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Abstract

Failure is a necessary step in the process of learning. For this reason, there has

been a myriad of research dedicated to the study of student perseverance in the

presence of failure, leading to several commonly-cited theories and frameworks to

characterize productive and unproductive representations of the construct of persis-

tence. While researchers are in agreement that it is important for students to persist

when struggling to learn new material, there can be both positive and negative as-

pects of persistence. What is it, then, that separates productive from unproductive

persistence? The purpose of this work is to address this question through the de-

velopment, extension, and study of data-driven models of student affect, behavior,

and knowledge. The increased adoption of computer-based learning platforms in

real classrooms has led to unique opportunities to study student learning at both

fine levels of granularity and longitudinally at scale. Prior work has leveraged ma-

chine learning methods, existing learning theory, and previous education research

to explore various aspects of student learning. These include the development of

sensor-free detectors that utilize only the student interaction data collected through

such learning platforms. Building off of the considerable amount of prior research,

this work employs state-of-the-art machine learning methods in conjunction with the

large scale granular data collected by computer-based learning platforms in align-

ment with three goals. First, this work focuses on the development of student models

that study learning through the use of advancements in student modeling and deep

learning methodologies. Second, this dissertation explores the development of tools

that incorporate such models to support teachers in taking action in real classrooms

to promote productive approaches to learning. Finally, this work aims to complete



the loop in utilizing these detector models to better understand the underlying con-

structs that are being measured through their application and their connection to

productive perseverance and commonly-observed learning outcomes.
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Chapter 1

Introduction

Failure is a difficult, yet inevitable and necessary step in the process of learning.

Perseverance or persistence in the presence of failure is often considered the key

to eventual success, having been studied through a myriad of research pertaining

to grit [DPMK07], academic tenacity [DWC14], perseverance [PS+04][FRA+12],

resilience [MW09], productive struggle [War15] and productive failure [Kap08]. In

each of these models and theories, persistence alone is not enough to quantify a

student’s performance or effectively characterize their behavior. Student success is

not simply a measure of whether that student made an attempt or quit, but also

incorporates a measure of how much meaningful processing occurred during the

learning activity [CGSG04]. This latent construct of learning, commonly described

as cognitive engagement [WGM06] is likely a distinguishing factor that separates

productive from unproductive persistence, or perseverance as these terms will be

used interchangeably throughout this work, exhibited by students on a particular

learning task.

But what makes persistence productive? It has become clear in studying learning

that not all persistence is beneficial to a student and additional practice, particu-
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larly when there is a gap in knowledge, may not help the student to progress toward

understanding or mastery of the material. This case has been previously studied

through a behavior known as ‘wheel spinning’ and describes when a student ap-

plies effort but exhibits little-to-no progress toward mastery of the topic [BG13].

However, it is necessary for students to exhibit some persistence when faced with

struggle because giving up too soon may deprive the student of practice opportuni-

ties to either remedy the misunderstanding or gap in knowledge or, at the very least,

provide assessment to identify the potential causes of the difficulty. This aspect of

persistence has been studied through cases of student attrition as either ‘dropout’

[CRK15][XCSM16][YSAR13][RCY+14] describing a course or school-level attrition

or ‘stopout’ [BVIH19] describing a lower, assignment-level attrition.

Wheel spinning and student attrition, henceforth referenced as student stopout

to reflect the granularity of measurement observed in the current work, describe two

aspects of unproductive persistence, but do not necessarily inversely describe pro-

ductive persistence comprehensively. Surely, these two previously-studied behaviors

are measures of unproductive persistence, but that does not mean that these are

the only measures describing a lack of productivity. By definition, productive per-

sistence describes cases where a student benefits from additional practice in regard

to future learning, and as such, likely requires some level of cognitive engagement

from the student as previously described. In forming the definition of productive

perseverance, it becomes clear that there are numerous learning constructs involved

and they likely interact in complex ways. Furthermore, the behaviors themselves

can be observed at varying levels of granularity as engagement and persistence can

be observed within a single learning task, across learning subtasks, or even at more

longitudinal granularities across learning tasks.

To understand productive persistence, researchers must understand, identify, and
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quantify student engagement and the surrounding behaviors. While the number

of learning constructs that could describe student engagement is vast, this work

focuses on three identified categories of measures: knowledge, behavior, and affect.

While each of these describe inherently latent constructs of learning (i.e. one cannot

directly observe the knowledge of a student), these constructs can be operationalized

through various measures that are internally and often externally validated.

The adoption of computer-based learning systems in real classrooms has provided

invaluable opportunities to study the learning process not only with fine levels of

granularity, but also longitudinally and at large scale across multitudinous class-

rooms in various geographic settings and urbanicities. The depth and breadth of

data recorded as students interact with these systems has allowed researchers to

develop and evaluate learning theory in a manner that can help drive intervention

and improve instruction.

Detectors of various student knowledge, behavior, and affect have been developed

by combining existing learning theory with data collected from students interacting

with computer-based learning environments. While some of these detectors are

commonly associated with assessment measures of student knowledge (e.g. current

or future correctness), others have focused on more behavioral (e.g. taking advantage

of, or gaming the system), and even affective (e.g. boredom) attributes. While

some research has utilized physiological sensors external to these learning systems

(c.f. [ACB+09]), many instead rely only on the student interaction data and find

patterns of activity that are found to correlate with externally validated measures

of these various learning constructs; these later detectors, referred to as “sensor-

free” detectors [PRB+16][BBH17], have greater potential for application at scale

and across learning environments (both in terms of the learning system but also the

physical environment in which students work) as they do not require the installation
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of additional sensors which may be both costly and also intrusive.

By distinguishing between productive and unproductive perseverance, it is the

hope that this dissertation can facilitate much broader impacts in the study of

student knowledge, behavior and affect and lead to actionable understanding of these

constructs. The concepts that inspire this dissertation follow previous education

research and learning theory to develop measures and detectors of student learning.

This research promotes a better understanding of the relationship between such

measures and detectors, and using these relationships to develop interventions aimed

to support positive learning practices.

This dissertation is divided into three parts that address the development of

sensor-free detectors of student behavior and affect, the development of tools to

support action and intervention, and finally the deeper exploration of the detec-

tor models in the context of identifying relationships in the measured underlying

constructs of learning. Throughout these parts, the chapters include a collection

of publications, manuscripts in submission, two submitted federal grants (one of

which that has been funded as NSF #1822830), and in-preparation works. Where

applicable, the chapter title is accompanied by the associated abstract and citation

with the author listing in acknowledgement of the invaluable contributions of all

co-authors.
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Part I

Developing, Improving, and

Applying Student Models to

Study Learning
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Chapter 2

The Prediction of Student First

Response Using Prerequisite Skills

Botelho, A., Wan, H., & Heffernan, N. (2015, March). The prediction of student

first response using prerequisite skills. In Proceedings of the Second (2015) ACM

Conference on Learning @ Scale, 39-45. ACM.

Abstract

A large amount of research in the field of educational data analytics has

focused primarily on student next problem correctness. Although the predic-

tion of such information is useful in assessing current student performance, it

is better for teachers and instructors to place attention on student knowledge

over a longer period of time. Several researchers have articulated that it is im-

portant to predict aspects that are more meaningful, inspiring our work here

to utilize the large amounts of student data available to derive more substan-

tial predictions over student knowledge. Our goal in this paper is to utilize

prerequisite information to better predict student knowledge quantitatively

as a subsequent skill is begun. Learning systems like ASSISTments and Khan

Academy already record such prerequisite information, and can therefore be
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used to construct a method of prediction as described in this paper. Using

these inter-skill relationships, our method estimates students initial knowledge

based on performance on each prerequisite skill. We compare our method with

the standard Knowledge Tracing (KT) model and majority class in terms of

the predictive accuracy of students first responses on subsequent skills. Our

results support our method as a viable means of representing student pre-

requisite knowledge in a subsequent skill, leading to results that outperform

the majority class and that are comparably superior to KT by providing more

definitive student knowledge estimates without sacrificing predictive accuracy.

2.1 Introduction

A large amount of research in the field of educational data analytics has focused

primarily on student next problem correctness. Events such as the Knowledge Dis-

cover and Data Mining Competition held in 2010 (www.kdd.org), more commonly

referred to as the KDD Cup, directs the attention of the field to the prediction of

next problem correctness; while perhaps useful in performance evaluation, the abil-

ity to predict next problem correctness has certain limitations in regards to utility

especially when assessing student knowledge over larger periods of time. Others in

the field have begun raising other meaningful questions[BmCMC08] [PH10b][WH13],

realizing the importance of predicting or observing aspects that are much more sub-

stantial. Intelligent tutoring systems (ITS) provide a wealth of student data from

which more meaningful predictions and observations can be derived. Our work

here aims to utilize this data to provide more significant information pertaining to

student knowledge to teachers and instructors.

For our research, we emphasize constructing a more precise prediction on stu-

dents’ initial knowledge approaching a new skill. In the general case, students move
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gradually from an initial state of knowledge toward mastery, and student models

should capture this change. Thus, a more accurate estimation of this initial knowl-

edge could lead to a better understanding of a student’s knowledge state at any

observable time, and consequently, we could use the model’s results to develop more

precise predictions of future performance.

In this paper, we utilize prerequisite information to predict student initial knowl-

edge on subsequent skills. If a skill ‘A’, is a prerequisite of skill ‘B,’ students should

have mastered ‘A’ before proceeding to ‘B.’ The prerequisite relationships used in

this work are defined by domain experts. Due to human effect, some skill relation-

ships might be overestimated, or they may not exist in other applications. As such,

we are seeking to answer the following two questions in this paper:

1. Does prerequisite information really help to improve the estimation of initial

knowledge on subsequent skills?

2. Are all prerequisite relationships reliable?

We address these questions through three experiments to first observe trends of

distribution across our proposed binning method, and then to compare the predictive

accuracy of that method to that of KT and majority class across all skills and at an

individual skill level.

The next section will introduce a background of our comparative model, KT,

after which we will described the dataset used in our trials. The following section

will discuss our proposed binning methodology before illustrating the results of our

experiments, and, finally, we state our contributions, conclusions and intended future

work in this field of research.
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2.2 Background

The knowledge tracing (KT) model [CA95] developed by Corbett and Anderson has

long been successful in the field of student assessment. Its implementation and use in

tutoring systems and use in performance analysis systems exemplifies its practical

applications, scalability, and appropriation across many fields of study. The KT

model is widely used in these tutoring systems and the field of educational data

analytics due to its accuracy in predicting student correctness by utilizing only a

small amount of data.

The KT model gains its accuracy through the training of four parameters rep-

resenting students’ prior knowledge, learning rate, probability of guessing, or an-

swering correctly while not knowing a skill, and chance of slipping, or answering

incorrectly while in a supposed ”learned” state. Knowledge tracing relies heavily on

the successful training of these parameters to properly model a student beginning

a new skill, and then to build upon that model at a student level given a sequence

of responses. For this reason, each student beginning a particular skill receives the

same base model. Therefore, each student within a skill will be given the same

prediction for the first response. The model could be greatly improved if another

prediction procedure, such as the method described in this work, could use a more

intelligent approach to predict first response.

In the standard KT model, initial knowledge is represented by a parameter

P(L0), the probability of mastering the skill [CA95]. As such, KT is often used

to estimate each student’s initial knowledge [PH10b]. In the standard KT model,

the parameter P(L0) is trained on all students’ records in the a training set, and

assumes that all students have the same initial state of knowledge. However, this

assumption is too strong to use the model to predict each individual student’s first
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response. To overcome this drawback, Pardos and Heffernan use three heuristic

functions to model individualization in KT [PH10a], and find that the method,

setting initial individualized knowledge based on individual students’ performance

over all skills, yields superior results. This approach, however, overestimates the

relationships between skills. If learning a skill does not promote, or even hinder

[CM], learning another skill, then it is not appropriate to use knowledge in one skill

to estimate another.

Baker et al. uses another method [dBCG+10] that compares a student’s overall

performance and all other students’ performance on a skill to build an individualized

model. Like the standard KT model, this method suffers two major problems: falling

into local maxima and the existence of multiple global maxima[BmC07]. Thus, we

cannot know if the value of P(L0) obtained by the model represents true student

initial knowledge.

Knowledge Tracing’s many strengths have made it a kind of comparative model

in many works and is used again here as such. Knowledge Tracing builds upon the

performance history of each student to calculate a probability that the student will

answer the next problem correct. For this reason, it often fails to accurately predict

students’ first responses as there is less information for KT to accurately calculate a

prediction. The method of prediction proposed in this work focuses entirely on first

responses of students undertaking a new skill by observing student performance in

prerequisite skills. Using knowledge tracing as a comparative model, our method of

prediction aims to outperform KT in terms of accuracy in regard to students’ first

responses while providing a more definitive measure of initial knowledge.
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2.3 Dataset

The dataset used in our work is comprised of real-world algebra and geometry-based

student data from the 2009-2010 academic year taken from the ASSISTments tutor-

ing system. This system is administered by teachers to students through assigned

problem sets that track student performance in addition to many other features to

be used for better assessing each student’s knowledge and understanding of each

topic, or skill. It is intended that each student completes problems pertaining to

the assigned skill until a status of mastery is reached, which by default is defined

as three consecutive correct answers. Each problem, or opportunity as it will be

referred to in this work, is recorded by the system and is used to evaluate that

student’s overall performance.

Within ASSISTments, skills are arranged in an intended prerequisite-to-subsequent

skill structure defined by domain experts as a recommended sequence of topics for

instructors. It is the teacher’s choice which skills and problems to assign as well

as the order in which to assign them. As will be discussed later, the relationships

between skills in this predefined prerequisite structure is worth further inspection,

but are trusted for our initial experiments.

It was found that of the 230 skills listed as subsequent skills in our ASSISTments

dataset, 28 contained usable prerequisite data; we define student data as usable if

the sequence in which students complete skills matches the prerequisite structure

defined within the system. The usable dataset consisted of 983 unique students

across all skills, providing 3466 rows of response data. We acknowledge that our

results may provide more reliable conclusions with a larger dataset, but our work

here is intended to be used as initial work from which further research may expand

upon and is therefore viewed as sufficient for this paper.
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From the student performance, we also calculate each student’s individual speed

of mastery, defined as the number of opportunities, or individual problems, com-

pleted in order to gain mastery status as described above. We use this mastery

speed as a measure of student knowledge and aptitude across skills and is used to

calculate predicted responses as described in the next section. For this work, only

problem correctness, expressed as binary values in the system, is used to calculate

mastery speed and overall student performance, neglecting other features such as

time between problems and skills and also partial credit evaluations. Other methods

of determining mastery, discussed briefly in a later section, may lead to improved

accuracy in our method, but are not the focus of this work; we use the simple ”three

right in a row” method of determining mastery for all of our experiments.

2.3.1 Methodology

The method described in this work attempts to better predict student first problem

correctness on a subsequent skill by categorizing, or “binning”, students with similar

mastery speed in a prerequisite skill; for purpose of clarification, the terms bin and

category will be used interchangeably throughout this paper. Such a method has

shown success in the past [XLB13] when making other predictions such as next

problem correctness using different features from a similar dataset. This method,

labeled as ”Prerequisite Binning” (PB), involves categorizing students based on a set

of features, such as mastery speed, and inferring a relationship between them. For

example, we binned students with similar ranges of mastery speed in order to create

a prediction for any student that also could be placed in the same bin. If successfully

identified, certain trends may appear within the bins, which are addressed in a later

section.

The method of binning, as mentioned, groups students based on prerequisite
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Student Prerequisite Mastery
Speed

Skill First
Response

Correctness

Tom Adding 4 Division Correct
Tom Mult. 8 Division
Bill Adding 3 Division Incorrect
Bill Mult. 6 Division
Joe Adding 3 Division Correct
Joe Mult.n 3 Division
Sue Adding 5 LPC Division Incorrect
Sue Mult. DNF LPC Division

⇓
Attempts Prediction Number of Students

3-4 incl. 1.0 1
4-8 excl. 0.5 2

8+ 0.0 0
DNF High % Cor. 0.0 0
DNF Low % Cor. 0.0 1

Figure 2.1: The hypothetical students and data shown, fabricated to show our
methodology, exemplifies the table creation process. Using a training set, a proba-
bility table is created for each skill by categorizing students with similar performance
history

mastery speed. For this, we used a 5 fold cross-validation on our dataset, using 80%

as a training set to predict performance on the remaining 20%. The training set

was used to construct the bins, which splits students based, again, on the number

of opportunities needed to master each prerequisite skill. An average mastery speed

across all prerequisite skills was calculated, placing students into one of five bins.

The first bin contains those who averaged three to four opportunities inclusively (3 ≤

x ≤ 4) to master all prerequisite skills; as three opportunities is the lowest possible

mastery speed and four opportunities indicates an incorrect response on only the

first problem, this bin presumably represents the highest knowledge students. The

second bin, following the first in terms of mastery range, contains students who

require, on average, between four and eight opportunities exclusively (4 < x < 8).
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The third bin encompasses students with an average mastery speed of eight or more

(8 ≤ x) across all prerequisite skills. Following this categorizing strategy, a fourth

bin would contain those students that did not reach mastery status on prerequisite

skills before proceeding to the subsequent skill. However, our dataset shows that a

large percentage of students fall into this category, many of which respond to only

a small number of problems; the reason for neglecting to finish a particular skill

could be explained by boredom, simple negligence, poor time management, or a lack

of knowledge. For these reasons, the ”did not finish” (DNF) category, describing

students that did not master all prerequisite skills, is represented by two bins. Our

fourth bin contains students that did not master at least one of the prerequisite

skills with a high percent correctness (HPC) across those skills (greater than or

equal to 66.67% correctness), while the fifth and final bin contains such students

with a low percent correctness (LPC) across all prerequisite skills (less than 66.67%

correctness ). The fourth and fifth bins handle the case where a student began a

prerequisite skill, but did not reach mastery status; this means that at least one

problem was attempted, but the student either completed less than three or failed

to answer correctly on three consecutive opportunities. Bin four is therefore meant

to represent students that failed to complete the prerequisite skills for reasons other

than lack of knowledge, while the fifth contains students genuinely struggling and

are perhaps experiencing “wheel spinning”[BR14].

With students from the training set categorized based on performance in prereq-

uisite skills, a prediction value was calculated for each bin by finding the percentage

of students in each category to respond correctly on the first opportunity of the

subsequent skill. The reasoning for this method of binning, again, stems from the

theory that particular trends exist for students in each bin and will extend to other

students that also fall into that category. Therefore, it was expected that the pre-
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diction value of each bin constructed by the training set would apply to similar

students in the test set.

Bin Num. of
Students

Num. of Students with
First Response
Correctness

Bin Prediction

1 29 24 0.828
2 53 26 0.491
3 3 0 0.000
4 2 1 0.500
5 3 0 0.000

Table 2.1: The bin student distribution and prediction values calculated for Fold 1
of Skill 47 of our dataset.

Figure 2.1 exemplifies the bin creation process using a set of hypothetical stu-

dents (the names and values do not reflect any real person/dataset and are purely

exemplary). In that example, prerequisite information from four students is used to

construct the five bins. As Tom averaged a mastery speed of 6 opportunities across

all his prerequisite skills, he is placed into the second bin with Bill, who averaged

a mastery speed of 4.5 opportunities. Since Tom answered correctly on the first

problem of the subsequent skill and Bill did not, the prediction for the second bin

becomes 0.5, as half of the students in that bin answered the first problem of the sub-

sequent skill correctly. Joe mastered each prerequisite skill with the minimum three

attempts and is therefore placed into the first bin. That bin is given a probabilistic

prediction of 1.0 due to the fact that all students in that bin answered correctly

on the first question of the subsequent skill. Sue is placed into the fifth bin, as

she did not master one of the prerequisite skills, and had a low percent correctness

(less than 66.67%) across both prerequisites. She did not answer the first problem

correct on the subsequent skill, leading to a prediction of 0.0, as no student in that

bin answered correctly on the first question of the subsequent skill.

The values depicted in Table 2.1 were generated from our actual dataset. This
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table illustrates the prediction calculation methodology using skill 47 of our dataset

corresponding in the ASSISTments tutoring system to the “Conversion of Fraction

Decimals Percents.” As described in the earlier example, students in a training

set are placed into each bin based on estimated student knowledge. Using this

categorization, a prediction is calculated by observing the number of students in

each bin to answer the first problem of the subsequent skill correctly.

2.4 Results

The results of our work are exemplified through several metrics. Before compar-

ing the predictive accuracy of our binning method to any other model, we must

verify that each bin represents the intended level of knowledge within our dataset.

Our method is able to illustrate this representation by observing the percentage of

students within each bin to answer correctly on the first problem of a subsequent

skill.

Bin Number of Students Percent Correct on
First Response

1 806 61.79%
2 1170 60.00%
3 172 54.65%
4 732 52.59%
5 586 50.51%

Table 2.2: The overall percent correctness on the first response of all subsequent
skills for each of the five bins.

Table 2.2 shows the distribution of knowledge within each bin across all skills in

the observed dataset. The values show a distribution of higher knowledge students

in the lower bins and lower knowledge students in the higher bins. This result

supports the claim that our method is properly representing the intended level of

knowledge.
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The distribution of the number of students in each bin, particularly the fourth

and fifth bin, indicates that our dataset contains a large percentage of students that

did not complete prerequisites before attempting a subsequent skill. This was the

reasoning behind splitting this ”DNF” bin into a high knowledge and low knowledge

bin based on percent correct in the prerequisite skills. Further splitting these bins

may lead to better predictive accuracy of our method, but is sufficient for our work

in its current state and avoids over-complicating what is meant to be a simple

categorization method.

2.4.1 Comparison of Overall Performance

The results of our method, entitled ”Prerequisite Binning” in Table 2.3, was com-

pared to knowledge tracing as well as a majority class (MC) prediction to act as a

control in our experiment. We chose knowledge tracing as it is widely used and stud-

ied in the field of educational data analytics and attempts to learn student initial

knowledge for use in its calculation. Through this experiment we are first observing

the effectiveness of our model by comparing it to the majority class, a prediction

made for all students using the average correctness of the dataset, and then ob-

serving the differences in error between our method and KT; results illustrating a

comparable error between the two methods supports the use of our binning method

over KT, as it provides more definitive estimates of student knowledge without sacri-

ficing predictive accuracy. Knowledge tracing was run using Kevin Murphy’s Bayes

Net Toolbox for MATLAB [Mur] with initial parameters of 0.30, 0.14, 0.20, and 0.08

for prior, learn, guess, and slip respectively. For our experiment we ran a five fold

cross validation on our dataset, using 80% of the data from each skill as a training

set to predict the remaining 20%. The results in Table 2.3 represent the averages of

all folds for each method.
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Each of the three prediction methods are compared using RMSE and AUC two

common measurements of error. A low RMSE indicates a more accurate prediction

method while a larger AUC indicates higher accuracy. As observed in Table 2.3,

the prerequisite binning method outperforms the majority class in both metrics

indicating that it is a successful prediction method. When compared to knowledge

tracing, however, the results show nearly the same RMSE value, but a superior AUC

value.

While the binning method may not outperform knowledge tracing in all met-

rics, the predictive accuracy is comparable. The purpose of this work, again, is

not to provide a method that outperforms KT, but rather to construct a model-

ing method that can provide teachers with more meaningful information regarding

student knowledge. Unlike KT, where the learned parameters such as prior/initial

knowledge are unusable metrics in describing true student knowledge due to the

identifiability problem [BmC07], our binning method provides an initial knowledge

estimate based on previously observed performance; this initial knowledge estimate,

represented as the probabilistic prediction calculated for each bin, is shown to be

just as reliable as KT in predictive accuracy, while also providing a more definitive

metric to describe a bin-wide initial knowledge that avoids problems of identifiabil-

ity.

RMSE AUC

Majority Class .496 .570
KT .472 .626

Prerequisite Binning .473 .651

Table 2.3: Results of our trials over all skills

Based on the results of our trial, we can conclude that prerequisite information can

be used to predict student performance on subsequent skills in regards to first re-
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sponse. This supports our argument that knowledge and learning can be observed

between prerequisite and subsequent skills.

2.4.2 Comparison Over Individual Skills

We also compare our method with KT on each individual skill. Figure 2.2 shows the

difference of RMSE for these two models, that is: RMSE(KT) − RMSE(Bin); each

positive difference value, therefore, indicates that our binning method outperforms

KT in that skill, while negative difference values indicate KT outperforms binning in

that particular skill. Each bar in the figure has an accompanying p-value above. This

p-value is computed by applying a statistical T-test on the five-fold cross validation

results. From this figure, we observe that our method outperforms KT in 14 of the

28 observed skills. Looking at the T-test results, there is a significant difference

(p-value ≤ 0.05) between the two models on only 3 skills. This statistic further

supports the comparability of the two models in terms of accuracy.

A similar histogram illustrating the difference of RMSE for the majority class and

our binning method, RMSE(MC) − RMSE(Bin), can be seen in Figure 2.3. The

majority class represents a prediction for each student that is equal to the percent

correctness of the training set of students. Again, as we used a five fold cross

validation, 80% of the data from each skill is used as a training set to predict

the remaining 20%. Comparing our binning method to the majority class should

provide results that take into account the difficulty of each skill, defined by the

average correctness calculated in majority class predictions.

This result attempts to answer the second question in introduction pertaining to

the reliability of the prerequisite skill relationships. In accordance with our initial

thoughts, the stronger the relationship between a prerequisite and subsequent skill,
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Figure 2.2: The difference of RMSE per skill when comparing our method of bin-
ning to standard knowledge tracing, ordered from highest to lowest difference. The
number above each skill indicates the p-value of the difference.

the better we can predict the performance of the subsequent skill from the knowledge

of the prerequisite skill. Using Figure 2.3, we can observe significant differences (p-

value ≤ 0.05) in terms of RMSE on a total of 5 individual skills. Therefore, at

least on skills 97 and 49, the skills with better statistically significant results, we

have strong confidence that the prerequisite relationships are reliable. For those

skills with significantly lower results, skills 54, 298, and 46, the causal relation of

the prerequisite skills may not be strong as expected by domain experts. All other

skills, however, do not illustrate results significant enough to make a claim. These

particular inconclusive results may be explained by inspecting our dataset. As

indicated in our first observations pertaining to the distribution of students in each

bin, a large percentage of students are categorized into bins four and five. Many

of those students, as indicated by our dataset, attempt less than three problems,

preventing mastery and also making it more difficult to properly estimate knowledge.
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Figure 2.3: The difference of RMSE per skill when comparing our method of binning
to majority class predictions, ordered from highest to lowest difference. The number
above each skill indicates the p-value of the difference.

There may be two reasons for this occurrence. First, the prerequisite skills may too

hard for the students to master. This may result from the teacher’s decision not

to assign particular prerequisite skills, or the skill relationship graph is incomplete.

A second possibility may allude to a case where a teacher does not assign enough

questions for students to master the prerequisite skills. As a teacher has control over

the administering of skill problems, a number of such scenarios could lead to such

results. In summary, these findings potentially indicate a need to further inspect

the causal relationships defined by domain experts as they appear in the observed

systems.

2.5 Contribution

Our goal in this paper was to utilize the prerequisite information that many systems

record to infer aspects of the students in our data. The current predominantly

21



used knowledge tracing model employed in many learning systems assumes that

all the skills are independent of each other. In this work, however, prerequisite

information is used to better understand the relationship between the prerequisite

and subsequent skills. The added consideration of this relationship in a model can

be used to make better statements and inferences about not only the students, but

also in the manner that such skills are presented to students.

We have shown here, to our knowledge, the first model that attempts to use the

relationships between prerequisite skills to predict subsequent knowledge. This is

on its way to make a larger contribution to better personalizing and individualizing

student models by acknowledging and utilizing more of the data. We will make

note that there are many other researchers that have used aggregate information,

but have not paid attention to the prerequisite structure. Many psychometricians

have found, for instance, that if students who do well on a topic A tend to do well

on a topic B, that information can be used to better predict performance on topic

B. In this context, however, we prefer to view such information differently. Our

ultimate goal is to be able to make statements to teachers regarding information

that is more causally related, and we do not want to influence predictions of future

performance for unrelated tasks where there is little knowledge overlap. By imposing

this constraint upon us, it will reduce our ability to make predictions, but will

increase the significance of our statements to teachers.

