light color’s impact on task load and 

comfort was intricate; red light slightly heightened mental effort, whereas blue light maintained a 

balanced task load. Importantly, no significant interaction between temperature and light color was 

found, pointing to their independent effects on the perceived load and cabin comfort. 

4.3.5. In-car environment-based driving style recognition 

K-means clustering was applied to driving data to identify two driving styles: aggressive and 

conservative. This classification of driving data clusters were depicted in Figure 13. Out of 72 

participants who undertook 288 driving tasks, 281 data samples were usable after excluding 7 due 

to disqualification. This breakdown led to 147 samples categorized as aggressive and 134 as 

conservative. The clustering's effectiveness was assessed using the Silhouette Coefficient, which, 

at 0.55, surpassed the threshold of 0.5 (Dalmaijer et al., 2022), indicating distinct cluster separation. 

Subsequent analysis yielded the mean and standard deviations for each category, denoted as 

aggressive and conservative. A significant difference between these two groups with notable 

differences in speed, acceleration, and steering behaviors. Specifically, the aggressive group 

exhibited higher averages in these metrics, while the conservative group presented lower figures, 

reflecting their respective driving styles. 
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Figure 13. Results of K-means based on the driving data. 

 

The Random Forest (RF) method, integrated with leave-one-subject-out cross-validation, 

focused on temperature and light color for driving style classification, yielded an overall accuracy 

of 72.9%. In this setup, the aggressive driving style had a precision of 69% and a recall of 43%, 

whereas the conservative driving style showed a precision of 73% and a recall of 89%. The F-

measures stood at 53% for aggressive and 80% for conservative driving styles, indicating the 

model's better efficacy in predicting conservative behaviors. Feature importance analysis revealed 

contributions of 0.127 for both temperature and light color, with a predominant influence of their 

interaction at 0.746. 

Aggressive drivers were identified by increased speed, acceleration, and steering activities, 

indicating a dynamic driving preference, while conservative drivers showed lower metrics in these 

areas, denoting caution. Driving skills, gauged by the mean and variability in performance metrics, 

inversely related to driving consistency, showing that aggressive drivers tend to have more variable 

driving skills (Lu, 2011; Martinussen et al., 2014). The results indicated that aggressive drivers 

had higher mean and variability in driving performance, suggesting a link between an aggressive 

driving style and increased variability in driving skills. This research aligns with prior findings 

(Martinussen et al., 2014; Reason et al., 1990; F. Yan et al., 2019; L. Yang et al., 2018), , 

highlighting the significant correlation between driver behaviors and their respective driving styles. 

Contrary to previous research that largely views driving style as an unchanging characteristic (S.-

W. Chen et al., 2013; Shi et al., 2015), this investigation reveals a more complex reality. Within 

the participant group, 29 consistently adopted an aggressive driving style, 14 showed a flexible 

driving style alternating between conservative and aggressive, and 26 remained consistently 

conservative. 

4.3.6. EEG measurements 

Table 9 highlighted underscored the significant effects that temperature have on EEG signals. 
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The two-way Analysis of Variance (ANOVA) revealed significant alterations in EEG signal 

dynamics attributable to changes in different temperature conditions. For the entire driving task, 

in examining the entire brain region, the ANOVA results indicated the significant effects of 

temperature on the PSD of delta (F = 6.817, p < 0.01, η² = 0.757) and beta (F = 7.890, p < 0.01, η² 

= 0.872). When considering the band ratios, the results demonstrated a significant difference in 

the α/β (F = 5.959, p < 0.01, η² = 0.785) of the entire brain regions attributable to the temperature 

levels. This suggests that temperature significantly altered the mean value of the α/β. During dual-

task driving sessions, notable changes were observed in the PSD of delta and beta band across all 

regions, with mean square F values suggesting substantial effects of temperature conditions (F = 

5.693, p = 0.004, η² = 0.875). The temperature had a pronounced impact on δ and β bands, 

highlighting temperature’s role in modulating cognitive load and attentional processes under 

different driving conditions. Similarly, the ANOVA test of single-task driving sessions within 

various ROI revealed significant effects of temperature on both the PSD of delta and beta and the 

band ratio α/β. In the study of Wang et al., (2023), they reported that the PSD of beta waves 

decreased with rising temperatures. As the ambient temperature increased, there was an elevation 

in the normalized power of theta and alpha activities, while vigilance and frontal EEG  

Asymmetry decreased. 

Contrasting with temperature, I did not find the statistically significant influence exerted by 

light on the bands PSD or band ratios in any of the ROI across the various lighting conditions. This 

observation indicated the nuanced role of lighting in affecting brain activity, suggesting a 

secondary role of lighting conditions in modulating brain activity during driving tasks compared 

to temperature. 

The two-way ANOVA results indicated no significant interaction effects between temperature 

and interior lighting conditions on the EEG signals for both single-task and dual-task driving 

sessions. This finding suggests that each environmental factor independently modulates brain 

activity without synergistic or compounded impacts. 

 

Table 9. Two-way Analyses of Variance of EEG features at different temperatures and lighting 

conditions across the driving sessions 

Driving 

session 

S

o

u

rc

e 

Featur

e 

ROI Sum of 

Squares 

d

f 

Mean 

Square 

F Sig. Partia

l Eta 

Squar

ed 

All T δ All 93583.90 2 46791.95 6.817 0.001** 0.757 

All T β All 107463.31 2 53731.64 7.890 <0.001** 0.872 

All T δ Frontal 112122.52 2 56061.26 8.248 <0.001** 0.812 

All T β Frontal 109602.52 2 54801.26 8.071 <0.001** 0.870 

All T δ Central 69856.58 2 34928.29 5.024 0.007** 0.703 

All T β Central 84221.52 2 42110.76 6.108 0.002** 0.840 

All T β Parietal 121060.10 2 60530.04 8.947 <0.001** 0.833 

All T α/β All 82269.75 2 41134.88 5.959 0.003** 0.785 

All T α/β Frontal 76092.52 2 38046.26 5.492 0.005** 0.794 

All T α/β Parietal 100355.12 2 50177.57 7.362 0.001** 0.764 

Dual-task T δ All 66932.69 2 33466.34 4.807 0.009** 0.652 
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Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

4.3.7. fNIRS measurement 

Table 10 illustrates the analysis of variations in cortical brain activation across brain regions 

Prefrontal (PF), Lateral Prefrontal (LPF), and Right Prefrontal (RPF) under varying experimental 

conditions. In the dual-task session, a significant response to temperature was observed in the HBO 

concentration at all the prefrontal area. This finding is substantiated by statistical analysis, 

revealing significant variance (F(2, 144) = 5.868, p = 0.003). During the entire driving task, HBR 

concentration at all the prefrontal area exhibited significant variability in response to different 

temperature. The statistical analysis highlighted a notable effect of temperature on HbR 

concentration (F(2, 144) = 5.926, p = 0.003). There were no significant differences in HbO or HbR 

concentration found across the Prefrontal (PF), Lateral Prefrontal (LPF), and Right Prefrontal 

(RPF) regions due to the lighting condition change or the interaction between the two environment 

factors. 

 

Table 10. Two-way Analyses of Variance of fNIRS features at different temperatures and lighting 

conditions by different regions, channels and value 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01. “All” represents the entire 

driving session. “Dual-task” represents the driving session with N-back tasks. 

Dual-task T β All 78661.58 2 39330.79 5.693 0.004** 0.875 

Dual-task T δ Frontal 70010.69 2 35005.34 5.039 0.007** 0.702 

Dual-task T β Frontal 82973.08 2 41486.54 6.029 0.003** 0.878 

Dual-task T β Parietal 91195.58 2 45597.79 6.633 0.002** 0.820 

Dual-task T α/β Parietal 70143.52 2 35071.76 5.054 0.007** 0.831 

Single-task T δ All 103851.51 2 51925.76 7.604 0.001** 0.803 

Single-task T β All 131626.63 2 65813.28 9.789 <0.001** 0.870 

Single-task T δ Frontal 131090.71 2 65545.34 9.740 <0.001** 0.841 

Single-task T β Frontal 137456.11 2 68728.04 10.275 <0.001** 0.882 

Single-task T δ Central 75657.52 2 37828.76 5.458 0.005** 0.762 

Single-task T β Central 105981.44 2 52990.70 7.776 0.001** 0.830 

Single-task T δ Parietal 149270.96 2 74635.45 11.211 <0.001** 0.855 

Single-task T α/β All 98118.75 2 49059.38 7.183 0.001** 0.764 

Single-task T α/β Frontal 100955.82 2 50477.89 7.403 0.001** 0.768 

Single-task T α/β Central 63758.77 2 31879.39 4.574 0.011** 0.472 

Single-task T α/β Parietal 103230.35 2 51615.13 7.615 0.001** 0.746 

Single-task T (α+θ)/β Parietal 74152.31 2 37076.31 5.366 0.005** 0.595 

Driving 

session 

Source Valu

e 

Feat

ure 

Regi

on 

Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squar

ed 

All Temp HBR conc all 81700.8 2 40850.4 5.926 0.003 0.572 

All Temp HBR conc left 102813.9 2 51406.97 7.531 0.0007 0.661 

Dual-task Temp HBO conc all 80948.9 2 40474.45 5.868 0.003 0.704 

Dual-task Temp HBO conc left 68704.32 2 34352.16 4.953 0.008 0.604 

Dual-task Temp HBO conc right 75329.08 2 37664.54 5.447 0.005 0.757 

Dual-task Temp HBO ppd right 76890.79 2 38445.39 5.584 0.004 0.875 
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4.3.8. Limitation and recommendations 

One notable limitation of the study is the relatively small sample size, which could diminish 

the statistical power of the findings. To address this, we plan to recruit more participants in future 

studies, thereby enhancing the research’s robustness. Additionally, the methodology incorporated 

a mixed design by merging within-subjects and between-subjects designs. Employing a within-

subjects design in human-factor experiments can help mitigate individual differences, enhancing 

the reliability of the results. 

Furthermore, the investigation focused on driving performance within a simplified simulated 

driving task. Future research should extend to more complex driving scenarios, such as navigating 

multi-lane urban roads and making turns, to better understand the effects of ambient temperature 

on driving behavior under varied conditions. 

The analysis did not account for light intensity, which is a significant oversight given its 

potential impact on the hue-heat effect. The literature suggests that both the intensity and the 

correlated color temperature (CCT) of light can influence perception (Baniya et al., 2018; Chao et 

al., 2020), which in turn can affect thermal sensation and comfort. Future investigations should 

include a comprehensive analysis of light intensity alongside CCT to better understand their 

combined effects on driver comfort and perception. 

Finally, the demographic characteristics of the participant pool, including the predominance of 

younger drivers with limited driving experience and an unbalanced gender ratio, may have 

introduced bias into the findings. Since driving styles were classified based on task-specific rather 

than subject-specific data, the influence of participants’ demographic traits on driving styles 

remains unexplored. Future research should aim to address these limitations by incorporating a 

more diverse participant group and examining the impact of demographic factors on driving 

behavior. 
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Chapter 5: Conclusions 

This dissertation represents a comprehensive examination of the interplay between IEQ and 

cognitive performance, with a particular focus on driving behaviors and the physiological 

underpinnings that support or impair cognitive function. Throughout this research, a holistic 

approach was adopted to dissect the multifaceted aspects of IEQ, encompassing factors such as air 

quality, thermal environment, noise, lighting, and non-light visual factor, and their collective 

impact on cognitive functions including attention, perception, memory, language, and higher-order 

cognitive skills. Central to this research was the exploration of how specific environmental 

conditions within a vehicle’s cabin, such as CO2 levels and body odor, as well as ambient 

temperature and lighting condition, impact cognitive functioning and driving performance. 

The literature review, serving as the foundation of this study, painted a broad picture of the 

current understanding in the field, emphasizing the notable emphasis on thermal environment and 

noise within IEQ research and their documented influences on cognitive tasks. The findings from 

the 66 studies indicate that while poor IEQ conditions are generally linked to reduced cognition, 

the effects of specific IEQ factors on different cognitive functions vary significantly. The 

subsequent empirical investigation extended these themes, delving into the specific impacts of CO2 

and body odor on drivers’ cognitive and behavioral responses. Utilizing a high-fidelity driving 

simulator, the study investigated driving performance under varying environmental conditions, 

providing a rich dataset for analysis. Noteworthy in this exploration was the finding that while 

CO2 levels and body odor independently influenced certain cognitive and driving performance 

metrics, their integrated effects, particularly over extended periods, were more pronounced and 

complex than initially anticipated. Body odor enhances response accuracy in the N-back task. Key 

findings from EEG presented that body odor significantly reduces (θ+α)/β and θ/β ratios, 

indicating increased alertness and attention. However, it does not significantly impact fNIRS-

measured hemodynamic responses. In contrast, CO2 levels show no direct effect on EEG signal 

patterns and do not significantly affect fNIRS-measured hemodynamic responses either. 

Temperature has a notable impact, significantly influencing speed control, N-back task response 

accuracy, environment perception, dominance, and general comfort. It also affects EEG Delta band 

PSD, increasing it while decreasing Beta, which suggests a reduction in mental engagement during 

driving. Additionally, rising temperature significantly decreases fNIRS oxy-hemoglobin 

concentration during dual-task driving, indicating cognitive load challenges. Conversely, lighting 

conditions do not directly influence EEG and fNIRS signals, and no interaction between 

temperature and lighting was found during driving tasks. The study’s examination of the hue-heat 

hypothesis in the context of night-time driving offered intriguing insights, challenging 

preconceived notions about the interplay between light color and thermal sensation. The results 

highlighted temperature as a more dominant factor influencing drivers’ environmental satisfaction 

and cognitive performance. The investigation does not support the hue-heat hypothesis. 

Looking forward, this dissertation sets the stage for a myriad of research opportunities. Future 

studies could explore these environmental-cognitive relationships in more diverse and real-world 

settings to capture the evolving nature of cognitive responses to environmental changes. 

Additionally, the impact of other IEQ factors, such as humidity, air velocity, and the presence of 

other volatile organic compounds, could be examined to provide a more holistic understanding of 

the indoor environmental conditions that optimize cognitive function and driving performance. 

The interdisciplinarity of this research, bridging environmental psychology, cognitive ergonomics, 

and automotive design. By emphasizing the critical role of ambient conditions in cognitive and 
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behavioral outcomes, this study contributes valuable knowledge to the ongoing efforts to create 

safer, more comfortable, and cognitively supportive environments within the built environment. 

In conclusion, this dissertation has illuminated the complex and multifaceted nature of the 

relationship between IEQ factors and cognitive performance, particularly within the context of 

driving. Through a rigorous and detailed investigation, it has provided valuable insights into how 

ambient temperature, air quality, and lighting conditions within a vehicle cabin can significantly 

influence cognitive functions and driving behavior. These findings not only contribute to the 

academic discourse on environmental psychology and cognitive ergonomics but also have 

practical implications for the design of vehicle interiors and the development of strategies to 

enhance driver comfort. As move forward, understanding and optimizing the in-car environmental 

conditions will be paramount in fostering enhanced cognitive performance, thereby paving the 

way for future research that continues to explore these vital interactions. 
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Highlights 

• Effects of IEQ factors on cognition are reviewed 

• IEQ and cognition are but not always statistically associated 

• Considerable conflicting results are identified among studies 

• A specific IEQ factor may have varying effects on different cognitive functions 

Abstract 

Cognitive functions refer to the set of brain-based skills to execute tasks of various difficulty 

levels. As people spend substantial time indoors, the indoor environmental quality (IEQ) 

influences occupants’ cognitive functions and consequently their learning and work performance. 

Previous studies have commonly examined the effects of IEQ on integrated learning or work 

performance, rather than specific cognitive skills. The present review decomposes IEQ into five 

factors—indoor air quality, the thermal environment, lighting, noise, and non-light visual factors. 

It divided cognition into five categories—attention, perception, memory, language function, and 

higher order cognitive skills—to better understand the relationship between IEQ and cognition. 

We conducted a detailed manual review of 66 focused studies and adopted co-occurrence analysis 

to generate landscapes of the associations between IEQ and cognition factors by analyzing 

keywords and abstracts of 8,133 studies. Overall, results show that poor IEQ conditions are but 

not always associated with reduced cognition. However, the effects of a specific IEQ factor on 

different cognitive functions are quite distinct. Likewise, a specific cognitive function could be 

affected by different IEQ factors to varying degrees. Furthermore, the results suggest extensive 

inconsistencies in the relevant literature, especially regarding the effects of IAQ or thermal 

environment on cognition. Additionally, the keyword co-occurrence analysis identified more IEQ 

factors and cognitive functions emerging in the recent literature. Future studies are recommended 

to explore the factors causing the inconsistencies that we highlight here. 

 

Keywords: Environmental Design, Healthy Buildings, Occupant Satisfaction, Learning 

Performance, Productivity, Work Efficiency 

mailto:sliu8@wpi.edu)
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Introduction 

Cognitive functions refer to the set of brain-based skills to required execute tasks of various 

difficulty levels (Angevaren et al., 2008). They are associated intensively with the mechanisms of 

learning, remembering, reasoning, and problem-solving (Staal, 2004). Each function plays an 

essential role in processing new information. Research in neuroscience has been stated that 

cognitive performance is associated with the activities of specific brain centers. For instance, the 

activation of frontal and parietal areas is directly associated with sustained attention performance 

(Sarter et al., 2001b).  

 

As people now spend a substantial amount of time indoors learning and/or working, particularly 

in the lockdown of the pandemic, IEQ could significantly affect occupants’ cognitive functions 

and therefore their learning and work performance. Prior reviews have (Al Horr et al., 2016a; Fisk 

& Seppanen, 2007; Frontczak & Wargocki, 2011) classified IEQ factors into indoor air quality 

(IAQ), thermal environment, light, acoustic, office and layout, biophilia and views, look and feel, 

and location and amenities, to name a series of the major influences. 

 

There is a substantial body of research showing that poor indoor air quality (Mendell & Heath, 

2005b), ventilation (Allen et al., 2016b; Coley et al., 2007b), thermal conditions (Cui et al., 2013a; 

Lan et al., 2010), light (Hygge & Knez, 2001b), noise (Jahncke et al., 2011; Sundstrom et al., 

1994), and room layout (Haynes, 2008) can profoundly degrade learning and work performance. 

Nevertheless, the findings of these studies,  and other substantial ones on this topic (Choi et al., 

2014; Haverinen-Shaughnessy & Shaughnessy, 2015; Servilha et al., 2014; Wargocki & Wyon, 

2007), do not fundamentally differentiate between types of cognitive tasks. However, this is 

essential as the impacts of IEQ may vary significantly between cognitive tasks. For instance, 

previous research indicates that, compared with complex tasks, simple tasks, for example, might 

be less susceptible to environmental noise and heat (Hancock & Vasmatzidis, 2003; van Kempen 

et al., 2010). Obviously, different learning/work tasks rely upon different cognitive functions. For 

instance, the presidents or chief operating officers of large corporations might require stronger 

skills in decision making and planning, while customer service representatives, in a call center, 

who handle customer complaints should be able to excel at auditory perception and emotion 

recognition. Similarly, reasoning skills are more involved in the process of learning mathematics 

compared to foreign languages. It is difficult to associate IEQ and learning or work performance 

without specifying each of the cognitive activities involved.   

 

In the contemporary indoor environment, success in learning and work is mainly determined 

by cognitive performance as opposed to physical performance (e.g., strength, endurance, balance). 

Understanding the influences of various IEQ factors on each cognitive function is the key to 

estimating how differently a chief officer could be susceptible to poor IEQ from the vulnerability 

of a service representative in a call center. Unlike previous reviews that examine learning/work 

performance as a whole (Al Horr et al., 2016b; Wargocki & Wyon, 2017), the present study focuses 

on specific cognitive functions that underpin various learning/work activities, it aims to provide a 

multidisciplinary and comprehensive survey of research associated with cognitive functions 

influenced by IEQ. Another motivation is the insufficiency of qualitative and/or quantitative 

summaries of massive numbers of studies (in the thousands) that may not directly focus on IEQ 

and cognition, but still shed light on the patterns of their relationship. To fill this gap, this review 
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work applies keyword co-occurrence analysis to extract knowledge from thousands of identified 

and relevant published papers.  

Categories of IEQ factors and Cognitive functions  

In this work, we synthesized a large panoply of previous reported work and grouped IEQ factors 

into five categories (IAQ, thermal environment, noise, lighting, and non-light visual factors), we 

just posed these with five cognitive functions into the categories (attention, perception, memory, 

language function, and higher order cognitive skills).  Social cognition has been identified but not 

discussed in this review due to limited number of studies identified. Indoor environmental factors 

that do not ubiquitously exist were not explicitly considered in this review. These include transients 

such as music and natural-based soundscapes. However, we acknowledge that these factors may 

serve to improve cognition (e.g., working memory (A. Wang et al., 2013), verbal memory (Kang 

& Williamson, 2014), spatial reasoning (Bell et al., 2016), speed of spatial processing (Angel et 

al., 2010)),  albeit the literature is still rather equivocal concerning a number of their effects 

(Hallam et al., 2002; Huang & Shih, 2011; Newbold et al., 2017; Proverbio et al., 2018; Thompson 

et al., 2012). Additionally, this review does not consider the cognitive development of children 

that might be affected by IEQ (Dadvand et al., 2015). Figure 1 lists the main categories and 

subcategories of IEQ factors and cognitive functions identified in the literature. Next section 

provides an overview of the basic concepts of IEQ factors and cognitive functions.
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Figure 1. Summarized categories of IEQ and cognitive functions based on the literature; The factors in bold are explicitly studied in the 

literature concerning the IEQ-cognition-interaction. 
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Indoor Environmental Quality 

Indoor air quality 

Indoor air quality (IAQ) is a critical factor that affects both the health and productivity of 

space’s occupants (Wargocki et al., 2002). Indoor air pollutants include carbon dioxide (CO2) 

(Satish et al., 2012b), sulfur dioxide (SO2) (Spengler et al., 1979), nitric oxide (NO) (S. C. Lee & 

Chang, 2000), nitrogen dioxide (NO2) (Quackenboss et al., 1986), volatile organic compounds 

(VOCs) (Mølhave, 1991), semi-volatile organic compounds (SVOCs) (Weschler & Nazaroff, 

2012), levels of particulate matter (PM) (Dennekamp et al., 2001), biological contaminants (Cabral, 

2010; Europe, 1990) among many others. Practically, ventilation and indoor CO2 concentration 

are used as an indicator or proxy for diverse levels of indoor air quality (Batterman & Peng, 1995; 

Chatzidiakou et al., 2015; Sherman & Wilson, 1986). A 1000 ppm increase in CO2 concentration 

decreases 0.5-0.9% of annual average daily attendance, which is equivalent to a relative 10-20% 

increase in student absences (Shendell et al., 2003). Each of these pollutants can influence both 

acts of cognition as well as rates of learning. 

Thermal environment 

Thermal environment is the physical environment that can affect heat transfer in the indoor. It 

influences the thermal perception of an individual and through that, the thermal comfort of 

occupants. Thermal comfort is the subjective evaluation of a thermal environment 

(ANSI/ASHRAE, 2017) and is mainly influenced by four physical parameters (air temperature, 

mean radiant temperature, air velocity, and relative humidity). These physical values are 

concentrated with two personal variables (clothing insulation and activity level) (ANSI/ASHRAE, 

2017). These go together with other factors such as gender (Karjalainen, 2012), age (Griefahn & 

Künemund, 2001; Indraganti et al., 2015), culture (Knez & Thorsson, 2006), exposure time (Nicol 

& Humphreys, 2002b), and physiological adaption (Luo et al., 2016). The complexity of these 

influencing factors results in various prediction models, including but not limited to predicted 

mean vote (PMV) – a predicted percentage dissatisfaction (PPD) model (Fanger, 1970), an 

adaptive thermal comfort model (de Dear & Brager, 2002; Nicol & Humphreys, 2002b), and the 

recent personal thermal comfort (J. Kim, Schiavon, et al., 2018; J. Kim, Zhou, et al., 2018; S. Liu 

et al., 2018, 2019) relying on machine learning principles. The thermal environment exerts fairly 

consistent and predictable effects on some elements of cognition, especially toward the outer 

bounds of tolerance (Hancock et al., 2007). 

Noise 

Indoor noise can come from sources inside the building or sources external to it. Internal sources 

can consist of conversations of occupants (Roelofsen, 2008), indoor operating equipment (Tsiou 

et al., 1998), and air distribution systems (Landsberger et al., 2008), while outdoor noise 

transmitted into indoor spaces can emanate from road traffic (Shield & Dockrell, 2004; Zhisheng 

et al., 2007), aircraft (Haines et al., 2002; Shield & Dockrell, 2004), outdoor construction (Zannin, 

2007) and outdoor components of the heating, ventilation, and air conditioning (HVAC) 

(Guckelberger, 2000). Noise from traffic, aircraft, public, or equipment generates a complex sound 

assemblage that can negatively impact memory (Hygge & Knez, 2001b; Sörqvist, 2010; Stansfeld 

et al., 2005). Even speech from other classrooms in school can influence students’ memory in 

adjacent classes (Ljung, 2009). Occupants’ perceptions are affected by both energy intensity and 

distribution of acoustical stimuli (Ma et al., 2018).   

Lighting 
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Lighting plays a critical role in synchronizing humans' endogenous and night pacemakers with 

the environment. As the most powerful zeitgeber synchronizing our endogenous circadian rhythm 

with the environment, light has been previously described as one of the agents involved in 

improving cognitive performance (Keis et al., 2014a). Light quality for visual comfort is primarily 

characterized by photometric variables (Ochoa & Capeluto, 2006; Shieh & Lin, 2000; Zhou & Rau, 

2018), glare (Garciai & Wierwille, 1985; Osterhaus & Bailey, 1992; Rodriguez et al., 2016),  and 

light color temperature (Mills et al., 2007; Mott et al., 2013). Literature regarding the effects of 

lighting on cognition has focused on photometric parameters (i.e., luminance, illuminance, color 

temperature, color rendering).  
 

Artificial light is produced by electrical means such as lamps and light fixtures, while daylight 

is the combination of all direct or indirect sunlight. Daylight is considered as the best light source 

for color rendering and closely and unsurprisingly matches the human visual response (D. H. W. 

Li, 2010). It is a kind of trigger that motivates biological activities. Whenever possible, building 

design typically tries to use daylight as the source of illumination, because of its excellent color 

rendering provides higher satisfaction (Hua et al., 2011) and supports for stable circadian rhythms 

(S. Begemann et al., 1997). It also helps occupants to generate an active sense of pleasantness and 

brightness, which is positive for occupants’ comfort and productivity (Atli et al., 2005; S. H. A. 

Begemann et al., 1997).   

 

The enhancement of occupants' alertness and performance can be improved by light exposure 

through a “non-visual” photoreception system depending on melanopsin expressing retinal 

ganglion cells (mRGCs) (Daneault et al., 2018). It also has been reported in recent years that 

human alertness, cognitive performance, and mood can be affected by non-visual lighting effects 

related to spectrum distribution, timing, and exposure duration, in which certain new metrics have 

been developed based on radiometric quantities (Bansal et al., 2017; H. Li et al., 2017; Price et al., 

2019). 

Non-light visual factors 

In addition to environment luminance, interior surface textures, spatial design, decoration, 

interior color, window views, biophilia, and many other non-light visual factors can influence 

cognition. The non-light visual factors in this review include interior color, spatial settings, 

closeness to natural views, and landscape. Satisfying non-light visual factors of the indoor 

environment positively affects occupants’ cognitive function and overall performance. Humans 

have ingrained reactions to different colors, due to our essential relationship with nature. For 

example, the color green reminds us of an environment that makes us feel calm and harmonious 

(Ou et al., 2004). Also, indoor visual interests and opportunities for discovery provide intellectual 

and cognitive stimulation, which have been found to foster creative behaviors (McCoy & Evans, 

2002). Such factors have been considered influential in restoring attentional resources, as we 

articulate further below. 

 

Humans tend to seek connections with nature and other living things, as posited by the biophilia 

hypothesis (Wilson, 1984). Natural environments have, as we have noted a restorative effect on 

attention, according to the attention restoration theory (ART) (Kaplan, 1995). A view of natural 

elements is beneficial for high workability and job satisfaction (Lottrup et al., 2015). With respect 

to the visible features of outdoor or indoor space, landscapes with natural features have a positive 

effect on cognition and performance. High school landscapes that lack natural features have been 
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shown to reduce standardized test scores (Matsuoka, 2010), while landscapes with greater tree 

coverage ratios show a higher percentage of proficiency or advancement in reading and 

mathematics (Kweon et al., 2017). 

Cognitive functions  

Cognitive functions can be summarized using a number of different taxonomies. Prior review 

work on cognition and human performance has classified cognitive functions into attention, 

memory, perceptual-motor performance, judgment, and decision making (Staal, 2004); while (Lan 

et al., 2009a) categorized it into perceptual functions, memory, thinking, and expressive functions. 

Another categorization approach to cognition consists of memory, attention, reasoning, visual 

perception, language function, problem-solving, and planning (M. W. Eysenck & Brysbaert, 

2018b). Among the cognitive functions reported in the studies we have examined, attention, 

perception, memory, language function, and higher order cognitive skills are the most commonly 

studied when considering associations with IEQ. Each cognitive function can be further sub-

divided as described in Figure 1. For instance, the higher order cognitive skills consist of problem 

solving, decision making, reasoning, and others (Blanchette & Richards, 2010).  Other essential 

cognitions (e.g., social cognition) are also listed (in the unbolded text) but not studied in this 

current review. 

Attention 

Attention is an individual’s ability to concentrate on a particular facet of information (M. 

Eysenck, 2012). Attentional processes can be further categorized as sustained attention (Barkley, 

19970101; Hancock, 2013; Sarter et al., 2001a), selective attention (Corbetta et al., 1991; Duncan, 

1984; Fockert et al., 2001; Green & Bavelier, 2003), and divided attention (Castel & Craik, 2003; 

McDowd & Craik, 1988; Somberg & Salthouse, 1982). Attentional performance can be assessed 

using the Continuous Performance Task (CPT) (Shalev et al., 2011), reaction time (Saltzman & 

Garner, 1948), Stroop tasks (C. M. MacLeod, 1992), the attention network test (J. W. MacLeod et 

al., 2010), and the dot-probe task (Fockert et al., 2001) among others. For instance, reaction time 

is the assessment of motor and mental response speeds, as well as measures of movement time 

(Lan et al., 2011b; Schiavon et al., 2017a). It is also an important performance measure of multiple 

cognitive functions beyond attention (Coley et al., 2007a), such as sensory memory (Alain et al., 

1998). 

 

Attention has a limited capacity. People cannot easily focus on more than one stimulus at a time, 

unless experience with the task that has enabled automatic processing (Cowan, 2001). Also, a 

person might possess an attentional bias that refers to the tendency of that individual to selectively 

attending to a certain category of stimuli in the environment while tending to overlook, ignore, or 

disregard other kinds of stimuli (Neuroscience for Addiction Medicine, 2016). Attentional bias can 

be influenced by emotion and mood (Baert et al., 2010; Becker & Leinenger, 2011), and these 

moderating effects may confound the association between IEQ and attention. Moreover, attention 

could be diverted from stimuli to be remembered by environmental proximal stimuli (e.g., 

conversation in an open-space)(Cowan et al., 2005), making it vulnerable to indoor environmental 

factors. 

Perception 

Perception refers to the set of cognitive processes to capture, organize, identify, and interpret 

the stimuli received by the sensory organs to understand the presented information in the 

environment (Schacter et al., 2019). It acts as an essential cognitive ability in our lives to connect 
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us with the surrounding world. While some reports such as (Montemayor & Haladjian, 2017; 

Tacca, 2011) distinguish perception from cognition, numerous researchers regard perception as an 

aspect of overall cognition (Coren, 2012; Matlin, 2009). Perception is different from sensation. 

The sensation is the process of detecting our environment, while perception is the interpretation of 

what is sensed. Perception is more involved with top-down processing which itself is influenced 

by an individual’s expectations and knowledge rather than simply by the stimulus itself (M. W. 

Eysenck & Brysbaert, 2018a).  

 

Perception may be biased as a function of emotion (W. Liu et al., 2012), individual differences 

(such as different sensitivity to tone sequences (Postma-Nilsenová & Postma, 2013)), personal 

context (Schlee et al., 2007), beliefs, and expectations (Pronin, 2007) that might confound the 

influence of IEQ on perception. For instance, a person’s perception of thermal comfort might be 

affected by the opinion of another person sharing the same office. 

 

There are multiple modes of perception: auditory perception (Murch, 1973), visual perception 

(Cornsweet, 2012), speech perception (also a language function), taste perception (Hoegg et al., 

2007), touch/haptic perception (Grunwald, 2008), and olfactory perception (Slotnick, 1990). 

Visual perception is the primary human sense that moderates surrounding information received by 

the eyes (Attneave, 1954). Ref (Runeson & Frykholm, 19820101) concludes that visual perception 

is efficient in getting information associated most especially with dynamic variations. Visual 

stimuli can be affected by people’s motivational state (Balcetis & Dunning, 20061002). For 

instance, humans’ motivation can influence the optical system to indicate the content of conscious 

perception. Speech perception has a more specific scope than general auditory perception, which 

refers solely to the ability to receive and interpret information received by the ear and interpreted 

by specific language cells in the brain. 

Memory 

Memory is a function that allows the brain to encode, store, acquire, and retrieve knowledge as 

needed (Tse et al., 2007). It is a crucial element of cognition that helps us identify who we are, 

gain new knowledge, and form a continuity of conscious experience (M. W. Eysenck & Brysbaert, 

2018a; Hancock, 2015). Memory is a component of the information processing system with both 

explicit and implicit functions (M. W. Eysenck & Brysbaert, 2018a). Explicit memory refers to 

instances of conscious recollection, such as a response to a direct request for information about 

one’s past. Implicit memory deals with cases when people are asked to perform some tasks without 

the use of declarative knowledge (Roediger III et al., 2017). The memory could be subdivided into 

as many as 256 different categories (Tulving, 2007), going from abnormal memory, through terms 

such as diencephalic memory, and on to rote memory and sensory memory, and finally to working 

memory (Roediger III et al., 2017). However, we mainly focus here on broad categories of short-

term memory (STM) and long-term memory (LTM) (Cowan, 2008). 

 

External stimuli can be converted to memorized information via roughly three steps (Shiffrin 

& Atkinson, 1969). First, human beings process stimuli through sensory memory that serves as a 

brief holding system for the information presented to various sensory systems (Gomes et al., 1999). 

Sensory memory is vital for the listener to integrate incoming acoustic information (Alain et al., 

1998). Then, the working memory processor encodes the information, keeps it in mind temporarily, 

and meanwhile searches and activates data from previously-stored memories (Baddeley, 1966b). 

https://www.cognifit.com/science/cognitive-skills/visual-perception
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Finally, the new information is integrated with and then stored in long-term memory (Baddeley, 

1966a). 

 

STM is versatile and supports reasoning and the guidance of decision-making behaviors 

(RepovŠ & Baddeley, 2006). When a person is distracted (e.g., by indoor noise or experiencing a 

cold draft near an exterior window), information can be rapidly lost from such informative storage. 

A more modern conceptualization of STM is working memory, which is a term for the type of 

memory holding information for short periods while being manipulated (Baddeley, 2002). 

Working memory involves the processing of information (such as solving simple arithmetic 

problems while also remembering given words during span tasks) as well as the executive control 

of attention. Besides, sensory memories, as a type of STM, are the brief holding system for the 

information presented to the various sensory systems. Information is thought to be held briefly in 

each system as it waits for further processing (Gomes et al., 1999). Sensory memory is, for example, 

a vital part of the listener to integrate incoming acoustic information (Alain et al., 1998). 

 

LTM is a vast store of knowledge and a record of prior events. Long-term memory also 

possesses a lot of subtypes. Distinctions by type of material and mode of presentation include 

verbal memory, visual/spatial memory, and olfactory memory, together with procedural memory 

(also called kinesthetic or motor skill memory). Another set of distinctions, in terms of types of 

declarative (or explicit) memory, are episodic memory, autobiographical memory, and semantic 

memory (Roediger III et al., 2017). LTM has a much larger capacity and duration than STM. As 

such, LTM may be less susceptible to poor indoor environmental quality. 

Language function 

Language function involves a set of cognitive skills that enable an individual to effectively 

understand and generate language for effective interpersonal communication (Skehan, 1998). It 

can be divided into five components, semantics, phonology, morphology, syntax, and pragmatics 

(Franken & Weisglas-Kuperus, 2012). Language acquisition is the process by which humans 

perceive, comprehend, and acquire information from language (Chiswick & Miller, 1998). Some 

examples of language functions include word finding, language comprehension, repetition, 

expression, reading, and writing (Chiswick & Miller, 1998). Memory, attention, and individual 

differences are common factors that affect reading and writing abilities. As a function of language 

acquisition, speech perception is the process that employs sensory functions to hear, and then 

interpret and understand the sounds (Holt & Lotto, 2010; Pisoni & Remez, 2005). 

 

Speech perception is an integrated result of the recipient's memory, attention, and both passive 

and active receipt of signals. The phenomena of short-term memory deficit are common for 

children who are poor readers (Brady et al., 1983). Speaker’s lip movements act as visual stimuli 

that affect the auditory perception of what is said. This process is most apparent when there is a 

combination of acoustic information and visual information for a bilabial utterance combined 

(Macdonald & McGurk, 1978). A perception study (Brady et al., 1983) proved that poor readers 

have a perceptual difficulty with speech perception due to the material-specific problem. Illusions 

can also be generated when aural perception becomes subordinate to what the listener believes 

they see in the expression of the speaker’s lips. 

Higher Order Cognitive Skills 

Higher order cognition is a multi-faceted and complex area of research that refers collectively 

to the mental processes of reasoning, conceptualization, critical thinking, decision making, and 
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creativity. Higher order cognition involves the ability to understand and implement the steps 

necessary to solve problems, establish new areas of learning, and think creatively (Akella, 2019). 

Primary topics investigated in higher order cognition consists of executive function, reasoning, 

planning, and problem solving. 

 

These executive functions are a set of complex cognitive processes that help people manage 

thought, skills, and necessary behavior, and action to achieve goals (Friedman et al., 2006). They 

are diverse, correlated, and overlapping. People need these functions to execute goal-oriented 

behaviors, such as managing time, focusing on a task, planning, and organizing. The basic 

executive functions can involve cognitive inhibition, cognitive flexibility, and emotional control, 

while reasoning, planning, problem-solving, and decision making remain higher-order executive 

functions with the requirement of several more fundamentally processes working at the same time 

to support them (Chan et al., 2008; Diamond, 2013). 

 

Reasoning is regarded as the cognitive process that solves a problem by establishing logical 

relationships between different problem elements (Zimmerman, 2000). It is the central activity in 

intelligent thinking. General reasoning skills include inferential reasoning, deductive reasoning, 

analogical reasoning, conditional reasoning, and automated reasoning (Alexander et al., 1987). 

Reasoning ability can vary by gender, age, and are affected by the surrounding environments 

including IEQ (Knez, 1995; Piraksa et al., 2014; F. Zhang & Dear, 2017). 

 

People use planning skills to set and achieve goals by developing plans and choosing the 

appropriate actions based on the anticipation of consequences (Hayes-Roth & Hayes-Roth, 1979). 

Planning is key in the ability to make shifts in attention. It is also a vital process for decision 

making, self-control, and self-monitoring. Age and gender can be related to differences in planning 

performance (Sorel & Pennequin, 2008). In one study younger adults usually made quicker and 

fewer inappropriate planning moves than older adults. And girls with the ages of 5 and 17 years 

have been documented to outperformed boys at the same age on certain measures of planning 

(Naglieri & Rojahn, 2001). 

 

Problem solving is an integrated skill to generate and select solutions for problems. It is related 

to mental strategies and heuristics as well as physical health (Diamond, 2013). Previous research 

found that indoor environmental factors such as lighting, noise, or thermal environment have 

established effects on problem solving (Hygge & Knez, 2001b; Knez, 1995; Knez & Kers, 2000a).  

Other higher order cognitive skills could consist of judgment and decision making that is the 

cognitive ability to do a selection among several possible alternatives (Brun et al., 1997). 

 

Methods 

In order to establish systematic effects of IEQ on these orders of cognitive performance, we 

conducted a thorough search of the related scientific literature using two methods, a conventional 

manual review and keyword co-occurrence analysis. The conventional manual review focused on 

the most relevant studies about the explicit association between specific IEQ factors and cognitive 

functions. The experimental setup, assessment tools, and the major results were tabulated in detail 

after scrutinizing each study. Although arduous and time-consuming, the approach provides an 

avenue to meticulously analyze results and serves as one of the most commonly used methods in 

review studies (Y. Li et al., 2007; Sundell et al., 2011). There are thousands of studies in the 
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literature involving IEQ and/or cognition that have only implicitly addressed these same 

associations. The information in these studies, though not providing direct evidence-informed 

decisions, can still shed much light on the association between IEQ and cognition. Such 

information can be revealed through the keyword co-occurrence analysis which we have provided 

here. 

Conventional manual review 

We searched and then gathered the most relevant studies that specifically and explicitly 

examined the relationship between IEQ and cognition. These were derived from multiple sources, 

including scientific journals, conference proceedings, and relevant books. The searched databases 

consisted of Google Scholar, ScienceDirect, Springer, National Center for Biotechnology 

Information (NCBI), the American Society of Heating, Refrigerating, and Air-conditioning 

Engineers (ASHRAE), and the Proceedings of Indoor Air and Healthy Buildings conferences. 

Keywords 

We first searched the following keywords, cognitive performance, performance tasks, cognitive 

function, productivity, attention, perception, memory, language function, and higher order 

cognitive skills for cognition, while using IAQ, ventilation, thermal environment, noise, lighting, 

and non-light visual factors for IEQ factors. We then conducted a follow-up round of searching 

for relevant studies by examining the reference lists of each of these collected studies. 

Inclusion and exclusion criteria 

We refined the papers selected based on the following rules. First, for laboratory studies, 

experiments had to have been conducted in well-controlled climate rooms or chambers; for field 

studies, environmental factors had to be clearly described and quantified. Studies without 

quantitative measurements of IEQ factors were excluded. Studies that did not carry out cognitive 

performance tests in different IEQ conditions or report performance test results with statistical 

analyses were excluded in the review. Third, we limited the search to concrete cognitive functions; 

namely, attention, perception, memory, language function, and higher order cognitive skills. 

Performance tests that could be mapped into these five cognitive functions were included here. 

Performance tests that did not fall into the above categories or integrated test kits combining 

various cognitive functions without reporting individual scores for each function were also 

excluded. Table A1 in Appendix I summarizes the cognitive tasks corresponding to different 

cognitive functions. 

 

Levels of Association between IEQ and cognition 

A preliminary review showed a number of conflicting results for the effects of IEQ factors on 

cognition. Some studies reported a statistically significant association (either positive or negative 

association); while some reported no clear association between the two. Yet others reported mixed 

results of positive associations, no associations and/or negative associations in different tests or 

participant categories. To demonstrate the overall quantitative relationship between IEQ factors 

and cognition, we, therefore, categorized levels of the statistical association between IEQ factors 

and cognition into three ordinal levels ranging between 0 and 2. Here, “0” refers to no statistical 

association between IEQ and cognition, meaning that the tested cognitive function was not 

significantly different between tested IEQ conditions (p > 0.05). A degraded “1” denoted mixed 

association, in which varying levels of statistical association were reported in different 

performance tests and/or participant groups; A score of “2” referred to statistical associations, 

where consistent positive or negative statistical association (p < 0.05) was reported between IEQ 
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and cognition. We applied “N/A” to denote the significance level if a study did not report p values. 

An assigned score indicates an ordering of the association level. 

Keyword Co-occurrence Analysis 

As a particular form of data mining, text mining focuses on handling unstructured or semi-

structured datasets, such as that represented by text documents (Fan, n.d.). It is a well-established 

practice that is commonly used to extract patterns and non-trivial knowledge from documents 

written in a natural language (Tan, 1999). In this review, keyword co-occurrence analysis was 

applied to assist in literature reviews in retrieving information from large-scale data that is usually 

too big to handle manually. Using the method, we were able to retrieve information from 

unstructured text and visualize distilled knowledge in a concise form (Ananiadou & McNaught, 

2006). We first identified 8,133 studies that mentioned both IEQ and cognition in their abstracts 

and/or keywords using the following search logic on Scopus.  

 

(cognition* OR “cognitive function*) 

AND 

(“air pollution” OR “air filtration” OR ventilation OR Radon OR “particulate matter” OR 

PM10 OR PM2.5 OR “black carbon” OR aerosols OR voc OR “volatile organic compound” OR 

ozone OR O3 OR asbestos OR pollutant OR “carbon monoxide” OR “carbon dioxide” OR CO2 

OR formaldehyde OR NO2 OR “nitrogen dioxide” OR pesticide OR moisture OR “indoor 

microorganism” OR “air odor” OR molds OR combustion OR “room temperature” OR “air 

temperature” OR “air speed” OR “air velocity” OR “relative humidity” OR “thermal comfort” 

OR “heat stress” OR “radiant temperature” OR “room NEAR/15 noise” OR “traffic noise” OR 

“airplane noise” OR “speech noise” OR “public noise” OR “machinery noise” OR “equipment 

noise” OR music OR lighting OR daylight OR “artificial light” OR “visual comfort” OR biophilia 

OR texture OR “spatial shapes” OR glare OR “room NEAR/15 plant” OR greenery OR glare OR 

“indoor layout” OR furniture OR furnishing OR “window view” OR “wall color” OR “interior 

design” OR “building material” OR vibration) 

 

Then we applied the VOSviewer (visualization of similarities) (van Eck & Waltman, 2009) to 

construct bibliometric landscapes that extract a holistic relationship between IEQ and cognition 

from substantial bibliographical data (keywords and abstract). The tool provided the visualization 

of co-occurrences of scientific topics. For instance, ventilation is highly related to indoor air 

quality. Also, through co-occurrence keyword analysis of studies at different periods, we were able 

to identify emerging topics in the field. 

Results 

We synthesized the research findings on the influence of IEQ on attention, perception, memory, 

language function, and higher order cognitive skills using the conventional manual review of 66 

studies and the co-occurrence analysis of keywords and abstracts of 8,133 studies. The 

experimental setups and major results of the reviewed studies are summarized in Appendix I Table 

A2-A6. Each of these tables summarizes the key findings between one specific cognitive function 

and IEQ factors. The table also includes sample size, environmental conditions, and metrics to 

evaluate cognitive functions. Please note some studies appear in multiple tables since they have 

investigated more than one cognitive function. This section summarizes the major findings of 

Appendix I Table A2-A6 and insights from the co-occurrence analysis.   
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Relationships identified with a conventional manual review 

IEQ’s Effects on Attention 

The reviewed studies in Appendix I Table A2 revealed that most IEQ factors, when at disrupting 

levels of values, negatively influenced attention in general. However, there is also present evidence 

showing that some perceived adverse environments might even elevate attentional or concentration. 

For instance, several studies reported enhanced working attention (Hygge & Knez, 2001b) and 

concentration performance (F. Zhang & Dear, 2017) due to increased temperature and noise levels, 

respectively. 

 

Indoor Air Quality 

Air pollutants negatively impact the neurocognitive functions of occupants during work or 

learning processes. Increased levels of annual ozone and particulate matter was related to a 

decrease in cognitive performance (J.-C. Chen & Schwartz, 2009; Cleary et al., 2018b). An 

increase of 10 ppb in ozone concentration caused a 5.3 years’ age-related decline in attentional 

performance (J.-C. Chen & Schwartz, 2009). Higher black carbon (BC) levels had a positive 

association with increased errors of commission and slower hit reaction time (HRT), as well as 

mean reaction time for all target responses (Chiu et al., 2013), but the absolute relationship between 

pollutant concentration and attention performance was not significant (p > 0.05). Traffic pollution 

exposure for adolescents showed an inverse association with their sustained attention and may 

therefore assumedly undermine neurobehavioral functions (Kicinski, Vermeir, Van Larebeke, Den 

Hond, Schoeters, Bruckers, Sioen, Bijnens, Roels, Baeyens, et al., 2015). 

 

As an indicator of indoor air quality, CO2 has recently been identified as an indoor pollutant 

due to its potential effect on cognitive function (Satish et al., 2012b).  A field study in a primary 

school concluded that children showed significantly poorer concentrate levels on the courses when 

the level of CO2 in classrooms was high (Coley et al., 2007b). The increased levels of CO2 led to 

an approximately 5% decrement on attentional performance, as reported by the study. Nevertheless, 

other studies showed little influence of CO2 level on attention (Twardella et al., 2012b; X. Zhang 

et al., 2017b) Elevated CO2 concentration in the classrooms did not reduce students’ global short-

term attention, although a decrease in the secondary outcome accuracy (e.g. the total number of 

characters processed) was found for students exposed to poor air quality (Twardella et al., 2012b). 

Ref (X. Zhang et al., 2017b) argued that it might be the bio-effluents, rather than pure CO2 level, 

that reduced cognitive performance. Another study employing physiological and 

neurophysiological monitoring also reported no effect of CO2 on attention performance (Snow et 

al., 2019). A critical review of the area concluded that pure CO2 only consistently affects high-

level decision-making performance (Du et al., 2020). 

 

Elevated indoor CO2 concentration is primarily derived from insufficient ventilation. Previous 

studies have reported improvements in students’ working memory and attention in primary school 

buildings at higher ventilation rates (Clements-Croome et al., 2008). Ref (Bakó-Biró et al., 2012) 

identified a 2.2% improvement in attentional performance during these higher ventilation rates. 

 

Thermal Environment 

Prior studies have shown that attention can be strongly influenced by the thermal environment, 

although the direction and magnitude of influence may not be always consistent. Under steady-
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state conditions, the attention index of 117 high-school students decreased when they were 

thermally uncomfortable (Mazon, 2014). Participants had the highest performance test score at 26 ℃ 

compared with at either 23 ℃ or 29 ℃ when a personally controlled fan was available to use 

(Schiavon et al., 2017a). Under thermal transients in Ref (F. Zhang & Dear, 2017), concentration 

performance was significantly and positively correlated with the rate of temperature increment (p 

< 0.05) in temperature cycles starting from 22 °C. This implies increased concentration 

performance when the temperature rises quickly. But a separate study (Hu & Maeda, 2020) 

indicated opposite results that subjects had a better attentional performance at 16 °C compared to 

results at 26 °C and 36 °C. Attention tested by using the cursor positioning test indicated no 

significant difference in the subjects’ performance in three different thermal environments (Tanabe 

& Nishihara, 2004). There was also no significant difference of attention in a study (Maula et al., 

2016) which used a star count test in two temperature conditions of 23 °C and 29 °C. Attention, as 

assessed by the Stroop test without feedback, was significantly different between 23 °C and 27 °C 

(Lan et al., n.d.). However, the difference was not significant when feedback was provided to the 

participants. These sorts of results confirm that at ambient temperature, close to setting, and 

individual capacities each exert impactful influences on outcome.  

 

Noise 

The influence of noise on attention is also complicated. High school students worked faster 

with high ventilation noise but only at the cost of less accuracy (Hygge & Knez, 2001b). The 

results supported a speed-accuracy trade-off hypothesis that decisions are made slowly with high 

accuracy or fast with a high error (Duckworth et al., 2018; Hockey, 1984; Mulligan & Hirshman, 

1995), contingent upon acoustic surround. Age is a confounding factor when considering the 

influence of noise on attention.  Elderly people may be more vulnerable to noise. Listening to 

speech with multi-talker babble noise, such as in a crowded office, reduces activation in the 

auditory cortex but increases memory and attention-related cortical areas (prefrontal and precuneus 

regions) for older people (Wong et al., 2009). However, noise exposure apparently has little 

significant influence on students’ attention performance, at least to a reasonable threshold value 

(Lercher et al., 2003; Stansfeld et al., 2005). 

 

Lighting 

The literature has recorded controversial findings as to know if attention is affected by lighting. 

The correlated color temperature of 4,300 K resulted in the best-sustained attention performance 

for undergraduates using the Chu Attention Test. Also, sustained attention was more affected by 

lighting in females than male students (Huang et al., 2015b). Increasing illuminance from 200 lux 

to 1500 lux promoted attention when the room air temperature was 22 °C. But the opposite trend 

was found at 37 °C. This implies an interactive influence between thermal and visual comfort 

(Mohebian et al., 2018b). A dynamic lighting system that adjusted lighting color and brightness of 

computer screens significantly improved target spotting time in a computer game for both casual 

gamers and non-gamers (El-Nasr et al., 2009). However, the effects of lighting on attention have 

not been found in other studies. Neither light color temperature nor lighting intensity influenced 

the concentration of third-grade children (Mott et al., 2012b). For example, sustained attention was 

also independent of lighting conditions for older adults who were night shift workers (Kretschmer 

et al., 2012b). 

 

Non-Light Visual Factors 
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Fisher et al. (Fisher et al., 2014) investigated how classroom decoration affected the ability of 

children to concentrate on lesson content. Children were more distracted by highly decorated 

environments, spent more time on the task, and gained less knowledge when compared with a 

relatively plainly decorated classroom. Colors can stimulate an individual’s physiological and 

emotional responses for focal attention and thereby facilitate learning. Pale colors were rated more 

positively than vivid ones, due to feeling more calm and relaxed [109, 214]. Additionally, biophilic 

environments can promote the attention of occupants. Students’ views of nature or buildings is 

another factor influencing attention. Both outdoor natural views (Tennessen & Cimprich, 1995) 

and indoor views of plants were reported to promote students’ attention (Raanaas et al., 2011). In 

other words, indoor and outdoor visible greenery increases the ability to concentrate and reduces 

stress [217, 218]. Significantly better performance of participants’ attention was reported when a 

window view is available than when it is unavailable (Ko et al., 2020).  

IEQ’s Effects on Perception 

We summarized in Appendix I Table A3 the major findings as to how IEQ affects perception. 

Overall, the accumulated knowledge reports studies focusing on auditory perception and visual 

perception. Noise and poor lighting are common stressors for perception. 

 

In a visual search task, participants showed a significantly different performance, normalized 

by mental workload, between warm and neutral conditions, and between warm and cool conditions 

(X. Wang et al., 2019). Survey results by Ref (Yun et al., 2008) demonstrated that façade design 

affected occupants’ perceived control over their environments. Uncomfortable environments are 

through to generate perceptions of stress and negative attributions about performance (Loewen & 

Suedfeld, 1992). 

