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Abstract

This project explores some statistical and machine learning meth-
ods used to detect motion anomalies in data collected using Functional
Near-Infrared Spectroscopy (fNIRS). fNIRS is a new type of noninva-
sive brain imaging technology that provides information about the
dynamic cognitive state of individuals doing tasks in the real world.
The portability and accuracy of fNIRS allow researchers to model
brain activity of subjects in everyday situations. However, the data is
collected using many highly sensitive sensors. This contributes to its
high complexity and warrants analysis using a combination of statis-
tical and machine learning methods. The study of anomaly detection
of fNIRS is well sought after, as finding and post-processing anomalies
leads to more accurate datasets and in turn helps scientists analyze
their data more accurately. The results of this research effort include
analyzing performance of a previously published anomaly detection
method, creating and evaluating three new methods, and developing
a platform that allows others to analyze their own data using these
methods.
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1 Introduction

Functional near-infrared spectroscopy, or fNIRS, is an emerging hemody-
namic neuroimaging technology that can be used to map brain activity [5].
The technology gathers data about the amount of oxygen flowing in parts
of a patient’s brain, which helps scientists understand the level of activity
in that part of the brain. fNIRS mapping is becoming increasingly popu-
lar because of its ease of use and practicality with more sensitive subjects
such as kids and the elderly [2]. Among other applications, analyzing fNIRS
data can potentially pave the way for more streamlined Human-Computer
Interaction and more intuitive Brain-Computer Interfaces (BCI).

With any collection of data, there may be one or multiple data points that
deviate significantly from the rest of the data, called anomalies. Anomalies
are data points that lie abnormally far from other values and differ greatly
from the trends of normal data [9]. Anomalies can provide a lot of criti-
cal information about the data: technical incidents such as a faulty sensor,
new trends, etc. Therefore, an emerging type of data analysis is anomaly
detection. The topic of anomaly detection sees many applications across
disciplines such as cybersecurity, finance, marketing or neuroscience.

Scientists are generally interested in detecting anomalies in brain data to
find unwanted movement of other external factors that lower the accuracy
of the collected data, or to find problems with the device used to gather
data. While more research and time has been devoted to analyzing data
produced by fMRIs (functional magnetic resonance imaging) or EEGs (elec-
troencephalogram) leading to certain standards being developed, research
that analyzes fNIRS data is much newer and less standardized [7]. Our team
aims to bridge this gap by applying well-known anomaly detection tools and
models on fNIRS data and comparing the accuracy of the results.

The goal of this project is to determine methods for finding anomalies in
fNIRS data and provide a tool to make these methods available to others. In
order to achieve our goal, we break it down into smaller objectives, outlined
below.

1. Understand the nuances of multivariate time-series data, fNIRS, and
anomaly detection

2. Research appropriate algorithms that can be applied to multivariate
time series data
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3. Implement algorithms with fNIRS data

4. Create new anomaly detection algorithms

5. Evaluate and compare algorithms

6. Develop a platform to allow others to run these algorithms on their
own data
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2 Background and Literature Review

2.1 Time Series

Time series are a type of data where the observed points are indexed
according to the order they are observed in time. We can consider a time
series to be a sequence of random variables, x1+x2+x3..., where the variable
x1 shows the value of the series at the first time point, x2 at the second, and
so on [14]. This series is append only, which means that if a value of x
is updated, instead of overwriting the previous observation, we simply add
another one at the new time at which it was recorded. This type of data
is used in numerous industries, with more important and widespread use in
meteorology, medicine, and finance [8].

2.1.1 Characteristics of Time Series

Time series possess three main characteristics: trend, seasonality/periodicity,
and stationarity. Recognizing characteristics of time series data is very im-
portant as each one can unravel key features of the data such as the types of
algorithms we can/cannot use, or the transformations we need to do in order
to be able to use these types of algorithms.

Figure 1: Level of Lake Huron
1875–1972 showing the line fitted by
least squares. Source: Introduction to
Time Series Forecasting, Brockwell et
al. 2016

Trend The trend of a time series
describes the tendency of all values
in the series to increase, decrease, or
stay the same. We can determine
trend by computing a linear fit of
the series and finding the slope of the
generated linear function. An exam-
ple of this is shown on Figure 1, of
the water level in Lake Huron, fitted
using a least squares line and clearly
displaying negative trend.

Seasonality/Periodicity While
trend shows a series’ overall ten-
dency of values to increase or de-
crease, seasonality and periodicity
describe cyclical variations in data which repeat at certain points in time.
Figure 2 shows periodicity in fMRI data collected in various locations of the
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(a) a (b) b

Figure 3: Time series of global temperatures over time with [a] showing
the raw data (non-stationary) and [b] showing the same data but is now
stationary

brain of a person whose hand was periodically brushed.

Figure 2: fMRI data collected in vari-
ous locations of the brain of a person
whose hand was periodically brushed.
Source: Introduction to Time Series
Forecasting, Brockwell et al., 2016

Stationarity In its most widely
used definition, stationary data is
data whose mean and variance is
constant [14]. Autoregression-based
analysis methods require the data
to be stationary to generate accu-
rate output. There exist methods
to test for stationarity and to turn
non-stationary data into stationary,
but we will not focus on them. Fig-
ure 3 shows raw data of global tem-
perature deviations, followed by pro-
cessed data to make the series sta-
tionary.

2.1.2 Uni-variate and Multi-
variate Time Series

Another way to classify time se-
ries is into univariate and multivari-
ate. Univariate time series are series
where only one variable is dependent on time. We have been mostly focusing
on univariate series in this paper up to this point, with examples in Figures

11



1 and 3. However, the fNIRS data is multivariate.
Multivariate series contain at least two series of variables which are depen-

dent on time and each other [4]. Figure 2 is a perfect example of multivariate
time series data: each plot shows multiple series dependent on time, and each
other. Multivariate time series possess many of the same qualities that are
present in univariate series because they are essentially composed of univari-
ate series. The definitions for trend, periodicity, and stationarity are some
of them. However, complications arise when taking into account the inter-
dependence between individual components, as some parts of them could be
strongly correlated with parts of other components [4]. Because of this not
all algorithms that work on univariate time series also work for multivariate
ones.

2.2 Functional Near-infrared Spectroscopy

fNIRS, or functional near-infrared spectroscopy, is a non-invasive form
of neuroimaging that monitors the hemodynamics, or movement of blood,
inside a person’s head [15]. When compared to other methods of brain imag-
ing, fNIRS is relatively new with its first clinical trial having been conducted
in 1993 [5]. However, since then, the use of fNIRS technology has expanded
dramatically with the number of publications related to fNIRS nearly dou-
bling every 3.5 years [7]. The nearly exponential increase can be attributed
to clinics and researchers seeing the method’s benefits and new opportuni-
ties it can provide in fields such as Human-Computer Interaction (HCI) and
Brain-Computer Interfaces (BCI) [5].

2.2.1 How fNIRS Technology Works

As the name suggests, fNIRS uses near-infrared light to monitor the hemo-
dynamics of the brain [7]. The device itself, as seen in Figure 4, is made up
of nodes that are placed around a black head cap. The nodes can be placed
anywhere on the cap, meaning any area of the brain can be analyzed and
measured. In our project, we are working with data obtained specifically
from the anterior prefrontal cortex, a section of the brain that deals with
decision-making, multi-tasking, memory, and attention [13]. This region of
the brain is located behind the forehead. One particular benefit to placing
nodes in that location is that there is very little hair in this area of the head,
which leads to capturing cleaner data.
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Figure 4: fNIRS device on a patient. The
device includes the cap, sensors, and a small
portable computer

In our case, the cap used
has eight light sources and
eight detectors, the combi-
nation of which forms chan-
nels. In our current arrange-
ment we obtain 20 channels
of data in a session. When
in use, each light source
shines near-infrared rays 1-
3 cm into the wearer’s skull
[13]. At this depth, the
proteins oxygenated (Hb)
and deoxygenated (HbO)
hemoglobin which are con-
tained in blood, are the pri-
mary absorbers of the light.
The light that is not ab-
sorbed by the hemoglobin is then reflected and detected by the sensors. The
change in levels of reflected light corresponds to the amount of oxygen in
the blood [5]. This information can then infer which regions of the brain are
using the most oxygen, telling scientists which parts of the brain are more
activated than others. The data from the detectors is then fed into a com-
puter where it can be analyzed and studied. When the data is visualized,
each channel corresponds to one time series [5].

2.2.2 The benefits of fNIRS for HCI/BCI

When compared to the other tools and devices that are used for mapping
brain activity such as electroencephalograms (EEG) or functional magnetic
resonance imaging (fMRI), fNIRS has many advantages, especially in the
fields of Human-Computer Interaction (HCI) and Brain-Computer Interface
(BCI). Some advantages to fNIRS are they are compact, less expensive to
operate and use, easily portable, and relatively tolerant of body movements
[5]. Another advantage is that unlike the other mapping tools, fNIRS allows
the user freedom of movement. fMRIs and EEG force users to lay motion-
less to get accurate information as those methods require the use of large,
cumbersome machines [2]. For fNIRS, the user has very little restrictions;
they are allowed to move around, speak, and interact with other objects such
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as computers. This gives scientists and researchers more flexibility as now
the user can interact with objects while their brain is being mapped (Wan,
2015). Previously in HCI, we could only detect certain signals from users
doing work on a computer, such as facial cues, heartbeat and eye movement.
With the introduction of fNIRS, we can now map how the user interacts
with computers, opening possibilities for analyzing brain data in much more
versatile environments.