The goal of this paper extends beyond the intent to develop a more accurate

prediction methodology. We wish to look at the causal effects from which our re-

sults derive. It is more of a question of why using this data from prerequisite skills

produces the accurate predictions across some skills and not in others. Our find-

ings support the intuitive claim that certain skills are related, while others are not.

Our trials provide a means of visualizing aspects of such skills to show that, as in
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Figure 2.3, prerequisite information does not have the same effect for all subsequent

skills. Observing little difference in some skills between a method utilizing prereq-

uisite information and a method, such as KT or majority class, that does not use

such information may point to several issues in either our dataset or the prereq-

uisite graph of the system. It is an interesting observation that some skills, while

listed as a prerequisite, may not have as strong a relationship to a subsequent skill,

which is vitally important information to teachers who need to consider a sequence

to introduce new skills.

2.6 Conclusion and Future Works

The results and observations presented in this paper open new research opportunities

in student assessment. Through our results we have observed several factors that

help to better model student knowledge and aptitude across skills. The trials of this

paper certainly raise some curiosities as to the extent subsequent skills are affected

by prerequisite performance. In this paper, we focus exclusively on first responses

of subsequent skills and, as the results were successful, we can now look beyond the

first response to observe trends in prerequisite influence over an entire subsequent

skill response sequence.

With these findings, our method can be adapted and/or appropriated to ben-

efit other models like KT. Implementing our method into a modified KT model

could lead to more accurate representations of student initial knowledge. As the

method we propose here requires little in terms of processing time while providing

more definitive student knowledge estimates than other models like KT, we aim

to, through similar methods, represent other aspects of student learning such as

aptitude and knowledge retention.
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The accuracy of this method of binning is largely impacted by the reliability of

the method of determining mastery. In our experiments, as it is in ASSISTments,

mastery is defined simply as a student answering correctly on three consecutive

opportunities; this method, while simple, may not be the best means of representing

such a status universally for all students. Further work in exploring more precise

methods of determining mastery speed may prove to benefit our method; such a

method may include the individualization of mastery speed requirements for each

bin, as it is likely that not all student levels of knowledge can be confidently labeled

as having mastered a skill with the same number of sequential correct responses.

In this work, we concern ourselves with and direct our attention to the concept

of student growth and knowledge over time. We believe that such information iden-

tifies aspects of the student more definitively than next problem correctness. In the

future, we hope to continue similar work, looking into the influences that prerequi-

site skills exhibit in the other student models, like the wheel spinning model [BR14].

We would also like to make further observations and inferences on prerequisite skills,

such as their impact on the student learning process itself, or the retention perfor-

mance [XBL13] of this prior.
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Chapter 3

Improving Sensor-Free Affect

Detection Using Deep Learning

Botelho, A. F., Baker, R. S., & Heffernan, N. T. (2017, June). Improving Sensor-Free

Affect Detection Using Deep Learning. In International Conference on Artificial

Intelligence in Education, 40-51. Springer, Cham.

Abstract

Affect detection has become a prominent area in student modeling in the

last decade and considerable progress has been made in developing effective

models. Many of the most successful models have leveraged physical and

physiological sensors to accomplish this. While successful, such systems are

difficult to deploy at scale due to economic and political constraints, limiting

the utility of their application. Examples of “sensor-free” affect detectors that

assess students based solely using data on the interaction between students

and computer-based learning platforms exist, but these detectors generally

have not reached high enough levels of quality to justify their use in real-time

interventions. However, the classification algorithms used in these previous

sensor-free detectors have not taken full advantage of the newest methods

25



emerging in the field. The use of deep learning algorithms, such as recur-

rent neural networks (RNNs), have been applied to a range of other domains

including pattern recognition and natural language processing with success,

but have only recently been attempted in educational contexts. In this work,

we construct new “deep” sensor-free affect detectors and report significant

improvements over previously reported models.

3.1 Introduction

While intelligent tutors have a long history of development and use, the most widely-

used systems remain less sophisticated than initial visions for how they would op-

erate. The systems now used at scale are often cost-effective and have been shown

in large-scale randomized controlled trials to lead to better learning outcomes (e.g.

[PGMK14],[RFMM16]), but do not reach the full level of interactivity of which hu-

man tutors are capable. For example, one positive aspect of human tutors is the

ability to observe student affective state and adjust teaching strategies if students

are exhibiting disengaged behavior [LMDP08]. Student emotion and affective state

have been found to correlate with academic performance [CGSG04][PBSP+14] and

can even be used to predict which students will attend college [PBBH13].

With increasing evidence supporting the benefits of utilizing student affective

state to drive tutoring strategies [DLS+10], it is important to develop accurate means

of detecting these states from students working in these systems. While strides have

been made to build accurate detectors, many successful approaches include the use

of physical and physiological sensors [ACB+09][DLS+10][PRB+16]. However, it can

be impractical to deploy such sensors to classrooms at scale, both for political and

financial reasons. Detecting affect solely from the interaction between the student

and learning system, sometimes referred to as sensor-free affect detection, may be
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more feasible to deploy at scale. However, while these models’ predictions have

been usable in aggregate for scientific discovery, the goodness of these approaches

has often been insufficient for use in real-world intervention.

Sensor-free affect detectors have existed for several years and have been used

to assess student affective states using low-level student data as students interact

with a mouse and keyboard [SMSB14] , but also using features extracted from

a range of learning platforms including Cognitive Tutor [dBGW+12], AutoTutor

[DCW+08], Crystal Island [SML11], and ASSISTments [OBG+14][WHH15]. While

these detectors have been better than chance, their goodness has fallen short of

detectors of disengaged behavior, for example (cf. [PBSP+14]). Increasing the

accuracy of sensor-free affect detectors would lead to higher confidence in their use

to drive intervention.

In this paper, we attempt to enhance sensor-free affect detection through the

use of “deep learning,” or specifically, recurrent neural networks (RNNs) [WZ89].

Previous affect detectors have utilized a range of algorithms to detect student affec-

tive state; we study whether deep learning can produce better predictive accuracy

than those prior algorithms. We study this possibility within a previously published

data set to facilitate comparison with and understanding of the benefit derived from

using this algorithm. Recurrent neural networks are a type of deep learning neural

network that incorporates at least one hidden layer, but also provides an internal

hidden node structure that captures recurrent information in time series data.

RNNs are most appropriately applied to time series data, where the output of

the current time step is believed to be influenced or impacted by previous time

steps. In this way, it is believed that affect detection could benefit from a model

that observes the temporal structure of input data. Several internal node structures

have been proposed, yielding variants of traditional RNNs such as Long-Short Term
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Memory networks (LSTMs) [HS97] and more recently Gated Recurrent Unit net-

works (GRUs) [CVMBB14]. Applications of these deep learning algorithms have

been used in other domains for pattern recognition [CGCB14] and improving natu-

ral language processing [SLMN11]. Performance in these domains certainly suggest

large benefits in using deep learning on temporal or time series information.

Deep learning prediction models have not yet been used extensively in educa-

tional domains, but have been studied as a potential method to improve the decisions

of virtual agents in game-based learning environments [MWP+16] and also to im-

prove the prediction of student correctness on the next problem [PBH+15]. However,

the results of the “Deep Knowledge Tracing” (DKT) model presented in [PBH+15]

are as yet uncertain; initial reports suggested profoundly better performance than

previous approaches, but later investigation by other researchers indicated that the

same data points were being replicated and used to predict themselves, artificially

inflating goodness [XZVIB16]. When this error was corrected, performance seemed

to be equivalent to previous approaches [KLM16]. Nonetheless, recurrent neural

networks may be highly effective for problems with the complexity and the quantity

of data available to fully leverage their benefits.

As such, this work seeks to apply deep learning to utilize student information

to better detect students’ affective states without the use of sensors. We explore

the application of recurrent neural networks for the task of detecting affective states

using data collected in the context of the ASSISTments online learning platform.
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3.2 Dataset

The dataset1 used to evaluate our proposed deep learning approach to detecting

affective state is drawn from the ASSISTments learning platform [HH14]. ASSIST-

ments is a free web-based platform that is centered around providing immediate

feedback to the many students who use it in the classroom and for homework daily.

ASSISTments also provides on-demand hints and sequences of scaffolding support

when students make errors. The system was used by over 40,000 students across

nearly 1,400 teachers during the 2015-2016 school year, and has been found to be

effective in a large-scale randomized controlled trial [RFMM16].

3.2.1 Data Collection and Feature Distillation

The ground truth labels used in this dataset come from in-class human observations

conducted using the Baker-Rodrigo Ocumpaugh Monitoring Protocol (BROMP)

[OBR15]. These quantitative field observations (QFOs) were made by trained hu-

man coders who observed students using the ASSISTments learning platform in a

classroom environment. The coders observed students and labeled their affect as

bored, frustrated, confused, engaged concentration, or other/impossible to code.

They collected affect observations over 20-second intervals in a round-robin fashion,

cycling through the entire class between observations of a specific student. Un-

like approaches using video coding or retrospective emote-aloud (e.g. [CDWG08]),

this approach inherently leads to missing labels between observations of the same

student. These missing intervals for each student are known, as timestamps are

recorded for each observation, and will be taken into account when formatting the

data for input into the recurrent neural network; this process is described in more

1Our dataset is made available at http://tiny.cc/affectdata
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detail in a later section.

A total of 7,663 field observations were obtained from 646 students in six schools

in urban, suburban, and rural settings. In prior work [WHH15], a set of 51 action-

level features was developed using an extensive feature engineering process; these

features consist of within- and across-problem behaviors including response behav-

ior, time working within the system, hint and scaffold usage within the system,

and other such features attempting to capture various low-level student interactions

with the system. As the observation intervals, or clips, often contain more than one

student action within the learning system, the features were aggregated within each

clip by taking the average, min, max, and sum of each feature. The end result was

204 features per clip.

In this paper we will compare our deep learning-based detectors of student af-

fect to two earlier sensor-free models of student affect within ASSISTments (e.g.

[OBG+14][WHH15]). In doing so, we will use the exact same training labels and

features as in [WHH15], in order to focus our comparison solely on the use of deep

learning.

3.3 Methodology

We input these labels and features into three deep learning models representing three

common variants of recurrent networks including a traditional recurrent neural net-

work (RNN), a Gated Recurrent Unit (GRU) neural network, and a Long-Short

Term Memory network (LSTM). The GRU variant was chosen when exploring net-

work structures and hyperparameters for training for both its faster training times

in comparison to the LSTM variant and also for its increased ability to avoid prob-

lems such as vanishing gradients to which traditional RNNs are more susceptible.
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The models explored in this work were built in python using the Theano [TARA+16]

and Lasagne [DSR+15] libraries.

3.3.1 Network Structure

Our implementations each use the same three layer design, with an input layer

feeding into a hidden recurrent layer of 200 nodes, progressing to an output layer

of four nodes corresponding to each of four classes of affective state. The input

layer accepts a student-feature vector of 204 generated covariates per time step

normalized using the mean and standard deviation of the training set, and each

network ultimately outputs 4 values representing the network’s confidence that the

input matches each of the four labels of engaged concentration, boredom, confusion,

and frustration. A rectified nonlinear activation function is used on the output of

the hidden layer, while a softmax activation function is used for the final model

output.

Due to the large number of parameters present in deep learning networks, it

is common to implement techniques to avoid overfitting. We adopt the common

practice of incorporating dropout [SHK+14] into our model, which, in a general

sense, sets some network weights to 0 with a given probability during each training

step. This creates a changing network structure in terms of its interconnectivity

during training to help prevent the model from relying on just a small number of

input values. In our three layer model, dropout can be applied before and/or after

the recurrent layer, and this is explored to determine which location of placement

produces superior performance. We incorporate 30% dropout, such that each weight

in the network, in the location dropout is applied, has a 30% chance of being dropped

for a single training step; many implementations instead describe dropout in terms

of a “keep” probability, but is described here as a “drop” probability to remain
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consistent with the library used to build the models. As is standard practice, dropout

is not used when applying the model to the test set.

3.3.2 Handling Time Series Data and Labels

The dataset used for the previous detectors in ASSISTments, and again in this work,

consists of 20 second interval clips to which an affect label has been applied. The

recurrent network takes as input a sequence of these clips to make use of the recurrent

information within the sequence. The labeled clips, however, are not consecutive

due to the design of the field observations, leading to gaps in student observations;

during a gap in one student’s sequence, the human coders present in the classroom

were observing other students. It is possible to represent the non-consecutive clips

as a full sequence, however, treating clips that are distant in time as consecutive

may confuse the network and reduce performance. For this reason, we treat clips as

consecutive only if they occur within 5 minutes of the previous labeled clip. Clips

that occur beyond this threshold form a new sequence sample, resulting in a larger

number of samples consisting of shorter sequences.

Another issue presented by the classification task is the non-uniformity of the

distribution of the labels. The vast majority, approximately 80% of the clips, are

labeled as engaged concentration, followed by 12% labeled as boredom, and only

4% each of confusion and frustration. While it is perhaps encouraging to know that

students are mostly concentrating when working within ASSISTments, a model

trained with labels in such non-uniformity may bias in favor of the more frequent

labels. While it is often beneficial for the model to understand this distribution to

some extent, it is better for the model to learn the trends in the data that correspond

to each label rather than simply learn the overall distribution.

The original, non-recurrent affect detectors corrected for this issue by resampling
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each of the labels [PBSP+14], but this cannot be directly reproduced here due

to the time-series input into the recurrent network. In that previous work, the

training data was sampled with replacement proportional to the distribution such

that the resulting dataset is balanced across the distribution of labels and then

evaluating on a non-resampled test set [EJJ04]. Rather than representing each

sample as independent as in previous detectors, the recurrent network observes a

sequence of observations within a single training sample. As such, we resample

entire sequences including rarer affective states. Resampling in this way is likely to

also resample the other labels as well, particularly when resampling the more scarce

labels of frustration and confusion. While it is difficult to achieve perfect uniformity,

sampling with replacement is performed using a threshold to balance the labels to a

feasible degree. In this way, each sample of the training set is selected at least once,

duplicating only those sequences containing at least 20% of one of the less common

labels. From the resulting resampled data, we randomly downsample to the size of

the original non-resampled training set for faster training times; training on the full

resampled dataset did not produce substantial gains in model goodness over using

the downsampled training set.

In an effort to further account for the non-uniformity of the distribution of labels,

a final normalization is applied to the output of the network. The training data is

used to determine the minimum and maximum prediction values for each label that

is then used to scale the resulting predictions during model evaluation to span the

entire 0 to 1 range (any prediction values in the test set outside of this range are

truncated). This rescaling helps to deter the model from making overly conservative

estimates of the less frequent labels. The output normalization is found to be

necessary in this regard as estimates for the scarce labels rarely surpassed a 0.5

rounding threshold after the softmax activation of the output.
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3.3.3 Model Training

All models are evaluated using 5-fold cross validation, split at the student level

to evaluate how the model performs for unseen students. It is often common, in

working with neural networks, to train using mini-batches of samples, updating

model weights based on the outputs over several training steps. In the case of

recurrent neural networks, the data contains multiple time steps that the model

treats as a batch and updates the network weights at the end of the sequence. We

update the model after each sample sequence using an adaptive gradient descent

calculation [DHS11], and categorical cross-entropy is used as the cost function for

model training due to its ability to handle multi-label classification; each sample

contains a varying number of individual time steps, over which the network makes

a single update from the aggregated cost.

Each model is trained over a multitude of epochs, or full cycles through the

training set. Training over too many epochs or too few can reduce performance

through overfitting and underfitting respectively. The appropriate number of epochs

will also differ when applying models of different complexities, as is being done in

this work. For this reason, we hold out 20% of each training set as a validation set

and incorporate an “early stop” criterion for model training. After each epoch the

model evaluates its performance on the unseen validation set to determine the point

in training where there is little or no improvement.

A moving average of the model’s error on the validation set, expressed as aver-

age cross-entropy (ACE) for training, is calculated over the most recent 10 epochs

(starting with the 11th epoch). The model stops training when it finds that moving

average value at a particular epoch is larger than or equal to the previously cal-

culated average (lower values indicate superior ACE values). Using this criterion

allows for a more fair comparison of the performance of each model. Although a

34



maximum number of 100 epochs was allowed, no models in this paper reached that

maximum threshold.

3.4 Measures

We will evaluate the results of each of our model evaluations through three statistics,

AUC ROC/A’, Cohen’s kappa, and Fleiss’ kappa. Each kappa uses a 0.5 rounding

threshold. This is a multi-label classification task such that each sample has one

of four possible labels of confusion, concentration, boredom, or confusion. For this

reason, the metrics of AUC and Cohen’s kappa are first calculated for each of the four

labels independently, and the final result is an average across the four labels [HT01].

It is not common to report average Cohen’s kappa for multi-label classification; we

include this metric for comparison to previous results reporting this metric. We also

report Fleiss’ kappa, which is better suited for multi-label classification, taking all

label comparisons into account in a single metric. Both kappa metrics are reported

as secondary measures, as AUC is unaffected by scaling and rounding threshold-

setting procedures. In all cases, we report performance on the test data, averaged

across each fold of a 5-fold cross validation.

3.5 Results

3.5.1 Adjusting the Dropout Context

Our initial analysis pertains to the degree of impact the context of dropout has on

model goodness. We investigate this question in the context of the GRU model

and the resampled training dataset, looking at whether dropout occurs before the

recurrent layer, after the recurrent layer, or both. In all cases, a 30% hyperparameter
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Cohen’s Fleiss’
Model AUC Kappa Kappa

30% Dropout Before Recurrent Layer 0.74 0.12 0.22
30% Dropout After Recurrent Layer 0.74 0.13 0.23
30% Dropout Before & After Recurrent Layer 0.73 0.11 0.21

Table 3.1: Comparing locations of dropout within the GRU model.

is used for the dropout percentage. Table 3.1 shows that when dropout occurs has

little impact on performance. When dropout is applied to both areas of the model,

however, there is a mild reduction in both metrics, suggesting that applying dropout

in both locations impedes model training to a noticeable degree. For this reason,

all further models reported used dropout applied after the recurrent layer. This

placement is chosen as there is a very slight increase in both Cohen’s and Fleiss’

kappa; additionally, it is more common for researchers and practitioners to apply

dropout after the recurrent layer.

3.5.2 Comparing RNN Variants

We next compare a traditional recurrent neural network (RNN), a Gated Recurrent

Unit (GRU) network, and a Long-Short Term Memory network (LSTM), which vary

in their complexity, and as such in their number of parameters and flexibility of fit.

These models are compared using the same training and test data sets and differ

only in the internal node structure used for the network. In parallel, we examine

the effects of adjusting the training data (but not the test data) using resampling,

by comparing each model variant trained on the resampled dataset to that model

variant trained on a data set without resampling.

The performance of each model is compared in Table 3.2. In all three model

variants, training on the non-resampled data produced superior performance in all
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Cohen’s Fleiss’
Model AUC Kappa Kappa

RNN With Resampling 0.73 0.14 0.22
GRU With Resampling 0.74 0.13 0.23
LSTM With Resampling 0.73 0.11 0.22

RNN Without Resampling 0.78 0.19 0.24
GRU Without Resampling 0.77 0.19 0.24
LSTM Without Resampling 0.77 0.21 0.27

Wang et al. [WHH15] 0.66 0.25 –
Ocumpaugh et al. [OBG+14] 0.65 0.24 –

Table 3.2: Three recurrent model variants, trained on both the resampled and non-
resampled datasets, are compared to the previous highest reported results on the
ASSISTments dataset.

metrics over training with the resampled data, contrary to our initial hypothesis.

Also contrary to our initial hypothesis, the GRU models did not produce the best

outcomes; instead, the simplest model, the traditional RNN, was found to have

superior AUC performance to the other models, albeit only by a small margin. This

may be because it had the fewest parameters; the RNN trains approximately 82,000

parameters as compared to the over 244,000 parameters in the GRU model and

nearly 326,000 parameters in the LSTM model. This smaller number of parameters

also leads to the RNN being the fastest model to train. The LSTM model, however,

had higher kappa values than the other network variants, and as such, could also

be argued to be the best model as it exhibits comparably high AUC values and also

would be able to handle longer sequences than a traditional RNN if used in real-

time applications. All three deep learning models achieve substantially better AUC

than the best models produced through prior work using more traditional machine

learning algorithms (e.g. [OBG+14][WHH15]). Cohen’s kappa, however, is found to

be slightly worse than in the prior efforts.
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Performance was generally good for AUC across all affective states, as shown

in Table 3.3. It becomes apparent, however, that performance is not well-balanced

across the labels. The difference between AUC and kappa values suggests that the

model for confusion, for example, is generally able to distinguish between confused

and non-confused students, but is poor at selecting a single threshold for this dif-

ferentiation. The difference between affective states is likely associated with their

relative frequency; the best-detected affective states (concentrating and boredom)

were also the most common ones. While resampling was chosen to address this

problem, Table 3.3 also shows that this technique, as implemented, did not lead to

better performance.

3.6 Discussion and Future Work

Despite their broad application in other domains, deep learning models have been

relatively under-utilized in education and their application often has not led to

better results than other common algorithms [KLM16]. In this paper, we attempt

to apply deep learning to the problem of sensor-free affect detection, using a data set

previously studied using more traditional machine learning algorithms. Three deep

learning models (RNN, GRU, and LSTM) were compared to previously published

work. All three deep learning models explored here obtained substantially better

AUC than past results reported using the same dataset, although they did not lead

to better values of Kappa. This difference between metrics is not surprising, given

that the cost function implemented in the deep learning models does not round

each prediction before evaluating each class label, but instead evaluates the degree

of error across all classes each training step. Nonetheless, the substantially higher

AUC values argue that deep learning models may prove a very useful tool for research
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Resampled Non-Resampled

AUC Cohen’s Kappa AUC Cohen’s Kappa

Confused 0.67 -0.01 0.72 0.09
Concentrating 0.78 0.24 0.80 0.34
Bored 0.76 0.18 0.80 0.28
Frustrated 0.68 0.01 0.76 0.15

Average 0.73 0.11 0.77 0.21

Table 3.3: LSTM model performance for each individual affect label.

and practice in sensor-free affect detection, eventually leading to models that can be

more effectively used both to promote basic discovery and to drive affect-sensitive

intervention.

There are several aspects of the deep learning models that may have contributed

to the improved AUC over the previous machine learning approach to constructing

affect detectors for this dataset. In previous detectors, four separate models were

built, trained, and evaluated independently while the deep learning model allows all

four affective states to be evaluated and updated together with each training sample;

such a process likely helps the model determine aspects of the data that help to make

more accurate distinctions between each affective state in a temporal sense. Another

aspect is in the flexibility of fit supplied by the neural network, allowing the model to

capture the high complexity in student affect. This flexibility, however, also exhibits

a drawback in terms of lacking interpretability; the large number of parameters

and complexity of each model used in this work make it infeasible to study and

understand how the model makes its predictions from the features it has available,

particularly as it learns from previous time steps. At best, we can understand that

the model is relatively better at predicting the more common categories (boredom

and concentration) than the more scarce classes (frustration and confusion).

39



It is desirable to achieve excellent predictive accuracy for the more scarce, yet

very important, affective states, in addition to the more common labels. It is pos-

sible that a different resampling approach could be more productive, although any

resampling approach will be limited by the inter-connection of the observations,

leading to non-uniformity across the labels; it is likely that in duplicating sequences

containing the scarce labels numerous times, the model overfit to these sequences,

which led to poorer extrapolation to unseen data. A possible alternate approach for

the iterative refinement of these models would be to send field coders to classrooms

working through material that is known to be more confusing and frustrating (e.g.

[SBO+16]).

One further aspect not addressed by this work is differences introduced by stu-

dent geographical factors. Earlier affect detectors in ASSISTments were found to

perform relatively poorly on rural students when trained on urban and suburban

populations [OBG+14]. Analyzing how robust deep learning models of affect are to

population differences will help us to understand the degree to which these models

generalize.
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Chapter 4

Developing Early Detectors of

Student Attrition and Wheel

Spinning Using Deep Learning

Botelho, A. F., Varatharaj, A., Patikorn, T., Doherty, D., Adjei, S. A., & Beck,

J. E. (2019). Developing Early Detectors of Student Attrition and Wheel Spinning

Using Deep Learning. Journal of IEEE Transactions on Learning Technologies. (In

Press)

Abstract

The increased usage of computer-based learning platforms and online tools

in classrooms presents new opportunities to not only study the underlying con-

structs involved in the learning process, but also use this information to iden-

tify and aid struggling students. Many learning platforms, particularly those

driving or supplementing instruction, are only able to provide aid to students

who interact with the system. With this in mind, student persistence emerges

as a prominent learning construct contributing to students success when learn-

ing new material. Conversely, high persistence is not always productive for
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students, where additional practice does not help the student move toward

a state of mastery of the material. In this paper, we apply a transfer learn-

ing methodology using deep learning and traditional modeling techniques to

study high and low representations of unproductive persistence. We focus on

two prominent problems in the fields of educational data mining and learner

analytics representing low persistence, characterized as student “stopout,”

and unproductive high persistence, operationalized through student “wheel

spinning,” in an effort to better understand the relationship between these

measures of unproductive persistence (i.e. stopout and wheel spinning) and

develop early detectors of these behaviors. We find that models developed

to detect each within and across-assignment stopout and wheel spinning are

able to learn sets of features that generalize to predict the other. We further

observe how these models perform at each learning opportunity within stu-

dent assignments to identify when interventions may be deployed to best aid

students who are likely to exhibit unproductive persistence.

4.1 Introduction

The use of digital learning environments in schools has led to new opportunities to

study influential student learning constructs both longitudinally and at fine levels of

granularity. Digital learning environments have emerged to take advantage of these

opportunities, providing researchers with the tools and data to better understand

such learning processes while simultaneously providing a platform through which

that research can be implemented and deployed to improve students learning expe-

riences. As is the case for many, if not all, learning platforms, particularly those

that aim to drive or supplement teacher instruction, are only able to provide aid to

students who interact with the system; it is for this same reason that human tutors
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often employ a range of techniques to maintain student engagement and encourage

student persistence when approaching difficult content [RC07]. This reinforces the

need to better understand student persistence during the learning process so as to

develop better detectors of struggling students and subsequently develop interven-

tions to promote productive learning strategies.

When approaching difficult content, it is essential for students to exhibit high

persistence by working through a sufficient number of practice problems in order to

successfully learn the material. In this way, the construct of persistence plays an

important role in student success as has been studied through research pertaining

to grit [DPMK07], perseverance [PS+04], and productive failure [Kap08]. Students

who fail to complete their work after only a small number of problems, defined in this

paper as students exhibiting “stopout,” are missing opportunities to learn difficult

material through additional practice; this is particularly the case when students

exhibit stopout early in an assignment, within, for example, the first few problems.

Although the presence of persistence is essential for students to overcome learning

obstacles, there are cases where high persistence can be unproductive. This neg-

ative aspect of exhibiting high unproductive persistence has been operationalized

in previous works through a behavior known as “wheel spinning” [BG13]. Wheel

spinning describes the case when a student persists in a particular learning task yet

is unable to reach a state of mastery within a reasonable timeframe.

Both stopout and wheel spinning represent unproductive examples of student

persistence; in one case, stopout represents students who are not exhibiting enough

persistence to succeed while wheel spinning represents too much persistence where

it would likely benefit the student to stop and seek additional aid from an instructor

or tutor. For this reason, we define stopout and wheel spinning as mutually exclu-

sive measures within a single assignment. As previous works have defined wheel
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spinning behavior as a student reaching the tenth problem, or learning opportunity,

of a mastery-based assignment (discussed further in Section 3), students are only

considered to have stopped out of an assignment if done before the tenth problem;

it is important to emphasize this definition as each measure in this way represents

what we consider to be unproductive learning behavior.