 

Lee et al. (J.-H. Lee et al., 2014) examined the combined effects of color temperature and 

illuminance in the office on the visual perception of occupants. They concluded that the less than 

subjects were visually disturbed by light during tasks, the more visual comfort they felt. Lighting 

also affects the perception of facial surfaces (Hill & Bruce, 1996). Observers’ ability to recognize 

and match faces and objects was higher for top lighting on the objects than bottom lighting. 

Berman’s theory (S. Berman et al., 1990) states that elevated color temperature, associated with 

smaller pupil size can enhance visual acuity. In this same vein, the performance of a visual 

perception task on color recognition is higher with the lighting of higher color temperatures 

(Hawes et al., 2012b). 

 

The negative effects of noise exposure on performance could be attributed, at least in part, to 

“learned helplessness”, which is a syndrome of defeat typically resulting from exposure to 

uncontrollable circumstances (Hatfield et al., 2002).  Occupants might perceive noise to be 

uncontrollable or have little perceived control.  A socio-acoustic survey observing perceived 

control over aircraft noise correlated negatively with identified effects of noise (e.g., disturbances 

of reading and sleep). This supports the claim that “learned helplessness” contributes to the effects 

of noise exposure. In terms of specifics, the linear exposure-effect association was identified 

between exposure to chronic aircraft noise and impaired reading comprehension (Stansfeld et al., 

2005). 

IEQ’s Effects on Memory  
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Appendix I Table A4 catalogs the major findings regarding the impairment of memory due to 

poor IEQ. Our review here demonstrated that short-term memory and working memory are most 

investigated by previous studies via recall tasks. Overall, results show that memory is generally 

associated with most IEQ factors. 

 

Indoor Air Quality 

The cross-sectional association between fine particulate concentration levels and cognitive 

function in older adults has identified that a higher air pollutant concentration leads to significantly 

reduced levels of working memory (Ailshire & Clarke, 2015; Ailshire & Crimmins, 2014b). The 

incident rate of errors on tests of working memory shows a ratio of 1.53 with a 10 µg/m3 increase 

in PM2.5 concentration (Ailshire & Clarke, 2015). Each 10 ppb increase in annual ozone was 

associated with decreased short-term memory, equivalent to 5.3 years of aging-related decline in 

cognitive performance (J.-C. Chen & Schwartz, 2009). 

 

Students showed 8% higher picture memory with an increased room ventilation rate that was 

associated with lower CO2 levels (Bakó-Biró et al., 2012). Strategic management simulations 

(Allen et al., 2016b; MacNaughton et al., 2017; Satish et al., 2012b) were applied to investigate 

how indoor CO2 influenced cognitive performance, but its effects on memory were not reported 

as the tools were more predictive in domains such as strategy, information usage, and crisis 

response. However, the effects of elevated CO2 concentrations on memory performance were not 

consistent in some other studies. Neither response time nor accuracy of a picture recognition task 

was significantly compromised at approximately 2,900 ppm when compared with 690 ppm (Coley 

et al., 2007a). A similar conclusion was reported for CO2 at 2,700 ppm versus 700 ppm (Snow et 

al., 2019). Zhang et al. (X. Zhang et al., 2017b) also did not find any statistical significance in digit 

span memory scores under bioeffluents or pure CO2. On the other hand, external oxygen 

administration was found to improve memory formation in the first place (Moss & Scholey, 1996; 

Scholey et al., 1999; Winder & Borrill, 1998). Inhalation of oxygen immediately before learning 

a word list increased the average number of words recalled some 10 minutes later (Moss & Scholey, 

1996).  Inhalation of 100% oxygen for a short time enhanced the memory for names and faces 

(Winder & Borrill, 1998). These findings, however, were not replicated by other studies that 

focused more on long-term memory (Andersson et al., 2002; Moss et al., 1998). 

 

Thermal Environment 

The reviewed studies on the effect of thermal environment on memory performance do not 

report consistent relationships between the two entities. The extended-U model suggests that 

memory performance will remain stable across a broad range but rapidly deteriorates at the thermal 

extremes [236, 237].  Students showed the best memory performance when the air temperature 

was between 22 °C and 26 °C (Cui et al., 2013a). Even while exposed to 43.3/27.8 °C (dry/wet 

bulb temperature), the short-memory performance for university students did not change 

significantly, as compared to a more comfortable condition of 26.7/17.2 °C (dry/wet bulb 

temperature) (Wing & Touchstone, 1965). Poorer short-memory by recalling word lists did occur 

at 48.9/31.1 °C (dry/wet bulb temperature). Similarly, the average recall performance did not drop 

significantly when the chamber air temperature was between 16.7 and 32.2 °C but did so between 

32.2 to 35 °C as individuals began to approach integrable levels (Wing & Touchstone, 1965). 

Zhang and de Dear (F. Zhang & Dear, 2017) reported no significant correlation between thermal 

environment and memory performance in six temperature cycles. College students exposed to 
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25.5 °C, 28 °C and 33 °C did not demonstrate significant memory changes using a positioning test 

and letter search test (Tanabe & Nishihara, 2004). Neither working memory performance nor long-

term memory performance was significantly impaired when the temperature, was raised from 

23 °C to 29 °C (Maula et al., 2016). 

 

Contradictory results were also reported in the literature regarding the influence of mild 

temperature on memory performance. Working memory measured via a forward digit span test 

dropped at slightly cooler (21.7 °C) and warmer conditions (28.6 °C) from the neutral condition 

(25.2 °C) (X. Wang et al., 2019).  Nevertheless, significant reduction only occurred for the hard 

version of the task but not the easy one (F. Zhang et al., 2019),  which suggests an interaction with 

task type. Regression analysis by Cui et al. (Cui et al., 2013a) showed that long-term memory 

performance peaked (p < 0.01) at 26 °C in the temperature range of 22 °C to 32 °C. 

 

The influence on memory due to cooling might not be equivalent to that of heating. Elevated 

body core temperatures from 36.6-37.4 °C to 38.8-39.1 °C did not affect memory registration or 

the immediate ability to recall digit spans (Holland et al., 1985), but reduced body core 

temperatures from 36.7 °C to 34-35°C did induce a loss of approximately 70% of data that could 

normally be retained from a memory test (Coleshaw et al., 1983). In addition, memory 

performance in temperature cycles ranging between 21.3 and 31.2 °C was significantly higher than 

temperature cycles starting from a slightly higher temperature (23.0-31.5 °C) (F. Zhang & Dear, 

2017).  The performance of a digital span test increased by 2.8% when reducing the temperature 

from 27 °C to 23 °C (Lan et al., n.d.). However, this increase did not prove statistically significant. 

 

Noise 

Noise was reported as an environmental stressor that impacted memory in many studies [20, 

72, 73, 242]. Noise hinders recall and recognition in student learning. Poor listening conditions 

due to background noise and/or long reverberation times, impair memory and learning, even if 

students could hear what was said by an instructor (Ljung, 2009). Traffic noise can also worsen 

performance in both a search task and a memory task (Hygge et al., 2003). Stansfeld et al. 

(Stansfeld et al., 2005) identified a linear association between exposure to chronic aircraft noise 

and impairment of recognition memory through the assessing 2,844 children aged 9 to 10 years. 

Both intentional and incidental memory were affected by chronic noise exposure, and school 

children who were chronically exposed to noise were found subsequently to be worse at 

recognition memory, as reported in Ref (Lercher et al., 2003). 

 

Memory involved in complex tasks has proven to be more susceptible to noise compared to that 

of simple tasks [20, 244]. In addition to task complexity, one type of noise might be more harmful 

than another to memory, especially intermittent noise. Two experiments revealed that background 

speech was more detrimental to prose memory than aircraft noise [71, 245]. Furthermore, there 

might be interaction effects between noise and illumination on memory.  Subjects’ short-term and 

long-term memory recall was found to vary with combinations of ventilation noise and illuminance 

levels [12, 246]. Interactions were also found between noise and heat on the long-term recall of a 

text (Hygge & Knez, 2001b). 

 

Lighting 
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Long-term memory was enhanced when individuals are exposed to a light color temperature 

that induced a less negative mood (Knez, 1995). The combination of color temperature and 

illuminance that best preserved a positive mood increased performance in free recall tasks. Cool-

white lighting impaired the long-term memory recall of a novel text when compared to warm-

white lighting (Knez & Hygge, 2002). However, the influence of blue-enriched classroom lighting 

on short-term encoding and retrieval of memories was not found for high school students (Keis et 

al., 2014a). No interactive effects on memory were reported between light and noise (Knez & 

Hygge, 2002), but interaction was found between gender and light color temperature on mood and 

long-term memory (Knez, 1995; Knez & Enmarker, 1998). 

 

Non-light Visual Factors 

Exposure to green space has beneficial effects on the development of working memory for 

primary school children (Dadvand et al., 2015) and thus access to these green spaces was 

associated with improved memory (McCormick, 2017). Ko et al. (Ko et al., 2020) reported that 

Window views influenced different memory associated with various levels of significance. The 

working memory test score of the participants in a room with a window view was 6% higher (p < 

0.009) than that in a windowless room. However, no significant difference was identified for short-

term memory by the study. Participants with a major depressive disorder performed better on 

memory span tests after walking through a green arboretum, relative to traffic-heavy streets lined 

with university and office buildings (M. G. Berman et al., 2012).  

IEQ’s Effects on Language Functions  

Appendix I Table A5 catalogs the effects of IEQ on language functioning in terms of capacities, 

such as reading and writing. Ref (Marchand et al., 2014) investigated whether the combined 

environmental factors of light, sound, and temperature in a classroom affected student performance 

during listening and reading tasks. It was reported that indoor sound and temperature had a greater 

negative influence on students’ listening and reading tasks when they were outside the comfort 

zone. However, the modeled association between reading test scores and ventilation rate did not 

show any statistical significance in another preliminary study (Shaughnessy et al., 2006). The 

conditions of artificial light were found to influence the students’ reading performance (Mott et al., 

2012b). It was revealed that “focus” lighting consisting of 1,000 lux illumination and 6500 K color 

temperature significantly increased students’ oral reading fluency compared to a “normal” or 

baseline lighting condition (500 lux with 3,500 K).   

 

Noise effects on recall and recognition are significant (Hygge, 2003). Item difficulty, position, 

and ability were not found to interact with these noise effects in the study. Neither did arousal, 

distraction, perceived effort, or perceived difficulty in reading and learning mediate the effects on 

recall and recognition. Anderson et al. (Anderson et al., 2010) showed that background noise 

usually disrupts neural timing and challenging listening conditions disrupted the inability of speech 

perception. Ref (Klatte, 2010) identified significant effects of reverberation on speech perception 

of spoken items in classrooms. Outside noise influences language fluency, which acts as the bridge 

between sound source and comprehension (Pikulski & Chard, 2005). Children’s speech perception 

and listening comprehension can be significantly impaired by background speech (Klatte et al., 

2010). Irrelevant speech has a significant influence on participants’ reading comprehension 

(Sörqvist et al., 2010). Speech recognition was not only influenced by speech-to-noise ratios 

(SNRs), but also by thermal conditions as well (W. Yang & Moon, 2018). Moreover, Wong et al. 
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(Wong et al., 2009) reported that age confounds the relationship between noise exposure and 

speech perception. Compared to adults, children are more impaired by detrimental listening 

conditions. Older adults, who experience reduced activation in the auditory cortex, have increased 

activation in attention-related cortical areas. Age and hearing loss were both related to less release 

from the effort when increasing the intelligibility of speech in noise, as identified in the same study.  

 

Non-light visual factors also affect language functions such as reading (AL‐Ayash et al., 2016). 

The color in a private space affects students’ learning, as well as physiological and emotional states. 

Vivid colors are beneficial for students’ reading, while blue is better for relaxation and calmness.  

IEQ’s Effects on Higher Order Cognitive Skills  

The listed studies in Appendix I Table A6 describe the association between indoor 

environmental factors and different forms of higher order cognitive skills. In general, poor IEQ 

conditions were reported to have negative effects on these higher order cognitive skills, but to 

varying degrees. However, some studies have found no significant association between IEQ 

factors and higher order cognitive skills.  

 

Indoor Air Quality 

Occupants’ performance, which was assessed using, but the speed of addition, response time in 

a redirection task, and the error rate of tasks, was reduced when participants were exposed to an 

elevated level of CO2 together with bio effluents (X. Zhang et al., 2017b). The adverse 

consequence due to high CO2 levels includes the impairment of decision-making performance 

(Satish et al., 2012b). Also, the increased response time has been related to ozone exposure (J.-C. 

Chen & Schwartz, 2009). NOx
 showed an association with a decline in the cognitive test scores for 

visuo-construction, which involves the ability to organize and manipulate spatial information 

(Schikowski et al., 2015). An epidemiologic study, using 789 elderly women who attended a 

medical examination in 2007-2009 supported the proposition that lower scores in reasoning were 

correlated to particulate air pollution (Tonne et al., 2014). 

 

Thermal environment 

Thermal comfort plays an important role in the higher order cognitive skills. A warm 

environment can be associated with reduced reaction time. Participants performed tasks more 

rapidly at 32 °C compared to other conditions (27, 24, and 19 °C) (Lan et al., 2009a). This 

phenomenon was explained by postulating that participants wanted to finish tasks quickly in the 

uncomfortable thermal environments, or that they were activated by elevated internal body 

temperature (Hancock, 1993). Another study also reported increased task speed as the temperature 

ascended (Holland et al., 1985). However, findings were not consistent overall in the literature. 

For example, a study found that compared to a cooler temperature of 23 °C or warmer temperature 

of 29 °C, subjects had the fastest processing speed at 26 °C (Schiavon et al., 2017a). This study 

suggested 26 ℃ as the optimum temperature for the optional cognitive performance. In another 

recent study (X. Wang et al., 2019), significant differences in participants’ addition task 

performance were found for a “hard” mode but not for “easy” mode between slightly warm (PMV 

=1) and slightly cooler conditions (PMV = -1). In the study, the participants did not show a 

significant difference in response time on a choice reaction task for either “hard” or “easy” mode. 

Also, the participants’ response time in two reaction tests (“hard” and “easy” modes) was 

insignificantly (p > 0.05) differentiated at three PMV conditions (-1, 0, and 1). However, the 
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difference in response time was statistically significant (p < 0.05) for the Stroop task at the three 

PMV conditions. Ref (Lan et al., n.d.) stated that the subjects had neutral comfort at both 23°C 

and 27°C. But the reasoning performance, observed at 27°C, decreased by 11.2% compared to 

performance at 23°C. The study (Tanabe & Nishihara, 2004) indicated that only male subjects 

displayed significant differences in the four-choice test performance as the temperature increased 

from 28 °C to 33 °C, as well as the text typing test when the temperature increased from 25 °C to 

28 °C or 33 °C. 

 

Reasoning and planning skills were found to have a significant relationship with the thermal 

sensation vote (F. Zhang & Dear, 2017). The study reported that reasoning and planning 

performance was negatively correlated to TSV2 and TSV respectively in the warmer temperature 

cycles starting from 24 °C. Planning skills were more sensitive to heat than reasoning in the rising 

temperature. That is, a higher rate of temperature increment had detrimental effects on planning, 

but not on reasoning performance. 

 

Noise 

Moderate noise enhances processing difficulties, such as the activation of abstract cognition 

and enhancing creative performance (Mehta et al., 2012). It was also found in the same study that 

mild noise could be a trigger for higher leave creativity, while loud noise reduces the extent of 

information processing, resulting in cognitive impairment. However, teacher-reported cognition 

functions of school children showed no significant effects of ambient noise levels upon executive 

function (Belojevic et al., 2012).  

 

Lighting 

No significant effect of lighting color temperature (3,000 K vs 4,000 K) was found on the 

performance of problem solving and judgment (Knez & Enmarker, 1998). However, another study 

concluded that “warm” white light (3,000 K) was optimal for problem solving (Knez, 1995). In 

addition, high-frequency lighting is perceived as more pleasant than low-frequency lighting and 

can then enhance problem solving performance (Knez, 2014). 

 

Non-light visual factors 

Mehta and Zhu (Mehta & Zhu, 2009) found that red backgrounds enhance motivation, whereas 

blue improves subjects’ creative ability. Blue light enhanced individuals’ purchase intentions 

toward products mainly bought for pleasure or enjoyment, indicating that blue lighting is a 

contributing factor in participants’ altered purchase intentions. In another study, participants’ 

planning skills did not significantly vary when a window view was present or not (Ko et al., 2020). 

Summary of the conventional manual review 

Appendix I Tables A2-A6 list the major findings of studies on the association of IEQ factors 

and cognition. While detailed and informative, the tabulated results of all the reviewed studies 

might not easily generate a clear “big picture”. This is because many studies have reported 

contradictory or mixed findings. Therefore, we calculated the percentage of studies that revealed 

statistically significant association (with the assigned rating “2”), and the percentage of studies 

showing mixed association (with the assigned rating “1”) between a particular IEQ factor and a 

cognitive function. For example, 36% of the 16 reviewed studies indicated a mixed association 
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(rating “1”) between thermal environment and memory, while only 14% confirmed a statistically 

significant association (rating “2”). Please note that Table 1 does not distinguish between positive 

and negative associations. Even though the statistics is unable to quantify the effect size of each 

pair of an IEQ factor and cognitive function, the present approach in Table 1 can still shed lights 

on the amount of evidence n the topic and the intensity of research inconsistency across various 

disciplines that may not be easily obtained otherwise. 
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Table 1. Percentage of studies reporting different leveles of statistical significance for the associations between IEQ and cognition 

⸸ “Perc. of sig.”: the percentage of all reviewed studies in Appendix I Tables A2-A6 reporting a significant association only (with the 

rating “2”); “Perc. of mixed”: the percentage of studies revealing a mixed association (with the assigned rating of “1”). The description 

of different rating levels can be found in Section 3.1. “# of studies”: the total number of reviewed studies containing all ratings (“0”, 

“1”, “2”, and “NA”).  
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Table 1 shows that the most examined IEQ factors in the literature are thermal environment, 

noise, and IAQ, while the most studied cognitive functions are memory, high order cognitive skills, 

and attention. The research on how IEQ influences perception is quite rare. Overall, for each pair 

of IEQ and cognition, a statistically significant association (p <0.05) has been identified by a 

portion of studies in the literature.   

 

To interpret the results from Table 1, the sample size (number of studies) in each cell and the 

percentage of significant association are both important, as a 100% statistical association reported 

in only one study may not carry weight. For pairs of IEQ and cognition with more than 5 studies, 

the percentage of studies reporting a significant association (p < 0.05) is 50% between IAQ and 

higher order cognitive skills, 67% between noise and language function, and 71% between noise 

and memory. In contrast, the percentages of studies showing a significant association is quite small 

(< 20%) between IAQ and memory (almost 0%), thermal environment and attention (10%), 

thermal environment and memory (14%), and thermal environment and higher order cognitive 

skills (19%). 

 

Each row in Table 1 represents the influence of various IEQ variables on a specific cognitive 

function. Considering the aggregated effects of all IEQ factors on each cognitive function by 

averaging the percentages in a given row, approximately 34% of studies on average imply a 

significant association between IEQ and higher order cognitive skills, while the percentage drops 

to 30%, 28% and 23% for language functions, attention, and memory, respectively. However, 43% 

of studies suggest a mixed association between IEQ and memory, followed by 31% for attention, 

26% for language function, and 25% for higher order cognitive skills. The small variations in those 

percentage values do not entitle differentiation between the most and least vulnerable cognitive 

functions to IEQ. One explanation for this may relate to the difficulty in isolating cognitive 

functions, particularly in realistic settings.  

 

For each column of Table 1, the average percentage value over five rows of cognitive functions 

can help identify the influence of a particular IEQ factor on holistic cognitive functions. 

Approximately 57% of studies found that noise has a significant impact on cognition. Surprisingly, 

the percentage of studies reporting statistical significance for both IAQ and thermal environment 

are lower than 20% in terms of the effects on cognition. Even considering both the significant 

association and mixed association, the percentage is still less than 50%. The results thus suggest 

extensive inconsistencies in the relevant literature, especially regarding the effects of IAQ or 

thermal environment on cognition.  

Keyword co-occurrence patterns identified by text mining 

Figure 2 shows the number of publications and knowledge landscapes obtained from keyword 

co-occurrence analysis at different periods. The connection between two circles refers to co-

occurrence instead of statistical association in the same document. A short distance between two 

keywords represents high co-occurrence. When two keywords are rarely mentioned together in the 

same document, the two circles containing them are therefore distanced. The number of keywords 

contained in circles was maximized using a smart local moving algorithm (VOSviewer Manual, 

n.d.).  The size of each circle represents the percentage of the articles mentioning the corresponding 

keyword in the circle. The same circle color represents a clustered category using the mapping 

technique of visualization of similarities (VOS) (Eck et al., 2010). 
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The earliest study we found was published in 1932, and since then the number of publications 

involving both IEQ and cognition have been growing exponentially in the past few decades, as 

shown in Figure 2a. There were 684 papers published in 2019. 

 

Figure 2b, 2c, and 2d show the relation landscape between IEQ factors and cognitive functions 

by extracting information from the keywords and abstracts of searched studies, including those 

reviewed in the manual review, published within the period of 1932 – 2010, 2011– 2015, and 2016 

– 2020, respectively. During each period, there were approximately 3000 papers published on 

average. These results can significantly supplement the detailed manual review described in 

Appendix I Tables A2-A6 as well as Table 1. The co-occurrence networks in Figure 2b-2d reveal 

two essential patterns. First, the clustering can be summarized into three major topic themes, 

cognition (in blue, green, and red), environment (in yellow, aqua, and green), and mediating and 

confounding factors (in blue and purple) such as “age”, “gender” and “depression.” Second, the 

landscapes of keywords in Figure 2b-2d depict the evolution of the topics in terms of cognition 

and IEQ. To better quantify the results displayed in the figure, we summarized common topics 

sorted on the basis of occurrence frequency during different periods in Table 2 that constitutes a 

basis for Figure 2b-2d to further reveal the evolvement of the research field . Topics such as 

“sound”, “recognition”, “light”, “speech”, and “noise” emerged during 2011– 2015, while “air 

pollution”, “temperature”, and “mechanical ventilation” have been paid more attention since 

2016. A similar patten has been also observed for cognition, such as new keywords of “reading”, 

“social cognition”, and “language.” In addition to the two patterns, one can observe that music 

related variables frequently appear along with cognition in the literature during each period.
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Figure 2. The number of publications and knowledge landscapes obtained from keyword co-occurrence analysis. a) The temporal 

number distribution of publications (The figure does not display the only paper published before 1958); b) keyword co-occurrence 

network with publications between 1932 and 2010 (n = 3421); c) keyword co-occurrence network with publications between 2011 and 

2015 (n = 2464); d) keyword co-occurrence network with publications between 2016 and 2020 (n = 2956) 
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Table 2. Summary of the most frequently mentioned topics during different periods 

Years   1932~2010   Years   2011~2015   Years   2016~2020  

Items Occurrenc

e 

 Items Occurrenc

e 

 Items Occurrenc

e 

music 662  cognition 683  cognition 950 

cognition 585  music 669  music 736 

performance 416  exposure 432  cognitive function 547 

exposure 384  performance 417  exposure 543 

response 325  cognitive function 367  performance 482 

cognitive function 314  age 326  age 397 

perception 273  memory 310  memory 376 

memory 272  response 309  attention 331 

attention 239  perception 267  environment 320 

environment 220  attention 257  perception 306 

disorder 200  environment 257  concentration 236 

language 150  disorder 186  disorder 203 

concentration 145  concentration 165  learning 203 

learning 142  emotion 153  language 184 

emotion 115  language 145  cognitive 

performance 

158 

recognition 106  sound 121  emotion 145 

ventilation 106  adult 113  adult 143 

anxiety 103  cognitive 

performance 

108  air pollution 132 

cognitive impairment 103  cognitive impairment 102  anxiety 124 

depression 103  recognition 100  temperature 112 

texture 102  light 99  cognitive ability 110 

music cognition 96  music cognition 92  depression 110 

dementia 94  anxiety 89  pesticide 101 

cognitive 

performance 

93  speech 88  communication 100 
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rhythm 93  noise 87  view 99 

mood 89  view 86  rhythm 98 

sound 88  pesticide 84  mood 97 

view 88  mood 83  recognition 95 

carbon monoxide 77  texture 82  Alzheimer 93 

pesticide 74  communication 79  mechanical 

ventilation 

89 

Note: The words in bold are emerging items comparing to the previous period. 
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Discussion 

This review has focused on the association between IEQ factors and the five main categories 

of cognitive functioning. The reviewed literature consisted of a mixture of laboratory and field 

work, and both cross-sectional and longitudinal studies. Overall, there is a preponderance of the 

evidence that almost all IEQ factors, including indoor air quality, thermal environment, noise, 

lighting, and non-light visual factors could affect cognitive performance to varying degrees. 

Different IEQ factors can have distinct effects on a specific cognitive function. Likewise, a specific 

IEQ factor may also exert various impacts, if any, on different cognitive functions. We identify 

inconsistency, uncertainties, and confounding factors (such as age, sex, and emotion) in the 

reviewed studies, and point out limitations and future directions. 

Inconsistency, uncertainties, and possible explanations 

Appendix I Tables A2-A6 demonstrate inconsistency and uncertainties in reviewed studies. For 

instance, some experiments indicate that sustained attention is not impaired by aircraft noise 

(Stansfeld et al., 2005) or chronic noise exposure (Lercher et al., 2003), while others (Hygge et al., 

2002; Smith & Miles, 1987) showed that noise does impair both attention and recall. Experimental 

studies of Ref (Allen et al., 2016b) and Ref (X. Zhang et al., 2017b) reported contradictory results 

regarding the effects of elevated CO2 levels on cognitive performance. The research evidence on 

the effects of lighting on problem-solving is contradictory as well. Ref (Knez, 1995) reported the 

‘warm’ white light source at 300 lx illuminance and the ‘cool’ white light source at 1,500 lx 

illuminance to be optimal for subjects’ problem solving. However, no significant effect of lighting 

on problem-solving performance was found by another similar study (Knez & Enmarker, 1998).  

 

We may distill a principled set of sources for the associated variations and inconsistencies that 

we have observed in the assemblage of data. In general, they relate to complexities in the 

environmental exposure, variation in the tasks undertaken as representative of both learning and 

work performance, significant differences between individuals who display that performance, and 

finally methodological barriers to a full and clear exposition of the relationships evaluated.  The 

factors have been illustrated in Figure 3 for the purpose of ease of discourse. Much of the problem 

of inconsistency in results arises as a function of the interaction of these identified influences. 

 

 
 

Figure 3. Potential sources of inconsistency and uncertainties related to environments, tasks, 

and exposed individuals.  

 

From the input conditions composed of the physical environment through the specification of 

the work tasks involved and the variation of the individuals performing such tasks, we can identify 

numerous sources of potential inconsistency. Such sources of variability also emanate from the 

function of feedback loops involved in this process, as well as inherent characteristics and 
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shortfalls in the methods employed to measure response in these varying and disparate sources of 

influence. The three majorly identified categories are the realms of quite disparate scientific 

disciplines with their own conventions and traditions. For instance, memory has been assessed by 

recall tests (Ailshire & Clarke, 2015), serial-digit learning tests (J.-C. Chen & Schwartz, 2009), 

picture recognition (Lan et al., 2009a), digit span tasks (Lan et al., 2011b; F. Zhang et al., 2017; F. 

Zhang & Dear, 2017), interviews through telephones (Ailshire & Crimmins, 2014b), 

electroencephalography (EEG) (Nayak et al., 2018), and functional magnetic resonance imaging 

(fMRI) (Wong et al., 2009). In a review, Zhang and colleagues (F. Zhang et al., 2019) summarized 

three common approaches to assess cognitive load/performance. These are primary tasks, 

subjective perception, and physiological responses (Hancock & Matthews, 2019). They pointed 

out that findings from these three approaches do not always agree with each other when applied 

concurrently. In itself, this can lead to conflicting results in Appendix I Tables A2-A6. Another 

source of inconsistencies can be exemplified by different ranges of values of the investigated IEQ 

factors. According to the extended-U model (Hancock, 1989; Hancock & Ganey, 2003), people 

can maintain a stable level of performance over a broad range of environmental stress levels. If the 

investigated experimental conditions are within this central plateau area, no performance change 

might be anticipated. It is, therefore,  unlikely to find any significant relationship between the 

environmental factor and cognitive function. However, if the investigated range of environmental 

stress levels spans beyond this near-optimum range, a significant change of performance may be 

identified. For example, Ref (F. Zhang et al., 2017) did not find any significant difference in 

reasoning skills under two temperature conditions of 22 °C and 25 °C. However, a significant 

reduction in reasoning was found when the temperature was increased to 30 °C by another similar 

study (Lan et al., 2011b). 

 

The effects of possible mediators, moderators, confounders, and covariates cannot be ignored 

as well, such as skill level, emotion, age, gender (Knez & Kers, 2000b), personal attitude, mood, 

past events (Torresin et al., 2018), and emotion. Previous studies have revealed that performers’ 

skill levels significantly mediate the influences of environmental stress on cognitive function (Choi 

et al., 2014; Gaoua, 2010; Murphy et al., 2000). Performers with higher skill levels are less 

susceptible to performance decrements under environmental stress. In addition, emotion has a 

mediating effect on cognitive performance [173, 247]. For instance, cognitive performance was 

negatively affected by heat, partly because people were less motivated when feeling uncomfortable 

(Cui et al., 2013a). Age is also a confounding variable. Aging can degrade the sensory and 

processing functions (Murphy et al., 2000). Compared to young adults, older adults require a 

higher-level of illuminance or thermal comfort to maintain the same attention and perception 

performance [12, 212]. Age influences speech perception in noise conditions (Wong et al., 2009). 

Furthermore, the effects of participants' gender have become manifest in many associated aspects 

between IEQ and cognitive functions. For example, girls focused much more on a task than boys 

in experiments with uncomfortable conditions (Mazon, 2014; Ussher, 1992). Males showed better 

performance on an abstract cognitive task (Ussher, 1992) and performed significantly better than 

females in problem solving using an embedded figure task (Knez & Enmarker, 1998). We 

discussed in more detail the primary sources of inconsistency (illustrated in Figure 3) in Appendix 

II. 

Limitations of the present review 

We categorized IEQ factors and cognitive functions according to the terminology in the 

reviewed studies. Some performance tests require multiple cognitive functions and thus are 
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difficult to map into the categories, such as addition, multiplication, and typing. Problem-solving 

skills involve both attention and memory. Furthermore, the present review does not include the 

entire spectrum of cognition, partially because there is little research identified regarding social 

cognition, visuospatial functions, or motor skills when considering the influence of IEQ factors. 

Also, many studies investigated more than one IEQ and/or cognitive factors, thus could carry more 

weights in the conclusions of the current analysis. Moreover, some keywords identified in the 

keyword co-occurrence analysis may not necessarily reflect the exact context of cognition. For 

instance, “attention” is often used in the phrase of “pay attention to.”  Last, this review does not 

include studies in languages other than English. 

Recommendation for future research  

In addition to the substantial inconsistency in terms of the association between IEQ and 

cognition, existing literature lacks sufficient and granular evidence to present a comprehensive 

understanding of the underlying mechanism. First, most studies applied the cross-sectional 

approach. The consequences of long-term exposure to poor indoor environmental quality thus 

warrant further research. Second, most existing studies focus on static environments, while 

dynamic physical environments are rarely explored, especially when alliesthesia (Dear, 2011) is 

experienced by occupants. Any environmental stimulus that helps to offset the load on the thermo-

regulatory system will be pleasantly perceived, and thus can potentially be used to preserve 

cognitive functions (F. Zhang et al., 2019). Future research could use physiopsychological sensors, 

such as electroencephalogram (EEG), functional magnetic resonance imaging (fMRI) as well as 

functional near-infrared spectroscopy (fNIRs) to respond to this challenge. Third, the inherent 

overlap between different cognitive functions, interaction effects of IEQ factors (Torresin et al., 

2018), and mediating effects of other factors (e.g., emotion, age, and gender) imply that future 

research should further decompose each category of IEQ and cognition, by documenting values of 

all confounding or mediating variables. Otherwise, the true effects could be masked by these 

diverse influences. 

 

In addition, the contribution of some factors remains missing in the literature, e.g. there is 

almost no research on how indoor microorganisms such as fungi or molds affect cognition. 

Research has also revealed that physical activity level could be associated with cognitive 

capabilities (Esteban-Cornejo et al., 2015). Would an office worker with a standing or treadmill 

desk have better cognitive function than his/her sedentary colleagues in the same office? More 

importantly, even though we may possess a number of dose-response nomograms for the 

association between IEQ and cognition, we still need to reference underlying theories and 

associated modeling and simulation to articulate and complete the panoply of empirical results that 

we do possess, and which have been discussed in this present review. 

 

Albeit any researcher has the flexibility to decide their measurement approach for cognitive 

performance, it is always worth considering in the experimental design how to compare results 

with previous studies.  Existing studies have been conducted mostly in isolated communities with 

significantly distinctive measurement protocols to quantify the indoor environment and/or 

cognition. Hence, the intrinsic complexity of the IEQ-cognition-causality warrants 

multidisciplinary endeavors in developing a unified framework or protocol to permit the synthesis 

of “localized” findings. Evidently, such endeavors might involve stakeholders in education 

research, social behavior, psychology, building science, and medical or health science. 
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Summary 

This review has examined the effects of indoor environmental quality (IEQ) on cognition that 

are documented in a broad range of laboratory and field studies. In this work, IEQ in the literature 

consists of five major categories, i.e., indoor air quality, thermal environment, noise, lighting, and 

non-light visual factors. The reviewed cognitive functions consist of attention, perception, memory, 

language function, and higher order cognitive skills. Thermal environment and noise are the most 

studied IEQ factors, while memory and higher order cognitive skills are the most investigated 

cognitive functions in the literature based on the manual review.  

 

In general, the reviewed studies demonstrate that poor IEQ is associated with reduced cognitive 

performance. However, the effects of a specific IEQ factor on different cognitive functions are 

disparate. Inconsistency and uncertainties have been found, possibly owning to distinct assessment 

approaches of cognition, different ranges of values of the investigated IEQ factors in the research 

design, and ignored confounding or mediating variables. Other variables associated with 

environments, tasks, and occupants could potentially contribute as well.  

 

The keyword co-occurrence analysis of 8,133 studies can work alongside and supplement the 

conventional manual review to understand the complex network of IEQ and cognitive functions. 

The findings suggest an exponential growth of studies and emerging topics related to the 

association between IEQ factors and cognitive functions.  

 

Future studies should improve the temporal granularity of the associations between IEQ and 

cognition, especially when advanced psychophysiological sensing is available. Also, further 

research needs to refine the categories of IEQ and cognition, take confounding or mediating factors 

into consideration, and further promote interdisciplinary collaboration. 
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Appendix I 

Table A1. Tasks or methods to assess different cognitive functions 

Cognitive function Tasks 

Attention 

General attention* 

Stroop task, Serial-digit learning test, d2-test, Corners’ 

Continuous Performance test, Standard Toulouse Pieron 

questionnaire, Feature match test, Cursor positioning test, 

Visual search task, Memory-load search task, Curriculum-based 

measurement, Konzentrations-Leistungs test, Zahlen-

Verbindungs test, Necker cube control Test, Symbol digit 

modalities test, Norwegian version of the reading span test, 

Double trouble test 

Sustained 

attention 

Bourdon test, Toulouse-Pieron test, Psychomotor vigilance 

test, Chu attention test, Symbol-digit substitution test (SDST), 

Directed attention Symbol digit modalities test (SDMT) 

Perception 

Acoustic 

perception 

Questionnaire related to the environment 

Visual perception 

Picture recognition test, Stroop test, Visual search test, 

Pairing test, Questionnaire related to visual annoyance, Color 

recognition tasks 

Memory 

General memory* Picture recognition 

Short-term 

memory 

Serial-digit learning test, Word recall test, Digit span tests, 

Code substitution and running memory test 

Long-term 

memory 

Memory typing test, Text recalling test 

Working memory 

Subtraction test, Memory span test, 2-Back test, 2-Digit 

visual addition/subtraction test, Forward digit span test, 

Computerized test, Visual learning test, Spatial span task, Code 

substitution, Digit span tests, Operation span task, N-back test, 

Token search test 

Episodic memory 

Telephone interview, The Consortium to Establish a 

Registry for Alzheimer's Disease-Neuropsychological 

Assessment Battery, Child memory scale  

Language 

function 

Listening 

comprehension 

Questionnaire related to instruction 

Reading 

comprehension 

Proof-reading test, Suffolk reading scale, Oral reading 

fluency test, SAT comprehension test 

Speech 

comprehension 

Speech test, fMRI test, Identification of words and sentence 

comprehension, Banford-Kowal-Bench test 

Higher 

order 

cognitive 

skills 

General higher 

order cognitive skills* 

CNS Vital signs computerized cognitive test, Cognition test 

CERAD-Plus includes the Mini-Mental State Examination 

(MMSE), Addition tasks, Attention Deficit Disorder 

Questionnaire 

Reaction time† 
Simple reaction time test, Redirection test, Four choice serial 

test, Stroop test, Visual signals choice test, Choice reaction time 

Reasoning 

Alice Heim 4-I test, Logic problem test, Overlapping test, 

Grammatical reasoning, Verbal reasoning, Odd-One-Out task, 

Event sequence and graphic abstracting task 

Decision making Computer-based test 
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Problem solving Embedded-figure task, She-polish test, Addition task,  

Planning Spatial planning test, Spatial search task 

Creativity 
Creative thinking test, Remote associates test, Idea-

generation task 

Note: Some instruments, such as the Stroop test, can assess more than one cognitive function. 
*  A specific cognition was not explicitly described in the literature. 

† Reaction time is the time elapsed between the onset of a stimulus and a response to it (Colman, 

2009). It consists of simple reaction time, recognition reaction time, and cognitive reaction time. 

Since it could involve multiple cognitive skills, such as information processing, reasoning, and 

psychosensory (Badau et al., 2018), we grouped reaction time together with higher order cognitive 

skills. 
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Table A2. Summary of IEQ on attention 
R

efere

nce 

IEQ vs 

Cognition  

Sample size & environmental 

conditions 

Measures of cognitive 

functions 

Major findings Signifi

cance 

level⸸ 

(C

oley 

et al., 

2007a

) 

IAQ  

vs 

Attention  

 

18 school children (age between 

10 and 11). 

CO2 concentration controlled by 

opening or closing the window to 

regulate the ventilation; the Mean 

CO2 concentration is ranged from 

690 ppm to 2909 ppm. 

Cognitive Drug Researcher 

(CDR) computerized cognitive 

assessment system to measure the 

subjects’ attention level 

The increased levels of CO2 led to a 

decrement in the power of attention of 

approximately 5% (p = 0.004).  

2 

(J.

-C. 

Chen 

& 

Schw

artz, 

2009) 

IAQ  

vs 

Attention 

1764 adults (age around 37.5); 

Estimated exposure levels to PM10 

and ozone-based on ambient 

concentrations in the EPA database. 

Serial-digit learning test 

(SDLT) for testing attention. 

Symbol-digit substitution test 

(SDST) about coding ability 

measures an individual’s sustained 

attention.   

Increased ozone exposure was correlated 

with reduced performance in the SDLT test. 

Each 10-ppb increase in annual ozone was 

associated with an increased in SDST and 

SDLT scores by 0.16 and 0.56, which was 

equal to 3.5 and 5.3 years of aging-related 

decline in attention function.  

N/A 

(T

warde

lla et 

al., 

2012b

) 

IAQ  

vs 

Concentration 

417 school students in total in 

20 classrooms with mechanical 

ventilation systems; Median CO2 

concentration of 1045 ppm and 

2115 ppm. 

 

d2-test: a paper-and-pencil test 

with 14 rows of characters to 

distinguish; The total number of 

characters processed for handling 

speed and accuracy; The number 

of correctly marked target 

characters minus incorrectly 

marked distractor characters for 

concentration assessment. 

No significant effect of experimental 

condition on concentration performance was 

found. No significant effect of experimental 

state or median CO2 level on the “total number 

of characters processed” could be observed. 

The concentration performance was 

decreased by 1.11 points at 2115 ppm of CO2 

in comparison with 1045 ppm. Concentration 

performance, the total number of characters 

processed, and total errors changed less than 

1.7%.  

0 

(C

hiu et 

al., 

2013) 

IAQ  

vs 

Attention 

174 children (46.5% males, 

age from 7 to 14). 

Estimate the children’s lifetime 

exposure to black carbon.  

Conners’ Continuous 

Performance Test (CPT) for the 

task-based computerized 

assessment of attention disorders 

and neurological functioning. 

Exposure to black carbon was associated 

with increased commission errors and slower 

hit reaction time (HRT). The associations 

between BC levels and attention parameters 

were significantly different (p < 0.05) 

between the middle two BC quartiles and the 

first BC quartile.  But its association with 

omission errors was not statistically 

significant. Boys were more susceptible than 

1 
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girls to potential effects of traffic-related air 

pollution in some attention domains. 

(X

. 

Zhan

g et 

al., 

2017b

) 

IAQ  

vs 

Attention 

25 students (40% males, 

age around 23). 

Five conditions mixed with 

three CO2 levels (500 ppm, 1000 

ppm, and 3000 ppm) and different 

bio-effluent concentrations. 

d2 test:  a paper-and-pencil test 

with 14 rows of characters needed 

to be distinguished. 

No statistically significant effects on 

perceived air quality and attention 

performance were found by increasing CO2 

exposure; Exposure to bio-effluent reduced 

perceived air quality, increased the intensity 

of reported headache, fatigue, sleepiness, and 

difficulty in thinking, reduced speed of 

addition, and decreased the number of correct 

links made in the cue-utilization test. 

0 

(S

now 

et al., 

2019) 

IAQ  

vs 

Attention 

31 participants were divided 

into four groups.  

CO2 concentration in the study 

room was controlled at a normal 

condition (700 ppm) and a high 

condition (2700 ppm). 

Shifting attention tasks and 

Stroop test were used for the 

attention test. 

No effect of CO2 on reaction times, 

complex attention, simple attention, sustained 

attention was found. 

0 

(L

an et 

al., 

2009a

) 

Thermal 

environment 

vs 

Attention 

24 participants (50% males, 

mean age 25 years). 

Four temperatures, 19℃, 24℃, 

27℃, and 32℃ were considered in 

an air-conditioned office with eight 

fluorescent lamps. 

Letter search tests, memory 

span tests, and picture recognition 

used in this study were all 

associated with subjects’ attention 

performance. 

No significant effect of temperature on the 

attention performance was observed in these 

three tests from both response time and 

results’ accuracy.  

0 

(L

an et 

al., 

2011b

) 

 

Thermal 

environment 

vs  

Attention 

12 subjects (6 males, average 

age of 23 years) divided into two 

groups. One group was exposed to 

different temperatures in a 

sequence of 22-30-30-22 °C, while 

the other group 30-22-22-30 °C. 

Computerized test: Stroop - a 

test of attentional vitality. 

The Stroop test performance significantly 

(p = 0.01) decreased at 30 °C compared with 

22 °C when feedback for the test was 

provided. The performance of the same test 

was not significantly different (p = 0.09) 

between the two temperatures without 

feedback provided.  

1 

(S

chiav

on et 

al., 

2017a

) 

Thermal 

environment 

vs 

attention 

Attention 

56 subjects (28 males, average 

age of 24.7 years). 

The temperature changed in 

order at 26 ℃, then 29 ℃, then 

23 ℃. The effect of elevated air 

movement with an occupant-

controlled fan was investigated for 

26 ℃ and 29 ℃.  

Stroop test was used to 

measure the ability to switch 

attention in different tasks. 

Using a fan did not significantly affect the 

performance of a Stroop test at 26 ℃ (p = 

0.12) or 29 ℃ (p = 0.37). 

0 
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(L

an et 

al., 

n.d.) 

Thermal 

environment 

vs  

Attention 

12 subjects (6 males, 18 to 30 

years old) divided into two groups. 

They were exposed to the 

environment with different 

temperatures (23 °C and 27 °C). 

Computerized test: Stroop - a 

test of attentional vitality. 

The Stroop test performance significantly 

(p = 0.04) decreased at 27 °C compared with 

23 °C when there was no feedback. The 

performance of the same test was not 

significantly different (p = 0.17) between the 

two temperatures with feedback provided. 

1 

(H

u & 

Maed

a, 

2020) 

Thermal 

environment 

vs 

Sustain 

attention 

10 students divided into two 

groups.  

They are exposed to six 

combinations of clothing and air 

temperature (16 °C, 26 °C, and 

36 °C) 

The Bourdon test was used to 

test the subjects’ sustained 

attention.  

From the result of the Bourdon test, no 

significant effects were observed on the 

change rate of performance from pre-test to 

post-test. However, the results indicated a 

higher relative speed (p < .05) and a higher 

relative overall performance (p < .05) of 

sustained attention at 16 °C than 26 °C for the 

0.3 clo clothing condition. No significance 

was found for 0.9 clo regarding the two 

metrics. 

1 

(

Mazo

n, 

2014) 

 

Thermal 

environment 

vs 

Attention 

117 high school students (aged 

from 12 to 18 years).  

One experiment in summer 

(33.6 °C) and the other in autumn 

(20.3 °C). 

Standard Toulouse Pieron 

questionnaire to measure the 

attention index. 

The attention index decreased under 

thermally uncomfortable conditions. The 

younger the subjects were, the more reduction 

of the attention index was in thermal 

discomfort situations. 

N/A 

(F

. 

Zhan

g et 

al., 

2017) 

 

Thermal 

environment 

vs 

Concentra

tion 

26 office workers (46% males, 

73% between 31 and 50 years old, 

29% under 30 years old); 

Temperature conditions: 22 ℃ and 

25℃. 

Feature match test to measure 

concentration. 

The test scores for the concentration test 

were approximately 137 at 25℃ and 128 at 

22℃. No statistical difference was found. 

0 

(F

. 

Zhan

g & 

Dear, 

2017) 

 

Thermal 

environment 

vs 

Attention 

and 

concentration 

56 subjects (28 males, mean age 

of 25 years). 

The chamber conditions were 

adjusted by the air volume system 

from 16℃ to 38 ℃. The room 

temperature was cycled at eight 

different conditions. Illumination 

was fixed at 500 lx and the 

background noise was 40 ± 5 dBA.  

Attention: feature match test 

by comparing particular features 

of various shape images to one 

another and indicating whether the 

contents were identical. 

Concentration: rotations test. 

Concentration performance was related to 

the rate of temperature change. Concentration 

performance was elevated when the 

temperature rose faster (Experiment 1 with 

cooler cycling conditions). Concentration 

performance had a nearly significant, positive 

linear relationship with centered air 

temperature (Experiment 2 with warmer 

cycling conditions, p=0.070). 

0 

(

Maul

a et 

Thermal 

environment 

vs 

33 students (17 males, aged 

between 19 and 30 years). 

Attention performance was 

measured by Star counting task 

and vigilance task. 

There is no significant improvement in 

speed (p = 0.84) and accuracy (p = 0.67) of the 

Star counting task.  

0 
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al., 

2016) 

Attention The participants needed to 

finish the designed task in two 

temperature conditions (23 °C and 

29 °C). 

There is also no significant improvement 

shown in speed (p = 0.2) and accuracy (p = 

0.82) of the vigilance task. 

(T

anabe 

& 

Nishi

hara, 

2004) 

Thermal 

environment 

vs  

Attention 

20 males and 20 females at 

college-age experienced three 

operative temperatures: 25.5 °C, 

28 °C, and 33 °C.  

A cursor positioning test was 

used to measure attention 

performance. 

No significant difference in positioning 

performance was found in three temperature 

conditions for both females and males. 

0 

(

Mohe

bian 

et al., 

2018b

) 

 

Thermal 

environment 

vs  

Attention 

33 students (17 males, mean age 

of 22.1 ± 2.3 years for all 

participants); Temperatures: 22 and 

37 ℃; Lighting levels: 200, 500, 

and 1500 lux with the same color 

temperature 4500 ℃. 

Attention level was measured 

with Conners continuous 

performance test (CPT), while 

reaction time (RT) was measured 

by an RT meter. The attention rate 

was determined by measuring RT 

and calculating the number of 

errors. 

For the same lighting condition, an 

increase in temperature caused an increase in 

commission error, omission error, response 

time, and correct response (p < 0.05) 

2 

(L

ercher 

et al., 

2003) 

 

Noise  

vs 

Attention 

123 primary school children 

(54% males; mean age of 9.7 

years). 

The two noise levels: 46.1 Ldn 

and 62 Ldn (Ldn is a weighted, 24-

hour average for community noise 

exposure). 

Visual search task for attention 

test. Children circled the fish 

facing the opposite direction for 2 

minutes.   

 

No effects of chronic noise exposure on 

the attention performance test, t(121) < 1.0 

(Mquiet = 21.60 and Mnoisy = 21.55 number of 

hits; maximum 

= 23). 

0 

(H

ygge 

& 

Knez, 

2001b

) 

 

Noise  

vs 

Attention 

128 high school students (50% 

male, 18 to 19 years). 

The experiment was run in an 

off-white chamber; Noise: 38 and 

58 dBA; Temperature: 21 ℃ and 

27 ℃; Illuminance: 300 and 1500 

lx. 

Memory-load search task: 

searched random capital letters 

and recorded the score of accuracy 

and speed. 

The noise accelerated working attention 

but reduced accuracy (p = 0.035). 

2 

(S

tansfe

ld et 

al., 

2005) 

 

Noise  

vs 

Sustained 

attention 

2844 students (age from 9 to 10 

years) from three countries. 

Aircraft and road traffic noises 

were recorded in the classroom and 

outdoors using microphones at the 

time of testing of cognitive 

functions. 

Sustained attention was 

measured by adapting the 

Toulouse Pieron test for classroom 

use. 

Neither aircraft noise nor road traffic noise 

affected sustained attention. 

 

0 
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(

Wong 

et al., 

2009) 

 

Noise  

vs 

Attention 

24 adults (12 youngers with the 

mean age of 21.75, and 12 older 

with the mean age of 67.5); Signal-

to-noise ratios (SNRs) of stimuli: -

5 dB, 20 dB, and quiet condition. 

The three sets of stimuli were then 

normalized to 70 dBA. 

Younger and older subjects 

identified single words in quiet 

and two noise conditions (SNR 20 

and -5 dB). The cortical area for 

attention was measured by fMRI.  

The fMRI results showed reduced 

activation in the auditory cortex but an 

increase in attention-related cortical areas 

(prefrontal and precuneus regions) in older 

subjects, especially in the SNR −5 condition. 

N/A 

(H

ygge 

et al., 

2002) 

 

Noise  

vs 

Attention 

326 children (mean age of 10.4 

years) in four groups.  

Experimental groups were 

comprised of children exposed to 

aircraft noise. For the noise group, 

65 children were in the old airport 

(noise changed from 59 to 55 dBA). 

111 in the new airport (noise 

changed from 53 to 55 dBA). 

Control groups with little 

exposure to aircraft noise. 43 in the 

old-airport, no-noise group (noise 

changed from 68 to 54 dBA); 107 in 

the new-airport, no noise group 

(noise changed from 53 to 62 dBA). 

Visual search and reaction 

time were used to test the general 

attention in this study. Visual 

search was performed by the 

embedded-figure tasks. The 

reaction was executed by pressing 

the button. 

For the visual search task, there were no 

significant interactions involving chronic 

aircraft noise over time. 

For the reaction time, performance in 

acute noise or no noise condition did not 

qualify the interaction. The aircraft-noise 

group at the old airport was slower than its 

control group (p = 0.026). 

But at the new airport, the aircraft-noise 

group was slower than the 
no-aircraft-noise group (p = 0.039). 

1 

(

Mott 

et al., 

2012b

) 

Lighting  

vs 

Concentra

tion 

84 students (age from 7 to 8 

years). Two lighting conditions: 

focus lighting (1000 lux, color 

temperature 6500 K), and normal 

lighting (500 lux, color temperature 

3500 K). 

d2 test was used for measuring 

processing speed, rule 

compliance, and concentration 

performance. 

No lighting effects were found on either 

motivation or concentration.  

0 

(K

retsch

mer et 

al., 

2012b

) 

 

Lighting  

vs 

Sustained 

attention 

32 participants (16 males, age 

from 48 to 68 years). 

BL (Bright light) group (n = 16) 

and RL (Room light) group (n = 16) 

worked under standardized 

conditions over three consecutive 

simulated night shifts. RL group 

worked at 300 lux all nights, BL 

group was exposed to a 4-hour 

moving light (3000 lux) and 

300 lux. 

Psychomotor vigilance test 

(PVT) to test reaction time for 

sustained attention. 

Konzentrations-Leistungs-

Test (KLT-R) for mental 

concentration. 

Exposure to bright light at night reduced 

error rates for a concentration performance 

task. The mean relative frequency of false 

responses of the concentration performance 

task was significantly smaller under bright 

light than under room light (p < 0.05). 

However, the performance (e.g., reaction 

time) of a sustained attention task was not 

significantly affected by lighting conditions. 

(p = 0.25). 

1 
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(K

eis et 

al., 

2014a

) 

 

Lighting  

vs 

Concentra

tion 

58 students (age under 18 

years). Two light color 

temperatures, high (5500 K) vs low 

(3000 – 3500 K). Two luminance 

distributions, indirect lighting 

bounced back from the white 

ceiling creating large-area lighting 

source vs purely direct lighting. 

d2 test for concentration; 

German Zahlen-Verbindungs-Test 

(ZVT) for speed of cognitive 

processing.  

Students showed faster cognitive 

processing speed and better concentration 

with blue-enriched white lighting with a high 

color temperature (5500 K) (p < 0.001).  

2 

(H

uang 

et al., 

2015b

) 

 

Lighting  

vs 

Sustained 

attention 

210 undergraduate students 

(50% males; age from 18 to 23 

years). 

Three correlated color 

temperatures (CCT): 2700 K, 4300 

K, and 6500 K while maintaining 

the same illuminance of 500 lux. 

Chu Attention test for focused 

and sustained attention. 

CCTs affected attention. In specific, the 

4300 K condition resulted in significantly 

better focused and sustained attention (for 

males, p = 0.302. for females, p = 0.049).  

1 

(

Mohe

bian 

et al., 

2018b

) 

 

Lighting  

vs  

Attention 

33 students (17 males, mean age 

of 22.1 ± 2.3 years). 

Temperatures: 22 and 37 ℃; 

lighting levels: 200, 500, and 1500 

lux with the same color temperature 

4500 ℃. 

Attention level was measured 

with Conners continuous 

performance test (CPT), while 

reaction time (RT) was measured 

by an RT meter (not described in 

the original paper). The attention 

rate was determined by measuring 

RT and calculating the number of 

errors. 