2.3 Anomalies

Anomalies are data points that lie abnormally far from other values and
differ greatly from the trends of normal data [9]. Another term that is fre-
quently associated with anomalies is outliers. The word anomaly has many
definitions, sometimes overlapping that of anomaly and sometimes describ-
ing a slightly different phenomenon. For our project we will refer to anoma-
lies and outliers in the same context [1]. One common misunderstanding is
anomalies equivalent to noisy data. Noise is the random error or variance
in a measured variable and can be filtered out by applying appropriate pre-
processing strategies [1]. On the other hand, anomalies are not only errors,
but are also discordant data could reveal more information about the subject
or data as a whole [11].

2.3.1 Types of Anomalies

From our research, we were able to find three different types of anomalies:
global, contextual and collective. Global anomalies, or point anomalies, are
individual data points that deviate significantly from the rest of the data set
[6]. These anomalies are easier to find than the other types because global
anomalies can be usually seen by graphing the data [1]. Figure 5 shows an
example of a point anomaly.

Contextual anomalies are points that deviate significantly from other nor-
mal points in the same context (see Figure 6). With these types of anomalies,
the data may be within the global range but is abnormal when compared
to data in the same seasonality [1]. When determining possible contextual
anomalies, it is very important to discuss the data with a domain expert as
they can help determine if a data point is an anomaly or not.

Finally, collective anomalies are a certain subset of data points that devi-
ate significantly from the entire set. With collective anomalies, the individual
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Figure 5: Visual example of global anomalies (colored orange). Source: an-
odot.com

Figure 6: Visual example of contextual anomalies (colored orange). Source:
anodot.com

Figure 7: Visual example of collective anomalies (colored orange). Source:
anodot.com
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data points that are contained in the anomalous subset individually may or
may not be anomalous themselves; it is when one looks at the data points as
a whole that they are considered anomalous [1]. See Figure 7 for an example
of collective anomalies.

2.3.2 Anomalies in fNIRS

In the domain of fNIRS, anomalies can come in a variety of ways. Some
sources of anomalous data include external head/facial motion, “bad” chan-
nels, “bad” subjects, and other unknown states. Because of the location of
the nodes and the way sensors receive brain signals, fNIRS data is very sen-
sitive to extraneous movements of the face, head and body [12]. Any small
movement of the light sources/detectors caused by shaking of the head or
making facial expressions that involve the forehead, such as frowning and
smiling, can distort the path of the near-infrared light which will misrep-
resent the data. Next, there is the detection of “bad” sensors. During an
experiment, there may be times where one of the channels does not work
properly. It could be that the light source/detector for that channel is mal-
functioning or it could be that is not receiving a high-quality signal. This
type of error can lead to faulty data and corrupt part or all of the data set
[7]. The third type of anomaly is an anomaly occurring from respiration or
heartbeat. Both these activities directly impact the amount of oxygen pass-
ing through a certain part of our body, causing sudden spikes in fNIRS data.
Finally, we have the unknown states.

2.3.3 Difficulties in analyzing fNIRS anomalies

There are some difficulties to analyzing fNIRS data. First some types of
anomalies could overlap with one another. In these cases it might become
harder to find the anomaly, and when it is found it is harder for scientists
to decide how to post-process it. Next, fNIRS data does not follow well-
known patterns in time series like the ones discussed above. Hence, we
cannot use on fNIRS data many of the common algorithms designed for
time series analysis. Finally, at the beginning of this project we did not
have any fNIRS data whose anomalies were previously labelled. This made
it harder to understand in practice the shape and the behavior of anomalies
in datasets and to evaluate the accuracy of anomaly detection algorithms.
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2.4 Commonly used methods for detecting time series
anomalies

Throughout our research, we compiled and examined a large number of
algorithms used to analyze time series and categorized them based on various
criteria. The criteria we used when examining the algorithms are:

• Its objective: whether it is noise reduction, classification, forecasting,
anomaly detection, or dimension reduction

• Used for univariate time series, multi-variate time series, or both

• Whether or not the algorithm is used specifically for time series

• If it is a statistical or machine learning method, and if not statistical
then whether it is supervised or unsupervised

We were most interested in algorithms that are either statistics-based or
unsupervised, and those that are designed for use with time series, espe-
cially multivariate ones. Listed are some of the algorithms we researched in
more depth: Auto-Regressive Integrated Moving Average, Isolation Forests,
Bayesian Networks, One-Class Support Vector Machines, and Long-Short
Term Memory Recurrent Neural Networks (LSTM-RNNs). A complete list
of algorithms their categorization can be seen in Appendix A. LSTM-RNNs
stood out among these algorithms and an anomaly detection method based
on them seemed promising during our research. Below we describe LSTM-
RNNs and the anomaly detection method in more detail.

2.4.1 Long-Short Term Recurrent Neural Networks

LSTMs made a continuous appearance during our research on tools to
analyze time series data, with usages in financial predictions, meteorologi-
cal forecasting, analysis of medical data, as well as in sequential non-time
series data such as speech and text recognition [8]. LSTMs are a type of
Recurrent Neural Network designed to better handle longer and more com-
plex sequences. To understand how LSTMs work, we need to have a basic
understanding of Neural Networks and Recurrent Neural Networks (RNNs).
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Figure 8: A simple neural network with one input layer, three hidden layers
and one output layer. Source: datacamp.com

Neural Networks

Neural Networks are a system composed of nodes organized in layers,
where every node of the previous layer is connected to every node of the next.
Once a data point gets put through the network, it gets received by every
node in the input layer. Then, these nodes send this information to every
node in the second layer. Here, every node multiplies the data from every
input it receives by a weight value (initially assigned at random). It then adds
all the weighted values together to form one output. This output is then sent
to every node of the next layer, where the cycle gets repeated again until the
end of the network is reached. The goal of the nodes is to tweak the weights
so that the final output produced from the network is as close as possible to a
desired output decided on by the user. See Figure 8 for a simple architecture
of neural networks with one input layer, three hidden layers (between the
input and output), and one output layer [aggarwal2018a]. This is the
simplest architecture of a neural network, also called a feed-forward network.

Recurrent Neural Networks

RNNs are a modification of feed-forward networks that learn by looking
at past inputted values to find patterns in data. Because of this they are
frequently used with sequential data. RNNs only contain one hidden layer,
as seen in Figure 9. Once a data point gets inputted to an RNN, it gets
multiplied by a given weight and inputted to an activation function, which
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Figure 9: Simple diagram of a Recurrent Neural Network, showing the input
xt which in this case is part of a sequence dependent on time, output ht,
a hidden layer A, and the loop followed by the generated ”memory” to be
brought back as input. Source: Colah, 2015

is usually tanh of the form f(x) = tanh(x) = 2
1+e−2x − 1 (Aggrawal, 2018).

Before the value gets outputted, the network creates a copy of the important
information about the input. After the value gets outputted and compared
to a given value in the training set provided, the weights get updated and
the next inputted value gets processed. However, the next input is summed
with the information that was remembered in the previous iteration, and then
weighted and taken through the activation function. This allows the network
to learn from the past values. The updated memory contains information
about both the first and the second value. This process continues until the
entire series has been processed.

Long-Short Term RNNs

RNNs work well for short and low complexity series. However, the system
that is put in place to update the memory of an RNN tends to prioritize new
information regardless of the importance of the old information. Because of
this, RNNs are said to have a very “short-term” memory. LSTM-rNNs (or
LSTMs for short) improve the RNN architecture to allow for processing much
longer and more complex series, through mechanisms called gates. Gates
allow them to decide what information from the data to “remember” and
what to discard. The most basic LSTM architecture consists of three gates:
the Forget Gate, Input Gate and Output Gate [10]. These gates are usually
sigmoid functions of the form f(x) = σ(x) = 1

1+e−x , where the output is the
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decision of the gate and input is the Cell State (for Forget and Input Gates)
or the input after it is processed as described in the next paragraph (Output
Gate) [10].

When a new input is received, the Forget Gate looks at the current Cell
State (the “memory” of the network, assuming this is not the first input of
the network) to decide which parts of it to forget (remove) at the end of this
iteration. Once that has been decided, the Input Gate decides which parts
of the Cell State to update with the new values from the input. Afterwards,
the new input is processed as it would in an RNN and the decided upon
parts of the Cell State are updated: some information gets forgotten, some
gets overwritten, and the rest stays the same. At this point, this cell state
is what will be transferred to the next iteration of this network. Finally, the
Output Gate decides which part of the processed input to output as the final
result [10]. This process is essentially a way to ensure that information that
is extremely important to the accuracy of the results does not get forgotten
simply because it is old, which would have been the case in RNNs. Because
of the internal structure described above, LSTMs are a powerful tool for
analyzing highly interconnected and complex data, and the reason why we
decided to focus on them for this project. However, LSTMs are designed
to fit and predict data, not to detect anomalies, so they need to be used in
conjunction with a type of error checking method to find points that differ
the most from the LSTM-generated fit. We discuss such a method during
the sample implementation of LSTMs in section 2.5.