It is important to be able to detect when students are likely to exhibit stopout

or wheel spinning behavior in order to develop interventions to promote persistence

when it is likely beneficial to students and to also suggest additional help when

such persistence is unlikely to lead to success. In light of this importance, however,

deploying an intervention once stopout is detected is likely not very impactful as

the student has already ceased interaction with the system, and similarly, in the

case of wheel spinning, deploying an intervention at the moment of detection is

likely too late as the student has already wasted time and effort (and perhaps has

become frustrated). It is with these scenarios in mind that it becomes imperative to

deploy such interventions preemptively in anticipation of such behavior and address

potential causes of stopout and wheel spinning behavior before the student exhibits

unproductive forms of high and low persistence. As will be discussed further in the

Background Section, recent applications of deep learning in the context of education

has led to promising results, supporting the exploration of such models for the task

of developing early detectors of these student behaviors.

It is the goal of this work to explore the early detection of unproductive per-

sistence as operationalized through wheel spinning and stopout. Using machine

learning techniques including the application of deep learning in conjunction with

both model and outcome transfer learning methods, we explore the relationship be-

tween learned predictors of wheel spinning and stopout both within an assignment

and across assignments. With this goal in mind, we seek to address the following
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research questions:

1. How do temporal deep learning models compare to traditional methods in

the task of predicting wheel spinning and stopout behavior both within- and

across-assignments?

2. Are learned predictors of each wheel spinning and stopout behavior also pre-

dictive of the other respective behavior (e.g. are predictors of wheel spinning

also predictive of stopout as well as the reverse)?

3. How does recency affect the performance of models predicting each within and

across assignment wheel spinning and stopout?

The focus of this work is on exploring the relationship between representations of

unproductive student persistence in an effort to develop early detectors of such be-

haviors. The following section will first describe existing works that have previously

studied behaviors of student attrition and wheel spinning in addition to previous

applications of deep learning in the context of education. We will then describe

the source and attributes of the data used in this work before detailing the applied

methodology and analyses conducted to study these student behaviors. The results

of these analyses will then be discussed with particular focus on the early detection

of each within and across-assignment stopout and wheel spinning behaviors. Finally,

we will discuss the potential future work, highlight the contributions of this work,

and discuss final conclusions from the conducted analyses.
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4.2 BACKGROUND

4.2.1 Wheel Spinning

Several previous works have explored and have attempted to model student wheel

spinning behavior in several platforms including Cognitive tutor [MCS16] and AS-

SISTments [BG13][GB15], while other work has explored policies to help prevent

wheel spinning [KKG16]. As described in the Introduction Section, wheel spinning

is the behavior in which a student exhibits high persistence in a learning task, but

unable to obtain sufficient understanding of the learning materials. The term “wheel

spinning” is analogous to a car that is stuck in snow or mud; despite devoting effort

into moving, the wheels will spin without getting anywhere.

In this work, we will be using the definition of wheel spinning given in the work of

Beck and Gong [BG13] as failing to reach mastery after seeing ten learning opportu-

nities. It is for this reason that prior work observing wheel spinning has pertained to

student interactions with mastery-based assignments. Mastery-based assignments,

as opposed to traditional assignments that require students to answer all assigned

problems, instead require students to demonstrate a sufficient level of understand-

ing, or mastery, of the assigned material in order to complete the assignment. In the

case of ASSISTments, this threshold of understanding, by default, requires students

to simply answer three consecutive problems correctly on the first attempt without

the use of computer-provided aid.

Previous attempts to model wheel spinning have observed student activity on

mastery-based assignments at the problem-level to predict whether the student will

eventually wheel spin in that assignment [GB15]. The model was trained on expert-

generated features describing each problem and student recent actions to estimate

the likelihood of a student wheel spinning on the current assignment. We hypothe-
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size that such a model is likely to perform better on later problems in an assignment

than earlier problems, but previous works have reported an average model perfor-

mance across all opportunities, or problems.

This paper attempts to, in part, build upon this previous body of work to build

models to predict wheel spinning using a finer-granularity of data (e.g. at the

action-level), observe wheel spinning behavior (as well as stopout which will be

described next) over longer periods (e.g. across assignments), and observe how

model performance changes over consecutive problems.

4.2.2 Student Attrition and Stopout

Student attrition, more commonly characterized by student dropout, has received

a large amount of attention in recent years as a problem in education, largely due

to its prominence in digital environments such as Massive Open Online Courses

(MOOCs) [CRK15][XCSM16][YSAR13][RCY+14][LSHR15]. In such systems, it has

been observed that a large portion of students do not complete their courses; such

behavior is called dropout. Surveys have shown multiple reasoning behind low

persistence in MOOCs which vary from learners to learners. For example, some may

quit due to insufficient background knowledge or the difficulty of content, but other

may get interrupted due to time management or scheduling, or simply stop coming

back because they learned all they want to know [KH15]. Student attrition within

MOOCs has also been previously studied through the development of a deep learning

model, named “GritNet,” that was found to outperform existing baseline methods

[KVG18b] and even transfer across courses [KVG18a]. While these areas have, as

described, received a large amount of attention, the characteristics of persistence

and the reasoning for attrition in MOOCs differs greatly from that observed in K-12

classrooms as most students do not exhibit dropout in the same manner.
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Dropout is not common within traditional K-12 classroom context (i.e., manda-

tory education) as attendance and graduation are often enforced and encouraged by

the parents. Instead, student attrition and low persistence are observed in a form

of students not completing certain learning tasks; we call this behavior ”stopout”.

The main difference between stopout and dropout is that when a student stopouts,

they are still in the course and may choose to complete the subsequent assignments,

while learners are defined as dropout when the do not come back to finish the course.

When Student attrition at the assignment level, in many cases, prevents stu-

dents from sufficiently learning the material and subsequently may lead to further

difficulty when learning post-requisite skills (e.g. see [BWH15]), but also introduces

a range of other issues pertaining to the development and deployment of effective

learning interventions. As students exhibiting stopout behavior cease interaction

with the learning environment, aid cannot be given to the student through the

platform, relying solely then on external sources, such as the teacher, to help the

student. Missing or incomplete student data caused by attrition makes it difficult

to study the learning process (as no data can be recorded for students who are not

interacting with the system), measure the effectiveness of interventions through ran-

domized controlled trials [HHSK00], and, as the cause of stopout is often difficult

to identify, develop effective interventions to support more productive persistence.

For these reasons, it is important to build models to help identify students likely

to exhibit stopout preemptively so that we can better understand the early signs of

the behavior and develop interventions to prevent it.

4.2.3 Deep Learning in Educational Contexts

The use of deep learning methods in the context of education and learning ana-

lytics has led to a growing body of research focusing on better modeling student
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behavior and performance. Within this domain, a large number of such works have

begun to utilize recurrent neural networks (RNNs) [WZ89], for their ability to model

complex temporal patterns of student behaviors. These models have shown great

promise in recent works modeling student knowledge and short-term performance

[PBH+15][KLM16][XZVIB16], predicting student graduation [KVG18b] and real-

time performance [KVG18a] in MOOCs, detecting student affective state [BBH17],

and predicting long-term outcomes [SBPH18][YLYY18].

Despite the often-reported high performance of these models as applied to their

respective tasks in education, the large number of learned parameters and complex

model structures often make them difficult to interpret. While this difficulty ap-

plies to the learned parameters of the model, this does not mean that the estimates

produced by the models are similarly uninterpretable and can be utilized to explore

student behavior over time at fine levels of granularity (e.g. see [BBOH18]). Some-

thing as simple as observing the estimates themselves, or even model performance,

over time can lead to better insights into the modeled behaviors as well as when

action may best be taken through intervention.

The high complexity of deep network structures allows the model to learn rich

feature embeddings, either explicitly (e.g. [ZXZ+17]) or implicitly (e.g. [YLYY18]),

that better describe the data to make better-informed model estimates. In this

way, such models also support the application of transfer learning [Pra93] to better

understand the relationship between outcomes of interest by providing the means

to observe how learned features generalize across prediction tasks.
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Feature Name Description

Action Type One-hot encoding of the action (attempt, help request, etc.)

Attempt Count The number of attempts made up to the current action

Hint Count The number of hints requested up to the current action

Problem Count The number of problems seen up to the current action

Probability of Action The probability of the current action given the problem

Probability of Action
Given Action Count

The probability of the current action given both the problem
and the number of actions taken in the problem

Probability of Response When an attempt, the probability of a student answering with
the specific response given the problem

Probability of Response
Given Action Count

When an attempt, the probability of a student answering with
the specific response given the problem and number of actions
taken in the problem

Cumulative Log Likelihood
of Response

The cumulative log likelihood of a student answering with the
specific response on the problem

Normalized Time Taken The amount of time since the last action, z-scored within action
type and problem

Used Penultimate Hint Whether the second-to-last hint has been seen before the
current action

Used Bottom Out Hint Whether the student has seen the last hint (containing the answer)
before the current action

Correctness Correctness or incorrectness if the current action is an attempt, or
a non-attempt (as a 3-value one-hot encoding)

Preceding 3 Actions One-hot encoding describing the previous three actions taken
excluding the current action

Current and
Preceding 2 Actions

One-hot encoding describing the previous three actions taken
including the current action (current and previous 2)

Table 4.1: Description of the generated action-level features.

4.3 Dataset

The data used in this work is comprised of students working with ASSISTments

during the 2016-2017 academic year. ASSISTments is a web-based learning plat-

form that provides the tools for teachers to assign classwork or homework content

for which students receive immediate correctness feedback [HH14]. While working

through each assignment, many problems supply students with optional on-demand

computer-provided aid; hints, of which there may be from 0 up to several available,

supply students with an instructional message, while scaffolding, when available,

breaks the problem into smaller steps to solve. In addition to these, the system
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provides a “bottom-out” hint for every problem that supplies the students with the

correct answer if the student is unable to solve the problem as students are not al-

lowed to progress to subsequent problems until the correct response is entered inside

ASSISTments.

ASSISTments is used by several thousands of distinct students daily, most of

which being in 6th-8th grade solving primarily mathematics content, providing a

dataset of sufficient scale and variation to apply deep learning methods that often

require such data. While the majority of students are of late-middle-school age,

the dataset itself is comprised of all users of the system during the aforementioned

academic year. The data is filtered to include only student interaction with mastery-

based assignments, known as “skill builders” in the system, where the completion

threshold is designated to simply require students to answer three consecutive prob-

lems correctly without the use of computer-provided aid (i.e., without hints, scaf-

folding, or bottom-out hints). In recognition of wheel spinning as an undesirable

learning behavior, the system implements a “daily limit,” stopping students on the

skill builder assignment for the day if the completion threshold is not reached by the

tenth problem (except in the case where the student is about to reach the threshold

on or directly following the tenth problem); the system provides the student with an

instruction to seek additional help and return to the assignment on the subsequent

day.

As teachers using the system assign a range of content, both made available

through the system as well as self-built material, we include data from skill builder

assignments where at least 10 students started the assignment and the overall com-

pletion rate is at least 70%. These limitations help to remove outliers such as sample

classes and optional supplementary assignments where the teacher does not require

every student to complete. These outlier cases are excluded as we would argue that
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attrition due to such factors is not stopout as we have defined it within this task

(e.g. low unproductive persistence).

4.3.1 Features

The data consists of action-level data recorded by the system, describing a fine-

grained level of interaction with the content. As such, each row of the data describes

a single action taken by a student pertaining to problem answering, or attempts,

as well as hint requesting within the system in addition to time-related measures,

probability of each response (e.g. identifying common wrong answers), and recency

information (e.g. preceding actions taken). From the 15 features generated, a one-

hot encoding was applied to all categorical features, resulting in a total of 86 features

to use as input into our models. A brief description of each of these features is

provided in Table 4.1.

4.3.2 Wheel Spinning and Stopout Labels

The labels of wheel spinning and stopout are applied to the data largely following

previous definitions of these behaviors, although with a small number of edge-case

exceptions that are detailed here to avoid ambiguity. As we hypothesize that wheel

spinning and stopout are, respectively, representations of high and low unproductive

persistence, as emphasized in the Introduction, we have defined these behaviors as

mutually exclusive. Wheel spinning occurs when students have not reached a suffi-

cient threshold of understanding by the tenth learning opportunity; we acknowledge

that this threshold of ten problems to define wheel spinning behavior is rather arbi-

trary (and perhaps worth refinement in future work), but is used here for consistency

with previous works studying wheel spinning behavior. Again as emphasized in the

Introduction, we define stopout to occur only if a student fails to complete the as-
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signment and stops out before the tenth problem. Attrition exhibited after the tenth

problem is not labeled as stopout behavior, but rather would be characterized as

wheel spinning (as the tenth problem was reached without completing the mastery

assignment). In this way, any student with ten or more problems, unless comple-

tion was reached precisely on the tenth item, is labeled as having exhibited wheel

spinning behavior.

The labels of each stopout and wheel spinning are represented as separate binary

values and, while calculated at the student-assignment level, are applied to each row

of the dataset. In this way, all models reported in this paper are predicting wheel

spinning and stopout at each action taken by a student, similar to the problem-level

estimates observed in previous works [BG13][GB15]. While we do not expect that

such models will perform at the same level of accuracy for all actions, this level of

prediction will allow for the study of such performance over time.

For this work, four labels are applied to the data corresponding to within and

across-assignment indicators. In other words, a within-assignment wheel spinning

and stopout (whether the student exhibits each behavior on the current assignment

on which a student is working) is applied in addition to indicators of wheel spinning

and stopout on the subsequent assignment. In both cases, a label is applied to each

row of the data, again, corresponding to a single action taken by the student. In this

way, next assignment wheel spinning and stopout behavior will be predicted from,

Number of Distinct Students 12,714

Number of Student Assignments 123,539

Number of Rows (Actions) 1,055,588

Percent Assignments with Wheel Spinning 4.85%

Percent Assignments with Stopout 4.72%

Table 4.2: The notable descriptives of the dataset.
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Figure 4.1: A simplified representation of the LSTM model structure, illustrating
how information flows from previous timesteps to inform each model estimate.

for example, the first action of the previous assignment, then the second action,

and so on. Similarly, as there is no included indication of the subject matter of

the subsequent assignment, models of across-assignment representations of wheel

spinning and stopout behavior is inherently capturing student-level (e.g. content

agnostic) representations of such behavior.

The resulting dataset, as described by Table 4.2, contains over 100 thousand

student assignments from over 12 thousands students, resulting in approximately 1

million actions to be used by our models.

4.4 Methodology

The methods used in this paper aim to address the research questions outlined in

the Introduction Section centered on the application of a deep learning model in

conjunction with transfer learning to predict both within and across-assignment

representations of unproductive persistence. In this way, we develop a recurrent

deep learning model as a means of learning a rich set of embedded features that are
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Figure 4.2: A visual example of the transfer learning procedure. The hidden layer
of the trained LSTM model is used as input to train each a decision tree and logistic
regression to predict each wheel spinning and stopout behavior.

predictive of one outcome (i.e., wheel spinning) in order to then observe how well

such features generalize to predict the other outcome (i.e., stopout). This section

will detail the models used to accomplish this goal as well as the set of methods

applied in addressing our research questions outlined in the Introduction.

4.4.1 Building Models of Wheel Spinning and Stopout

In order to predict within and across-assignment wheel spinning and stopout behav-

ior, we utilize a type of RNN called a Long-Short Term Memory (LSTM) network

[HS97], in addition to a traditional decision tree model and logistic regression. Pre-

vious works focused on predicting wheel spinning behavior have utilized a logistic

regression approach using a large set of engineered features [BG13][GB15]. While a

set of engineered features are also utilized in this work, the previous models of wheel

spinning have attempted to model at the problem level and included a larger set
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of contextual features that describe prior performance on each knowledge compo-

nent, or skill, in the assignment; the set of features we use here allow us to observe

student-level representations of each behavior and future work can certainly expand

on this to include more contextual, content-based features.

For each of the four labels applied to the dataset, a separate logistic regression,

decision tree, and LSTM model is trained to predict the respective label. For all

models trained in this work, we evaluate each using a stratified 10-fold student-level

cross validation (utilizing the same folds in all models for fair comparisons). Given

the large imbalance of stopout and wheel spinning labels (as most students do not

exhibit such behavior per assignment), we stratified each fold by first clustering

students based on the percentage of assignments in which each exhibited wheel

spinning and stopout behavior, and then folding each cluster into 10 even folds.

In the case of the more traditional decision tree and logistic regression models,

the raw features are presented as input to the model, with each action delivered as

an independent training sample; again, the outcome is predicted at each action of

the student within the system. The resulting performance of each model is then

calculated across all samples within each fold and averaged across the 10 folds. The

traditional models were implemented using the Scikit-Learn library [PVG+11] in

Python using the default hyperparameters, with the exception of the max depth

of the decision tree having been restricted to 3 levels to avoid potential overfitting;

these settings were used for all logistic and decision tree models described in this

work.

The LSTM model, however, as a temporal model, differs slightly in terms of how

samples are presented to the model as input during the training procedure. In this

case, samples are grouped by student assignment, with each sample representing a

series of actions taken by a student within each assignment. The entire series of
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assignment-actions are presented to the model and a series of estimates (of equal

length to the input) is produced. In this way, the model is trained as a sequence-to-

sequence model with a dynamic, yet finite, sequence length (as students completed

a varying number of problems). The model attempts to learn temporal relationships

within each student assignment to better inform its estimates, but still produces the

same number of outputs as the traditional models. Similarly, as some of the features

represent recent activity, the comparison of the models will help reveal aspects

of these temporal relationships; comparing the LSTM and traditional models, for

example, will reveal if utilizing longer-term student performance history lead to

better model performance.

The LSTM model was developed using the Tensorflow library [AAB+15] in

Python with a 3 layer structure; the input layer included 86 nodes correspond-

ing with each of the available action-level features which then was fed into a hidden

layer of 10 LSTM nodes and proceeded to an output layer of 1 output node to

which a sigmoid activation function is applied. Minimal hyperparameter tuning was

conducted for this network in an effort to reduce the chances of providing an unfair

advantage to the model; for sake of reproducibility, the model used an Adam update

function [KB14], cross entropy cost function, step size of 0.001, a batch size of 32,

and used 20% of the training set as a validation set to determine when to cease

model training.

4.4.2 Transfer Learning

Once each of the models is constructed and evaluated in predicting within and

across-assignment wheel spinning and stopout behavior, we apply a transfer learning

approach to study the relationship between such constructs. We have hypothesized

that wheel spinning and stopout behavior are two extreme measures of unproductive
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persistence. By employing the use of transfer learning, we can test this hypothesis,

that the two measures are closely related, by observing how well predictors of one

behavior transfer to predict the other behavior.

For this task, we utilize the LSTM model as the basis for the transfer learning

method. As a recurrent network, the structure allows the model to learn a rich set

of features that attempt to utilize complex temporal relationships in the data to

make better-informed estimates at each time step; this rich set of features is stored

in the network’s hidden layer and, though not directly interpretable, this set of

features is learned during the model training process. This development of embedded

features is well-studied in other deep learning models, such as those utilized for

image processing [KSH12][EBCV09]. The LSTM model, while not identifying lines

and shapes as is found in image processing tasks, learns temporal features that

help to distinguish between cases of positive and negative labels. The LSTM model

is trained as a sequence-to-sequence model (i.e. many-to-many), allowing a set of

features to be extracted for each time step and subsequently presented as input into

a separate model; it is in this way that transfer occurs, where the LSTM learns

a set of features in its hidden layer that are then transferred to another model

that observes a different prediction task. For example, as there are 10 nodes in the

hidden layer of the LSTM, the model learns 10 features from the preceding sequence

of action-level features (see Table 4.1) that distinguish positive from negative labels

of the dependent variable (i.e. either stopout or wheel spinning); the 10 features

are then extracted for each timestep and used as input to either the decision tree or

logistic regression model. A simplified representation of this process is illustrated

in Figure 4.2. The logistic regression and decision tree models are then trained

to predict either stopout or wheel spinning at each timestep (i.e. at each student

action), using the features transferred from the LSTM model.
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DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.847 0.327 0.511 0.437 0.887 0.313

LSTM - Wheel Spinning 0.87 0.318 0.887 0.313 —- —-

LSTM - Stopout 0.679 0.388 0.708 0.39 —- —-

Majority Class Model RMSE: 0.482

Table 4.3: Predicting Wheel Spinning in current assignment

DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.706 0.224 0.46 0.275 0.759 0.223

LSTM - Wheel Spinning 0.71 0.224 0.683 0.226 —- —-

LSTM - Stopout 0.747 0.223 0.757 0.222 —- —-

Majority Class Model RMSE: 0.234

Table 4.4: Predicting Stopout in current assignment

With this methodology, four sets of transfer learning models are compared for

each within and across-assignment labels of wheel spinning and stopout. These four

sets compare different combinations of features, gained by training the LSTM model

to predict either wheel spinning or stopout behavior, and each outcome. First, the

features learned by the LSTM model to predict within assignment wheel spinning,

referred to henceforth as the “wheel spinning features,” are presented to a decision

tree model and a logistic regression to predict within assignment wheel spinning;

this task allows us to identify first any potential differences to performance caused

by model transfer (it is not guaranteed that the subsequent model will be able to

effectively learn how to utilize the features as the output layer of the LSTM had).

Secondly, the wheel spinning features are again presented to a different decision tree

and logistic regression model which are then trained to predict within-assignment

stopout. The third set of models then observes, conversely, how well the stopout

features, learned by the LSTM model trained to predict within assignment stopout,
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transfer to a decision tree and logistic regression model to again predict within

assignment stopout. Finally, the fourth set of models uses the stopout features in

a decision tree and logistic regression to predict wheel spinning. It is important to

clarify that this work does not attempt to make the comparisons between within-

assignment features transferring to predict next assignment outcomes.

4.5 Results

4.5.1 Metrics

We compare the results using two primary metrics of AUC and RMSE in addi-

tion to, in the case of observing model performance over time, Recall. There are

several benefits to using this particular range of measures to evaluate each model,

particularly in case of modeling wheel spinning and stopout where there is a large

imbalance amongst the labels (most students do not exhibit such behaviors). In

such cases of imbalance, majority class models tend to appear to perform well even

when no distinction between classes is learned. To prevent trained models from

producing a low error by biasing their estimates toward majority class, we use AUC

to evaluate model fit.

The use of AUC evaluates how well a model distinguishes positive samples from

negative samples; given an instance of the positive class and the negative class,

AUC can be thought of as the probability the positive class will be the one with a

higher probability estimate. Therefore, the measure accounts for sparseness of the

positive class. The value is bounded between 0 and 1, with higher values indicating

better model fit. Values close to 0.5 are indicative of the model performing similar

to random chance.

While AUC evaluates how well the model is able to distinguish the classes, RMSE
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DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.581 0.238 0.539 0.273 0.600 0.251

LSTM - Next Assignment Wheel Spinning 0.595 0.250 0.601 0.250 — —

LSTM - Next Assignment Stopout 0.570 0.251 0.569 0.251 — —

Majority Class Model RMSE: 0.246

Table 4.5: Predicting Wheel Spinning in next assignment

DT LR LSTM

Features AUC RMSE AUC RMSE AUC RMSE

Raw 0.545 0.209 0.492 0.25 0.557 0.221

LSTM - Next Assignment Wheel Spinning 0.547 0.221 0.548 0.221 — —

LSTM - Next Assignment Stopout 0.553 0.221 0.557 0.221 — —

Majority Class Model RMSE: 0.215

Table 4.6: Predicting Stopout in next assignment

identifies the distance of each estimate (in terms of error) from the true label; the

metric is calculated using the continuous-valued probability of each class as produced

by the model and comparing this against the ground truth label. In this way, the

model penalizes for indecisiveness in the model. For example, if, for a set of positive

and negative labels the model produced all estimates of 0.1 and 0.09 respectively,

the AUC would indicate perfect model fit while the RMSE would be comparatively

poor (as the error on the positive instances is very high). This metric, however, does

not account for majority class bias and should therefore be compared in relation to

the RMSE value of a majority class model. The value of RMSE is bounded between

0 and 1 in this case (as all estimates are bounded within this range and the labels

are binary values), with lower values indicating better model performance.

Finally, we will also report a value of recall when observing the next assignment

wheel spinning and next assignment stopout models performance over time. Recall,

as a measure of accuracy in regard to the positive label (for all positive cases, how

many did the model successfully identify), helps to identify model performance in

identifying the positive cases of wheel spinning and stopout. This is particularly
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important, again, due to the large imbalance as it provides a means of evaluating

the models ability to identify cases of stopout and wheel spinning behavior. The

drawback of this metric is that it does require a rounding threshold to be set, and as

it is likely the estimates are biased toward the majority class, a rounding threshold

of the model output mean is used rather than the more traditional use of 0.5; in

other words, values above the mean are rounded up to identify a positive case of

either wheel spinning or stopout and estimates below the mean are rounded down

to identify a negative case of either measure. The value of recall is also bounded

between 0 and 1 with higher values indicating better model performance.

4.5.2 Model Performance

Our results are recorded such that each of the Tables 4.3-4.6 record results of one

outcome variable. Table 4.3 describes the various models which where built to

predict if a student is going to wheel spin in the current assignment. The first

model was built using the raw features (i.e the original features of the dataset as

listed in Table 4.1). We see that the LSTM model performs the best with an AUC of

0.887 and an RMSE of 0.313. It is then followed by the decision tree model with an

AUC of 0.847 and RMSE of 0.327. The logistic regression model does not perform

well with a low AUC of 0.511, barely better than chance performance.

The second and third model in Table 4.3 is built using transfer learning, where

we use the learned hidden layer of the LSTM trained to predict wheel spinning. Its

learned features are used as input to the decision tree and logistic regression models.

This experiment demonstrates how well the learned features transfer between models

as well as generalize to new outcomes. The main result is that both models show

improvement when trained using the features discovered by the LSTM: decision

trees see a slight improvement in both AUC and RMSE, while logistic regression
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is greatly improved. We see that the LSTM-Logistic Regression model with AUC

of 0.887 (RMSE 0.313) performs better than the LSTM-Decision tree model with

AUC of 0.87 and RMSE 0.318. We can observe that the transfer of the LSTM model

over the Logistic Regression model is resulting in the same AUC of the LSTM with

raw features, which is unsurprising as the output layer of the LSTM is essentially a

logistic regression model. The last model is another transfer learning model, wherein

the LSTM which was built to predict stopout in the current assignment is used to

transfer its learned features to a decision tree and a logistic regression model to

predict wheel spinning. The results were mixed, with the decision tree exhibiting

little benefit vs. using the raw features, while logistic regression outperformed the

raw features. It is interesting that the logistic regression improved even when given

features extracted for a different learning activity. We observe that both of these

models performed well with an AUC of 0.679 and RMSE of 0.388 in the case of the

LSTM-decision tree model and an AUC of 0.708 and RMSE 0.39 for the LSTM-

logistic regression model.

Similar to Table 4.3, Table 4.4 records the model performance for predicting if

a student is going to stopout in the current assignment. The order is similar to

Table 4.3 where in the first row the original features were used to fit the decision

tree, logistic regression and the LSTM model. The LSTM model seems to perform

the best with an AUC of 0.759 and RMSE of 0.223, followed by the decision tree

and logistic regression models with AUCs of 0.706 and 0.46, respectively. The

second model is the first of the transfer learning models aimed at predicting within-

assignment stopout. The learned features of the LSTM to predict wheel spinning

were transferred as input to a decision tree and logistic regression model to predict

the stopout. Despite using features learned for a different prediction task, both the

decision tree and logistic regression showed improved performance over just using
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the raw features. For decision trees, the benefit is slight with a trivial increase in

AUC. However, logistic regression demonstrated a large performance gain with AUC

improving from 0.46 to 0.683 and RMSE improving from 0.275 to 0.226. Finally

using the LSTM model which was built to predict stopout using the raw features,

we transferred its learned features as input to a decision tree and logistic regression

model to predict the same stopout label. Both models show improvement over

using the LSTM stopout features. Both decision tree and logistic regression show

noticeable performance gains in AUC, with smaller gains in RMSE.