In the 22 ℃ environment, an increase in 

lighting levels caused a decrease in 

commission error, omission error, response 

time, but a decrease of correct response (p < 

0.05). In the or 37 ℃ environment, an increase 

in lighting levels caused an increase in 

commission error, omission error, the 

response time (p < 0.05).  

2 

(K

nez, 

2014) 

Lighting  

vs 

Attention 

132 subjects aged from 18 to 44 

(66 females, 66 males, the mean age 

is 26). 

Dimmable, electronic, high-

frequency ballasts (32000 Hz), and 

conventional, magnetic, low-

frequency ballasts (50 Hz) Three 

types of fluorescent tube: 3000K, 

4000K, and 5500K. 

Memory-loaded search task 

was used to test the subjects’ 

attention performance. 

No effect was found on attention 

performance by the lighting conditions. 

0 
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(T

ennes

sen & 

Cimp

rich, 

1995) 

Non-light 

visual factors 

vs 

Direct 

attention 

72 undergraduate students 

(41.6% male, age from 18 to 25). 

Four groups in different 

dormitories with views ranging 

from natural to all buildings.  

The capacity to direct attention 

was measured by the Necker Cube 

Control (NCPC) Test and Symbol 

Digit Modalities Test (SDMT) in a 

complex task. The Digit span test 

was a standardized clinical 

measure of attention in this study. 

Subjects who had a natural view scored 

significantly better on the SDMT which was 

used for directed attention. The nature view 

group scored significantly higher in the 

SDMT (p < 0.05). In the NCPC test, the 

difference of attention score in various views 

was not significant. The Digit span test also 

did not indicate the significant difference in 

attention performance in different view 

conditions. 

1 

(R

aanaa

s et 

al., 

2011) 

Non-light 

visual factors 

vs 

Attention 

34 students (12 males, average 

age of 24 years). 

Participants were randomly 

assigned to one of two conditions: 

1) an office setting with four indoor 

plants, both flowering and foliage, 

or 2) the same setting without 

plants. 

Attention capacity was 

assessed three times by using a 

Norwegian version of the reading 

span test. 

The study confirmed that natural elements 

can affect cognitive performance in an office 

work environment. However, the results 

varied from the repeated reading span test. 

The performance was similar in the first and 

second condition (p = 0.98). But a moderate 

difference in the different views happened in 

the third condition (p = 0.08). 

1 

(F

isher 

et al., 

2014) 

Non-light 

visual factors 

vs 

Focused 

attention 

24 kindergarten students (12 

boys and 12 girls, mean age of 5.37 

years). 

Two conditions: 1) decorated 

classroom with science posters, 

maps, the children’s own artwork as 

a visual distraction, and 2) sparse 

classroom condition with all 

materials irrelevant to ongoing 

instruction removed. 

Frequency and duration of off-

task behaviors of a child for 

attention.  

Classroom visual environment can affect 

attention and thereby affect learning in 

kindergarten children. Children’s learning 

gains were higher in the sparse-classroom 

condition. The overall percentage of 

instructional time spent off-task was 

significantly greater when children were in 

the decorated classroom (M = 38.58%, SD = 

10.49) than when they were in the sparse 

classroom (M = 28.42%, SD = 13.19) (p = 

0.015). Also, learning scores were higher in 

the sparse-classroom condition (M = 55%) 

than in the decorated-classroom condition (M 

= 42%) (p = 0.011). 

2 

(A

L‐

Ayas

h et 

al., 

2016) 

Non-light 

visual factors 

vs 

Attention 

24 students (45.8% male, age 

from 20 to 38 years). 

In a simulated study 

environment, the color of a Corflute 

panel on a wall in front of the 

subjects’ desk was manipulated 

with six options (vivid red, vivid 

The participants were asked to 

read a passage and then 

they answered seven multiple-

choice questions. These tests were 

adopted from the SAT 

Comprehension Test 

website. 

Pale yellow had positive effects on 

participants’ attention on reading tasks and 

motivated them to study, while vivid yellow 

impaired participants’ attention.  

N/A 
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blue, vivid yellow, pale red, pale 

blue, and pale yellow). 

(K

o et 

al., 

2020) 

Non-light 

visual factors 

vs 

Attention 

86 participants (43 males, old 

than 18 years old). 

The office-like test room had 

two views which included one 

without window view and window 

view shaded by large overhangs and 

trees in from 

The attention performance was 

tested by the Double Trouble test. 

The participants’ score of concentration 

tests were 5% higher in window condition 

than the windowless condition (p = 0.03) 

2 

⸸Significance level labeled by authors (0: no statistical association between cognition and tested IEQ (p > 0.05); 1: mixed statistical association for varying 

levels in different performance tests and/or participant groups; 2: the statistical significance of consistently positive or negative statistical association (p < 0.05) 

between cognition and tested IEQ; N/A: not labeled because no reported p-value from the study) 
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Table A3. Summary of IEQ on perception 
R

efere

nce 

IEQ vs 

Cognition  

Sample size & environmental 

conditions 

Measures of cognitive 

functions 

Major findings Signifi

cance 

level⸸ 

(C

oley 

et al., 

2007a

) 

IAQ  

vs 

Visual 

perception 

 

18 school children. 

CO2 concentration controlled by 

opening or closing the window to 

regulate the ventilation; Mean CO2 

concentration from 690 ppm to 2909 

ppm. 

A picture recognition test was 

used to test the subjects’ visual 

perception. 

The increased levels of CO2 led to a 

decrement of accuracy (p = 0.72) and an 

increasement of reaction time in the 

visual perception test (p = 0.15). 

0 

(Z

hu et 

al., 

2020) 

Thermal 

environment  

vs 

Visual 

perception 

32 students (16 males). 

The test room was controlled 

with four temperature conditions: 

26 °C, 30 °C, 33 °C, and 37 °C and 

two relative humidity levels. 

Stroop test was used to 

measure visual perception. 

The Stroop test result showed the best 

performance (accuracy and speed) when 

the temperature was 30 °C. The 

performance was generally better at 50% 

than 70% of relative humidity. 

N/A 

(L

an & 

Lian, 

2009) 

Thermal 

environment  

vs 

Perceptio

n 

21 participants (6 females, 15 

males aged from 18 to 20 years old). 

They needed to finish tasks in 

three different indoor air 

temperatures (17 °C, 21 °C, and 

28 °C) 

A letter search was used to 

measure the subjects’ visual 

search. 

The overlapping test was used 

to test the subjects’ spatial 

orientation. 

The carryover effects were 

corrected for the measured 

performance. 

The visual search performance had 

the highest correct ratio when the 

temperature was 17 °C (p = 0.06). But the 

response time was the shortest when the 

temperature was 21 °C (p = 0.46). 

The overlapping performance had the 

highest correct ratio (p = 0.15) and the 

shortest response time when the 

temperature is 21 °C (p = 0.09). 

0 

(X

. 

Wang 

et al., 

2019) 

Thermal 

environment  

vs 

Visual 

perception 

15 students (ages between 22 and 

33). 

In the climate chamber, the 

temperature was set as slightly cool 

(21.7 °C), neutral (25.2 °C), and 

slightly warm (28.6 °C), 

A visual search task was used 

to measure subjects’ visual 

perception ability. It requires the 

subject to rapidly and accurately 

search for the target object. 

The result table shows the subjects' 

visual perception were significantly 

different in the cool and warm condition 

(p < 0.05). But there was not too much 

difference for the subjects in neutral with 

the other two conditions.  

1 

(H

ill & 

Bruce

, 

1996) 

Lighting  

vs 

Visual 

perception 

12 observers. 

Facial recognition with top 

lighting vs bottom lighting.  

The accuracy of matching the 

view and the objects; Observers 

were presented with pairs of faces 

and had to decide if they were of 

the same or different people, that 

is, whether the faces were the same 

or different in shape. 

Top-lit three-quarter and full-face 

was best for male items (p < 0.05). But no 

difference between the top and bottom 

lighting directions for profile views. 

There were no significant effects of light 

or view from any direction for female 

items. 

1 
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(J.

-H. 

Lee et 

al., 

2014) 

Lighting  

vs 

Visual 

perception 

20 students (9 males, mean age of 

25). 

Illuminance level: 500 lx and 750 

lx; Light color temperature: 3000 K, 

4000 K, and 6500 K. 

Questionnaires for visual 

annoyance including annoyance 

with tasks, visual satisfaction with 

a light color, and visual 

distraction. Computer and paper-

based reading tasks to identify 

letters ‘eul’ and ‘reul’ in the 

paragraphs.  

Under 500 lx condition, subjects 

preferred the color of the 6500 K for 

better visual perception. Occupants 

preferred 500 lx under the 6500 K 

condition, and 500 lx and 750 lx under the 

4,000 K condition, reporting better visual 

satisfaction when performing office 

tasks. 

N/A 

(H

awes 

et al., 

2012b

) 

Lighting  

vs 

Visual 

perception 

24 subjects (20 male and 4 

female) mean age is 21.46 years. 

Four lighting condition was used 

in the test for different lighting 

condition. The average color 

temperature of them are traditional 

fluorescent lighting (3345 K), and 

three LED lighting (4175K, 5448K, 

and 6029K). 

Color recognition tasks 

include the pseudoisochromatic 

plates and the Farnsworth-Munsell 

100 color hue test. 

Visual acuity task was used for 

the subjects to read the entire 

chart. 

In Color task 1, the results did not 

reveal a significant difference in correct 

response in four light condition (p = 

0.89). The time needed to complete the 

Color task 2 is less as the color 

temperature increase (p = 0.02). But the 

error rates of the three conditions did not 

vary significantly (p = 0.29). 

For the visual acuity task, the error 

rates did not reveal a difference as a 

function of lighting condition (p = 0.38). 

1 

⸸Significance level labeled by authors (0: no statistical association between cognition and tested IEQ (p>0.05); 1: mixed statistical association for varying 

levels in different performance tests and/or participant groups; 2: the statistical significance of consistent positive or negative statistical association (p<0.05) 

between cognition and tested IEQ; N/A: not labeled because no reported p-value from the study)
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Table A4. Summary of IEQ on memory 
R

efere

nce 

IEQ vs 

Cognition 

Sample size & environmental 

conditions 

Measures of cognitive 

functions 

Major findings Signifi

cance 

level⸸ 

(J

.-C. 

Chen 

& 

Schw

artz, 

2009) 

IAQ  

vs 

Short 

memory 

 

1764 adults (average age of 37.5 

years. 

Ambient PM10 and ozone 

concentration were retrieved from 

EPA Aerometric Information 

Retrieval system database. 

A simple reaction time test 

(SRTT) measuring motor response 

speed to a visual stimulus; A 

symbol-digit substitution test 

(SDST) for coding ability; and a 

serial-digit learning test (SDLT) 

for attention and short-term 

memory. 

Increased levels of estimated annual ozone 

exposure were correlated with reduced 

performance in the SDLT test. Each 10 ppb 

increase in annual ozone was associated with 

increased SDLT scores by 0.56. 

N/A 

(

X. 

Zhan

g et 

al., 

2017

b) 

IAQ  

vs 

Memory 

25 students (40% males, 

age around 23). 

Five conditions mixed with 

three CO2 levels (500 ppm, 1000 

ppm, and 3000 ppm) and different 

bio-effluent concentrations. 

Digit span memory test which 

needed subjects to recall and 

reproduce the string by sequence. 

No statistically significant effects of CO2 

or bioeffluent concentrations on memory 

performance using the digit span test.  

0 

(

Ailsh

ire & 

Crim

mins, 

2014

b) 

IAQ  

vs 

Episodic 

memory 

13996 old adults (44% males, 

the mean age of 64 years). 

Cross-sectional association 

between residential PM2.5 

concentration and cognitive 

functions. 

Telephone interview for 

cognitive status. Two separate 

components of cognitive functions 

of episodic memory and mental 

status were measured in the 

experiment. 

Older adults had a worse cognitive 

function in the area with higher PM2.5. The 

episodic memory performance was decreased 

as the concentration of PM2.5 rose. Part of the 

results were significant (p < 0.05). 

1 

(

Tonn

e et 

al., 

2014) 

 

IAQ  

vs 

Short-term 

memory  

10308 old adults (mean age 66 

years). 

The annual average 

concentration of PM2.5 and PM10 

from 2003 to 2009. 

Short-term verbal memory was 

measured by a 20-word free-recall 

test in which participants were 

presented a list of 20 1-or-2 

syllable words at 2-second 

intervals and then were asked to 

recall them by writing (in any 

order, within 2 minutes). 

All particle metrics were associated with 

lower scores of memory test performance 

during the 2007–2009. Higher PM2.5 of 1.1 

μg/m3 was associated with a 0.03 5-year 

decline in standardized memory score and a 

0.04 decline when participants remained in 

London between study waves. It did not 

support the hypothesis that traffic-related 

particles were more strongly associated with 

cognitive function than particles from all 

sources. 

N/A 
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(

Ailsh

ire & 

Clark

e, 

2015) 

 

IAQ  

vs 

Working 

memory 

780 old adults (39% males, age 

above 55 years). 

Pollution levels for each 

respondent were calculated based 

on air monitoring data from 

Environmental Protection 

Agency’s Air Quality System 

(AQS) monitoring sites within a 60-

km radius of the respondent’s tract 

centroid. 

Cognitive function was 

assessed with a serial 3’s 

subtraction test to measure 

working memory and recall of the 

date, day of the week, and name of 

the president and vice-president to 

measure orientation. It is an 

assessment abbreviated form of 

the Short Portable Mental Status 

Questionnaire (SPMSQ). 

The subjects living in areas with greater 

exposure to PM2.5 had an error rate of 1.5 

times greater than those exposed to lower 

PM2.5 concentration. The increase in PM2.5 

associated with increased incident rate ratios 

of errors. 

N/A 

(S

now 

et al., 

2019) 

IAQ  

vs 

Working 

memory 

31 participants were divided 

into four groups.  

CO2 concentration in the study 

room was controlled at a normal 

condition (700 ppm) and a high 

condition (2700 ppm). 

Working memory test (third-

party CNS software was used)  

No effects of CO2 on the working memory 

tests were reported. 

0 

(

Cole

y et 

al., 

2007

a) 

IAQ  

vs 

Memory 

18 school children. 

CO2 concentration controlled by 

opening or closing the window to 

regulate the ventilation; Mean CO2 

concentration from 690 ppm to 

2909 ppm. 

The picture recognition task 

was used to measure the subjects’ 

memory performance. 

No significant effects of CO2 on memory 

performance in different CO2 condition (p = 

0.15 for reaction, p = 0.72 for accuracy). 

0 

(S

chiko

wski 

et al., 

2015) 

 

IAQ  

vs 

Semantic 

memory and 

episodic 

memory 

789 elderly women (age around 

55 years). 

Assessment of exposure to 

PM2.5 and nitrogen oxides. 

A cognition test The 

Consortium to Establish a 

Registry for Alzheimer's Disease 

(CERAD)-Plus includes the Mini-

Mental State Examination 

(MMSE).  

Air-pollution was cross-sectionally 

associated with a lower cognitive function. 

NOx showed an association with a decline in 

the CERAD total score. 

N/A 

(

Hygg

e & 

Knez, 

2001

b) 

 

Thermal 

environment 

vs 

Long-term 

recall and 

short-term 

recall 

128 high school students (50% 

males, age of 18 to 19 years). 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office.  

Low-frequency noise: 38 and 58 

dBA; Temperature: 21 ℃ and 

27 ℃; Illuminance: 300 and 1500 

lx. 

Long-term recall: read a seven 

pages text about the ancient 

culture and answered six 

knowledge questions and eighteen 

multiple-choice questions after 

130 min. 

Short-term recall: write down 

all the words they recalled after 

three wordlists were presented on 

a PC-screen.  

Interactions were found between noise and 

heat on the long-term recall of a text, and 

between noise and light on the free recall of 

emotionally toned words.  

Long-term recall: Performance was better 

in low noise environment 38 dBA than in high 

noise 58 dBA when the temperature was 27 ℃ 

(p = 0.016).  

Short-term recall: More words were 

remembered at 21 °C than 27 °C (p = 0.009). 

2 
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(

Wing 

& 

Touc

hston

e, 

1965) 

 

Thermal 

environment 

vs 

Recall 

18 male university students. 

Exposed for 1 hour in the 

chamber at dry bulb/wet bulb 

temperatures of 26.7/17.2 °C, 

43.3/27.8 °C, and 48.9/31.1 °C.  

Recall test of wordlists and 

digit-span tests for short-memory. 

The average recall dropped significantly 

as environmental temperature increased. 

From the results of mean error rate, the recall 

decrement from 43.3/27.8 °C (dry/wet bulb) 

to 48.9/31.1 °C (dry/wet bulb) was 

statistically significant (p < 0.05), but the drop 

of the recall performance between 

26.7/17.2 °C and 43.3/27.8 °C was not 

significant. 

1 

(

Holla

nd et 

al., 

1985) 

 

Thermal 

environment 

vs 

Long-term 

memory and 

short-term 

memory 

20 subjects (50% males, age 

from 20 to 26 years). 

Core body temperature was 

raised to 38.80–39.05 °C within a 

few minutes by immersion in water 

at 41 °C. 

Long-term memory was 

assessed by a test that needs the 

subjects to learn a passage of prose 

containing 20 facts in 3 min and 

then recall it 1 h later. Short-term 

memory was measured by the 

ability to repeat digit spans 

forward and backward. 

A high core temperature did not affect the 

ability to learn new facts by the either free or 

cued recall. It also had no significant effect on 

short-term memory. However, the increase in 

core temperature was associated with a 

significant increase in the speed of the 

performance of the tests and with a significant 

decrease in alertness and an increase in 

irritability. 

N/A 

(

Cui et 

al., 

2013

a) 

Thermal 

environment 

vs 

Long-term 

memory 

36 students (50% males, the 

mean age of 23.3 years). 

Group A (20 subjects) was 

exposed to five air temperatures 

(22 °C, 24 °C, 26 °C, 29 °C, 32 °C), 

while Group B (16 subjects) was 

only exposed to 26℃. 

Memory typing was used as 

simulated office work. According 

to the human cognitive process, 

memory typing belonged to a 

long-term memory task and 

needed a relatively high mental 

demand. 

The optimum temperature range for the 

performance of memory typing in this study 

was between 22 ℃ and 26 ℃. The 

performance of memory typing was a little 

better at 26℃ compared to other conditions.  

The regression results showed that subjects 

had the optimum performance when the 

temperature was 25.8 °C. The performance at 

26 °C was significantly higher than that of 

other temperatures (p < 0.01).  

2 

(

Lan 

et al., 

2009

a) 

 

Thermal 

environment 

vs 

Working 

memory and 

learning 

memory 

24 participants (50% males, 

mean age 25 years). 

Four temperatures, 19℃, 24℃, 

27℃, and 32℃ were considered in 

an air-conditioned office with eight 

fluorescent lamps. 

Picture recognition as the 

visual recognition memory and 

attention task; Memory span test 

for verbal working memory and 

attention; Symbol-digit modalities 

test for learning memory 

assessment. 

No significant effect of temperature on the 

performance of the memory test which was 

observed within the short duration of 

experimental sessions in this study. In 

particular, there was no ideal temperature that 

produced the highest scores of all memory 

tests.  

0 

(S

chiav

on et 

al., 

Thermal 

environment 

vs 

Working 

memory 

56 subjects (28 males, average 

age of 24.7 years); Temperature 

changed in order at 26 ℃, then 

29 ℃, then 23 ℃. The effect of 

elevated air movement with an 

2-Back(2B) was used to 

measure subjects’ working 

memory. 

Using a fan did not significantly affect the 

performance of a memory test at 26 ℃ (p = 

0.49) or 29 ℃ (p = 0.23). 

0 
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2017

a) 

occupant-controlled fan was 

investigated for 26 ℃ and 29 ℃.   

(F

. 

Zhan

g et 

al., 

2017) 

 

Thermal 

environment 

vs 

Memory 

26 office workers (46% males, 

73% between 31 and 50 years old, 

29% under 30 years old). 

Temperature conditions: 22 ℃ 

and 25℃. 

Digit span test was used for 

memory performance. 

The test scores for the digit span test were 

approximately 7.2 at 25℃ and 7.4 at 22℃. No 

statistical difference was found (p = 0.218).  

0 

(

Lan 

et al., 

2011

b) 

Thermal 

environment 

vs  

Working 

memory 

12 subjects (6 males, average 

age 23 years) divided into two 

groups.  

One group was exposed to 

different temperatures in a 

sequence of 22-30-30-22 °C, while 

the other group 30-22-22-30 °C. 

Digit span memory and visual 

learning memory tests were used 

to measure the subjects’ memory 

performance. 

There is no significant difference in digit 

span test (p = 0.44) or visual learning test (p = 

0.51) in two temperature conditions.  

0 

(

Cede

ño 

Laure

nt et 

al., 

2018) 

Thermal 

environment 

vs  

Working 

memory 

44 students (mean age was 20.2) 

were divided into two groups. 

They had cognitive tests in the 

AC (n = 24) and non-AC (n = 20) 

building before (mean temperature 

of 20.4 °C), during (mean the 

highest temperature of 33.4 °C), 

and after (mean the highest 

temperature of 28.1 °C) a heatwave. 

2-digit visual 

addition/subtraction (ADD) test 

was used to measure working 

memory. 

Students without AC showed a significant 

increase (13.3%, p < 0.001) in reaction time 

of the ADD test, and an insignificant 

reduction (-6.3%, p = 0.08) in throughput of 

the ADD test during heatwaves compared to 

the students with AC as the baseline. 

1 

(

X. 

Wan

g et 

al., 

2019) 

Thermal 

environment 

vs 

Working 

memory 

15 students (ages between 22 

and 33). 

In the climate chamber, the 

temperature was set as slightly cool 

(21.7 °C), neutral (25.2 °C), and 

slightly warm (28.6 °C), 

Forward digit span was 

adapted to test subjects working 

memory. 

The result shows for the easy mode of digit 

span test, subjects have no significant 

difference in the three temperatures condition. 

But for the hard mode, they had a 

significant difference in slightly cool and 

warm condition (p < 0.05) 

1 

(

Lan 

et al., 

n.d.) 

Thermal 

environment 

vs  

Working 

memory 

12 subjects (6 males, 18 to 30 

years old) divided into two groups.  

They are exposed to different 

temperatures 23 °C and 27 °C. 

Computerized test: Digit span  The performance of Digit Span was not 

significantly different (p = 0.50) between the 

two temperatures. 

0 

(

Zhu 

et al., 

2020) 

Thermal 

environment 

vs 

32 students (16 males). 

The test room was controlled 

with four temperature conditions: 

Visual learning test Visual learning test results indicated the 

best performance (accuracy and speed) when 

the temperature was 30 °C. The performance 

N/A 
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Working 

memory 

26 °C, 30 °C, 33 °C, and 37 °C and 

two relative humidity levels.  

was generally better at 50% than 70% of 

relative humidity. 

(F

. 

Zhan

g & 

Dear, 

2017) 

 

Thermal 

environment 

vs 

Working 

memory 

56 subjects (28 males, mean age 

of 25 years). 

The chamber conditions 

adjusted by the air volume system 

from 16 ℃ to 38 ℃. The room 

temperature was cycled at eight 

different conditions. Illumination 

was fixed at 500 lx and the 

background noise was 40 ± 5 dBA.  

Memory skill: Digit Span and 

Spatial Span task. 

In Experiment 1 (setpoint of 22 °C), the 

memory and air temperature were very nearly 

significant (p=0.066). 

In Experiment 2 (setpoint of 24 °C), no 

significant effect found between temperature 

and memory performance. 

 

For the Digit Span test in Experiment 1, 

performance scores in Condition 2 were 

significantly higher than they were in 

Condition 1 (P < 0.05). However, the results 

were not found for the spatial span test. 

1 

(

Tana

be & 

Nishi

hara, 

2004) 

Thermal 

environment 

vs  

Working 

memory 

20 males and 20 females at 

college-age experienced three 

operative temperatures: 25.5 °C, 

28 °C, and 33 °C.  

Running the memory test. No significant difference in memory 

performance was found in three temperature 

conditions. 

0  

(

Lan 

& 

Lian, 

2009) 

Thermal 

environment 

vs 

Working 

memory 

21 participants (6 females, 15 

males aged from 18 to 20 years 

old). 

They needed to finish tasks in 

three different indoor air 

temperatures (17 °C, 21 °C, and 

28 °C) 

Digit span was used to measure 

the subjects’ working memory. 

The carryover effects were 

corrected for the measured 

performance. 

The memory span performance declined 

as the temperature was increased. But the 

result was not significant (p = 0.79).  

0  

(

Maul

a et 

al., 

2016) 

Thermal 

environment 

vs 

Memory 

33 students (17 males, aged 

between 19 and 30 years). 

The participants needed to 

finish the designed tasks in two 

temperature conditions (23 °C and 

29 °C). 

The operation span task and N-

back task were used for working 

memory.  

Long-term memory was 

evaluated through a task of 

memorizing facts about a specific 

new theme. 

In the N-back task for working memory, 

the accuracy of the performance was 

decreased as the temperature was increased 

from 23 °C to 29 °C (p = 0.46), while the 

reaction time was significantly longer 

(p<0.001) at 29 °C. 

The accuracy of the long-term memory 

task was decreased at 29 °C compared to 

23 °C (p = 0.28). 

1 

(

Hygg

Noise  

vs 

128 high school students (50% 

males, age of 18 to 19 years). 

Long-term recall: read a seven 

pages text about the ancient 

Interactions were found between noise and 

heat on the long-term recall of a text, and 

1 
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e & 

Knez, 

2001

b) 

 

Long-term 

recall and 

short-term 

recall 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office.  

Low-frequency noise: 38 and 58 

dBA; Temperature: 21 ℃ and 

27 ℃; Illuminance: 300 and 1500 

lx. 

culture and answered six 

knowledge questions and eighteen 

multiple-choice questions after 

130 min. 

Short-term recall: write down 

all the words they recalled after 

three wordlists were presented on 

a PC-screen.  

between noise and light on the free recall of 

emotionally toned words.  

Long-term recall: Subjects performed 

better in the high illuminance 1500 lx than in 

300 lx (p = 0.052). The performance was 

better in a low noise environment 38 dBA than 

in high noise 58 dBA when the temperature 

was 27 ℃ (p = 0.016). But the effect of noise 

was not significant when the temperature was 

21 °C. 

(

Hygg

e et 

al., 

2002) 

 

Noise  

vs 

Long-term 

memory and 

Short-term 

memory 

326 children (mean age of 10.4 

years) in four groups.  

Experimental groups were 

comprised of children exposed to 

aircraft noise. For the noise group, 

65 children were in the old airport 

(noise changed from 59 to 55 dBA). 

111 in the new airport (noise 

changed from 53 to 55 dBA). 

Control groups with little 

exposure to aircraft noise. 43 in the 

old-airport, no-noise group (noise 

changed from 68 to 54 dBA); 107 in 

the new-airport, no noise group 

(noise changed from 53 to 62 dBA). 

Long-term memory: read the 

text with noise and then recalled 

the text after one day in silence. 

Short-term memory: strings of 

consonants were presented per 

second over headphones. Then the 

children were asked to write down 

as many consonants as they could 

remember, in the correct position, 

starting at the end of the sequence. 

After the opening of the new Munich 

International Airport and the termination of 

the old airport, long-term memory (p = 0.015) 

and reading were impaired in the noise group 

at the new airport and were improved in the 

formerly noise-exposed group at the old 

airport. Short-term memory was also 

improved in the latter group after the old 

airport was closed (p = 0.092). 

2 

(

Won

g et 

al., 

2009) 

 

Noise  

vs 

Working 

memory 

 

24 adults (12 youngers with the 

mean age of 21.75, and 12 older 

with the mean age of 67.5). 

Signal-to-noise ratios (SNRs) of 

stimuli: -5 dB, 20 dB, and quiet 

condition. The three sets of stimuli 

were then normalized to 70 dBA. 

Younger and older subjects 

identified single words in quiet 

and two noise conditions (SNR 20 

and -5 dB). The working memory 

was measured by fMRI. 

 

The fMRI results showed reduced 

activation in the auditory cortex but an 

increase in working memory-related cortical 

areas (prefrontal and precuneus regions) in 

older subjects, especially in the SNR −5 

condition. 

 

N/A 

(

Hygg

e, 

2003) 

 

Noise  

vs 

Long-term 

recall 

1358 children (age from 12 to 

14 years).  

Ten noise experiments in the 

classrooms for recall and 

recognition. Single and combined 

noise sources (e.g., train noise, 

aircraft noise) were presented for 15 

min at 55 or 66 dBA Leq. 

Three texts about ancient 

cultures were used as the source of 

six open-ended recall questions 

and twelve multiple-choice 

questions. The scoring system 

gave points to each item of 

information the child remembered. 

There was a strong noise effect on recall 

(p < 0.01), and a smaller but significant effect 

on recognition (p = 0.011). Train noise and 

verbal noise did not affect recognition or 

recall. Some of the pairwise combinations of 

aircraft noise with train or road traffic 

interfered with recall and recognition. 

2 
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(

Lerch

er et 

al., 

2003) 

 

Noise  

vs 

Intentional

, incidental, 

and 

recognition 

memory 

123 primary school children 

(54% males; mean age of 9.7 

years); 

The two noise levels: 46.1 Ldn 

and 62 Ldn (Ldn is a weighted, 24-

hour average for community noise 

exposure). 

Free recall and recognition for 

the puzzle diagrams assessed 

incidental memory. Children were 

asked to recognize the correct 

diagrams from a set with an equal 

number of correct and incorrect 

drawings. 

Significant effects of chronic noise 

exposure on both intentional and incidental 

memory were reported. Intentional memory 

was significantly better in the low noise 

environment (p < 0.02). Incidental memory 

performance was degraded by chronic noise 

exposure (p < 0.05). Recognition memory was 

also worse for the chronically noise-exposed 

children (p < 0.04).  

2 

(S

tansf

eld et 

al., 

2005) 

 

Noise  

vs 

Episodic 

memory, 

working 

memory 

2844 students (age from 9 to 10 

years) from three countries 

Aircraft and road traffic noises 

were recorded in the classroom and 

outdoors at the time of testing 

cognitive functions using 

microphones. 

Episodic memory (recognition 

and recall) was assessed by a task 

adapted from the child's memory 

scale. This task assessed time 

delayed cued recall and delayed 

recognition of two stories 

presented on a compact disc. The 

search and memory task was used 

to assess working memory and 

prospective memory. 

A linear exposure-effect association was 

found between exposure to aircraft noise and 

impaired recognition memory in children 

(p=0.0141). Exposure to road traffic noise was 

linearly associated with increases in episodic 

memory (conceptual recall: p = 0.066; 

information recall: p = 0.0489). 

2 

 

 

 

(

Ljun

g, 

2009) 

 

Noise and 

reverberation 

time  

vs 

Memory 

Experiment 1: 28 university 

students (age from 19 to 35 years) 

in a sound-attenuated climate 

chamber; Noise condition: one 

lecture with a broadband noise with 

the spoken lecture with an S/N ratio 

of +5dBA; Control condition: 

spoken lecture with an S/N ratio of 

+29dBA without background noise. 

Experiment 2: 19 adolescents (2 

males, age around 17 years). Short 

reverberation condition, 0.3 s in all 

octave bands from 125 Hz to 4 kHz; 

Long reverberation time, 1.84 s at 

125 Hz, 1.46 s at 250 Hz, 0.94 s at 

500 Hz, 0.77 s at 1 kHz, 0.78 s at 2 

kHz and 0.68 s at 4 kHz. 

Experiment 1: 

Hearing tests: participants 

were asked to repeat two lists of 

ten sentences in different noise 

conditions. 

Experiment 2: 

Participants listened to the 10 

paragraphs and answered 20 

questions by typing them on the 

computer keyboard to score their 

ability to hear the lecture on a 7-

point scale.  

The participants’ memory performance 

was worse when the lecture was heard in the 

noise condition than in the control condition 

(p < 0.05). In the long reverberation time 

condition, participants’ memory performance 

was worse than that in short reverberation 

time conditions (p < 0.001).  

2 

(S

örqvi

st, 

2010) 

Noise  

vs 

Speech  

23 adolescents (9 males, age of 

17 years). 

Experiment 1: sounds from 

different airborne aircraft were 

The operation span task was 

used to assess the participants’ 

working memory capacity. Prose 

memory was tested by two tasks 

The significant difference in participants’ 

scores on the prose memory task was found 

between the speech noise condition and 

silence condition and between speech noise 

1 
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prose 

memory 

recorded outside using a 

stereophonic microphone and then 

were put together with computer 

software to create 10 sound 

sequences of aircraft at 55-60 dBA 

Leq.  

Experiment 2: the speech was 

recorded in an echo-free room and 

then was played back to the 

participant at around 55-60 dBA 

Leq. 

which were combined by the 

reading phase and recall phase.  

condition and aircraft noise condition (p < 

0.01).  However, the difference was 

insignificant between the aircraft noise 

condition and silence condition (p = 0.24). 

The speech was more detrimental to prose 

memory than is aircraft noise, and individual 

differences in working memory capacity 

contributed more to individual differences in 

susceptibility to the effects of aircraft noise on 

prose memory than to the effects of speech. 

(

Hygg

e & 

Knez, 

2001

b) 

 

Lighting  

vs 

Long-term 

recall and 

short-term 

recall 

128 high school students (50% 

males, age of 18 to 19 years). 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office.  

Low-frequency noise: 38 and 58 

dBA; Temperature: 21 ℃ and 

27 ℃; Illuminance: 300 and 1500 

lx. 

Long-term recall: read a seven 

pages text about the ancient 

culture and answered six 

knowledge questions and eighteen 

multiple-choice questions after 

130 min. 

Short-term recall: write down 

all the words they recalled after 

three wordlists were presented on 

a PC-screen.  

Interactions were found between noise and 

light on the free recall of emotionally toned 

words.  

Long-term recall: Subjects performed 

better in the high illuminance 1500 lx than in 

300 lx (p = 0.052). 

Short-term recall: When the noise was 38 

dBA, more words were remembered at 1500 

lx than 300 lx (p = 0.032). However, the effect 

of illumination was insignificant when noise 

was 58 dBA.   

1 

(

Knez, 

1995) 

Lighting  

vs 

Long-term 

memory 

96 subjects (aged from 18 to 55 

years). 

The first experiment was full 

factorial with two light color 

temperatures (3000 K vs 4000 K) 

and two illuminance levels (300 lx 

vs 1500 lx), while maintaining a 

high color rendering index (CRI) 

95. The second experiment had the 

same set as the first one except for 

a low CRI 55. 

Long-term recall and 

recognition task: seven pages of 

compressed test about an ancient 

culture as an encoding-retrieval 

task. In particular, read the text 

and answered six general 

knowledge questions and eighteen 

multiple-choice questions. 

Free recall task for memory 

performance: recall wordlists 

shown on a PC-screen. 

In specific, a light color temperature that 

induced the least negative mood enhanced the 

performance in the long-term memory and 

problem-solving tasks in both genders (p < 

0.05). Also, the combination of color 

temperature and illuminance that best 

preserved the positive mood in one gender 

enhanced this gender’s performance in the 

problem-solving and free recall tasks.  

2 

(

Krets

chme

r et 

al., 

2012

b) 

Lighting  

vs 

Working 

memory 

32 participants (16 males, age 

from 48 to 68 years). 

BL (Bright light) group (n = 16) 

and RL (Room light) group (n = 16) 

worked under standardized 

conditions over three consecutive 

simulated night shifts. RL group 

One-digit numbers were 

presented for 1.5 s on a computer 

screen successively for 5 minutes 

per session. Subjects were 

instructed to conduct a task related 

to the numbers remembered. 

Exposure to bright light at night reduced 

error rates of a working memory task. The 

mean number of correct responses was 

significantly higher under bright light than 

under room light (p < 0.01). 

2 
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worked at 300 lux all nights, and 

BL group was exposed to a 4-hour 

moving light (3000 lux) and 

300 lux. 

(

Knez 

& 

Enma

rker, 

1998) 

Lighting  

vs  

Memory 

40 subjects (50% males, age 

from 18 to 55 years). 

Two color temperatures, 3000 K 

and 4000 K at color rendering index 

(CRI) of 95, and illuminance level 

of 1500 lx. 

For long-term recall, the 

subjects need to read the materials 

and then accomplish the recall and 

recognition task. 

For free recall, the subjects 

need to recall the words they read 

from the word list. 

No significant effect of lighting on the 

performance of free recall, the long-term 

recall was obtained.  

0 

(

Hawe

s et 

al., 

2012

b) 

Lighting  

vs 

Working 

memory 

24 subjects (20 male and 4 

female, mean age are 21.46 years). 

Four lighting condition was 

used in the test for different lighting 

condition. The average color 

temperature of them are traditional 

fluorescent lighting (3345 K), and 

three LED lighting (4175K, 5448K, 

and 6029K). 

The verbal event planning task 

was used for challenging subjects’ 

verbal working memory. 

The spatial map study task was 

used for challenges subjects’ 

spatial working memory. 

For both the verbal working memory and 

spatial working memory test, the accuracy of 

both tests did not vary significantly as a 

function of lighting condition (p > 0.05). But 

reaction time of these two tests became less as 

the increasing color temperature (p < 0.01). 

1 

(

Knez, 

2014) 

Lighting 

vs 

Long-term 

memory and 

short-term 

memory 

132 subjects aged from 18 to 44 

(66 females, 66 males, the mean age 

is 26). 

Dimmable, electronic, high-

frequency ballasts (32000 Hz), and 

conventional, magnetic, low-

frequency ballasts (50 Hz) Three 

types of fluorescent tube: 3000K, 

4000K, and 5500K. 

The subjects were asked to 

finish the 24 questions for 

recalling the content in the 

materials read 130 minutes ago. 

No effect was found on long-term memory 

or short-term memory performance by the 

lighting conditions. 

0 

(

Keis 

et al., 

2014

a) 

 

Lighting 

vs 

Memory 

58 students (age under 18 

years). 

Two light color temperatures, 

high (5500 K) vs low (3000 – 3500 

K); Two luminance distributions, 

indirect lighting bounced back from 

the white ceiling creating large-area 

lighting source vs purely direct 

lighting. 

Visual and verbal memory test 

was used to test the memory 

retention.  

No effects of blue-enriched white lighting 

on short-term encoding and retrieval of 

memories were found (F (3,53) < 1; F (3,52) 

< 1). 

0 
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(

Ko et 

al., 

2020) 

Non-light 

visual factors 

vs 

Working 

memory and 

short memory 

86 participants (43 males, old 

than 18 years old). 

The office-like test room has 

two views which include one 

without window view and window 

view shaded by large overhangs and 

trees in from 

Token Search test was used to 

test subjects’ working-memory 

and Digit Span test was for short-

term memory) 

Working memory for window condition 

was 6% higher compared to windowless one 

(p = 0.009). 

But the short-term memory has no 

significant difference in the two conditions (p 

= 0.53). 

1 

⸸Significance level labeled by authors (0: no statistical association between cognition and tested IEQ (p>0.05); 1: mixed statistical association for varying 

levels in different performance tests and/or participant groups; 2: the statistical significance of consistent positive or negative statistical association (p<0.05) 

between cognition and tested IEQ; N/A: not labeled because of no reported p-value from the study
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Table A5. Summary of IEQ on language function 
R

efere

nce 

IEQ vs 

Cognition  

Sample size & 

environmental conditions 

Measures of cognitive 

functions 

Major findings Signifi

cance 

level⸸ 

(X

. 

Zhan

g et 

al., 

2017b

) 

IAQ vs 

Reading 

comprehension 

25 students (40% males, age 

around 23). 

Five conditions mixed with 

three CO2 levels (500 ppm, 1000 

ppm, and 3000 ppm) and 

different bio-effluent 

concentrations. 

Proof-reading test which 

needed subjects to highlight the 

errors in the printed text. 

There is no statistically significant 

effects of CO2 or bioeffluent 

concentrations on proof-reading 

performance. 

0 

(S

haugh

nessy 

et al., 

2006) 

IAQ vs 

Reading  

Students in 5th grade 

participate in the task. 

Monitoring the CO2 

concentration and ventilation rate 

in fifth-grade classrooms of 54 

elementary schools. 

The students are asked to take 

the tasks of math skills and reading 

skills. 

The association observed using linear 

regression between ventilation rate and 

the reading score has no statistical 

significance (p = 0.56).  

0 

(L

an & 

Lian, 

2009) 

Thermal 

environment 

vs 

Reading 

comprehension 

21 participants (6 females, 15 

males aged from 18 to 20 years 

old) 

They needed to finish tasks in 

three different indoor air 

temperatures (17 °C, 21 °C, and 

28 °C) 

A verbal comprehension task 

was used to measure the subjects’ 

reading comprehension. 

The carryover effects were 

corrected for the measured 

performance. 

The reading comprehension 

performance had the highest correct ratio 

when the temperature was 21 °C (p = 

0.63). But the response time was the 

shortest when the temperature was 28 °C 

(p = 0.16). 

0 

(

Marc

hand 

et al., 

2014) 

Thermal 

environment 

vs 

Reading 

comprehension 

158 undergraduate students 

(95 males, age from 17 to 49 

years). 
Normal condition: 22.2 °C, 

35 dBA and 500 lx; Discomfort 

condition: 26.7 °C, 60-65 dBA 

and 2500 lx. 

The subjects read a test passage 

then took an assessment. The 

Sentence Verification Task (SVT) 

was used as the test for 

comprehension. It can be adapted to 

any reading assignment or oral 

presentation. 

Students in the reading condition 

have reported no difference between 

conditions for the reading modality (p = 

0.25). 

0 

(

W. 

Yang 

& 

Moon

, 

2018) 

Thermal 

environment 

vs 

Speech 

recognition 

24 students (50% male, age 

from 19 to 27) 

The indoor environmental 

chamber with packaged air-

conditioners (four thermal 

conditions with PMV -1.53, 0.03, 

1.53, and 1.83), ventilation fan, 

humidifiers, dehumidifiers, 

lighting, and loudspeakers (for 

Set the duration of exposure and 

various background noise. In the 

two different speech-noise-ratio 

recognition tests, participants need 

to take the 25-words speech test. 

This study recorded the normality 

of the subjective responses to the 

questionnaire. 

Both speech-noise-ration and thermal 

comfort can affect speech recognition. 

But only PMV with SNR of 5 dB affects 

the speech recognition scores. 

N/A 
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fan and babbles sounds of 45 and 

60 dBA). 

(

Witte

rseh 

et al., 

2004b

) 

Thermal 

environment 

vs 

Reading 

comprehension 

30 subjects (16 males, aged 

from 18 to 29) were divided into 

six groups. 

The experimental room was 

set at 22 °C, 26 °C, and 30 °C in 

two noise conditions (35 dBA 

and 55dBA) 

Proof-reading was used to 

measure subjects’ reading 

comprehension 

The proof-reading performance was 

decreased as the temperature was raised 

in the same noise condition (p < 0.05). 

2 

(S

tansfe

ld et 

al., 

2005) 

Noise  

vs 

Reading 

comprehension 

2844 students (age from 9 to 

10 years) from three countries 

Aircraft and road traffic 

noises were recorded in the 

classroom and outdoors at the 

time of testing of cognitive 

functions using microphones. 

Questions on perceived health, 

and perceptions of noise and 

annoyance; Questionnaire for the 

parents to complete including 

questions on the perceived health of 

their child. 

Reading comprehension with 

nationally standardized and normed 

tests—Suffolk reading scale, 10 

CITO (Centraal Instituute Toets 

Ontwikkeling) readability index for 

elementary and special education, 

and the ECL-2. 

 A linear exposure-effect association 

was found between exposure to aircraft 

noise and impaired reading 

comprehension (p = 0.0097).  

2 

(K

latte 

et al., 

2010) 

Noise  

vs 

Listening 

comprehension 

and speech 

perception 

94 adult students, children in 

elementary school, 108 first 

grade students, 149 third grade 

students participated in the 

experiment. 

For the speech perception, the 

experiment was conducted in two 

virtual classrooms with two 

reverberation time (RT) 0.47 and 

1.1s.  

For the listening 

comprehension, the task was 

performed in the room with 

The students need to listen to 

the instruction and take the test to 

indicate the misunderstanding of 

the content. 

The background speech affects much 

more on listening comprehension (p < 

0.001). The classroom noise influenced 

speech perception more than that by 

background speech (p < 0.001). 

2 
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classroom noise and with 

background speech. 

(

W. 

Yang 

& 

Moon

, 

2018) 

Noise  

vs 

Speech 

recognition 

24 students (50% male, age 

from 19 to 27) 

The indoor environmental 

chamber with packaged air-

conditioners (four thermal 

conditions with PMV -1.53, 0.03, 

1.53, and 1.83), ventilation fan, 

humidifiers, dehumidifiers, 

lighting, and loudspeakers (for 

fan and babbles sounds of 45 and 

60 dBA). 

Set the duration of exposure and 

various background noise. In the 

two different speech-noise-ratio 

recognition tests, participants need 

to take the 25-words speech test. 

This study recorded the normality 

of the subjective responses to the 

questionnaire. 

Both speech-noise-ration and thermal 

comfort can affect speech recognition. 

Speech recognition performance 

increased as the SNR increase. 

N/A 

(

Witte

rseh 

et al., 

2004b

) 

Noise  

vs 

Reading 

comprehension 

30 subjects (16 males, aged 

from 18 to 29) were divided into 

six groups. 

The experiment room was set 

as 22 °C, 26 °C, and 30 °C in two 

noise condition (35 dBA and 

55dBA) 

Proof-reading was used to 

measure subjects reading 

comprehension. 

For the same temperature condition, 

the proof-reading speed was increased in 

the noise condition (p < 0.05).   

2 

(H

ygge 

et al., 

2002) 

 

Noise  

vs 

Speech 

perception 

326 children (mean age of 

10.4 years) in four groups.  

Experimental groups were 

comprised of children exposed to 

aircraft noise. For the noise 

group, 65 children were in the old 

airport (noise changed from 59 to 

55 dBA). 111 in the new airport 

(noise changed from 53 to 55 

dBA). 

Control groups with little 

exposure to aircraft noise. 43 in 

the old-airport, no-noise group 

(noise changed from 68 to 54 

dBA); 107 in the new-airport, no 

noise group (noise changed from 

53 to 62 dBA). 

Speech perception: the children 

heard a story under different 

noise backgrounds (aircraft 

noise, road noise, and broadband 

noise) and used buttons to adjust the 

sound level of the story when it 

dropped randomly by 10 dBA. 

They were instructed to re-adjust 

the volume to the point where they 

could understand what was said if 

they concentrated. 

Speech perception was improved 

between before switch and after the 

switch, but there was no differential 

improvement between groups. 

At the new airport, the onset of 

aircraft noise seemed to block 

improvement in auditory discrimination 

from Wave 1 to Wave 3, as evidenced by 

the group*wave interaction (p <0.001). 

1 
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(

Wong 

et al., 

2009) 

 

Noise  

vs 

Speech 

perception 

24 adults (12 youngers with 

the mean age of 21.75, and 12 

older with the mean age of 67.5); 

Signal-to-noise ratios (SNRs) of 

stimuli: -5 dB, 20 dB, and quiet 

condition. The three sets of 

stimuli were then normalized to 

70 dBA. 

Younger and older subjects 

identified single words in quiet and 

two noise conditions (SNR 20 and -

5 dB). The speech perception was 

measured by fMRI to collect the 

information on cortical cerebral 

hemodynamics. 

Increased cortical activities in general 

cognitive regions were positively 

correlated with behavioral performance 

in older listeners.  

ANOVA analysis showed a main 

effect of noise conditions on the accuracy 

of spoken word processing (p < 0.001). 

2 

(

Marc

hand 

et al., 

2014) 

Noise  

vs 

Reading 

comprehension 

158 undergraduate students 

(95 males, age from 17 to 49 

years). 
Normal condition: 22.2 °C, 

35 dBA and 500 lx; Discomfort 

condition: 26.7 °C, 60-65 dBA 

and 2500 lx. 

The subjects read a test passage 

then took an assessment. The 

Sentence Verification Task (SVT) 

was used as the test for 

comprehension. It can be adapted to 

any reading assignment or oral 

presentation. 

Students outside the comfort zone 

reported were more negatively affected 

by the sound of the room. The sound had 

a more negative effect on their 

performance than those in the normal 

condition (p = 0.02).  

2 

(K

latte, 

2010) 

 

Noise and 

Reverberation  

vs  

Speech 

perception 

487 students (first and second 

grade, 249 boys, mean age from 

7 -8 years). 
The reverberation time of 

speech from 0.49 to 1.1 seconds, 

the ambient noise level from 22 – 

29 LAeq in empty classrooms. 

The speech materials were 

presented with a signal level of 

65 dBA. 

Identification of single words 

and sentence comprehension for 

speech perception. 

The students from school 8 in the 

control room had better improvement in 

word identification test (p < 0.01). In both 

school 1 and school 8, students had 

higher accuracy in the extra room than in 

the classroom. 

But the effect of the test room and the 

interaction did not reach significance (p = 

0.09). No effect of reverberation time had 

been found on sentence comprehension. 

1 

(A

nders

on et 

al., 

2010) 

 

Noise vs 

Speech 

Perception 

66 children (44 males, age 

from 8-14 years). 

Grouped based on the 

performance on the clinical 

measure of speech-in-noise (SIN) 

perception and reading.  The 

experiments were performed in 

quiet and noise conditions (six-

talker babble with the signal-to-

noise ratio at 10 dB). 

Speech understanding in noise 

was evaluated with the Hearing in 

Noise Test (HINT) used the 

Banford-Kowal-Bench (BKB) 

phonetically balanced sentences 

appropriate for children at the first-

grade reading level and above. 

Subjects were divided into two 

groups: 1) top SIN group, >50th 

percentile in HINT-Front scores, 

and 2) bottom SIN group <50th 

percentile in HINT-Front scores. 

Background noise delayed the 

response significantly (p < 0.001). In the 

quiet condition, two groups have the 

same neural response timing. In the noise 

condition, bottom groups exhibited 

greater neural delays relative to the top 

groups. 

2 
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(S

örqvis

t et 

al., 

2010) 

Noise  

vs 

Reading 

comprehension 

40 students (mean age of 

23.7, 62.5 female). 

The irrelevant speech was 

recorded and played through 

headphones at approximately 70-

75 dBA. The participants were 

asked to sit in the silent room 

with listening to the various 

speech fragments. 

Participants need to read the 

first 5 short texts and answer the 

accompanying questions in 90 

seconds. Then they need to select 

one from four words to make the 

sentence which missing one word 

coherent in the remaining 15 texts. 

The irrelevant speech disrupted the 

reading comprehension (p<0.05). But it 

did not affect the time need to finish the 

task. 

1 

(

Mott 

et al., 

2012b

) 

Lighting  

vs 

Reading 

comprehension 

84 students (age from 7 to 8 

years); Two lighting conditions: 

focus lighting (1000 lux, color 

temperature 6500 K), and normal 

lighting (500 lux, color 

temperature 3500 K). 

ORF was used to measure 

subjects’ reading performance for 

the focus light set on that. 

The focus light setting was an 

instructional technology that improved 

the reading performance of the 

participants (p < 0.001). 

2 

(

Marc

hand 

et al., 

2014) 

Lighting  

vs 

perception 

and 

comprehension 

158 undergraduate students 

(95 males, age from 17 to 49 

years). 

Normal condition: 22.2 °C, 

35 dBA and 500 lx; Discomfort 

condition: 26.7 °C, 60-65 dBA 

and 2500 lx. 

The subjects read a test passage 

then took an assessment. The 

Sentence Verification Task (SVT) 

was used as the test for 

comprehension. It can be adapted to 

any reading assignment or oral 

presentation. 

The light did not affect the 

participants’ performance on their 

listening or reading.  

0 

(A

L‐

Ayas

h et 

al., 

2016) 

Non-light 

visual factors  

vs  

Reading 

comprehension 

24 students (45.8% male, age 

from 20 to 38 years). 

 In a simulated study 

environment, the color of a 

Corflute panel on a wall in front 

of the subjects’ desk was 

manipulated with six options 

(vivid red, vivid blue, vivid 

yellow, pale red, pale blue, and 

pale yellow). 

The participants were asked to 

read a passage and then 

they answered seven multiple-

choice questions. These 

tests were adopted from the 

SAT Comprehension Test 

website. 

Reading comprehension scores were 

significantly higher in the vivid color 

conditions compared to the pale color 

conditions (p = 0.022). But the main 

effect of hue was not significant (p = 

0.676). 

1 

⸸Significance level labeled by authors (0: no statistical association between cognition and tested IEQ (p > 0.05); 1: mixed statistical 

association for varying levels in different performance tests and/or participant groups; 2: the statistical significance of consistent positive 

or negative statistical association (p < 0.05) between cognition and tested IEQ; N/A: not labeled because no reported p-value from the 

study)
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Table A6. Summary of IEQ on higher order cognitive skills 
R

efere

nce 

IEQ vs 

Cognition  

Sample size & 

environmental conditions 

Measures of cognitive 

functions 

Major findings Signific

ance level⸸ 

(

Ko et 

al., 

2020) 

IAQ  

vs 

Reaction 

time (simple 

and choice) 

 

18 school children (age 

between 10 and 11). 
CO2 concentration controlled 

by opening or closing the window 

to regulate the ventilation; the 

Mean CO2 concentration is ranged 

from 690 ppm to 2909 ppm. 

Cognitive Drug Researcher 

(CDR) computerized cognitive 

assessment system to measure the 

subjects’ attention level 

The increased levels of CO2 led to a 

decrement in the accuracy of choice 

reaction (p = 0.75) while with an increment 

in reaction time (p = 0.06). 

The simple reaction time was increased 

by the increase of CO2 concentration (p = 

0.02).   

1 

(J.

-C. 

Chen 

& 

Schw

artz, 

2009) 

IAQ  

vs  

Reaction time 

1764 adults (age around 37.5). 

Estimated exposure levels to PM10 

and ozone-based on ambient 

concentrations in the EPA 

database. 

A simple reaction time test 

(SRTT) to measure visuomotor 

speed to a visual stimulus. 

Increased ozone exposure was not 

correlated with reduced performance in the 

SRTT test.  

0 

(Tonn

e et al., 2014) 

 

IAQ  

vs  

Reasoning  

10308 old adults (mean age 66 

years); The annual average 

concentration of PM2.5 and PM10 

from 2003 to 2009. 

Alice Heim 4-I test to measure 

reasoning performance. 