2.4.2 Telemanom

Telemanom is an anomaly detection method built on top of LSTMs. It
was initially proposed in a paper entitled “Detecting Spacecraft Anomalies
Using LSTMs and Nonparametric Dynamic Thresholding” [3] as a way to
find anomalies in spacecraft telemetry data. Telemetry data is information
about the well-being of spacecraft systems, captured by various sensors which
form different channels, similarly to fNIRS. The tool does not take advantage
of any domain-specific information to find anomalies in data, which means
that it can be used with any type of time series data that shows similar
characteristics [3].

To find the anomalies in a dataset, Telemanom begins by training an
LSTM model on part of the data that looks least anomalous. It then uses the
trained model to predict all values of the dataset. Then, it uses mean square
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error (mse) to calculate the difference between each real and LSTM-predicted
value, creating a sequence of errors. Mean squared error is calculated using
the formula below and is a common way to calculate error between two points.

mse =
1

n

n∑
i=1

(yi − yi)
2 (1)

where n is the length of the error sequence, yi is the ith real signal value, and
yi is the ith predicted signal value.

The error sequence is then split into smaller sequences of equal length.
For each window, a threshold is calculated using the error values, of the
form mean + coefficient ∗ standarddeviation. All error values above this
threshold are removed and the mean of the sequence is recalculated. This
process is repeated until an optimal threshold is found such that removing all
error values above it causes the biggest change in mean of the sequence. The
original signal values corresponding to the errors that are above the optimal
threshold are marked as anomalous.

In the Methodology section we implement this method on a labelled
dataset and discuss its results.
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3 Methodology

In order to reach our objectives, we followed a series of steps involving cre-
ating labelled datasets, finding a way to evaluate performance of an anomaly
detection algorithm, implementing previously researched algorithms, then
creating and implementing our own anomaly detection methods. Below we
discuss each step in higher detail.

3.1 Creating a labelled set of anomalies using fNIRS

To determine the validity of any method, we have to test its performance.
In the case of Telemanom we are interested in finding how good the method
is at predicting anomalies. However, this is impossible to do without a set of
labelled anomalies - a set where the known anomalies are marked. As none of
the fNIRS datasets that were already available to us had labelled anomalies,
we created our own. We recorded 5.5 minutes of brain activity of a subject
sitting still. When directed to do so, the person would shake their head
causing a motion artifact. This artifact was considered to be an anomaly.
The fNIRS cap used on our subject was connected to 20 channels, four of
which did not provide a stable signal. Hence, the final recorded dataset
contained 16 reliable time series of 2821 points each, 1033 being anomalies.
Each anomaly corresponded to 28 data points. With this dataset in hand, we
are able to compare the predicted anomalies to the real ones to calculate how
well the method predicts anomalies. We have made this dataset available for
the purpose of reproducing the results of this study.

3.2 Performance measure of anomaly detectors

The next step in determining the performance of a method is to decide
on a metric that is objective and does not require human input to determine
the most accurate method. Because the anomalies detected by the methods
we are developing will be re-evaluated by a specialist in the field, we want
our method to find as many of the real anomalies as possible, even if it means
falsely labeling some normal values as anomalous. To determine a way to
express the statement above in mathematical terms, we started by looking at
the most commonly used measurements of performance and their meaning.

Ideally, we would like for both precision and recall to be equal to one,
because that would mean no LSTM values were incorrectly flagged as either
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Table 1: Definitions and explanations for some common terms used to mea-
sure algorithm performance

True Positives
(TP)

Values flagged as anomalous which are truly anomalous

False Positives
(FP)

Values flagged as anomalous which are not anomalous

True Negatives
(TN)

Values flagged as not anomalous which are truly not
anomalous

False Negatives
(FN)

Values flagged as not anomalous which are truly anoma-
lous

Precision

P =
TP

(TP + FP )

Fraction of values correctly flagged as anomalies out of all
values flagged as anomalies. Ranges between 0 and 1.
Shows us how good the method is at restricting its pre-
dicted anomalous points to the ones that are truly anoma-
lous.
If the model only identifies some true positives and marks
everything else as normal then precision would be 1.

Recall

R =
TP

(TP + FN)

Fraction of values correctly flagged as anomalies out of
the total number of truly anomalous points in the dataset.
Ranges between 0 and 1.
Shows us the fraction of real anomalies that were correctly
flagged as anomalous.
If all points in the dataset were labeled as anomalous,
recall would be = 1.

Fβ Score

Fβ = (1 + β)2
PR

((β2P ) +R)

An example of a harmonic mean, a kind of averaging
method. We are taking a type of average of precision
and recall, to create a balance between the two. The β
parameter is always > 0. If β is equal to one, then pre-
cision and recall are given the same importance (weight).
If β > 1, then more weight is being put on recall, and if
β < 1 precision is prioritized.
If precision and recall are both high which makes us happy,
the Fβ score is high regardless of the β value.
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normal or anomalous. However, that is highly unlikely. From the definitions
in Table 1 we notice we would ideally have a balance between precision and
recall. We previously mentioned we would rather pick a method that labels
as anomalous all areas that are truly anomalous and some areas that are not,
than a method that does not incorrectly label any anomalies but does not
label all the areas that are in reality anomalous. This means we are slightly
more interested in a high recall than high precision. The F-score, i.e. Fβ
score, provides a way to numerically express this balance. As stated in 1,
Fβ is a weighted harmonic mean that gives recall (R) β times more weight
than precision (P). For β > 0, Fβ ranges from 1 to 1. To understand how it
works we have to look at the formula for F1 i.e the balanced harmonic mean
between P and R. The formula for a harmonic mean between P and R is as
follows:

F1 = (
1
P

+ 1
R

2
)−1 (2)

which is equivalent to

F1 = 2
PR

P +R
(3)

To calculate this mean, we take the reciprocals of P and R, average them,
and then take the reciprocal of the result. This formula is also equivalent to:

F1 = (
1

2

1

P
+

1

2

1

R
)−1 (4)

To make this a weighted average, i.e to give more importance to one
variable than the other, we have to multiply P and R by two values different
than 0.5 whose sum = 1. We multiply by the larger of the weights the variable
that we want to give more importance to. In our case we pick our coefficients
as

β

β + 1
and

1

β + 1
(5)

When β = 1, the above coefficients are equal. When β is less than 1 the
first coefficient is smaller than the second, while when β is greater than 1 the
first coefficient is greater than the second. Since we want F to change more
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significantly with the change of R than P for β > 1, we assign the larger
weight to R. Thus, the weighted harmonic mean becomes:

F1 = (
1

β + 1

1

P
+

1

β + 1

1

R
)−1 (6)

which is equivalent to

F1 = (1 + β2)(
PR

(β2P ) +R
(7)

From this we expect Fβ for β > 1 to change more rapidly with changes in
R than with changes in P, because the coefficient in front of R will be bigger.
Hence for β < 1 Fβ will change faster for changes in P than in R because the
coefficient in front of P will be bigger.

Before deciding on the β value, we wanted to see if a high Fβ score
necessarily means we have high precision and recall regardless of the β value.
To determine this, we initially examined the partial derivatives of the Fβ
score, shown below.

∂(Fβ)

∂(P )
=

R2 + β2R2

β4P 2 + 2β2PR +R2
(8)

∂(Fβ)

∂(R)
=

β2P
2

+ β4P 2

β4P 2 + 2β2PR +R2
(9)

where P is precision and R is recall. From the equations above we can
see that the partial derivative with respect to P is always > 0 for B, R > 0,
while the partial derivative with respect to R is always > 0 for B, P > 0.
This means that if R is increasing and P is constant or if P is increasing and
R is constant then Fβ is also increasing. Also if P and R are both increasing
at the same time, then Fβ again increases. However, if one of either P or
R increases while the other decreases then we cannot say whether Fβ will
increase or decrease. This suggests that if P and R are high then Fβ is high,
but it does not show us whether P and R are necessarily high when Fβ is
high. Thus, we developed graphs for various β values that showcase what
the Fβ score is for each possible combination of precision and recall for β
ranging between 0 and 2, seen in Figure 10.

From Figure 10 we noticed that in general for all β, Fβ is highest when
precision and recall are both high. For betas closer to zero, we saw that
the Fβ score remains high even when recall decreases and precision is high,
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Figure 10: Contour plots of Fβ scores for β between 0 and 2

while for β close to two, Fβ remains high when precision decreases and recall
remains high. We also noticed that when we fix a certain recall and Fβ value
while increasing the β value, higher precision is needed to reach the fixed Fβ
score. Similarly, when we fixed precision and Fβ, we needed lower recall to
reach the fixed Fβ. From this we can say that for β > 0.5, a high Fβ means
we have high precision and high recall, which is what we want.