Table 4.5 describes the results for the model built to predict if a student is

going to wheel spin in the next, rather than current, assignment. Using the original

features, the LSTM exhibits an AUC of 0.600 (RMSE 0.251), followed by the decision

tree with an AUC of 0.581 (RMSE 0.238), and then the logistic regression with an

AUC of 0.539 (RMSE 0.273). The second row describes the performance of the

transfer learning models from the LSTM built to predict wheel spinning in next

assignment. This LSTM - decision tree model had an AUC of 0.595 (RMSE 0.250)

while the LSTM - logistic regression model exhibited an AUC of 0.601 (RMSE

0.250). Similarly the LSTM built to predict next assignment stopout is used to

build transfer learning models with the decision tree and logistic regression for the

task of predicting next assignment wheel spinning. These models resulted in an

AUC of 0.570 (RMSE 0.251) for the transferred decision tree model and an AUC of

0.569 (RMSE 0.251) for the logistic regression model. Again, we observe the general

pattern of learned features resulting in better accuracy than the raw features. For

logistic regression, even features built for a stopout manage to outperform the raw

features, although this result does not hold for the decision tree.

Table 4.6 describes the models built to predict if a student is going to stopout

in the next assignment. Following the similar structure of the previous tables, the
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Figure 4.3: The performance of the LSTM model in predicting within-assignment
wheel spinning by opportunity.

Figure 4.4: The performance of the LSTM model in predicting next assignment
wheel spinning by opportunity.
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original features were used to build a decision tree, logistic regression model and an

LSTM model. The results are not nearly as strong as shorter-term predictions for

the current assignment, but are still better than chance, perhaps highlighting the

difficulty of identifying this behavior as early as the previous assignment without

contextual information as to the content of the subsequent assignment. The LSTM

again seemed to perform the best out of the three with a not-so-high AUC of 0.557

(RMSE 0.221). It was followed by the decision tree with a AUC of 0.545 (RMSE

0.209) and the logistic regression model with a below chance AUC of 0.492 (RMSE

0.25). Following the raw features, we use what was learned by the LSTM model

built to predict wheel spinning in the next assignment to transfer its learning to a

decision tree and a logistic regression model. These models resulted with AUC of

0.547 (RMSE 0.221) and 0.548 (RMSE 0.221), respectively. We observe that there

are few differences between the two models. Next we use the LSTM model trained

to predict next assignment stopout to transfer its learning to a decision tree and

logistic regression model to predict the very same label of next assignment stopout,

resulting in AUCs of 0.553 (RMSE 0.221) and 0.557 (RMSE 0.221) respectively.

It is important to reiterate that each model is predicting the respective label at

each timestep. In other words, each behavior is predicted at each student action.

It is likely for this reason that some models exhibit AUC values near chance; the

poor performance of the logistic regression model in Table 4.3, for example, and

conversely high performance of the decision tree, suggests that positive and negative

labels of the behavior are not linearly separable using the raw features alone and

need more information (such as the temporal features supplied by the LSTM) in

order to exhibit higher performance.
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4.5.3 Observing Model Performance by Opportunity

In addition to observing model performance averaged over all estimates, we further

observe how model performance changes at each learning opportunity, or problem,

when predicting each outcome measure. By observing how these models perform

at each learning opportunity, we can begin to identify how early in the preceding

assignment we are likely able to detect indicators of unproductive persistence in

the future; this can then help to 1) identify potential causes or factors that may

correlate with future unproductive persistence and 2) begin to understand not only

when but also what type of intervention may be deployed to support productive

learning behaviors.

As the data is represented as a series of student actions, we first take the mean

model performance within each student problem and plot this performance over the

first ten problems of the student assignments as shown in Figure 4.3. As the number

of students present at each opportunity changes due to students either exhibiting

stopout behavior or effectively completing the assignment, it is important also to

include confidence intervals as each value will be less precisely measured at each

subsequent opportunity. In the case of RMSE, this confidence interval is calculated

by computing the square root of the upper and lower bounds of the standard errors

calculated from the squared errors across estimates at each opportunity. In the case

of recall, the confidence bounds are computed using a Wilson score interval [Wil27]

for the computed recall value at each opportunity. The confidence bounds for AUC

is computed using pROC [RTH+11], an an open source R package.

We plot the model performance for each within next assignmen t wheel spinning

and next assignment stopout as estimated using the LSTM model without transfer

learning in Figures 4.4 and 4.6 respectively; we compare these, then to the model

performance for each within-assignment wheel spinning and stopout depicted in
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Figures 4.3 and 4.5 respectively. It is important to highlight, as was described in

the Metrics Section, lower RMSE values indicate better model performance while

both higher recall and higher AUC values are indicative of better model performance;

in this way, although both RMSE and recall, for example, exhibit a general upward

trend over each subsequent opportunity, the metrics are contradictory in their trend

of model performance. This particular case observed in Figure 4.4 would therefore

suggest that, while the model is able to correctly identify a larger number of students

likely to wheel spin by the end of the preceding assignment, the model is less precise

in its ability to do so. This is further supported by the decrease in AUC observed

in that figure, where the model is likely mislabeling students who do not wheel spin

on the next assignment.

When predicting next assignment wheel spinning, as illustrated in Figure 4.4,

the RMSE of the model is at its lowest over the first three opportunities of stu-

dents assignments. This is not very surprising as, since the completion threshold

for the assignments is answering three consecutive problems correctly, a large num-

ber of students will likely answer the first three problems correctly and effectively

complete the assignment. Such students, although certainly dependent on content,

are probably less likely to exhibit wheel spinning in future assignments than stu-

dents exhibiting difficulty early in the assignment; students who do not effectively

learn the material are likely to struggle to learn subsequent skills that may require

mastery of the prior content. The model performance, in terms of RMSE, then

steadily declines after the third opportunity as it is likely biasing estimates toward

the majority class. In regard to both recall and AUC, however, the model is steadily

improving with each subsequent opportunity, suggesting that, while perhaps biased

toward majority class, the model is able to more effectively identify future cases of

wheel spinning behavior as students remain in the assignment. The model’s recall
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Figure 4.5: The performance of the LSTM model in predicting within-assignment
stopout by opportunity.

does seem to plateau near the end of the 10 problem span, but the result suggests

that by the end of the assignment, it is able to identify 60% of the wheel spinning

students on the subsequent assignment (without even knowing what that content

will be). Presumably, the model may be simply identifying cases where students

who exhibit wheel spinning within the current assignment are more likely to wheel

spin on subsequent assignments, particularly as the students remaining in the as-

signment at the tenth opportunity are wheel spinning (unless completion is reached

on the tenth item per our definition of the behavior).

In one sense, this suggests that, somewhat unsurprisingly, an intervention aimed

at preventing wheel spinning on a subsequent assignment is likely to be most impact-

ful at the first sign of potential wheel spinning behavior on the current assignment.

In the case of our results, this seems to be around the third learning opportunity,

as illustrated by the recall and metric in Figure 4.3. In that figure, the third oppor-

tunity exhibits both the highest recall, suggesting that the model is able to identify

the cases where wheel spinning is exhibited by the end of the assignment, and the

lowest RMSE, which, even with majority class bias, is the opportunity where all

metrics generally agree in terms of exhibiting good model performance.
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Figure 4.6: The performance of the LSTM model in predicting next assignment
stopout by opportunity.

The performance of the LSTM model in predicting next assignment stopout, as

depicted in Figure 4.6, illustrates a similar trend to that of the wheel spinning model.

Although exhibiting noticeably higher variation, the RMSE of the stopout model is

lowest within the first three learning opportunities and steadily increases on sub-

sequent opportunities. Recall again exhibits a contradicting trend, exhibiting the

worst performance over the first three opportunities and then substantially increas-

ing in performance after the third opportunity, correctly identifying approximately

59% of the students who stopout on the next assignment. By the large confidence

bounds on AUC, however, it would appear that, similar to the AUC of the next

assignment wheel spinning model illustrated in Figure 4.4, the model has difficulty

distinguishing students likely to exhibit each of these behaviors in the future.

In observing the within-assignment performance of this model in Figure 4.5,

however, another interesting trend can be identified. Similar to the wheel spinning

model, the metrics appear to agree in terms of better model performance on the

third opportunity. However, the RMSE steadily improves and both the recall and

AUC metrics decrease somewhat steadily after this point. This almost-inverse trend

from what was seen for the wheel spinning performance suggests, although not
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surprisingly, that the model is unable to distinguish students likely to stopout and

persist on later opportunities; by our definition, stopout can only occur within

the first ten opportunities, but also students present on later opportunities are

demonstrating persistence which may be hard for the model to identify when stopout

will occur in such cases.

4.6 Future Work

Although this work advances the understanding of transfer learning in understanding

educational performance, there are several interesting followup questions. First, we

found a general pattern of logistic regression benefiting from transfer learning, while

the results for decision trees were more mixed. Is this trend a general one, or is it

particular to our data set and set of features? Similarly, how would other classifiers

such as random forests or decision stumps perform? Would they benefit from the

constructed features or not? The first step here of exploring transfer learning is

useful, but the field needs a better understanding of under what circumstances

features will transfer to new learners.

The second area of investigation centers around the differing benefits transfer

learners gain. When the features aligned with the task, e.g. stopout features for

predicting stopout, both decision trees and logistic regression showed benefit. How-

ever, when the features were less aligned, such as wheel spinning features being used

to predict stopout, results were more mixed. There are several next questions to

ask in this area. First, how broadly applicable are the learnt feature sets? Would

they show improvement over raw features predicting less-related tasks should as

learner affect? Second, is it feasible to train a neural network with multiple outputs

to encourage it to learn features that are more broadly applicable (e.g. through
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multi-task learning [Car97])? In this way, a major area of research could be training

networks on a variety of outputs and using the learnt features for a variety of novel

research topics. Removing humans from feature generation may result in less inter-

pretable features, but might result in both more accurate models and novel features

we have not yet hand-discovered.

The final area we think worth pursuing is understanding the large dropoff in

performance from predicting current problem set wheel spinning and stopout, to

predicting next problem set wheel spinning and stopout. Some of the decrease in

performance is fundamental to any prediction task: predictions further in the future

have more uncertainty than about near-term events. How much of the decrease is a

fundamental limitation, and how much is due to their not being as much prior art

in longer-term predictions? Is it possible to increase accuracy on later problem sets

to an AUC of 0.7 with better feature construction or model choices, or are there

fundamental limits to how accurately we can predict student performance?

4.7 Contributions and Conclusions

This paper makes two contributions with regards to transfer learning. First, we

have found that in some instances transfer learning works better than the original

features. We were surprised that machine-learnt features, designed to work with

a neural network, were applicable to a decision tree. Given the identical model

forms, it was less surprising the features improved performance of logistic regression

models. The second contribution is that transfer learning (sometimes) works for non-

identical tasks. Using LSTM-stopout features for predicting wheel spinning, and

vice versa, performance improved for the logistic regression models and sometimes

improved for the decision tree models. This finding demonstrates that it is possible
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to automatically construct features that are applicable to new prediction tasks.

This paper also makes contributions with respect to predicting longer-term events.

Earlier work on student modeling focused on immediate events such as predicting

how the student would perform on the current problem. Later work lengthened the

prediction interval to see how a student would perform on a problem set, which was

composed of many problems. This work increases the temporal interval to predict

how a student will perform on the next problem set. In many ways, this work is a

greater increase than going from current problem to current problem set, as in both

cases the predictive model has information of how the student is performing on this

skill. For predicting the next problem set, the model is unsure how the student will

perform on the skill. Thus the predictive task is comparably more difficult.

In conclusion, this paper focuses on providing an early warning to predict which

students will struggle. Providing help and additional learning resources to students

who are struggling to learn is an integral part of any learning system. Identifying

students who are going to struggle is crucial for helping these students; the sooner

we know if a student is going to wheel spin or stopout, the better we can provide

the right kind of help to the students. Prevention is better than cure, likewise it is

better to prevent the student from wheel spinning or stopout than providing them

with remedies later on. From our results, we can say that our models are good at

identifying the stopout and wheel spinning behavior early from the actions of the

students in the current assignment. From our models we can understand student

persistence in the form of wheel spinning and stopout. Using these concepts, we can

try to make students persist longer if they are not persisting long enough. Or we

could stop them from persisting if we identify that they have been struggling for a

long time. We can use these models to provide intervention at an early stage of the

assignment such as when the model detects the behavior after an action made by
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the student. If the model predicts if the student is going to wheel spin, we could

stop providing the student with more problems for the day. Instead, we could point

the student to a learning resource such as class notes or video. Similarly, if the

model predicts if a student is going to stopout, we could try to lower the difficultly

of the problems so that the student gains confidence in solving problems instead of

stopping out. By using the detectors for next assignment behaviors, we are detecting

vulnerable students an assignment early.
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Chapter 5

Machine-Learned or

Expert-Engineered Features?

Exploring Feature Engineering

Methods in Detectors of Student

Behavior and Affect

Botelho, A.F., Baker, R.S., & Heffernan, N.T. (2019). Machine-Learned or Expert-

Engineered Features? Exploring Feature Engineering Methods in Detectors of Stu-

dent Behavior and Affect. (In Submission).

Abstract

There has been a long history of research on the development of models

to detect and to study student behavior and affect during learning activities.

The development of these models within computer-based systems has allowed

the study of learning constructs at not only fine levels of granularity, but
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also at scale by leveraging the large sums of student log data recorded by

such systems. For many years, these models, regardless of their outcome

measure, were developed using carefully engineered features based on previous

educational research from the raw log data. More recently, however, the

application of deep learning models has often skipped this feature-engineering

step by allowing the algorithm to learn often-uninterpretable features from the

fine-grained raw log data. As many of these deep learning models have led to

promising results, the question has been raised as to which situations may lead

to machine-learned features performing better than expert-generated features.

This work aims to address this question by comparing the use of machine-

learned and expert-engineered features for three previously-developed models

of student affect, off-task behavior, and gaming the system. In addition to

this comparison, we propose a third feature-engineering method that combines

expert features with machine learning, to further explore the strengths and

weaknesses of each of these approaches for use in building detectors of student

affect and unproductive behaviors.

5.1 Introduction

The educational data mining community has developed numerous models to detect

unproductive student behaviors and affective states and study how these measures

correlate with short- and long-term learning outcomes. Estimates produced by de-

tectors of student affective states and unproductive behavior, for example, have

been found to predict student standardized test scores [PBSP+13], whether a stu-

dent chooses to attend college [PBBH13], and whether they pursue a degree in

STEM [SPOBH14], and even later pursue a STEM career [MM18], from estimates

produced from interaction logs collected as they worked on mathematics problems
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in seventh grade. The predictive power of these detectors along with a general de-

sire to understand and improve the student learning process has led to a significant

amount of research around developing these models.

For many years, these detectors, exploring a range of variables including that of

student affect, off-task behavior, and gaming the system, have been built using sets

of hand-crafted features based on prior education research. More recently, however,

the application of deep learning models to raw data have shown promising results

(e.g. [ZXZ+17][PHM+18]; such models often skip the task of feature-engineering

by allowing the model to learn sets of embedded features using a machine learning

approach rather than constructing features by hand. This has raised the question

as to whether the often-arduous task of generating features by hand leads to more

accurate models, or do features that are automatically distilled by a deep learning

model lead to higher performing models?

5.1.1 Expert-Engineered vs. Automatically Distilled Fea-

tures

The comparison of different sources of features, whether generated through a research-

based engineering process or by means of a machine learning model, must consider

a number of dimensions as each type of method provides certain affordances that

may be desirable under different applications. It is similarly important to compare

models utilizing these different sources of features, using several metrics to highlight

particular strengths and weaknesses of each approach. Prior work, for example, sug-

gests that machine learned features lead to better performance on some metrics, but

worse performance on others [BP18][BBH17]. Also, additional attributes of models

such as interpretability and ease of deployment should be considered to determine

which approach is best overall for a specific application.
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The primary goal of the current paper is to compare the two aforementioned

methods of generating features to be utilized by models of student affect and unpro-

ductive behaviors. However, it is also important to consider whether some types of

models may perform better for certain types of features. In other words, the choice

of model may largely impact the benefit of different features or even restrict which

types of features are possible at all. RNN models are able to easily accept sequences

of labeled and unlabeled low-level action data for training. Conversely, other sim-

pler models such as a decision tree or logistic regression would require some type of

feature engineering, or aggregation, in order to incorporate labeled and unlabeled

data; additionally these models would be unable to easily observe unlabeled data

in a semi-supervised learning manner, often referred to as co-training, as can be

accomplished with a recurrent deep learning network [WZ89]. It is important to

note that we use the term “co-training” to describe the use of both labeled and

unlabeled data to inform model estimates and the methods differ from that of other

works describing co-trained models [BM98]. It is also the case that recurrent deep

learning networks are not the only manner in which co-training can be performed

(e.g. [AG02], [MRS02]) but this is the method used in the analyses described in this

paper. Whether or not the use of unlabeled data makes a difference in regard to

model performance is a different question - one that will be addressed in this work

- but it is difficult to fairly compare the benefits of methods of feature engineering

without also considering the types of models that utilize such features.

Commonly, as is the case in this work, the generation of features through machine

learning methods refers to the use of a deep learning model, as the complex structure

is often believed to learn sets of features within a number of hidden layers; this is

perhaps best exemplified in image processing domains where the features learned

by certain types of deep learning models can be extracted and visually inspected
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[MMCS11]. In non-image data, such as the student interaction logs observed in

this work, it is difficult if not impossible to interpret the features learned by such a

model, particularly when applying recurrent neural networks (RNNs) [WZ89] that

attempt to learn temporal or sequential relationships within a set of data. The

lack of interpretability of these deep learning models detracts from their utility in

research settings as it is difficult to justify why the model produced a particular

estimate; when one cares about the importance of features in a prediction model,

the use of these deep learning models offers little benefit. Despite the ambiguity

of these models, they can perhaps be useful in some in educational contexts, as

previous work has effectively used deep learning models to learn temporal trends

among and across affective states [BBOH18]; this was accomplished by studying

each affective state based on the output estimates of the model without the need to

interpret any learned parameters within the model.

5.1.2 Research Questions

As has been described, the goal of the current work is to compare the strengths and

weaknesses of differing feature engineering methodologies through both the per-

formance of models utilizing such features according to multiple metrics and also

regarding interpretability and applicability. Specifically, we re-develop detectors of

student affective state [BBH17], off-task behavior [PBSP+13], and gaming the sys-

tem [PBdCO15], comparing new models to previously-developed models, to address

the following research questions:

1. Which leads to better model performance (AUC ROC and Kappa), expert-

engineered features or machine-learned features, for detectors of affect and

unproductive behaviors?
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2. Does the combination of expert-engineered features and machine learning-

based feature generation lead to any improvement in model performance for

detectors of affect and unproductive behaviors?

3. Does the incorporation of unlabeled data through model co-training lead to

any improvement in model performance for detectors of affect and unproduc-

tive behaviors?

5.2 Background

The comparison of expert-engineered features and those generated through the use

of a machine learning model has been conducted previously on similar detectors

within the computer-based learning system known as Betty’s Brain [JBB+18]. In

that work, only small differences were found between models using expert-engineered

features and models utilizing features automatically distilled through the use of a

deep learning model. While the comparisons made in that work are arguably incon-

clusive, it raises many of the questions posed in this current work. The inconclusive

findings of [JBB+18] motivates a need to understand which contexts one method of

feature generation may be better over another in developing accurate detectors of

student affect and disengaged behavior.

Detectors of student affective state have been developed in a number of learning

systems including Cognitive Tutor [dBGW+12], AutoTutor [DCW+08], Crystal Is-

land [SML11], MathSpring [HWBA18], Betty’s Brain [JBB+18], and ASSISTments

[OBG+14][WHH15], the last of which supplied the data used in this current work.

While some projects have sought to develop these detectors with the help of physi-

cal and physiological sensors [DLS+10][ACB+09][PRB+16], we instead focus on the

development and application of sensor-free detectors of student affect as well as dis-
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engaged behavior. In such detectors, each label is inferred using only interaction

logs collected through a particular learning platform.

The development of affect detectors within ASSISTments has undergone several

iterations of improvements. From some of the initial work exploring the use of

expert-engineered features to develop and evaluate detectors through a population

validity study [OBG+14], additional feature engineering work focused on improving

the skill-based features by exploring the knowledge components associated with

problems within the dataset [WHH15]. More recently, a deep learning approach was

applied [BBH17], utilizing the expert-engineered features within a recurrent neural

network to predict the four labels of affective state (i.e. engaged concentration,

boredom, confusion, and frustration) simultaneously over time; it is this model that

is used for comparison in the current work.

Student off-task behavior has also been studied in a number of systems including

Cognitive Tutor [AMRK06], CIspace [AC06], and ASSISTments [PBSP+13]. This

behavior is often characterized by such behaviors as talking to other students or

engaging in tasks unrelated to assigned work [BCKW04].

Detectors of gaming the system have similarly been previously developed in

a number of learning systems including Cognitive Tutor [Ale01][BCKW04], Read-

ing Tutor [Jos05], Wayang Outpost [JW06], as well as ASSISTments [PBdCO15].

Previous work on such detectors on data collected within Cognitive Tutor ex-

plored a number of features found to be predictive of student gaming behavior

[PdCBO14], and then later studied how such features generalize between learning

systems [PBdCO15], leading to the detector model observed in this work.

The three previously-developed models of student affective state, off-task be-

havior, and gaming the system represent, to the authors’ knowledge, the highest

performing detectors of their respective outcome previously published using AS-
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SISTments data (the data itself will be described in greater detail in the next sec-

tion).

5.3 Data and Labels

This work utilizes two datasets consisting of student interaction log data collected

within the ASSISTments computer-based learning platform. The content within the

system consists primarily of mathematics problems, as is the data used in this work,

for students in grades 6-8. While the system itself is not limited to mathematics and

contains content from early elementary school through early-college, the majority of

teachers and students use the system for middle school mathematics homework and

classwork. Students working in the system receive immediate correctness feedback

on each problem with the ability to make multiple attempts, and have the ability to

ask for on-demand computer-provided aid in the form of hints or scaffolded problems.

These interactions and timing information are the data used to construct most of

the expert-engineered features utilized in this work.

Each of the datasets is drawn from data utilized in previous published work to

develop and study models of student affect [OBG+14][WHH15][BBH17][BBOH18],

off-task behavior [PBSP+13], and gaming the system [PBdCO15]; the first dataset

contains data pertaining to both student affect and off-task behavior labels, as

these were collected in-tandem, while the second dataset contains data collected

to study student gaming the system. In their raw states, the datasets consist of

low-level student interactions within ASSISTments, with each row of both datasets

representing a single action taken by a student; these actions include, for example,

attempts to answer a question or requests for system-provided tutoring in the form

of hints or scaffolded problems, additional timing (e.g. time since last action) and
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Table 5.1: The number of instances and distribution of labels across each outcome.

Label
Number of
Instances

Percentage of
Positive Class

Off-Task
Behavior

568 24.6%

Gaming the
System

62 6.0%

Confusion 121 3.9%
Engaged
Concentration

2552 82.5%

Boredom 308 10.0%
Frustration 112 3.6%

content-based descriptives (e.g. the skill or knowledge component associated with

the problem).

Each of the previous models developed using this data, as cited here and de-

scribed in the Background Section, utilized a set of features that were engineered

from the raw action-level data recorded for each student. In addition to the interac-

tion data collected (e.g. number of attempts, timing, and hint usage), the features

also incorporate skill- or knowledge component-level information as well as when

the student was working (e.g. during or outside of school hours).

The ground-truth labels of both student affect and off-task behavior were col-

lected using quantitative field observations following the Baker Rodrigo Ocumpaugh

Monitoring Protocol (BROMP) [BOAss]. Using this method, human coders observe

individual students interacting with the learning software over a short time period

(traditionally up to 20 seconds per student) in a round-robin manner. The human

coder observes students and applies a label describing the first identifiable affective

state as well as the first identifiable behavior from a set including on-task behavior,

off-task behavior, and gaming the system as either on- or off-task. Although other

projects have observed a range of affective states using BROMP, the labels collected

for this work included only four observed states: engaged concentration, boredom,
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confusion, and frustration [BDRG10]. The protocol does also allow for uncertainty,

where undetermined or observations of affective states or behaviors outside of these

sets four are identified and omitted from the data.

We analyze gaming the system using a data set collected via text replays [BCW06].

The ground-truth labels of student gaming were collected using post-hoc examina-

tions of sequences of student log data following a set of previously-developed criteria

outlined in [BCW06].

The number of samples corresponding to each label along with the percentage

of samples containing the positive class (e.g. the percentage of cases where the

affective state or disengaged behavior occurred compared to the total number of

labeled samples) is reported in Table 5.1. From this, it can be seen that there are

large imbalances among the labels.

5.4 Methodology

As previously described, Jiang et al. [JBB+18] compared two feature engineering

methods, expert-generated and deep learning-based, for the development of affect

and off-task behavior detectors within the Betty’s Brain learning system. Aside from

simply testing the generalizability of their findings to more detectors built within a

different learning platform, it is the goal of this work to further explore the strengths

and weaknesses of each method of generating features. While that previous work

utilized deep learning, as is also done in this work, we additionally explore the use

of the modeling techniques of co-training [BM98] and multi-task learning [Car97] to

observe how these methods may benefit from one type of feature set over another.

As such, for each of the detectors of student affect, off-task behavior, and gaming the

system, we compare 5 different models utilizing either expert-engineered features,
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machine-learned features, or the combination of these feature generation methods,

both with and without the use of semi-supervised co-training. The remainder of

this section is dedicated to describing each of these 5 methods in greater detail.

5.4.1 Utilizing Expert-Engineered Features

The first set of models use expert-engineered features to detect each label of student

affect, off-task behavior, and gaming the system using methods similar to those

implemented in previous works. As described in the Data and Labels Section, the

expert features are first generated using the the raw action-level log data. In both

sets, the features are generated to describe the actions that occur in 20 seconds of

observation but also include neighboring actions that go beyond those 20 seconds to

capture the full context of these 20 seconds (e.g. a student may take over a minute

to respond after receiving help feedback, and we include that response). Therefore,

clips are not completely uniform in their duration and can describe intervals longer

than 20 seconds, particularly if a student exhibits idle periods while interacting with

the system.

In the case of the engineered features used in the affect and off-task behavior

detectors, 23 distinct features are created from the raw logs and then an average,

sum, min, and max is applied to each action to aggregate these features across

each clip (23 distinct features multiplied by the four functions yields the final 92

features). Each set of features describes one or more actions and include such

measures as time on task, hint usage, correctness, and other similar descriptives of

student performance and interaction with the system, but also include skill-based

features (e.g. the number of problems previously seen by the student pertaining

to a given knowledge component), and recent performance history (e.g. number of

incorrect responses over the last 5 problems).
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The engineered features used in the gaming detector similarly aggregate student

actions to 20-second clips, but then apply several behavior- and pattern-matching

techniques to generate the 33 distinct features. These features attempt to measure

gaming behavior through estimates of student timing information (e.g. apparent lack

of time spent thinking before asking for help), repetitive actions (e.g. providing the

same incorrect response multiple times), and uses the Levenshtein distance [Lev66]

applied to the entered text of student responses to identify a specific form of guessing

behavior (e.g. providing similar incorrect answers).

Previous work exploring each of these labels applied a large range of rule-, tree-,

and regression-based models. For the purpose of the comparisons described in this

work, we apply a Naive Bayes classifier, a REP tree classifier (a type of decision

tree classifier with reduced error pruning [EK01]), and a Long-Short Term Memory

(LSTM) deep learning network [HS97] for the gaming, off-task behavior, and affect

detection tasks respectively in accordance with previous works. These models, to the

authors’ knowledge, represent the highest performing previously published models

of their respective outcome measure and were for this reason chosen for comparison;

the use of a deep learning model for affect inherently conflates the use of expert-

features (used as input to the model) and machine-learned features (through the

hidden layer of the network), but we still compare this alongside the other models

utilizing expert-engineered features as it is this set of features that is used as input

to the model.

As was the case in previous work, each model uses only the clips with corre-

sponding labels as input and produces a continuous-valued output representing the

probability that each affective state or unproductive behavior is exhibited within the

supplied clip. In the case of off-task behavior and gaming models, each clip is sup-

plied to the respective REP tree and Naive Bayes model and the result is compared
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to the binomial label, with positive labels corresponding to each case of off-task

behavior and gaming and negative labels corresponding with a lack of each behav-

ior (e.g. on-task behavior and non-gaming behavior). Due to the large number of

features generated and likely co-linear relationship between some of the engineered

features, a forward feature selection is applied directly prior to each model training

procedure to select at most the best 10 features to use in each model.