Low reasoning performance was 

associated with all particle metrics， 

especially for the years more distant in 

time.  

N/A 

(X. 

Zhang et al., 

2017b) 

IAQ  

vs  

Calculation  

and 

redirection test  

25 students (40% males, age 

around 23). 

Five conditions mixed with 

three CO2 levels (500 ppm, 1000 

ppm, and 3000 ppm) and different 

bio-effluent concentrations. 

The redirection test was used 

to record the response time and 

error rate. The task was to state 

whether the disk was in the same 

direction as the person's face in the 

image. Also, an additional test 

(arithmetical calculation) was 

applied to evaluate speed and error 

rates. 

Exposures to bioeffluents with injected 

CO2 at 3000 ppm reduced the speed of 

addition (for speed p = 0.023; for error rate 

p = 0.049), and the response time in a 

redirection task, and significantly affected 

speed (p=0.023) and error rates of the 

addition test (p = 0.049). 

 

2 

(Sno

w et al., 2019) 

IAQ  

vs 

Executive 

function and 

reaction time 

31 participants were divided 

into four groups. 

CO2 concentration in the study 

room was controlled as normal 

condition (700 ppm) and high 

condition (2700 ppm). 

CNS Vital signs computerized 

cognitive test battery 

For the executive function test, 

significant effects of condition with scores 

in the normal CO2 concentration condition 

which was better the baseline (p = 0.01).  

But there was no effect on reaction time 

performance in different IAQ environment. 

1 
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(S

chiko

wski 

et al., 

2015) 

IAQ  

vs  

Visuo-

construction 

789 elderly women (age 

around 55 years). Assessment of 

exposure to PM2.5 and nitrogen 

oxides. 

Cognition test CERAD-Plus 

includes the Mini-Mental State 

Examination (MMSE).   

Air-pollution was cross-sectionally 

associated with lower cognitive function. 

NOx showed an association with a decline 

in the CERAD total score. 

N/A 

(S

atish 

et al., 

2012

b) 

IAQ  

vs  

Decision 

making 

22 students (10 males, age 

from 18-39 years). 

Median CO2 concentration 

approximately 600, 1000, and 

2500 ppm. 

The computer-based test was 

used to measure decision-making 

performance. 

Compare to 600 ppm of CO2, moderate, 

and statistically significant decrements 

occurred in six of nine scales of decision-

making performance as the increasing CO2 

concentration (p < 0.001). At 2500 ppm, 

large and statistically significant reductions 

occurred in seven scales of decision-

making performance (raw score ratios, 

0.06–0.56), but performance on the focused 

activity scale increased. 

2 

(

Madd

alena 

et al., 

2014) 

IAQ  

vs  

Decision 

making 

32 adult subjects were divided 

into eight study groups. 

Four groups subjects 

participated in the chamber with 

varying VR (ventilation rate) per 

occupants (8.5 and 2.6 L/s per 

person). 

Other four groups participated 

in the study of varying VR per 

floor area (5.5 and 0.8 L/s-m2)  

Strategic management 

simulation (SMS) which is a web-

based simulation was used to 

assess decision-making 

performance. 

Decision-making performance 

decreased as the VR reduce in both 

experiments. 

From the performance metric tables, 

almost all the factors that contribute to 

decision-making were different 

significantly in various ventilation 

condition (p < 0.05) 

2 

(

Hu & 

Maed

a, 

2020) 

Thermal 

environment 

vs  

Calculation 

10 students divided into two 

groups. They are exposed to six 

combinations of clothing and air 

temperature (16 °C, 26 °C, and 

36 °C) 

Calculation test which was 

based on the Uchida-Kraepelin 

test form was used  

There were no significant differences 

were observed in the 5-minutes mean 

accuracy and 5-minutes overall 

performance. These results suggest that 

pre-test conditions significantly affected 

post-test conditions concerning speed but 

exerted no effect on accuracy and overall 

performance. 

 

The speed of the test indicated a 

significant difference (p < .05) between 

26°C/0.3 clo and 36°C/0.3 clo at the fourth 

minute; however, no significant differences 

were observed between other clothing or 

temperature conditions. In particular, the 

1 
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most significant changes were observed at 

26°C (e.g., the 1st minute vs the 2nd 

minute, p < .01, for 0.3 clo). During the first 

minute, accuracy (p < .05) and overall 

performance (p < .05) were higher at 26 °C 

than 36 °C for 0.9 clo. 

(T

anabe 

& 

Nishi

hara, 

2004) 

Thermal 

environment  

vs 

Addition 

and choice 

reaction test 

 

20 males and 20 females at 

college age. 

They experienced three 

operative temperatures: 25.5 °C, 

28 °C, and 33 °C.  

Addition task, four-choice 

serial reaction time, and code 

substitution 

No significant difference in 

performance was found in all tests between 

three conditions for females. For males, 

typing performance was significantly lower 

at 25 °C than the other two conditions ( p< 

0.05); The performance of the four-choice 

serial reaction time task was significantly 

lower at 33 °C than the other two conditions 

(p < 0.05). 

1 

(S

chiav

on et 

al., 

2017a

) 

Thermal 

environment 

vs 

Choice and 

executive 

function 

56 subjects (28 males, average 

age of 24.7 years). 

The temperature changed in 

order at 26 ℃, then 29 ℃, then 

23 ℃. The effect of elevated air 

movement with an occupant-

controlled fan was investigated for 

26 ℃ and 29 ℃.   

Choice reaction time with 

three choices to test the processing 

speed and alertness. 

Stroop test was used to 

measure inhibition. 

In the same temperature condition, the 

use of a fan did not significantly affect the 

subjects’ performance of a choice reaction 

at 26 ℃ (p = 0.57) or 29 ℃ (p = 0.34).  

Similar, using a fan did not significantly 

affect the performance of a Stroop test at 

26 ℃ (p = 0.12) or 29 ℃ (p = 0.37). 

0 

(

Mohe

bian 

et al., 

2018

b) 

 

Thermal 

environment 

vs  

Reaction 

time (simple, 

selective, and 

diagnostic) 

33 students (17 males, mean 

age of 22.1 ± 2.3 years). 

Temperatures: 22 and 37 ℃; 

lighting levels: 200, 500, and 1500 

lux with the same color 

temperature 4500 ℃. 

Reaction time (RT) was 

measured by an RT meter 

(Donder’s device).  

All types of reaction times in higher 

temperatures (37 ℃) have been 

significantly increased compared to those 

in lower temperature conditions (22 ℃) (p 

< 0.05).  

2 

(

X. 

Wang 

et al., 

2019) 

Thermal 

environment 

vs 

Calculation 

and reaction 

15 students (ages between 22 

and 33). 

In the climate chamber, the 

temperature was set as slightly 

cool (21.7 °C), neutral (25.2 °C), 

and slightly warm (28.6 °C), 

Choice reaction time with 

three choices to test the processing 

speed and alertness. 

A number addition task was 

used to test subjects’ calculation 

ability. 

The results table shows the reaction 

performance has no significant difference 

in either easy or hard mode. 

For the calculation ability, the subjects 

only had significantly different 

performances when they were in cool and 

warm conditions for the hard-mode test (p 

< 0.05).  

1 
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(Lan 

et al., 2009a) 

Thermal 

environment 

vs 

Conditiona

l reasoning and 

Visual choice 

RT 

24 participants (50% males, 

mean age 25 years). 

Four temperatures, 19 ℃, 

24 ℃, 27 ℃, and 32 ℃ were 

considered in an air-conditioned 

office with eight fluorescent 

lamps. 

Visual choice reaction time to 

measure response speed and 

accuracy to visual signals. Stimuli 

consisting of arrow and triangle 

were displayed one at a time on the 

screen. 

A verbal deductive reasoning 

task was used for conditional 

reasoning tests. The spatial image 

was sued for measuring spatial 

reasoning. 

 

Participants performed tasks most 

quickly at 32 ℃ and lowest at 19 ℃. The 

variation of response time between 24 ℃ 

and 27 ℃ was smallest compared with 

other temperature pairs, and the response 

time of 27 ℃ was longer than that of 24 ℃ 

(p = 0.887). The large variance of accuracy 

and speed indicated that there were large 

individual differences in the performance 

of neurobehavioral tests. 

For reasoning test, there was no 

significant difference of accuracy (p = 0.25 

and p = 0.274) and response time (p = 0.61 

and p = 0.607) for subjects in both two tests.  

0 

(Hyg

ge & Knez, 2001b) 

Thermal 

environme

nt vs 

Problem 

solving 

128 high school students (50% 

males, age of 18 to 19 years). 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office; Low-frequency 

noise: 38 and 58 dBA; 

Temperature: 21 ℃ and 27 ℃; 

Illuminance: 300 and 1500 lx. 

An embedded-figure-task was 

used to assess problem-solving 

performance. The participants’ 

task was to find out which one of 

the five solutions/figures was 

present in the 16 large targets. 

No significant effects were obtained. 0 

(

Holla

nd et 

al., 

1985) 

Thermal 

environment  

vs 

Reasoning 

20 subjects (50% males, age 

from 20 to 26 years). 

Core body temperature was 

raised to 38.80–39.05 °C within a 

few minutes by immersion in 

water at 41 °C. 

Subjects were given 16 simple 

logic problems. They were asked 

to decide whether the statement 

correctly described the sequence 

of the letters. 

No significant difference in the 

performance of accuracy was found in 

different control experiments. But the speed 

of performance was increased as the 

temperature went up (p < 0.02). 

1 

(C

edeño 

Laure

nt et 

al., 

2018) 

Thermal 

environment 

vs  

Working 

memory 

44 students (mean age was 

20.2) were divided to two groups. 

They had cognitive tests in the 

AC (n = 24) and non-AC (n = 20) 

building before (mean 

temperature of 20.4 °C), during 

(mean the highest temperature of 

33.4 °C), and after (mean the 

highest temperature of 28.1 °C) a 

heatwave. 

The Stroop test was used for 

measuring subjects’ inhibition 

performance. 

Students in the non-AC buildings had 

an increase in reaction time (13.4%, p < 

0.0001) and a significant reduction in 

throughput (9.9%, p < 0.0001) of Stroop 

test compared to the subjects in the AC 

buildings during heatwaves compared to 

the students with AC as the baseline. 

2 



   

 

117 

 

(Z

hu et 

al., 

2020) 

Thermal 

environment 

vs 

Reasoning, 

addition, 

multiplication, 

and redirection 

32 students (16 males) 

The test room was controlled 

with four temperature conditions: 

26 °C, 30 °C, 33 °C, and 37 °C and 

two relative humidity levels. 

 

The overlapping test was used 

to measure spatial reasoning 

ability. Redirection was assessed 

by the spatial orientation test. 

Addition and multiplication tests 

were used to examine mental 

arithmetic ability. 

The accuracy of the overlapping test 

was the highest when the temperature was 

33 °C. But the speed was the lowest at the 

temperature. Accuracies and speeds of the 

addition and multiplication test were the 

highest and lowest respectively when the 

temperature was 30 °C.  

The speed performance of these four 

tests was generally better at 50% than 70% 

of relative humidity. But the difference in 

accuracy at the two humidity levels was 

minimized.  

No statistical significance was 

provided. 

N/A 

(L

an et 

al., 

2011

b) 

Thermal 

environment 

vs  

Reasoning, 

calculation,  

and text 

typing 

12 subjects (6 males, average 

age of 23 years) divided into two 

groups.  

One group was exposed to 

different temperatures in a 

sequence of 22-30-30-22 °C, 

while the other group 30-22-22-

30 °C. 

 Grammatical reasoning, 

number calculation, typing test 

were the test for measuring 

subjects’ higher order cognitive 

skills. 

The performance of reasoning (tasks on 

grammatical reasoning, calculation, and 

addition) almost significantly decreased at 

30 °C compared with 22 °C. The 

grammatical reasoning performance 

reduced by 25% (p = 0.06) at 30 °C.  

Calculation speed decreased significantly 

as the temperature increased (p = 0.08). The 

subjects input more characters at 30 °C for 

the typing task (p = 0.75), but they also 

made more errors.  

1 

(L

an et 

al., 

n.d.) 

Thermal 

environment 

vs  

Reasoning,  

number 

calculation,  

and typing 

performance 

12 subjects (6 males, 18 to 30 

years old) divided into two groups. 

They are exposed to different 

temperatures 23 °C and 27 °C. 

Computerized tests of 

grammatical reasoning, number 

calculation, and typing 

performance. 

The typing performance significantly (p 

< 0.001) decreased at 27 °C compared with 

22 °C when there was no feedback. The 

performance of the same test was not 

significantly different (p = 0.68) between 

the two temperatures with feedback 

provided. Performance in other tests was 

not significantly different. 

1 

(F

. 

Zhan

g et 

al., 

2017) 

Thermal 

environment 

vs  

Reasoning 

and planning 

26 office workers (46% males, 

73% between 31 and 50 years old, 

29% under 30 years old). 

Temperature conditions: 22 ℃ 

and 25 ℃. 

Reasoning skill was used to 

measure the subjects’ verbal 

reasoning ability. 

The planning skill was used to 

test spatial planning performance. 

The two tests were conducted 

on the platform of CBS. 

CBS test scores of the reasoning skill (p 

= 0.594) and planning skill (p = 0.114) were 

not significantly affected by temperature. 

0 
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(F. 

Zhang & Dear, 

2017) 

Thermal 

environment  

vs 

Reasoning and 

planning 

56 subjects (28 males, mean 

age of 25 years). 

The chamber conditions 

adjusted by the air volume system 

from 16 ℃ to 38 ℃. The room 

temperature was cycled at eight 

different conditions. Illumination 

was fixed at 500 lx and the 

background noise was 40 ± 5 dBA.  

Reasoning skill: Odd-One-Out 

task; Grammatical reasoning task. 

Planning skill: spatial search; 

Hampshire tree task adopted from 

the Tower of London test. 

No significant correlation was found 

between reasoning & planning performance 

and thermal comfort at a lower cooling 

setpoint of 22 °C. At a higher cooling 

setpoint of 24 °C, subjects’ reasoning and 

planning performance showed a trend of 

decline at the higher heat intensity and 

longer heat exposure. Subjects’ reasoning 

performance score was negatively 

associated with TSV2 (TSV: thermal 

sensation vote), which predicted an optimal 

reasoning performance around a neutral 

thermal sensation. Planning performance 

had a highly significant negative linear 

relationship with TSV and air temperature 

(p<0.001). 

1 

(Witt

erseh et al., 2004b) 

Thermal 

environment 

vs 

Creative 

thinking 

30 subjects (16 males, aged 

from 18 to 29) were divided into 

six groups. 

The experiment room was set 

as 22 °C, 26 °C, and 30 °C in two 

noise condition (35 dBA and 

55dBA) 

Writing words associated to 

the specific category was used to 

measure the subjects’ creative 

thinking ability. 

For creative thinking, its score of 

performance was insignificantly decreased 

as the temperature was increased in 55 dBA 

conditions, while the performance varied 

with temperature non-linearly at the 35dBA 

condition.  

0 

(Lan 

& Lian, 2009) 

Thermal 

environment 

vs 

Reasoning, 

calculation, 

visual choice 

21 participants (6 females, 15 

males aged from 18 to 20 years 

old). 

They need to finish tasks in 

three different indoor air 

temperatures (17 °C, 21 °C, and 

28 °C) 

Event sequence, spatial image, 

and graphic abstracting were used 

to test the participants’ reasoning 

skills. 

Number calculation was used 

for calculation ability. 

The visual choice test was 

another test for subjects’ reaction 

time. 

The carryover effects were 

corrected for the measured 

performance. 

  

The correct ratio of all the three tests for 

reasoning skill was varied at different 

temperature (event sequence p = 0.25, 

spatial image p = 0.62, graphic abstracting 

p = 0.27). The response time was also a 

function of temperature (event sequence p 

= 0.61, spatial image p = 0.33, graphic 

abstracting p = 0.02). 

For the calculation test, the subjects had 

the highest correct ratio (p = 0.95) and the 

shortest response time when the 

temperature was 17 °C (p = 0.19). 

The visual choice performance had the 

highest correct ratio when the temperature 

was 17 °C (p = 0.0005). But the response 

time was the shortest when the temperature 

1 
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was 21 °C (p = 0.17) as the temperature was 

increased. 

(C

ui et 

al., 

2013a

) 

Thermal  

environment  

vs 

Motivation 

36 students (50% males, the 

mean age of 23.3 years). 

Group A (20 subjects) was 

exposed to five air temperatures 

(22 °C, 24 °C, 26 °C, 29 °C, 

32 °C), while Group B (16 

subjects) was only exposed to 

26 ℃. 

Self-reported motivation on a 

7-point scale. 

A warm discomfort environment 

harmed motivation. Warm discomfort 

environments were more harmful to 

motivation than cold discomfort 

environments. The improvement in thermal 

comfort level also made people more 

motivated (p < 0.047). 

2 

(Hyg

ge & Knez, 2001b) 

Noise  

vs 

Problem 

solving 

128 high school students (50% 

males, age of 18 to 19 years). 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office; Low-frequency 

noise: 38 and 58 dBA; 

Temperature: 21 ℃ and 27 ℃; 

Illuminance: 300 and 1500 lx. 

An embedded-figure-task was 

used to assess problem-solving 

performance. The participants’ 

task was to find out which one of 

the five solutions/figures was 

present in the 16 large targets. 

No significant effects were obtained. 0 

(Meht

a et al., 2012) 

Noise  

vs 

Creativity 

65 undergraduate students (21 

males) for Experiment 1 and 2; 95 

students (35 males) for 

Experiment 3 and 4; 68 students 

(24 males) for Experiment 5. 

The high, moderate, and low-

noise conditions: the noise level at 

85 dB, 70 dB, and 50 dB, 

respectively. And one control 

condition that average ambient 

noise level for each session setting 

varied between 39 dB and 44 dB, 

with an overall average of 42 dB 

The Remote Associates Test 

was used to assess creative 

performance. It was widely used 

to assess creative thinking in both 

psychology and marketing 

research. 

Idea-generation task: 

participants were asked to imagine 

themselves as a 

mattress manufacturer looking 

for creative ideas for a new kind of 

a mattress. 

Shoe-polish problem-solving 

task: subjects were asked to 

generate as many solutions as they 

could think of for the given 

problem. 

A moderate (70 dB) versus low (50 dB) 

level of ambient noise enhanced 

performance on creative tasks. 

Respondents in the moderate-noise 

condition generated more correct answers 

than those in the low-noise, high noise, or 

control condition (p < 0.05). But the time 

spent in the test of high-noise condition (85 

dB) was significantly less than that need in 

the other condition (p < 0.05). 

1 

(B

elojev

ic et 

al., 

2012) 

Noise  

vs 

Executive 

function 

311 children (146 boys, age of 

7-11 years). 

Noise levels in front of 

children’s schools were measured 

in three daytime intervals (9 to 11 

Teachers rated children’s 

cognitive functions on a five-item 

scale adapted from the Attention 

Deficit Disorder Questionnaire.  

No significant relation was found 

between noise levels at school or home and 

executive function on the overall sample. 

Traffic noise at home was significantly 

associated with executive functions (EF) in 

1 
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a.m. 12 to 2 pm. 3 to 5 pm). 24-h 

noise exposure at children’s 

residence was 71 dB on average. 

Day-time noise level at school: 76 

dB and 75 dB for boys and girls 

respectively. 

boys. Ambient noise from street traffic in a 

major urban center is related to deficits in 

EF for boys (p = 0.006) but not for girls 

when they are at home. 

(

Hatfi

eld et 

al., 

2002) 

Noise  

vs 

Perceived 

control 

1015 residents (48.5% male). 

Aircraft noise was measured at 

numerous residential sites near 

flight paths in the vicinity of 

Sydney Airport. 

A structured interview 

assessed aspects of physical and 

mental health, reactions to noise, 

attitudes to the noise source, 

sensitivity to noise, demographic 

variables, and noise-induced 

disturbance.  

Perceived control: each 

subject was asked “how much 

control do you personally have 

over the amount of aircraft noise 

you hear” based on a 7-point scale 

self-report (from no control to 

complete control). 

Perceived control had a significant 

change from high compared to low noise 

areas (p < 0.05). Perceived control over 

aircraft noise correlated negatively with 

some effects of noise (e.g., disturbances of 

reading and sleep) but not others (e.g., 

depression and anxiety). Furthermore, 

these effects were better predicted by 

perceived control than by noise level. 

 

2 

(

Witte

rseh 

et al., 

2004

b) 

Noise  

vs 

Creative 

thinking 

30 subjects (16 males, aged 

from 18 to 29) were divided into 

six groups. 

The experiment room was set 

as 22 °C, 26 °C, and 30 °C in two 

noise condition (35 dBA and 

55dBA) 

Creative thinking was set as 

the executive function to measure 

the subjects’ performance. 

At a certain temperature, creative 

thinking performance was decreased or 

increased with the noise level, but not 

significantly.  

0 

(

Hygg

e & 

Knez, 

2001

b) 

Lighting  

vs 

Problem-

solving 

128 high school students (50% 

males, age of 18 to 19 years). 

The experiment was run in an 

off-white chamber, furnished as a 

neutral office; Low-frequency 

noise: 38 and 58 dBA; 

Temperature: 21 ℃ and 27 ℃; 

Illuminance: 300 and 1500 lx. 

An embedded-figure-task was 

used to assess problem-solving 

performance. The participants’ 

task was to find out which one of 

the five solutions/figures was 

present in the 16 large targets. 

No significant effects were obtained. 0 

(

Knez, 

1995) 

Lighting  

vs 

Problem-

solving 

96 subjects (aged from 18 to 

55 years). 

The first experiment was full-

factorial with two light color 

temperatures (3000 K vs 4000 K) 

The embedded-figure-task 

used to measure problem-solving 

performance. 

The ‘warm’ white light source at 300 lx 

illuminance and the ‘cool’ white light 

source at 1500 lx illuminance was optimal 

for subjects’ problem-solving. Females had 

significantly better problem-solving 

2 
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and two illuminance levels (300 lx 

vs 1500 lx) while maintaining a 

high color rendering index (CRI) 

95. The second experiment had the 

same set as the first one except for 

a low CRI 55. 

performance in the warm than in the cool 

white light source (p < 0.05), while males 

had the opposite performance. 

(

Knez 

& 

Enma

rker, 

1998) 

Lighting  

vs  

Problem-

solving 

motivation and 

judgment 

40 subjects (50% males, age 

from 18 to 55 years). 

Two color temperatures, 3000 

K and 4000 K at color rendering 

index (CRI) of 95, and 

illuminance level of 1500 lx. 

The embedded-figure-task was 

used to measure problem-solving 

performance. Judgment 

performance was assessed on a 7-

point scale based on a 

performance appraisal task that 

consisted neutral (balanced) 

information about a fictitious 

employee 

No significant effect of lighting on the 

performance of cognitive tasks was found. 

Males performed significantly better than 

females. The results consolidated that 

males had better performance in an abstract 

cognitive task. The female rates were rated 

as significantly more motivated than the 

male. 

0 

(T

anabe 

& 

Nishi

hara, 

2004) 

Lighting  

vs  

Number 

addition 

16 college-age males 

participated in two lighting 

conditions. 

800 lx and 3 lx (temperature 

fixed at 23.6 °C and RH 37%). 

Addition tasks were adopted. No significant difference in 

performance was found between two 

lighting conditions. 

0 

(

Mohe

bian 

et al., 

2018

b) 

 

Lighting  

vs  

Reaction 

time (simple, 

selective, and 

diagnostic) 

33 students (17 males, mean 

age of 22.1 ± 2.3 years). 

Temperatures: 22 and 37 ℃; 

lighting levels: 200, 500, and 1500 

lux with the same color 

temperature 4500 ℃. 

Reaction time (RT) was 

measured by an RT meter 

(Donder’s device).  

The lighting level on all types of 

reaction time was statistically significant (p 

< 0.001). 

2 

(

Knez, 

2014) 

Lighting  

vs 

Problem 

solving 

132 subjects aged from 18 to 

44 (66 females, 66 males, the 

mean age is 26). 

Dimmable, electronic, high-

frequency ballasts (32000 Hz), 

and conventional, magnetic, low-

frequency ballasts (50 Hz) Three 

types of fluorescent tube: 3000K, 

4000K, and 5500K. 

The embedded figure task A significant improvement in problem 

solving performance when the lighting is 

high frequency (p = 0.06). 
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(

Meht

a & 

Zhu, 

2009) 

Non-light 

visual factors 

vs  

Creativity 

208 and 118 participants for 

two studies on creativity. 

The color was manipulated 

through the background screen 

color. Hue (e.g., red versus blue) 

was adjusted, and chroma and 

value were kept constant. 

A creative task where subjects 

were asked to generate as many 

creative uses for a brick as they 

could think of within 1 min. 

The Remote Associate's Test 

(RAT) was used to test creative 

thinking.  

Red color enhanced performance on a 

detail-oriented task, whereas blue color 

enhanced performance on a creative task (p 

< 0.03). 

2 

(

Ko et 

al., 

2020) 

Non-light 

visual factors 

vs 

Planning 

86 participants (43 males, old 

than 18 years old). 

The office-like test room has 

two views which include one 

without window view and window 

view shaded by large overhangs 

and trees in from 

Spatial planning was selected 

for measuring the participants’ 

planning performance. 

The planning test results did not show a 

significant difference between the two 

window conditions (p = 0.53). 

0 

⸸Significance level labeled by authors (0: no statistical association between cognition and tested IEQ (p > 0.05); 1: mixed statistical association for varying 

levels in different performance tests and/or participant groups; 2: the statistical significance of consistent positive or negative statistical association (p < 0.05) 

between cognition and tested IEQ; N/A: not labeled because no reported p-value from the study) 
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Appendix II 

Sources of Potential Inconsistency 

The first source of impact on associations between IEQ and cognition emanates from 

assessment of the physical environment itself.  While much basic knowledge can be derived from 

the more pristine investigations of single factors (e.g., the effect of thermal state on sustained 

attention (Hancock, 1986), actual working conditions are always interactive in their constitution.  

Thus, temperature level is a ubiquitous presence, as is sound presence, air quality variation etc.  

The problem here is that the number of potential interactive states of the environment itself rapidly 

proliferate, and this effect occurs even independent of the essential dynamics of changing states 

over time. In some ways, inconsistency also emerges here from the disparate base disciplines that 

underlie measure in many of these areas. Some sources of influence (e.g., temperature, sound), 

rely on a foundation in physics, others (e.g., air pollutants) can be underwritten by studies of 

chemistry of particulate studies. More complex sources of influence, such as air exchange, as 

founded upon an extensive body of practical investigation that has traditionally drawn on an 

amalgam of disciplinary insights. What this means is that differing cadres of scientific 

investigators and their associated professional bodies, tend to adopt and prefer their own 

measurement techniques, developed assessment scales, and then associated applicable standards. 

None of these are either ‘right’ or ‘wrong’ per se,  rather the inter-disciplinary cross-talk tends to 

inject degrees of uncertainty and confusion, most especially when linguistic terms common to each, 

are employed in diverse ways (and see (Hancock & Volante, 2020)).  

 

It is across such disciplinary and divisional boundaries that we have to face the behemoth of 

interaction proliferation (Hancock & Pierce, 1985). It is by no means solely in the area of IEQ that 

proliferating interactions plague those who seek deterministic specification, especially using 

formal methods. The problem derives from the fact that as we add more and more factors, involved 

in the consideration of practical indoor environments, so the number of possible states increases 

almost exponentially. And, as we shall see, the effects of many of these factors on cognition is not 

a linear one, but rather exhibit non-linear effects with the degree of stress each particular factor 

exerts.  

 

Were these effects all, we might be quite sanguine about some eventual resolution of the 

interaction problem, most especially because IEQ concerns are actually bounded within fairly 

narrow limits of the possible ranges of factors involved (e.g., we would not normally evaluate 

noise effects above 100 dB(A), since this would imply an unacceptable facility design in the first 

place). Yet now we have to consider problems and issue that emerge when we begin to consider 

the task, or range of tasks, that the exposed individual is performing in their workplace. As we 

have seen, these differing forms of task can themselves present very wide-ranging and disparate 

forms of cognitive demand. Where one profession features an emphasis on memory, another can 

be characterized by time-pressure decision-making, etc. Our knowledge of the discrete effects of 

individual sources of disturbance on specific facets of cognition (e.g., attention) has been 

improving across the decades. However, precisely how each of these elements of cognition then 

match to specific professional activities is much less well understood. The area of cognitive task 

analysis has wrestled with this difficult issue and has made some degree of progress. However, 

one particular hurdle in terms of clearer understanding, derives from the fact that many modern 

work situations either encourage or mandate that individual’s multi-task in order to resolve the 

demands set before them. This creates the issue of stability in which, at one moment, a required 
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task may feature important aspects of perception, while at the next, it emphasizes critical elements 

of decision-making. We can witness this in safety-critical professions such as air-traffic control in 

which it is vital that the controller sustain their situation awareness, yet at the same time they have 

to switch to decision-making in determining the advised path of an aircraft on their screen. These 

sequences of fluctuating cognitive demand profiles can be repeated many times per minute. These 

represent largely acute challenges, but human beings learn over time and become better, yet they 

are also fatigued across a work shift and so experienced degraded performance. Each of these acute 

and chronic sources of instability add to those already noted for establishing the precise nature of 

the IEQ experienced. They also lead us to the next source of inconsistency, namely the issue of 

individual differences. 

 

There are few things that we can assert with certainty about human beings, but one of these is 

that they each vary across different dimensions.  So, while we witness many remaining questions 

about the physical environment experienced, and the work task that is being performed, we also 

have an intrinsic source of variation embedded in the fact that there is wide variation amongst 

workers themselves. Evidently, some people have extensive experience at work, others are new 

hires. Often such experience co-varies with age, but not necessarily so. Men and women differ in 

their response to identified factors, and the workplace is now one where multiple gender 

identifications are becoming more prevalent. One most powerful influence in mediating someone’s 

reaction to their workplace is the degree of autonomy that they can exert. If work occurs in an 

immalleable place of confinement, as many are now experiencing in ‘lockdown’ conditions 

(Hancock & Volante, 2020), then stress levels build and a general exhaustion syndrome can set in, 

regardless of the best intentions of workplace designers. If, however, some degree of freedom is 

given the individual, in terms of controlling their time or the configuration of the space around 

them, then at least some degree of that general stress is dissipated. In short, people bring a lifetime 

of experience into their job location and those influences interact with the task they are performing 

and some intimately affect the outcome of what they are required to do.   

 

This triad of categories represent only those central features which make it problematic to find 

stable and deterministic patterns to describe the effect of IEQ on cognition. However, there are 

two other sources that we cannot pass over without some direct comment. As shown in Figure 3, 

these are connoted by the diversity of applicable measurement techniques, as well as the critical 

influence of feedback upon all of the noted effects. We deal with them in this order. It will have 

been noted that as our survey progresses from descriptions of the environment to descriptions of 

the task, to descriptions of the people involved, the measurement instrument co-vary accordingly. 

Physical values can be established by external and objective instruments such as those that assess 

sound pressure level, light level, dry bulb temperature, and the like. However, understanding work 

tasks means that we must be much more oriented toward cognitive assessment. Here, use of 

sophisticated techniques to assess brain state, such as EEG, fNIRS etc., are required since the 

complexity of the entity to be studied has now itself inflated by many orders of magnitude. True, 

these forms of assessment provide ‘objective’ evidence, but such evidence has to be interpreted in 

terms of performance accomplished. At the level of the individual worker, we see featured many 

more psychological forms of test and evaluation. These impose interrogatories upon the 

consciousness of the individual. And already we have to accept that what a person says is not 

necessarily related either to their momentary brain state, nor the instantaneous state of the indoor 

environment (and see (Hancock & Matthews, 2019)). In brief, these differing instruments tend to 
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access different orders of information, and almost as critically, at differing temporal levels. Thus, 

while EEG has a time-base commonly measured in milliseconds, a psychological survey 

instrument might ask about feelings concerning a whole work shift or more. At the same time, 

those instruments recording IEQ might integrate over minutes, hours, or even days. These 

disparate time-bases ought to warn us that strong consistency should not be expected, even if the 

underlying relationship are coherent and discoverable. Precisely how we measure and when we 

measure tends to inject much variance into our possible understanding of underlying effects. 

 

Finally, feedback impacts all of the factors that have been identified as under-writing the current 

confused state of experimental information relating IEQ to cognition. This is because awareness 

of circumstances acts immediately to change those circumstances. So, for example, someone 

rewarded for their past performance may rate current conditions as more productive and 

comfortable as a result of that approbation and not any manifest change in the environment. The 

brain too adjusts to reward and punishment, most especially with respect to its own internally 

generated feedback loops. As a result, trying to establish the specific effects of IEQ on cognition 

is like a grandiose signal to noise effort in which the experimentalist must seek to elevate the signal 

to trans-threshold levels while suppressing and trying to eliminate sources of obstructing noise. 

But all this is occurring in a flux of related and unrelated variation against which the embattled 

investigator must seek to fight. While we have pointed to a number of the major reasons why the 

picture lining IEQ to cognition remains an obscured one, these are by no means the only sources 

of variation which impinge on the process. As noted earlier, social cognitive influences can 

certainly play a role as can cultural, political, and informational impacts. In short, we have strong 

reason to believe that IEQ does exert significant impacts on cognition, but we have equally strong 

reasons to believe that providing a closed-end specification of such influences is liable to prove a 

difficult and arduous endeavor, and one that will take a significant interval of time to resolve. 
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Paper B. Air quality in the car: how CO2 and body odor affect drivers’ cognition and driving 
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Highlights 

• Assessed driver cognition and driving performance under three CO2 levels and two body odor 

conditions 

• Analyzed VOCs present in the body odor from T-shirts of male and female donors 

• CO2 or body odor did not significantly impact driving performance in this study 

• Body odor increased response accuracy of N-back tasks 

•  Moderating effects of task difficulty and exposure time impact cognition and driving 

performance 

Graphical abstract 

 

Abstract 

Elevated indoor levels of CO2 and the presence of body odor have been shown to have adverse 

effects on the cognitive function of building occupants. These factors may also contribute to 
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impaired in-car driving performance, potentially posing a threat to transportation and public safety. 

To investigate the effects of CO2 and body odor on driving performance, we enrolled 25 

participants in highway driving tasks under three indoor CO2 levels (800, 1800, and 3500 ppm) 

and two body odor conditions (presence and absence). CO2 was injected in the cabin to increase 

CO2 levels. In addition, we assessed working memory and reaction time using N-back tasks during 

driving. We found that driving speed, acceleration, and lateral control were not significantly 

affected by either CO2 or body odor. We observed no significant differences in sleepiness or 

emotion under varying CO2 or body odor conditions, except for a lower level of emotion valence 

with exposure to body odor. Task load was also not significantly impacted by CO2 or body odor 

levels, except for a higher reported effort at 1800 ppm compared to 800 ppm CO2. However, 

participants did demonstrate significantly higher accuracy with increased body odor exposure, 

suggesting a complex effect of volatile organic compounds on driver cognition. Our findings also 

revealed moderating effects of task difficulty of N-back tests and exposure duration on cognition 

and driving performance. This is one of the first few in-depth studies regarding environmental 

factors and their effect on drivers’ cognition and driving performance, and these results provide 

valuable insights for car-cabin environmental design for air quality and driving safety. 

Introduction 

CO2 and body odor 

Elevated CO2 in buildings was reported to increase the prevalence of acute health symptoms 

(Apte, 2000; Erdmann et al., 2002) and deteriorate cognitive function (Bloch-Salisbury et al., 2000; 

Scully et al., 2019; Twardella et al., 2012a; C. Wang et al., 2021). A relatively high exposure (even 

below 5000 ppm) can cause headaches, fatigue, eye, nose, and respiratory tract symptoms (Daisey 

et al., 2003; Scully et al., 2019). In addition, Satish et al. (2012) found decision-making 

performance declined at both 1000 ppm and 2500 ppm concentrations relative to 600 ppm. 

Additionally, Allen et al. (2019) stated that exposure to CO2 at 700 and 1,500 ppm increased the 

odds of passing a flight maneuver significantly compared to exposure at 2,500 ppm. Scully et al. 

(2019) reported that exposure to CO2 above 1,200 ppm increased self-reported exhaustion and 

decreased concentration ability after 2-3 hours of exposure.  

In addition to indoor CO2, body odor from occupants may also contribute to the impacted 

cognition. Human body odor is a unique identifying feature of an individual and contains numerous 

VOCs belonging to significant chemical classes (Gallagher et al., 2008).  Cecchetto et al. (2019) 

concluded that body odor could effectively influence moral decision-making by changing the 

emotional experience during the process, even when the perceiver is unable to detect its presence. 

A field study found that 12 organic compounds increased during lecture periods, with students 

experiencing increased stress during examination periods due to elevated metabolism (Assessment, 

2009a). Zhang et al. (2017) reported that exposure to 3000 ppm of exhaled CO2 and accompanying 

body odor reduced mental performance, increased intensity of reported headache, and increased 

difficulty in thinking clearly compared to background exposure (500 ppm CO2). 

Ventilation in the car 

Ventilation is a general strategy to dilute pollutants and improve air quality in the car cabin. 

The ventilation Air Exchange Rate (AER) in the vehicle cabin directly affects drivers’ exposure 

to various air pollutants and air quality (Brodzik et al., 2014; Ott et al., 2008). A higher AER can 

decrease the air pollutants that originated in the vehicle but can also increase the air pollutants 

from outside (Shu et al., 2015). A low AER, on the other hand, can cause the accumulation of CO2 

and unpleasant body odor that result from occupants. Many studies have measured AER in regular 
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passenger vehicles. Hudda et al. (2012) found that median of AER 6.0 h-1
 under recirculation (RC) 

ventilation, which was approximately one order of magnitude lower than the 63 h-1 under outside 

air (OA) ventilation settings. Another study (Hudda & Fruin, 2018) found that AER ranged from 

3 to 23 h-1
 under RC and 45 to 104 h-1

 under OA settings, at speeds ranging from 15 to 60 km/h. 

The statistical model built by Fruin et al. (2008) indicated a typical California passenger vehicle 

manufactured in 2010 would have an AER of 20 h-1 at a speed of 105 km/h, with ventilation 

maintained at 18 h-1 in the recirculation mode of the car. 

Due to the variation in AER, the level of CO2 that accumulates in a vehicle during driving varies 

greatly. In a study by Fruin et al. (2011) on the air quality in the vehicle cabin during cruising, it 

was found that CO2 concentrations exceeded 2,500 ppm after 15-20 min in a stationary vehicle 

with two occupants using recirculation (RC) ventilation. However, CO2 levels never exceeded 800 

ppm while in motion under outside air (OA) conditions. CO2 levels in the vehicle cabin tend to 

increase due to occupant exhalation when the HVAC air is recirculated. The CO2 levels, 

particularly in the window-closed cabin, typically exceed 3000 ppm in the fully loaded condition 

(Hudda & Fruin, 2018; Shu et al., 2015).  

Research motivation and objectives 

Although many studies have investigated the impact of CO2 and/or body odor on occupants’ 

cognition and work performance in buildings, research into these environmental factors and their 

effect on drivers’ cognition and driving performance, which is crucial for safe and effective driving 

performance in vehicles, seem to be missing in the literature study.  

Driving performance refers to as an individual’s ability to operate a vehicle safely and 

effectively, including controlling the vehicle, making quick decisions, and responding to various 

driving situations (Savino, 2009). Impairments in a driver’s cognitive abilities can lead to a decline 

in driving performance, which can be measured through various metrics related to the vehicle and 

the environment, such as driving speed and variability, distance from the vehicle in front, lateral 

position within the lane, and brake reaction time. These metrics have been employed in studies by 

Baron and Kalsher (1998), Beh and Hirst (1999), Caberletti et al. (2010), Ott et al.(2008), and 

Raudenbush et al. (2009) to assess driving performance. 

To date, studies examining the impact of moderate CO2 concentrations and body odor on 

cognitive performance have mostly focused on indoor office environments and tasks lasting 

several hours. However, due to the potential for CO2 accumulation and body odor emission in 

vehicles, there is a gap in knowledge regarding the effects of in-car air quality on driving and the 

cognitive abilities essential for safe driving. Thus, this study aims to explore the impact of in-car 

CO2 and body odor on driving performance, filling the gap in knowledge in this understudied field. 

Methodology 

Participants and enrollment 

Twenty-five student participants were recruited from Worcester Polytechnic Institute (WPI) via 

poster and email. The Institutional Review Board (IRB-19-0672) of WPI approved the 

experimental procedure, and all participants completed an IRB-approved consent form informing 

them of the procedures, risks, and responsibilities of the study.  

The interested participants were screened for simulator sickness before the final selection. A 

very small percentage of individuals (2%–8%) may experience simulator sickness symptoms (a 

form of motion sickness) during the driving simulation, particularly when the simulation involves 

multiple curves and stops (Akinwuntan et al., 2005). We used the Simulator Sickness 

Questionnaire (SSQ) (Kennedy et al., 1993) to assess simulator sickness, as it is the widely used 
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measure of simulator sickness symptoms to predict participant dropout (Balk et al., 2017). It 

comprises 16 items that address subjective feelings of headache, nausea, and blurred vision. 

Subjects rate their feeling from 0 (none) to 3 (severe) in three to five minutes after the simulated 

driving. We removed four participants (original sample size of 29 participants) with adverse 

physiological and psychological reactions to the driving simulator from the study due to the 

simulator sickness. Finally, twenty-five young drivers with valid licenses (fifteen males and ten 

females) within the ages of 18-22 years (Mean = 19.88, S.D. = 1.33) met the criteria and 

participated in the formal experiment. To determine the appropriate sample size for our study, we 

performed a power analysis using G*Power software 3.1 (Fig. S1) (Faul et al., 2007). Since each 

subject experienced all six combinations of the CO2 and body odor conditions, we treated the study 

as having six distinct conditions for the purpose of the power analysis. The calculated sample size 

was 19 using “ANOVA: Repeated measures, within factors” with effect size of 0.25 and power of 

0.8. 

Participants were requested to avoid alcohol for 24 hours and to abstain from nicotine and 

caffeine for 3 hours before the simulated driving. They were also instructed to have enough sleep 

the night before the visit. The compensation was $15 per hour with a performance-based bonus of 

up to $15 to motivate participants to engage in the task. 

Experiment set up and driving simulator  

In this study, the driving simulator comprised several components, including a control computer 

with simulator software, three display projectors, a curvature screen, a Logitech G29 driving 

control set, an audio system, and a car cabin. The driving simulator software used in the study was 

provided by Carnetsoft (Wim van Winsum, Joeswerd 85, Groningen, 9746CR, the Netherlands). 

The control computer with a GeForce GTX 770 GPU, an i7-9790 CPU, Windows 10 PRO 

Operating System, and 32 GB RAM was connected to three display projectors. Moreover, the 

central screen was located 0.5 m in front of the cabin. The simulator provided images on a 210º 

horizontal field of view, with 70º for the forward view and 70º for each left and right out of the 

window views. A Logitech G29 steering wheel, shift gear, and pedal set, which included brake, 

clutch, and accelerator pedals, were used, along with force feedback steering (rotation -450 to 

+450º), and gear shifter. A foot-switch control pedal was installed to provide additional driver 

input for N-back tasks that will be described in Section 2.4. The simulator was also equipped with 

an audio system to mimic the sounds from car engines and tires. 
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Fig. 1. Panorama of the driving simulator cabin (~ 2.94 m3) and screen; The cabin was made 

of a metal frame, polyethylene boards, and clear acrylic plexiglass plastic boards. The seat was 

adjusted to make the participant’s line of sight fall on the focal point on the apparent horizon line 

in the in-car environment displayed on this monitor. 

In-car environment 

Ventilation, temperature, and humidity 

A wall-mounted heat recovery ventilator (Fantech SH–56 CFM HRV) ventilated the 

experimental room with the simulator inside. Exhaust air from the car cabin was removed directly 

by the ventilator. In addition, the experimental room was purified with an air purifier (LEVOIT 

Air Purifiers for Home, H13) located near the air inlet of the car cabin. We controlled air 

temperature and relative humidity at 24 ± 1 °C and 47 ± 2% inside the car cabin, respectively. 

CO2 

Subjects were randomly assigned to expose to one of the three CO2 concentrations: 800, 1800, 

and 3500 ppm for each visit.  The CO2 concentrations were measured near the driver’s breathing 

zone using an active meter (CM-0001 CO2 Sampling Data Logger, CO2 METER) embedded with 

an air pump. The measurement accuracy is approximately ±30 ppm. The target CO2 concentrations 

inside the cabin were achieved by delivering nearly CO2 (99.9%) from a gas cylinder (Airgas, 

Food grade, CGA-320) into the driving simulator cabin. For the low CO2 condition, the 

concentration in the cabin was around 800 ppm without adding any artificial CO2 due to the 

presence of driver’s exhalated CO2. In the experiment, we injected CO2 to raise indoor levels at 

1800 ppm and 3500 ppm, which is the common approach in the literature (Allen et al., 2016a; 

Satish et al., 2012a; X. Zhang et al., 2017a). 

Body odor 

In this study, we considered two body odor conditions: presence and absence of extra body odor 

that was not emitted by the driver.  The extra body odor was added to the car cabin by hanging six 

worn T-shirts in the car cabin during the driving session. This approach has been widely used in 

the literature for body odor research (Haze et al., 2001; Munk et al., 2000; Rathinamoorthy & 

Thilagavathi, 2016). Worn T-shirts were collected from six healthy odor donors (4 males, 2 
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females) aged between 28 and 38 years old (mean ± SD age: 32.3 ± 4.5 years old). Before 

collecting the body odor, the donors were screened to ensure they were non-smokers and did not 

have any health issues or undergo drug treatment known to affect their sense of smell. To maintain 

consistency, the donors adhered to specific guidelines that controlled their personal nutrition and 

hygiene practices during the collection session. Informed written consent was obtained from each 

donor. During the collection session, all individuals providing odor samples were required to 

comply with specific guidelines that controlled their personal nutrition (meaning they couldn't 

consume alcohol, smoke, or eat foods that altered their natural body odor) (Cecchetto et al., 2019) 

as well as their hygiene practices. All T-shirts were previously washed with an odorless detergent 

(All Mighty Pacs with stain lifters free clear Laundry Detergent). Donors wore T-shirts for more 

than 12 consecutive hours during the day, right after having taken a shower using fragrance-free 

body wash (Aveeno Skin Relief Fragrance-Free Moisturizing Body Wash) and having dried 

themselves with towels washed with the same odor-free detergent used to pre-wash the T-shirts. 

Donors collected their body odor on separate T-shirts for each collection day for two days. 

Odorless plastic bags were provided to each donor to store their T-shirts before bringing them to 

the lab the day after each collection period. All samples were then stored in a dry, light-free 

environment to prevent sample deterioration. 

In this study, we did not measure VOCs directly from the air inside the cabin during the 

experiments. Instead, we examined the chemical makeup of body odor from two worn shirts (one 

from a male and one from a female) since the aim of the study was not to establish a relationship 

between the amount of body odor and driving performance. We assumed that the VOCs emitted 

from the worn shirts, which were hung in the car cabin, would have diffused into the air due to 

their volatile nature. To establish a control baseline, we also measured the potential body odor or 

similar VOCs on a clean shirt. As body odor can come from various parts of the body (Natsch et 

al., 2006; Pandey & Kim, 2011), we cut fabric samples from the chest, back, and armpit sections 

of two worn T-shirts (one male and one female) and two pieces from a laundered T-shirt. Each 

sample was a 5 cm × 5 cm square with a weight ranging from 440.7 to 472.8 mg (Mean = 459.2 

mg, SD = 11.2 mg). We used the cotton fabrics from the laundered T-shirt to measure the baseline 

level of VOCs present on the fabric, which was employed in previous study on carpets 

(Katsoyiannis et al., 2008). Each cotton fabric sample was placed in a separate glass bottle, 

according to its corresponding body part from the worn or laundered T-shirts and extracted using 

15 ml of methanol. We placed the glass bottles with the solvent inside on an Innova 2100 shaker 

(New Brunswick Scientific, Edison, N.J.) and shaken at 180 rpm for 12 hours. The extract was 

condensed to 1.5 ml using RapidVap® (Labconco, Missouri, USA). Then, we further analyzed the 

condensed extract by gas-chromatography/mass spectrometry (GC-MS) (Agilent, models 7890B 

and 5977B MSD) with a J&W HP-5MS 30 m × 0.25 mm × 0.25 μm column. The GC-MS was 

operated under the electron impact (EI) mode (70 eV). The oven temperature program was set as 

follows: 50 °C (3 min), 50–250 °C (8 °C/min), and 250 °C (3 min) with helium as carrier gas at a 

flowrate of 1.2 mL/min. Compound identification was achieved by comparing the retention time 

with chemical standards following NIST spectral libraries. We conducted a search of the literature 

to identify potential volatile compounds. Published literature on volatiles from the skin of other 

body sites (i.e., axilla, chest, and back) was also examined. The profile of each compound as the 

pure compound was checked by GC/MS to confirm consistency with the published literature. 

Exported VOCs were selected on the basis of existence identified by comparing the clean T-shirt 

samples with those worn T-shirts. 
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Driving and secondary tasks 

Virtual Environment 

The driving tasks were conducted in a virtual environment that depicted a two-lane highway 

with a lane width of 3.35 meters, as shown in Fig. 2. The highway was busy and required the 

participants to drive at high speeds, with multiple lane changes, traffic jams, and overtaking 

maneuvers. The driving scenario was set in daylight without weather disturbances such as fog, 

snow or rain. Each driving session lasted for at least 20 minutes and included traffic congestion in 

the first half, where drivers had to slow down to avoid collisions, followed by a return to normal 

speeds after the heavy traffic subsided. 

 
Fig. 2. Freeway driving scenario 

Driving performance  

The driving simulator system was utilized to gather data on driving by recording the position 

and motion of the vehicle at a frequency of 10 Hz. The collected data, including forward velocity, 

acceleration, lateral velocity, lateral acceleration, lane deviation, steering, and yaw angle rate 

(Table S1 in Appendix), were analyzed to assess driving performance. Variations in vehicle 

velocity and acceleration were used as indicators of driving performance impairment. The mean 

and standard deviation of speed were also examined to evaluate vehicle dynamics. Lateral velocity, 

lateral acceleration, lane deviation, steering, and yaw rate provided insights into drivers' accuracy 

and potential errors when driving on the road, particularly in terms of lateral control (Oron-Gilad 

et al., 2008). Lane deviation represented the average distance of the vehicle from the center of the 

lane, while the standard deviation of lane deviation was computed only when the vehicle remained 

in the right lane to avoid overtaking effects. Steering was used to assess the lateral control of the 

vehicle, and its standard deviation was indicative factor of the impact of road environmental 

(Thiffault & Bergeron, 2003). 

N-back task 

The N-back task is a commonly used method for testing working memory and cognitive 

function in driving tests. It is documented in detail in (Mehler et al., 2012) which used the verbal 

version of the N-back task. Considering that facial muscle movements can interfere with bio-

signals that are not analyzed in the current study, we used a modified version of the N-back task 

based on the one utilized in (Solovey et al., 2014) to avoid the artifact of the task paradigm. 

During the task, participants are presented with a sequence of single-digit numbers from 0-9, 

displayed on the left corner of the middle screen, at two-second intervals while driving. They were 

required to determine whether each number was the same as the number that appeared N items 

before. The value of N is kept constant throughout one session as detailed further in the 

experimental procedure section, with higher values of N indicating a higher difficulty level. Figure 

3. Example of N-back experimental paradigm to manipulate cognitive workload3 illustrates how 
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the N-back task works for N values of 2, 1, and 0. Participants were instructed to react to new 

items that appeared two, one, or zero items back for the 2-back, 1-back, and 0-back sessions, 

respectively. Each driving task consists of six sessions equally divided into 2, 1, and 0-back tasks 

presented randomly. Each session begins with an instruction block followed by 16 randomly 

selected numbers, with each number displayed for 500 ms and participants given 1,500 ms to react. 

A 140 s driving block follows each N-back session. 

 

  
Fig. 3. Example of N-back experimental paradigm to manipulate cognitive workload 

 

This task implementation program was created using Python. The time when each number 

appeared, the session type, the subject’s response time, and whether the presented number was a 

target or not (in order to calculate response accuracy, %) were all recorded and saved as a text file 

for subsequent processing. The missed target was considered an incorrect response. This data 

reflected the efficiency of cognitive processing in each session. 

Before and During experiments questionnaires 

Participants in the study completed two questionnaires. The first was a brief demographic 

questionnaire that recorded age, sex, and driving experience. The second questionnaire was 

completed during the testing and contained items related to sleepiness, emotion, perceived air 

quality and air quality acceptance, and task workload. The sleepiness before and after driving were 

measured using the Stanford Sleepiness Scale (SSS), which is a 7-point Likert-type scale ranging 

from very alert to very sleepy (Hoddes et al., 1973). The Self-Assessment Manikin (SAM) 

procedure was used to measure participants’ emotions, with scales ranging from -2 to 2 (Valence: 

unpleasant, unsatisfied, neutral, pleased, pleasant. Arousal: calm, dull, neutral, wide-awake, 

excited. Dominance: dependent, powerless, neutral, powerful, independent) (Bradley & Lang, 

1994). Task workload was measured using the NASA Task Load Index (NASA-TLX) 

questionnaire, which measures different dimensions of stress, workload, and fatigue (Hart, 2006). 

The questionnaire is divided into six subscales, including mental demand (MD), physical demand 

(PD), temporal demand (TD), own performance (OP), effort (EF), and frustration (FR). 

Participants rated their performance on each of these subscales from 1 to 7. Furthermore, 

participants evaluated their perception, preference, perceived air quality, and air quality acceptance. 

Procedure 

Each participant visited the laboratory four times to complete the participation. During the first 

visit, participants took driving training, became familiar with simulator’s operation, and completed 
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simulator sickness screening (as shown Fig. 4). In the subsequent three visits, the participants 

finished driving tasks while exposed to one of the three CO2 levels randomly. Each visit included 

two identical driving sessions, one with clean T-shirts while the other with worn T-shirts inside 

the driving cabin. The order of the two sessions were randomized. Subjects were blinded to 

randomized experimental conditions. Additionally, we controlled the interval (6.96 ± 2.87 days) 

between consecutive experimental visits to enhance the independence of observations. The 

minimum interval between two experimental visits was 3 days. 