To decide on the value of β we first needed to decide on what Fβ score we
consider ”good” i.e. we are content with. We decided on F ≥ 0.7. Then, we
needed to decide on how much we are willing to lower precision on high recall
(R = 1) and still have a high Fβ. Based on our needs we decided that to get
a recall of 1 we are willing to sacrifice precision until P = 0.5. On the other
hand if we had high precision and lower recall, how low can we allow recall
to go and still get high Fβ (Fβ ≥ 0.7)? We decided that for precision = 1, a
recall of 0.6 is still high enough to ensure that enough values of the dataset
are marked as anomalous. Thus, we can choose a β that meets the following
criteria:

1. Given R = 1 then Fβ >= 0.7 only for P ≥ 0.5. That is, if R = 1 and
P < 0.5 then F < 0.7.

2. Given P = 1 then F ≥ 0.7 only for R ≥ 0.6. That is if P = 1 and
R < 0.6 then F < 0.7.

The β coefficient such that results in Fβ best satisfy these two conditions
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is 1.5.
As stated before, we want our method to find as many of the real anoma-

lies as possible, even if it means falsely labeling some normal values as anoma-
lous. This means we value recall more than precision, so we are interested in
choosing a β value higher than one. Since F1.5 reflects the fact that a higher
recall is slightly prioritized over high precision, we decided to use the F1.5

value to measure the performance of our methods.

3.3 Widening anomalous intervals

During the process of generating sample F1.5 scores for some Telemanom
results, we noticed that the flagged anomalies corresponded with the general
area where there was in reality an anomaly, but the labelled interval was
somewhat shorter, longer, or shifted from the expected anomaly. Because of
this we decided to post-process the real data by adding a buffer area, delta,
on each side of a real anomalous interval, which results in a widening of the
interval. This process extends the anomalous region from [ai, af ] to [ai − δ,
af + δ] where ai is the initial point of an anomalous interval and af is the
final point. Thus, if a predicted anomalous interval falls within [aiδ, af + δ],
then it is considered a true positive. This also helps take into account the
difference between when the subject of the experiment is given a prompt
during an experiment and when they react to it. The subject could either
react with a delay or expect to find an anomaly and react preemptively. The
reaction could either result in the anomalous section being visible before or
after the start or end of a section labelled as truly anomalous.

3.4 Implementing Telemanom

We used the Telemanom algorithm to predict anomalies in our labelled
dataset with the purpose of evaluating its performance on fNIRS data. We
trained an LSTM model on the first channel of the labelled dataset, then
used this model to predict signal values of all channels. To measure method
performance we averaged F1.5 scores of predictions in all channels. Figure 11
graphs some average F1.5 scores of predictions made using various Telemanom
parameters. These values are calculated after adding the buffer mentioned
in the previous section. The plot shows that F1.5 scores do not go above
0.3, telling us that regardless of the LSTM or Telemanom parameters, the
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Figure 11: Average F1.5 scores of all channels in the labelled dataset, ana-
lyzed using various Telemanom parameters.

algorithm does not find enough motion anomalies in the data, meaning that
it performs poorly on fNIRS data.

Figures 12 and 13 show the real and predicted anomalies in Channel
0 of the labelled dataset. From these plots one can also visually tell that
Telemanom does not flag many of the real anomalies in the dataset. However
the anomalies that it does find correspond to regions that are in reality
anomalous. Moreover, it seems that the LSTM does a good job at predicting
the general shape of the real signal curve.

3.5 Creating new anomaly detection methods

In the previous section we showed that Telemanom does not detect motion
anomalies in fNIRS well but the LSTM does a good job at predicting the
shape of the original curve, acting as a smoother. Thus, we decided to build
new anomaly detectors on top of LSTM predictions. Alongside LSTMs, we
used the concept of variation as the base of these methods. Below we describe
variation and its relationship with anomalies in a dataset.
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Figure 12: LSTM-smoothed signal values (red), real signal values (blue), and
real anomalies (yellow) for channel 0 of the labelled dataset

Figure 13: LSTM-smoothed signal values (red), real signal values (blue), and
Telemanom-predicted anomalies (grey) for channel 0 of the labelled dataset
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3.5.1 Variation as an indicator of anomalies in a dataset

Figure 14 shows the plot of the LSTM prediction and real anomalies of
Channel 0 in the labelled dataset. The common characteristic of all anoma-
lous sections is a spike in the signal values that after peaking return close
to the ones before the anomalous section started. This spike lasts only for
a short interval of time. In other words, there is a higher variability in the
values of the LSTM curve during an anomalous interval than during a nor-
mal one. Mathematically, this variability is captured through variation. The
variation of a curve over an interval of size B determines how much the curve
changes from the first to the last point of the interval. A very noisy curve has
high variation, while a smooth curve (low noise) has low variation. We com-
pute the variation vi of y from index i to i+B for every index i = 1, .., N−B
of our time series. The formula for variation is

{vi}N−B
i=1 : vi =

i+B−1∑
j=i

|yj+1 − yj| (10)

For continuous functions f(x), the analogous variation formula is

{vi}N−B
i=1 :

∫ x+B

c

|f(x)| (11)

To see if there is a significant difference in variation for anomalous versus
non-anomalous sections, we plotted the variation curve of Channel 0 along
with the LSTM-predicted signal, shown in Figure 14 where B was chosen to
be 28, as we already know the anomalous intervals last for 28 data points.
From Figure 14 we can see that there is in fact a significant difference in
variation values between normal and anomalous sections. This shows us that
high variation is an indicator of anomalies in a dataset. Because of this, we
decided to use signal variation as the base of our anomaly detection methods.

3.5.2 Variation of Variation

As described in the sections above, variation measures the variability of
the signal during a given interval. If this variability is consistent then the
variation curve will be somewhat constant. If the variability changes then the
variation values will vary as well. If we have an fNIRS curve that is constantly
noisy the variation curve might not be able to help us find the anomalies in
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Figure 14: Smoothed LSTM curve (red) and real anomalies(purple) in Chan-
nel 0 of the labelled dataset.

Figure 15: Smoothed LSTM curve (red) and the variation curve (green) in
Channel 0 of the labelled dataset.

31



Figure 16: Smoothed LSTM curve (red), variation curve (green), and real
anomalies (purple) in Channel 0 of the labelled dataset.

the curve. Hence, we became interested in the notion of variation of variation
so that we can detect changes in the variability measure. If we define noise
in a signal as what causes the signal values to change, then variation would
show us the level of noise in each interval, while variation of variation shows
the change in noise levels. Mathematically, it is defined as:

{wi}N−2B
i=1 wi =

i+B−1∑
j=i

|vj+1 − vj| (12)

where {wi} is the sequence of variation of variation values, B is the length
of the interval, and vj is the jth element of the variation sequence.

When we look at LSTM-smoothed fNIRS signal, we see the curve is
noisy throughout but the noise levels vary, with anomalous sections showing
the highest change in noise. Figure 17 shows the LSTM-smoothed signal
with variation of variation, and Figure 18 shows the variation of the LSTM-
smoothed signal alongside variation of variation, both for channel 0 of the
dataset. From Figure 17 we see that variation of variation also spikes when
there is a spike in the LSTM-smoothed signal, while Figure 18 depicts how
the variation of variation curve differs from that of variation. The biggest
difference we find is that the top of every spike in the variation curve is rep-
resented by a flattening of the variation of variation curve. Moreover, if the
variation curve spikes up, down, then back up again in an instant, variation

32



Figure 17: Smoothed LSTM curve (red) and the variation of variation curve
(purple) in Channel 0 of the labelled dataset.

Figure 18: Variation curve (green) and the variation of variation curve (pur-
ple) in Channel 0 of the labelled dataset.
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of variation is not affected by this change. This behavior gives us an indica-
tion that variation of variation can also be used in the process of anomaly
detection using our methods.

4 Results and Conclusion

4.1 New Anomaly Detection Methods

As discussed in the methodology section, we decided to use LSTMs and
variation to create our own anomaly detection methods. We also noticed
that high variation or variation of variation is an indicator of anomalous sec-
tions. Thus, for the methods to work they simply need to define a threshold
such that all variation or variation of variation values above it correspond to
anomalous signal values. With this in mind, we created the following three
methods:

• Variation of dataset with a percentile-based threshold

• Variation of dataset with a standard deviation-based threshold

• Variation of variation of the dataset with a standard deviation-based
threshold

Using the F1.5 score as an accuracy metric, we concluded that all three
methods perform similarly, but the most accurate method for this dataset
is Method 1: Variation of dataset with a percentile-based threshold. We
also used these methods to analyze labelled data from a real life experiment
to find that the percentile-based method again performed best. Below we
describe in detail the methods stated above and make comparisons between
them.

4.1.1 Method 1: Variation with Percentile-based threshold

We can see there is a difference in variation values between anomalous
and non-anomalous sections. However, we want to find a threshold such that
all variation values above it correspond to anomalous sections. One way to
do so is by looking at percentiles of variation. A percentile P denotes all
values of a curve that are larger than P percent of all values. We decided
to leverage this by marking as anomalous all signal values whose variation is
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Figure 19: Average F1.5 scores of the variation with percentile-based thresh-
old for various thresholds

above a given percentile threshold. Mathematically, the steps in this method
are as follows:

1. {yi}Ni=1: sequence of N signal values predicted by the LSTM

2. {vi}N−B
i=1 vi =

∑i+B−1
j=i |yj+1 − yj|: variation curve

3. {ri}Ni=1 ri =

{
0 if vi < P45(vi) or i > N −B
1 if vi ≥ P45(vi)

where {ri} is the resulting array of predicted anomalies structured such
that 1 is an anomalous value and 0 is a normal value. We will use the
same notation for this array of results throughout the following sections.