This paradigm differs for the case of the affect detector model as each of the

four affective states are modeled simultaneously as a multinomial classification task

through the use of the LSTM model. As a type of recurrent neural network, LSTMs

attempt to model sequential relationships within the data; the labelled clips are

therefore not treated as independent samples by the model, but rather as a sequence

for which a sequence of 4-valued predictions are generated in a many-to-many (or

sequence-to-sequence as it is more commonly referred) manner. As was performed

in [BBH17] to ensure better temporal consistency within each sequence of clips, stu-

dent sequences are partitioned such that subsequent clips in the observed sequence

occur no more than approximately 5 minutes from the previous clip; spans between

clips greater than this threshold are split into two (or more) sequences of student

interaction for input to the model.

Each of the models are trained and evaluated using stratified 10-fold student-

level cross validation. Given that there is a large imbalance among each of the

labels, we stratified each fold based on the number of occurrences of positive labels

of each outcome label at the student level in order to generate the folds of the cross

validation. This helps to ensure that each fold contains a representative distribu-

tion of labels; as this is performed at the student level, it is difficult to produce

perfectly balanced folds such that each contains a fully representative set of labels,

but the stratification method is an effort toward this property. All subsequent mod-
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els described in this work utilized the same student folds described here for better

comparability between methods. Each method is trained and evaluated on the same

student data and labels within each respective fold.

5.4.2 Deep Learning Models

Unlike the expert-engineered features, the machine learned feature set uses the raw

action logs of each student, ignoring the clips and clip-level features described in

the previous section. For this feature set, a LSTM model is applied over the raw

data to predict each outcome using a set of uninterpretable features learned within

the hidden layer of the network. One potential drawback of using a LSTM model

in this way is that it assumes that each timestep in the given sequence (i.e. each

action taken by each student) occurs at regular intervals which, of course, is not the

case. Therefore, to reduce the variance of this interval, a similar practice as was

applied to the affect detector model using expert-engineered features. This allows

the model to divide sequences of student actions where long intervals may occur

between subsequent actions; where the amount of time between two subsequent

actions of the same student is greater than 5 minutes, the sequence is divided into

two smaller sequences to be input into the model.

Each model utilized the same raw action-level log data that was used to gen-

erate the expert-engineered features described in the previous section. In addition

to the interaction descriptors such as response correctness and whether the student

requested a hint, the knowledge component associated with each problem was also

included as a large 1-hot encoded vector in an effort to supply these LSTM models

with the same information with which the expert-generated features had access. In

addition to these described action logs, the set of features supplied to the gam-

ing model included an additional field corresponding to the computed Levenshtein
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distance of each students sequence of incorrect responses (where such sequences of

incorrect responses existed) within each problem as was computed for the expert-

engineered features of this detector. We incorporated this feature to provide consis-

tency in the information that is exposed to both the machine learning model and

the expert feature-engineering process, although we acknowledge that the feature

itself is a transformation of the raw responses (i.e. can be described as an expert

feature) and was only found to be predictive of gaming the system through prior

work exploring the development of expert features for this task [PdCBO14].

Each of the three LSTM models created for each label of student affect, off-task

behavior, and gaming the system followed the same general structure comprised of

an input layer feeding into a fully-connected recurrent hidden layer of 200 LSTM

nodes, and then feeding into an output layer of either 2 nodes (corresponding to a

1-hot encoded positive and negative indicator of either off-task behavior or gaming

the system) or 4 nodes (corresponding to a 1-hot encoded vector with one value per

observed affective state). The purpose of the hidden layer is to learn a set of 200

features from the raw action logs that are predictive of each outcome label. The

commonly applied technique of dropout [SHK+14] is applied between the hidden

and output layers of the network in an attempt to reduce overfitting. In all cases,

a softmax activation function is applied to the output of each model and trained

using multiclass cross entropy [DC97].

The models produce an estimate of each affective state and behavior at each

timestep in a sequence-to-sequence manner. In other words, an estimate of each

outcome is produced for each action taken by the student. As the labels of each

outcome were provided at the 20 second clip-level, the labels are applied to the

last action that would have existed in each clip. This allows for a fair comparison

between the models utilizing these different feature sets despite each observing data
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Table 5.2: Comparison of feature sets across each of the detector models.
Outcome Feature Set Model AUC Kappa

Off-Task
Expert REP Tree .734 .352
Machine Learned LSTM .657 .073
Machine Learned Expert REP Tree .753 .400

Gaming
Expert Naive Bayes .774 .362
Machine Learned LSTM .542 -.005
Machine Learned Expert Naive Bayes .774 .290

Affect
(Collectively)

Expert LSTM .760 .172
Machine Learned LSTM .695 .041
Machine Learned Expert LSTM .662 .043

Confusion
Expert LSTM .730 .042
Machine Learned LSTM .666 .042
Machine Learned Expert LSTM .609 .01

Engaged
Concentration

Expert LSTM .775 .281
Machine Learned LSTM .713 .210
Machine Learned Expert LSTM .671 .188

Boredom
Expert LSTM .775 .148
Machine Learned LSTM .690 .137
Machine Learned Expert LSTM .677 .041

Frustration
Expert LSTM .761 .054
Machine Learned LSTM .713 .060
Machine Learned Expert LSTM .689 .019
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at a different granularity; the models are evaluated using the same outcome labels

supplied at the same relative points in each student’s interaction logs. The models

are evaluated using the same 10 folds and cross validation approach as was used by

the models utilizing the expert-engineered features.

5.4.3 Machine-Learned Expert-Inspired Features

The third feature set proposed for comparison combines aspects of both expert-

engineered features and machine learning. Expert features may be able to help

guide a machine learning model to learn better sets of features than either method

individually. In addition, since each set of expert features were presumably devel-

oped with a particular set of outcome measures in mind (e.g. the features used in the

gaming detector were engineered to match the operators used by an expert coder,

based on extensive interviews and process modeling in partnership with that coder

– cf. [PdCBO14]), such labels may also be able to help guide a machine learning

model to produce meaningful, albeit uninterpretable, sets of features to detect such

behaviors and affective states.

Specifically, this method utilizes a 2-step training process for a machine learning

model. First, an LSTM model is built to use the raw action-level logs as input

(just as was done in the previous section for the models utilizing machine learned

features), but in addition to predicting each label, the model is trained to predict

the set of expert-engineered features as a multi-task learning problem [Car97]. As

the affect and off-task behavior detectors utilize the same set of action logs and

expert-engineered features, we build one model to read the interaction logs. This

model will predict each of the set of expert-engineered features corresponding with

the given set of actions, the affective state label, and the off-task behavior label

simultaneously. Similarly, for the gaming detector, the raw actions are supplied as
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input to a LSTM model that predicts both the set of expert-engineered features

and the gaming labels. In this way, the hidden layer of the respective models is

regularized to learn a set of features that is both able to construct the set of expert

features (although likely with some error) as well as predict the outcome labels for

which the features are intended.

Once these two LSTM models are trained - one for the affect and off-task behavior

detectors and one for the gaming detector - the hidden layer is extracted and used as

the third and final set of features compared in this work. This feature set, referred

to as “machine-learned expert-inspired” features, is then supplied as input to each

of the respective models used in previous work (i.e. it is used as input to each a

Naive Bayes, REP tree, and LSTM as models for gaming, off-task behavior, and

affect respectively).

5.4.4 Exploring the use of Co-Training

As described earlier in this paper, it is difficult to fully explore and compare methods

of generating features without also considering aspects of the modeling process. This

could, of course, refer to the selection of the models themselves, but also is intended

to refer to other modeling techniques that may highlight potential strengths and

weaknesses of feature sets. We hypothesize that co-training is one such modeling

technique.

Co-training is a semi-supervised modeling method that incorporates both unla-

beled and labeled instances during the model training process. Given the nature

of the observation-based label collection procedure, not all examples in our data

(whether considering actions or clips) has an associated affect or behavior label.

While there are several modeling methods that exist to incorporate this unlabeled

data into each model, the already-described LSTM model inherently allows for this
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Table 5.3: Comparison of feature sets across each of the detector models using co-
training. All detectors in this analysis uses an LSTM model. *The machine learned
model of each detector utilized co-training across actions and therefore mirrors the
respective rows in Table 5.2.

Outcome Feature Set AUC Kappa

Off-Task
Expert .796 .369
Machine Learned* .657 .073
Machine Learned Expert .781 .405

Gaming
Expert .856 .180
Machine Learned* .542 -.005
Machine Learned Expert .847 .327

Affect
(Collectively)

Expert .777 .112
Machine Learned* .695 .041
Machine Learned Expert .607 .037

Confusion
Expert .762 .059
Machine Learned* .666 .042
Machine Learned Expert .596 .018

Engaged
Concentration

Expert .791 .289
Machine Learned* .713 .210
Machine Learned Expert .611 .090

Boredom
Expert .783 .178
Machine Learned* .690 .137
Machine Learned Expert .613 .005

Frustration
Expert .772 .050
Machine Learned* .713 .060
Machine Learned Expert .609 .026

co-training to occur given its sequential structure. The model uses the current sup-

plied timestep along with a learned-aggregation of previous time steps in order to

better inform each prediction. In fact, this co-training procedure was already used

for the LSTM models using the machine learned features; as described, a label does

not exist for each action, yet the LSTM model uses information from all previous

time steps to predict the respective outcome label where one exists in the given

student sequence.

We therefore utilize each of the described feature sets in a separate set of LSTM

models that observes the sequence of labeled and unlabeled clips (or actions in the
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case of the already-described machine learning feature models).

5.5 Results and Discussion

We compare the results of each set of models within each of the three outcome

measures of affect, off-task behavior, and gaming behavior using the metrics of

AUC ROC and Cohen’s Kappa; in the case of affect, AUC ROC is calculated using

a multi-class variant of the metric [HT01], while Kappa is calculated as multi-class

Cohen’s Kappa, while the models of off-task behavior and gaming use an optimized

form of Kappa by learning an optimal decision (0,1) threshold using the training set

of each respective fold within the cross validation. Higher values of either metric are

indicative of higher model performance with AUC values at 0.5 and Kappa values

at 0 indicating chance performance.

The results of each model is reported in Table 5.2, partitioned by outcome mea-

sure. From those results, it becomes apparent that, compared to the models utilizing

machine learned features, the expert-engineered features lead to notably higher per-

formance across all the outcome labels in regard to both AUC and Kappa. When

comparing the performance of the models using the machine-learned expert features

(our proposed third feature set), the difference in performance is not as dramatic,

but does still lean in favor of the expert-engineered features leading to superior

models. By contrast, the machine learned expert features did lead to models that

outperform those using expert-engineered features in regard to off-task behavior in

terms of both AUC and kappa and is equal in regard to detecting gaming in terms

of AUC, but appears to perform less well in detecting student affect.

When comparing the co-trained models using each of these three feature sets,

reported in Table 5.3, a similar trend emerges. The use of expert-engineered features
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to construct the co-trained models leads to consistently higher performance in com-

parison to the models utilizing machine-learned features. The co-training models

using expert-engineered features also performed better than our proposed machine

learned expert-inspired features for all labels in terms of AUC, but obtained lower

kappa for off-task behavior and gaming the system.

Despite the small number of cases where the models trained from expert-engineered

features did not outperform the others in either AUC or Kappa, these models exhib-

ited consistently high performance in both metrics across all outcomes; while not

particularly high, the models performed comparatively well on even the affective

states of frustration and confusion, where all models exhibited low values of Kappa.

It is for this reason that we can conclude that the use of expert-engineered fea-

tures led to superior detectors of off-task behavior, gaming the system, and student

affective state when compared to using a machine learning approach.

In comparing the results across both Tables 5.2 and 5.3, it can further be con-

cluded that, particularly for the models utilizing expert-engineered features, co-

training led to higher AUC than the non-co-trained variant of each detector. This,

however, was not always the case in regard to Kappa, where the co-trained models

of gaming and affect using expert-engineered features exhibited notably lower values

despite the improvement in AUC. This disagreement suggests that the co-trained

models have a slightly higher difficulty in identifying gaming behavior or the spe-

cific affective state despite exhibiting higher ability to distinguish the two categories

across thresholds; this disagreement on a binary label such as gaming could also sug-

gest that the optimal rounding threshold used to classify students differs between

training and test sets.

The higher performance exhibited by the model combining the use of expert-

features and co-training highlights a potential trade-off of performance and inter-
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pretability. While this trade-off was introduced earlier in this paper, the lack of

interpretability is not due to the set of features used, but rather in the modeling

technique applied; the co-training model, being a deep learning LSTM, falls prey

to the same problems faced by automatically distilled features derived through a

machine learning approach. In this way, it is difficult to gain an understanding of

how the expert-features are being transformed by the co-trained model in order to

produce each estimate. Therefore, it is difficult to study these co-trained models

to understand more about the behaviors themselves, but the estimates themselves

may be useful in other research. Just as previous detectors were used to understand

the relationship between affect and disengaged behavior and longer-term learning

outcomes [PBSP+13], the estimates produced by the co-trained model can be used

in the same way. Conversely, the non-co-trained models can still be used to study

the specific affective states and behaviors, as their performance was only marginally

lower on average compared to the co-trained models.

5.6 Limitations and Future Work

The research in this paper was limited to data collected within the ASSISTments

learning platform, but as described in the Background Section, similar detectors

have been developed for a range of platforms. Similar comparisons could be made

across these platforms to observe how well these results generalize; small differences

in how features are engineered or even recorded by the system may lead to different

results.

The method of model co-training in this work also exhibits a limitation in that

the LSTM model can only observed unlabeled data within a single sequence. This

aspect would not allow the model, for example, to utilize unlabeled data from other
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students or sources. Future work may be able to leverage clustering methods or

other techniques to allow for more generalizable co-training to benefit the models.

Among the detectors, it was also found in some cases that there was disagreement

between the metrics used; the co-trained model of affect exhibited higher AUC

than the non-co-trained model, but a lower value of Kappa. Previous work has

explored this case across several commonly-applied metrics [BP18], but further work

is needed to further explore and leverage modeling techniques to produce detectors

that exhibit high performance across all these metrics.

The use of the highest-performing models across each of these detectors can

also be used in future research to study other aspects of student learning. This

extends beyond the already-discussed application in predicting student longer-term

outcomes, and includes the study of other aspects such as the dynamics (e.g. transi-

tions between states and behaviors) [DG12] and chronometry (e.g. how long students
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remain in a single state or behavior) [DG11], studied using affect detectors in prior

work [BBOH18].

5.7 Conclusions

This work investigates whether expert-engineered features lead to higher performing

detectors of student affect and disengaged behavior as compared to using automatically-

distilled features learned through a machine-learning approach. We found that the

use of expert features led to the most consistently high-performing models. Using

co-training as well seemed to lead to even better models in most cases.

The use of expert-engineering to develop features, while perhaps more difficult

in regard to time, effort, and likely cost, does appear to lead to greater benefits than

simply applying a machine learning model to automatically distill features from the

raw data, based on the results found in this work.
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Part II

Using Detectors of Student

Knowledge, Behavior, and Affect

to Drive Action
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Chapter 6

The ASSISTments TestBed:

Opportunities and Challenges of

Experimentation in Online

Learning Platforms

Botelho, A.F., Sales, A.C., Patikorn, T., & Heffernan, N.T. (2019). The ASSIST-

ments TestBed: Opportunities and Challenges of Experimentation in Online Learn-

ing Platforms. In LAK 2019 Workshop on Learning Analytic Services to Support

Personalized Learning and Assessment at Scale, Tempe, AZ.

Abstract

The ASSISTments TestBed is a platform for conducting small-scale, short

term randomized trials within the ASSISTments online learning platform.

Any education researcher may propose an experiment, which will be run at no

cost. As a learning system, ASSISTments is positioned to augment teacher

instruction and help students learn. As a shared scientific instrument, the
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system aims to facilitate the running of studies to learn what types of instruc-

tional strategies and content helps which students most and openly share

such information and tools to benefit educational research. Through the ex-

ploration and analysis of 9 experiments run within ASSISTments, we describe

how these tools are being combined with multiple methods to better identify

what works for whom. Toward the goal of more precisely measuring treatment

effects, this paper acts as an overview of some of the scientific and statistical

opportunities that the TestBed system affords when compared to traditional

randomized trials in education. We will argue that this framework represents

a promising, if uncharted, avenue in the science of education, and merits the

attention of both methodologists and substantive education researchers.

6.1 Introduction

The benefits and opportunities made possible through computer-based learning plat-

forms such as ASSISTments extend beyond scientific discovery to include much

more practical applications by providing the means to learn what content and in-

structional practices lead to better student learning. The running of randomized

controlled trials has long been the quintessential method of determining the causal-

ity of an intervention, and is only augmented through such computer-based systems.

The benefit of running RCTs within such systems is not limited to just the scale of

the population of students that can be included in a conducted trial, although this

too can provide sufficient statistical power beyond what traditional orchestrated

studies commonly observe, but rather the benefit is truly in the breadth of data

collected for each student, consistency of measures as recorded within the platform,

and depth of historical data available within the system that can be leveraged to

learn what works best for whom.
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A focus on developing methods to more precisely estimate treatment effects is es-

sential in identifying instruction that may be more effective for one group of students

than another, and a significant amount of research has been devoted to discovering

and developing interventions with heterogeneous effects. Other fields such as mar-

keting and economics arguably have an even longer history of this research leading

to methods aimed at measuring such effects [WA18]. Paying attention to context

can help identify the situations and for which subgroups a treatment may have an

effect to incorporate more personalized interventions to help students.

Through a series of descriptive and empirical examples using 9 studies run within

ASSISTments, the goal of this work is to highlight the importance of developing in-

frastructure to support the running of randomized controlled trials for the purpose of

discovering which instructional practices work, and highlight several methods being

applied to more precisely measure treatment effects toward the goal of identifying

heterogeneous effects where they may exist.

6.2 The ASSISTments Ecosystem

The use of computer-based learning platforms in real classroom settings offer the op-

portunity to not only test and learn what content and instructional practices benefit

students, but also to complete the loop by then deploying successful interventions

back to students. It is in this iterative feedback loop that these systems are, at

least in theory, able to grow and eventually be able to adapt to meet the needs of

students.

The primary goal of this paper is to describe the types of benefits a computer-

based learning platform can offer in facilitating scientific discovery and turning re-

search into practice, using a system called ASSISTments to exemplify these op-

102



portunities. ASSISTments is a free web-based learning platform made available

through Worcester Polytechnic Institute. It is used by teachers and students across

the United States for homework and classwork, and has been shown to nearly double

student learning over the course of a school year as compared to traditional teaching

methods [RFMM16].

The whole of ASSISTments extends beyond a computer-based learning system

to form an ecosystem [HH14] of tools that are focused on providing immediate feed-

back to students in an effort to augment the teachers ability to provide instruction

in a more data-driven procedure. This teacher-focused approach allows teachers

using the system to follow the same curricula as would otherwise be used, but,

as students are working on the content within the system, immediate correctness

feedback can be provided in addition to other forms of aid including hints and scaf-

folding where such content has been authored (this additional aid is also pertinent

to the idea of conducting trials to learn what types of content benefits students most

and will be addressed further in the next section). Even without additional student

aid, however, just immediate correctness feedback can help a student understand

where he/she needs additional instruction and, through reports provided to teachers

through ASSISTments, the teacher can too understand where students need further

support; instead of going over homework during class, the teacher can know what

content was most troublesome for students beforehand and direct time, attention,

and remedial instruction during class to address these areas.

6.2.1 The ASSISTments Testbed

Aside from these attributes that exemplify how a system such as ASSISTments can

be used to run RCTs, it is important to further describe the ASSISTments Testbed

as this tool extends these benefits to researchers external to the developers of the
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platform. The testbed defines a process and set of tools that allow researchers to

propose, build, and run RCTs through ASSISTments, and also open supplies the re-

searchers with the Assessment of Learning Infrastructure (ALI) tool [OSW+16] that

provides a series of automated analyses and access to the anonymized data from

the system associated with their study. The testbed therefore provides researchers

with the tools necessary for each aspect of the study design and deployment pro-

cesses as well as aids in the analyses of such studies; the tool has facilitated over

a dozen studies since its deployment resulting in several notable published studies

[Fyf16][KM16][MTL+17].

The ASSISTments Testbed defines a set of 5 steps aimed to guide researchers

who wish to propose a study from a research idea through to the publication phase of

that study. In this way, its goal is to facilitate the running of randomized controlled

trials and openly publishing upon the findings. The aim of the testbed is to make it

easy for researchers, both those working with ASSISTments and others external to

Worcester Polytechnic Institute from where the system is provided, to run numerous

RCTs to test the effectiveness of different learning interventions with teachers and

students using the software in real classroom settings. In addition, this further

makes it easier to replicate studies on different populations and content within the

system, as will be the basis of the example analyses described in the later sections

of this paper. The testbed and reporting infrastructure also acts as the facilitator

of the 9 studies exemplified in this work to illustrate the benefits and opportunities

made possible through computer-based systems. The next section describes these

studies in larger detail.
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6.3 Video vs. Text Feedback: A Case Study of

RCEs within ASSISTments

To give a better idea of the process through which a study can be proposed, deployed,

and analyzed through the testbed, we will describe the steps using an example

intervention. Lets say that a researcher comes to the ASSISTments testbed and

wants to run a study to test the effectiveness of video feedback for students as

opposed to a text-based explanation given to students who need additional help

to learn the material. In other words, the researcher wants to randomize what

happens when a student asks for help, giving either a text-based worked example

to explain the correct procedure to solve a problem, or a video containing the same

information delivered as a video in a more paced manner; this certainly seems like

a reasonable comparison as both methods are commonly used in various systems to

supplement teacher instruction. With this idea, the researcher proposes to run an

RCT within ASSISTments and is given the choice to use the normal population of

teachers and students who already use the system for homework and classwork daily,

or the researcher can recruit his/her own set of teachers to run a more orchestrated

study; for sake of example, we will consider that the researcher chooses to use

the teachers and students who normally use ASSISTments. As such, the researcher

creates an ASSISTments account and chooses the subject matter on which to run the

experiment, and, again for example, lets say that the researcher chooses logarithms

as this is a subject that may be difficult for some students and learning what types

of aid helps students learn this topic could be meaningful and impactful.

The researcher then creates a problem set using the set of assignment-building

tools within ASSISTments aligned to the experimental design; such tools allow the

researcher to define, for example, “if-then-else” style and “randomly choose” style
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Figure 6.1: An example experimental design with ASSISTments comparing text-
based feedback with video-based feedback when students request help.

rules to define where in the problem set randomization occurs. For instance, a

reasonable design may first include a question designed to check if students can see

video (as some schools may block such content from sites such as YouTube), and

only randomized students who have the ability to see video. After this “video-check”

the researcher may define a “randomly choose” section that will randomly assign

students to either a set of problems containing text feedback or another, almost

identical set of problems containing video feedback; an example of such a condition

is illustrated in Figure 1, where a student may be randomized to see either a text-

based worked example or a video of the same content when requesting help from the

system. Of course more complex designs could also include common design elements

such as pretests and posttests, but this example will keep the design simple (and

it also represents the general design of each of the studies that will be exemplified
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in the following section). A problem set created in this way performs student-level

randomization, mitigating the need to block students by locale and other factors;

although, a researcher may still be able to do so, albeit through a slightly more

complex orchestrated design.

Once the problem set is created and approved by a team of researchers and

content experts working with ASSISTments (to ensure that the content is not in-

herently harmful, broken, offensive, or otherwise in violation of IRB terms), the

problem set can be deployed amongst the ASSISTments-certified content within the

system. While teachers have the ability to create their own content with ASSIST-

ments, many simply choose to use the existing content that has been implemented

into the system. When a teacher assigns the particular research-created content,

students are randomized and the data is recorded. After a predetermined amount

of time, the study is retired and the researcher can begin the planned analyses.

As mentioned above, a tool, called the Assessment of Learning Infrastructure

(ALI) aids researchers in the collection and initial analyses of data. Researchers

request the data from their experiment by providing ALI with the problem set

information and then receive an email containing some initial basic analyses and

statistics (e.g. the number of students randomized to each condition as well as

completion rates split by condition with a chi-squared test to identify if there is

differential attrition between the two conditions). In addition to these descriptives,

the researcher gains access to anonymized datasets containing the student data

at various granularities including problem-level, action-level, and also student-level

covariates generated from data before random assignment to condition (i.e., the

students prior percent correct, prior completion, etc.). With this data, the researcher

can perform the planned analyses and write the report on their results, citing the

initial design document and ALI report to promote open data and science.
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This In continuing our example of experimentation through the ASSISTments

Testbed, we exemplify a set of nine studies run in ASSISTments comparing text-

based and video-based feedback for students. Data from experiments run on the

platform of ASSISTments have long been made open and available for researchers

to analyze. In 2016, for example, a dataset of 22 such experiments run within

the system were published [SPH16] and made open in the hopes that interesting

analyses and methods could be applied to better estimate treatment effects and also

to motivate other companies and institutes who run RCTs on their own respective

platforms to similar see value and make such data open and available. The nine

studies observed here are amongst the 22 and are particularly of interest as they

apply the same comparison of video versus text feedback. In this way, they act as

9 replications of the same idea and can be used to exemplify some of the challenges

and applicable methods available to address such challenges.

These studies were run in mastery-based assignments called “skill builders,”

where the system provides students with problems until they are able to demon-

strate sufficient understanding of the material (e.g., a student must answer three

consecutive problems correctly without the use of computer-provided aid), and each

student must meet this threshold in order to complete the assignment. Students who

are unable to learn the material by the tenth problem are asked to seek additional

help, and the assignment is left incomplete (while there are various settings that

allow teachers to control each threshold and how to address struggling students, the

data used here aligned to the described defaults). We observe the effectiveness of

the treatment with regard to the outcome measures of student completion as well

as a measure called “inverse mastery speed,” calculated as 1 divided by the number

of problems needed to complete the skill builder assignment.
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6.3.1 Methods to Reduce the Standard Errors of Effects

While ASSISTments and the accompanying ASSISTments Testbed provide infras-

tructure and tools to run experiments, these alone are not the entire solution to the

problem of finding which interventions work for which groups of students. What are

missing from these examples thus far are methods that can help to more precisely

measure the effects of a particular treatment. Whenever calculating a treatment

effect, the ability to accurately measure the impact that the treatment has on any

particular outcome is dependent on the magnitude of the effect, but perhaps more

importantly, the scale and variance of the population of students included in the

study; the more students included in an experiment, the smaller the standard errors

on that effect tend to be (i.e. larger samples tend to allow for more precise esti-

mates of the effect). While this goal of reducing standard errors is applicable to any

experiment, it becomes much more important to consider when exploring potential

heterogeneous effects. If it is difficult to precisely measure a treatment effect across

the entire population of students in a particular study, it is much more difficult to

measure such effects when observing smaller sub-groups of students.

The next 3 sections therefore describe and compare two methods that are being

applied with this specific goal of measuring treatment effects with greater precision.

While the examples themselves will not explicitly explore the potential heterogeneity

of the interventions, this paper presents some of the pilot work in this area.

Regression to Mediocrity

It is a well-documented issue that a crisis is currently affecting several scientific

fields in that, for any number of reasons, experimentation across fields is failing to

hold to replication [Ioa05]. If we wanted to know the true effect of video feedback

as compared to text feedback on the outcome measure of completion, for example,
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due to random variation in content, population, measures, etc., we are likely to

observe varying estimates with each replication. In some cases, a replicated effect

may appear to have a statistically reliable positive result, while another may show

the exact opposite, with many others may show no statistical reliability.

A range of statistics research has been devoted to this and similar problems

[Rub81], but the concept for which we are focusing is that of “shrinkage” [EM73].

Also referred to as regression toward mediocrity (or regression to the mean) [Gal86][S+90],

the idea is that if we run multiple replications, sometimes our estimate will be

too high and other times too low; as we run more replications, the average of our

estimates will begin to regress toward the average true effect. Other work has

been inspired by the same idea, attempting to use the consistency of data collected

across experiments to increase power in estimating effects for individual experiments

[PSB+17]. Here, however, we describe a different approach called “partial pooling.”