 

 

Fig. 2. Experimental procedure 

 

Upon arrival at the laboratory for each visit of the last three, subjects took a survey about the 

sleeping quality of last night and sleepiness before entering the driving cabin. Then, they began 

the first driving task, which lasted approximately 18 minutes in the vehicle cabin. While driving, 

subjects completed six N-back tasks (two 0-back, two 1-back, and two 2-back) randomly, which 

induced different workload levels. Next, participants were asked to leave the car cabin and finish 

the physical and psychological state survey (sleepiness, task load, emotion, and perceived air 

quality and air quality acceptance) regarding the entire driving sessions. We did not expect that 

taking the survey outside the cabin immediately after driving would significantly change the 

participants’ responses compared to taking the survey inside the cabin. This survey took about five 

minutes to complete while we swapped the T-shirts inside the cabin. Then they returned to the car 

cabin for another identical driving session. At the end of all visits, participants were debriefed and 

compensated. 

Data Analysis 

The study evaluated driving performance based on recorded vehicle velocity, acceleration, lane 

deviation, steering wheel movements, and yaw rate. We used reaction time and response accuracy 

for N-back tasks to measure the impact of CO2 and body odor on cognitive performance during 
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driving. Subjects’ sleepiness level of each driving task was assessed by the difference of the 

surveys on sleepiness before (pre-test) and after (post-test) the test session. Further, we used the 

numerical responses in other surveys to assess emotion, and perceived air quality and air quality 

acceptance. In addition, we followed the approach in a  previous study (Al-Shargie et al., 2017) to 

quantify cognitive load assessed by NASA-TLX. 

The effect of CO2 or body odor on driving performance, cognition with N-back tasks was 

statistically assessed using Aligned Rank Transform (ART) two-way ANOVA coupled with post-

hoc analysis, a commonly employed method in the literature for assessing differences among three 

or more groups (Durner, 2019; Elkin et al., 2021). All datasets were not normally distributed by 

using the Shapiro-Wilk normality test. The significance level used for hypothesis testing was 0.05. 

The data analysis was conducted with R language software (version 4.2.3)  (R Core Team, 2013).  

Results 

Environmental conditions  

CO2 concentration 

On average, the measured CO2 concentration (Fig. S2) was 786.42 ± 106.57 ppm (Mean ± SD) 

for the low level, 1815.00 ± 80.63 ppm for the middle level, and 3504.41 ± 149.39 ppm for the 

high level. 

Body odor detection on T-shirts 

We analyzed the VOC composition of worn T-shirts but did not quantitatively measure their 

concentration. The compounds extracted from the normal worn T-shirt samples of the upper body 

are listed in Table 1, and are significantly higher concentration compared to clean cotton samples. 

Please note that the chemical analysis was conducted with body odor from only two donors. Also, 

Table 1 displays the chemicals found exclusively in worn T-shirts and not in clean ones, indicating 

that these chemicals are specifically associated with body odor. In total, we have identified 26 

chemicals in the fabric of the female odor donors’ clothing and 19 chemicals in that of the male 

odor donors. There were 12 common chemical constituents found in all the worn fabric samples 

of male and female donors, including aldehydes and benzene. 

The GC-MS spectrogram revealed a higher number of fatty acid groups in the isolates from the 

worn cotton swatch. Table 1 identifies the following important fatty acids and alcohols which are 

considered to be odor forming components. Benzene acetaldehyde, found in the female sample, is 

an aldehyde consisting of acetaldehyde bearing a methyl substituent, and has an odor reminiscent 

of lilac and hyacinth. Undecanoic acid, identified in the worn textile, is one of the odor-forming 

sources of sweet and butter-like odor (Shiratsuchi et al., 1995). 2-phenoxy-ethanol, found in the 

female samples, is a normal constituent of human sweat, blood, and breath, probably resulting 

from acetaldehyde by oxidation as well as direct injection (Mier et al., 2019). Octanol, 2-butyl and 

1-Decanol, 2-hexyl were found in both female and male samples. They are primary alcohols that 

are colorless oily liquids with a sweet odor. Dodecanoic acid, detected in both female and male 

samples, is a saturated fatty acid with a 12-carbon atom chain and was identified in axillary sweat 

samples by Allison et al (Curran et al., 2005). Tetradecanol acid, found in all the samples, is a 

derivative of myristyl alcohol, as identified in worn textiles (Rathinamoorthy & Thilagavathi, 

2016). Methyl esters of tridecanoic acid from male samples were identified as human skin 

emanations that attract mosquitoes (Verhulst et al., 2016). A saturated fatty acid of myristic acid, 

ethyl octadecyl ester of carbonic acid was found from female sample. It is a derivative of carbonic 

acids and has a pleasant smell. 
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The study also detected other significant odor-forming fatty acids and alcohols such as octanoic 

acid, hexanoic acid, nonanoic acid, benzene propanoic acid, tridecanoic acid, palmitoleic acid, 9-

hexadecenoic acid, trans-13-octadecenoic acid, and n-Decanoic acid in the worn textile. These 

compounds were derivatives of specific odor components found in the human body such as 

octanoic acid, hexanoic acid, nonanoic acid, and tridecanoic acid (Ishino et al., 2010; C. Liu et al., 

2013; Wachira et al., 2021). 

 

Table 1. Detected chemicals in the body odor present only in the worn T-shirts 

Sample 

location 

Compound name Present in 

the female 

sample 

Present in 

the male 

sample 

Property 

Armpit

, chest, 

and 

back 

Glycerin ✓ ✓ odorless 

2-propanol,1-(2-methoxypropoxy)  ✓ ethereal odor 

Benzene acetaldehyde ✓  grassy odor 

Undecanoic acid ✓  waxy, creamy, cheese-like 

Cyclopentasiloxane, decamethyl  ✓  

Octanoic acid ✓  pungent odor 

Hexanoic acid ✓  fatty type odor and an 

cheesy type flavor 

2-phenoxy-ethanol ✓  odor forming compound 

1-Phenoxypropan-2-ol ✓  odorless 

Nonanoic acid ✓  unpleasant, rancid odor 

Benzene propanoic acid ✓  sweet, floral scent 

1-Octanol, 2-butyl ✓ ✓ sweet odor 

1-Decanol, 2-hexyl ✓ ✓ sweet odor 

Dodecanoic acid ✓ ✓ sweet odor 

2-Tridecenoic acid ✓  odorless 

Tridecanoic acid ✓ ✓ odorless 

E-9-tetradecenoic acid  ✓ odorless 

Tetradecanoic acid ✓ ✓ waxy, fatty or soapy odor 

Pentadecanoic acid ✓ ✓ odorless 

Carbonic acid, ethyl octadecyl ester ✓  pleasant smell 

Tridecanoic acid, 4,8,12-trimethyl, 

methyl ester 

 ✓ odor forming compound 

Palmitoleic acid ✓ ✓ slightly waxy fatty 

Ascorbic acid, 2,6-dihexadecanoate  ✓ odorless 

9-hexadecenoic acid ✓ ✓ odorless 

Trans-13-octadecenoic acid ✓ ✓ odorless 

Octadecanoic acid ✓ ✓ odorless 

Glycerol 1-palmitate ✓ ✓ odorless 

Armpit 

Z-8-Methyl-9-tetradecen ✓  odorless 

n-Decanoic acid ✓  odorless 

Naphthalene, 2-methoxy  ✓ odorless 

Back 
(2-mercaptoethyl)guanidine ✓  odorless 

Undecanoic acid ✓  odorless 

Chest 1, 2-pentanediol  ✓ odorless 

Note: Bold Italicize in the table are the chemicals found in both male and female samples. 
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Driving performance 

This analysis aims to investigate the impact of varying CO2 levels and body odor on drivers’ 

speed control and lateral control. Several dependent variables, including the mean and standard 

deviation of speed, acceleration, lateral acceleration, lane deviation, steering, and yaw rate, were 

analyzed. A two-way ANOVA was conducted to assess the influence of CO2 and body odor on 

these driving performance indices. Table 2 presents the means and standard deviations for these 

indices, while Table 3 displays the results of the two-way ANOVA examining the effects of CO2 

and body odor. In summary, our findings indicate that neither CO2 levels nor body odor conditions 

significantly affected any of the analyzed driving performance indices. 

The results indicate that the mean speeds were consistently maintained across different CO2 

conditions, with values of approximately 52.25 mph, 53.04 mph, and 52.77 mph, respectively. The 

standard deviation of speed exhibited uniformity across all conditions. Notably, the ANOVA 

showed no significant effects of CO2 on either the mean (F(2, 144) = 0.03, p > 0.05, η2 = 0.25) or 

standard deviation (F(2, 144) = 0.41, p > 0.05, η2 = 0.59) of driving speed. Additionally, the 

presence of body odor did not result in any significant impact on either mean or standard deviation 

of driving speed. Mean speed were quite similar in environments both with and without body odor, 

with no significant differences observed (F(1, 144) = 0.13, p > 0.05, η2 = 0.51). Similar patterns 

were observed for mean (F(2, 144) = 0.53, p > 0.05, η2 = 0.52) and standard deviation (F(2, 144) 

= 0.55, p > 0.05, η2 = 0.82) of acceleration remained stable across CO2 levels. The ANOVA did 

not reveal any significant differences in these measures across difference CO2 levels, and the 

presence of body odor also had no significant effect on the mean (F(1, 144) = 0.53, p > 0.05, η2 = 

0.52) or standard deviation (F(1, 144) = 0.07, p > 0.05, η2 = 0.82) of acceleration. Furthermore, 

the two-way ANOVA results show there was no significant interaction between CO2 and body 

odor on mean or standard deviation of speed or acceleration. 

 Lateral control refers to the driver’s ability to steer the car in a lateral direction on the road. To 

evaluate lateral control performance, we used the mean and standard deviation of lateral 

acceleration, lane deviation, steering, and yaw rate. The average lane deviation shows a similar 

value, of 1.256 m, 1.217 m, and 1.184 m respectively in the low, medium, and high CO2 level 

conditions. The ANOVA indicated no significant impact of CO2 on the average (F(2, 144) = 0.56, 

p > 0.05, η2 = 0.27) or standard deviation (F(2, 144) = 0.20, p > 0.05, η2 = 0.30) of lane deviation. 

Moreover, the presence of body odor led to a slight increase in lane deviation average, from 1.172 

m to 1.222 m. However, this change was not statistically significant, as indicated by the ANOVA 

(F(1, 144) = 1.05, p > 0.05, η2 = 0.25). Participants had the largest lateral acceleration 0.152 m2/s, 

when the CO2 was at a high level. The ANOVA revealed that the average lateral acceleration 

remained consistent across the various CO2 conditions, with no statistically significant differences 

observed (F(2, 144) = 0.91, p > 0.05, η2 = 0.75). Furthermore, for other indices of later control, 

the ANOVA demonstrated no significant differences in the mean or standard deviation of steering 

and yaw rate across the different CO2 levels or in the presences of the body odor. No interactions 

between CO2 and body odor on driving performance indices of lateral control were found. 

 

Table 2. Descriptive Statistics for driving performance indices at different CO2 levels and 

environments with or without body odor 

Conditions Parameters M SD N 

800 ppm CO2 Speed (m/s) 24.671 5.439 50 

Acceleration (m2/s) 0.063 0.727 50 

Lane deviation (m) 0.802 1.839 50 



   

 

139 

 

Steering (degree) -0.041 19.452 50 

Yaw rate (rad/s) -0.0001 93.853 50 

Lateral acceleration (m2/s) -0.007 2.559 50 

1800 ppm CO2  Speed (m/s) 24.223 5.347 50 

Acceleration (m2/s) 0.072 0.725 50 

Lane deviation (m) 0.774 1.847 50 

Steering (degree) -0.062 17.886 50 

Yaw rate (rad/s) -0.003 90.804 50 

Lateral acceleration (m2/s) -0.010 2.481 50 

3500 ppm CO2 Speed (m/s) 24.618 5.609 50 

Acceleration (m2/s) 0.063 0.740 50 

Lane deviation (m) 0.587 1.836 50 

Steering (degree) -0.049 18.235 50 

Yaw rate (rad/s) -0.0003 94.807 50 

Lateral acceleration (m2/s) -0.008 2.548 50 

With the body odor Speed (m/s) 24.598 5.424 75 

Acceleration (m2/s) 0.066 0.737 75 

Lane deviation (m) 0.739 1.814 75 

Steering (degree) -0.072 18.669 75 

Yaw rate (rad/s) -0.0004 86.729 75 

Lateral acceleration (m2/s) -0.011 2.547 75 

Without the body odor Speed (m/s) 24.410 5.506 75 

Acceleration (m2/s) 0.066 0.725 75 

Lane deviation (m) 0.704 1.868 75 

Steering (degree) -0.029 18.380 75 

Yaw rate (rad/s) -0.0001 99.581 75 

Lateral acceleration (m2/s) -0.006 2.511 75 

Total Speed (m/s) 24.504 5.465 150 

Acceleration (m2/s) 0.066 0.731 150 

Lane deviation (m) 0.721 1.841 150 

Steering (degree) -0.051 18.524 150 

Yaw rate (rad/s) -0.0003 93.155 150 

Lateral acceleration (m2/s) -0.009 2.529 150 

 

Table 3. Two-way Analyses of Variance of driving performance indices at different CO2 levels 

and environments with or without body odor 

 Param

eters 
Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 
Speed 

(m/s) 

Mean CO2 121.480 2 60.740 0.031 0.969 0.247 

Body odor 248.327 1 248.327 0.127 0.722 0.506 

CO2 * Body odor 121.333 2 60.667 0.031 0.969 0.247 

S.D. CO2 1578.520 2 789.26 0.406 0.667 0.591 

Body odor 0.167 1 0.167 0.001 0.993 0.001 

CO2 * Body odor 1090.773 2 545.387 0.281 0.755 0.409 

Accel

eratio

Mean CO2 2061.280 2 1030.640 0.533 0.588 0.522 

Body odor 504.167 1 504.167 0.260 0.611 0.128 
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n 

(m2/s) 
CO2 * Body odor 1384.413 2 692.207 0.357 0.700 0.350 

S.D. CO2 2144.160 2 1072.080 0.553 0.576 0.823 

Body odor 144.060 1 144.060 0.074 0.786 0.055 

CO2 * Body odor 317.213 2 158.607 0.081 0.922 0.122 

Lane 

deviat

ion 

(m) 

Mean CO2 2142.720 2 1071.360 0.564 0.570 0.268 

Body odor 1980.167 1 1980.167 1.054 0.306 0.247 

CO2 * Body odor 3886.573 2 1943.287 1.035 0.358 0.485 

S.D. CO2 766.240 2 383.120 0.198 0.821 0.303 

Body odor 190.407 1 190.407 0.098 0.754 0.075 

CO2 * Body odor 1573.32 2 786.660 0.406 0.667 0.622 

Steeri

ng 

(degre

e) 

Mean CO2 4876.360 2 2438.18 1.273 0.283 0.724 

Body odor 1072.007 1 1072.007 0.552 0.457 0.159 

CO2 * Body odor 789.88 2 394.940 0.203 0.817 0.117 

S.D. CO2 1088.920 2 544.460 0.349 0.706 0.432 

Body odor 988.167 1 988.167 0.690 0.407 0.392 

CO2 * Body odor 443.560 2 221.780 0.144 0.866 0.176 

Yaw 

rate 

(rad/s) 

Mean CO2 5075.68 2 2537.84 1.326 0.269 0.836 

Body odor 117.927 1 117.927 0.061 0.806 0.020 

CO2 * Body odor 879.613 2 439.807 0.226 0.798 0.145 

S.D. CO2 2708.040 2 1354.020 0.708 0.494 0.852 

Body odor 144.060 1 144.060 0.074 0.786 0.045 

CO2 * Body odor 324.520 2 162.260 0.084 0.920 0.102 

Latera

l 

accele

ration 

(m2/s) 

Mean CO2 3485.080 2 1742.540 0.909 0.405 0.752 

Body odor 636.540 1 636.540 0.329 0.567 0.137 

CO2 * Body odor 513.760 2 256.880 0.132 0.877 0.111 

S.D. CO2 601.000 2 300.500 0.154 0.857 0.717 

Body odor 172.807 1 172.807 0.089 0.766 0.206 

CO2 * Body odor 64.653 2 32.327 0.017 0.983 0.077 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 
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 Param

eters 
Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 

Speed 

(m/s) 

Mean CO2 121.480 2 60.740 0.031 0.969 0.247 

Body odor 248.327 1 248.327 0.127 0.722 0.506 

CO2 * Body odor 121.333 2 60.667 0.031 0.969 0.247 

S.D. CO2 1578.520 2 789.26 0.406 0.667 0.591 

Body odor 0.167 1 0.167 0.001 0.993 0.001 

CO2 * Body odor 1090.773 2 545.387 0.281 0.755 0.409 

Accel

eratio

n 

(m2/s) 

Mean CO2 2061.280 2 1030.640 0.533 0.588 0.522 

Body odor 504.167 1 504.167 0.260 0.611 0.128 

CO2 * Body odor 1384.413 2 692.207 0.357 0.700 0.350 

S.D. CO2 2144.160 2 1072.080 0.553 0.576 0.823 

Body odor 144.060 1 144.060 0.074 0.786 0.055 

CO2 * Body odor 317.213 2 158.607 0.081 0.922 0.122 

Lane 

deviat

ion 

(m) 

Mean CO2 2142.720 2 1071.360 0.564 0.570 0.268 

Body odor 1980.167 1 1980.167 1.054 0.306 0.247 

CO2 * Body odor 3886.573 2 1943.287 1.035 0.358 0.485 

S.D. CO2 766.240 2 383.120 0.198 0.821 0.303 

Body odor 190.407 1 190.407 0.098 0.754 0.075 

CO2 * Body odor 1573.32 2 786.660 0.406 0.667 0.622 

Latera

l 

accele

ration 

(m2/s) 

Mean CO2 3485.080 2 1742.540 0.909 0.405 0.752 

Body odor 636.540 1 636.540 0.329 0.567 0.137 

CO2 * Body odor 513.760 2 256.880 0.132 0.877 0.111 

S.D. CO2 601.000 2 300.500 0.154 0.857 0.717 

Body odor 172.807 1 172.807 0.089 0.766 0.206 

CO2 * Body odor 64.653 2 32.327 0.017 0.983 0.077 

 

N-back task performance 

Table 4 and 5 display the results of the two-way ANOVA, utilized to explore the influences of 

CO2 levels (800 ppm, 1800 ppm, and 3500 ppm) and the presence of body odor on response 

accuracy and reaction time in N-back tasks. The means and standard deviations for reaction time 

and response accuracy are presented in Table 4 below. Response accuracy ranged from 90.67% to 

93.45% and exhibited no significant variation across CO2 levels (F(2, 144) = 1.29, p > 0.05, η2 = 

0.16). Additionally, different CO2 levels did not significantly affect drivers’ reaction times in N-

back tasks (F(2, 144) = 2.88, p > 0.05, η2 = 0.82), with reaction times ranging from 0.58 to 0.59 

seconds. Body odor did not have a significant effect on drivers’ reaction time in N-back tasks (F(1, 

144) = 0.80, p > 0.05, η2 = 0.11). Reaction time remained consistent in the presence or absence of 

body odor. However, the presence of body odor significantly influenced response accuracy (F(1, 

144) = 9.21**, p < 0.01, η2 = 0.55), as response accuracy of subjects decreased from 93.17% to 

91.102%. Additionally, the two-way ANOVA results show there was no significant interaction 

between CO2 and body odor on reaction time (F(2, 144) = 2.43, p > 0.05, η2 = 0.29) or response 

accuracy (F(2, 144) = 0.23, p > 0.05, η2 = 0.07). 

 

Table 4. Descriptive Statistics for response accuracy and reaction time of N-back task at different 

CO2 levels and environments with or without body odor 
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Conditions Parameters M SD N 

800 ppm CO2 Response accuracy (%) 93.451 9.989 50 

Reaction time (s) 0.591 0.137 50 

1800 ppm CO2  Response accuracy (%) 92.294 11.003 50 

Reaction time (s) 0.598 0.123 50 

3500 ppm CO2 Response accuracy (%) 90.667 12.231 50 

Reaction time (s) 0.596 0.122 50 

With the body odor Response accuracy (%) 93.137 10.463 75 

Reaction time (s) 0.592 0.126 75 

Without the body odor Response accuracy (%) 91.137 11.740 75 

Reaction time (s) 0.597 0.128 75 

Total Response accuracy (%) 92.137 11.159 150 

Reaction time (s) 0.594 0.127      150 

 

Table 5. Two-way Analyses of Variance of response accuracy and reaction time of N-back tasks 

at different CO2 levels and environments with or without body odor 

Parameters Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 
Response 

accuracy 

(%) 

CO2 162608.1 2 81304.05 1.292 0.275 0.156 

Body odor 574058.8 1 574058.8 9.210 0.002** 0.552 

CO2 * Body odor 303702.4 2 151851.2 2.427 0.089 0.292 

Reaction 

time (s) 
CO2 388713 2 194356.5 2.880 0.057 0.818 

Body odor 54568.96 1 54568.96 0.804 0.370 0.115 

CO2 * Body odor 31745.6 2 15872.8 0.234 0.792 0.067 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

Task Load Index 

Table S2 and S3 present the results of the NASA-TLX subjective task load ratings across 

different CO2 levels and the environments with or without body odor for six subscales. The two-

way ANOVA results revealed that CO2 levels or the presence of body odor had no significant 

impact on all subscales. For the mental demand subscale, participants rated their task load at an 

average of 3.50 for the low CO2 condition, 3.68 for the medium CO2 condition, and 3.46 for the 

high CO2 condition. Different CO2 levels did not significantly affect drivers’ mental demand (F(2, 

144) = 0.62, p > 0.05, η2 = 0.28). The presence of body odor also did not lead to a significant 

difference in mental demand ratings (F(1, 144) = 0.67, p > 0.05, η2 = 0.59), with average scores of 

3.59 and 3.51 for conditions with and without body odor, respectively. Temporal demand ratings 

were highest (M = 2.72) and own performance ratings were lowest (M = 2.64) in the medium CO2 

condition. In the presence of body odor, temporal demand decreased (M = 2.44), and own 

performance ratings increased (M = 2.747). Additionally, participants reported increased 

frustration with higher CO2 levels or the presence of body odor. 

Overall, the study suggests that CO2 levels and body odor have a limited impact on task load as 

assessed through the NASA-TLX subscales, with some variations in perceived effort and mental 

demand at different CO2 levels. 
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Perceived air quality and air quality acceptance 

Table S4 and S5 display the results of the two-way ANOVA, utilized to explore the influences 

of CO2 levels (800 ppm, 1800 ppm, and 3500 ppm) and the presence of body odor on perceived 

air quality and air quality acceptance. The analysis revealed that drivers rated the air quality as low 

(M = 1.2) in the environment with a medium CO2 level, and high (M = 1.84) when exposed to high 

levels of CO2. However, there was no statistically significant difference in perceived air quality 

between the different CO2 level conditions (F(2, 144) = 0.66, p > 0.05, η2 = 0.36). Interestingly, 

when it comes to air quality acceptance, participants rated significantly higher acceptance of air 

quality in high CO2 environments. Nevertheless, there was no significant difference in subjects’ 

acceptance of air quality between the environments of different CO2 levels (F(2, 144) = 0.28, p > 

0.05, η2 = 0.08). We also sought to understand how the presence of body odor influenced 

participants’ perceptions. The results showed that the presence of body odor did not significantly 

affect participants' perception of air quality (F(1, 144) = 0.52, p > 0.05, η2 = 0.15) or their air 

quality acceptance (F(1, 144) = 2.15, p > 0.05, η2 = 0.32). Participants’ ratings for perceived air 

quality and air quality acceptance were similar, whether body odor was present or absent. 

Additionally, there was no significant interaction between CO2 levels and the presence of body 

odor on perceived air quality (F(2, 144) = 0.91, p > 0.05, η2 = 0.50) or air quality acceptance (F(2, 

144) = 2.06, p > 0.05, η2 = 0.60). 

These findings suggest that CO2 levels played a more prominent role in influencing participants’ 

perceptions of air quality, with higher CO2 levels corresponding to higher perceived air quality 

acceptance. However, the presence of body odor did not significantly impact these perceptions. 

Sleepiness and emotion 

Table S6 and S7 present the results for changes in participants’ sleepiness levels before and 

after driving across different CO2 levels and the environments with or without body odor, as well 

as their emotional responses (valence, arousal, and dominance). A two-way ANOVA was 

conducted to assess the impact of CO2 levels on sleepiness and emotions. Although the analysis 

did not reveal significant effects of CO2 or body odor on participants’ sleepiness differences before 

and after driving (F(2, 144) = 0.78, p > 0.05, η2 = 0.75), it is noteworthy that the sleepiness 

difference appeared to increase with rising CO2 concentrations, hinting at a potential adverse 

influence of higher CO2 levels on sleepiness. The results indicated that the presence or absence of 

body odor did not significantly affect participants’ sleepiness differences before and after driving 

(F(1, 144) = 0.17, p > 0.05, η2 = 0.09). There was no significant interaction between CO2 levels 

and the presence of body odor on sleepiness (F(2, 144) = 0.17, p > 0.05, η2 = 0.16). Regarding 

emotional responses, participants consistently rated similar levels of positive valence, negative 

arousal, and positive dominance, regardless of the CO2 levels. The analysis showed no significant 

impact of CO2 on drivers’ emotions. However, the presence of body odor did lead to significant 

higher negative arousal ratings (F(1, 144) = 4.70 p = 0.032, η2 = 0.96), suggesting that participants 

experienced high levels of valence in the absence of body odor.  Arousal level and dominance 

ratings were not significantly affected by the presence of body odor. Additionally, no interaction 

between CO2 levels and the presence of body odor was found on the emotion. 

In summary, these findings suggest that CO2 levels may have a subtle but insignificant impact 

on sleepiness levels during driving, while body odor appears to have a modest influence on 

emotions, particularly negative arousal. Participants consistently rated similar levels of valence 

and dominance regardless of the experimental conditions. 
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Discussion 

Moderating effects of N-back task difficulty on cognition and driving performance 

This section presents a moderator analysis to investigate whether N-back task difficulty alters 

the relationship between CO2 (or body odor) and cognition. Fig. 5 displays boxplots of response 

accuracy and reaction time for the 0-back, 1-back, and 2-back tasks under different CO2 or body 

odor conditions. The results show that CO2 had a significant impact on response accuracy only for 

1-back or 0-back tasks. When the task (e.g., 2-back) was hard, CO2 did not exert any impact on 

response accuracy or reaction time. The finding suggests moderating effects of task difficulties in 

the relationship between CO2 exposure and cognition. Moreover, response accuracy was 

significantly different between the conditions with and without body odor, only for difficult tasks 

such as 2-back task. Table S8 and S9 describe the results of pairwise comparison at different N-

back task difficulties in detail. Additionally, Table S10 and S11 describe the statistical analysis of 

the differences in driving performance while taking N-back tasks at various CO2 or body odor 

levels.  Nevertheless, no significant difference in pairwise comparisons was found for any driving 

performance variable. The only exception is mean lateral acceleration between the conditions with 

and without body odor while participants were taking 1 back tasks. 

 

Fig. 5. Response accuracy and reaction time of various N-back tasks with different CO2 levels and 

body odor conditions 

Moderating effect of exposure time on driving performance 

To account for the variability in the exposure duration to CO2 and body odor on driving 

performance, we analyzed two different snippets of driving performance data with the same time 

window size of 3 min, one from 10 to 12 min and the other from 16 to 18 min. Since the sampling 
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frequency was 10 Hz, a data size of even 3 min should still be sufficient for statistical analysis. 

Our hypothesis is that CO2 or body odor could exert varying impact for long exposure time, such 

as 16 min as opposed to 10 min for discussion.  

Fig. 6 illustrate that significant differences in driving performance, such as mean speed and 

acceleration, occurred during specific time windows. Specifically, there was a significant 

difference in mean speed between 800 ppm and 3500 ppm CO2 from 16 to 18 min, but not in the 

time window between 10 and 12 min. A similar finding can be observed in Figure 9 for mean yaw 

rate, which was significantly different between the conditions with and without body odor in the 

time window of 16-18 min. As discussed in Table 2 and 3 that either CO2 or body odor showed 

significant impact on driving throughout the entire driving session, the results in Fig. 6 suggest 

that CO2 or body odor may have a significant impact in specific time windows, indicating the 

moderating effect of exposure duration. For instance, Table S6 of Appendix shows that the 

standard deviation values of driving speed were significantly different between 800 ppm and 1800 

ppm when body odor was absent within the time window of 16 to 18 min. 

 
Fig. 6. Moderating effects of exposure duration on the relationship between CO2 or body odor 

exposure and driving performance 

Limitation and recommendations 

In this study, we utilized six recorded variables by the driving simulator to assess driving 

performance. The results indicated that elevated CO2 levels or the presence of body odor had mixed 

effects on driving performance. The mixed results could be attributed to sample size, the 

complexity of the driving environment, magnitude of CO2 or body odor exposure and exposure 

duration, experimental setup using a simulator as well as the statistical analysis approach. 

The sample size was estimated based on a relatively large effect size of 0.25. Further research 

would be conducted to augment the sample size to increase statistical power. In addition, the 

sample population in this study consisted solely of young and inexperienced individuals operating 

the simulators, which may have limited the variability in driving performance. Future studies could 
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expand the population and consider age differentiation to better understand the impact of CO2 and 

body odor on driving performance across a broader demographic. 

We focused on the impact of CO2 and body odor, but other variables, such as the Air Exchange 

Rate (AER) and chemicals from interior materials, may also influence driving performance. In 

addition, body odor comprises a vast spectrum of chemicals that could adversely influence driving. 

These additional elements could interact with the factors studied here, potentially contributing to 

overall driving experience and performance. Investigating the combined effects of CO2, body odor, 

AER, and other chemicals represents an intricate endeavor that may warrant further dedicated 

investigations. 

The highest CO2 concentration examined in this study was 3500 ppm, which may not be 

sufficient to produce a perceptible impact on driving performance, particularly with respect to 

short exposure durations. Previous studies (Antonson et al., 2009; Law et al., 2010; Thiffault & 

Bergeron, 2003; Ting et al., 2008) reported the impact of driving time on driving performance, 

which suggests further studies on the influence of CO2 and body odor exposure duration on driving 

performance. Future studies could explore longer exposure times and/or higher CO2 concentrations 

to better assess their impact on driving performance. In situations involving prolonged driving 

periods, it is possible that the observed effects, though initially noticeable over shorter durations, 

may magnify or manifest differently as a result of extended exposure. However, it is important to 

note that the CO2 levels we used in this study are relevant to real world settings.  

This study utilized a simulated driving task on a simulator, which may not accurately represent 

real-world driving situations and may limit the ecological validity of the findings. The driving 

scenario on a freeway in this study was relatively easy, which may not effectively differentiate 

driving performance among drivers with varying levels of driving skill. Future researchers could 

consider using more complex but still realistic driving scenarios to assess the impact of CO2 and 

body odor more accurately on driving performance. 

In this study, participants completed the surveys on sleepiness, emotion, perceived air quality 

and air quality acceptance, and task workload outside of the vehicle cabin immediately after the 

driving task, while the experimenter was preparing for the next experimental condition. Although 

we do not have strong reasons to believe their responses changed in such a short period, it is 

possible that their responses given outside of the cabin may not be fully representative of the in-

car experience. Therefore, potential uncertainty might be introduced accordingly. Further studies 

might be needed to verify the potential bias and uncertainty caused by the protocol. Furthermore, 

it is noteworthy that the study did not regulate the exposure level of body odor, nor did it quantify 

the specific compounds of body odor in the air. Future studies could adopt a more precise approach 

to maintain the gaseous phase of body odor in the car cabin, allowing for a more comprehensive 

understanding of the impact of body odor on driving performance. 

Summary 

The presented study investigates the effects of CO2 and body odor on drivers’ driving 

performance and cognition using a high-fidelity driving simulator. The findings indicate that the 

effects of exposure to CO2 levels of up to 3500 ppm and body odor vary to a large extent. The 

following particular findings can be summarized from this study: 

• During the 18 min driving, CO2 levels up to 3500 ppm and body odor from T-shirts did not 

show significant effects on driving speed, acceleration, or lateral control. However, 

analyzing specific time windows revealed significant differences in driving performance. 

For example, average values of driving speed were significantly different between 800 ppm 
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and 3500 ppm during the time window of 16 to 18 min. The results imply potential 

moderating effects of exposure duration. 

• Our analysis identified 26 chemicals in the fabric of female odor donors’ clothing and 19 

chemicals in male odor donors’. 

• Participants reported significantly higher effort in the NASA-TXL test at 1800 ppm 

compared to 800 ppm. They were required to exert more effort while driving in an 

environment with higher CO2 levels. Elevated CO2 levels heightened the subjects’ effort to 

complete the driving task. 

• Accuracy in N-back tasks was significantly higher at 800 ppm compared to 3500 ppm, and 

the presence of additional body odor from worn T-shirts significantly increased accuracy.  

Cognitive task performance was influenced by varying CO2 levels and the presence of body 

odor. 

• Interactive effects of CO2 and body odor were not observed on driving performance and 

cognition. 

• Both the difficulty of N-back tasks and exposure duration had moderating effects. The 

effects of CO2 or body odor were significant only for certain N-back tasks or during a 

specific exposure duration. 
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Appendix 

Dependent variables 

Table S11. Summary of the tasks and surveys 

Task/Survey  Major parameters Purposes Administration 

Driving task Forward velocity 

Acceleration 

Lateral velocity 

Lateral acceleration 

Lane deviation 

Steering 

Yaw rate 

Evaluate the driving performance to observe 

compensatory behaviors under different environments 

During driving 

Secondary task (N-back 

task) 

2-back 

1-back 

0-back 

Simulate the non-driving behavior during the driving 

Measure drivers’ working memory and attention 

During driving 

Emotion 

(Self-assessment 

manikin (SAM)) 

Valance 

Arousal 

Dominance 

Measure the effect of environmental change on 

drivers’ emotions, including valence, arousal, and 

dominance 

After driving 

Sleepiness Stanford Sleepiness Scale Measure the effect of cabin environmental change on 

drivers’ sleepiness 

After driving 

In-car environment 

satisfaction 

Air quality 

Acceptance of the air 

quality 

Thermal comfort 

Thermal sensation 

Thermal acceptance 

Measure the change of drivers’ satisfaction with 

different cabin environments 

After driving 

NASA-TLX workload Mental demand 

Physical demand 

Temporal demand 

Own performance 

Effort 

Frustration 

Evaluate and quantify the perceived workload of an 

individual or a team performing a specific task 

After driving 
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G power software 

 
Fig. S1. Settings for power analysis in G*power  

 

Questionnaire used in the study 

a. Sleepiness 

 

(Finish the question 1~2 before the experiment) 
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Q1: Sleeping quality before the experiment (very poor to excellent) 

   

   1        2       3       4      5      6      7      8      9      10 

 

Q2: Rate the degree of sleepiness before the driving task (awake to asleep) 

 

   1        2       3       4      5      6      7    

 

(Finish the remaining questions after the experiment) 

 

Q3: Rate the degree of sleepiness after the driving task (awake to asleep) 

 

   1        2       3       4      5      6      7 

 

b. Emotion 

 

Q4: Rate the valence (how negative or positive the emotion is) after the experiment (negative to positive) 

 

   -2        1       0       1      2   

 
 

Q5: Rate the arousal (how excited or uninterested the emotion is) after the experiment (low to in high) 

 

  -2        1       0       1      2   
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Q6: Rate the feeling of dominance (the extent to which you feel you are in control of the situation) after the experiment (low to in 

high) 

 

 -2        1       0       1      2   

 

 
 

c. Physical symptoms 

 

Q7: Rate the general comfort after the experiment (slight to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

 

Q8: Rate the feeling of nausea after the experiment (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q9: Rate the headache after the experiment (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 
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Q10: Do you have blurred vision (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q11: Are you sweating (slight to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q12: Do you feel faint (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

d. Perceived air quality and air quality acceptance 

 

Q13: Rate your feeling of the air quality (worse to better) 

 

   -3      -2      -1      0      1       2      3 

 

Q14: Rate your acceptance of the air quality (unacceptable to acceptable) 

 

   -3      -2      -1      0      1       2      3 

 

e. Cognitive load 

 

Q15: How mentally demanding was the task? (low to high) 

 

1       2       3       4      5      6      7 

 

Q16: How physically demanding was the task? (low to high) 

 

1       2       3       4      5      6      7 
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Q17: How hurried or rushed was the pace of the task? (low to high) 

 

1       2       3       4      5      6      7 

 

Q18: How successful were you in accomplishing what you were asked to do? (perfect to failure) 

 

1       2       3       4      5      6      7 

 

Q19: How hard did you have to work to accomplish your level of performance? (low to high) 

 

1       2       3       4      5      6      7 

 

Q20: How insecure, discouraged, irritated, stressed, and annoyed were you? (low to high) 

 

1       2       3       4      5      6      7 

CO2 concentration 

 
Fig. S2. CO2 concentration (ppm) in the car cabin at three levels 

 

Effect of CO2 and body odor on the items in the survey 
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Table S2. Descriptive Statistics for task load index at different CO2 levels and environments with or without body odor 

Conditions NASA-TXL task load (scale from 1 to 7) M SD N 

800 ppm CO2 Mental demand 3.500 1.418 50 

Physical demand 1.900 0.839 50 

Temporal demand 2.380 1.308 50 

Own performance 2.840 1.235 50 

Effort 2.920 1.209 50 

Frustration 2.440 1.567 50 

1800 ppm CO2 Mental demand 3.680 1.421 50 

Physical demand 2.280 1.107 50 

Temporal demand 2.720 1.294 50 

Own performance 2.640 1.290 50 

Effort 3.300 1.216 50 

Frustration 2.680 1.491 50 

3500 ppm CO2 Mental demand 3.460 1.249 50 

Physical demand 2.000 0.881 50 

Temporal demand 2.360 1.045 50 

Own performance 2.780 1.036 50 

Effort 3.160 1.251 50 

Frustration 2.840 1.543 50 

With the body odor Mental demand 3.507 1.349 75 

Physical demand 2.080 1.010 75 

Temporal demand 2.533 1.288 75 

Own performance 2.760 1.228 75 

Effort 3.173 1.256 75 

Frustration 2.760 1.523 75 

Without the body odor Mental demand 3.587 1.376 75 

Physical demand 2.040 0.907 75 

Temporal demand 2.440 1.165 75 

Own performance 2.747 1.152 75 

Effort 3.080 1.205 75 

Frustration 2.547 1.545 75 

Total Mental demand 3.547 1.359 150 

Physical demand 2.060 0.957 150 
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Temporal demand 2.487 1.225 150 

Own performance 2.753 1.187 150 

Effort 3.127 1.228 150 

Frustration 2.653 1.533 150 

 

Table S3. Two-way Analyses of Variance of task load index at different CO2 levels and environments with or without body odor 

Parameters Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 
Mental demand CO2 2353.410 2 1176.705 0.622 0.539 0.276 

Body odor 5034.407 1 5034.407 0.670 0.104 0.591 

CO2 * Body odor 1128.503 2 564.252 0.295 0.745 0.133 

Physical demand CO2 3162.360 2 1581.180 0.852 0.429 0.271 

Body odor 5174.407 1 5174.407 2.787 0.097 0.444 

CO2 * Body odor 3317.293 2 1658.647 0.904 0.407 0.285 

Temporal 

demand 
CO2 339.040 2 169.520 0.088 0.915 0.074 

Body odor 110.940 1 110.940 0.058 0.811 0.024 

CO2 * Body odor 4108.440 2 2054.220 1.118 0.330 0.901 

Own performance CO2 1113.210 2 556.605 0.324 0.724 0.616 

Body odor 26.460 1 26.460 0.015 0.904 0.015 

CO2 * Body odor 668.173 2 334.087 0.190 0.827 0.370 

Effort CO2 1496.920 2 748.460 0.389 0.678 0.165 

Body odor 695.527 1 695.527 0.361 0.549 0.077 

CO2 * Body odor 6855.893 2 3427.947 1.856 0.160 0.758 

Frustration CO2 598.12 2 299.060 0.156 0.855 0.431 

Body odor 5.607 1 5.607 0.003 0.957 0.004 

CO2 * Body odor 784.013 2 392.007 0.207 0.813 0.565 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Table S4. Descriptive Statistics for perceived air quality and air quality acceptance at different CO2 levels and environments with or 

without body odor 

Conditions Item (scale from 1 to 7) M SD N 

800 ppm CO2 Perceived air quality 0.540 1.373 50 

Air quality acceptance 1.660 1.533 50 
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1800 ppm CO2 Perceived air quality 0.120 1.507 50 

Air quality acceptance 1.200 1.702 50 

3500 ppm CO2 Perceived air quality 0.600 1.178 50 

Air quality acceptance 1.840 1.267 50 

With the body odor Perceived air quality 0.453 1.388 75 

Air quality acceptance 1.613 1.432 75 

Without the body odor Perceived air quality 0.387 1.355 75 

Air quality acceptance 1.520 1.622 75 

Total Perceived air quality 0.420 1.367 150 

Air quality acceptance 1.567 1.526 150 

 

Table S5. Two-way Analyses of Variance of perceived air quality and air quality acceptance at different CO2 levels and environments 

with or without body odor 

Item Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Perceived air 

quality 
CO2 2512.210 2 1256.105 0.659 0.519 0.360 

Body odor 1008.807 1 1008.807 0.522 0.471 0.145 

CO2 * Body odor 3452.040 2 1726.020 0.911 0.404 0.495 

Air quality 

acceptance 
CO2 1061.320 2 530.660 0.277 0.759 0.083 

Body odor 4087.260 1 4087.260 2.151 0.145 0.321 

CO2 * Body odor 7600.253 2 3800.127 2.064 0.131 0.596 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Table S6. Descriptive Statistics for sleepiness and emotion at different CO2 levels and environments with or without body odor 

Conditions  M SD N 

Difference in Sleepiness (pre and post driving) (scale from 1 to 7) 

800 ppm CO2  2.920 1.441 50 

1800 ppm CO2  3.240 1.572 50 

3500 ppm CO2  3.140 1.629 50 

With the body odor  3.093 1.604 75 

Without the body odor  3.107 1.494 75 

Total  3.100 1.545 150 

Emotion (scale from -2 to 2) 
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Table S7. Two-way Analyses of Variance of sleepiness and emotion at different CO2 levels and environments with or without body 

odor 

Parameters Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Difference in Sleepiness (pre and post driving) (scale from 1 to 7) 

Sleepiness CO2 2941.480 2 1470.740 0.775 0.463 0.750 

Body odor 331.527 1 331.527 0.172 0.679 0.0855 

CO2 * Body odor 648.093 2 324.047 0.167 0.846 0.165 

Emotion 

Valence CO2 139.080 2 69.540 0.039 0.962 0.018 

Body odor 7533.127 1 7533.127 4.699 0.032* 0.963 

CO2 * Body odor 148.893 2 74.447 0.042 0.959 0.019 

Arousal CO2 271.720 2 135.860 0.073 0.929 0.023 

Body odor 11633.610 1 11633.610 6.777 0.067 0.969 

800 ppm CO2 Valence 3.180 0.800 50 

Arousal 2.740 0.876 50 

Dominance 3.480 0.789 50 

1800 ppm CO2 Valence 3.200 0.728 50 

Arousal 2.560 0.812 50 

Dominance 3.460 0.676 50 

3500 ppm CO2 Valence 3.320 0.653 50 

Arousal 2.660 0.961 50 

Dominance 3.500 0.789 50 

With the body odor Valence 3.280 0.727 75 

Arousal 2.653 0.892 75 

Dominance 3.573 0.738 75 

Without the body odor Valence 3.187 0.730 75 

Arousal 2.653 0.878 75 

Dominance 3.387 0.751 75 

Total Valence 3.233 0.727 150 

Arousal 2.653 0.882 150 

Dominance 3.480 0.748 150 
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CO2 * Body odor 104.173 2 52.087 0.028 0.972 0.009 

Dominance CO2 1126.210 2 563.105 0.327 0.721 0.567 

Body odor 41.607 1 41.607 0.023 0.878 0.021 

CO2 * Body odor 819.893 2 409.947 0.232 0.793 0.412 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

Moderating effects of task difficulties    

Table S8. Statistical results (mean, 95% CI, and Significance level) of response accuracy and reaction time of N-back task at different 

CO2 levels considering the moderating effects of task difficulty 

 N-back 

task 

800 ppm CO2 

(95% CIs) 

1800 ppm CO2 

(95% CIs) 

3500 ppm CO2 

(95% CIs) 

p-value (800 

ppm vs. 1800 

ppm) 

p-value (800 

ppm vs. 3500 

ppm) 

p-value (1800 

ppm vs. 3500 

ppm) 

Response  

accuracy 

2-back  88.235 (86.059, 

90.176) 

88.235 (85.271, 

89.317) 

88.235 (84.082. 

88.271) 

0.516 0.165 0.453 

1-back  100 (94.084, 

97.681) 

100 (92.932, 

97.068) 

100 (89.923, 

94.783) 

0.597 0.022* 0.044* 

0-back  100 (94.712, 

97.993) 

100 (92.459, 

96.717) 

100 (90.966, 

95.975) 

0.216 0.049* 0.469 

Reaction 

time 

2-back  0.583 (0.586, 

0.652) 

0.609 (0.602, 

0.654) 

0.567 (0.585, 

0.647) 

0.091 0.992 0.246 

1-back  0.525 (0.533, 

0.582) 

0.539 (0.546, 

0.594) 

0.542 (0.547, 

0.593) 

0.312 0.196 0.758 

0-back  0.553 (0.556, 

0.600) 

0.547 (0.546, 

0.592) 

0.526 (0.538, 

0.575) 

0.633 0.031* 0.41 

Note: Numbers in the table represent mean (95% CI) or significance level. * denotes p value less than 0.05, ** denotes p value less than 

0.01 

 

Table S9. Comparison of response accuracy and reaction time of N-back tasks between the conditions with and without body odor 

considering the moderating effects of task difficulty 

 N-back 

task 

With the body odor 

(95% CIs) 

Without the body odor 

(95% CIs) 

p-value (With vs. 

without body odor) 
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Response  

accuracy 

2-back  88.235 (86.945, 90.231) 88.235 (84.125, 87.483) 0.021* 

1-back  0.586 (0.602, 0.650) 0.582 (0.591, 0.641) 0.263 

0-back  100 (93.375, 96.664) 100 (91.991, 95.617) 0.242 

Reaction 

time 

2-back  0.539 (0.547, 0.584) 0.528 (0.545, 0.587) 0.815 

1-back  100 (94.267, 97.341) 100 (91.910, 95.698) 0.159 

0-back  0.540 (0.548, 0.585) 0.545 (0.553, 0.585) 0.269 

Note: Numbers in the table represent mean (95% CI) or significance level. * denotes p value less than 0.05, ** denotes p value less than 

0.01 

 

Table S10. Statistical results (mean, 95% CI, and Significance level) of driving performance during N-back tasks at different CO2 levels 

considering the moderating effects of task difficulty 

  N-

back 

task 

800 ppm CO2 (95% 

CIs) 

1800 ppm CO2 (95% 

CIs) 

3500 ppm CO2 (95% 

CIs) 

p-

value 

(800 

ppm 

vs. 

1800 

ppm 

CO2) 

p-

value 

(800 

ppm 

vs. 

3500 

ppm 

CO2) 

p-

value 

(1800 

ppm 

vs. 