The advantage of using percentiles is that sparse very big or small values in
the variation curve do not have a big impact on the results of a percentile.
To understand the behavior of the algorithm we applied this method to the
labelled dataset. We found the qth percentile of variation values and flagged
all points with variation larger than that percentile. We then calculated the
F1.5 score of the results. We repeated the same process for all channels of
the dataset and then averaged the results of all channels for each percentile,
seen in Figure 19. We also looked at the resulting precision and recall values
across various thresholds, shown in Figures 20 and 21.

Figure 19 shows us that even if we mark the entire dataset as anomalous
(recall close to 1, happens at the 0th percentile), we still get a F1.5 score of
0.69, which is relatively high. Precision at the 0th percentile is 0.4. When we
chose the Fβ coefficient, we wanted precision to be at least 0.5 when recall =
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Figure 20: Average precision scores of the variation with percentile-based
threshold for various thresholds

Figure 21: Average recall scores of the variation with percentile-based thresh-
old for various thresholds
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Figure 22: LSTM-smoothed signal values (red) of channel 0 vs real anomalies
(purple) and predicted anomalies using 45th percentile (red highlights)

1 in order to get an Fβ of 0.7. In this case precision is slightly lower at 0.4,
and so is Fβ. This means the results for a low percentile shown in this graph
are not surprising. As the percentile threshold increases we notice an increase
of the F1.5 score followed by a steep decrease. The increase in F1.5 happens as
we reach percentile thresholds where the method flags as anomalous enough
values to increase both precision and recall at the same time. F1.5 starts
to decline when the percentile becomes so high that a very small number
of anomalies is being flagged. Even though the flagged values are indeed
anomalous (average precision gets closer to 1 with higher percentiles), the
recall is extremely low. As expected, this causes a steep decline in F scores.
The results of these graphs are hence not surprising, and show us that the
highest F1.5 values come from percentiles 35 to 55, with the best-performing
percentile being 45. A plot of Channel 1 of the labelled dataset with real
(blue highlights) and predicted (red highlights) anomalies can be seen on
Figure 22.

There is one disadvantage to this method, however. Marking all values
above the 45th percentile as anomalous means the method expects 55% of
the variation values to be anomalous. Thus, this method would likely take
into consideration the number of anomalies the user expects the dataset to
contain. The user is most likely to not have this information in a real-life
scenario. Moreover, the fact that the 45th percentile was a good fit for this
dataset does not mean it will be a good fit for others that might contain a
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bigger or smaller number of anomalies.

4.1.2 Method 2: Variation with standard deviation-based thresh-
old

Since using percentiles as a way to determine the threshold of anomalous
values is dependent on the user estimating the fraction of anomalies in a
dataset, we turned to other ways to set a threshold. Another method of
determining the values in a curve that deviate from the normal range of values
is standard deviation. Standard deviation measures the amount of variation
of a set of values, and when applied to the variation curve is expressed using
the formula below:

σ =

√√√√ 1

N − 1

N∑
i=1

(vi − µ)2 (13)

where σ is standard deviation, vi is the ith item of the variation array,
and µ is the average of all variation values.

A lower standard deviation means the values of the set are generally all
close to their mean, while a higher standard deviation means the values of the
set are spread further away from the mean. We can use standard deviation
to set a threshold above which all variation values are considered anomalous.
The steps of this algorithm are shown below, where the first two steps are
the same as in the previous method:

1. {yi}Ni=1: sequence of N signal values predicted by the LSTM

2. {vi}N−B
i=1 vi =

∑i+B−1
j=i |yj+1 − yj|: variation curve

3. {ri}Ni=1 ri =

{
0 if vi < µ+ Tσ or i > N −B
1 otherwise

where N is the number of data points in the dataset of signal values, vi
is the array of variation values, µ is the mean of vi, σ is the standard
deviation of vi, and T is a threshold coefficient by which the standard
deviation is multiplied.

To understand the behavior of this method, we calculated anomalies using
various possible values of T ranging from -4 to 6, looking for the threshold
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Figure 23: Average F1.5 scores of the variation with standard deviation-based
threshold for various threshold coefficients

that corresponded with the highest F1.5 score. We used negative threshold
values to label signal values that are greater than Tσ. We averaged the F1.5

scores of all 16 channels for each T value. Figure 23 shows the results of this
operation, where it is clear that -0.5 is the best-performing T value.

The behavior observed in Figure 23 above is expected: when the thresh-
old coefficient is low, more data points are flagged as anomalous, increasing
the value of recall and decreasing precision. We notice F1.5 stays constant
until about T = −0.8. This is because the entire dataset has been labelled as
anomalous, which has increased recall to 1 and decreased precision to about
0.4. Since the number of data points in the set is limited, the recall can-
not go higher and precision cannot get lower than these values, keeping F1.5

constant. As the threshold increases, less data points get flagged as anoma-
lous because points are flagged that are increasingly farther from the interval
where most data points are expected to be. This causes higher precision and
lower recall. As the threshold increases, F1.5 decreases to the point where it
becomes 0. This happens when the threshold is so high that no anomalies
get flagged, bringing the number of true positives, and hence precision and
recall, to 0. From Figure 23 it seems that this happens when the threshold
is 6, while the balance between flagging too many and too little anoma-
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lies is located at -0.5. It is also expected that we get a negative threshold.
This dataset has many anomalous values which increase the average of the
dataset. The rest of the data points are really small in value compared to the
anomalous points, which means that when many anomalous sections begin
the variation values have not yet reached the average of the variation curve.
This method is less dependent on previous knowledge about the number of
real anomalies in the dataset, making it more versatile.

4.1.3 Method 3: Variation of variation with standard deviation-
based threshold

We mentioned in the methodology section that on data that exhibits
fluctuations between noisy and smooth, variation of variation might perform
better than variation alone. Since the standard deviation-based method re-
quires less a priori knowledge than the percentile-based method, we decided
to apply this method to detect anomalies with variation of variation. The
steps for this method are outlined below:

1. {yi}Ni=1: sequence of N signal values predicted by the LSTM

2. {vi}N−B
i=1 vi =

∑i+B−1
j=i |yj+1 − yj|: variation curve

3. {wi}N−2B
i=1 : wi =

∑i+B−1
j=i |vj+1 − vj|: variation of variation curve

4. {ri}Ni=1 ri =

{
0 if vi < µ+ Tσ or i > N −B
1 otherwise

where N is the number

of data points in the dataset of signal values, vi is the array of variation
values, wi is the variation of variation µ is the mean of wi, σ is the
standard deviation of wi, and T is a threshold coefficient by which the
standard deviation is multiplied.

We generated performance results of this method in the same way as
for the previous two. Figure 24 shows the resulting F1.5 score for various
coefficients used to create the threshold, between -4 and 6. This graph shows
the same pattern of F1.5 scores across thresholds as graphs for Method 2
where a standard deviation-based threshold is applied to variation. This
behavior is expected since the variation of the variation curve follows about
the same pattern as variation. The best-performing coefficient is expected to
be slightly different since the variation of variation curve does take different
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Figure 24: Average F1.5 scores of the variation of variation with standard
deviation-based threshold for various threshold coefficients

values than the variation curve. This slightly changes the mean and standard
deviation, hence affecting the results for each threshold value.

From Figure 24 we can see the method performs quite well for coefficients
T in the range of -1 to -0.5, with -0.7 being the best-performing coefficient.
For the same reasons as explained in the results of Method 2, we are not
surprised to see a negative value for threshold as the best performing co-
efficient. Figure 25 shows the results of this method applied to channel 0
of the artificial anomalies dataset, where the curve is variation of variation,
the purple highlights are real anomalies, and the red highlights are predicted
anomalies. We can see that the method flags as anomalous almost all regions
that are truly anomalous, but goes beyond that to label the areas around
these anomalies as well. Given that we created a buffer zone (see previous
section) to widen anomalous sections, we expect and prefer this behavior to
labeling only the truly anomalous regions.