The idea of this method is, instead of analyzing each experiment individually and

independently, we can pool together similar experiments that we think should have

the same effect at once (e.g. replications of the same or similar treatment) in order

to better estimate the effects for all pooled experiments. Partial pooling reduces the

variance of the estimated effect size of each experiment by looking at the variances

and the estimates effect sizes of other experiments, causing the new estimates to

shrink toward the mean of the estimated effect distribution.

A drawback to this approach, however, is that it does bias the new estimates

toward the overall mean; such is, after all, the purpose as the mean of effect estimates

is believed to be a closer estimate to the true effect. Despite this, yet another method

may be used to better estimate effects without such a bias. We describe this method

in the next section.
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A Role for the Remnant: A Model-Based Approach

The idea of applying partial pooling works well in the case of computer-based sys-

tems running experiments due to the consistency of measures collected across stu-

dents (although the method itself is not inherently limited to cases where the mea-

sures are as consistent as used here), as the system records the same information

for each student. However, this is also true for all students using the system, not

just those who participate in an experiment. So what, then, can be learned from all

the students who are not randomized to condition? In the case of ASSISTments,

there are hundreds if not thousands of students using the system every day, and if

we could utilize their data to better analyze experiments, the added power is likely

to help reduce standard errors on the estimated treatment effect.

Previous work explored the use of this population of students external to the ex-

periment, which has been referred to as the “remnant,” to more accurately estimate

treatment effects [SBPH18]. The remnant essentially consists of all students who

have ever used the system that were not a part of any of the current experiments

under analysis; they may have been a part of previous experiments but, for instance

in the case of our example, it includes a large sample of students disjoint from those

who participated in any of the 9 example RCTs. But what, if anything, can be

learned from this group? No randomization occurred for these students, and there

is no guarantee that a condition in the experiment is “normal” behavior, meaning

that the manner in which students interacted with the system during the experiment

as compared to normal usage may be very different. What we do know, however,

is that data pertaining to outcomes of interest (i.e. assignment completion, knowl-

edge level and correctness, number of problems needed to complete mastery-based

assignments) is available for the remnant as well as those in the experiment.

It is from this idea that a method called “remnant based residualization,” or

111



REBAR [SHR18], was developed. The process is rather intuitive. First, we can build

a model using the remnant to predict an outcome measure of interest. In our example

case, we use the remnant to train a model to predict whether a student will complete

an arbitrary next assignment. Second, the trained model is applied to predict the

outcome measure for those in the experiment. Third, the estimates of the model (our

prediction of whether each student will complete the experimental assignment), are

subtracted from the actual outcome; this step is essentially removing variance from

the outcome measure of interest that can be explained away by the model trained

on the remnant. From this point, the last step is to simply analyze the experiment

using any desired method using the residual in place of the actual outcome. As

the model is trained on a population completely external to the participants in the

experiment, the estimates are unbiased. For this reason, the estimates themselves

do not even need to be accurate; a bad model should be just as bad for everyone

(on average). However, the better the model is at predicting the outcome, the more

variance that can be accounted for within the experiment leading to more accurate

treatment effect estimates.

Why Not Both?

As mentioned in the previous section, the last step of the REBAR method uses the

residual to run any set of desired analyses. For this reason, the REBAR process and

the described partial pooling method are disjoint approaches and therefore could

be combined to even further reduce standard errors of the estimated treatment

effects. In this way, we can take advantage of both the scale and breadth of data

made available through the use of the remnant, while also taking advantage of the

consistency of measures across the experiments.

We use the model estimates from the REBAR method for both outcomes mea-
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Figure 6.2: The estimated treatment effects of student completion for each of the 9
experiments across all methods.

sures of completion and inverse mastery speed as described in the previous section.

The estimates are subtracted from the observed outcomes following the REBAR

methodology, and then the resulting residual is used in the Bayesian partial pool-

ing approach. The combination of these two approaches results in the reduction of

standard errors across all example studies. As shown in Figure 2, the combination

of methods reduces the standard errors of all experiments when compared to the

traditional method and is superior or at least comparably similar to either method

alone.

In consideration of the second outcome measure of inverse mastery speed, the

combination of methods again leads to considerable reductions of standard errors

beyond that of the traditional method in all experiments, as seen in Figure 3. Sim-

ilarly to that of Figure 2, the combined method performs better or comparably

similar to either other method alone.
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Figure 6.3: The estimated treatment effects of student completion for each of the 9
experiments across all methods.

It can be seen in both analyses, however, that the combined method does not

lead to the smallest standard errors in every case. It is important to explore and

understand, as is the goal of ongoing and future work, when each method is likely to

lead to improvements in precision. Regardless, these methods show promise in their

ability to aid in the analysis of experiments and discovery of potential heterogeneity

in the measured effects. It is also the case that the methods helped to remove some

of the variation of the 9 replicated studies, where the combined method no longer

results in statistically reliable effects in any of the experiments; it is important to

emphasize, however, that this is largely influenced by the partial pooling methods

bias toward the mean effect measured across all experiments and that these par-

ticular experiments were chosen for these analyses in-part for exemplary purposes.

Ongoing and future work is further exploring the application of these methods at

larger scale across multiple experiments running through the ASSISTments Testbed.
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6.4 conclusions

The issues and challenges faced by the field as it moves toward new experimental

environments and, through these, new data environments, are by no means novel,

but rather tools such as computer-based platforms are merely allowing us as re-

searchers to finally address these problems in more practical ways. It has always

been a challenge to design replicable RCTs to test ideas; this is a challenge for

replicability of results (i.e. the same or similar findings and conclusions are reached

after additional trials), but also in a much more direct interpretation of replicabil-

ity, where a design can be replicable. Computer-based systems offer new ways to

allow for clear replication, using the same design for new populations or contexts,

using the same measures calculated in the same ways across all experiments. This

consistency alone offers new opportunities to more accurately evaluate instructional

strategies and the like.

Just as replication has been a challenge, the ability to accurately estimate treat-

ment effects is another long-standing issue. It is important to consider how existing

methods can best be combined with the opportunities that computer-based systems

offer. Where in the past collecting data from several dozen students served as a

challenge to any researcher intending to run a randomized controlled trial, it is now

more trivial to collect data from several hundred students, if not more, through such

systems allowing us to direct more focus to the other prevalent challenges. Issues

such as testing ideas in new contexts or identifying heterogeneity become much more

feasible as the scale and replicability of studies becomes easier.

We refer to and describe a number of studies and research in this article that

have been facilitated by ASSISTments and the ASSISTments Testbed, but these

are small examples compared to what is currently possible with these and similar
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tools. These tools in combination with the development and application of methods

to more precisely measure treatment effects holds great promise in regard to the

goal of discovering what works (and what does not work) for particular groups of

students.
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Chapter 7

Putting Teachers in the Driver’s

Seat: Using Machine Learning to

Personalize Interactions with

Students

The following grant proposal was written alongside PI’s Neil Heffernan, Hilary Kreis-

berg, and Jacob Whitehill. This has been funded as NSF #1822830 ($744,317). Sup-

plementary figures and materials as well as references for this proposal are included

as appendices at the end of this dissertation document.

Tools for communication are getting smarter; when someone replies to a text

message or email, predictive or ‘suggested messages’ automatically pop-up as quick

options. Users can easily select a suggestion rather than spending time writing their

own message, thus allowing technology to facilitate human-to-human interactions.

Computer science has developed functionalities like machine learning and natural

language processing to enhance user-experiences across domains. In business, the
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development of prediction systems that offer smart suggestions for what one might

want to say next has saved time and enhanced communication, and oftentimes, those

reading the message do not know that it was machine generated. However, such

means of enhanced communication do not yet exist in most educational contexts.

Automated messages that address the diagnosis, tone, and context of specific student

actions are a necessary function for teachers as they respond to the influx of data

compiled as student work transitions to online environments.

7.1 The Problem

The typical environment of student learning is evolving; where once students relied

on textbooks and paper, many now complete their assignments online (Lu, 2008).

School administrators, curriculum developers, and most notably, teachers, are fre-

quently asked to utilize online tools in support of instruction. The integration of

computer-based systems into existing instructional practices and curricula has led

to a recent rise in the usage of online tools and content (Pawlowski & Bick, 2012).

In fact, the New York Times (Singer, 2017) reported that, in the last year alone,

schools across the United States have purchased eight million Chromebooks.

In mathematics, online programs have started to supplement instruction through

adaptive, student-paced assignments (e.g., Carnegie Learning’s Cognitive TutorTM

or McGraw Hill’s ALEKSTM). The term “student-paced” means that content is

assigned to students based on how fast they are learning; when students demon-

strate mastery, the system accelerates them to the next topic. This differs from

“teacher-paced” systems, in which the teacher assigns online content pertinent to a

shared classroom focus. Many online learning systems seek to provide “personalized

instruction” to students, applying computer-assigned content to a student-paced
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learning progression. Although this sounds appealing, “personalization” removes

the teacher from the driver’s seat and creates a disconnect between teacher instruc-

tion and online instruction. This disconnect is alarming considering research has

demonstrated that the role a teacher plays in student learning is a pivotal indicator

of academic achievement (RAND Education, 2012). Researchers have found that

student-teacher interaction quality informs classroom organization and instructional

support, which correlate with numerous measures of students’ cognitive, emotional,

and social engagement as well as their social preferences of their peers (Hughes,

Cavell, & Willson, 2001; Rimm-Kaufman, Baroody, Larsen, Curby, & Abry, 2015).

If an online learning system ‘personalizes’ instruction, the teacher is left behind and

students are deprived of human support. We argue in our proposal that teacher-

paced online systems offer a more powerful way to incorporate computers into the

classroom.

Feedback is also an important part of the learning process, as it attempts to

align metacognition with performance and supports growth and success. Action-

able instruction allows teachers to guide students with the steps necessary for im-

provement. However, giving personalized feedback can be overwhelming for middle

school teachers who are often responsible for more than 100 students. This task

becomes increasingly complicated as teachers assign online learning activities and

sift through hundreds of responses for each problem assigned. While it is evident

that effective feedback from teachers can improve performance by helping students

focus on specific steps that can lead to success (Wiliam, 1999), opportunities for

teachers to efficiently provide personalized feedback in online learning environments

are limited.

We contend that online learning environments need to put teachers back in the

driver’s seat by using machine learning to help personalize data-driven teacher-
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student dialogues. Currently, the frequency and quality of interactions that occur

between teachers and individual students are limited by the time available for a

teacher to interact with more than 100 students. Teachers who use online tools that

collect a plethora of data now face the problem of reading and interpreting massive

amounts of student information. Computer-based systems can provide action-by-

action reports of how students reached an answer, the time it took to do so, and a

wealth of other performance-based information. Although such insight could help

teachers provide better instruction and address individual student needs, it can be

impossible to wade through such vast data to find meaning. There is simply not

enough time for teachers to make use of such data (Bill & Melinda Gates Foundation,

2015), ultimately leading to weakened and impersonal teacher-student relationships

and reduced performance, contrary to the inherent goals of these learning platforms.

When considering the positive impacts of increasing teacher involvement in the

learning environment, it is clear that online learning systems should assist teachers

in interpreting student data and responding to students.

Very few online mathematics environments allow students to enter text-based

answers, and those that do currently offer no features to enhance a teacher’s grad-

ing experience. In the cases of McGraw Hill’s ALEKSTM and Carnegie Learning’s

Cognitive TutorTM, there is no concept of an open-response question; their designs

restrict problem types to those that can be quantified or automatically graded.While

math curriculum increasingly asks students to answer ‘why’ questions, online learn-

ing systems lack the capacity to handle open-response answers. The widely adopted

Open Educational Resource (OER) EngageNY is comprised of a large number of

problems and problem-types across multiple grade levels, with the highest propor-

tion of those problems (more than 38%) offered as open-response.

A few existing systems do promote computer-interpreted open-responses. For in-
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stance, AUTOTutor (Graesser, Chipman, Haynes, & Olney, 2005) promotes student-

computer dialogue in which the computer is intended to be believed as a cognizant

partner. However, even in these environments, there is no way for teachers to effi-

ciently review and respond to the student’s dialogue. The missing link is a system

that offers teachers their traditional task of reviewing, while at the same time tak-

ing advantage of technologies in computer-based natural language processing (NLP)

(e.g., deep learning and memory networks) and methods of understanding student

behavior (e.g., affect detectors) to leverage open-response questions in support of

data-informed communication and instruction.

7.2 The Opportunity

The previous section detailed a set of problems that have emerged as the adoption

of computer-based systems for classwork and homework has tended to minimize the

role of the teacher in learning environments. In this section, we will highlight several

opportunities that can be leveraged when exploring and developing solutions to the

problems posed.

7.2.1 Results of Prior NSF Support: Heffernan’s ASSIST-

ments and other CoPIs

ASSISTments.org was created while conducting research for past NSF awards. Hef-

fernan’s NSF CAREER award (CAREER: Learning about Learning award #0448319,

$646,075, 2006 2013) is the most relevant grant that helped to create ASSISTments.

It’s intellectual merit included more than four dozen peer-reviewed publications in

machine learning, deep learning, clustering, predict etc. (see the separate section in

the references noting these 60+ papers). Other NSF grants have also supported AS-
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SISTments, including NSF# 0742503 whose intellectual merit included 22 published

randomized controlled trials measuring different ways to improve student learning

through feedback (see the separate section in the references noting these 22 papers).

The broader impact of these awards has been support for thousands of students

via the ASSISTments service provided as a free public service by WPI. Last year

alone, students solved more than 12 million problems. Over more than a decade,

the WPI team has written tens of thousands of questions and teachers have written

an additional 75,000 questions for their students.

Whitehill’s prior NSF support is as co-PI of an ongoing NSF Cyberlearning grant

(“INT: Collaborative Research: Detecting, Predicting and Remediating Student

Affect and Grit Using Computer Vision,” #1551594, $749,000, 2016-2019). The

intellectual merit of this project has taken the form of 3 papers that are listed in

their own section of the references. The broader impact is to use neural networks

to help solve real-world educational.

Kreisberg does not have any NSF grants on which to report.

The ASSISTments platform allows teachers to enhance any homework assign-

ment with online feedback for students and reports for teachers (see Figure SD1

for assignment questions and the associated item-report). When students solve a

problem in ASSISTments, after entering their answer they are told if they were

correct. If they got the problem wrong, they can try again, and in some instances,

receive additional tutoring. Such data entry allows for the creation of class and

student reports geared toward the teacher with the purpose of informing the next

day’s instruction.

The item-report is designed to provide teachers with information that is easy

to respond to. To explain, here is a short vignette of Ms. Kelly, a 7th-grade math

teacher (an actual video of Ms. Kelly reviewing an item-report can be seen at Kelly
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et al., 2013). Let us assume Ms. Kelly assigned the problems in Figure SD1 to

her students using ASSISTments. The next morning, Ms. Kelly prepares for class

by assessing the item-report. She would probably want to talk to her students

about question 1, as it was challenging (only 27% of students provided the correct

answer) and 66% of students who got it wrong responded with an answer of ’0’.

She realizes that these students made a common error of subtracting -9 from 9 to

get zero rather than solving 9 - (-9) correctly to reach 18. She decides to spend

a portion of her class time addressing this misconception. She then reads through

some of the open-response answers and notices that many students, including Wei

and Wakeeta, thought that Mountain Charter was always better, failing to see how

one plan is better for more people while one is better for fewer. She also decides to

spend a portion of her class time addressing this misconception. However, reading

each student’s open-response answer could be very time consuming because she has

over 100 students.

Although the item-report is an exceptionally helpful tool for teachers, as shown

by Ms. Kelly’s vignette, the data provided in the item-report is just the tip of the

iceberg and yet, can already reach overwhelming levels when interpreted manually.

In our solution section, we will describe how we intend to take advantage of all

student data in order to support teachers’ online dialogues with students.

SRI study that showed ASSISTments caused better learning and closed

achievement gaps

Recently a year-long randomized controlled trial conducted by SRI International

concluded. This study (Roschelle, Feng, Murphy, & Mason, 2016) produced three

main findings: 1) Teachers reliably changed the way they reviewed homework,

consistent with the intended-use model. They still spent approximately the same
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amount of time reviewing homework, but their reviews were focused on a smaller

number of difficult problems rather than all questions. 2) Students in schools ran-

domly assigned to use ASSISTments had reliably higher rates of learning (p¡.008)

as shown by an additional eight-point gain on an end-of-year standardized test, an

approximate 75% gain atop the 11 points students are expected to gain (on aver-

age) in a school year. 3) The intervention helped to close achievement gaps rather

than widen them, as Steenbergen-Hu and Cooper (2013) found for most other K-12

mathematics intelligent tutoring systems. Students with incoming 6th-grade scores

below the median experienced greater gains than those above the median.

Open Educational Resources (OER) are incorporated into ASSISTments:

We have excited districts

Several OER, such as the commonly adopted EngageNY curriculum, have emerged

as free and accessible resources for both teachers and students. These ‘digital text-

books’ are used by districts across the nation, many of which are also using AS-

SISTments as an instructional support to provide formative assessment opportuni-

ties, technology integration, and problem-solving interactions. This overlap is due

to the fact that the team at ASSISTments incorporated problems and answers for

every homework problem, classwork problem, and exit card available in EngageNY

into ASSISTments’ certified content. Since ASSISTments already supports OER on

its platform, enhancing the use of data collected with additional functionalities will

make the product more useful to teachers as classrooms digitize. As you can see

from the attached support letters and details in the collaboration and management

plan, we have identified a consortium of districts that currently use OER and could

adopt our tool in supplementing their approaches to learning. Dr. Kreisberg, who

already works closely with these districts, will be managing these districts’ partici-
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pation to support their desire to continue to use Google Classroom, technology, and

OER.

7.2.2 An Opportunity to Apply Google’s Smart Reply Tech-

nique to the Education Problem

Google’s Smart Reply system (Kannan et al., 2016) employs a number of exciting

techniques, combining a recurrent deep learning Long Short Term Memory (LSTM)

network (Hochreiter & Schmidhuber, 1997), clustering, and semi-supervised learn-

ing methodology to generate suggested email responses for users. In short, Google

researchers use the LSTM model to generate 10-30 of the most likely responses to a

given email, after which the response candidates are compared to generated clusters

of messages with shared semantic intent (i.e., messages with the same general mean-

ing despite possible lexical differences) in order to suggest three messages exhibiting

sufficient variation.

The heart of the system is a simple LSTM model for response selection using a

sequence-to-sequence technique (Sutskever, Vinyals, & Le, 2014). Consistent with

the approach of the Neural Conversation Model (Vinyals & Le, 2015), the incoming

email message is input word-by-word into a model which then has the ability to

output, word-by-word, every possible response to the initial message; as the total

number of possible responses is impractically large, the actual number of output

messages are limited to the top most likely responses given the input.

Generated clusters each represent a different semantic intent, or general subject

matter, that is seeded by a small selection of example cases. For instance, one cluster

could have the intent of ”thank you,” with a few instances being thanks, thanks!, and

thank you. Google researchers hand-code examples, three to five instances for each

cluster, and use them to compare the LSTM-generated messages to estimate the
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semantic intent of unlabeled generated responses. In this way, the process becomes

a semi-supervised learning task, where a few labeled responses are used to propagate

semantic meaning to unlabeled instances to ensure a breadth of meaning across the

final selected messages.

This sequence-to-sequence modeling as an NLP technique is not based on tradi-

tional parsing methods. Instead, it is, in a simple sense, similar to trigram poetry,

where the selected word is based solely on the two previous words. The sequence-to-

sequence model, however, can use a context that spans the entire length of the word

sequence and is more sophisticated in that the overall technique does not require

traditional natural language parsing methods.

Triggering - the initial step to the methodology employed by Google’s Smart

Reply - arguably contributes most to the practicality of the system by allowing only

three email message options from which the user, if provided with Smart Replies,

can choose; this prevents users from learning to ignore Smart Replies. This process

attempts to filter out emails that do not warrant a response (negating the need to

suggest replies), as well as those that are more sensitive or open-ended to effectively

produce viable responses. The method uses a simple feed-forward neural network

to produce a value that combines both the probability that a response is necessary

and also the confidence of the system to be able to produce responses that would

be useful to the user. At the time of publication (Sutskever, Vinyals, & Le, 2014), a

reported 11% of emails passed the triggering process and displayed suggested Smart

Reply messages. Among applicable emails, 10% of users responded with a Smart

Reply, with 40% of these users selecting the reply on the far left, deemed by Google’s

algorithm to be the most useful. Therefore, one percent of email messages from a

Google client utilize Smart Reply - an impressive amount given the scale of Google.

Considering the Smart Reply methodology, we see great opportunity to appro-
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priate the promotion of data-informed communication to an educational context.

We see a parallel in the problem addressed by the Smart Reply system to the prob-

lems identified in Section A of our proposal. The Smart Reply system needs to

read and interpret, if only internally, the content within a received email in order

to provide a human user with response choices. In classrooms, teachers often act in

a similar manner, reading through student homework responses in order to decide

what feedback to provide students in order to improve their learning experience.

This parallel has inspired our current work.

The Solution section of this proposal will detail our approach to this problem,

expanding upon and adapting the methodologies employed by Smart Reply to de-

velop a system that specifically addresses the needs of teachers. The collaboration

and management section details Heffernan’s and Whitehill’s extensive expertise in

deep learning, recurrent memory networks, clustering, and other techniques that

will allow for the development of such a system.

7.2.3 ASSISTments currently has detectors that rely on

student input

As students and teachers began to take advantage of ASSISTments and its feedback,

it became evident that more could be accomplished with the high volume of data

collected by the system. Through internal (at WPI) and collaborative efforts with

several other learner-analytics researchers and institutions, we have a history of

peer-reviewed publications focused on the creation, study, and usage of automated,

sensor-free detectors of student performance, behavior, and affective state within

the ASSISTments learning platform, as detailed in the subsections below.
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Category Detector
Existing Detectors

Correctness
Within-Assignment LearningPerformance
Completion
Engaged Concentration
Confusion
Frustration

Affect

Boredom
Wheel Spinning
Gaming the System
Mental Effort
Persistence

Behavior

Carelessness
Detectors to be developed
Student History Improvement Over Time

Open Response Understanding
Student Open Response

Open Response Effort

Table 7.1: Categories of detectors to be utilized by DRIVER-SEAT.

Detectors of Student Performance

Several methods pertaining to understanding student knowledge and performance

have emerged and subsequently have been studied within the context of ASSIST-

ments.

Deep learning methods, describing a family of techniques utilizing multi-layered

neural networks, have exhibited a recent increase in usage in a wide-range of fields

due to increased development support, advances in technology, and subsequently

promising performance when compared to more traditional methods. A type of

deep learning model, known as a recurrent neural network (Williams & Zipser,

1989), has been the basis of several recent works that suggest notable improve-

ments to estimating short-term student performance. The development of the Deep

Knowledge Tracing (DKT) model (Peich et al., 2015) was among the first applica-

tions of this type of deep learning model within an educational context, reporting
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vast improvements over the widely applied models of Bayesian Knowledge Tracing

(BKT) (Anderson, Corbett, Koedinger, & Pelletier, 1995) and Performance Factors

Analysis (PFA) (Pavlik Jr., Cen, & Koedinger, 2009). Heffernan’s team and oth-

ers (Khajah et al., 2016; Wilson et al., 2016; Xiong, Zhao, VanInwegen, & Beck,

2016) later used the same methods to correct Peich et al.’s overestimation of ef-

fects. Unsurprisingly, student correctness has been commonly studied as a measure

of student knowledge, as it is among the most basic metrics of student performance

for teachers to address, and such models have been built to recognize short-term

learning progressions over the length of assignments.

In addition to estimates of student knowledge, completion and persistence have

also been studied by implementing these models within ASSISTments data. The

different types of assignments available within ASSISTments has allowed researchers

to utilize mastery-based assignment data to study productive perseverance (Kai,

Almeda, Baker, Heffernan, & Heffernan, in press) and persistence-related measures

such as student “wheel spinning.” The concept of wheel spinning (Beck & Gong,

2013) is derived from the analogy of a vehicle made immobile due to snow or mud;

effort may be applied, where the vehicle spins its wheels, but no progress is achieved.

In the context of education, a student may “spin his or her wheels” and apply effort

to learn a concept, but make little or no progress toward effectively mastering the

material. It is thought that identifying wheel spinning early on can help inform

remedial instruction or prevent unnecessary frustration.

Detectors of Student Affect

Students’ emotion and affective state have been proven as significant predictors of

short- and long-term performance (Craig et al., 2004; Pardos et al., 2014). Using

student affect detectors researchers have reliably predicted affect from ASSISTments
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logs (San Pedro, Baker, Gowda, & Heffernan, 2013), and have used affect states to

better predict state test scores (Pardos, Baker, San Pedro, Gowda, & Gowda, 2014),

college attendance (San Pedro, Baker, Bowers, & Heffernan, 2013), STEM-related

college majors (San Pedro, Ocumpaugh, Baker, & Heffernan, 2014), and how these

detectors generalize across rural, urban, and suburban contexts (Ocumpaugh, Baker,

Gowda, Heffernan, & Heffernan, 2014). With such works pointing to the importance

of detecting and measuring student affect, the argument for their inclusion in this

proposal is well-founded in this prior research.

A significant amount of research has been conducted on the detection of stu-

dent affect state by aligning ASSISTments data to collected quantitative field ob-

servations using the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP)

(Ocumpaugh, Baker, & Rodrigo, 2015). This protocol allows human coders to ob-

serve students in the classroom while working within the learning system and label

them based on one of four commonly studied affective states: engaged concentration

(Csikszentmihalyi, 1990), frustration (Kort, Reilly, & Picard, 2001; Patrick, Skin-

ner, & Connell, 1993), boredom (Csikszentmihalyi, 1990; Miserandino, 1996), and

confusion (Craig, Graesser, Sullins, & Gholson, 2004; Kort, Reilly, & Picard, 2001).

Initial development of sensor-free affect detectors, utilizing only the recorded

student log data aligned with human-labeled observations, explored a number of

tree-based, rule-based, and Bayesian models, ultimately reporting moderate model

accuracy above chance (Ocumpaugh et al., 2014). Later, Wang, Heffernan, and

Heffernan (2015), improved upon these initial affect models by incorporating more

information pertaining to skill, or knowledge component, as well as class-level fea-

tures. Most recently, Heffernan and colleagues (Botelho, Baker, & Heffernan, 2017)

explored the application of deep learning models, exhibiting a significant increase

to model performance. That work compared three variants of recurrent neural
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networks - traditional recurrent, LSTM, and Gated Recurrent Unit networks - as

sequence-to-sequence models to estimate labeled student affect states.

Detectors of Student Behavior

One of the most informative forms of data that can be provided to teachers is not

the end result or performance metric alone, but data that can describe the process

that contributed to a result. As such, detectors of student behavior have emerged

in the field of learner analytics and, among other systems, their application and

further development have been studied using ASSISTments data. One of the more

negative behaviors that has been studied is that of students “gaming of the system,”

or cheating the system, referred to hereafter simply as “gaming.” Student gaming is

exhibited in a number of ways depending on the type of assignment and availability

of computer-provided tutoring. Essentially this behavior is exemplified by a student

progressing through an assignment by exploiting an aspect of the system rather

than administering effort to learn the material. In such cases, the student may

proceed quickly through the assignment, exhausting all computer-provided tutoring

to reveal the correct answers (it is common to see these students finishing such

assignments in just a few minutes’ time, while the rest of the class takes significantly

longer depending on the difficulty and number of questions). Developments toward

detecting this behavior can help inform teachers that a student has not applied

effort and likely does not know the assigned material despite having “completed”

the assignment.

More recent work (Botelho, Ostrow, & Heffernan, in submission) has explored

student persistence and mental effort as distinct student constructs to explain con-

flicting ideas of students persisting yet gaming while others apply effort but fail

to complete their work. It attempts to address the ‘productive’ aspect of produc-
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tive perseverance, linking mental effort and ultimate completion to define a state of

persistence; the interaction of these constructs suggests a spectrum of different stu-

dent behaviors. While only pilot work has been completed thus far, results suggest

promise in regard to developing detectors of mental effort that, alongside existing

detectors of gaming and knowledge, may help better describe the student-learning

process exhibited while working through assigned material in ASSISTments.