3500 

ppm 

CO2) 

Speed 

(m/s) 

Mean 

 

2-back  20.195 (21.221, 23.440) 21.061 (21.391, 23.569) 20.968 (21.398, 23.427) 0.877 0.847 0.912 

1-back  21.910 (21.557, 23.928) 23.182 (22.470, 24.500) 20.968 (21.398, 23.427) 0.332 0.324 0.056 

0-back  21.012 (20.715, 23.092) 21.668 (21.113, 23.368) 21.636 (21.542, 23.681) 0.522 0.226 0.511 

S.D. 2-back  2.235 (2.327, 3.403) 2.118 (2.132, 2.894) 2.136 (2.351, 3.311) 0.778 0.405 0.421 

1-back  1.909 (2.264, 3.370) 1.975 (2.112, 3.007) 2.478 (2.617, 3.546) 0.975 0.075 0.061 

0-back  2.140 (2.322, 3.320) 2.146 (2.276, 3.095) 2.271 (2.360, 3.169) 0.910 0.997 0.869 

Accele

ration 

(m2/s) 

Mean 

 

2-back  -0.006 (-0.060, 0.020) 0.014 (-0.004, 0.058) -0.005 (-0.049, 0.031) 0.091 0.630 0.107 

1-back  -0.002 (-0.021, 0.060) 0.019 (-0.011, 0.056) -0.035 (-0.090, -0.018) 0.366 0.075 0.103 

0-back  0.010 (-0.020, 0.045) -0.011 (-0.029, 0.048) 0.018 (-0.020, 0.052) 0.899 0.762 0.557 

S.D. 2-back  0.503 (0.493, 0.658) 0.504 (0.469, 0.646) 0.511 (0.526, 0.700) 0.360 0.667 0.398 

1-back  0.462 (0.476, 0.647) 0.463 (0.486, 0.675) 0.589 (0.594, 0.767) 0.645 0.113 0.127 

0-back  0.534 (0.496, 0.656) 0.506 (0.508, 0.660) 0.550 (0.510, 0.646) 0.741 0.948 0.866 

Mean 2-back  0.156 (0.607, 1.271) 0.239 (0.833, 1.531) 0.164 (0.619, 1.268) 0.543 0.931 0.566 
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Lane 

deviati

on (m) 

 1-back  0.729 (1.016, 1.707) 0.469 (0.866, 1.533) 0.109 (0.584, 1.226) 0.384 0.221 0.117 

0-back  0.092 (0.536, 1.197) 0.126 (0.552, 1.225) 0.220 (0.729, 1.376) 0.888 0.490 0.429 

S.D. 2-back  0.714 (0.675, 0.899) 0.603 (0.630, 0.845) 0.714 (0.707, 0.952) 0.350 0.940 0.215 

1-back  0.809 (0.812, 1.095) 0.758 (0.734, 0.989) 0.825 (0.813, 1.081) 0.178 0.893 0.357 

0-back  0.663 (0.759, 1.025) 0.688 (0.721, 0.984) 0.730 (0.716, 0.978) 0.531 0.325 0.967 

Steeri

ng 

(degre

e) 

Mean 

 

2-back  0.849 (0.496, 2.392) 1.031 (0.911, 3.103) 1.587 (1.210, 3.286) 0.726 0.375 0.596 

1-back  -0.037 (0.637, 4.609) -0.542 (0.189, 2.063) -0.401 (-0.457, 1.499) 0.344 0.058 0.397 

0-back  1.970 (1.072, 4.653) 0.617 (0.144, 2.125) 0.835 (0.362, 2.440) 0.112 0.081 0.934 

S.D. 2-back  11.772 (10.804, 14.909) 12.517 (11.414, 15.281) 13.336 (11.889, 15.633) 0.343 0.355 0.783 

1-back  9.213 (9.108, 15.762) 12.127 (10.355, 14.442) 9.062 (10.005, 14.450) 0.713 0.516 0.783 

0-back  13.272 (12.164, 25.640) 11.741 (10.787, 15.416) 12.063 (10.763, 14.914) 0.075 0.100 0.907 

Yaw 

rate 

(rad/s) 

Mean 

 

2-back  0.003 (0.002, 0.014) 0.003 (0.004, 0.018) 0.008 (0.006, 0.019) 0.831 0.384 0.543 

1-back  -0.000 (0.003, 0.017) -0.004 (-0.000, 0.011) -0.003 (-0.004, 0.008) 0.405 0.090 0.403 

0-back  0.011 (0.008, 0.021) 0.003 (-0.001, 0.011) 0.002 (0.001, 0.014) 0.054 0.071 0.896 

S.D. 2-back  0.072 (0.067, 0.092) 0.080 (0.070, 0.094) 0.088 (0.074, 0.097) 0.419 0.355 0.710 

1-back  0.060 (0.056, 0.081) 0.076 (0.065, 0.089) 0.054 (0.060, 0.086) 0.500 0.606 0.829 

0-back  0.084 (0.075, 0.100) 0.071 (0.065, 0.088) 0.077 (0.067, 0.091) 0.054 0.244 0.580 

Latera

l 

accele

ration 

(m2/s) 

Mean 

 

2-back  0.024 (-0.020, 0.257) 0.013 (0.043, 0.394) 0.099 (0.053, 0.356) 0.929 0.547 0.536 

1-back  -0.037 (-0.002, 0.326) -0.131 (-0.074, 0.196) -0.106 (-0.152, 0.161) 0.529 0.123 0.487 

0-back  0.146 (0.085, 0.415) -0.011 (-0.045, 0.242) -0.042 (-0.029, 0.289) 0.177 0.155 0.975 

S.D. 2-back  1.395 (1.507, 2.108) 1.736 (1.519, 2.072) 1.840 (1.612, 2.104) 0.566 0.379 0.534 

1-back  1.243 (1.232, 1.855) 1.498 (1.469, 2.067) 1.121 (1.023, 2.017) 0.264 0.449 0.775 

0-back  2.063 (1.663, 2.257) 1.397 (1.447, 2.038) 1.623 (1.493, 2.067) 0.091 0.153 0.554 

Note: Numbers in the table represent mean (95% CI) or significance level. * denotes p value less than 0.05, ** denotes p value less than 

0.01 

 

Table S11. Comparison of driving performance during N-back tasks between the conditions with and without body odor considering 

the moderating effects of task difficulty 

  N-back task With the body odor (95% 

CIs) 

Without the body odor 

(95% CIs) 

p-value (With vs. without 

body odor) 

Speed (m/s) Mean 

 

2-back 20.686 (21.809, 23.609) 22.745 (21.270, 22.942) 0.205 

1-back  22.086 (22.113, 23.851) 22.685 (22.087, 24.056) 0.809 



   

 

161 

 

0-back  21.141 (21.452, 23.417) 21.618 (21.221, 22.918) 0.798 

S.D. 2-back 2.209 (2.448, 3.237) 2.010 (2.260, 3.001) 0.194 

1-back  2.106 (2.373, 3.042) 2.118 (2.476, 3.387) 0.965 

0-back  2.243 (2.344, 3.090) 2.155 (2.457, 3.138) 0.578 

Acceleration 

(m2/s) 

Mean 

 

2-back 0.002 (-0.034, 0.033) -0.007 (-0.028, 0.027) 0.553 

1-back  0.001 (-0.021, 0.041) -0.010 (-0.047, 0.012) 0.233 

0-back  -0.005 (-0.025, 0.032） 0.024 (-0.007, 0.051) 0.455 

S.D. 2-back 0.530 (0.521, 0.648) 0.540 (0.516, 0.632) 0.558 

1-back  0.563 (0.528, 0.643) 0.482 (0.545, 0.715) 0.653 

0-back  0.530 (0.521, 0.648) 0.540 (0.516, 0.632) 0.558 

Lane deviation 

(m) 

Mean 

 

2-back  0.225 (0.812, 1.352) 0.134 (0.686, 1.236) 0.468 

1-back  0.362 (0.787, 1.305) 0.369 (0.981, 1.549) 0.300 

0-back  0.188 (0.720, 1.257) 0.059 (0.615, 1.151) 0.725 

S.D. 2-back  0.608 (0.686, 0.877) 0.745 (0.697, 0.878) 0.516 

1-back  0.869 (0.897, 1.114) 0.649 (0.727, 0.945) 0.280 

0-back  0.757 (0.781, 0.993) 0.627 (0.733, 0.948) 0.933 

Steering 

(degree) 

Mean 

 

2-back  1.331 (1.230, 2.995) 0.788 (0.900, 2.474) 0.396 

1-back  0.647 (0.800, 3.520) -0.765 (-0.151, 1.524) 0.131 

0-back  0.787 (0.429, 2.479) 1.710 (1.011, 3.279) 0.459 

S.D. 2-back  12.059 (11.350, 14.502) 13.809 (12.122, 15.313) 0.546 

1-back  11.719 (11.185, 15.936) 7.564 (9.372, 12.921) 0.089 

0-back  14.154 (12.337, 17.750) 11.553 (10.695, 19.007) 0.310 

Yaw rate (rad/s) Mean 

 

2-back  0.007 (0.006, 0.018) 0.003 (0.002, 0.014) 0.364 

1-back  0.002 (0.004, 0.014) -0.005 (-0.002, 0.008) 0.079 

0-back  0.003 (0.002, 0.015) 0.009 (0.004, 0.014) 0.520 

S.D. 2-back  0.076 (0.071, 0.090) 0.089 (0.074, 0.094) 0.732 

1-back  0.072 (0.069, 0.089) 0.047 (0.057, 0.077) 0.066 

0-back  0.086 (0.075, 0.094) 0.070 (0.068, 0.087) 0.206 

Lateral 

acceleration 

(m2/s) 

Mean 

 

2-back  0.096 (0.092, 0.363) 0.054 (0.016, 0.250) 0.409 

1-back  -0.019 (0.049, 0.308) -0.174 (-0.143, 0.089) 0.026* 

0-back  0.005 (0.035, 0.310) 0.095 (0.030, 0.262) 0.458 

S.D. 2-back  1.540 (1.599, 2.066) 1.730 (1.595, 2.021) 0.850 

1-back  1.526 (1.556, 2.064) 0.992 (1.292, 1.779) 0.113 
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0-back  1.966 (1.704, 2.181) 1.316 (1.476, 1.950) 0.115 

Note: Numbers in the table represent mean (95% CI) or significance level. * denotes p value less than 0.05, ** denotes p value less than 

0.01 

Moderating effect of exposure duration on driving performance     

Table S12. p values of pairwise comparison of driving performance among different CO2 levels at a certain body odor condition 

considering the moderating effects of exposure duration 

 CO2 level 800 ppm vs. 1800 ppm 800 ppm vs. 3500 ppm 1800 ppm vs. 3500 ppm 

Speed (m/s) 10-12 

minutes 

Mean 0.612 0.197 0.443 

Std 0.973 0.257 0.619 

16-18 

minutes 

Mean 0.95 0.045* 0.126 

Std 0.484 0.29 0.188 

Acceleration 

(m2/s) 

10-12 

minutes 

Mean 0.996 0.851 0.866 

Std 0.08 0.007* 0.825 

16-18 

minutes 

Mean 0.056 0.471 0.017* 

Std 0.244 0.758 0.333 

Lane 

deviation (m) 

10-12 

minutes 

Mean 0.768 0.521 0.357 

Std 0.299 0.466 0.449 

16-18 

minutes 

Mean 0.245 0.836 0.299 

Std 0.599 0.843 0.843 

Steering 

(degree) 

 

10-12 

minutes 

Mean 0.49 0.229 0.783 

Std 0.112 0.188 0.073 

16-18 

minutes 

Mean 0.592 0.544 0.881 

Std 0.178 0.388 0.851 

Yaw rate 

(rad/s) 

10-12 

minutes 

Mean 0.377 0.858 0.703 

Std 0.295 0.382 0.996 

16-18 

minutes 

Mean 0.935 0.521 0.836 

Std 0.606 0.64 0.754 

Lateral 

acceleration 

(m2/s) 

10-12 

minutes 

Mean 0.308 0.342 0.599 

Std 0.382 0.282 0.942 

16-18 

minutes 

Mean 0.904 0.739 0.904 

Std 0.342 0.942 0.696 
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Table S13. p values of pairwise comparison of driving performance between the conditions with and without body odor at a certain CO2 

level considering the moderating effects of exposure duration 

 Body odor  

Speed (m/s) 10-12 minutes Mean 0.684 

Std 0.506 

16-18 minutes Mean 0.803 

Std 0.389 

Acceleration (m2/s) 10-12 minutes Mean 0.256 

Std 0.898 

16-18 minutes Mean 0.143 

Std 0.364 

Lane deviation (m) 10-12 minutes Mean 0.337 

Std 0.163 

16-18 minutes Mean 0.895 

Std 0.565 

Steering (degree) 

 

10-12 minutes Mean 0.916 

Std 0.044* 

16-18 minutes Mean 0.526 

Std 0.378 

Yaw rate (rad/s) 10-12 minutes Mean 0.219 

Std 0.154 

16-18 minutes Mean 0.316 

Std 0.101 

Lateral acceleration (m2/s) 10-12 minutes Mean 0.834 

Std 0.296 

16-18 minutes Mean 0.064 

Std 0.135 
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Abstract 

This study investigates the effects of in-car carbon dioxide (CO2) levels and body odor on 

cognitive performance during driving using advanced neuroimaging techniques. Prior literature on 

building environments suggested that occupant-induced CO2 and body odor can negatively impact 

cognitive abilities, especially when building ventilation is limited. Various indoor environmental 

factors may hinder cognition and therefore driving performance, thereby raising concerns for 

transportation safety. In our study, we investigated the influence of elevated CO2 and body odor 

on driving capabilities. We enrolled 25 participants in simulated highway driving scenarios for a 

two-factor experimental setup, varying the indoor CO2 concentrations across three levels (800, 

1800, and 3500 ppm) and two levels of body odor. CO2 concentrations in the cabin were increased 

by introducing pure CO2. Electroencephalography (EEG) and functional Near-Infrared 

Spectroscopy (fNIRS) were applied to monitor brain activities during driving. The EEG data 

features included Power Spectral Density (PSD) in delta, theta, alpha, and beta bands, and various 

ratio indices, while fNIRS data focused on the metrics of oxyhemoglobin (HbO) and 

deoxyhemoglobin (HbR). The findings indicated that body odor significantly impacts EEG band 

PSD ratios, especially during N-back tasks. Specifically, the ratio index (α+θ)/β was lower in the 

condition with body odor, indicating increased alertness. Concurrently, exposure to body odor 

reduced the θ/β ratio, which was associated with an increase in stimulus-driven attention and an 

enhanced ability of the subjects to concentrate. In contrast, CO2 levels exhibited a nuanced 

influence on cognitive functions, with no direct impact on EEG band PSD or ratio indices observed. 

This suggests a complex or trivial relationship between CO2 exposure and cognitive responses that 

our neuroimaging modalities could not directly unravel. Moreover, fNIRS data did not indicate 

significant hemodynamic response changes attributable to CO2 or body odor, pointing to the 

specificity of EEG findings in detecting cognitive state shifts. The study contributes to our 

understanding of how CO2 and body odor affect cognitive performance during driving, with 

implications for improving driving safety and designing better in-car environments. 

Introduction 

Carbon dioxide (CO2) is a prevalent chemical which is an odorless, tasteless, and colorless gas 

in the indoor environment that affects occupants’ physiological conditions (Guais et al., 2011; C. 

Wang et al., 2021). Elevated CO2 in buildings, often due to poor ventilation, was reported to 

increase the prevalence of acute health symptoms and impairs occupants’ work performance (Apte, 

2000; Daisey et al., 2003; Erdmann et al., 2002). Furthermore, previous studies reported that 

exposure to high CO2 level condition deteriorated cognitive functions like attention, decision-

making, and perception, which are critical cognitions to driving, especially to the emergency 

response in complex traffic (Bloch-Salisbury et al., 2000; Norbäck et al., 2013; Scully et al., 2019; 

Twardella et al., 2012a). Satish et al. (2012) found decision-making performance declined at both 

1000 ppm and 2500 ppm concentrations relative to 600 ppm. Additionally, Allen et al. (2019) 

stated that exposure to CO2 at 700 and 1,500 ppm increased the odds of passing a flight maneuver 

significantly compared to exposure at 2,500 ppm. In the field study conducted in a primary school, 

Coley et al. (2007) reported the children showed significantly poorer concentration levels on the 

courses when the level of CO2 in classrooms was high. However, many studies also suggested that 

elevated CO2 concentration in classrooms did not impact students’ attention performance 

significantly, suggesting the inconsistency of the literature on this topic. The study of Twardella 

et al. , (2012) claimed that the elevated CO2 concentration in classrooms did not reduce students’ 

global short-term attention. Additionally, another study using physiological and 
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neurophysiological monitoring reported no effect of CO2 on attention performance (Snow et al., 

2019).  

Beyond the direct impact of CO2, human body odor, a complex mix of chemicals released 

through breath and skin, contributes to indoor air quality, and potentially affects cognition. These 

emissions, which include CO2, volatile organic compounds (VOCs), and bioaerosols, are 

byproducts of human metabolism (Gallagher et al., 2008; Pandey & Kim, 2011; J. Wang et al., 

2014). In fact, rather than elevated CO2 levels, Zhang et al. (2017) argued that the body odor 

reduced cognitive performance. Exposure to 3000 ppm of exhaled CO2 and accompanying body 

odor reduced mental performance, increased diastolic blood pressure, and increased stress markers 

(salivary α- amylase) compared to 500 ppm. Cecchetto et al. (2019) obtained the result that the 

body odors could effectively influence moral decision-making by increasing the emotional 

experience during the process even when the perceiver cannot detect the presence of body odors. 

The vehicle cabin, a confined space akin to indoor settings of buildings, can play a pivotal role 

in influencing cognitive performance during driving. Such performance is modulated by various 

factors including air quality, thermal conditions, acoustics, and lighting. These elements 

collectively impact cognitive load and the driver’s physical state (Chowdhury, 2015; Morris & 

Pilcher, 2016; van Huysduynen et al., 2017).  Nazi et al. (2015) reported a significant temperature 

effect on speed variability by comparing the subjects’ driving performance at three different 

temperatures. Helen et al. (1999) found a substantial increase in response time to peripheral signals 

under high-demand conditions with high-intensity music. Previous studies also suggested that air 

quality in the vehicle has widespread effects on driving performance. Raudenbush et al. (2009) 

conducted a study on the influence of three odor conditions on driving performance and revealed 

that both cinnamon and peppermint administration led to increased ratings of alertness, decreased 

temporal demand, and decreased frustration over the driving scenario. Complementing this, Baron 

and Kalsher (1998) evaluated cognitive performance, wakefulness, mood, and workload under 

conditions with a pleasing fragrance, noting a substantial enhancement in driving performance and 

alertness. 

The integration of Electroencephalography (EEG) and functional Near-Infrared Spectroscopy 

(fNIRS) is promising as powerful neuroimaging technique that is more accurate than the individual 

modalities alone, offering researchers valuable insights into the neural dynamics underlying 

specific cognitive functions (Aghajani et al., 2017; Ahn et al., 2016; He et al., 2019; Y. Liu et al., 

2017; Unni et al., 2017). EEG is a non-invasive method that records electrical activity in the brain, 

capturing real-time changes in neural oscillations (Alsuradi et al., 2020). Its high temporal 

resolution makes it particularly well-suited for studying dynamic cognitive processes. Recently, 

Snow et al. (Snow et al., 2019) exposed gaps in linking EEG signals to subjective sleepiness and 

CO2 levels, with no significant correlation found between self-reported sleepiness and CO2 

exposure, despite a notable relationship between sleep duration and EEG patterns. In another study 

by using the EEG to measure the effect of CO2 on daytime sleepiness, Jin et al., (2022) stated that 

EEG was significantly affected by a short exposure to the high condition (40,000 ppm) but not 

exposure time. They suggested that EEG may not be suitable to detect objective sleepiness induced 

by CO2 exposure because the EEG signal was highly sensitive to environmental CO2 concentration.  

In contrast, the combined use of EEG and other modalities has elucidated the detrimental impacts 

of increased CO2 on cognitive functions like working memory, mental workload, and visual 

concentration (J. Lee et al., 2022). The environmental CO2 has been rarely considered a source of 

the factors causing physiological artifacts in most previous studies (Xu et al., 2011), even though 

the low concentration of CO2 could affect the physiological parameters, including EEG signals 
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(Jacobson et al., 2019; R. J. Thomas, 2014). Concurrently, fNIRS gauges alterations in cerebral 

blood flow (CBF) and associated hemoglobin concentrations by utilizing near-infrared light 

sources and detectors on the scalp (Yücel et al., 2021). Its capacity to furnish insights into cortical 

hemodynamics makes fNIRS a valuable complement to EEG, enhancing the overall 

comprehension of cognitive processes. Notably, fNIRS is akin to EEG in terms of portability. 

Furthermore, it lacks electromyographic (EMG) and blink artifacts, and its signal closely aligns 

with the blood oxygen level dependent (BOLD) signal derived from functional magnetic resonance 

imaging (fMRI), a recognized standard for assessing cerebral hemodynamics (Huppert et al., 2006; 

Strangman et al., 2002). Unni et al. (2017) utilized fNIRS in a driving study to measure brain 

activation and predict working memory load, demonstrating a mean Pearson correlation of 0.61 

between induced and predicted load. 

Although many studies have investigated the impact of moderate CO2 and/or body odor on 

occupants’ cognition and work performance in buildings, research into these environmental factors 

and their effect on drivers’ cognition performance, which is crucial for safe and effective driving 

performance in vehicles, seem to be missing in the literature study. Furthermore, findings from 

previous studies about the impact of IEQ factors on working or cognitive performance have often 

shown inconsistencies due to methodological variability, sample diversity, environmental 

complexity, and measurement limitations. 

The aim of this study was, first, to explore the impact of in-car CO2 and body odor on cognitive 

performance during driving, filling the gap in knowledge in this understudied field. Cognitive 

performance during the driving refers to as an individual’s ability to operate a vehicle safely and 

effectively, including controlling the vehicle, making quick decisions, and responding to various 

driving situations (Savino, 2009). Impairments in a driver’s cognitive abilities can lead to a decline 

in driving performance, which can be measured through various metrics related to the cognitive 

performance. The environment of the vehicle cabin has the potential to influence the driving 

performance because of both the cognitive load during driving and the driver’s physical state. A 

comfortable vehicle internal environment of the vehicle cabin has come into the focus of 

discussion. While previous research has focused on drowsiness and sleepiness related to CO2 or 

body odor, this study extends to examine the effects of these factors on both cognitive performance 

and physiological state. The secondary objective is to conduct EEG and fNIRS-based measurement 

to discern the impact of CO2 or body odor on cognitive performance, facilitating accurate 

assessment in a simulated vehicle cabin setting. The neuroimaging techniques are instrumental in 

advancing driving studies, offering nuanced insights into cognitive demands such as attention, 

decision-making, and memory, thus contributing to driver safety and intelligent transportation 

system design. Moreover, EEG and fNIRS have been pivotal in indoor environment studies, 

illuminating the effects of environmental factors on cognitive performance. They have enabled 

researchers to elucidate the intricate relationship between environmental factors, such as air quality 

and thermal comfort, and cognitive functions. By extracting EEG and fNIRS features from 

comprehensive signal datasets, this study considers the confounding effects of CO2 on brain 

responses to the environment, enhancing the understanding of its impact on cognitive performance 

in the vehicle. The outcome could have significant practical implications, such as improving 

driving safety. Moreover, such an outcome would necessitate the inclusion of the air quality 

condition as an environmental factor in drivers’ cognitive performance.  
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Methodology 

Participants 

Our study at Worcester Polytechnic Institute (WPI) enrolled twenty-five student participants, 

recruited through posters and email. The Institutional Review Board (IRB-19-0672) at WPI 

approved the experimental protocol, and participants gave informed consent after being briefed on 

the study’s procedures, risks, and responsibilities. 

To mitigate simulator sickness, which affects 2% – 8% of individuals in driving simulations  

(Akinwuntan et al., 2005), we screened candidates using the Simulator Sickness Questionnaire 

(SSQ) (Kennedy et al., 1993). This questionnaire assesses symptoms like headache, nausea, and 

blurred vision, and is recognized for predicting simulator sickness and participant attrition (Balk 

et al., 2017). Post-simulation, participants rated their symptoms on a scale from 0 (none) to 3 

(severe). Four out of the initial 29 candidates were excluded due to significant simulator sickness 

responses. The final sample comprised 25 licensed drivers (15 males, 10 females), aged between 

18 and 22 years (Mean ± SD: 19.88 ± 1.33). A power analysis using G*Power 3.1 (Faul et al., 

2007) determined the optimal sample size for the six CO2 and body odor conditions as 19, based 

on an ANOVA for repeated measures, with an effect size of 0.25 and a power of 0.8. Participants 

were instructed to avoid alcohol for 24 hours, and nicotine and caffeine for 3 hours before the 

sessions, as well as to get sufficient sleep the previous night. Compensation was set at $15 per 

hour, with an additional performance-based bonus of up to $15, to encourage focused participation 

in the study. 

Experimental setup 

Driving simulator 

The investigation encompassed the utilization of an advanced driving simulator, comprising 

several key components. The setup included a control computer with Carnetsoft simulator software 

(Wim van Winsum, Joeswerd 85, Groningen, 9746CR, the Netherlands), three display projectors, 

a curved screen, a Logitech G29 driving control system, an audio setup, and a car cabin mock-up. 

The control computer, essential for the simulation, was equipped with a GeForce GTX 770 GPU, 

an i7-9790 CPU, Windows 10 PRO, and 32 GB RAM, ensuring smooth operation and graphics 

rendering. The central screen, positioned 0.5 meters from the cabin, provided a 210º horizontal 

field of view. This was split into a 70º forward view and 70º for each side window, creating a 

realistic driving experience. The Logitech G29 setup, including a steering wheel, gear shifter, and 

pedals (brake, clutch, accelerator), featured force feedback and a rotation range of -450 to +450º, 

offering an interactive and responsive driving interface. A foot-switch control pedal was also 

included to facilitate additional inputs for N-back tasks, as detailed in Section 2.4. To enhance the 

simulation’s realism, an integrated audio system replicated sounds like car engines and tire 

movements, immersing participants in the driving environment. This comprehensive simulator 

setup was instrumental in accurately replicating driving conditions for the study. 

In-car environment 

The experimental room, containing the driving simulator, was fitted with a wall-mounted heat 

recovery ventilator (Fantech SH–56 CFM HRV) for air circulation, extracting exhaust air from the 

car cabin. An air purifier (LEVOIT Air Purifiers for Home, H13) was strategically positioned close 

to the air inlet of the car cabin. Room temperature was kept at 24 ± 1 °C, and relative humidity at 

47 ± 2%, ensuring stable environmental conditions for reliable experimental outcomes. 
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In the previous studies, CO2 concentration tends to increase in the vehicle cabin due to occupant 

exhalation when the HVAC air is in recirculation mode (Hudda & Fruin, 2018; Shu et al., 2015). 

CO2 levels below 1000 ppm can be regarded as harmless, while 2000 ppm and above are 

hygienically unacceptable (Apte, 2000). But the CO2 levels, particularly in the window-closed 

cabin, typically exceed 3,000 ppm in the fully loaded condition (Hudda & Fruin, 2018; Shu et al., 

2015). In our study, we used three distinct CO2 concentrations (800, 1800, and 3500 ppm) and 

participants were assigned randomly to experience one of them during each session. A specialized 

active meter (CM-0001 CO2 Sampling Data Logger, CO2 METER, accuracy ±30 ppm) equipped 

with an integrated air pump was employed to measure CO2 concentrations in close proximity to 

the driver’s breathing area. For varying CO2 concentrations, pure CO2 gas (99.9%) was introduced 

from a gas cylinder (Airgas, Food grade, CGA-320) into the cabin, ensuring the targeted CO2 

levels were reached. Notably, in the case of simulating low CO2 concentrations, the cabin’s 

existing CO2 content hovered around 800 ppm without the introduction of any supplementary 

artificial CO2 due to the presence of CO2 exhaled by the participating driver. 

We investigated the effects of body odor presence and absence, not originating from the driver, 

on driving performance. Instead of injecting body odor gases, we changed the body odor levels by 

introducing extra T-shirts by body odor donors. Only two conditions (with extra body odor vs 

without extra body odor) were considered in this study due to the complexity of controlling body 

odor at a fixed level. To introduce an extra body odor into the car cabin, six previously worn T-

shirts were placed within the vehicle during the driving session. This method was well documented 

in body odor research (Haze et al., 2001; Munk et al., 2000; Rathinamoorthy & Thilagavathi, 2016). 

Specifically, six T-shirts, previously worn by healthy, non-smoking individuals (4 males, 2 

females, aged 28–38 years; Mean ± SD: 32.3 ± 4.5 years), were placed in the vehicle during driving 

sessions. These donors were provided informed consent for participation. Throughout the 

collection period, individuals providing odor samples rigorously adhered to guidelines regulating 

personal nutrition, prohibiting the consumption of alcohol, smoking that could alter their natural 

body odor (Cecchetto et al., 2019), while also observing specific hygiene practices. Prior to use, 

all T-shirts underwent thorough washing with an unscented detergent (All Mighty Pacs with stain 

lifters free clear Laundry Detergent). Following a shower with fragrance-free body wash (Aveeno 

Skin Relief Fragrance-Free Moisturizing Body Wash), donors wore the T-shirts for 12 consecutive 

hours. The collection occurred over two days, with each donor using separate T-shirts. The T-

shirts were stored in odorless plastic bags and subsequently in a dry, light-free environment to 

prevent degradation. For a detailed analysis of the chemical composition of the body odor samples 

from these T-shirts, refer to Wang et al. (2024). 

Virtual environment and secondary tasks 

The virtual driving experiments were conducted in a simulated two-lane highway environment, 

with each lane measuring 3.35 meters in width. The simulation required participants to perform 

high-speed driving tasks, including multiple lane changes, response to traffic congestion, and 

overtaking maneuvers. Set in daylight conditions without weather disturbances (e.g., fog, snow, or 

rain), each session lasted at least 20 minutes. It began with a traffic congestion phase, necessitating 

reduced speeds to avoid collisions, followed by a return to normal driving speeds post-congestion. 

The N-back task, a standard tool for evaluating working memory in driving contexts, was 

adapted from the verbal variant described comprehensively by Mehler et al. (2012), and inspired 

by the version used by Solovey et al. (2014). Our adaptation was designed to avoid potential 

confounds with unanalyzed bio-signals due to facial muscle movements. 
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In our version, participants were presented with single-digit numbers (0-9) at two-second 

intervals on the central screen’s upper-left corner during driving. The task required identifying 

whether the current number matched the one shown N positions earlier. The value of N remained 

constant within each session and varied in complexity, as discussed in the experimental procedure 

section. Figure 1 illustrates the task dynamics for N values of 0, 1, and 2. Each session comprised 

six segments, with an equal distribution of randomly selected 0-back, 1-back, and 2-back tasks. 

Every session began with an instructional phase, followed by a sequence of 16 random numbers. 

Each number appeared for 500 milliseconds, and participants had 1,500 milliseconds to respond. 

A 140-second driving block succeeded each N-back segment. 

 

 
Fig. 1. Example of N-back experimental paradigm to manipulate cognitive workload 

 

EEG and fNIRS setup and acquisition 

Data acquisition of brain activity was conducted using the g.Nautilus Research fNIRS-8 

wireless headset (Figure 2a) and the g.tec MATLAB-Simulink software (g.tec medical engineering 

GmbH, Austria). This setup enabled the simultaneous collection of both EEG and fNIRS data. The 

study utilized sixteen wet EEG channels and eight fNIRS channels from the headset, augmented 

by EEG/fNIRS low-power transmitters. The EEG electrodes placement encompassed CZ, AF3, 

AF4, F7, F8, F3, F4, FC3, FC4, C5, C1, C2, C6, CP3, CP4, and PZ, with earlobe electrodes serving 

as reference nodes. This arrangement targeted the frontal, central, and parietal regions, adhering 

to the International 10-10 system landmarks (Jurcak et al., 2007). Figure 2b illustrates the 

configuration of the probe array and electrodes placed on the scalp. The fNIRS optodes, 

comprising 8 sources and 2 detectors, were positioned at FP1, AF3, F5, F9, FP2, AF4, F6, and 

F10, focusing on the prefrontal cortex (PFC), integral to working memory load detection. The 

system utilized continuous-wave laser diodes at 760 nm and 850 nm wavelengths, with a 3 cm 

source-detector separation. To mitigate motion artifacts, the cap was securely positioned on 

participants’ heads. Our setup offered comprehensive frontal lobe coverage via fNIRS and full-

head coverage with EEG. The placement of fNIRS optodes on the forehead not only enhanced 

signal quality but also streamlined preparation. 
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(a)                                                                         (b) 

Fig. 2. a) Driving simulator and EEG/fNIRS cap. b) Graphical representation of the EEG/fNIRS 

probe array and optodes 

 

The g.Nautilus Research Headset and optodes connector box were mounted on the subject’s 

head for concurrent EEG and fNIRS data capture. Data collection and monitoring were conducted 

using MATLAB, with Bluetooth transmission to the g.tec MATLAB-Simulink software. This 

platform enabled synchronous EEG and fNIRS data acquisition and facilitated adjustment of 

sampling frequency, bandpass, and notch filters. Settings included a 752 Hz sampling frequency, 

a 5-60 Hz bandpass filter, and a 58-62 Hz notch filter. EEG data were quantified in microvolts and 

fNIRS data as raw optical density.  

Task commencement and conclusion in each N-back task block were marked by a trigger sent 

through the serial port to both the fNIRS and EEG systems on Channel 54, configured to receive 

external markers. 

Procedure  

In this study, each participant undertook a total of four laboratory visits as part of their 

participation. The initial visit focused on essential preparations and familiarization, including 

becoming acclimated to the simulator’s operation, and underwent a screening process for simulator 

sickness, as illustrated in Figure 3. The following three formal visits constituted the main 

experimental phase, where participants were engaged in driving tasks under randomly assigned 

CO2 concentrations, spanning three different levels. During each of these visits, participants 

underwent two driving sessions. Each session involved random exposure to either clean or body 

odor-infused T-shirts. The order and nature of these conditions were unknown to the participants, 

safeguarding the study’s integrity. 

At the beginning of the formal visit, participants completed a pre-session survey evaluating 

their sleep quality from the previous night and current sleepiness levels. For more information 

about the survey, please refer to our previous publication (C. Wang et al., 2024). They were then 

equipped with physiological sensors before entering the driving simulator. Each driving session 

lasted approximately 20 minutes, during which participants completed six N-back tasks (two each 

of 0-back, 1-back, and 2-back), randomly ordered to vary cognitive workload. Post-driving, 

participants exited the simulator to complete a survey assessing their physical and psychological 

state. This interval also allowed for the replacement of T-shirts in the simulator. Participants then 

repeated the same driving task under different environmental conditions. After completing all 

visits, participants received a debriefing and compensation for their participation in the study. 
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Fig. 3. Experimental procedure. The left column outlines one training visit followed by three 

formal visits. The middle column details the process involved in a single formal visit. The right 

column depicts the driving sub-sessions included within a single driving session. 

 

Data processing 

Data preprocessing 

In this study, we employed the MNE-Python (Gramfort et al., 2013) for processing raw EEG 

data, adhering to a systematic approach (Gramfort et al., 2014). This included identifying and 

removing bad EEG channels, followed by their reconstruction through the spherical spline 

interpolation method (Perrin et al., 1989), using data from adjacent good sensors. The EEG data 

were resampled to 500 Hz for simplicity and re-referenced to the average reference. To reduce 

high-frequency physiological noise, we applied a third-order Butterworth filter for bandpass 

filtering between 0.5 Hz and 30 Hz (Kar et al., 2010). Eye-movement artifacts and the channels 

affected by eye-blink were removed, and Independent Component Analysis (ICA) was utilized to 

decompose the EEG data and mitigate physiological effects (Delorme & Makeig, 2004). 

For fNIRS data preprocessing, initially, we used the data converter (C. Wang, 2024) to 

transform the time-series raw data in “.mat” format file to “.nirs” format file which can be read by 

the popular used software Homer3 (Huppert et al., 2009). The data were then transformed into 

“.snirf” files for further processing. We used Homer package (Homer3), a MATLAB-based 

toolbox to correct motion artifacts, physiological noise, and analyze captured hemodynamic data. 

We adopted the modified Beer-Lambert’s law (mBLL) to relative concentrations of oxygenated 

hemoglobin (HbO) and de-oxygenated hemoglobin (HbR) from the light intensities of the eight 

detectors (Cope et al., 1988; Kocsis et al., 2006), with DPF of 4 (Scholkmann & Wolf, 2013). 

Table 1 lists the parameters of each algorithm. After visual inspection to remove abnormal noise, 

weak, deviating, or excessively noisy signal channels were pruned. Motion artifacts were corrected 

using channel rejection, motion detection, wavelet transformation, Savitzky-Golay spline 
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interpolation, and band-pass Butterworth filter. Physiological noise, such as respiration, and 

cardiac activities, was addressed using a bandpass filter. Confounding effects, like vessel changes 

due to CO2, were mitigated by subtracting the global signal average from the interested signal. 

Physiological noise was identified as the noise significantly impacts the recorded fNIRS data 

(Yücel et al., 2021). 

We used a general linear model (GLM) to extract the hemodynamic response function (HRF) 

from the preprocessed fNIRS signals, considering its advantages over block averaging. GLM 

accounted for potential physiological noise as one of the regressors in calculating HRF, with 

options for specifying temporal basis functions, regression of short separation channels, drift order, 

and motion artifact correction (Yücel et al., 2021). It elucidated the HRF across all channels under 

various experimental conditions by incorporating specific weights for each computational 

component—physiological, functional, and drift order—determined via a linear combination of N 

normalized Gaussian functions. Cerebral activation is characterized by changes in HbO, HbR, and 

total hemoglobin (HbT) concentrations, correlating with variations in cerebral oxygenation and 

blood flow. Consequently, alterations in HbO, HbR, and HbT concentrations were the primary 

indicators of cerebral activation in our analyses, drawing on the foundational work by Sitaram et 

al (2007) and Kwong et al. (1992). We computed average HbO, HbR values for each channel, 

delineated based on the Regions of Interest (ROIs) as shown in Figure 2b, for in-depth analysis.  

 

Table 1. User parameter settings for every HOMER3 function used in the processing stream. 

Name Function Parameters and Values 

Channel rejection hmrR_PruneChannels 

 

dRange: (0.2, 1.8) 

SNRthresh = 1 

Sdrange: (0.0, 45.0) 

Motion detection hmrR_MotionArtifactByChannel 

 

tMotion = 0.5 Sec 

tMask = 1.0 Sec 

SDEVThresh = 15 

AMPthresh = 0.2 

Wavelet hmrR_MotionCorrectWavelet iqr = 1 

SplineSG hmrR_MotionCorrectSplineSG 

 

p = 0.99 

FrameSize_Sec = 10 

Bandpass filter hmrR_BandpassFilt 

 

hpf = 0 Hz 

lpf = 0.5 Hz 

OD change hmrR_OD2Conc 

 

dod = 1.0 

probe = 1.0 

ppf = 1.0 

GLM hmrR_GLM 

 

Trangt: (-5, 45) Sec 

glmSolveMethod = 1 

idxBasis = 1 

paramsBasis: [1 1] 

rhoSD_ssThresh = 0 

flagNuisanceRMethod = 1 

driftOrder = 3.0 

 

Feature Extraction 
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EEG data spanning an 18-minute duration were used to extract the features across each driving 

session under various driving conditions. A power spectral density (PSD) was computed for each 

trial using the MNE package (Gramfort et al., 2014). To calculate the PSD, we considered four 

spectral band ranges: delta (δ) (1–4 Hz), theta (θ) (4–8 Hz), alpha (α) (8–13 Hz), and beta (β) 

(13-30 Hz), using welch wavelet transform (WT) (Al-Fahoum & Al-Fraihat, 2014). Using a time-

sliding window of 2 s and half window size overlapping, the mean power values of α frequency 

band signals were extracted and used as features for EEG assessment. We used the moving 

average due to its ability in removing spurious artifacts in continuous signals. Using Welch’s 

method, each of the band powers for δ, θ, α, and β, as well as total band power, which is defined 

as the sum of all band powers were calculated. The θ was selected because an increase in the 

frequency range of θ band has been put forward as a sign of sleep need (Aeschbach et al., 1997; 

Buckelew et al., 2009; Cajochen et al., 1995). For α band, an increase in α content has been found 

to be a robust indicator of sleepiness in a driving setting (Kecklund & Åkerstedt, 1993; Simon et 

al., 2011) and memory performance (Klimesch, 1999). Borghini et al. (2014) stated that an 

increase in θ band and a decrease in α band occurred in high mental workload. Furthermore, an 

increase in relative β band has been associated with arousal and stress (Kuo et al., 2016; J. Zhang 

et al., 2021). The δ band is linked to cortical deafferentation during mental tasks, reducing sensory 

interference with concentration (Dimitriadis et al., 2010). It may also play a role in processing 

complex tasks (Harmony, 2013), underscoring its significance in attention and response to 

olfactory stimuli. Except the RPL of different frequency bands, we also incorporated the ratio 

indices of (θ+α)/β and θ/β as the features.  Given the tendency of basic indices to present 

conflicting outcomes, ratio indices were calculated to enhance the discernibility of differences  The 

results from studies by Jap et al. (2009) and Eoh et al. (2005) indicated that (θ+α)/β was a more 

reliable fatigue indicator. The θ/β in EEG studies (Clarke et al., 2019), initially thought to 

represent arousal in Attention-Deficit/Hyperactivity Disorder (AD/HD), is now believed to 

indicate cognitive processing capacity. The declined value of θ/β ratio reflects an increase of 

stimulus-driven attention and the subjects have stronger capability to concentrate (T.-S. Wang et 

al., 2024). Furthermore, these ratio indices were less sensitive to noise and have relatively higher 

sensitivity. The ROI of all EEG probes were divided as “frontal”, “central”, and “parietal” area 

as show in the Figure 2 (Liang et al., 2018). 

The statistics of HbO and HbR are commonly used as features in fNIRS studies (von Lühmann et 

al., 2020; Yücel et al., 2021). The fNIRS features we focused on included the amplitude of HbO 

and HbR, the slope of these signals, the temporal difference between their peaks, and their maximal 

or minimal values observed during the N-back tasks. Additionally, we computed the average 

amplitude of HbO and HbR concentration throughout the entire driving session to serve as 

features, aligning with methodologies from prior studies (von Lühmann et al., 2020). Mirroring 

the analytical techniques applied in EEG signal analysis, we derived features based on specified 

ROI and across various driving sessions. The brain ROIs were categorized into the prefrontal 

cortex (PFC), left prefrontal cortex (LPFC), and right prefrontal cortex (RPFC), following the 

classification by Li et al. (2019). The study using fNIRS during driving simulations highlighted 

hemispheric differences in spatial attention (Oka et al., 2015). It suggested that the left hemisphere 

directs attention more strongly to the right side than the right hemisphere does to the left. Another 

research (Henson et al., 1999) has focused on episodic memory retrieval and the role of the RPFC 

proposed that the RPFC activation during memory retrieval tasks might reflect the degree of 

retrieval effort, being more active when retrieval is difficult. Furthermore, we assessed the features 
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at the level of individual channels across different driving sessions to examine the effects of varied 

conditions. 

Statistical analysis 

The study evaluated the influence of various in-car environmental factors on brain activity, with 

particular focus on EEG and fNIRS signals, as illustrated in Figure 4. Participants were subjected 

to six distinct in-car conditions of various levels of CO2 concentration and the presence or absence 

of additional body odor. The driving sessions were categorized based on the inclusion of an 

additional cognitive task into two types: “single-task driving,” where the subject was solely 

focused on driving, and “dual-task driving,” which involved performing an N-back task 

concurrently with driving. Within these categories, a task was further subdivided into twelve sub-

sessions: six dedicated to single-task and six to dual-task activities. These sub-sessions were 

designated as “1st sd”, “2nd sd”, and so on for single-task driving, and “1st dd”, “2nd dd”, etc., 

for dual-task driving. To discern the impact of CO2 levels and body odor on cognitive functions 

during these tasks, we conducted a comparative analysis across different ROIs in the brain with 

multiple probes or optodes, as well as at the individual level. The features derived from the EEG 

and fNIRS signals, which are detailed in the feature extraction section of this paper, were integral 

to this comparison. The corresponding effects of each environmental condition on cognitive 

performance during driving are depicted and summarized in Figure 4. 

The effect of CO2 or body odor on EEG and fNIRS signal was statistically assessed using two-

way Aligned Rank Transform (ART) Analysis of Variance (ANOVA) coupled with Bonferroni 

correction and post-hoc analysis, a commonly employed method in the literature for assessing 

differences among three or more groups (Durner, 2019; Elkin et al., 2021). All datasets were not 

normally distributed by using the Shapiro-Wilk normality test. The significance level used for 

hypothesis testing was 0.05. The data analysis was conducted with R language software (version 

4.2.3)  (R Core Team, 2013). 
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Fig. 4. Integration figure of the features used in the ANOVA. “sd” refers to “single-task driving” 

and “dd” stands for “dual-task driving”. Trace the lines originating from left to right are the 

environmental conditions, task type, EEG and fNIRS brain regions and channels, features used 

to measure cognitive performance. 

 

Results 

Environmental conditions 

On average, the measured CO2 concentration was 786.42 ± 106.57 ppm (Mean ± SD) for the 

low level, 1815.00 ± 80.63 ppm for the middle level, and 3504.41 ± 149.39 ppm for the high level 

(Figure S2 in the appendix). We also analyzed the VOC composition of worn T-shirts but did not 

quantitatively measure their concentration. For more information, please refer to our previous 

publication (C. Wang et al., 2024). 

EEG measurements 

The analysis of EEG focused on drivers’ PSD across spectral bands and the ratio indices in 

different ROI during assorted driving sessions as the entire driving session, single-task driving, 

dual-task driving, and various difficulty level N-back tasks. The ART two-way ART ANOVA 

evaluated the impact of CO2 and body odor on these EEG features. 

PSD of different frequency band 

Table S1 (in the appendix) outlines the mean and standard deviation values for PSD of different 

bands which were significantly affected by the CO2 level or body odor, and Table 2 details the 

corresponding results of the two-way ART ANOVA, which investigates the effects of CO2 or body 

odor. In these tables, we included only the ANOVA results that demonstrated a significant 

influence of the in-car environment on the PSD of various frequency bands. This selective 

inclusion is due to the fact that, out of 160 total comparisons, 158 did not show a significant effect 

of the in-car environment on PSD of different frequency bands. 

Entire driving session 

For the entire driving session, in examining various ROI — namely, the frontal, central, and 

parietal regions, as well as an aggregate ‘all’ category, the ANOVA results indicated that no 

significant effects of CO2 and body odor on the PSD of different bands. But the results presented 

when considering from the channel instead of the brain regions, channel PZ showed a notable 

difference in δ due to the presence of body odor (F(1, 144) = 8.024, p = 0.005, η² = 0.956), with δ 

PSD values averaging 9.951 μV2/Hz with body odor and 8.425 μV2/Hz without it. 

 

Table 2. Two-way ART ANOVA of EEG PSD of different frequency band at different CO2 levels 

and environments with or without body odor across the driving sessions 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Driving 

session 

Source Featu

re 

Chan

nels 

Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partial 

Eta 

Square

d 

Entire Body odor δ PZ 8532.913 1 8532.913 8.024 0.005** 0.956 

Single-task Body odor δ C1 7871.268 1 7871.268 6.779 0.010* 0.597 
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Single-task driving session  

During the single-task driving session, in examining various ROI the ANOVA revealed no 

significant effects of CO2 on the absolute value of the PSD across four frequency bands. Similarly, 

the presence of body odor did not exert a statistically significant influence on the PSD of different 

bands in any of the ROI across the various driving conditions. In addition, in the Table 3, Channel 

C1 showed a notable difference in PSD of δ due to the presence of body odor (F(1, 144) = 6.779, p 

= 0.010, η² = 0.597), with values averaging 8.829 μV2/Hz with body odor and 4.077 μV2/Hz 
without it. 

Dual-task driving session 

For the integrated dual-task driving session which merge the various N-back tasks sessions, 

either in examining various ROI or channels, neither bands’ PSD nor ratios was significantly 

affected due to the CO2 or the presence of the body odor. 

We also explore the influence of varying CO2 levels and the presence of body odor on EEG 

PSD of different bands during N-back tasks of varying difficulty. Table S2 outlines the mean and 

standard deviation values for these indices which were significant effected by the CO2 or body 

odor in different N-back tasks, and Table 3 details the results of the two-way ART ANOVA, which 

explores the effects of CO2 or body odor. While we did not find significant differences in the 

various frequency band PSD due to CO2 or body odor across different ROIs, a different pattern 

emerged when examining individual channels.  

During the 0-back task, the δ band PSD was significantly affected by body odor on channels 

FC3 (F(1, 144) = 8.997, p = 0.003, η² = 0.618), FC4 (F(1, 144) = 6.686, p = 0.011, η² = 0.577), and PZ 

(F(1, 144) = 11.415, p = 0.001, η² = 0.569). For example, in the environment with the body odor, the 

mean PSD of δ at FC3 increased to 2.828 μV2/Hz compared to 1.686 μV2/Hz without it. 

During 1-back task, some channels show the significant differences of δ due to the body odor. 

Table 5 shows that the PSD of δ in channel PZ decreased significantly (F(1, 144) = 17.050, p < 

0.001, η2 = 0.547) from 3.825 μV2/Hz in the environment with the body odor to 1.340 μV2/Hz 

(Table S2) in the environment without the body odor. Another θ band in the same channel, the 

PSD were also significantly different (F(1, 144) = 12.178, p < 0.001, η2 = 0.495) due to the body 

odor and decreased from 0.588 with the presence of body odor to 0.236 μV2/Hz without body odor.  

For the 2-back task, significant effects from body odor were found on δ at channels FC4 (F(1, 144) 

= 6.824, p = 0.011, η² = .486) and C1 (F(1, 144) = 8.865, p = .010, η² = .408). For instance, the 

mean δ value at FC4 was 1.652 μV2/Hz at 800 ppm CO2 and 3.770 at 3500 ppm CO2. With body 

odor, the mean δ value increased to 2.990 μV2/Hz compared to 1.415 μV2/Hz without it. No 

significant effects were found from the PSD of bands due to CO2, body odor, or their interaction 

by regions. 

 

Table 3. Two-way Analyses of Variance of EEG PSD of different frequency band at different CO2 

levels and environments with or without body odor during N-back tasks 

Driving 

session 

Source Feat

ure 

Cha

nnel 

Sum of 

Squares 

d

f 

Mean 

Square 

F Sig. (p) Parti

al 

Eta 

Squa

red 

0-back Body odor δ FC3 5091.064 1 5091.064 8.997 0.003** 0.618 
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Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Ratio indices of bands PSD 

Entire driving session 

Table S3 outlines the mean and standard deviation values for band power ratios indices which 

were significantly affected by the CO2 level or body odor, and Table 4 details the corresponding 

results of the two-way ART ANOVA, which investigates the effects of CO2 or body odor. Similar 

to the results of band PSD, we included only the ANOVA results that demonstrated a significant 

influence of the in-car environment on the ratio indices (5 out of 160 total comparisons). 

For the entire driving session, in examining various ROI — namely, the frontal, central, and 

parietal regions, as well as an aggregate ‘all’ category, the ANOVA results indicated that no 

significant effects of CO2 and body odor on the band power ratios indices. But the results presented 

when considering from the channel instead of the brain regions, channel AF3 demonstrated a 

significant difference in the α+θ/β (F(1, 144) = 5.235, p = 0.007, η² = 0.810) and θ/β (F(1, 144) = 4.722, 

p = 0.011, η² = 0.801), attributable to CO2 levels. This suggests that CO2 concentration 

significantly altered the mean value of the (α+θ)/β of channel AF3, with observed values 

approximately being 6.491 μV2/Hz, 8.388 μV2/Hz, and 8.651 μV2/Hz under CO2 levels of 800 

ppm, 1800 ppm, and 3500 ppm, respectively. Channel FC4 also exhibited significant differences 

due to CO2 levels in both the θ/β (F(2, 144) = 4.988, p = 0.008, η² = 0.460) and (α+θ)/β (F(2, 144) = 

4.712, p = 0.011, η² = 0.476) during the entire driving session. The interaction between the CO2 

and body odor also led to the significant difference of the (α+θ)/β (F(2, 144) = 5.271, p = 0.006, η² = 

0.471) at Channel FC4. 

 

Table 4. Two-way ART ANOVA of ratio indices of bands PSD at different CO2 levels and 

environments with or without body odor across the driving sessions 

Note: “Interaction” denotes the interaction between the CO2 and body odor. * denotes p value less than 

0.05, ** denotes p value less than 0.01 

 

0-back Body odor δ FC4 4127.213 1 4127.213 6.686 0.011* 0.577 

0-back Body odor δ PZ 5657.301 1 5657.301 11.415 0.001** 0.569 

1-back Body odor δ PZ 8575.42 1 8575.42 17.050 <0.001** 0.547 

1-back Body odor δ C1 3986.482 1 3986.482 6.704 0.011* 0.596 

1-back Body odor θ PZ 6787.995 1 6787.995 12.178 <0.001** 0.495 

2-back Body odor δ FC4 4162.529 1 4162.529 6.824 0.011* 0.486 

2-back Body odor δ C1 3681.853 1 3681.853 8.865 0.010* 0.408 

Driving 

session 

Source Feature Chan

nel 

Sum of 

Squares 

d

f 

Mean 

Square 

F Sig. (p) Partial 

Eta 

Square

d 

Entire CO2 (α+θ)/β AF3 14011.64 2 7005.819 5.235 0.007** 0.810 

Entire CO2 θ/β AF3 12694.13 2 6347.066 4.722 0.011* 0.801 

Entire CO2 (α+θ)/β FC4 12839.89 2 6419.944 4.988 0.008** 0.460 

Entire Interaction (α+θ)/β FC4 13133.45 2 6566.723 5.271 0.006** 0.471 

Entire CO2 θ/β FC4 11825.92 2 5912.96 4.712 0.011* 0.476 

Single-task CO2 (α+θ)/β AF3 12027.78 2 6013.89 4.754 0.010* 0.873 
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Single-task driving session 

During the single-task driving session, examining various ROI the ANOVA revealed no 

significant effects of CO2 on the band power ratio indices. Similarly, the presence of body odor 

did not exert a statistically significant influence on the ratio indices of bands PSD in any of the 

ROI across the various driving conditions. Ratios as θ/β and (α+θ)/β, also did not show significant 

differences attributable to either the presence of body odor or the interactive effect of CO2 and 

body odor by examining different ROI. However, in examining various channel, specifically, 

channel AF3 demonstrated a significant difference in the (α+θ)/β ratio, attributable to CO2 levels 

(F(1, 144) = 4.754, p = 0.010, η² = 0.873). This suggests that CO2 concentration significantly altered 

the mean value of the (α+θ)/β ratio of channel AF3, with observed values approximately being 

6.528, 8.325, and 8.232 μV2/Hz under different CO2 conditions of 800 ppm, 1800 ppm and 3500 

ppm, respectively. 

Dual-task driving session 

For the integrated dual-task driving session, either in examining various ROI or channels, 

neither bands’ PSD nor ratios was significantly affected due to the CO2 or the presence of the body 

odor. 

We also explore the influence of varying CO2 levels and the presence of body odor on ratio 

indices of bands PSD during N-back tasks of varying difficulty. Figure 5 shows the brain 

topography of ratio index (α+θ)/β during the dural-task session in various conditions. Figures 6 

and 7 display heatmaps showing the p-value of EEG ratio indices across various brain ROIs and 

channels during different N-back tasks under assorted conditions. 

 

 
Fig. 5. Brain topography of (α+θ)/β during the dural-task session in various conditions 

 

During the 0-back task, the results in Figure 6 and 7 indicated the body odor led to significant 

difference to the ratios in different ROI or channels. But it was hard to find the effect due to the 

CO2 or the interaction between the CO2 and body odor. 

During 1-back task, the results we got were similar to the results during the 0-back task. The 

ANOVA did not reveal the significant differences by ratio indices in these measures across 
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different CO2 levels of the all brain during 1-back task. In Figure 7, the ratios between the bands 

exhibited uniformity across different N-back tasks by channels. The channel CP3 indicated the 

difference due to the CO2 during the 1-back task by the (α+θ)/β and θ/β. But the body odor led to 

significant differences to the ratios include (α+θ)/β and θ/β during the 1-back in different regions 

or channels. Furthermore, the two-way ART ANOVA results show there was no significant 

interaction between CO2 and body odor on band ratios compared by regions or individual 

channels during 1-back task. 

For the 2-back task, when we compared the results between the different environments conditions 

by the ratios in regions or channels (Figure 6 and 7), the ANOVA revealed the only significant 

differences by (α+θ)/β and θ/β in these measures across different CO2 levels of the all brain during 

2-back task. In different conditions with or without the presence of body odor, the ratios (α+θ)/β 

and θ/β indicated the great difference during the 2-back task. The interaction between the CO2 

and body odor had no effect on the ratios from EEG signals. In the Figure 6, we can also find the 

significant difference of the ratios (α+θ)/β and θ/β due to the body odor at the channels 

corresponding to the regions. 

 
Fig. 6. p-value heatmap of EEG ratio indices across various brain ROIs during different N-back 

tasks under various conditions. Each column corresponds to a specific N-back task complexity 

(0-back, 1-back, 2-back from left to right). The x-axis labels represent the different EEG features 

assessed, while the y-axis labels denote the distinct ROIs. “Interaction” is the interactive effect 

between CO2 and body odor. “A” denotes all regions of brain, “F” denotes frontal region of 

brain, “C” denotes central region of brain, and “P” denotes parietal region of brain. The color 

scale on the right denotes p-value ranges, with the red-framed boxes highlighting statistically 

significant changes where p < 0.05.  
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Fig. 7.  p-value heatmap of EEG ratio indices across various channels during different N-back 

tasks under various conditions. Each column corresponds to a specific N-back task complexity 

(0-back, 1-back, 2-back from left to right). The x-axis labels represent the different EEG features 

assessed, while the y-axis labels denote the distinct ROIs. “Interaction” is the interactive effect 

between CO2 and body odor. The color scale on the right denotes p-value ranges, with the red-

framed boxes highlighting statistically significant changes where p < 0.05. 
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fNIRS measurement 

Entire driving session 

The analysis of fNIRS data concentrated on the dynamics of HbO and HbR across various ROI 

during distinct driving sessions, including single-task, dual-task, and the entire driving session. A 

two-way ART ANOVA was employed to assess the effects of CO2 concentration, body odor and 

their interaction on these fNIRS measurement. Despite the comprehensive analysis across different 

ROIs and channels for each driving session, our findings indicated that neither the CO2 levels nor 

the presence of body odor significantly influenced the statistics of HbO and HbR. Therefore, the 

detailed ANOVA results are not presented due to insignificance. 

For the single-task driving session, either in examining various ROI or channels, neither fNIRS 

feature was significantly affected due to the CO2 or the presence of the body odor. 

Dual-task driving session 

Table S4 and Table 5 illustrate the variations in cortical brain activation across fNIRS ROIs 

under varying experimental conditions, namely different CO2 levels and the presence or absence 

of body odor. In the 0-back task, a significant response to CO2 levels was observed in the beta of 

HBR at channel 3. The mean values were -2.127e-6 μM at 800 ppm, 9.930e-7 μM at 1800 ppm, 

and 6.134e-6 μM at 3500 ppm CO2. This finding is substantiated by statistical analysis, revealing 

significant variance (F(1, 144) = 4.545, p = 0.012, η² = 0.670). In the 1-back task, the interaction of 

CO2 levels and body odor significantly influenced both HbO concentrations at channel 6 and HbR 

concentrations at channel 7. The mean HbO values were 7.137e-6, 9.054e-6, and -1.716e-6 μM, 

while HbR means were -2.395e-6, 2.406e-6, and 2.177e-6 μM across the three CO2 conditions. 

The statistical analysis showed significant effects for HbO concentration at channel 6 (F(1, 144) = 

4.588, p = 0.012, η² = 0.674) and for HbR concentration at channel 7 (F(1, 144) = 5.435, p = 0.005, 

η² = 0.789). During the 2-back task, HbT concentration at channel 7 exhibited significant 

variability in response to CO2 levels, with mean values of -9.356e-6 μM at 800 ppm, 1.612e-6 μM 

at 1800 ppm, and 7.929e-6 μM at 3500 ppm CO2. The statistical analysis highlighted a notable 

effect of CO2 on HbT concentration (F(2, 144) = 4.929, p = 0.009, η² = 0.686). It’s important to note 

that while no significant differences in HbO or HbR concentration were found across the ROI 

during the 2-back task, the distinct impact of CO2 on HbT concentration underscores the varied 

hemodynamic responses under these experimental conditions. 

 

Table 5. Two-way ART ANOVA of fNIRS features at different CO2 levels and environments with 

or without body odor during N-back tasks 

Note: “Interaction” denotes the interaction between the CO2 and body odor. * denotes p value less than 

0.05, ** denotes p value less than 0.01 

 

Drivin

g 

sessio

n 

Source Valu

e 

Feat

ure 

Ch

an

nel 

Sum of 

Squares 

df Mean 

Square 

F Sig. (p) Partia

l Eta 

Squar

ed 

1-back Interaction HbO conc 6 14115.64 2 7057.82 4.588 0.012* 0.674 

1-back Interaction HbR conc 7 16613.04 2 8306.52 5.435 0.005** 0.789 

2-back CO2 HbT conc 7 14835.18 2 7417.591 4.929 0.009** 0.686 
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Fig. 8. Brain topography of HbO concentration during dual-task session in various conditions 

 

Discussion 

Effect of CO2 and body odor 

Our study marks a significant foray into the combined use of EEG and fNIRS to examine the 

effects of CO2 levels and body odor on brain activity during driving. This innovative, multimodal 

neuroimaging method offers a nuanced view of how environmental factors interact with cognitive 

states. While the fNIRS measurements revealed subtle differences across various CO2 and body 

odor conditions, the EEG data suggested more pronounced changes in band PSD or ratio indices 

during different driving sessions, thereby providing insights into the brain’s response to 

environmental changes. 