4.2 Comparing performance across methods

After generating performance metrics for all methods, we were interested
in finding which method performs best on the dataset of artificial anomalies.
Although this does not guarantee that the same method will give the best
performance on other datasets, it can still help us make comparisons between
methods and generate a recommended one for similar datasets. Table 2 shows
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Figure 25: Variation of variation (purple) vs real anomalies (purple high-
lights) and predicted anomalies (red highlights) fr channel 0 analyzed using
variation of variation with standard deviation-based threshold

Table 2: Best performing thresholds for analyzing LSTM-smoothed signal
values in the labelled dataset for each method and the respective F1.5 scores

Method No Method type F1.5 score
1 Variation + Median 0.779
2 Variation + Mean + Stdev 0.778
3 Variation of Variation 0.763

the average F1.5 scores of the three methods discussed above.
Table 2 shows that there is not a big difference in performance for all

methods. As expected, the first method, which uses variation and a median-
based threshold, performs best. However, we previously mentioned that this
could also come from the fact that we have previous knowledge about this
dataset’s number of anomalous points and length of each anomalous interval.
Without prior knowledge of the anomalies of a dataset, the variation method
with standard deviation-based thresholding performed best.
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Table 3: Best performing thresholds for analyzing real fNIRS signal values
of the labelled dataset for each method and their respective F1.5 scores

Method No Method type F1.5 score
1 Variation + Median 0.722
2 Variation + Mean + Stdev 0.713
3 Variation of Variation 0.722

4.2.1 Performance of methods using raw fNIRS signal

We generated the results for the above methods using the LSTM-smoothed
signal values as they were easier to analyze and describe. However, training
an LSTM could potentially be a really time-consuming task. Hence we were
interested to see if these methods would perform as well on the real signal
values of the dataset of artificial anomalies. Table 3 shows the average F1.5

score of each method computed on the real signal values of each channel in
this dataset.

Although the performance metrics are not as good as when LSTMs are
used, they are still quite acceptable suggesting that these methods can be
used on raw signal as well.

4.2.2 Performance of methods using a real-life dataset

The results described in the sections above are generated using a very
clean dataset that was created specifically to help us develop these meth-
ods. We were also interested in trying these methods on a dataset generated
through a real experiment, namely the SART experiment conducted at Drexel
university by Solovey et al. This experiment was conducted to understand
when users get bored or distracted while doing a task. We used the datasets
of 6 channels from one patient, each of which contains 13697 points. An
expert in the field labelled anomalies in each of these channels, with each
anomalous interval being 100 points. We then expanded the true anomalous
sections by 10 data points on each side as explained in the Methodology
section. Figure 26 shows LSTM-smoothed signals of each channel with their
respective labelled anomalies.

To collect the LSTM-smoothed sets for each channel, we trained an LSTM
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Figure 26: Real anomalies of the 6 labelled channels from the SART dataset

44



Figure 27: Average F1.5 of SART channels calculated with the percentile-
based method

model on the first channel of the dataset, and used it to predict the signal
value of all other channels. We continued to use an interval of 28 data points
to calculate variation and variation of variation. We then ran each method
on all channels for various thresholds, collected the F1.5 scores, and averaged
the scores of all channels to generate one F1.5 score per threshold value. The
graphs of these results and their explanations can be seen below.

Performance of Method 1 on SART data: Variation with Percentile-
based Threshold

The results from variation with a median-based threshold on SART data
resemble those of the previous dataset. Although the best F1.5 score is
achieved at a higher percentile, the 70th, this is expected as the ratio of
normal to anomalous points changes from the previous dataset.
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Figure 28: Average F1.5 of SART channels calculated with the standard
deviation-based method

Performance of Method 2 on SART data: Variation with Standard
Deviation-based Threshold

The curve of Figure 28 1 shows the F1.5 scores for method 2 calculated
using various threshold coefficients with SART data. This curve is very
different from that of the F1.5 scores generated by running the same method
on the first dataset. This might result from the fact that the anomalies seem
to cause higher spikes in variation compared to normal values. Figure 29
side by side comparisons of variation curves of a channel from the first and
second datasets.

From Figure 28 we see that most anomalies represented by variation val-
ues spike to about 0.5. However, there are some that go beyond 0.5. When
the coefficient is low, the method labels more values as anomalous, flagging
all visible spikes in variation as anomalies. Thus we see higher F1.5 scores
when the threshold coefficient is less than zero. As this coefficient increases,
less values are marked as anomalous. The first drop in the F1.5 curve val-
ues can be attributed to the threshold values increasing to above 0.5 and
the method labelling as normal all but the highest spikes. The second drop
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Figure 29: Comparison between variation (green) and real anomalies (purple)
of one labelled dataset of artificial anomalies (left) and SART (right)
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Figure 30: Average F1.5 of SART channels calculated with the variation of
variation with standard deviation-based threshold method

can be attributed to the fact that the threshold value approached 1, at which
point no values were labelled as anomalous giving us an F1.5 score of virtually
zero.

Performance of Method 3 on SART data: Variation of Variation
with Standard Deviation-based Threshold

Figure 30 represents F1.5 scores generated while using method 3 with
varying threshold coefficients on the SART dataset. The shape of this graph
also does not resemble that of F1.5 scores of the same method computed on
the first dataset. We expect the reason for this behavior to be similar to
that of Method 2. As the threshold increases, slightly less anomalies are
labeled. Since the anomalies that were re-labeled as normal were not real
anomalies, re-labeling them as normal increases the F1.5 score. This is the
case for threshold coefficients between -1 to 1.7. Threshold coefficients above
1.7 result in threshold values increasingly closer to 1, meaning only a very
small number of anomalies to no anomalies are labelled. This behavior causes
the drop of F1.5 scores when the threshold coefficient goes beyond 2.5.
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Overall, we see slightly worse F1.5 scores when running all three meth-
ods on this dataset. However, the methods’ performance is still acceptable.
Further improvement of these methods could include shifting the anomalies
detected using variation and variation of variation by B or 2B elements re-
spectively, where B indicates the interval at which the variation values were
computed.

4.3 Relevance of method to users of anomaly detection
toolkit

From these results we suggest that users opt for Method 1 if they know
the expected number of anomalous regions in their dataset. They can decide
on a threshold based on the percentage of the entire dataset that the real
anomalies take. We expect method 2 to work well for most datasets. If
the user has some labeled data, we suggest they run a comparison of F1.5

scores for various coefficients to find the one that will perform best on their
dataset. If this option is not available then the user can use our suggested
coefficient, -0.5. Method 3 is useful when part of the data contains normal
sections whose values change very rapidly.

4.4 Anomaly detection platform

We aimed to make the anomaly detection algorithms described above
available and easy to use by analysts as well as users with little technical
knowledge. To do so we first needed to understand who would benefit most
from using these algorithms. First and foremost, we have scientists who are
interested in getting anomaly detection results on their experiments as easily
and quickly as possible. Then there are developers who are working on larger
anomaly detection tools, want to automate the process, or for other reasons
want to programmatically interact with our tool. As these two categories
of users have different requirements and will interact with our tool in very
different ways, we decided to create two different products: an Access Point
Interface (API) to cater to developers, and a website directed towards the
rest of the public. Both these products have the same functionality, but differ
in how the user interacts with them to get the desired result. We also needed
to create user manuals to help users get started with and navigate our tool.
This resulted in the following three main deliverables:
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1. API

2. Website

3. User Guide

These deliverables can be found in this Github repository. In the following
sections we discuss in higher detail the workflows of the API and website,
tools used to make it possible, and finally we provide examples of our tools
at work.

4.5 Workflow of API

The main purpose of the Anomaly Detector API is to detect anomalies in
user-submitted datasets and return them formatted as binary arrays where
1 is an anomalous value, and 0 is a normal value. To do so, the API goes
through the following steps. Figures of each of these steps can be seen in the
demonstration that follows:

1. Enable users to input a JSON object to indicate submission of an
anomaly detection job. The JSON object will contain the following
information. Figure 31 shows a sample user input. There are no de-
fault values for any of them except the algorithm parameters:

• job name: The name of this anomaly detection job

• job description: The description of this anomaly detection job

• test: An array containing paths to .csv files with signal values of
all channels to be analyzed

• job type: The algorithm to use. The options are Telemanom,
Variation with Percentile-based Threshold, Variation with Stan-
dard Deviation-based Threshold

• signal type: Whether or not LSTMs will be used to smooth the
curve, and whether the LSTM model will be newly trained or
is a previously trained model. The options are raw, LSTM-new,
LSTM-prev

• alg params: Algorithm parameters. Default values for these pa-
rameters seen in Appendix B.
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Figure 31: Sample JSON for submission of a new anomaly detection job

• train: An array containing the training set data. If the user is not
training a new LSTM model, they can leave the array as empty

• times: A dictionary with three keys: type, param 1, and param 2.
The value for type has to be times, while param 1 and param 2
are indices of data points in the set. All points between param 1
and param 2 in the dataset will be used to train the model

• prev model id: The ID of a previously trained LSTM model.
This parameter is only necessary if the user wants to use a pre-
viously trained LSTM model by choosing LSTM-prev for the sig-
nal type parameter.

2. Parse input to obtain necessary information

3. Start anomaly detection job
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Figure 32: Sample job in database with a Job in Progress status

Figure 33: Sample job in database with a Job Completed status

4. As job progresses, update its progress on a database, as seen in Figure
32

5. If job completes successfully, update the job with a results parameter
as seen in Figure 33, containing the following:

(a) anom array: A binary array of results for each submitted chan-
nel, where 1 represents an anomalous point and 0 represents a
normal point

(b) smoothed signal: The raw signal values or LSTM-smoothed val-
ues, depending on whether user chose to use LSTMs

(c) num anoms: The total number of anomalies found

6. If job fails, update the progress parameter with Job interrupted - error
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Once the job is initialized, the API returns to the user the unique ID of
that anomaly detection job. Alongside the basic job submission functionality,
the API offers users the option to check the status and results of any previ-
ously submitted anomaly detection jobs. To do so, the user has to submit
a separate request to the API and provide the name or ID of their request.
Below we give brief descriptions of the main steps the API follows to com-
plete the user’s requests of submitting a new job or asking for the status of
a previously submitted one.