While not yet directly studied within the context of ASSISTments, another de-

veloped detector of student behavior observes the construct of carelessness. This

construct can help teachers understand the level of attentiveness exhibited by stu-

dents, as it estimates, in a simple sense, when students answer a problem incorrectly

though they actually have sufficient understanding of the material. In this scenario,

the students may make a simple mistake that they may have caught if they were

more careful and checked their work before submitting their answer.

7.3 The Solution

In this project, we will create the Dialogue Reinforcement Infrastructure for Voli-

tional Exploratory Research - Soliciting Effective Actions from Teachers (DRIVER-

SEAT). DRIVER-SEAT is a tool that will enhance personal one-on-one communi-

cation between teachers and students. DRIVER-SEAT will allow teachers to use

automatically generated, suggested responses to provide personalized feedback to

students in the form of a dialogue. We will answer a set of research questions about

how to machine-learn dialogue-based systems for teachers (see Section C.4 for details

on our research questions). To accomplish this, we will work with a team of twenty

pilot teachers and of those, choose five to become development teachers. This work

will create a tool that allows teachers to take advantage of the data collected by
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technology in order to connect with their students in ways that improve learning.

In this section, we will begin by describing DRIVER-SEAT with a vignette, then

outline the project activities, describe DRIVER-SEAT in greater detail, and finally,

outline the research questions we plan to address.

DRIVER-SEAT needs a cooperating platform from which to pull data and also

to send messages to students, and for this we have chosen to develop the tool within

ASSISTments. In Year 3, however, we will show that DRIVER-SEAT can be gener-

alized to other systems by testing it within EdX, a platform for hosting free Massive

Open Online Courses (MOOCs). We want DRIVER-SEAT to be able to work with,

and learn across, any student-level clickstream data. Ideally, clickstream data in

the form of IMS Calipers standard (IMS, 2017) or the xAPI (xAPI, 2017) standard

should be consumable to help teachers send messages to their students.

7.3.1 DRIVER-SEAT Vignette: What we want this to look

like

This vignette will demonstrate a hypothetical use case of DRIVER-SEAT. Let us

reconsider Ms. Kelly, who we discussed in Section B.2. Like before, she assigns a

set of problems that students work on at home, and she assesses the item-report

before class the next day (Figure SD1). She first decides to talk to the whole class

about problem 1 and its common wrong answer. When finished, before reading all

the students’ open-responses, she opens DRIVER-SEAT and looks at the dialogue-

initiation interface, as shown in Figure SD2. The interface shows eight students who

have been selected as good candidates for a teacher-student dialogue. Each student

has been given a diagnosis (as determined by the detectors) that should be addressed

by Ms. Kelly. She can select “show” to see the reasons for each diagnosis. In this

interface, column 1 provides the name of the student (we have added descriptors to
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the names to help the reader understand the diagnosis provided by DRIVER-SEAT),

and column 2 provides the diagnosis and links to a popup that shows the students’

clickstream data to justify the diagnosis. Column 3 allows Ms. Kelly to decide

if she wants to send a message or override the system (if she chooses to override,

the system asks for an explanation so the detectors can learn from her response).

Columns 4 through six show three automatically suggested messages, similar to

Google’s Smart Reply. The first is the default, but in some cases Ms. Kelly selects

another message or opts writes her own (as shown in column 8, row 2 for Learning

Lalit). Column 7 offers the suggested action for the student - DRIVER-SEAT is not

just about sending a message, but about starting a dialogue. Students are expected

to read the message and complete the assigned action. The next day, Ms. Kelly will

assess the follow-up interface that allows her to check on her students’ completion

of these actions, and ultimately end the dialogue.

Ms. Kelly sees that DRIVER-SEAT has diagnosed Gaming Gangi as “gaming

the system.” The data displayed when she clicks on “show” outlines that he has not

even spent enough time to read each assigned question. DRIVER-SEAT suggests

the message, “You seem to be going too fast.” Ms. Kelly adopts that default to

send Gangi.

For Learning Lalit, DRIVER-SEAT suggests that Lalit should receive positive

feedback considering she has shown improvement. DRIVER-SEAT knows that Lalit

has had trouble in the past and wants to draw this improvement to Ms. Kelly’s

attention; it wants teachers to “catch students while they are doing well.” Without

DRIVER-SEAT, Ms. Kelly may have otherwise overlooked this subtle improvement.

Ms. Kelly likes the second phrasing and selects it (from these types of selections,

DRIVER-SEAT will attempt to learn the most desired and effective phrasing of

messages). Ms. Kelly chooses not to assign an action.
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DRIVER-SEAT identifies two students who seemed confused (according to Baker’s

detectors) and suggests assigning a Skill Builder, or a mastery-based learning as-

signment, on the missing standard. Notice (on the item-report found in Figure SD1)

that Carl got every problem wrong, just like Gaming Gangi, but he took his time.

Courtney’s diagnosis was also confused. Ms. Kelly was fine with default sugges-

tions for Courtney, but since she sees under “show” that Carl has been diagnosed

with confusion five times recently, she decides to deliver her message face-to-face.

She selects the ”Will talk to him in class” button so the system can learn that the

teacher agreed with the diagnosis. She was very glad she had this record of Carl’s

work, and will be able to show this information to Carl’s parents, if necessary.

DRIVER-SEAT also brings Super Sachi to Ms. Kelly’s attention as he performed

better than usual. She is pleased to catch a student while he is doing well. Ms. Kelly

decides to select the first message and send Sachi a message asking him to reflect

on his performance and communicate what he did differently this time, to try and

instill positive behavioral and cognitive principles.

DRIVER-SEAT identifies two students (Wei and Wakeeta) who did great on

the gradable part (questions 1, 2a, 2b, 2c, 2d), but poorly on the open-response

(question 2e) by making the same error. They both thought that Mountain Charter

was better, failing to even recognize there was a break-even point between the two

companies. After selecting the first message, Ms. Kelly gave them the action of

evaluating other responses and hopefully selecting one that was correct to show a

better understanding of the problem. She will check on their work tomorrow with

the follow-up interface.

Unlike Wei and Wakeeta, Linda’s response was incorrectly tagged; it looked in-

correct because she had responded, “Mountain Charter was better.” However, when

Ms. Kelly took another look, she noticed that, in fact, Linda had only made the
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mistake of not stating the break-even point of 100. She decides not to send the

message by selecting the, “I disagree with the diagnosis” checkbox (so DRIVER-

SEAT can consider the response as a graded response and refit the machine-learned

NLP subcomponent). After Ms. Kelly finishes her review, she hits the ”Launch

Dialogue” button to send the messages to her students. The messages can be de-

livered via text, email, or messaging internal to ASSISTments or the platform in

which DRIVER-SEAT is embedded (i.e., Google Classroom).

The next day, Ms. Kelly uses the follow-up interface to review the progress of the

eight dialogues. For instance, she observes that a student who seemed confused did

well on an assigned problem set, so Ms. Kelly relies on the default response, “Glad

you got this down.” Starting a dialogue is only the beginning of DRIVER-SEAT’s

capabilities - it also supports the teacher in making sure that most dialogues end

quickly and on a positive note. Of the eight dialogues, Ms. Kelly chose to conclude

seven with short messages acknowledging she had reviewed students’ actions and

marked them satisfactory. One of the students had been assigned a Skill Builder

which he tried to complete, but failed to show mastery of the standard. Ms. Kelly

decides to follow up with a response for the student to come see her after school for

extra help. She ends her five-minute response routine with a feeling of relief - she

is attending to students’ individual needs but she is not overwhelmed by a pile of

time-consuming data to process. This also allows her ample time in the classroom

to spend on instruction rather than homework review.

7.3.2 Project Activities

The vignette of Ms. Kelly proposes the final version of DRIVER-SEAT. We will

employ an iterative design process to create this tool. In Year 1, our team of five

development teachers will be compensated for the time they spend helping us design
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the dialogue-initiation interface, as well as seeding the system with the desired

student contexts, messages, and actions. Each three-month span within the first

year of development will be spent focusing on a different part of the process. Each

of these steps will conceptualize the problem as one that can be solved by standard

supervised machine learning; for supervised learning, we need datasets that include

the messages teachers send, as well as negative examples comprised of the messages

that teachers choose not to send.

We will iteratively develop a better interface and build a dataset to be used

for system training. This will be a hierarchical task where we first answer, “What

diagnosis would best be addressed for this student?” before learning, “What action

should the teacher ask the student to do?” or “Given a selected diagnosis to address,

what is the best way to phrase a message to best engage the student?” Initially,

our dependent measure is just to build models that try to accurately predict held-

out test data (using standard cross-validation techniques), where the test data is

comprised of teacher-created messages they want to send, as well as messages we

suggest they send that have been rejected. We will gather additional use data from

our pilot teachers and refit our models (adding more data to our semi-supervised

modeling framework). The actions that must occur within DRIVER-SEAT are 1)

to decide what diagnosis to address for each student with regard to last night’s

homework; 2) to select the students for whom to suggest messages; and 3) to decide

how to word messages addressing the selected diagnosis. Every time a teacher uses

DRIVER-SEAT, the dataset grows with the choices carried out by the teacher.

These are the stages for Year 1 through which our five development teachers,

all teaching from 7th-grade EngageNY, will be guided. This work will inform the

creation of the final product.

Stage 1. Aug, Sep, Oct: We will meet regularly and have the teachers assess the
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complete log files for a particular assignment. They will then create dialogues by

using the data.

First, the teachers will be asked to evaluate their students’ open-response ques-

tions, mark them into common error categories, and come up with a message for

each student. Each EngageNY question might have a few common-wrong-answer

patterns and we want to identify them. To help us do this, each teacher, in addi-

tion to grading their students’ open-response questions, will also do the same for

a smaller sample of responses from others teachers’ classrooms. This will help us

get diversity in our understanding of common wrong answers and the ways teachers

choose to respond.

Next, the teachers will be given the complete set of clickstream data. They will

then create, from scratch, the “dialogue start” using the template in the center of

Figure SD3. In addition, we will ask the teachers to give a justification for their

message, with respect to the data from the detectors. We expect teachers will be

able to create 20 of these dialogue starts per day. With 60 school days and five

teachers, that will result in a total of 6,000 dialogue starts. During this time, our

team will observe these dialogue starts in conjunction with their justifications and

analyze patterns. As the teachers find similarities they will begin to break them up

by diagnosis (student gaming, student confused, etc.). This stage will result in the

WPI team learning to pay attention to specific diagnoses.

Stage 2. Nov, Dec, Jan: We will start to guess, using the information in Stage

1, what diagnosis would be best for the teacher to dialogue with a student based

on which diagnoses were most focused over the justified dialogue start (see Figure

SD4). We will use the context of the students’ actions, along with the 6,000 dialogue

starts created in Stage 1, to offer the teachers three choices of diagnoses. We will

then learn from the selections they make. We expect they will initially approve of
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Participants # Year 1 Year 2 Year 3

Development Teachers 5

- Chosen from group of
pilot teachers at the
beginning of Year 1 based
on volition and motivation
- Train with Lesley
University Coach to
understand the dialogue-initiation
interface and the goals
and expectations of their
role in Year 2

- Spend approximately 180 hours in Year 2
providing content for the dialogue-initiation
interface, writing feedback messages to grow the
database and refining piloted messages
- Lesley University Coach will work with the WPI
team and development teachers after each coaching
session with the pilot teachers to inform the team of
aspects that are working and parts that need
adjustment
- WPI and development teachers then refine
messages based on coaching feedback

- Spend approximately 180 hours writing feedback
messages to grow the database and refining piloted
messages
- Present at a Cyberlearning Workshop titled,
’Using Machine Learning to Personalize Math
Instruction’ that will be open and free to middle
school math educators interested in attending. The
focus will be on sharing the results of the work and
encouraging more teachers to engage in
Cyberlearning within their classrooms

Pilot Teachers 15

- Learn to use
ASSISTments through
trainings, coaching, and
experimentation

- Use the DRIVER-SEAT tool with newly
developed feedback options from the five
development teachers

- Use DRIVER-SEAT
- Meet with Lesley University Coach once a month
for one hour each week to receive guidance

District Math Leaders 5

- Train with the pilot
teachers to learn how to
use ASSISTments to
support math instruction
by the pilot teachers

- Spend eight hours throughout Year 2 of the grant
continuing to oversee the usage of the program in
their pilot teachers’ classrooms and to provide
support, as needed, to assist in pilot teachers using
the program consistently and effectively

- Continue to help us as research partners

Table 7.2: Participant timeline.

about 50% of the diagnoses we select, which over time will improve to 80% or 90%.

Stage 3. Feb, March, April: After six months, we will have collected data (12,000

instances) on the type of actions the teachers assign (see Figure SD5). We will use

this information to begin to suggest actions from which the teachers can choose.

The selections that teachers make will help us improve action suggestions.

Stage 4. May, June, July: During these months, we will focus on creating just

the right message for teachers to select in the dialogue-initiation interface (see Figure

SD2). By the end of the first year, we will have a working interface to use with the

pilot teachers in Year 2. We want to begin with diagnosis selection because it will

greatly narrow the options for the actions and messages moving forward.

Timeline for participants

Each year, the team from Lesley University will hold training sessions and workshops

for participants. WPI and Lesley University will answer the research questions laid

out in section C.4 and will disseminate findings through publications in peer reviewed

and prestigious conference and journal venues.
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7.3.3 Details of the system behind DRIVER-SEAT

DRIVER-SEAT depends on two main functions to work, the student-context builder

and the dialogue-builder. The dialogue-builder relies on the student-context builder

to create the options from which the teacher selects a feedback message. The data

pipeline begins with the teachers’ selection of problems and includes students’ re-

sponses to previous and targeted assignments from ASSISTments as well as their re-

sponse to the previous dialogues delivered by DRIVER-SEAT. Once the two builders

have made their decisions, the information is shown to the teacher through the

dialogue-initiation interface, the context-report, and the follow-up interface.

The student-context builder

The primary function of the student-context builder is to interpret and summarize

raw student data and address the data-fusion problem that exists regarding the mul-

tiple detectors and data sources. The role of this partition is to build the “student

context,” defined as the collection of information that is currently available for a

particular student, considering the most recent homework assigned to the student,

the history of that student interacting with the learning system, and the history of

dialogues opened between the teacher and student through DRIVER-SEAT. These

multiple sources of information must be combined together in a manner that iden-

tifies behaviors exhibited by each student.

To do this, the system will leverage the many existing detectors of student per-

formance, behavior and affect (Table 1), and expand beyond these with a set of de-

tectors that consider student text submitted in response to the many open-response

questions assigned by the teacher. These detectors applied to student open-responses

will employ techniques drawn from the study of NLP in order to generate estimates

of student performance and understanding from their submitted text. They will be
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referred to hereafter as NLP-detectors.

In developing the NLP-detectors, the goal is not to automate the grading of such

responses, but instead, to estimate how much effort students put into their answers;

this further coincides with the content of EngageNY and other OER as the questions

commonly ask students to explain or justify an answer in their own words. In this

regard, the problem differs from traditional essay-grading tasks in that the student

is not evaluated on grammar and structure, but rather on effort and understanding.

Similar to previous works exploring the automation of essay grading, the NLP-

detectors will utilize a deep recurrent memory network (RMN) (Tran, Bisazza, &

Monz, 2016) to assess student understanding for both its ability to leverage the

sequential nature and word ordering of text to inform estimates of a dependent

measure, but also for its ability to utilize a pool of labeled example responses. As

teachers are able to identify student responses that exhibit understanding and effort,

as well as those lacking in such measures, the development teachers will be able to

supply examples of acceptable and unacceptable responses on which to train and

build the NLP-detectors. With such examples, the detectors could further leverage

not only the student data from the development teachers, but also all data pertaining

to such problem types in EngageNY.

Considering the large number of available detectors of student performance, be-

havior, and affect (see image 4), in addition to the NLP-detectors and the knowledge

of changes in behavior and performance over time, there is one final aspect that must

be included in the development of the student-context builder.

Dialogue builder

The dialogue-builder uses the student information to generate the messages and ac-

tions that are suggested to teachers. It is an iterative process that aims to learn how
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Type of Diagnosis Action Description / Expectation
Assign

problem set
Assign at least one problem for the student to
complete. It could be a Skill Builder.

Tell me what
happened

The student is expected to reply with an explanation
for the detected performance/behavior/affect.

See me Define a time to meet with the student (e.g. after class).

Send Content
Have the student watch a video of how to do the
homework assignment

Any

No Action Assign no action to the student.

Stop Behavior
The student is expected to stop the detected behavior
(e.g. gaming the system) on the next assignment.

Behavior-
Specific

Motivation
Video

Ask students to watch a motivational video.

Completion-
Specific

Finish
Assignment

The student is expected to complete the previous
assignment that was left unstarted or incomplete

Revise
Explanation

The student is expected to rewrite the open response
with more consideration.

Open Response-
Specific

Select the Best
Response

The student is presented with three responses and is
expected to select the best.

Table 7.3: Potential actions to be utilized by DRIVER-SEAT

to maximize the positive impact of such messages. Information from the student-

context builder inform the dialogue-builder. A selection process is required to iden-

tify the most impactful messages to present to teachers and also the individual

students for which each is detected; essentially, this selection process references the

need to identify what to say about each student, if necessary, and what action should

accompany that message. In consideration of teacher capacity, impact, and student

accountability, it follows that only one diagnosis per student is to be presented to

the teacher. Additionally, limiting the number of students for which messages are

presented to the teacher will further help direct attention to those students who

may benefit most from a dialogue.

In this way, the dialogue-builder will incorporate similar methods as Google’s

Smart Reply. The system will consider the constructed student contexts and prior-

itize students who are most likely to benefit from a teacher-provided dialogue. For

the selected students, two models will each generate the messages suggested to the
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teacher as well as a suggested action; assignable actions, as described in Table 3, are

an important part of the teacher-student dialogue. These models will be developed

in consideration of research questions described in section C.4.b.

In Year 1, the development teachers will provide more feedback than will be

typically expected, thus jump-starting the process. There is an inherent priority

that is associated with each student context; it is likely more impactful to focus

on such detectors as assignment completion or low effort rather than a detector of,

for example, boredom where a single dialogue is less likely to contribute a profound

effect. This inherent priority of detectors can be learned by paying attention to the

types of messages selected by the development teachers. The described inherent

priority further extends to the student selection process. The student history, fre-

quency, and content of previous dialogue, as well as the recent measures identified

by the detectors will help identify the students for whom a new dialogue may have

the most positive impact.

The user interface of DRIVER-SEAT

The first step of DRIVER-SEAT is to support the creation of a dialogue between

teacher and student that is rooted in the context of the students and their perfor-

mance in ASSISTments. The first product is the dialogue-start, as shown in Figure

SD3. This is made up of a reference to the context information, a message, and an

action. Teachers have a volitional role in creating this start by picking and altering

the components. They do this through the dialogue-initiation interface sketched out

in Figure SD2. Under column 2 there is a ”show” button to display the student

information driving the diagnosis; there is an example of such log files in the dia-

logues of Figure SD3 that shows the step-by-step actions taken by the student that

informed the diagnosis. This will give a variety of detailed information about what
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the detectors saw that landed the student on this list with this diagnosis. There will

also be three choices of messages and a pull down for a selection of actions, as well

as ways to change those.

The next day, the dialogue continues when the teacher accesses the follow-up

interface to check on the student completion of the assigned action and to reply.

This interface is not shown, but it will be a vital part of the teacher’s routine. If

need be, a new dialogue will be launched if the student has not finished the action to

the teacher’s specifications. Only one open dialogue per student will be permitted in

the system to avoid overloading the teacher capacity in maintaining such dialogues

and also to avoid overloading the student with assigned tasks. Records will be kept

by the student-context builder and the dialogue-builder in order to improve their

selections.

7.3.4 Experimentation and Exploration

We plan to evaluate this project through both qualitative and quantitative measures

while addressing pertinent questions in the fields of machine learning, computer

science, and education by means of the system’s development and deployment.

The utility of DRIVER-SEAT is dependent on its use by teachers. As such, the

clear question to first address is whether teachers like using the system, and whether

they find that it is helpful in initiating meaningful dialogues with students. Using

qualitative methods from human-computer interaction this question becomes: does

the system meet its goal of supporting data-informed communication with students

while considering the limitations of teacher capacity? System usage statistics and

feedback from teachers using the system during its development will serve as mea-

sures for the evaluation of this goal. We will utilize self-report surveys, think-aloud

protocols, and other feedback gathered from development teachers and pilot teach-
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ers to understand which aspects of the system are most supportive, as well as those

that need improvement. These measures will also act to iteratively improve the

utility of the system throughout its development.

Aside from the qualitative measures described above, quantitative evaluations

can be gained through small-scale randomized controlled experiments (RCEs) con-

ducted within the system, as described in the subsections below.

7.3.5 Research Questions Addressing Issues in Human Learn-

ing

How do teachers’ capacities for tailoring feedback messages and students’

perceptions of message origin alter the effects of feedback messages on

subsequent student performance?

A randomized controlled trial to evaluate issues within the efficacy of implementing

DRIVER-SEAT will be conducted at the end of Year 1, with replications intended

for the ends of Years 2 and 3. The goal of this experiment will be to assess how

student performance outcomes differ on the next night’s homework following receipt

of feedback messages crafted by teachers under a variety of circumstances. The five

development teachers will come together at our workshops, each with approximately

100 students, creating a pool of 500 students. Student data will be anonymized

and randomly assigned to teachers. This stratification will remove potential biases

that could otherwise arise among individual teachers’ students or feedback styles.

Each teacher will then be asked to provide feedback to 125 students. Random

subsets of 25 students will be generated and randomly assigned to receive one of five

conditions of feedback described in Table 4 below. These conditions differ based on

whether or not the teacher utilizes DRIVER-SEAT, the amount of time the teacher
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Feedback Creation Method
DRIVER-SEAT Traditional

Infinite Assistive
Laborious X Teacher
—————————

Laborious X Computer
Allowed

Short Period Efficient Unrealistic

Table 7.4: Conditions within the randomized controlled trial evaluating feedback
development method, time allowed, and students’ perceptions of message origin.

has to provide feedback to individual students, and whether students are made to

perceive messages as originating from the teacher or from the computer system.

We expect that when given an infinite amount of time while using DRIVER-SEAT,

the computer will play an assistive role in feedback selection (Assistive). When

DRIVER-SEAT is paired with short periods of time for feedback selection (i.e. one

minute per student), which we suspect will be the ideal use-case of DRIVER-SEAT,

we expect high efficiency (Efficient). We expect that when asked to apply traditional

feedback creation methods using ASSISTments reports (i.e., Ms. Kelly’s vignette in

section C.1), teachers will feel overwhelmed and fail to address the concerns of each

student (Unrealistic). When asked to apply traditional feedback creation methods

without time constraint, we expect that teachers will find the task daunting, but

possible (Laborious). Subsets of the Laborious condition will examine the effect

of students’ perceptions of message origins, as hailing from the teacher or from

the computer. These subgroups were established because we suspect that student

performance will increase when feedback messages are perceived as being penned by

their teacher.

Analysis of students’ performance on the next night’s homework will allow for a

series of pairwise comparisons to isolate:

• The main effect of DRIVER-SEAT in preparing feedback messages.

Comparing messages crafted within Assistive and Efficient conditions with
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those crafted within Laborious and Unrealistic conditions will allow us to assess

whether DRIVER-SEAT helps teachers select appropriate and effective feed-

back messages for students. We suspect that messages sent using DRIVER-

SEAT will be no different than messages sent using traditional methods, but

that they will be selected more efficiently, allowing teachers to reach a greater

number of students and to better understand the issues arising in their stu-

dents’ open responses.

• The main effect of time allowed in selecting or creating feedback messages.

Comparing messages crafted within Assistive and Laborious conditions

with those crafted within Efficient and Unrealistic conditions will allow us to

assess whether student performance is impacted by the amount of time that

teachers utilize when writing or selecting feedback. In current online learning

environments, teachers face the problem of limited time to spread across a high

quantity of students requiring feedback. We suspect that DRIVER-SEAT will

be helpful because of its efficiency, and that short time periods will allow

teachers to provide communication that is more instructionally relevant.

• The interaction effect of DRIVER-SEAT and time allowed.

Looking across all conditions with a focus on the comparison between Ef-

ficient and Unrealistic, we hope to show that messages created under duress

without the assistance of suggestions from DRIVER-SEAT will be of lower

quality and less effective in producing learning outcomes. We speculate that

teachers working under a time constraint will be more likely to focus on sum-

mative measures (i.e., “You got 85% correct, Not bad!”) when more sub-

stantive responses are more likely to affect change in students’ subsequent

performance (i.e., “You consistently had trouble adding negatives, let’s talk
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about how to approach these problems!”).

• The main effect of students’ perceptions of message origin.

Comparing messages crafted within the Laborious condition subgroups, in

which students are made to perceive messages as originating from the teacher

or the computer will allow us to assess the importance the perceived role of the

teacher in personalization, in an idealized setting, free of time constraints. We

suspect that messages perceived as originating from the teacher will increase

student performance through measures of affect and engagement.

What is the short-term effect of DRIVER-SEAT under realistic condi-

tions?

To what extent, if any, does the use of DRIVER-SEAT alter the behaviors exhibited

by students and increase student learning under real-life conditions? To address this

question, we will conduct a field trial in pilot teachers’ classrooms. After each as-

signment, the DRIVER-SEAT detectors will search for problematic behavior among

all students, but display only a random subset of the results to the teacher. So

each morning the system will display up to eight students, so as not to overload

the teachers. We will compare achievement on the subsequent assignment between

those randomly-selected students displayed and those detected to be exhibiting sim-

ilar behavior but not randomly assigned to be be displayed on DRIVER-SEAT. A

statistical analysis pooling year-long data, and accounting for the longitudinal de-

sign by controlling for the numbers of messages students received previously and

clustering standard errors at the student level, will estimate overall average effects

of the DRIVER-SEAT display.
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7.3.6 Research Questions Addressing Issues in Computer

Science

A number of challenges emerge in regard to the development of DRIVER-SEAT

and the infrastructure needed to support its functionality. Particularly in consider-

ation of the methodologies comprising Google’s Smart Reply system (Kannan et al.,

2016), the differences in applied fields lead to several research questions surround-

ing the identified parallels exhibited in the systems. It is without question that

the infrastructure of DRIVER-SEAT will need to utilize a number of techniques

from computer science and machine learning, in addition to the exploration of NLP

methods beyond even those applied within Smart Reply.

Do different representations of student data significantly impact model

performance when generating messages?

Perhaps the largest difference between DRIVER-SEAT and Smart Reply is the

structure of data being presented to the system. Smart Reply focuses its attention

purely on the natural language of incoming emails. The data that is coming from the

educational system feeding DRIVER-SEAT, however, contains a mixture of strongly

and weakly structured student information, contained within the student context.

The student actions, summarized by the detectors of performance, behavior, and

affect, combined with the information pertaining to student history and answers to

open-response questions comprise different sources, or channels, of information that

must be considered simultaneously by the student-context builder in order for the

system to decide what to address for each student.

The manner in which these different channels of student information are repre-

sented to construct the student context may vastly affect the ability of DRIVER-
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SEAT to generate viable messages. We have explored in previous work (Zhang,

Xiong, Zhao, Botelho, & Heffernan, 2017) how to combine several channels of stu-

dent information into a single model, and found that the representation had a sig-

nificant impact on model performance. Utilizing another deep learning technique,

we applied an autoencoder (Rumelhart, Hinton, & Williams, 1985) that learns a

lower-dimensional rich feature embedding that describes a set of inputs. This lower-

dimensional representation was found to be helpful when attempting to input sev-

eral channels of student information into a recurrent deep learning model. Here, we

will explore if the representation exhibits the same utility, comparing this method

against more traditional representations (i.e., directly feeding the channels into the

message-generation model).

Does the use of a Recurrent Memory Network lead to improvements over

the LSTM and clustering methodology employed by Smart Reply?