Across the different driving task sessions, EEG band PSD and ratios indices at some channels 

were affected by CO2 or the presence of body odor. Specifically, the observed alterations in the δ 

and across entire or single-task driving session highlight the potential shifts in cognitive states due 

to the body odor. Alterations in specific EEG frequency bands, such as θ and α waves, are widely 

accepted recognized indicators as one of the valid indicators of objective sleepiness, relaxed states, 

or wakefulness (Borghini et al., 2014; Buckelew et al., 2009; Klimesch, 1999). Furthermore, an 

increase in relative β band power has been associated with arousal and stress (Kuo et al., 2016; J. 

Zhang et al., 2021). In previous study, Snow et al. (2018) used EEG to assess sleepiness and 

suggested increased susceptibility to CO2 at ~2700 ppm in sleep-deprived individuals. However, 

they found no significant EEG changes between normal and high CO2 conditions using repeated 

measures ANOVA. Conversely, Zhang et al. (2021) observed that higher CO2 levels (around 5000 

ppm) significantly increased EEG relative β power, along with changes in breathing wave 

amplitude and heart rate variability during Multi-Attribute Task Battery tasks. Our findings of 

decreased β power and increased θ power in high CO2 conditions align with these studies (Jin et 

al., 2022). The variation in (α+θ)/β ratios, with higher values potentially indicating a more relaxed 

or drowsy state (Angelidis et al., 2016), and lower values suggesting increased alertness, adds 



   

 

185 

 

more evidence to our understanding of cognitive states during driving. The ratios increase the 

power than the using of the bands PSD. Interestingly, our findings showed more pronounced 

changes in ratio indices than in PSD values at some channels, indicating that ratios might be more 

sensitive indicators of cognitive state changes due to the CO2 level. 

Compared to the results from dual-task driving session and driving during various N-back tasks, 

the EEG ratio indices were significantly affected by body odor condition (presence vs. absence of 

body odor) during the specific N-back task but not the aggregated dual-task driving. Body odor’s 

impact was particularly evident in the N-back task sessions, altering the PSD of the δ band across 

specific channels. The δ band in the regions are mental tasks are associated with functional cortical 

deafferentation, or inhibition of the sensory afferences that interfere with internal concentration 

(Dimitriadis et al., 2010). Besides, δ waves may be involved in certain cognitive processes, such 

as understanding complex tasks or problems, though this is less well understood and an area of 

ongoing research (Harmony, 2013). This finding underscores the role of δ band in attention 

performance and suggests a sensory-specific response to olfactory stimuli. For the ratio indices, 

(α+θ)/β and θ/β established the significant difference of different brain regions across the specific 

N-back tasks due to the body odor. The ratio index (α+θ)/β was lower in the condition with body 

odor, indicating increased alertness. Concurrently, with body odor, a lower θ/β ratio was associated 

with an increase in stimulus-driven attention and an enhanced ability of the subjects to concentrate. 

We also analyze potential interactive effects between CO2 and body odor on EEG signal change 

during the various driving session. There was no significant difference generated due to the 

interaction during the N-back tasks. 

During the driving sub-sessions, we could find the ratio indices (α+θ)/β and θ/β were 

significantly affected by the body odor and even the interaction between CO2 and body odor across 

most of the brain regions. The different driving task sessions had no significant difference while 

the driving sub-sessions had. 

Although our ANOVA results did not indicate significant differences in band ratios arising 

from the various CO2 levels, brain topography data (Figure 9) during dual-task sessions revealed 

discernible differences between low and higher CO2 conditions. Post-hoc analyses supported the 

subtle but existing effect of CO2 on cognitive state during driving with addition cognition task. 

Earlier research has shown that high CO2 levels decrease γ, β, and α brainwave powers (Driver et 

al., 2016; Hall et al., 2011) while increasing δ and θ wave powers (D. Wang et al., 2015; Xu et al., 

2011), possibly indicating the physiological impact of hypercapnia, hypoxia, or increased 

sympathetic nerve activity. It’s also important to consider that these EEG alterations could be 

influenced by heightened sympathetic nerve activity. 

 
Fig. 9. EEG brain topography of (α+θ)/β of entire driving session in different CO2 levels 
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In contrast to the EEG findings, the fNIRS data failed to demonstrate distinct differences across 

the conditions. This discrepancy may stem from the inherent difficulties associated with 

identifying subtle variations in hemodynamic responses, or it could be related to fNIRS’s particular 

sensitivity to various cognitive and environmental factors. Further investigation is needed to 

elucidate these aspects. 

Effects of N-back task difficulty  

The results section 3.2.1.4, 3.2.2.4, and 3.3.2 presents the analysis to investigate whether N-

back task difficulty alters the relationship between CO2 (or body odor) and brain signal 

measurement. Figure 5 displays the p-value of band ratios for the 0-back, 1-back, and 2-back tasks 

under different CO2 or body odor conditions. The results show that body odor had a significant 

impact on the band ratios indices for 0-back, 1-back, or 2-back tasks, particular the 0-back. 

Nevertheless, no significant difference in ANOVA was found for any EEG signal due to the N-

back task difficulty. The finding suggests there were no effects of task difficulties in the 

relationship between CO2 exposure and brain activity measured from the EEG. Moreover, band 

ratio indices were significantly different between the conditions with and without body odor, for 

distinct difficulty level N-back tasks. In the study conducted by Wang et al (2024), it only show 

that CO2 had a significant impact on response accuracy only for 1-back or 0-back tasks. When the 

task (e.g., 2-back) was hard, CO2 did not exert any impact on response accuracy or reaction time. 

We found the features of fNIRS measurement have significant differences due to the CO2 or 

body odor at a few channels during different levels of the N-back task. In previous studies fNIRS 

can show the workload due to the different N-back tasks (write more things here and the citation). 

But the ANOVA test with using the fNIRS signal features did not find significant difference due 

to the N-back task difficulty level. The potential reason is the cognition on driving mitigate the 

workload of N-back tasks measured by the fNIRS. 

Time course of EEG and fNIRS  

We did the comparison by using ANOVA tests to exam the effects of CO2 levels, body odor, and 

the interaction between them on ratio indices of bands PSD, and haemoglobin concentration 

across the driving sub-sessions. The results can be insightful to understand the effect of exposure 

time. 

Figure 10 displays the p-values heat map from ANOVA tests examining the effects of CO2 levels, 

body odor, and the interaction between them on EEG ratio indices by ROI across the separated 

driving sub-sessions. These differences were predominantly influenced by body odor across 

various regions during distinct driving sub-sessions. Furthermore, the interaction between CO2 

levels and body odor resulted in notably difference on the ratios of (α+θ)/β and θ/β. However, CO2 

levels alone did not significantly influence these ratios. In addition, a channel-based comparison, 

as detailed in the Figure S3 had the similar results. This variability in response to environmental 

factors underscores the sensitivity of EEG measures to external environmental stimuli, 

particularly during complex tasks like driving with another secondary task. 
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Fig. 10. p-value heatmap of EEG ratio indices alterations across various brain regions of interest 

(ROIs) during separated driving sub-sessions under conditions of CO2 (top panel), presence of 

body odor (middle panel), and their interaction (bottom panel). “Interaction” is the interactive 

effect between CO2 and body odor. “A” denotes all regions of brain, “F” denotes frontal region 

of brain, “C” denotes central region of brain, and “P” denotes parietal region of brain. Each 

column corresponds to a separated driving sub-session. The x-axis labels represent the different 

EEG ratio indices assessed, while the y-axis labels denote the distinct ROIs. The color scale on 

the right denotes p-value ranges, with the red-framed boxes highlighting statistically significant 

changes where p < 0.05. 

 

Figure S4 (in the appendix) displays the p-values heat map from ANOVA tests examining the 

effects of CO2 levels, body odor, and the interaction between them on fNIRS features by ROI and 

channels across the driving sub-sessions. The analysis emphasized the influence of the exposure 

time as the factor on cerebral hemodynamic. The results about differentiating the effect of the time-

on-task indicate the CO2 had effect on the HbR concentration as the exposure time increasing. The 

observed variations in HbO, HbR, and HbT concentrations across driving sub-sessions and brain 

regions highlight the intricate relationship between physiological processes and environmental 

stimuli. 

The ANOVA test which compares the features in driving sub-sessions found no significant 

difference. In the study (C. Wang et al., 2024), there was a significant difference in mean speed 

between 800 ppm and 3500 ppm CO2 from 15 to 18 min, but not in the time window between 9 and 

12 min. The results are corresponding found from the fNIRS signal which had the most different 

in the post separated driving subsections. 
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Limitation and recommendation 

In this research, we employed EEG and fNIRS to investigate the impact of elevated CO2 levels 

and body odor on brain activity. Our findings revealed variable effects, highlighting the complex 

interplay between environmental factors and neurophysiological responses. The heterogeneity in 

results may stem from several factors, including the limited sample size, the specific devices 

utilized for brain signal acquisition, variations in the intensity and duration of CO2 and body odor 

exposure, and the use of a driving simulator in the experimental design. These elements 

collectively contribute to the observed variability in the study’s outcomes. 

The participants primarily comprised young, inexperienced individuals, potentially limiting the 

variability in driving performance observed. Notably, a learning effect was evident. It presents a 

limitation and an area for future research, particularly in understanding age-related differences 

in sensitivity to environmental factors. The younger individuals might better compensate for 

potential sleepiness or cognitive declines associated with poor air quality, indicating a need to 

increase the sample size to enhance statistical power and include a more diverse demographic, 

considering age differences to gain a comprehensive understanding of the impacts of CO2 and 

body odor. 

Another limitation was the omission of short separation channels in the fNIRS data collection, 

which are crucial for distinguishing physiological factors from brain activities. The environmental 

factors might have confounded the EEG and fNIRS signals. The fNIRS device used did not capture 

signals from these short separation channels, which are known to collect physiological noise 

(Yücel et al., 2021). Furthermore, it is crucial to acknowledge potential data inaccuracies stemming 

from subject movement or hair interference with electrodes. 

The highest CO2 concentration tested was 3500 ppm, potentially insufficient to significantly 

affect brain activity measured by EEG or fNIRS, especially during short exposure periods. 

Previous research (Jap et al., 2009; Thiffault & Bergeron, 2003; Ting et al., 2008) has highlighted 

the influence of exposure duration on driving performance and brain activity. Another study found 

the EEG was significantly affected by a short exposure to the 40,000 ppm CO2 concentration 

condition (Jin et al., 2022). The CO2 level used in their study was 10 times than the highest one 

we used. Future studies could explore longer exposure times and/or higher CO2 concentrations to 

better assess their impact on driving performance. However, it is important to note that the CO2 

levels we used in this study are relevant to real world settings. Consequently, future studies should 

consider longer exposure durations and higher CO2 concentrations, while ensuring relevance to 

real-world settings. 

The study’s use of a simulated driving task might limit ecological validity, as the relatively 

straightforward freeway scenario may not effectively distinguish between drivers of varying skill 

levels. Future research could employ more complex, yet realistic, driving scenarios to assess the 

impacts of CO2 and body odor more accurately. 

Additionally, this study did not regulate the body odor exposure level or identify specific body 

odor compounds. Subsequent research could adopt a more controlled approach, maintaining 

consistent body odor levels in the cabin, to thoroughly investigate its effects on driving 

performance. 

Lastly, this study contributes to understanding the effects of CO2 and body odor on EEG and 

fNIRS measurement during driving, using various theoretical and methodological approaches. We 

found that body odor influenced EEG band ratios, laying groundwork for future research aimed at 

developing technological interventions in construction safety. These findings underscore the 
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potential of using neurophysiological data in construction safety to evaluate mental effort and risk 

compensation among workers. 

Conclusions 

Our study conducted an exploration into the impact of environmental factors within a vehicle 

cabin—specifically, varying levels of CO2 and the presence of body odor—on drivers’ 

physiological states. Using advanced neuroimaging techniques, such as EEG and fNIRS, we were 

able to capture the brain’s nuanced response to these varying environmental conditions. 

The investigation revealed that the presence of body odor significantly influenced EEG band ratios 

indices, the indication of electrical activity changes in the brain that can reflect alterations in 

cognitive states during driving. This effect underscores the potent impact of body odor on cognitive 

processes essential for safe driving. Specifically, we found that the ratio index (α+θ)/β was lower 

in the condition with body odor, indicating increased alertness. Concurrently, a lower θ/β ratio 

with body odor was associated with increased stimulus-driven attention and an enhanced ability 

of the subjects to concentrate, which are crucial for driving safety. Contrastingly, CO2 levels did 

not demonstrate a direct influence on EEG band PSD or ratio indices, suggesting a more complex 

interaction with cognitive functions that may not directly translate to altered brain states 

detectable through our neuroimaging modalities. The notable changes in EEG signal patterns in 

response to body odor point to potential shifts in mental states, even if not directly correlated with 

performance outcomes in the driving tasks. It also suggests that even subtle changes in 

environmental air quality can have cognitive implications, which are crucial for tasks requiring 

high levels of concentration and decision-making during driving. However, fNIRS data displayed 

a different picture. The fNIRS measurements did not show a significant impact of CO2 or body 

odor on hemodynamic responses, suggesting that these environmental factors do not notably affect 

blood flow changes associated with brain activity. 

In summary, our research highlights that body odor within a vehicle cabin can significantly impact 

cognitive states as detected by EEG, whereas CO2 levels do not show a direct effect through the 

neuroimaging techniques employed. These insights contribute to the broader understanding of 

how in-vehicle environmental quality can influence driver safety, emphasizing the importance of 

considering air quality in the design of vehicle cabins. Future studies should aim to explore the 

implications of these findings across a wider demographic to fully grasp the potential safety 

implications for all drivers. 
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Appendix 

G power software 

 
Fig. S1. Settings for power analysis in G*power  

 

CO2 concentration 
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Fig. S2. CO2 concentration (ppm) in the car cabin at three levels 

 

EEG measurements 

Table S1. Descriptive statistics for EEG PSD of different frequency band under different CO2 levels and environments with or without 

body odor during the entire driving session        

Driving session Feature Channel Conditions M (μV2/Hz) SD N 

Entire δ PZ 800 ppm CO2 6.132 12.484 46 

1800 ppm CO2 10.704 31.016 43 

3500 ppm CO2 10.476 23.553 40 

With the body odor 9.591 16.562 64 

Without the body odor 8.425 28.589 65 

Total 9.003 23.324 129 

Single-task δ C1 800 ppm CO2 5.888 13.652 45 

1800 ppm CO2 5.405 10.323 42 

3500 ppm CO2 8.219 13.189 38 

With the body odor 8.829 15.281 62 

Without the body odor 4.077 8.265 63 

Total 6.434 12.439 125 
 

Note: “M” denotes mean, “SD” denotes standard deviation, “N” denotes the total number of driving sessions in a certain condition.  
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Table S2. Descriptive Statistics for EEG PSD of different frequency band at different CO2 levels and environments with or without 

body odor during N-back tasks    

Driving session Feature Region Conditions M(μV2/Hz) SD N 

0-back δ FC3 800 ppm CO2 1.479 3.329 39 

1800 ppm CO2 2.040 1.038 30 

3500 ppm CO2 3.447 9.749 29 

With the body odor 2.828 7.765 47 

Without the body odor 1.686 4.057 51 

Total 2.233 6.116 98 

0-back δ FC4 800 ppm CO2 1.103 2.803 39 

1800 ppm CO2 0.803 1.511 30 

3500 ppm CO2 2.737 6.027 29 

With the body odor 2.015 4.918 47 

Without the body odor 1.015 2.489 51 

Total 1.495 3.862 98 

0-back δ PZ 800 ppm CO2 1.908 5.325 39 

1800 ppm CO2 0.989 2.680 30 

3500 ppm CO2 3.529 9.803 29 

With the body odor 3.113 8.303 47 

Without the body odor 1.179 4.029 51 

Total 2.106 6.481 98 

1-back δ PZ 800 ppm CO2 2.110 5.640 39 

1800 ppm CO2 0.851 2.039 30 

3500 ppm CO2 4.838 12.368 29 

With the body odor 3.825 10.273 47 

Without the body odor 1.340 4.131 51 

Total 2.532 7.772 98 

1-back δ C1 800 ppm CO2 3.281 11.890 39 

1800 ppm CO2 1.856 4.095 30 

3500 ppm CO2 5.457 10.744 29 

With the body odor 3.525 8.473 47 

Without the body odor 3.455 10.938 51 
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Total 3.489 9.783 98 

1-back θ PZ 800 ppm CO2 0.359 0.905 39 

1800 ppm CO2 0.160 0.420 30 

3500 ppm CO2 0.721 1.792 29 

With the body odor 0.588 1.500 47 

Without the body odor 0.236 0.707 51 

Total 0.405 1.162 98 

2-back δ FC4 800 ppm CO2 1.652 4.620 39 

1800 ppm CO2 1.297 2.905 30 

3500 ppm CO2 3.770 8.768 29 

With the body odor 2.990 7.560 47 

Without the body odor 1.415 3.540 51 

Total 2.170 5.848 98 

2-back δ C1 800 ppm CO2 2.972 10.097 39 

1800 ppm CO2 2.672 6.909 30 

3500 ppm CO2 7.130 18.349 29 

With the body odor 5.074 14.701 47 

Without the body odor 3.223 10.038 51 

Total 4.111 12.462 98 
 

Note: “M” denotes mean, “SD” denotes standard deviation, “N” denotes the total number of driving sessions in a certain condition.  

 

Table S3. Descriptive Statistics for ratio indices of bands PSD under different CO2 levels and environments with or without body 

odor across the driving sessions   

Driving session Feature Channel Conditions M (μV2/Hz) SD N 

Entire (α+θ)/β AF3 800 ppm CO2 6.491 3.143 46 

1800 ppm CO2 8.388 3.926 43 

3500 ppm CO2 8.651 3.706 40 

With the body odor 7.884 3.870 64 

Without the body odor 7.704 3.548 65 

Total 7.793 3.698 129 

Entire θ/β AF3 800 ppm CO2 4.306 2.599 46 

1800 ppm CO2 5.623 3.283 43 

3500 ppm CO2 5.964 3.232 40 
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With the body odor 5.321 3.205 64 

Without the body odor 5.197 3.019 65 

Total 5.259 3.101 129 

Entire (α+θ)/β FC4 800 ppm CO2 6.577 4.854 46 

1800 ppm CO2 10.648 11.011 43 

3500 ppm CO2 6.341 3.934 40 

With the body odor 7.411 5.747 64 

Without the body odor 8.304 8.972 65 

Total 7.861 7.530 129 

Entire θ/β FC4 800 ppm CO2 4.674 4.231 46 

1800 ppm CO2 8.194 9.821 43 

3500 ppm CO2 4.416 3.311 40 

With the body odor 5.324 5.088 64 

Without the body odor 6.203 7.915 65 

Total 5.767 6.653 129 

Single-task (α+θ)/β  AF3 800 ppm CO2 6.528 3.058 45 

1800 ppm CO2 8.325 3.997 42 

3500 ppm CO2 8.232 3.260 38 

With the body odor 7.572 3.622 62 

Without the body odor 7.726 3.472 63 

Total 7.650 3.533 125 
 

Note: “M” denotes mean, “SD” denotes standard deviation, “N” denotes the total number of driving sessions in a certain condition.  

 

fNIRS measurement 

Table S4. Descriptive statistics for fNIRS features at different CO2 levels and environments with or without body odor during N-back 

tasks   

Driving session Source Feature Channel Conditions M (μM) SD N 

1-back CO2&Body 

odor 

HBO 

concentration  

6 800 ppm CO2 7.137e-6 2.913e-5 45 

1800 ppm CO2 9.054e-6 2.771e-5 45 

3500 ppm CO2 -1.716e-6 4.703e-5 48 

With the body odor 3.102e-6 3.100e-5 68 
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Without the body 

odor 

6.218e-6 4.055e-5 70 

Total 4.683e-6 3.606e-5 138 

1-back CO2&Body 

odor 

HBR 

concentration 

7 800 ppm CO2 -2.395e-6 2.617e-5 45 

1800 ppm CO2 2.406e-6 3.266e-5 45 

3500 ppm CO2 2.177e-6 2.585e-5 48 

With the body odor 3.151e-6 2.244e-5 68 

Without the body 

odor 

1.194e-6 3.305e-5 70 

Total 7.607e-7 2.823e-5 138 

2-back CO2 HBT 

concentration 

7 800 ppm CO2 -9.356e-6 3.642e-5 45 

1800 ppm CO2 1.612e-6 3.604e-5 45 

3500 ppm CO2 7.929e-6 5.226e-5 48 

With the body odor 5.549e-6 3.495e-5 68 

Without the body 

odor 

4.395e-6 5.068e-5 70 

Total 4.964e-6 4.349e-5 138 
 

Note: “M” denotes mean, “SD” denotes standard deviation, “N” denotes the total number of driving sessions in a certain condition 
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Time course of EEG and fNIRS 

 
Fig. S3. p-value heatmap of EEG ratio indices alterations across various channels during 

separated driving sub-sessions under conditions of CO2 (top panel), presence of body odor 

(middle panel), and their interaction (bottom panel). “Interaction” is the interactive effect 

between CO2 and body odor. Each column corresponds to a separated driving sub-session. The 

x-axis labels represent the different EEG ratio indices assessed, while the y-axis labels denote 



   

 

197 

 

the distinct channels. The color scale on the right denotes p-value ranges, with the red-framed 

boxes highlighting statistically significant changes where p < 0.05. 

 
Fig. S4. p-value heatmap of fNIRS hemoglobin concentration across various channels during 

separated driving sub-sessions under conditions of CO2 (top panel), presence of body odor 

(middle panel), and their interaction (bottom panel). “Interaction” is the interactive effect 

between CO2 and body odor. Each column corresponds to a separated driving sub-session. The 

x-axis labels represent the different EEG ratio indices assessed, while the y-axis labels denote 
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the distinct channels. The color scale on the right denotes p-value ranges, with the red-framed 

boxes highlighting statistically significant changes where p < 0.05. 
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Paper D. Interactive effects of interior ambient light and temperature on thermal comfort 

and driving performance 

 

Chao Wang1*, John Elson2, Yingzi Lin3, Shichao Liu1 
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Highlights 

• Evaluated effects of three temperature settings and four interior lighting on drivers’ cognitive 

and driving performance 

• Measured drivers’ working memory and reaction time through N-back tasks during driving 

• Introduced a two-layer driving style recognition and predication by incorporating in-car 

temperature and light color condition  

• Identified significance in influences of temperature on driving performance and environment 

perception during night driving 

• Found no interactive effect between temperature and light color on night driving performance 

 

Abstract 

Interior ambient lighting has been applied in high-end vehicles to improve driving experience 

and emotion, owing to a favorable impact on drivers’ perceptions of interior spaciousness and 

ability to control the vehicle interior environment. This study investigates the effects of interior 

ambient lighting and temperature on driving experience, focusing on their impact on drivers' 

perceptions of comfort, emotion, and performance. While the influence of these factors is well-

documented in building environments, their interactive effects in the context of driving remain 

underexplored. Drawing on the hue-heat hypothesis—which suggests colors can influence 

temperature perception—this research explores how different lighting temperatures might affect 

drivers' thermal sensation and, by extension, their overall driving experience. We recruited and 

randomly assigned seventy-two licensed drivers without susceptibility to simulator sickness to one 

of three groups, each exposed to different temperatures (18°C, 23°C, and 28°C) representing 

slightly cool, neutral, and slightly warm environments, respectively. Participants undertook 

repeated driving tasks in a high-fidelity simulator under varying interior lighting conditions (red, 

blue, warm white at 2700 K, and cool white at 5000 K). Performance was assessed alongside 

secondary tasks to simulate real-world driving distractions. Post-task surveys gauged sleepiness, 

environmental satisfaction, task load, and emotional state. Additionally, the study introduces an 

innovative two-layer driving style recognition model that leverages in-car temperature and light 

color to predict driving behavior more accurately. The results highlight the significant role of 

temperature in influencing driving dynamics and environmental perception. Light color also 

affects thermal perception and comfort, albeit to a lesser extent. No definitive interactive effect 

between temperature and light color on driving performance metrics was observed. However, the 
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combined influence of temperature and lighting conditions significantly impacts driving style, 

suggesting a nuanced interplay of environmental factors in driving scenarios. This research 

underscores the importance of ambient environmental conditions in vehicle cabin design, with 

implications for enhancing driver comfort and efficiency. By providing insights into the 

psychological and physiological impacts of lighting and temperature, the study offers a valuable 

foundation for future automotive designs aimed at creating more comfortable and optimized 

driving environments. 

Introduction 

There has been extensive research exploring the “hue-heat hypothesis” in experimental 

psychology, applied psychology, and psychological ergonomics regarding the potential impact of 

colors on thermal comfort and sensation (Berry, 1961; Fanger et al., 1977; Huebner et al., 2016; 

Toftum et al., 2018; Winzen et al., 2014). These studies aimed to identify whether light or color 

with specific wavelengths can make a person feel warmer or cooler. Fanger et al. performed 

surveys on 16 subjects and found a temperature sensation difference of only 0.48 °C depending on 

whether a room was illuminated by blue or red light (Fanger et al., 1977). A study conducted in an 

aircraft cabin (Winzen et al., 2014) found that the color of lighting influenced the perception of 

indoor temperature, with yellow light making the room feel warmer than blue light. Huebner et al. 

stated that thermal perception varied significantly for correlated color temperature (CCT) values 

between 2700 K and 6500 K with warming and cooling cycles applied between 20 °C to 24 °C 

(Huebner et al., 2016). They also found that people wore more clothes under cold light than warm 

light. But conflicting results were reported in other studies. Toftum et al. identified that CCT 

influenced thermal sensation only in thermally neutral conditions but not when subjects felt 

slightly cool or warm, possibly because the body heat balance dominated the thermal response in 

those situations (Toftum et al., 2018). Some other studies primarily examined non-visual impacts 

of light on human circadian rhythms (Brainard et al., 2001) or solely on the effects of electric light 

color on physiological responses, measuring skin and core body temperatures without gathering 

subjective responses (te Kulve et al., 2016). Such interaction between light and thermal 

environment complicates the influence of the physical driving environment on drivers’ comfort, 

emotion, and driving performance. Though existing research has reported their interactions in 

buildings, very few studies have been conducted to investigate the interactive effects on driving. 

The vehicle cabin environment can impact driving performance because of the cognitive load 

during driving and the driver’s physical state. Luxury vehicles have utilized interior ambient 

lighting to enhance the driving experience and emotional response (Park et al., 2016). Previous 

studies found that driving performance is closely related to several vehicle cabin factors, including 

thermal environment, lighting, acoustic, and air quality (Chowdhury, 2015; Morris & Pilcher, 2016; 

van Huysduynen et al., 2017; C. Wang et al., 2024). For instance, the correlated color temperature 

of light can affect reaction times and pupil sizes (Y. Liu et al., 2021). Research has indicated that 

temperature may significantly affect driving performance, which may be enhanced by maintaining 

a thermoneutral temperature within a vehicle (Daanen et al., 2003). Using traffic collision data, 

Hou et al. (2022) discovered that ambient temperatures were correlated with an increased risk of 

motor vehicle crashes in New York and Chicago. Further, driving performance can be influenced 

by the interior light of a car. The study demonstrated that interior ambient lighting, even in the 

driver’s peripheral vision, can positively impact their perception of space, safety, functionality, 

and interior quality (Caberletti et al., 2010). Nazi et al. compared the subjects’ driving performance 

at three different temperatures to evaluate the impact of thermal comfort (Chowdhury, 2015). They 

found a significant effect of temperature on speed variability. The results of the studies (Caberletti 
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et al., 2010; van Huysduynen et al., 2017) indicated that ambient light had pleasant, informative 

and/or counteracting boredom on humans’ experience. Interior lighting provides indirect 

illumination of the passenger compartment in the vehicle. It is significant because it offers an 

improved subjective impression and objective visual performance. It is unknown whether the hue-

heat hypothesis still holds for driving. And if yes, to the extent drivers’ visual and thermal comfort, 

emotion, and driving performance are affected by such interaction are rarely studied. 

Although there has been some exploration of these interactions in buildings (Hygge & Knez, 

2001a; Wu et al., 2020), the relationship between light and the thermal environment on drivers’ 

performance in addition to thermal and light comfort remains relatively unexplored in the context 

of driving. Moreover, the outcomes in prior research on the impact of light color on environment 

satisfaction had conflict. To address the existing knowledge gap, we conducted the study in a 

simulated vehicle cabin mock-up to examine the interplay between light and temperature on 

drivers’ visual and thermal comfort, as well as driving performance. In the realm of electric 

vehicles (EVs), energy efficiency is of paramount concern, with heating and cooling systems 

accounting for approximately 18% and 14% of the battery's energy capacity, respectively (Doyle 

& Muneer, 2019). Our study posits that optimizing light settings to broaden the range of thermally 

comfortable in-car temperatures could significantly lower the energy demands of these systems. 

This approach not only promises to enhance energy efficiency but also reduces the overall energy 

consumption of EVs, aligning with broader efforts to develop sustainable energy-saving practices 

for both industrial applications and daily life. The implications of achieving such energy savings 

are vast and varied, extending beyond vehicle manufacturing to potentially influence sectors such 

as aviation. By incorporating colored lighting as a factor in energy conservation strategies, we 

could significantly reduce operational costs and environmental impacts across multiple industries. 

Moreover, this research underscores the necessity of integrating lighting considerations into 

models of drivers’ thermal comfort, thereby enriching our understanding of environmental factors' 

roles in vehicular settings. 

Methodology 

Participants 

We recruited seventy-two participants, including fifty-two males, aged 18 to 32 years (Mean ± 

SD: 22.3 ± 1.69), with valid driving licenses from Worcester Polytechnic Institute (WPI) through 

email and poster advertisements. All participants completed a WPI’s Institutional Review Board 

(IRB-22-0299)-approved consent form informing them of the procedures, risks, and 

responsibilities of the study. The interested participants were screened for simulator sickness 

before the final selection. A very small percentage of individuals (2% – 8%) may experience 

simulator sickness symptoms (a form of motion sickness) during the driving simulation, 

particularly when the simulation involves multiple curves and stops (Akinwuntan et al., 2005). We 

used the Simulator Sickness Questionnaire (SSQ) (Kennedy et al., 1993) which is widely adopted 

to measure the simulator sickness symptoms. It comprises 16 items that address subjective feelings 

of headache, nausea, and blurred vision. Subjects rated their feeling from 0 (none) to 3 (severe) in 

three to five minutes after the simulated driving. We removed six participants (original sample size 

of 78 participants) with adverse physiological and psychological reactions to the driving simulator 

from the study due to the simulator sickness. Finally, seventy-two young drivers met the criteria 

and participated in the formal experiment. To determine the appropriate sample size for our study, 

we performed a power analysis using G*Power software 3.1 (Fig. S1 in Appendix) (Faul et al., 

2007). Since each subject experienced all four combinations of light conditions in one temperature, 

we treated the study as having four distinct conditions for the purpose of the power analysis. The 
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calculated sample size was 19 using “ANOVA: Repeated measures, within factors” with effect 

size of 0.25 and power of 0.8. 

Participants were instructed to refrain from consuming alcohol, nicotine, and caffeine on the 

day of the test and the preceding. They were also instructed to have enough sleep the night before 

the visit. The compensation was $15 per hour with a performance-based bonus of up to $15 to 

motivate participants to engage in the task. 

Driving simulator and virtual scenario 

We positioned the driving simulator within an environmental chamber designed to simulate a 

typical sedan car cabin, with a projection system that offers a 210° horizontal field of view, 70° 

for the forward view, and 70° each for the left and right window views. The simulator was operated 

using a Logitech G29, equipped with a force feedback steering wheel system that creates a lifelike 

sensation of steering, as well as a pedal set with brake and accelerator pedal. A foot-switch control 

pedal was installed to provide additional driver input for N-back tasks that will be described in 

Section 2.5.3. To create an immersive experience, we equipped an audio system to generate the 

sounds from car engines and traffic. The control computer with a GeForce GTX 770 GPU, an i7-

9790 CPU, Windows 10 PRO Operating System, and 32 GB RAM was connected to three display 

projectors. We adjusted the driver’s seat to direct the driver’s focus toward the horizon line of the 

projected driving scenario. 

We employed the Assetto Corsa videogame (Simulazioni, 2014) to execute driving scenarios 

and tasks. This software enabled monitoring of various vehicle dynamics and driving performance 

parameters. The driving tasks were conducted in a virtual environment that depicted a night desert 

view drive in LA Grand Canyons, based on real roads in California, which wind through the San 

Gabriel Mountain range, high above Los Angeles. Consisting of tight bends, parking areas, 

numerous junctions, turnouts, picnic areas, and fast sweepers are perfect for cruising or driving. 

Roads are fully signed and include real world distance signs, speed & warning signs, markings, 

guard rails, jersey barricades and multiple dynamic parked vehicles. The Main Version has a 42km 

main loop, and totals 47km with the additional small side roads and turnings. The driving scenario 

was set at night without weather disturbances such as fog, snow or rain. Each driving session lasted 

for at least 9 minutes with the same driving route. All the drivers executed the driving task in a 

basic night driving scenario (Figure 1) with an adjusted luminance level of 0.6 cd/m2 from the 

projector screen for all experimental conditions since interior ambient lighting was deemed less 

effective during the day (Easa et al., 2010). 

 
Fig. 1. Night Grand Canyon driving scenario 
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Vehicle cabin environment 

We regulated the temperature and lighting condition as the environmental factors in the driving 

cabin and used a 3 x 4 factorial design to investigate the impact of environment on both driving 

performance and satisfaction. The temperature was maintained at 18 °C, 23 °C, or 28 °C by a 

centralized HVAC system, corresponding to slightly cold, neutral, and slightly warm conditions, 

respectively. The predicted mean vote (PMV) calculation specified in ASHRAE 55 

(ANSI/ASHRAE, 2017) was used to determine the temperature based on driving conditions (1.5 

met for driving, 0.39 clo), air speed (0.1 m/s), and relative humidity (50%). We examined four 

distinct interior lighting conditions: red, blue, warm white (2700 K), and cool white (5000 K) in 

this study. The LED strip lights were installed in four specific areas within the cockpit, the right 

door trim, foot space, center console, and left door trim. These were the best locations determined 

by previous research on this topic, as cited in references (Caberletti et al., 2010; Schellinger et al., 

2006). The brightness of all four conditions in the driving cabin was maintained at around 1.5 lx 

at the driver’s eye level. This level of illumination is unlikely to have a significant impact on 

contrast vision (Park et al., 2016). 

The indoor conditions of the car cabin, including temperature, humidity, VOCs, lighting, color 

temperature (for passengers), CO2, and PM2.5, were monitored. The ventilation rate of the car 

cabin was regulated to 18 air changes per hour (ach) when the car was traveling at speeds between 

45-60 mph with a common AC recirculation setting (Hudda & Fruin, 2018). This ventilation rate 

maintained the CO2 level at around 800 ppm, minimizing the potential negative impact of CO2 

accumulation on cognitive function (Satish et al., 2012a). The heat recovery ventilator (HRV) with 

a MERV 14 air filter was used to provide ventilation for the cabin. 

Driving performance and secondary tasks 

We employed the driving simulator system to collect driving data by continuously recording 

the vehicle’s position and motion at a frequency of 10 Hz. The gathered data, encompassing 

metrics such as forward velocity (capped at 100 km/h or 62.1 mph), longitudinal acceleration, 

lateral acceleration, steering wheel movements (measured in degrees), revolutions per minute 

(RPM), and yaw angle rate (detailed in Table S1 in the Appendix), underwent analysis to evaluate 

driving performance. Fluctuations in vehicle velocity and acceleration served as indicators of 

potential impairments in driving performance. Additionally, we examined the mean and standard 

deviation of speed to gain insights into vehicle dynamics (Ting et al., 2008; X. Yan et al., 2014). 

The parameters of lateral velocity, lateral acceleration, steering, and yaw rate provided valuable 

information regarding the accuracy of drivers and potential errors made during road navigation, 

with a particular focus on lateral control, as suggested by the previous studies (Oron-Gilad et al., 

2008; Son et al., 2011; Thiffault & Bergeron, 2003). 

To simulate real-life driving situations that necessitate working memory and executive function, 

such as navigation and traffic monitoring, the participants were tasked with performing the N-back 

task. This method is extensively employed to evaluate working memory and cognitive function 

within driving test contexts (Kirchner, 1958; Mehler et al., 2012). However, it’s worth noting that 

facial muscle movements can potentially interfere with certain bio-signals if we use the verbal 

version, which were not under consideration in the present study. To mitigate this potential artifact, 

we employed a modified version of the N-back task, as described in (Solovey et al., 2014). In our 

study, we only used the 2-back task as illustrated in Figure 4. During the task, participants were 

presented with a sequence of single-digit numbers from 0 to 9, displayed on the left corner of the 

center screen at two-second intervals. They were tasked to respond to new item that was same as 

the number appeared two items back in the sequence. Each driving task consisted of six sessions, 
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evenly distributed between 2-back. Each session commenced with an instructional block, followed 

by the presentation of 16 randomly selected numbers. Each number was displayed for 500 ms, and 

participants had 1,500 ms to respond. After each 2-back task, there was a 60-second driving block. 

The task was implemented using Python, and it recorded the timing of each number presentation, 

the session type, the subject’s response time, and whether the presented number was a target or 

not (used to calculate response accuracy %). A missed target was considered an incorrect response. 

This data was used to assess the efficiency of cognitive processing during each session and was 

saved as a text file for subsequent analysis. 

 

 
Fig. 4. 2-back task paradigm 

 

Questionnaires 

Participants were required to complete two questionnaires in the study. The first questionnaire 

collected demographic information, such as age, sex, and driving experience. The second 

questionnaire aimed to capture participants’ subjective assessments questionnaire covered various 

aspects, including lighting comfort vote (LCV), lighting brightness vote (LBV), lighting 

acceptance vote (LAV), thermal comfort vote (TCV), thermal sensation vote (TSV), and thermal 

acceptance vote (TAV) (Brambilla et al., 2020; Golasi et al., 2019; Winzen et al., 2014). Responses 

for light and thermal environment variables were gathered using a 7-point Likert scale that ranged 

from -3 to 3. The questionnaire also had the question about the drivers’ sleep quality of the last 

night and sleepiness levels before and after driving by using the Stanford Sleepiness Scale (SSS), 

which employs a 7-point Likert-type scale, spanning from “very alert” to “very sleepy” (Hoddes 

et al., 1973). To measure participants’ emotional response to the environment, we used the self-

assessment manikin (SAM) procedure to measure valence and arousal, which provides scales for 

valence unpleasant to pleasant), arousal (calm to excited), and dominance (dependent to 

independent) (Bradley & Lang, 1994). Task workload was measured using the NASA Task Load 

Index (NASA-TLX) questionnaire, which examines various dimensions of stress, workload, and 

fatigue (Hart, 2006). This questionnaire is composed of six subscales: mental demand, physical 

demand, temporal demand, own performance, effort, and frustration. Participants rated their 

experiences on each of these subscales on a scale from 1 to 7. 

Procedure 

Each participant was scheduled for two visits: one for screening and training, and another for 

the formal test. All enrolled participants underwent a screening for simulator sickness during a 

training session prior to the formal experiment. This session also allowed them to become familiar 

with the experimental procedure and the basic operation of the driving simulator. Following this, 

participants provided informed consent and scheduled their formal experiment. 

For their second visit, participants were instructed to have regular meals, adequate sleep, and 

to refrain from taking medication, consuming alcohol, or engaging in excessive exercise for 24 

hours prior to the test. The experiment was conducted using a single-blind design. Participants 
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were assigned to a temperature condition through block randomization and completed four driving 

sessions in a randomized order of light conditions, utilizing the Latin Square Design.  

Figure 5 depicts the detailed procedure of the formal experiment. Each simulated driving 

session had a duration of approximately 10 min which is a common driving duration in other 

studies with the use of driving simulator (Jeihani et al., 2017; Saxby et al., 2007). Participants were 

also tasked with completing a secondary N-back task (Solovey et al., 2014) during the driving 

sessions. Upon completing each driving task under specific light and temperature conditions, they 

needed to complete the survey on a provided tablet featuring a dark mode background, minimizing 

exposure to excessive light from the device. The next lighting condition was promptly 

implemented after the participant finished the survey. The use of cell phones was strictly prohibited 

during the experiment. The lighting condition was adjusted immediately after the participant 

finished the surveys.  

 

 
Fig. 5. Experimental procedure 

 

Data Analysis 

The primary goal of our research was to dissect the impacts of environmental factors—

temperature and light color—on driving performance, while also assessing their secondary effects 

on environmental satisfaction, cognitive functioning, and physiological states. Our methodology 

integrated two complementary analytical strategies to furnish a comprehensive understanding of 

these dynamics. 

Initially, we applied a two-way Analysis of Variance (ANOVA) to examine the direct 

influences of varying temperature and light condition on a series of performance metrics. This 

statistical method facilitated a foundational comparison, yet its capacity to encapsulate driving 

behavior through singular indices proved limited. Specifically, ANOVA alone could not yield a 

detailed model for driving style classification without expert input, based on video analysis of 

driving sessions. To address these limitations and capture the complexity of driving behaviors 

under different environmental stimuli, we incorporated machine learning techniques. This dual 

approach enabled the development of a nuanced classification model for driving styles and a 

predictive framework capable of accounting for the inherent variability in human performance. 

This machine learning approach complements traditional statistical methods, offering a data-

driven framework to uncover complex patterns and relationships within multidimensional datasets. 
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Through this synergistic application of ANOVA and machine learning algorithms, our study not 

only identifies and quantifies the specific effects of temperature and lighting condition on driving 

performance but also enhances our predictive understanding of their combined impact in real-

world conditions. 

Statistical analysis 

We employed statistical tests to evaluate differences in metrics including environmental 

satisfaction, driving behavior data, N-back task performance, task load, and survey results across 

various light conditions and thermal environments. The indicators used to assess driving 

performance were forward speed (maximum speed was limited to 100 km/h), longitudinal 

acceleration, lateral acceleration, steering wheel movements (measured in degrees), and yaw rate. 

We used the mean and standard deviation of these four parameters as the index to measure the 

driving performance. These indicators are widely recognized in the field of driving performance. 

To evaluate the effect of temperature and lighting conditions on cognitive performance while 

driving, we used the reaction time and response accuracy of the 2-back tasks in different 

environments. The response accuracy was computed as the percentage of incorrect or non-response. 

We determined the level of sleepiness in participants by averaging their responses to all the 

questions in the SSS. Additionally, we used numerical responses from other surveys to evaluate 

emotions, perception, preferences, and overall satisfaction with the in-car environment. To 

quantify cognitive load assessed by NASA-TLX, we followed the methodology outlined in a prior 

study by Al-Shargie et al (2017) and used the NASA-TLX approach. 

There were twelve different vehicle cabin environments, each characterized by three levels of 

temperature and four different lighting conditions. To minimize the individual differences and 

variations among sessions, we analyze only the difference in response between identical in-car 

environments. i.e., the difference in performance between the blue and red lighting condition in 

both aggregate thermal environments. To compare the impact of a single factor on driving 

performance, all the data was grouped based on the same parametric condition. For example, the 

data collected at 23°C consisted of measurements taken under four different lighting colors. All 

data was analyzed using the R language software. We utilized statistical tests to determine the 

pairwise differences in driving performance and subjective responses between any two conditions 

of lighting or temperature. We checked data normality using the Shapiro-Wilk normality test.  

To compare subjective survey responses and driving performance across different light 

conditions and thermal environments, we conducted statistical tests. First, we adapted the linear 

regression model to mitigate the individual difference. The residuals from the linear regression 

models were used for comparison without the effect from the individual factors (Kliegl et al., 2011; 

Van Dongen et al., 2004). Then, we assessed data normality using the Shapiro-Wilk normality test. 

For non-normally distributed data, we applied the Aligned Rank Transform (ART) nonparametric 

two-way ANOVA test, a commonly employed method in the literature for assessing differences 

among three or more groups (Durner, 2019; Elkin et al., 2021). We used the same approach to 

investigate differences in subjective survey responses and driving performance associated with 

temperature. The significance level for these statistical tests was set at 0.05. All data analysis was 

performed using R language software (version 4.2.3) (R Core Team, 2013). 

Driving style recognition 

To elucidate the complex interplay between environmental factors—namely temperature and 

light color—and driving performance, we proposed a two-layer in car temperature and light color-

based driving style recognition method. Layer I used driving data to classify driving style. Layer 
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II dealt with driving behavior recognition based on in-car temperature and light color. Our 

methodology adopts a machine learning framework, structured around data preparation, feature 

engineering, model selection, and evaluation.  

Layer I: driving style classification based on driving data 

In Layer I, driving style was classified based on driving data and the unsupervised learning 

algorithm. The three key variables as speed, longitudinal acceleration, and lateral acceleration of 

the 288 driving tasks were averaged and mitigated for the individual difference. We introduced an 

interaction term to capture the synergistic effects of individual difference by incorporating 

covariates such as drivers’ sex, age, driving frequency and years of driving experience, to furnish 

a comprehensive set of predictors for driving performance. The evolution from raw data to 

insightful features led us to the phase of performance label generation. We devised a method to 

classify driving styles into various tiers. In addition, previous studies have suggested that based on 

the driving behavior data, driving style can be classified into various types such as aggressive type, 

moderate type, and conservative type (Chu et al., 2017; Deng et al., 2017; Palat et al., 2019; F. 

Yan et al., 2019). Among the models considered, K-Means clustering stood out for its efficiency 

in identifying inherent data groupings based on feature similarity. Model selection focused on 

unsupervised learning techniques due to the exploratory nature of our study and the initial absence 

of predefined labels. This choice allowed us to discern natural clusters within the dataset, offering 

a fresh perspective on the data structure. The model implementation and evaluation stage saw the 

deployment of selected unsupervised learning models via the scikit-learn library in Python. We 

assessed model efficacy and determined the cluster count through Silhouette Coefficient (Luan et 

al., 2012). K that met the criterion which more than 0.5 is chosen to ensure that the clusters 

provided meaningful insights into driving performance dynamics. Then, the variables were scaled 

and clustered by K-means clustering method to two clusters of base driving features, 

Layer II: driving behavior classification based on in-car temperature and light color 

In Layer II, the classification results of Layer I as labels, combined with temperature and light 

color data as features, were applied as inputs to train the classifier model. Random Forest (RF) 

approach which is a typical non-parametric method for data mining and classification was utilized 

as a classifier, and a leave-one-subject-out cross validation was applied for evaluation. Then, the 

insights and interpretation stage involved mapping the derived clusters back to our original 

research questions regarding temperature, light color, and their collective impact on driving 

performance. This involved categorizing temperature into three distinct classes to mirror the varied 

thermal environments encountered during driving sessions. Similarly, light color was segmented 

into four classes to reflect the spectrum of lighting conditions. This classification facilitated a 

nuanced analysis of driving behavior under different environmental conditions. We employ a 

comprehensive evaluation strategy that includes the use of a confusion matrix, overall accuracy, 

precision, recall, and F-measure metrics for each classified group. These evaluation measures 

allow us to rigorously assess the performance of our classification models, ensuring that they can 

reliably distinguish between aggressive and conservative driving behaviors based on in-car 

environmental factors such as temperature and light color. 

Results 

This study aimed at analyzing the effects of four different lighting colors and three temperature 

conditions on the driving experience in the driving cabin environment. The results here present the 

drivers’ driving performance, n-back task performance, satisfaction to the environment, emotion, 

and task load when they were exposed to different lighting and temperature conditions. 
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Statistical analysis results 

Environment satisfaction 

This section delves into the impact of varying temperatures (18 °C, 23 °C, 28 °C) and light 

colors (blue, red, warm white at 2700 K, and cool white at 5000 K) on occupants’ satisfaction 

within the car environment, examining parameters such as light comfort, brightness, acceptance, 

and thermal comfort, sensation, and acceptance. Through a detailed analysis using two-way 

ANOVA, we uncover how these environmental factors influence the overall in-car experience. 

Table 2 presents the ANOVA results for drivers' satisfaction with light and temperature, as well 

as their two-way interaction across four different conditions.  

Further analysis revealed that thermal sensation was particularly sensitive to changes in 

temperature, with a significant variance observed across different temperature settings (F(2, 

432461.5) = 106.172, p < 0.01), highlighting how temperature adjustments can dramatically affect 

occupants’ sensation levels. For instance, occupants expressed distinct preferences for thermal 

comfort at the moderate temperature of 23 °C, which was reflected in higher satisfaction scores. 

This preference underscores the significance of maintaining an optimal temperature to enhance the 

in-car experience. Specifically, thermal comfort and thermal acceptance exhibited significant 

variations with temperature changes (F(2, 45431.57) = 6.604, p < 0.01 for thermal comfort; F(2, 

72742.91) = 10.903, p < 0.01 for thermal acceptance), reinforcing the critical role of thermal 

conditions in the in-car environment. In contrast, the impact of light brightness on satisfaction was 

more nuanced, with a notable difference observed across temperatures (F(2, 27422.28) = 3.912, p 

= 0.021), suggesting that how occupants perceive light brightness can vary with the interior 

temperature, potentially affecting their overall satisfaction. 

Conversely, light color did not play a role in shaping the in-car environment, albeit to a lesser 

extent than temperature. In terms of the independent effects of light, the ANOVA results reveal no 

significant differences in perceived light comfort (F(3,4257.009) = 0.595, p = 0.619), light 

brightness (F(3,6157.25) = 0.863, p = 0.461), light acceptance (F(3,3184.917) = 0.445, p = 0.721), 

thermal comfort (F(3,5560.231) = 0.778, p = 0.507), thermal sensation (F(3,4916.62) = 0.687, p = 

0.561), and thermal acceptance (F(3,748.148) = 0.104, p = 0.958). 

Our findings indicate a nuanced interaction between the chosen temperatures and light colors 

on the perceived satisfaction levels. 

 

Table 1. Descriptive Statistics for in-car environment satisfaction indices at different temperatures 

and light colors 

Conditions Parameters M SD N 

18 °C Light comfort 1.105 1.617 96 

Light brightness -1.227 1.302 96 

Light acceptance 1.270 1.496 96 

Thermal comfort 0.234 1.858 96 

Thermal sensation -1.271 1.020 96 

Thermal acceptance 0.840 1.757 96 

23 °C Light comfort 1.305 1.568 96 

Light brightness -0.378 1.693 96 

Light acceptance 1.651 1.323 96 

Thermal comfort 1.331 1.463 96 

Thermal sensation 0.188 1.223 96 
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Thermal acceptance 1.797 1.237 96 

28 °C Light comfort 1.276 1.518 96 

Light brightness -0.989 1.470 96 

Light acceptance 1.555 1.442 96 

Thermal comfort 0.639 1.808 96 

Thermal sensation 1.099 0.917 96 

Thermal acceptance 0.845 1.709 96 

Blue Light comfort 1.397 1.581 72 

Light brightness -0.921 1.570 72 

Light acceptance 1.593 1.413 72 

Thermal comfort 0.804 1.784 72 

Thermal sensation -0.090 1.463 72 

Thermal acceptance 1.111 1.765 72 

Red Light comfort 1.204 1.570 72 

Light brightness -1.026 1.598 72 

Light acceptance 1.483 1.359 72 

Thermal comfort 0.631 1.720 72 

Thermal sensation -0.0375 1.381 72 

Thermal acceptance 1.156 1.591 72 

Warm white (2700 K) Light comfort 1.106 1.541 72 

Light brightness -0.815 1.455 72 

Light acceptance 1.333 1.537 72 

Thermal comfort 0.583 1.891 72 

Thermal sensation 0.011 1.497 72 

Thermal acceptance 1.117 1.649 72 

Cool white (5000 K) Light comfort 1.208 1.588 72 

Light brightness -0.696 1.523 72 

Light acceptance 1.558 1.405 72 

Thermal comfort 0.926 1.702 72 

Thermal sensation 0.138 1.323 72 

Thermal acceptance 1.258 1.590 72 

Total Light comfort 1.229 1.565 288 

Light brightness -0.865 1.534 288 

Light acceptance 1.492 1.426 288 

Thermal comfort 0.736 1.772 288 

Thermal sensation 0.005 1.413 288 

Thermal acceptance 1.160 1.642 288 

 

Table 2. Two-way Analyses of Variance of environment satisfaction at different temperatures and 

light colors 

 Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 
Light 

comfort 
T 1070.771 2 535.385 0.074 0.928 0.021 

Light color 12771.03 3 4257.009 0.595 0.619 0.251 

T * Light color 36966.19 6 6161.031 0.871 0.517 0.728 

Light 

brightness 
T 54844.56 2 27422.28 3.912 0.021* 0.567 

Light color 18471.75 3 6157.25 0.863 0.461 0.191 
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T * Light color 23379.81 6 3896.635 0.547 0.772 0.242 

Light 

acceptance 
T 17152 2 8576 1.202 0.302 0.278 

Light color 9554.75 3 3184.917 0.445 0.721 0.155 

T * Light color 34978.66 6 5829.777 0.824 0.552 0.567 

Thermal 

comfort 
T 90863.15 2 45431.57 6.604 <0.01** 0.711 

Light color 16680.69 3 5560.231 0.778 0.507 0.131 

T * Light color 20203.76 6 3367.293 0.472 0.829 0.158 

Thermal 

sensation 
T 864922.9 2 432461.5 106.172 <0.01** 0.974 

Light color 14749.86 3 4916.62 0.687 0.561 0.017 

T * Light color 8674.167 6 1445.694 0.201 0.976 0.010 

Thermal 

acceptance 
T 145485.8 2 72742.91 10.903 <0.01** 0.860 

Light color 2244.444 3 748.1481 0.104 0.958 0.013 

T * Light color 21509.86 6 3584.977 0.503 0.806 0.127 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Driving performance 

This study explored the influence of environmental variables, specifically temperature and light 

color, on various driving performance metrics. Our analysis methodically examined parameters 

such as speed, acceleration, rpm, steering, pitch, lateral acceleration, gas pedal usage, and roll 

across different temperature settings (18 °C, 23 °C, and 28 °C) and light colors (blue, red, warm 

white (2700 K), and cool white (5000 K). Table 1 delineates the descriptive statistics for these 

driving performance indices, offering a comprehensive view of the mean (M) and standard 

deviation (SD), while Table 2 displays the results of the two-way ANOVA conducted to discern 

the effects of temperature and light color on the aforementioned driving performance indices. 

examining the effects of temperature and light color. Descriptive statistics showcased mean and 

standard deviation values for each condition, offering a comprehensive overview of driving 

dynamics across varying environmental settings. 