4.5.1 Submitting a new anomaly detection job

Once the user submits the json object shown above in the form of a POST
request to /submit request, the API parses the JSON to see if it is a valid
request to start an anomaly detection job. Then, the API retrieves the .csv
files from the paths the user supplied, parses the file data, and saves the
content as arrays of values in internal memory. The .csv file has to contain
at least two columns, the first one containing signal values, and the others
containing event values if there are any. If the user does not have or want
to include events with their signal values, then the second column should
be filled with zeros. If the arrays follow this pattern, the API assigns the
job a unique ID, and places it in a queue. It then returns to the user a
successful submission message and this job ID. If no other jobs are currently
running, this job will be initialized. Otherwise, it will wait in the queue until
all previously submitted jobs are finished. This is done to ensure that no
code is being manipulated by two different processes at the same time. It
also allows the user to keep interacting with the API without having to wait
for any processes to finish. This means they can request to view previous
submissions or submit a new job while the previous jobs are still waiting or
being processed.

Parsing algorithm parameters from user input

Each anomaly detection method requires a set of parameters to properly
be executed. Although the API offers the user the option to to input values
for these parameters, they can also choose not to. In that case, the API will
simply use a set of default values. These default values are saved in a .yaml
file in the code. When a new job is about to start, the contents of this file
are parsed, then updated with the values from the user’s input. The default
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values for the algorithms used in our code can be found in Table 1 above.

Preparing data for use with anomaly detection algorithms

Once a given anomaly detection job leaves the queue and starts running,
the first step to execute is reformatting the signal values to fit the appropriate
anomaly detection method. It has been shown in the previous section that
the API initially saves the datasets inputted by the user as arrays. These
arrays are now manipulated in various ways depending on whether the user
wants to use LSTM smoothing on their data. If smoothing is performed,
each element of each array gets normalized using minmax normalization. If
a new LSTM model will be trained, all arrays selected for training will be
merged. Then, the generated model will get used to predict values on each
array of the provided testing set. If a new model will not be trained, then
the model selected by the user will be used to make the predictions. If no
LSTM smoothing is performed, the code simply normalizes the data arrays
between 0 and 1.

Running anomaly detection algorithms and saving results to the
database

After the successful manipulation of the data and algorithm parameters,
the API calls the anomaly detection algorithm and submits the parameters
of this job on the database, with the Job initialized status. As the algorithm
runs, it updates this database entry with its progress. When the job is
completed, the database entry is updated with the status Job complete, and
the submission on the jobs collection of the database is updated. This object
includes the unique id of the job, its name and description, the parameters
used, as well as for each dataset its filename, predicted signal value, array of
anomalies, and number of anomalous intervals.

If the job also required training a new LSTM model then the resulting
.h5 file is saved in another cluster of the database alongside the name and ID
of the current job. When a user wants to predict using a previously trained
model, the API looks in this cluster for a model with a matching name or ID.
The user can also see details associated with all the previously saved models,
including their IDs, by submitting a request to the API.
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Figure 34: Returned detail and status after requesting job progress

4.5.2 Requesting status of a given job

The user can also request the status of a submitted job. To do so, they
have to submit a POST request to /job progress, with the request body being
a JSON with a single key called id, and the value being the ID of the job.
The API looks for such a job in the database, and if one is found it returns
to the user its details and status, as seen in Figure 34.

The following are the possible status messages:

1. Processing user input

2. Preparing datasets

3. Job queued

4. Job initialized

5. Job in progress - preparing sets for LSTM

6. Job in progress - training / loading trained model

7. Job in progress - predicting output

8. Job in progress - calculating errors

9. Job in progress - calculating anomalies

10. Job complete

11. Job interrupted - error
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4.5.3 Retrieving all details of a given job

To get all information relating to a given job, the user has to submit a
POST request to /job details, with the request body being a JSON with a
single key called id, and the value being the ID of the job. The API requests
the job with the given ID from the database and returns it to the user in the
same format as shown in Figure 33.

4.5.4 Retrieving all submitted jobs

By submitting a POST request to /get jobs the user can receive all pre-
viously submitted jobs, regardless of whether they have been completed or
not. The returned result is an array of JSON objects containing information
about all jobs in the database, again in the same format as in Figure 33.

4.5.5 Retrieving all saved LSTM models

The user is also able to get information about all saved LSTM models
by submitting a POST request with the same body structure as above to
/get saved models.This returns all information stored in the database for all
jobs whose LSTM models have been stored.

4.5.6 Demonstrating the job submission process

To demonstrate the API’s functionality we will submit a sample job
running Variation with Standard Deviation-based Threshold on an LSTM-
smoothed signal from a newly trained model.

1. We submit a request containing the information seen in Figure 35 to
the /submit request url endpoint. Once the request is submitted, we
receive a response like in Figure 36:

2. To understand how the job is being processed we can see the logs
outputted in the backend. First, we see the parameters in Figure 37
will be used. Since we only added the B parameter, all others were set
as default.

3. Then, we see a progress update followed by starting the LSTM
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Figure 35: JSON of sample request submission

4. Afterwards, the model gets trained. After it is done training, it updates
progress and predicts outputs for the user-defined channels. We can see
this in the logs in Figure 39

5. Once predictions have been made, the smoothed arrays are sent to the
Variation with standard deviation method and anomalies are calculated
separately for each channel. The progress update seen in Figure 40

6. Once this step is also completed, our algorithm is finished. We can see
this through the following output as well.

In the meanwhile, the job has been saved to the database and we can
retrieve its information through the API through a POST request to
/job details. Figure 42 shows the body of the request and Figure shows
a snippet of its returned response.
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Figure 36: Response to request submitted in Fig. 35

Figure 37: Runtime parameters when running an anomaly detection job

Figure 38: Progress update of job to ”Starting LSTM”
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Figure 39: Job progress update to predicting output

Figure 40: Job progress update to starting anomaly detection algorithm

Figure 41: Job progress update to job complete

Figure 42: Body of request submitted to /job details url
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Figure 43: Snippet of response to request submitted to /job details url
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Figure 44: Diagram of website workflow. Pink boxes indicate the first or last
pages of the site.

4.6 Workflow of website

To build the website, we added some extra functionality to the API code
and a user interface to make the site as easy as possible to use. The site was
developed using only HTML, CSS, and plain Javascript, with the help of
libraries like Bootstrap and Plotly. The site can complete the same functions
as the API, with the addition of the possibility to visually see all details of
all previously submitted jobs. The diagram in Figure 44 shows the workflow
of the site.

Below we show the layout of main pages and show step-by-step instruc-
tions of what the users should do at every screen depending on the outcome
they want to achieve.

4.6.1 Website demonstration: Starting a new anomaly detection
job using LSTM signal values

This is a demo where we will submit a new anomaly detection job us-
ing signal values smoothed with LSTMs and view it visually once it has
completed. There are also other scenarios but we will focus on this for this
presentation.

1. From the homepage, click on Start New Anomaly Detection Job
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Figure 45: Homepage of Anomaly Detector site with clicked dropdown button
indicating the button that will initiate an anomaly detection job on signal
smoothed with a new LSTM model

2. On the dropdown menu, click New LSTM Model as shown in Figure
45. Doing so will take you to the next page.

3. The page in Figure 46 allows users to pick the anomaly detection al-
gorithm. In this page, the next button is deactivated until the user
selects at least a method and a job name. A description can also be
added to allow the user more space to give additional details about
the job, but it is not necessary. The job name can take any form the
user likes. Clicking the checkbox to use current time as job name au-
tomatically names the job after the current date and time. For this
demonstration we will name the job ”demo for paper” and pick Tele-
manom as the anomaly detection algorithm because it is the only one
whose functionality requires the use of LSTMs.

By selecting this algorithm we notice the currently picked method
changes from None to Variation with Standard Deviation-based Thresh-
old, and a short paragraph containing some information about the
method appears. This is done to make it easier for users to understand
what algorithm they have chosen. If users switch between different
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Figure 46: Page where users can input a job name and select an anomaly
detection algorithm

algorithms, both these fields change accordingly.

4. Pressing the Next button on the page of Figure 46 page takes the user to
a page devoted towards inputting datasets and algorithm parameters,
shown in Figure 47. The content of this page changes based on the
picked method and whether or not the signal will be LSTM-smoothed.
We can start by inputting training and testing sets. The user can either
upload new sets or pick previously uploaded ones from the selection
box. There are no limits to the number of sets the user can choose,
as long as all the arrays combined are less than 5MB in size. Picking
one option disables the other. In this case we can pick two previously
uploaded sets to train on, 1.csv and 2.csv, and two others to predict on,
3.csv and 4.csv. When the training sets are selected, the boxes asking
for start and end data points get automatically filled with 0 and the
summed length of the selected training arrays. The user can lengthen
or shorten this input as desired within the given range of numbers.