Temperature variations appeared to have a minimal impact on the majority of driving 

performance indices, with speed, acceleration, and rpm maintaining relative stability across the 

three tested temperatures. For instance, the speed average slightly fluctuated around the 68 m/s 

mark, with minimal differences in acceleration and rpm. The analysis of mean steering, lateral 

acceleration, gas pedal usage, and roll also exhibited consistent patterns across different 

temperatures, indicating that temperature alone does not significantly alter these driving metrics. 

A particularly compelling discovery emerged in the analysis of pitch (rad/s) mean values, where a 

significant temperature effect was observed (F(2, 288) = 5.099, p < 0.01, η2 = 0.472), highlighting 

a profound impact of thermal conditions on vehicle dynamics and potentially driver’s control 

stability. Conversely, the statistical analysis, detailed in Table 3, unveils several noteworthy 

findings. The speed standard deviation (S.D.) significantly varied with temperature (F(2, 288) = 

4.026, p = 0.019, η2 = 0.635), indicating a discernible impact of thermal conditions on driving 

speed variability among drivers. Similarly, gas pedal usage’s standard deviation demonstrated 

significant variability with temperature (F(2, 288) = 3.395, p = 0.035, η2 = 0.867), suggesting that 

drivers’ acceleration behavior is sensitive to ambient temperature changes. Additionally, roll (rad/s) 

standard deviation showed a significant temperature effect (F(2, 288) = 4.105, p = 0.018, η2 = 

0.844), underscoring the nuanced ways in which temperature can influence vehicular control and 

orientation.  



   

 

212 

 

However, when examining light color effects, subtle yet noteworthy distinctions emerged. The 

transition between blue, red, warm white, and cool white lighting conditions demonstrated slight 

variances in driving speed, with red light conditions marginally increasing the mean speed to 

68.423 m/s. This change, though minor, suggests light color may subtly influence driver speed 

control. Similarly, acceleration, steering, pitch, lateral acceleration and gas pedal usage under 

ANOVA analysis largely showed no significant differences attributable to light color. 

However, no significant interactions between temperature and light color were found for 

driving performance indices, indicating that these factors independently influence driving 

performance without synergistic effects and the combined influence of these environmental factors 

on driving performance indices might be minimal. 

 

Table 3. Descriptive Statistics for driving performance indices at different temperatures and light 

colors 

Conditions Parameters M SD N 

18 °C Speed (m/s) 68.114 17.715 96 

Acceleration (m2/s) 0.0034 0.022 96 

Rpm 4837.593 974.330 96 

Steering (degree) -0.0010 0.068 96 

Pitch (rad/s) -0.0032 0.067 96 

Lateral acceleration (m2/s) 0.0048 0.185 96 

Gas pedal 0.328 0.237 96 

Roll (rad/s) 0.00024 0.061 96 

23 °C Speed (m/s) 68.180 19.243 96 

Acceleration (m2/s) 0.0031 0.024 96 

Rpm 4830.871 978.639 96 

Steering (degree) -0.0009 0.065 96 

Pitch (rad/s) -0.0038 0.065 96 

Lateral acceleration (m2/s) 0.0043 0.191 96 

Gas pedal 0.325 0.250 96 

Roll (rad/s) 0.00018 0.060 96 

28 °C Speed (m/s) 68.084 18.934 96 

Acceleration (m2/s) 0.0032 0.023 96 

Rpm 4821.092 1008.59 96 

Steering (degree) -0.0009 0.069 96 

Pitch (rad/s) -0.0025 0.066 96 

Lateral acceleration (m2/s) 0.0040 0.191 96 

Gas pedal 0.329 0.233 96 

Roll (rad/s) 6.25e-5 0.0611 96 

Blue Speed (m/s) 68.299 18.480 72 

Acceleration (m2/s) 0.0033 0.023 72 

Rpm 4826.937 976.711 72 

Steering (degree) -0.0010 0.068 72 

Pitch (rad/s) -0.0033 0.065 72 

Lateral acceleration (m2/s) 0.0050 0.191 72 

Gas pedal 0.330 0.242 72 

Roll (rad/s) 0.00031 0.0603 72 

Red Speed (m/s) 68.423 17.882 72 
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Acceleration (m2/s) 0.0034 0.023 72 

Rpm 4827.78 958.379 72 

Steering (degree) -0.0008 0.068 72 

Pitch (rad/s) -0.0036 0.066 72 

Lateral acceleration (m2/s) 0.0040 0.187 72 

Gas pedal 0.319 0.238 72 

Roll (rad/s) 0.00013 0.0605 72 

Warm white (2700 K) Speed (m/s) 68.197 19.202 72 

Acceleration (m2/s) 0.0031 0.023 72 

Rpm 4841.255 1002.822 72 

Steering (degree) -0.0011 0.067 72 

Pitch (rad/s) -0.0034 0.066 72 

Lateral acceleration (m2/s) 0.0048 0.188 72 

Gas pedal 0.332 0.242 72 

Roll (rad/s) 0.00011 0.0605 72 

Cool white (5000 K) Speed (m/s) 67.586 18.960 72 

Acceleration (m2/s) 0.0032 0.023 72 

Rpm 4823.435 1010.833 72 

Steering (degree) -0.0009 0.068 72 

Pitch (rad/s) -0.0023 0.066 72 

Lateral acceleration (m2/s) 0.0037 0.189 72 

Gas pedal 0.329 0.238 72 

Roll (rad/s) 9.72e-5 0.0614 72 

Total Speed (m/s) 68.126 18.631 288 

Acceleration (m2/s) 0.0033 0.023 288 

Rpm 4829.852 987.186 288 

Steering (degree) -0.0010 0.067 288 

Pitch (rad/s) -0.0031 0.066 288 

Lateral acceleration (m2/s) 0.0044 0.189 288 

Gas pedal 0.327 0.240 288 

Roll (rad/s) 0.00016 0.0607 288 

 

Table 4. Two-way Analyses of Variance of driving performance indices at different temperatures 

and lighting conditions 

 Param

eters 
Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 

Speed 

(m/s) 

Mean T 14452.31 2 7226.156 1.009 0.366 0.502 

Light color 2681.25 3 893.75 0.124 0.649 0.093 

T * Light color 11647.31 6 1941.219 0.271 0.950 0.405 

S.D. T 56148.4 2 28074.2 4.026 0.019* 0.635 

Light color 20536.72 3 6845.574 0.963 0.411 0.232 

T * Light color 11796.78 6 1966.131 0.275 0.948 0.133 

Accel

eratio

Mean T 3293.943 2 1646.971 0.229 0.795 0.076 

Light color 29142.25 3 9714.083 1.370 0.252 0.673 

T * Light color 10849.15 6 1808.191 0.252 0.958 0.251 
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n 

(m2/s) 

S.D. T 28798.08 2 14399.04 2.030 0.133 0.821 

Light color 1604.5 3 534.833 0.074 0.974 0.046 

T * Light color 4658.896 6 776.483 0.108 0.995 0.133 

Rpm Mean T 214.146 2 107.073 0.015 0.985 0.011 

Light color 340.083 3 113.361 0.016 0.997 0.017 

T * Light color 19153.28 6 3192.214 0.448 0.846 0.972 

S.D. T 32827.27 2 16413.64 2.321 0.100 0.326 

Light color 25878.58 3 8626.194 1.213 0.305 0.267 

T * Light color 42030.58 6 7005.096 0.994 0.430 0.417 

Steeri

ng 

(degre

e) 

Mean T 19673.52 2 9836.76 1.393 0.250 0.294 

Light color 19562.9 3 6520.965 0.920 0.432 0.292 

T * Light color 27749.58 6 4624.929 0.657 0.684 0.414 

S.D. T 7676.646 2 3838.323 0.543 0.582 0.268 

Light color 2182.583 3 727.528 0.103 0.958 0.076 

T * Light color 18801.87 6 3133.645 0.444 0.849 0.656 

Pitch 

(rad/s) 

Mean T 70687.52 2 35343.76 5.099 <0.01** 0.472 

Light color 32404.69 3 10801.56 1.527 0.208 0.216 

T * Light color 46711.34 6 7785.223 1.108 0.358 0.312 

S.D. T 26309.31 2 13154.66 1.862 0.157 0.574 

Light color 13782.36 3 4594.12 0.648 0.585 0.300 

T * Light color 5777.785 6 962.964 0.135 0.992 0.126 

Latera

l 

accele

ration 

(m2/s) 

Mean T 14674.08 2 7337.042 1.034 0.357 0.296 

Light color 12309.97 3 4103.324 0.575 0.632 0.248 

T * Light color 22664.41 6 3777.402 0.532 0.784 0.456 

S.D. T 23736.9 2 11868.45 1.667 0.191 0.822 

Light color 658.472 3 219.491 0.030 0.993 0.023 

T * Light color 4496.326 6 749.388 0.104 0.996 0.156 

Gas 

pedal 

Mean T 9601.583 2 4800.792 0.675 0.510 0.246 

Light color 6259.361 3 2086.454 0.292 0.831 0.160 

T * Light color 23179.2 6 3863.2 0.547 0.772 0.594 

S.D. T 47689.15 2 23844.57 3.395 0.035* 0.867 

Light color 1395.806 3 465.269 0.065 0.978 0.025 

T * Light color 5906.882 6 984.480 0.137 0.991 0.107 

Roll 

(rad/s) 

Mean T 30156.9 2 15078.45 2.126 0.121 0.425 

Light color 34853.53 3 11617.84 1.642 0.180 0.491 

T * Light color 5951.222 6 991.8704 0.138 0.991 0.084 

S.D. T 57427.27 2 28713.64 4.105 0.018* 0.844 

Light color 3095.361 3 1031.787 0.143 0.934 0.045 

T * Light color 7523.222 6 1253.87 0.175 0.983 0.111 

* Significant at the 0.05 level, ** Significant at the 0.01 level. 

N-back tasks 

Our investigation delved into the effects of ambient temperature and light color on driving 

performance, with a particular focus on the nuances of response accuracy and reaction time during 

N-back tasks. This assessment aimed to unearth the subtleties of environmental impacts on 

cognitive functions critical for driving. The descriptive statistics outlined in Table 4 offer insight 
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into these cognitive metrics across three temperature ranges (18 °C, 23 °C, and 28 °C) and four 

distinct light environments (blue, red, warm white [2700 K], and cool white [5000 K]), providing 

a comprehensive dataset for analysis. 

Notably, response accuracy exhibited a significant variance with temperature changes (F(2, 

1728) = 3.886, p = 0.022), underscoring the potential impact of thermal conditions on cognitive 

performance. Specifically, the highest response accuracy was observed at 23 °C (93.605%), 

marginally higher than at 18 °C (93.518%), while a notable decrease to 80.422% was recorded at 

28 °C, suggesting a detrimental effect of higher temperatures on cognitive accuracy. In contrast, 

reaction times across different temperatures conditions remained relatively consistent, with minor 

fluctuations indicating a robustness in cognitive speed irrespective of environmental changes. The 

reaction times were slightly quicker at 23 °C (0.661 s) compared to 18 °C (0.673 s) and 28 °C 

(0.655 s), although these differences were not statistically significant (F(2, 1728) = 1.803, p = 

0.167). 

The influence of light color on cognitive performance during driving tasks also warrants 

attention. Blue light conditions yielded the highest response accuracy (93.673%), suggesting an 

environment conducive to optimal cognitive engagement. Conversely, warm white light (2700 K) 

led to the lowest accuracy levels (90.934%), indicating potential cognitive strain or distraction in 

such lighting conditions. Reaction times varied minimally across light conditions, reinforcing the 

notion of stable cognitive processing speeds under varying visual stimuli. 

 

Table 4. Descriptive Statistics for response accuracy and reaction time of N-back task at different 

temperatures and lighting conditions 

Conditions Parameters M SD N 

18 °C Response accuracy (%) 93.518 13.493 576 

Reaction time (s) 0.673 0.147 576 

23 °C Response accuracy (%) 93.605 12.515 576 

Reaction time (s) 0.661 0.149 576 

28 °C Response accuracy (%) 80.422 16.312 576 

Reaction time (s) 0.655 0.167 576 

Blue Response accuracy (%) 93.673 12.430 432 

Reaction time (s) 0.657 0.153 432 

Red Response accuracy (%) 92.631 13.399 432 

Reaction time (s) 0.666 0.155 432 

Warm white (2700 K) Response accuracy (%) 90.934 17.240 432 

Reaction time (s) 0.669 0.159 432 

Cool white (5000 K) Response accuracy (%) 92.824 13.432 432 

Reaction time (s) 0.660 0.153 432 

Total Response accuracy (%) 92.515 14.267 1728 

Reaction time (s) 0.663 0.155 1728 

 

Table 5. Two-way Analyses of Variance of response accuracy and reaction time of N-back tasks 

at different temperatures and lighting conditions 

Parameters Source Sum of 

Squares 

df Mean 

Square 

F Sig. Partial 

Eta 

Squared 
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Response 

accuracy 

(%) 

T 53829.4 2 26914.7 3.886 0.022* 0.592 

Light color 17893.56 3 5964.519 0.846 0.470 0.197 

T * Light color 19218.7 6 3203.117 0.456 0.840 0.211 

Reaction 

time (s) 
T 25646.81 2 12823.41 1.803 0.167 0.799 

Light color 3225.389 3 1075.13 0.149 0.930 0.100 

T * Light color 3223.618 6 537.270 0.075 0.998 0.100 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

Task load index 

Tables S2 and S3 (in the appendix) elucidate the impact of ambient temperature and light color 

on drivers’ perceived task load, as measured by the NASA-TXL index across six distinct domains: 

mental demand, physical demand, temporal demand, own performance, effort, and frustration. 

These dimensions were quantitatively assessed under three temperature settings (18°C, 23°C, and 

28°C) and four lighting conditions (blue, red, warm white at 2700 K, and cool white at 5000 K), 

generating a comprehensive dataset of subjective task load ratings. 

In the context of temperature, a noticeable escalation in mental demand ratings was observed 

as the ambient temperature increased, peaking at 28°C with an average rating of 4.521, indicative 

of heightened cognitive strain. Conversely, own performance ratings exhibited a slight decline at 

28°C, suggesting a perceived decrement in task efficacy under higher temperatures. This trend 

underscores the nuanced interplay between environmental conditions and cognitive load, further 

substantiated by the statistical significance of these variations in the temporal demand and own 

performance domains, as evidenced by the two-way ANOVA outcomes presented in Table S3. 

The lighting condition analysis revealed a more complex interaction, with no single light color 

consistently exacerbating or alleviating the perceived task load across all metrics. However, the 

red lighting condition appeared to marginally elevate mental demand (M = 4.208) and effort ratings 

(M = 4.153), whereas blue light was associated with intermediate levels of task load across the 

evaluated domains. Notably, the interaction between temperature and light color did not 

significantly alter the mental or physical demand, as the statistical analysis indicated a lack of 

significant interaction effects, thereby suggesting that each factor independently influences the 

driver's task load perception. 

The variance analysis highlighted specific areas of statistical significance, particularly in the 

temporal demand and frustration domains, where temperature exerted a pronounced effect (p < 

0.05 for temporal demand; p < 0.01 for frustration). This implies that environmental temperature 

plays a crucial role in modulating both the urgency with which tasks are perceived and the level 

of frustration experienced by drivers. Own performance also emerged as a critical area of impact, 

with a significant difference observed across temperature conditions (p < 0.01), reinforcing the 

notion that environmental factors can substantially affect perceived task efficacy and cognitive 

load. 

General comfort, sleepiness, and emotion 

Tables S4 and S5 delve into the multifaceted dimensions of participants’ experiences, including 

general comfort, sweating, sleepiness before and after driving, and emotional states (valence, 

arousal, dominance), across different ambient temperatures (18°C, 23°C, 28°C) and lighting 

conditions (blue, red, warm white at 2700 K, cool white at 5000 K). This comprehensive dataset 

offers insights into how such environmental variables can influence human comfort and cognitive 

states. 
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The analysis of general comfort reveals a discernible variation across temperatures, with 

participants reporting the highest comfort levels at 23°C (M = 7.010), highlighting a preference 

for moderate ambient conditions. This preference is statistically supported by a significant 

temperature effect in the two-way ANOVA (p < 0.05), indicating a robust influence of ambient 

temperature on perceived comfort. Sweating rates significantly increased with temperature at 28°C 

(M = 2.563), reflecting the physiological response to higher ambient temperatures. This finding is 

corroborated by the statistical analysis, which shows a highly significant effect of temperature on 

sweating (p < 0.01), underscoring the direct impact of environmental heat on the body's 

thermoregulatory processes. Differences in sleepiness before and after driving were subtly 

influenced by temperature, with the highest increase observed at 28°C (M = 3.052). However, this 

effect narrowly missed statistical significance (p = 0.080), suggesting a trend towards greater 

sleepiness at higher temperatures that warrants further investigation. The emotional responses of 

participants, quantified as valence, arousal, and dominance, showed no significant changes across 

different temperatures, demonstrating a remarkable consistency in emotional states despite varying 

environmental conditions. This stability suggests that the emotional impact of these environmental 

variables is either negligible or complex, requiring more nuanced measures to detect. 

Light color, however, did not significantly affect general comfort, sleepiness, and sweating. 

The emotional responses of participants, quantified as valence, arousal, and dominance, showed 

no significant changes across different light colors. The results suggested that temperature is a 

more critical determinant in modulating this aspect of cognitive state. 

However, when examining the interaction effect between temperature and light color on the 

general comfort, sweating, sleepiness, and emotional response, the analysis did not indicate a 

statistically significant impact (p > 0.05), suggesting that the perceived comfort is more directly 

attributable to temperature alone, rather than its interaction with light color. 

In-car environment-based driving style recognition 

Driving behaviour data-based classification 

K-means was used to classify driving behaviors based on driving data and performing the 

clustering. Two driving style groups (aggressive and unaggressive) were obtained via the locations 

of the initial clustering centers (see Fig. 6). It was observed that each of the final clustering centers 

followed a similar compass point (or direction) to its corresponding initial center, respectively. 72 

participants completed 288 driving tasks and hence 281 samples of driving data were acquired. 7 

data samples were disregarded due to qualification. The 3-dimension feature vectors of the driving 

data divided the 281 to 147 and 134 for aggressive and conservative respectively. The Silhouette 

Coefficient was utilized to determine the quantification of the clusters number, which was 0.55 

more than the criterion of 0.5, which signifies a good separation between clusters. Therefore, the 

two clusters maintain the names of their corresponding driving behavior groups. 

The mean values and standard deviations of the driving data for each group were calculated and 

the two groups were referred to as the aggressive group and conservative group. The analysis of 

variance (ANOVA) indicated that there was significant difference of the driving data among two 

groups of different driving styles. The aggressive group demonstrated higher mean values in speed, 

acceleration, and steering, whereas the conservative group showed lower values in these variables. 



   

 

218 

 

 
Fig. 6. Results of K-means based on the driving data. 

In-car environment-based driving style classification 

The results of RF approach combined with the leave-one-subject-out cross validation was 

adopted for temperature and light color-based classification reported the classification achieved an 

overall accuracy of 72.9%. Precision and recall for the aggressive group were 69% and 43%, 

respectively, and for the conservative group, 73% and 89%, respectively. The F-measures were 

53% for the aggressive group and 80% for the conservative group, indicating a stronger predictive 

power for identifying conservative driving behaviors. The feature importance of temperature, light 

color, and interaction between two factors were 0.127, 0.127, and 0.746, respectively. 

Discussion 

The current study explored the interactive effects of temperature and light color on driving 

performance, cognitive tasks, and subjective perceptions of the indoor environment. This 

exploration was facilitated through an experimental study conducted within a hybrid experimental 

setting that integrated a driving simulator into a climate chamber, allowing for precise control over 

temperature and light color. The findings reveal that ambient temperature impacts driving 

performance and satisfaction with the environment compared to the effects of light color. 

Specifically, the study found no significant evidence to suggest that changes in driving 

performance, cognitive task performance, or environmental satisfaction could be attributed to 

variations in light color. Additionally, the study employed a two-layer driving behavior recognition 

system, which demonstrated proficiency in identifying types of driving behaviors based solely on 

data related to the in-car environment. This model underscores the potential for using 

environmental data to independently assess driving behavior. 

Effect of temperature, lighting condition, and interaction 

Effect of light on thermal perception 

The investigation revealed that light color did not significantly influence participants’ 

perceptions of thermal comfort, sensation, and acceptance, which diverges from the expected 

outcomes based on the hue-heat hypothesis. Despite this, our study uncovered nuanced variations 

in drivers’ perceptions under different lighting conditions during night driving. Specifically, the 
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analysis of LCV suggested uniform comfort across the examined lighting conditions, whereas the 

LBV highlighted a preference for the brightness of cool white lighting. Interestingly, drivers 

showed a significant preference for the blue lighting condition in terms of LAV, surpassing the 

acceptance levels for cool white lighting. 

The findings further indicated that drivers experienced the greatest TCV under cool white 

lighting, significantly more so than under warm white lighting. This preference for cool white and 

blue lighting conditions aligns with recent research suggesting enhanced thermal comfort in blue-

enriched spectrum light (Bellia et al., 2021; Brambilla et al., 2020). Contrary to our expectations, 

the TSV values revealed that lighting conditions did not exert a significant influence on 

participants’ thermal sensations. Interestingly, participants reported feeling warmer under red 

lighting conditions, consistent with the intuitive association of red hues with warmth. However, 

perceptions of cabin temperature were warmer in cool white light than in warm light, leading to 

an unexpected phenomenon where cool white light induced warmer sensations and warm white 

light cooler sensations. This observation stands in contrast to the hue-heat hypothesis and further 

challenges the warm-cool categorization, suggesting that these principles may not directly apply 

or may require reevaluation in the context of driving under artificial lighting conditions (Chinazzo 

et al., 2021; Itten, 1997; Winzen et al., 2014). Such findings indicate a complex interplay between 

perceived color temperature and thermal sensation. The preference for blue lighting in both visual 

and thermal contexts, as reflected by TAV scores, suggests a nuanced perception where subjects 

find blue hues more satisfactory in warm environments. This preference challenges the hue-heat 

hypothesis, which posits a direct correlation between color temperature and thermal perception 

and suggests the need for further exploration into the interaction between color perception and 

thermal comfort. 

Our results diverge from literature suggesting colored stimuli significantly influence thermal 

perception according to the hue-heat hypothesis. The lack of significant effects observed in our 

study may be attributed to the limited exposure time to visual and thermal stimuli, preventing full 

adaptation, and the unique context of night driving, which limits "complete body" immersion in 

colored light environments. This discrepancy highlights the potential influence of experimental 

setup on perceived thermal responses, as demonstrated by studies like (Martini et al., 2013), where 

skin color changes due to colored light exposure affected pain perception. Moreover, our findings 

suggest no consistent effects of light color on thermal sensation and comfort across different 

ambient temperatures, indicating that other factors may play a more pivotal role in influencing 

these perceptions in night driving scenarios. This insight calls for further research into the complex 

interplay between light color, thermal perception, and environmental context to fully understand 

the mechanisms at play. 

Effect of temperature on light perception 

The investigation into the effects of temperature on visual perception, focusing on light comfort, 

brightness, and acceptance, revealed that temperature did not significantly influence the visual 

perception. This finding is consistent across general evaluations of light, indicating that 

temperature levels, similar to those in prior studies (e.g., 23°C to 29°C)(H. Wang et al., 2018), 

were not a significant factor in visual perception responses. Despite varying the type and intensity 

of thermal stimuli, as seen in prior research where significant effects were noted, our findings 

remained nonsignificant. This suggests that the specific thermal conditions chosen, including the 

most uncomfortable cool condition, did not alter the general perception of light in the ways 

anticipated. 
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Interestingly, the highest LCV was observed during neutral temperature conditions, indicating 

a thermally comfortable state enhances light comfort. This observation is in line with previous 

research, suggesting a complex relationship between thermal comfort and light perception that 

extends beyond neutral lighting conditions (Chinazzo et al., 2018; te Kulve et al., 2018). 

Temperature effects were distinctly noted in the LBV, where participants perceived light as 

significantly brighter in cooler conditions compared to warmer ones. This shift in brightness 

perception suggests that ambient temperature influences visual sensitivity to light brightness. 

Moreover, LAV varied with temperature, with cooler conditions leading to lower acceptance than 

neutral and warm conditions, highlighting how ambient temperature can shape preferences for 

light environments. 

Contrary to our initial hypotheses, the interaction between light color and temperature did not 

significantly alter satisfaction indices, suggesting a dominant role of temperature in determining 

occupants’ comfort and satisfaction. The ANOVA analysis supported this, showing no significant 

interaction effects between light and temperature on variables such as light comfort, brightness, 

acceptance, and thermal metrics. This discrepancy might stem from the limited exposure time to 

the thermal conditions in our study, preventing full thermal adaptation, or the predominance of 

visual stimuli in the night-time driving overshadowing any potential temperature effects on color 

perception. Moreover, our study found a weak correlation between thermal and light comfort 

ratings, indicating that thermal comfort is not directly modifiable through changes in light comfort. 

This stands in contrast to previous findings and challenges the notion that improving light comfort 

can mitigate thermal discomfort (te Kulve et al., 2018). 

Driving performance 

The investigation into the influence of environmental variables, specifically temperature and 

light color, on driving performance reveals nuanced insights into the dynamics of driver-vehicle-

environment interaction. 

The analysis of how temperature and light color affect driving performance reveals that 

temperature has a minimal impact on most driving performance indices such as acceleration, rpm, 

and steering angle, which maintained relative stability across the tested temperatures. This 

indicates that drivers’ ability to control acceleration, and engine output is not significantly 

influenced by mild temperature changes. However, the significant effect of temperature on the 

pitch’s mean values and the standard deviations for speed, gas pedal usage, and roll suggests that 

temperature variations affect vehicle dynamics in a simulator. Our findings align with prior 

research indicating temperature’s significant role in influencing vehicle control metrics such as 

speed variability, gas pedal usage, and roll (Chowdhury, 2015; Daanen et al., 2003). These findings 

are particularly important for understanding how thermal comfort in different driving 

environments may subtly influence driving behavior. 

Interestingly, the study also highlights that light color has a more nuanced effect on driving 

performance. While the overall impact of light color on driving metrics was found to be minimal, 

the slight increase in mean speed under red light conditions suggests that light color may influence 

drivers’ speed perception or control. These outcomes align with previous studies investigating the 

effect of ambient light on driving performance, such as (Caberletti et al., 2010), which found no 

significant impact of ambient light scenarios on drivers. 

However, contrary to the anticipated synergistic effects of temperature and light color, the lack 

of significant interaction between temperature and light color on driving performance indices in 

this study suggests that these environmental factors independently contribute to driver behavior. 
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Therefore, further investigation is necessary to determine whether there is an interactive effect of 

temperature and light conditions inside the car on driving performance. 

The observation that temperature and light color independently affect driving performance 

without synergistic effects has several implications. While driving performance remains largely 

consistent across different temperatures and light colors, certain conditions such as temperature 

can influence the variability in speed control among drivers. The absence of a significant 

interaction between temperature and light color challenges the notion of their combined effect on 

cognition tasks, prompting a reevaluation of environmental control strategies within vehicular 

design. This directs future research towards isolating these variables in real-world settings to 

ascertain their individual and collective impacts more comprehensively. 

N-back task 

This detailed exploration into the effects of ambient temperature and light color on cognitive 

functions essential for driving reveals critical insights, specifically focusing on response accuracy 

and reaction times during N-back tasks. The findings reveal a significant impact of temperature on 

response accuracy, with optimal performance observed at 23 °C. This suggests a potential thermal 

optimum for cognitive tasks, aligning with previous research indicating that moderate 

environmental temperatures can facilitate cognitive performance (Lan & Lian, 2009; Schiavon et 

al., 2017b; C. Wang et al., 2021). It also emphasizes the importance of maintaining optimal 

ambient conditions for enhancing cognitive function. Interestingly, reaction times remained 

relatively stable across varying temperatures, suggesting a degree of robustness in cognitive 

processing speed against the subtle temperature changes. This resilience might be attributed to the 

adaptive capabilities of cognitive processes, which can maintain speed of response despite minor 

environmental stressors. 

While light color appears to influence cognitive accuracy and reaction time, the effects are less 

pronounced, suggesting that cognitive speed remains constant across different lighting conditions. 

The results were aligned with the findings from the previous studies (Hawes et al., 2012a; 

Kretschmer et al., 2012a). However, the high CCT light conditions enhancing response accuracy 

were also notable. This finding supports the hypothesis that certain wavelengths of light can 

stimulate brain activity more effectively, possibly by influencing circadian rhythms and alertness 

levels. Conversely, the reduced accuracy observed under low CCT light conditions could reflect 

the potential for certain light temperatures to induce cognitive fatigue or distraction, thereby 

impacting performance (Chellappa et al., 2011; Y. Li et al., 2021; Mehri et al., 2023). These 

findings contribute to a deeper understanding of how subtle environmental variations can influence 

the complex dynamics of cognitive performance in driving contexts. 

Despite these individual effects, our analysis did not reveal significant interaction effects 

between temperature and light color on cognitive performance, suggesting that each factor 

independently influences cognitive functions without synergistic or antagonistic interactions. This 

observation conflicted to the previous finding that the interaction between the temperature and 

light color affect the cognition task (Seyedrezaei et al., 2023). 

Physiological and psychological response 

The exploration of task load, general comfort, sleepiness, and emotion within the vehicle cabin 

environment, as influenced by ambient temperatures and light color, yields significant insights into 

the holistic driver experience. The gradations in six dimensions of task load, perceived comfort, 

physiological responses (sweating), cognitive states (sleepiness before and after driving), and 

emotional responses (valence, arousal, dominance) under varying temperatures and lighting 
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conditions underscore the intricate dynamics at play between environmental factors and human 

responses. 

The findings indicated the statistical significance in the domains of temporal demand, and 

frustration, particularly influenced by temperature, underscores the critical role of environmental 

conditions in shaping drivers’ task urgency perceptions and frustration levels. The significant 

impact of temperature on own performance further emphasizes the importance of optimizing cabin 

conditions to support driver wellbeing and task efficiency. The analysis delineates a clear 

preference for moderate ambient temperatures aligned with previous study (Cui et al., 2013b; Nicol 

& Humphreys, 2002a; Z. Wang et al., 2018), with the highest levels of general comfort reported 

at 23°C. This finding highlights the pivotal role of temperature in optimizing comfort within the 

vehicle cabin. The significant increase in sweating rates at higher temperatures (28°C) not only 

corroborates the physiological burden imposed by warmer conditions but also underscores the 

importance of maintaining a balanced thermal environment for enhanced comfort and 

physiological well-being. Interestingly, while sleepiness levels showed a trend towards an increase 

with rising temperatures, the absence of statistical significance suggests a complex relationship 

between thermal conditions and cognitive fatigue that warrants further investigation. This 

observation invites a deeper examination of the mechanisms through which temperature influences 

alertness and cognitive performance during driving. The stability of emotional responses across 

varying temperatures and lighting conditions is an intriguing aspect of our findings. The lack of 

significant changes in valence, arousal, and dominance suggests that emotional states may be more 

resilient to environmental variations than previously thought, or that the emotional impacts of these 

factors are nuanced and require more sophisticated measures to detect. 

The interplay between light color and task load, general comfort, and sleepiness presents a 

complex picture, with no single lighting condition consistently intensifying or mitigating the 

perceived load across all metrics. However, red hue light marginally increased mental demand and 

effort, while blue light appeared to maintain intermediate task load levels. Notably, the absence of 

significant interaction effects between temperature and light color suggests an independent 

influence of these environmental factors on perceived task load. 

The absence of a statistically significant interaction effect between temperature and light color 

on task load, general comfort, sweating, sleepiness, and emotional responses suggests that the 

perceived comfort and cognitive states within the vehicle cabin are primarily influenced by 

temperature within out test parameters and duration. 

Driving style classification based on in-car environment 

In this study we introduced a driving style recognition schema based on a combination of 

driving behavior data with in-car temperature and light color. The classification of driving data 

into aggressive and conservative styles via K-means clustering, and subsequent training of the RF 

model with in-car environmental features, underscores the potential of environmental conditions 

to influence driving behavior. The achieved classification accuracy of 73.0% and balanced F-

measures between driving styles affirm the model’s capability to discern driving patterns based on 

in-car conditions. 

The analysis revealed that aggressive driving is characterized by higher speed, acceleration, and 

steering wheel activity, aligning with a preference for dynamic driving. Conversely, conservative 

driving is marked by lower values in these variables, indicating a cautious approach. The concept 

of driving skill is defined by a driver’s proficiency in vehicle control, often assessed through the 

mean and standard deviation of driving performance data. This metric inversely correlates with 

driving skill stability (Lu, 2011; Martinussen et al., 2014). Our analysis reveals that mean and 
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standard deviations across nearly all measured driving parameters were higher for the Aggressive 

group compared to the Conservative group. This pattern suggests a potential correlation between 

driving style and skill variability: the more aggressive the driving style, the greater the fluctuations 

in driving skills. This research aligns with prior findings (Martinussen et al., 2014; Reason et al., 

1990; F. Yan et al., 2019; L. Yang et al., 2018), underscoring the strong link between drivers’ 

behavioral patterns and their driving styles. While earlier studies have predominantly characterized 

driving style as a static trait, resistant to change (S.-W. Chen et al., 2013; Shi et al., 2015), our 

findings present a more nuanced picture. Among our participants, 29 exhibited a consistently 

aggressive driving style throughout the study, 14 displayed variability in their driving style, 

oscillating between conservative and aggressive, and 26 consistently demonstrated a conservative 

driving style. This dichotomy not only reflects a driver’s inherent style but also suggests that in-

car environmental conditions can induce variations in driving behavior. The observation that 

driving styles fluctuated among participants during the study indicates the dynamic nature of 

driving behavior, potentially influenced by the in-car environment. 

The F-measures showed that this classifier was approximately equally sensitive to the two 

driving styles and the classification performance was balanced. These results suggested a close 

relationship between in-car environment and driving style and demonstrated the feasibility of 

driving style recognition and prediction using in-car temperature and light color data. The findings 

elucidate the hierarchy of impact among the studied factors: temperature emerges as the most 

critical, followed by the interaction between variables, with light color being identified as the least 

influential. This hierarchy not only clarifies the relative importance of each factor but also guides 

future research and practical applications in enhancing driving optimization and behavior 

prediction. Furthermore, the methodology for recognizing driving behavior based on in-car 

temperature and light color holds significant promise for the development of more nuanced driving 

assistance systems. By accurately determining a driver’s behavioral group, these systems can tailor 

their responses to individual drivers more effectively. By predicting driving styles through the 

features of the in-car environment, this research extends beyond conventional focuses such as 

indoor air quality or thermal comfort prediction. It emphasizes the critical role of temperature and 

the significant yet lesser impact of light color on driving style, suggesting that these factors, 

especially temperature, have the potential to modulate driving behaviors. Such insights are 

invaluable, opening new avenues for research aimed at optimizing in-car conditions to foster safer 

driving practices. 

Effect of thermal sensitivity on driving performance and environmental satisfaction 

Our analysis further segmented participants based on their thermal sensitivity, distinguishing 

between those sensitive to cold and those who are not. 36% of participants were identified being 

particularly sensitive to cold temperatures. This subgroup exhibited the influence of cold 

sensitivity on their driving performance, with low cold sensitivity individuals exhibiting 

experiencing more substantial impacts on their driving capabilities compared to their counterparts 

with higher sensitivity to cold. Similarly, the study participants were categorized based on their 

heat sensitivity. 46% of the sample reported high sensitivity to heat, indicating a substantial portion 

of individuals potentially affected by warmer temperatures. Those with elevated heat sensitivity 

demonstrated more significant alterations in driving performance in response to temperature 

variations. While thermal sensitivity is a factor that mildly influences the thermal effects of lighting, 

its interaction with the thermal impacts of lighting appeared to be minimal. Specifically, our 

findings did not reveal any significant interaction effects between temperature and lighting on 
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driving performance across the different groups, segmented by their sensitivity to either coldness 

or warmth. 

Limitation and recommendations 

One notable limitation of our study is the relatively small sample size, which could diminish 

the statistical power of our findings. To address this, we aim to recruit more participants in future 

studies, thereby enhancing our research’s robustness. Additionally, our methodology incorporated 

a mixed design by merging within-subjects and between-subjects designs. Employing a within-

subjects design in human-factor experiments can help mitigate individual differences, enhancing 

the reliability of our results. 

Furthermore, our investigation focused on driving performance within a simplified simulated 

driving task. Future research should extend to more complex driving scenarios, such as navigating 

multi-lane urban roads and making turns, to better understand the effects of ambient temperature 

on driving behavior under varied conditions. 

The role of clothing was also not extensively explored in our study. Considering that a 0.39 clo 

ensemble is more suitable for hotter environments, this factor might have influenced the observed 

lack of significant difference in thermal comfort across conditions. Future work will delve into the 

impact of insulation levels in both neutral and hot environments to further elucidate this aspect. 

The manual adjustment of the air conditioning system introduced potential variability and 

inaccuracies in temperature control. Moreover, while relative humidity levels were broadly 

consistent, they were not perfectly regulated. Future studies should consider employing a broader 

range of temperature settings with finer increments, such as 5°C, to achieve higher precision in 

environmental control. 

Our analysis did not account for light intensity, which is a significant oversight given its 

potential impact on the hue-heat effect. The literature suggests that both the intensity and the 

correlated color temperature (CCT) of light can influence perception (Baniya et al., 2018; Chao et 

al., 2020), which in turn can affect thermal sensation and comfort. Future investigations should 

include a comprehensive analysis of light intensity alongside CCT to better understand their 

combined effects on driver comfort and perception. 

Finally, the demographic characteristics of our participant pool, including the predominance of 

younger drivers with limited driving experience and an unbalanced gender ratio, may have 

introduced bias into our findings. Since driving styles were classified based on task-specific rather 

than subject-specific data, the influence of participants’ demographic traits on driving styles 

remains unexplored. Future research should aim to address these limitations by incorporating a 

more diverse participant group and examining the impact of demographic factors on driving 

behavior. 

In summary, while our study has provided valuable insights into the relationship between in-

car environmental conditions and driving styles, several limitations highlight the need for further 

research. By addressing these gaps, future work can build on our findings to develop a more 

comprehensive understanding of how ambient conditions influence driving behavior. 

Conclusions 

Our investigation into the effects of in-car environmental factors—specifically temperature, 

lighting conditions, and the interaction between these two factors—on driving performance, 

cognitive function, and subjective comfort, has elucidated nuanced insights with considerable 

implications for the hue-heat hypothesis during night-time driving. The findings underscore a 

significant impact of temperature on driving performance, perception of light brightness and 

thermal perception, with lighting condition also playing a role in modulating light perception. 
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Notably, the anticipated interactive effect between temperature and light color on driving 

performance was not observed, indicating that these factors independently influence the driver’s 

experience. Although prior literature (Gagge et al., 1967; Velt & Daanen, 2017) suggests potential 

correlations between thermal sensation value and color sensation value, our findings did not 

corroborate these associations under varied lighting and temperature conditions. This discrepancy 

indicates a pressing need for further research into this interaction, taking into account potential 

confounding factors not considered in previous studies. 

Furthermore, we utilized a two-layer driving style recognition model to predict driving styles 

by incorporating in-car temperature and lighting conditions. These results underline the 

importance of optimizing vehicle interiors, particularly in terms of temperature and lighting 

conditions, to enhance driver alertness and cognitive performance. Our research suggests that 

optimizing ambient conditions could not only improve driver comfort but also potentially reduce 

energy consumption in electric vehicles. 

However, the study also recognizes limitations, including the use of a controlled laboratory 

setting and a homogeneous participant pool, which may limit the generalizability of the results. 

Future research should aim to explore these dynamics in more diverse and real-world scenarios to 

validate our findings and further investigate how ambient conditions can be leveraged to improve 

driving safety and efficiency. 

This research offers valuable insights into the environmental determinants of cognitive 

performance and driving performance, providing significant implications for vehicle design and 

the development of guidelines to enhance driver comfort and optimization. Our findings advocate 

for the inclusion of environmental condition optimization as a critical component in the design of 

future vehicles and driving interfaces. 
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Appendix 

Dependent variables 

Table S12. Summary of the tasks and surveys 

Task/Survey  Major parameters Purposes Administration 

Driving task Forward velocity 

Acceleration 

Lateral velocity 

Lateral acceleration 

Lane deviation 

Steering 

Yaw rate 

Evaluate the driving performance to observe 

compensatory behaviors under different environments 

During driving 

Secondary task (N-back 

task) 

2-back Simulate the non-driving behavior during the driving 

Measure drivers’ working memory and attention 

During driving 

Emotion 

(Self-assessment 

manikin (SAM)) 

Valance 

Arousal 

Dominance 

Measure the effect of environmental change on 

drivers’ emotions, including valence, arousal, and 

dominance 

After driving 

Sleepiness Stanford Sleepiness Scale Measure the effect of cabin environmental change on 

drivers’ sleepiness 

After driving 

In-car environment 

satisfaction 

Light comfort 

Light brightness 

Light acceptance  

Thermal comfort 

Thermal sensation 

Thermal acceptance 

Measure the change of drivers’ satisfaction with 

different cabin environments 

After driving 

NASA-TLX workload Mental demand 

Physical demand 

Temporal demand 

Own performance 

Effort 

Frustration 

Evaluate and quantify the perceived workload of an 

individual or a team performing a specific task 

After driving 

G power software 
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Fig. S1. Settings for power analysis in G*power  

 

Questionnaire used in the study 

a. Sleepiness 

 

(Finish the question 1~2 before the experiment) 
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Q1: Sleeping quality before the experiment (very poor to excellent) 

   

   1        2       3       4      5      6      7      8      9      10 

 

Q2: Rate the degree of sleepiness before the driving task (awake to asleep) 

 

   1        2       3       4      5      6      7    

 

(Finish the remaining questions after the experiment) 

 

Q3: Rate the degree of sleepiness after the driving task (awake to asleep) 

 

   1        2       3       4      5      6      7 

 

b. Emotion 

 

Q4: Rate the valence (how negative or positive the emotion is) after the experiment (negative to positive) 

 

   -2        1       0       1      2   

 
 

Q5: Rate the arousal (how excited or uninterested the emotion is) after the experiment (low to in high) 

 

  -2        1       0       1      2   
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Q6: Rate the feeling of dominance (the extent to which you feel you are in control of the situation) after the experiment (low to in 

high) 

 

 -2        1       0       1      2   

 

 
 

c. Physical symptoms 

 

Q7: Rate the general comfort after the experiment (slight to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

 

Q8: Rate the feeling of nausea after the experiment (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q9: Rate the headache after the experiment (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 
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Q10: Do you have blurred vision (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q11: Are you sweating (slight to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

Q12: Do you feel faint (none to severe) 

 

   1        2       3       4      5      6      7      8      9      10 

 

d. Perceived air quality and air quality acceptance 

 

Q13: Rate your feeling of the air quality (worse to better) 

 

   -3      -2      -1      0      1       2      3 

 

Q14: Rate your acceptance of the air quality (unacceptable to acceptable) 

 

   -3      -2      -1      0      1       2      3 

 

e. Cognitive load 

 

Q15: How mentally demanding was the task? (low to high) 

 

1       2       3       4      5      6      7 

 

Q16: How physically demanding was the task? (low to high) 

 

1       2       3       4      5      6      7 
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Q17: How hurried or rushed was the pace of the task? (low to high) 

 

1       2       3       4      5      6      7 

 

Q18: How successful were you in accomplishing what you were asked to do? (perfect to failure) 

 

1       2       3       4      5      6      7 

 

Q19: How hard did you have to work to accomplish your level of performance? (low to high) 

 

1       2       3       4      5      6      7 

 

Q20: How insecure, discouraged, irritated, stressed, and annoyed were you? (low to high) 

 

1       2       3       4      5      6      7 

 

Effect of temperature and light color on the task load in the survey 

Table S2. Descriptive Statistics for task load index at different temperature and light color 

Conditions NASA-TXL task load (scale from 1 to 7) M SD N 

18 °C Mental demand 4.031 1.410 96 

Physical demand 2.25 1.257 96 

Temporal demand 3.281 1.429 96 

Own performance 5.063 1.221 96 

Effort 4.042 1.313 96 

Frustration 2.906 1.550 96 

23 °C Mental demand 3.990 1.559 96 

Physical demand 2.677 1.447 96 

Temporal demand 3.083 1.587 96 

Own performance 5.063 1.280 96 

Effort 3.906 1.543 96 

Frustration 2.969 1.657 96 

Mental demand 4.521 1.248 96 
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28 °C Physical demand 2.604 1.476 96 

Temporal demand 3.615 1.417 96 

Own performance 4.708 1.151 96 

Effort 4.490 1.133 96 

Frustration 3.542 1.673 96 

Blue Mental demand 4.139 1.377 72 

Physical demand 2.556 1.500 72 

Temporal demand 3.333 1.592 72 

Own performance 4.972 1.198 72 

Effort 4.097 1.406 72 

Frustration 2.931 1.523 72 

Red Mental demand 4.208 1.383 72 

Physical demand 2.319 1.161 72 

Temporal demand 3.194 1.498 72 

Own performance 5.083 1.264 72 

Effort 4.153 1.329 72 

Frustration 3.083 1.726 72 

Warm white (2700 K) Mental demand 4.208 1.394 72 

Physical demand 2.528 1.353 72 

Temporal demand 3.389 1.439 72 

Own performance 4.861 1.225 72 

Effort 4.097 1.386 72 

Frustration 3.361 1.586 72 

Cool white (5000 K) Mental demand 4.167 1.574 72 

Physical demand 2.639 1.577 72 

Temporal demand 3.389 1.449 72 

Own performance 4.861 1.225 72 

Effort 4.236 1.337 72 

Frustration 3.181 1.747 72 

Total Mental demand 4.181 1.427 288 

Physical demand 2.510 1.404 288 

Temporal demand 3.326 1.490 288 

Own performance 4.944 1.226 288 

Effort 4.146 1.359 288 

Frustration 3.139 1.647 288 
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Table S3. Two-way Analyses of Variance of task load index at different temperature and light color 

Parameters Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 
Mental demand T 33041.52 2 16520.76 2.330 0.099 0.341 

Light color 2744.028 3 914.6759 0.127 0.944 0.028 

T * Light color 61060.01 6 10176.67 0.193 0.193 0.630 

Physical demand T 12939.94 2 6469.969 0.908 0.405 0.340 

Light color 9010.694 3 3003.565 0.420 0.739 0.237 

T * Light color 16097.17 6 2682.862 0.377 0.894 0.423 

Temporal 

demand 
T 43835.9 2 21917.95 3.108 0.046* 0.538 

Light color 8350.556 3 2783.519 0.388 0.762 0.102 

T * Light color 29301.25 6 4883.542 0.688 0.660 0.360 

Own performance T 88107.15 2 44053.57 6.403 <0.01** 0.611 

Light color 9123.361 3 3041.12 0.424 0.736 0.063 

T * Light color 46931.15 6 7821.858 1.112 0.356 0.326 

Effort T 46185.58 2 23092.79 3.279 0.039* 0.605 

Light color 4193.611 3 1397.87 0.194 0.900 0.055 

T * Light color 25914.99 6 4319.166 0.607 0.725 0.340 

Frustration T 71977.75 2 35988.88 5.183 <0.01** 0.692 

Light color 20857.78 3 6952.593 0.975 0.405 0.200 

T * Light color 11198.78 6 1866.464 0.260 0.955 0.108 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

 

Table S4. Descriptive Statistics for sleepiness and emotion at different temperature and light color 

Conditions  M SD N 

General comfort 

18 °C  5.917 2.055 96 

23 °C  7.010 2.179 96 

28 °C  6.313 2.455 96 

Blue  6.389 2.504 72 

Red  6.375 2.229 72 

Warm white (2700 K)  6.319 2.219 72 
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Cool white (5000 K)  6.569 2.168 72 

Total  6.413 2.274 288 

Difference in Sleepiness (pre and post driving) (scale from 1 to 7) 

18 °C  2.365 1.274 96 

23 °C  2.958 1.406 96 

28 °C  3.052 1.605 96 

Blue  2.889 1.459 72 

Red  2.847 1.450 72 

Warm white (2700 K)  2.833 1.434 72 

Cool white (5000 K)  2.597 1.517 72 

Total  2.792 1.462 288 

Sweating 

18 °C  1.198 0.626 96 

23 °C  1.635 0.964 96 

28 °C  2.563 1.811 96 

Blue  1.875 1.644 72 

Red  1.722 1.201 72 

Warm white (2700 K)  1.764 1.295 72 

Cool white (5000 K)  1.833 1.278 72 

Total  1.799 1.359 288 

Emotion (scale from -2 to 2) 

18 °C Valence 3.073 0.798 96 

Arousal 3.167 0.706 96 

Dominance 3.396 0.624 96 

23 °C Valence 3.25 0.883 96 

Arousal 3.083 0.914 96 

Dominance 3.427 0.830 96 

28 °C Valence 3.219 0.810 96 

Arousal 3.052 0.671 96 

Dominance 3.656 0.708 96 

Blue Valence 3.208 0.887 72 

Arousal 3.083 0.783 72 

Dominance 3.583 0.727 72 

Red Valence 3.25 0.801 72 
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Table S5. Two-way Analyses of Variance of sleepiness and emotion at different temperature and light color 

Parameters Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 
General comfort 

General comfort T 62798.81 2 31399.41 4.498 0.012* 0.764 

Light color 3093.472 3 1031.157 0.143 0.934 0.038 

T * Light color 16320.66 6 2720.11 0.381 0.891 0.199 

Difference in Sleepiness (pre and post driving) (scale from 1 to 7) 

Sleepiness T 36060.27 2 18030.14 2.547 0.080 0.462 

Light color 21384.53 3 7218.176 1.000 0.393 0.274 

T * Light color 20620.74 6 3436.791 0.482 0.821 0.264 

Sweating 

Sweating T 293436.1 2 146718 24.314 <0.01** 0.917 

Light color 10506.83 3 3502.275 0.502 0.681 0.033 

T * Light color 16073.53 6 2678.922 0.383 0.890 0.050 

Emotion 

Valence T 13267.75 2 6633.875 0.2942 0.391 0.292 

Light color 12799.61 3 4266.537 0.605 0.612 0.282 

T * Light color 19367.55 6 3227.925 0.459 0.839 0.426 

Arousal T 23357.26 2 11678.63 1.649 0.194 0.472 

Light color 4810.139 3 1603.38 0.224 0.879 0.097 

T * Light color 21288.62 6 3548.103 0.501 0.807 0.430 

Arousal 3.083 0.783 72 

Dominance 3.417 0.746 72 

Warm white (2700 K) Valence 3.083 0.852 72 

Arousal 3.069 0.757 72 

Dominance 3.458 0.768 72 

Cool white (5000 K) Valence 3.181 0.793 72 

Arousal 3.167 0.769 72 

Dominance 3.514 0.692 72 

Total Valence 3.181 0.832 288 

Arousal 3.101 0.770 288 

Dominance 3.493 0.732 288 
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Dominance T 87891.52 2 43945.76 6.405 <0.01** 0.710 

Light color 15805.19 3 5268.398 0.739 0.529 0.128 

T * Light color 20175.5 6 3362.583 0.474 0.827 0.163 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 

Effect of temperature and light color on skin temperature 

Table S4. Descriptive Statistics for perceived air quality and air quality acceptance at different temperature and light color  

Conditions Item (scale from 1 to 7) M SD N 

18 °C D 29.312 2.922 96 

K 31.743 5.309 96 

O 30.302 1.397 96 

Q 27.856 2.171 96 

Integrated   96 

23 °C D 32.167 1.453 96 

K 33.708 1.124 96 

O 33.158 1.776 96 

Q 30.597 1.105 96 

Integrated   96 

28 °C D 34.437 0.930 96 

K 35.350 0.693 96 

O 34.426 0.950 96 

Q 32.835 0.766 96 

Integrated   96 

Blue D 31.910 2.925 72 

K 33.753 1.720 72 

O 32.546 2.276 72 

Q 32.389 2.568 72 

Integrated   72 

Red D 32.021 2.885 72 

K 33.072 6.309 72 

O 32.644 2.153 72 

Q 30.441 2.542 72 

Integrated   72 

Warm white (2700 K) D 31.950 2.839 72 
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K 33.786 1.733 72 

O 32.662 2.227 72 

Q 30.422 2.589 72 

Integrated   72 

Cool white (5000 K) D 32.005 2.881 72 

K 33.783 1.737 72 

O 32.662 2.306 72 

Q 30.463 2.404 72 

Integrated   72 

Total D 31.972 2.868 288 

K 33.601 3.487 288 

O 32.629 2.230 288 

Q 30.429 2.514 288 

Integrated   288 

 

Table S5. Two-way Analyses of Variance of perceived air quality and air quality acceptance at different temperature and light color 

Item Source Sum of Squares df Mean Square F Sig. Partial Eta Squared 
D T 1391762 2 695880.8 320.835 <0.01** 0.997 

Light color 1817.167 3 605.722 0.086 0.968 0.001 

T * Light color 2654.674 6 442.446 0.063 0.999 0.002 

K T 1058694 2 529346.8 175.834 <0.01** 0.986 

Light color 8660.528 3 2886.843 0.452 0.716 0.008 

T * Light color 5930.889 6 988.4815 0.152 0.989 0.006 

O T 1217928 2 608963.9 217.909 <0.01** 0.991 

Light color 595.25 3 198.417 0.028 0.994 0.001 

T * Light color 10179.98 6 1696.663 0.237 0.964 0.008 

Q T 1577577 2 788788.6 0. <0.01** 0. 

Light color 631.4167 3 210.4722 0. 0. 0. 

T * Light color 5488.257 6 914.7095 0. 0. 0. 

Integrated T  2  0. <0.01** 0. 

Light color  3  0. 0. 0. 

T * Light color  6  0. 0. 0. 

Note: * denotes p value less than 0.05, ** denotes p value less than 0.01 
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