All the parameter fields get automatically populated by the default
values stored in the config.yaml file mentioned previously. If the user
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Figure 47: Page where users can select LSTM and anomaly detection param-
eters, as well as sets used to train the LSTM model and predict anomalies.
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Figure 48: Page showing successful submission of the anomaly detection job

Figure 49: Page showing all previously submitted jobs

wants to change any of them, they can do so, and they can restore the
default value of the parameter by clicking on its name. For this demo,
we will keep default parameters.

5. When the next button is pressed, the information is sent to the server
and the job gets initialized. The user sees the success page shown in
Figure 48. The backend process at this point is almost identical to that
shown on the API demonstration above.

6. Clicking on View Previous Jobs sends the user to a page where they
can see all previously submitted jobs and their details shown on Figure
49. In this page they can search and filter jobs, as well as click on them
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to see more details.

Clicking on the job we just submitted shows us all details related to
the job and gives us the option to delete the job or visualize its results,
as shown on Figure 50.

Clicking on Visualize results takes us to a new page where all arrays
or curves corresponding to this submission are visualized. The initial
layout of the page looks like Figure 51:

Differently colored graphs represent different types of curves (blue -
real signal curve, red - LSTM-predicted signal curve, orange - variation
curve, grey highlights - anomalies). These colors remain the same re-
gardless of how many channels are being displayed. If we want to only
analyze a single channel we can use the toggle buttons on the top of
the page to toggle on just those curves. We can also toggle individual
curves by clicking on the legend entries. This is helpful if we want to
analyze and compare how two specific curves affect each other. This
graph is generated with Plotly and as such it offers by default options
to drag and zoom, pan, show or compare data points on hover, and
more. Finally, clicking on the button at the top of the page shows a
dropdown of the job information similar to the one on the previous
page.
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Figure 50: Details of submitted job displayed once user clicks on job entry
on the table

Figure 51: Visualization of anomaly detection results
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4.7 User Guide

Both the website and API come with a user guide which aims to provide
general guidelines for using these tools. The guide shows the user how to
set up their digital environment to run the anomaly detection jobs, how to
format the datasets, and how to navigate the API and website, and can be
found here.

5 Future work

Future work on this project includes developing and expanding of the
current anomaly detector methods and of the toolkit.

5.1 Future work on anomaly detector methods

There are two main parts where progress can be made on the anomaly
detection algorithms. Once is improving the way variation is calculated, and
the other is the development of a new anomaly detector method that finds
optimal thresholds similarly to Telemanom.

5.1.1 Recalculating variation

During testing of the new anomaly detector methods we noticed that
detected anomalies were shifted by at least B points from the real anomalies.
This is because every ith point of the variation array corresponds to points
i through i + B or the real signal array. To fix this issue we can recalculate
variation so every ith point of variation corresponds to points i− B

2
to i+ B

2
.

The new formula for variation then becomes

{vi}N−B
i=1 vi =

i+B
2∑

j=i−B
2

|yj+1 − yj| (14)

The variation array could also be appended by B
2

0’s in its beginning and
end to make its length equal to that of the signal array. This would shift
the location of every ith point in the variation array to i+ B

2
aligning it with

its respective signal value. These changes could improve the accuracy of the
anomaly detection algorithms.
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5.1.2 New anomaly detection method

A popular way to find outliers in a curve is by calculating the mean of
the curve and picking values in it such that their removal causes the greatest
change in the curve. We saw this method used in Telemanom and in the
Mathematical Optimization class at WPI, MA 4235. We can adapt this
concept to variation: we can split the variation array into smaller sections,
and calculating a threshold such that removing all variation values above it
causes the greatest change in the mean of the section. This method might
have potential given the fact that anomalies in the real signal cause very
large and concentrated spikes in variation.

5.2 Future work on toolkit

The website and API could benefit from many additions, which we will
describe below.

5.2.1 Adding real anomalies

So far once an anomaly detection job is complete the user is able to
visualize its results, but they cannot visualize its real anomalies even if they
have the data for it. It would be good to give users the option to upload a file
with the real anomalies so they can visualize them alongside the predicted
ones.

This option could be added in the page where users visualize their results.
This page gets generated by visualize results.html and visualize results.js.
We can add an upload box in the html file and on the javascript file we can
add its functionality. Once the user uploads a file we can extract the data
from it and add it to the plot. The plot is a global object in this .js file, and
we can add the new data to it by following the plotly documentation.

5.2.2 Comparing between algorithms

Users of the website could greatly benefit from the ability to compare
between the results of different job submissions as it would allow them to
view the differences in results and help them understand which methods
work best for a given dataset.

To allow for comparing between job results we must first allow the user
to choose between which jobs to compare. This could happen on the View
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Jobs page: when the table containing all the jobs is loaded it could contain
a column named Compare with a checkbox on each row. Once the user
clicks on the jobs they want to compare they can click a button that will
take them to a new page containing the information for all selected jobs.
The code for adding the checkboxes should be added to the results.html and
results.js files. In results.html, another column should be added to the table,
while in results.js code to update the table rows should be added to the
updateProjectTable() function.

Once the Compare command is called we need a way to change to a new
page and get the information about the selected jobs. In the results page we
already have all the data for all the jobs in the database. We can use the
sessionStorage variable to pass the job data from results.html to the new page
where comparison results will be visualized. This gives us all the information
we need to compare all results both visually and numerically.

5.2.3 User Interface for adding anomaly detection algorithms

To make the process of adding anomaly detection algorithms easier we
can add another section in the website where users can upload their own
anomaly detection algorithms. The users should be able to submit a .py file
with the anomaly detector code, and a .yaml file with the display name for
the algorithm, whether it works on real signal values, their LSTM predic-
tions, or both, and the default parameters for it. For the algorithm to work
with the current code a screen name, a variable name, and the actual default
value is required. The variable name and its value should be added to the
config.yaml file located in the config files folder. The .py file should be put
in its own folder added under the algorithms folder. Then, the algorithm
type and the display names should be added to the default parameters vari-
able in the AnomalyDetector object. Finally, the run job() method in the
Anomalydetector object needs to be updated with another if statement that
initializes the object of the new algorithm which is defined in the uploaded
.py file.
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Appendices

A Table of researched algorithms

The table in the image below shows algorithms we researched during the
beginning of this project and their categorizations

Type of Algorithm Classification Forecasting Similarity Detection Dimension Red. Noise Red. AD Used on Timeseries Specific Univariate/Multivariate Supervised/Unsupervised

ARIMA Yes Yes Yes Yes All Yes U NA
VARMA Yes Yes Yes Yes All Yes M NA
Fourier Expansion / FFT Yes Yes Yes Yes No but helps Periodic No U NA
OC-SVM Yes Yes Yes All No All S
J48 Yes Yes Yes All No U S
Random Forests Yes Yes All No All S
Isolation Forest Yes Yes Yes All No All U
Naive Bayes Yes Yes Yes Yes All No All U
DBN Yes Yes Yes All Yes All U
CNNs Yes Yes Yes All No All U
PCA/RPCA Yes Yes Yes All No All U
ICA Yes Yes Yes Yes Yes All No All U
RNN-LSTM Yes Yes Yes All No All U
FDR Yes All No All NA
Exponential/Double Exponential Smoothing Yes Yes All Yes All NA
Bayesian Networks Yes Yes All No All Supervised
Confusion Matrix/precisions and recall
Correllation Matrices Yes
Bayesian Inference Yes All No Unsupervised
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B Table of default parameters for each method

73


	Introduction
	Background and Literature Review
	Time Series
	Characteristics of Time Series
	Uni-variate and Multivariate Time Series

	Functional Near-infrared Spectroscopy
	How fNIRS Technology Works
	The benefits of fNIRS for HCI/BCI

	Anomalies
	Types of Anomalies
	Anomalies in fNIRS
	Difficulties in analyzing fNIRS anomalies

	Commonly used methods for detecting time series anomalies
	Long-Short Term Recurrent Neural Networks
	Telemanom


	Methodology
	Creating a labelled set of anomalies using fNIRS
	Performance measure of anomaly detectors
	Widening anomalous intervals
	Implementing Telemanom
	Creating new anomaly detection methods
	Variation as an indicator of anomalies in a dataset
	Variation of Variation


	Results and Conclusion
	New Anomaly Detection Methods
	Method 1: Variation with Percentile-based threshold
	Method 2: Variation with standard deviation-based threshold
	Method 3: Variation of variation with standard deviation-based threshold

	Comparing performance across methods
	Performance of methods using raw fNIRS signal
	Performance of methods using a real-life dataset

	Relevance of method to users of anomaly detection toolkit
	Anomaly detection platform
	Workflow of API
	Submitting a new anomaly detection job
	Requesting status of a given job
	Retrieving all details of a given job
	Retrieving all submitted jobs
	Retrieving all saved LSTM models
	Demonstrating the job submission process

	Workflow of website
	Website demonstration: Starting a new anomaly detection job using LSTM signal values

	User Guide

	Future work
	Future work on anomaly detector methods
	Recalculating variation
	New anomaly detection method

	Future work on toolkit
	Adding real anomalies
	Comparing between algorithms
	User Interface for adding anomaly detection algorithms


	Appendices
	Table of researched algorithms
	Table of default parameters for each method