Google’s Smart Reply system employs a multi-step process to generate and select

email messages to suggest to users. Within this, they are using clusters of messages

with labeled semantic intent to estimate the meaning of each generated message;

this helps both to validate that the message is appropriate and also to help ensure

diversity amongst the suggested messages. The clustering of messages allowed for

the application of interpretable, human-coded labels to be applied to the generated

messages. However, to gain an understanding that two messages are different from

each other, such a human-readable label is not required and may be better modeled

by a different, deep learning model known as a Recurrent Memory Network (RMN)

(Tran, Bisazza, & Monz, 2016).

RMNs are a type of deep learning model that has been developed from traditional

recurrent neural networks (Williams & Zipser, 1989) to incorporate a static memory
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that can be used to produce more data-informed estimates. The static memory used

in this type of model is often comprised of a set of embedded example cases that the

network is able to use in conjunction with an input sequence. As stated in section

B.4, our team has applied RMNs in the past to automatically grade student essays.

In that model, a student essay is read word-by-word into the model and compared

against graded example essays included in the network’s memory; by comparing

against the examples, the model estimates the score of the input essay.

In this way, the LSTM and clustering methodology used in Smart Reply and

the RMN used for automatic essay grading are performing the same general func-

tion. Each compares an input sequence against a set of examples to select a set

of messages to suggest. Applying the RMN could help simplify the workflow by

incorporating the message generation and selection into the same step, unlike as it

is done in Smart Reply. Comparing the two methods will identify if 1) the Smart

Reply methodology appropriates to education with comparable accuracy and relia-

bility and 2) if the RMN exhibits better performance despite the inability to observe

human-interpretable semantic intents.

To what extent can we reliably incorporate specificity into the messages,

particularly in considering student open-responses?

As described in the Problem section, many computer-based systems fail to consider

student open-response answers in evaluating student performance despite the NLP

techniques that exist to aid in interpreting such text. It is uncertain, however, the

degree in which specific aspects of the open-response problem in conjunction with

the student’s response can be used to build suggested messages. The development

of the NLP detectors thus far have described how we can use deep learning models

to estimate understanding and effort, but we also intend to explore how incorporat-
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ing more information may provide an even more prominent role for student open

responses in the message creation.

A benefit of observing student performance within a commonly used OER, such

as EngageNY, is that many students are writing answers to the same content, pro-

viding the opportunity to observe various different correct and commonly incorrect

responses. The ability to identify these common incorrect approaches from the stu-

dent texts could help drive more specific suggested messages that teachers would

want to say to address the recognized misunderstanding. This specificity is illus-

trated in Figure SD2 by Wei, Wakeeta, and Linda, where the system has estimated

not only that the open-response was incorrect, but was able to suggest why this was

the case to the teacher and provide three suggested messages addressing this recog-

nized behavior. Using a similar methodology as Smart Reply, we will explore how

to group and interpret the semantic intent of student open responses for inclusion

into the suggested messages.

7.4 Broader Impacts

As the reader can see, this grant will pave the way for critical research to answer

important research questions from both computer science and human learning. The

findings from the research questions will help advance the fields of computer science,

as well as advise our understanding of the types of messages that can most effectively

promote student learning. The broader impacts of this work will to help thousands

of teachers more efficiently communicate with and provide feedback to their students

to improve learning. Supporting teachers to provide direct and supportive feedback

to students helps promote a sense that the teacher is paying attention and cares

about student progress; such support could be transformative.

152



Chapter 8

The HAND-RAISE Intervention

through LIVE-CHART: Directing

Teachers’ Attention to Prevent the

Loss of Student Interest in STEM

The following grant proposal was written alongside PI’s Neil Heffernan and Korinn

Ostrow. This proposal is pending submission. Supplementary figures and materials

as well as references for this proposal are included as appendices at the end of this

dissertation document.

8.1 The Problem

The United States is desperately interested in transitioning it’s workers into critical

jobs in STEM-related fields, but many students lack interest and the necessary skill

sets in mathematics and sciences upon leaving school. As a result, fields that have
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always depended heavily on math (e.g., physics and chemistry), and others that

are evolving to require more and more math (i.e., biological sciences), are undoubt-

edly affected by student’s declining attention to core fields within mathematics and

science.

Declining interest in STEM education is well-documented. Measures of students’

interest in STEM-related subjects commonly show high interest in elementary school

that recedes with each year as students advance through middle and high school.

By the time students graduate from high school, many have completely lost the

innate interest in STEM that existed in childhood (Potvin and Hasni, 2014; Ma-

honey, 2010). This decline is observed across grade levels within the United States

(Alexander et al., 2012; Gottfried et al., 2009; Sorge, 2007; George, 2006) as well

as internationally (Potvin & Hasni, 2014; OECD, 2006; Sjberg, & Schreiner, 2005;

Osborne and Dillon, 2008).

Explanations have been offered in previous works to attempt to explain why

such a decline is observed, attributing the loss of interest to the poor framing of

subject matter as practical or relevant (Barmby, Kind, & Jones, 2008), due to a

higher focus on standardized testing (Guvercin, Tekkaya, &, Sungur, 2010), or even

due to the quality of instruction (Krapp & Prenzel, 2011). However, another theory

suggests that students’ self-concept (i.e. their perspectives of what they know and

their confidence in the subject matter), the attitudes of their peers, and the quality

of student-teacher interactions may explain some of the decline (George, 2006). This

theory largely suggests that daily interactions occurring in the classroom can lead

to a gradual loss of interest. There is also a significant and growing problem in our

culture by which female and minority students express less interest in STEM careers

than their male counterparts. We believe that much of this discrepancy emerges from

disillusionment or frustration in math classes and the way that teachers interact with
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their students individually and as a group. On average, females and minorities are

documented as exhibiting lower participation and engagement in classroom activities

than their peers (Greenfield, 1997; Bernacki et al., 2016).

We seek to address this problem using an intervention aimed at building student

confidence and self-concept and promoting more informed, quality interactions be-

tween teachers and their students to support positive help-seeking and answering

strategies in the classroom. Using a computer-based intervention, we will provide

teachers with a set of tools to augment their ability to pay attention to students in

their class, specifically directing them to attend to students who would benefit most

from assistance. These tools, collectively called the HAND-RAISE Intervention,

will also help students develop the skill set required to articulate questions while

building their confidence and providing opportunities to engage in peer support.

Students often refuse to raise their hands in class due to a lack of confidence,

math anxiety, or a diminished feeling of belonging with relation to their peers.

We believe that these aspects align directly with the most prominent documented

causes of decline of interest and participation in STEM-related subjects and, later,

careers. We do not suggest that our proposed intervention will renew lost interest

in STEM. Instead, we hope that our tool preempts the decline by maintaining

students’ interest over the course of critical school years by focusing on facilitating

higher student engagement and fostering high quality student-teacher interactions

within the classroom.

8.2 The Opportunity

The previous section highlighted a set of problems pertaining to students’ engage-

ment and interest in STEM. In this section, we will identify several opportunities
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that can be leveraged in the development of the aforementioned HAND-RAISE

Intervention with particular focus on the online learning platform ASSISTments

through which we plan to develop and deploy the intervention.

8.2.1 Results of Prior NSF Support: Heffernan’s ASSIST-

ments and other CoPIs

ASSISTments.org was created while conducting research for past NSF awards. Hef-

fernan’s NSF CAREER award (CAREER: Learning about Learning award 0448319,

$646,075, 2006 2013) is the most relevant grant that helped to create ASSISTments.

It’s intellectual merit included more than four dozen peer-reviewed publications in

machine learning, deep learning, clustering, prediction, etc. (see the separate sec-

tion in the references noting these 60+ papers). Other NSF grants have also sup-

ported ASSISTments, including NSF 0742503 whose intellectual merit included 22

published randomized controlled trials measuring different ways to improve student

learning through feedback (see the separate section in the references noting these

22 papers). The broader impact of these awards has been support for thousands

of students via the ASSISTments service provided as a free public service by WPI.

Last year alone, students solved more than 12 million problems. Over more than

a decade, the WPI team has written tens of thousands of questions and teachers

have written an additional 75,000 questions for their students. The ASSISTments

platform allows teachers to enhance any homework assignment with online feedback

for students and reports for teachers (see Figure 1 for assignment questions and the

associated item-report). When students solve a problem in ASSISTments, after en-

tering their answer they are told if they were correct. If they got the problem wrong,

they can try again, and in some instances, receive additional tutoring. The element

of data entry allows for the creation of class and student reports that teachers can
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use to inform the next day’s instruction. The item-report is designed to provide

teachers with information that is easy to respond to. To explain further, we provide

a vignette of Ms. Kelly, a 7th-grade math teacher (an actual video of Ms. Kelly

reviewing an item-report can be accessed at Kelly et al., 2013). Let us assume Ms.

Kelly assigned the problems in Figure 1 to her students using ASSISTments. The

next morning, Ms. Kelly prepares for class by assessing the item-report. She would

probably want to talk to her students about question 1, as it was challenging: only

27% of students provided the correct answer and 66% of students who got it wrong

responded with an answer of ’0’. She realizes that these students made a common

error of subtracting -9 from 9 to get zero rather than solving 9 - (-9) correctly to

reach 18. She decides to spend a portion of her class time addressing this miscon-

ception. She then reads through some of the open- response answers and notices

that many students, including Grace and Billy, thought that Mountain Charter was

always better, failing to see how one plan was better for more people while one was

better for fewer. She also decides to spend a portion of her class time addressing

this misconception.

Figure 1: An example of an ASSISTments Item Report

Although the item-report is an exceptionally helpful tool for teachers, as shown

by Ms. Kelly’s vignette, teachers commonly fail to look at these reports until after

students have completed their assignments (e.g. before the class period on the

subsequent day or for grading purposes). As such, it does not provide teachers with

the opportunity to intervene in real-time to help students on classwork, and does not

help to direct teachers to the questions that arise as students are actively working.

In our solution section, we will describe how we plan to provide teachers with such

tools to help support real-time action within the classroom.
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SRI study that showed ASSISTments caused better learning and closed

achievement gaps

An in-depth randomized controlled trial conducted by SRI International recently

concluded (Roschelle, Feng, Murphy, & Mason, 2016), producing three main find-

ings: 1) Teachers reliably changed the way they reviewed homework, consistent with

the intended-use model. They still spent approximately the same amount of time

reviewing homework, but their reviews were focused on a smaller number of difficult

problems rather than all questions. 2) Students in schools randomly assigned to

use ASSISTments had reliably higher rates of learning (p¡.008) as shown by an ad-

ditional eight-point gain on an end-of-year standardized test, an approximate 75%

gain atop the 11 points students are expected to gain (on average) in a school year.

3) The intervention helped to close achievement gaps, whereas Steenbergen-Hu and

Cooper (2013) found that most other K-12 mathematics intelligent tutoring systems

instead exacerbate this problem. Students with incoming 6th-grade scores below the

median experienced greater gains than those above the median.

Helping students through peer assistance

Another set of tools within the ASSISTments learning platform are aimed at facili-

tating peer assistance for students working on the same content (e.g. peers within

the same class). This tool, called PeerASSIST (Selent, 2017), collects student work

and explanations as students work through an assignment, which is then used as

computer-provided aid to other students who may be in need of help to solve the

same content. Essentially, if students know how to solve a problem and are able

to articulate how they arrived at the solution, such information could be helpful to

other students when they are struggling.

From the basis of PeerASSIST, a function called “Star Student” was then im-

158



plemented. Star Student works with peerASSIST along with teacher settings that

allow the teacher to deem a student as an exemplary student to provide assistance

to peers. Once a student has been deemed a “Star Student,” work and explanations

created by that student will be distributed to other students in need of assistance

on the content through PeerASSIST. This not only helps provide students with aid,

but also can help build students’ confidence knowing that the teacher recognizes

their work as being exemplary. These ideas will be further implemented by the

intervention proposed in this project, with further detail provided in the solution

section.

8.2.2 Opportunities through AI-Enhanced Classrooms

Recent work by Ken Holstein recognizes the need for real-time tools in the class-

room to promote student-teacher interactions (Holstein, McLaren, & Aleven, 2017;

Holstein et al, 2018). In that work, the authors describe the implementation of

mixed-reality glasses worn by the teacher to provide real-time notifications of stu-

dent performance and behavior in the classroom. Teachers wearing the device are

able to see notifications on specific students in the class as well as have the ability

to pull up recent activity for individual students as they work in a computer-based

system. The goal of that work was to direct teachers’ attention to the students who

may most benefit from teacher attention. A study found that through the real-time

notifications, teachers spent more time with students with lower pretest scores as

compared with when the glasses were not used.

This work represents several great opportunities in that it demonstrates the

benefits of providing teachers with real-time notifications of student behavior and

performance to direct attention to those who may most benefit from an interaction.

It is difficult and somewhat impractical, largely due to financial constraints, to
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supply teachers with mixed-reality glasses, but by connecting a set of tools that can

be used through a tablet or even desktop computer (i.e. through any device with an

internet browser), we can provide teachers with the same benefits. Furthermore, as

the intervention proposed in this project is to be delivered through ASSISTments,

it can interface directly with the online learning platform to connect teachers with

the student data already collected within the system.

8.2.3 ASSISTments currently has detectors that rely on

student input

In order to develop a tool that is able to better inform teacher-student interactions,

it is important to provide useful notifications of student behavior and performance

during the class period. In recent Holstein et al.’s work (Holstein, McLaren, &

Aleven, 2018), the device focused on a small set of behaviors on which to notify

teachers. These included, for example, when a student appeared idle, or appeared

to be gaming the system (Paquette & Baker, 2017). While the behaviors used

in that work are certainly reasonable, other detectors have been developed using

ASSISTments data in the past and may be explored for use in this project. Such

detectors of student affect (Ocumpaugh et al. 2014; Botelho et al. 2017) as well as

other constructs such as carelessness (San Pedro et al, 2014) have been developed

using ASSISTments data and have even been shown to be predictive of student

involvement in STEM-related majors in college (San Pedro et al, 2014) and whether

students will pursue STEM-related careers (Makhlouf & Mine, 2018).

These, in addition to other notable detectors such as those of student gaming

(Paquette & Baker, 2017) can be utilized to explore the utility of reporting such

measures to teachers in real-time during the class period.
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8.3 The Solution

In this project, we will develop and deploy an intervention aimed at increasing

student interest and engagement in STEM-related subjects by supporting students

in the development of positive help-seeking strategies as well as build confidence

to both ask and respond to questions in a classroom setting. To accomplish this

goal, we will develop a set of teacher- and student-facing tools to help facilitate

engagement during class periods in real time. These tools are described through the

development of two tools: HAND-RAISE and LIVE-CHART.

Live Interactive Visual Environment for Creating Heightened Awareness and Re-

sponsiveness for Teachers (LIVE-CHART) seeks to provide real time notifications of

student performance as they work on classwork, while Help-seeking Application for

Notifying and Driving Real-time Actions to Increase Student Engagement (HAND-

RAISE) provides the means for students to ask questions through a tool that helps

develop positive help-seeking behavior while allowing teachers to address questions

in more efficient ways. Together, these tools describe the HAND-RAISE Interven-

tion that will be developed and evaluated through the proposed project.

The following sections will provide a vignette to exemplify some of the planned

functions of these tools as well as other details regarding the planned development

and evaluation processes. While the tool itself is not limited to middle school math-

ematics, we plan to focus the development and evaluation methods on seventh grade

mathematics as it is a grade level where many core mathematical concepts are in-

troduced (such as algebra and equation solving) that are integral to subsequent

STEM-related subjects while simultaneously targeting the optimal age range for

decline in STEM interest.

Figure 2: The LIVE-CHART classroom display interface.
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8.3.1 The HAND-RAISE Intervention Vignette

This vignette will detail a hypothetical use case of the HAND-RAISE Intervention

delivered through LIVE-CHART in order to demonstrate what we describe as the

final version of both of these tools. Coinciding with Figures 2, 3, and 4, this vignette

follows an example teacher, Ms. Kelly, as she addresses her 7th grade class of 8

students using ASSISTments to complete their classwork on equation solving.

To begin, Ms. Kelly logs in to her ASSISTments account using her tablet device

and navigates to the LIVE-CHART tool to view her students; while she knows she

has the ability to use LIVE-CHART through her desktop computer as well, she uses

the tablet as it allows her to stay connected as she moves around the classroom

while assisting students. She first sees that everyone has logged in to ASSISTments

with the exception of Logged-off Logan who she has already noted is absent. This

assures her that students are ready to work on their ASSISTments work and are

on-task at the beginning of the class period. Over the course of the class period,

as students are working through problems within the system, Ms. Kelly will be

notified of particular events that she is likely to want to address. Figure 2 illustrates

a more extreme example of such notifications, where 5 of her students are exhibiting

behaviors for which she should direct her attention.

Figure 3: The LIVE-CHART student display to illustrate the data made avail-

able to teachers through the interface.

Ms. Kelly first addresses Getting it Grace. She clicks on the notification to out

more information about Grace’s performance, leading her to a screen illustrated by

Figure 3. On this screen, Ms. Kelly can clearly see that Grace was struggling to

learn the material early in the assignment, but is now beginning to answer problems

correctly indicating that she has learned the topic. Ms. Kelly walks over to Grace

and tells her what a great job she is doing and decides to make her a Star Student
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for the topic of equation solving; she selects the option to “star” Grace through the

LIVE-CHART student display, meaning that Grace will now be able to help answer

the questions of other students on the identified topic via PeerASSIST. Ms. Kelly

then closes the notification indicating that she has addressed that Grace is doing

well, and the icon next to Grace’s avatar disappears.

Ms. Kelly looks again at the LIVE-CHART display of her classroom and notices

that the “idle” notification next to Bored Billy has disappeared. Ms. Kelly has set

up her LIVE-CHART to reflect the true seating chart of her classroom, so when

she spoke to Grace, she happened to be standing near Billy who was seemingly off

task. When Ms. Kelly addressed Grace, Billy directed his attention back to his

work, causing the icon to disappear. While Ms. Kelly could still address Billy’s

prior off-task behavior, she instead decides to give him a chance to remain engaged,

as she knows his focus has returned to his work. She makes a mental note to check

LIVE-CHART again in a few minutes to ensure that he remains on task.

Returning once again to the classroom display, Ms. Kelly directs her attention

to Hand-raised Henrietta and Hand-raised Harry. She wants to ensure that both

Henrietta and Harry get timely assistance. In this regard, Ms. Kelly has several

options regarding how to proceed. If she cannot address Harry within 2 minutes,

Ms. Kelly has enabled her settings to allow the HAND-RAISE tool to send Harry’s

question to the highest-recommended student; such a student would need to either

be deemed a Star Student for the topic, or have correctly solved the particular prob-

lem on which Harry is currently working or successfully completed the assignment

(if it is a mastery-based assignment). Similarly, Ms. Kelly could select Harry’s

notification, which changes the LIVE-CHART display to indicate all recommended

students (based on the previously described criteria), and drag the notification to ef-

fectively send the question to the selected student. Lastly, Ms. Kelly could of course
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address Harry’s question herself, but as her attention is first drawn to Henrietta’s

question, she allows the HAND-RAISE tool to let Grace answer Harry’s question,

as she had just selected Grace as a Star Student for the topic.

Grace is notified through ASSISTments that a question has been directed to her

and she accepts the request (other possible options will be detailed further in Section

C.1.a), and reads the question from Harry. She then writes a response, describing

where she believes Harry is becoming confused, and takes a picture of her notes to

include with her response.

While this is occurring, Ms. Kelly begins to address Henrietta’s question. Ms.

Kelly first selects Henrietta’s avatar from the LIVE-CHART classroom display,

showing her Henrietta’s recent performance in addition to the question she has

asked and the problem on which she is currently working. Ms. Kelly selects the

icon next to the displayed question to indicate that she is addressing the issue her-

self and begins to talk with Henrietta. By selecting the question, the LIVE-CHART

display switches to a scratch pad and, as she already knows Henrietta’s specific

question, Ms. Kelly is able to write out a worked example to help clear up her

confusion. Once finished with the example, Ms. Kelly indicates that she is done

and an image of the scratch pad is saved and sent to Henrietta to use as a reference

as she continues to work through the problem; alternatively, Ms. Kelly could have

typed the example out or written the example on paper and used her tablet to take

a picture of the work to send as well (or she could have discarded the example if she

felt that it would be unhelpful to Henrietta). Upon returning to the LIVE-CHART

classroom display, the HAND-RAISE icon for Henrietta disappears as her question

was sufficiently answered and subsequently Harry’s icon disappears as well because

Grace was able to answer his question sufficiently.

Figure 4: The HAND-RAISE interface from the perspective of the student work-
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ing in ASSISTments.

This leaves only one icon remaining for Ms. Kelly to address, and that is the

“possible gaming” notification next to Gaming Ganji. Ms. Kelly again uses the

student information display by clicking on Ganji’s avatar. Ms. Kelly sees that

Ganji has been asking for a lot of hints from ASSISTments very quickly, causing

LIVE-CHART to believe that he is not using the hints to learn and is instead

attempting to “game the system.” Ms. Kelly, knowing Ganji well having had him

as a student throughout the year, infers that he may be confused and is reluctant

to ask a question. As such, Ms. Kelly selects an action on the student information

display which sends a message to Ganji asking him to articulate a question that he

may have. Ganji responds to his teacher’s prompt by describing his confusion to

the best of his ability which is then sent back to Ms. Kelly. With a clearer idea as

to what is giving Ganji trouble, Ms. Kelly opens the scratch pad and approaches

Ganji to offer a worked example to address his confusion. Ms. Kelly reminds Ganji

that he should ask a question and should utilize the HAND-RAISE tool the next

time he is having trouble that available hints are unable to remedy (rather than

exhibiting gaming behavior).

The functionality of HAND-RAISE and LIVE CHART

The vignette of Ms. Kelly offers a description of several displays and functions

that comprise both the LIVE-CHART and HAND-RAISE tools. This section will

provide a brief overview of some of the planned functions of these tools as they will

be displayed to both teachers and students, with larger focus on those aspects that

were not able to be highlighted by the vignette.

The most prominent feature of the intervention is that of LIVE-CHART’s class-

room display. The display itself is meant to provide teachers with a real time view
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of students working in the classroom. LIVE-CHART, as a tool offered through AS-

SISTments, will be able to connect to a teacher’s class roster to know which students

are in which class periods and provide the necessary tools to allow teachers to edit

this roster as is already provided through ASSISTments. In the classroom display,

teachers will have the ability to drag and rotate students and props (such as the

board and teachers desk as illustrated in Figure 2), so that the layout reflects that of

the actual classroom. In this way, the tool helps provide a seating chart-like view so

that the teacher may easily find and address students (the notification on a student

in the corner of the classroom will correspond with the actual student sitting in the

corresponding corner of the classroom.

Selecting a student from the classroom display will open the student display.

This display will provide the teacher with data pertaining to the selected student

to provide such information as on which problem the student is currently working,

the recent actions taken in the system, and other descriptives. In addition to this,

when the student has an active notification (such as a hand raised), this display will

provide further information about the notification (e.g. the specific question of the

student) and provide the teacher with a set of possible actions. These actions will

be determined during the initial development process described further in the next

section, but it is likely that such actions may be sending a message to a student,

indicating that the student was addressed, opening a scratch pad to illustrate an

example, or even simply dismissing the notification.

The types of notifications, as will be described further in the next section, will

be driven by what emerges as most important amongst the recruited Development

Teachers who will aid in the development process of the tools. Such notifications will

certainly include an indication of a student raising their hand, but others may likely

include indications of student gaming the system (e.g. abusing hints), being idle for
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an extended period, and also more positive behaviors such as correctly answering

problems after struggling to learn a topic.

HAND-RAISE, from the perspective of the student, provides a means of asking

a question to be answered by the teacher or a peer. Students with low confidence

may be unwilling to physically raise their hands to ask questions as it may draw

unwanted attention, but the HAND-RAISE tool allows students to do so in a more

comfortable manner. The student can simply click the HAND-RAISE button from

the ASSISTments tutor, which then requires that student to articulate a question;

this prompt not only helps the teacher in that the question can appear with the

notification on the LIVE-CHART student display, but it also helps students develop

the skill set to articulate questions when the material is confusing or difficult.

The teacher may decide to send a student’s question to a recommended peer (as

was performed in the vignette), in which case it is sent anonymously to the selected

peer as a message. The peer is notified of the question and is given several options

including the ability to accept (and would then subsequently write a response), but

will also include the ability to pass on the question if the solution is not known

or if the student is unwilling to answer the question at the given time; it seems

unreasonable to require a student to answer a peer’s question if he/she is unable

or for any other reason, supporting the inclusion of the option to pass. These and

additional options will be discussed with the Development Teachers to correspond

with identified use cases of interest.

8.3.2 Project Activities

The project is aimed to be developed using an iterative design process guided

through the communication and interaction with the Development Teachers through

the first two years of the grant. These teachers will play an integral role in develop-
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ing LIVE-CHART and HAND-RAISE to best augment their teaching strategies and

helping to promote positive help-seeking and responding behaviors amongst their

students. The vignette of Ms. Kelly interacting with her students in a hypotheti-

cal setting describes our initial design and use cases for the tool; as we described,

however, the behaviors for which a teacher is notified as well as the actions made

available to teachers will be selected and developed in a data-driven manner gained

through interactions and feedback from the Development Teachers.

While we describe the intended timeline for the project and participants in Sec-

tion C.2.a, we will provide greater detail as to the specific activities planned for

the 20 Development Teachers over five three-month stages spanning just beyond the

first year of the grant; the three-month timespan illustrates the intended short-term

feedback loop intended for the project to promote faster development cycles that

are able to effectively incorporate the information gained from the Development

Teachers.

Stage 1. Jan, Feb, Mar: The goal of this initial stage is to begin to learn the types

of behaviors that are most important to teachers as well as potential actions that can

be taken as a result of observed behavior. The development of the LIVE-CHART

tool, and subsequently HAND-RAISE, relies on teachers being able to effectively

take action to help students become more engaged in the classroom with these tools

helping teachers to recognize where such action is needed; this starts, however, with

teachers helping to identify cases that are most actionable as well as potential actions

that are likely to positively impact student confidence (e.g. being able to praise a

student, such as Getting it Grace in the vignette, for doing well, particularly after

struggling) as well as engagement (e.g. ensuring students, such as Gaming Ganji

and Bored Billy, are on-task and practicing positive learning strategies).

The Development Teachers will spend one hour each night of the week looking at
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the action-level clickstream data of their students and identifying what they would

address in that data and how they would take action. ASSISTments already provides

action-level reports to teachers, but we will provide an augmented version of such

a report to the development teachers that includes additional detectors of student

behavior (i.e. student gaming), and affective state (i.e. concentration, confusion,

frustration, and boredom) to provide teachers with a breadth of information. The

protocol that these teachers will be asked to follow is to be guided by a set of informal

prompts to help facilitate helpful feedback. Such prompts will include asking the

teacher “What, if anything, would you say to the student if he/she were present

after looking at the data?” and “Is there any instance where you would praise the

student for their work? Where?” as well as other such questions that will evolve as

we gain more information from teachers.

Stage 2. Apr, May, Jun: During the second stage, the Development Teachers

will continue to look at their students’ clickstream data and providing feedback on

a nightly basis to continually help inform the types of behaviors that 1) commonly

emerge, 2) are commonly identified as important, and 3) can be effectively addressed

through clear actions. The type of data displayed to teachers during this collection

process will be informed by their responses (particularly in response to the informal

prompts). Information such as whether or not a student looks bored, for example,

may not be as useful as other detectors of student behavior (or perhaps the reverse),

in which case we can learn how to prioritize and select the types of student data

on which to focus. It is important that LIVE-CHART, as intended as a real-time

notification tool, is developed to be very selective of the types of notifications sent

to teachers; it is important to not overwhelm the teacher with information about all

students (20 simultaneous notifications occurring each second is likely neither useful

nor practical for teachers), but also we do not want teachers to be constantly looking
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at their device and ignoring what is happening outside the tool in the classroom;

the tool should help provide information to teachers when it is most useful without

consuming their complete attention.

At this stage in the development of the tool, the interface by which we collect

data from teachers will also be updated to more closely resemble what will become

the student-level display of LIVE-CHART as illustrated in Figure 3. As it is through

such a display that teachers will be able to view and interpret recent student per-

formance through LIVE-CHART in the classroom, we will also ask for feedback

regarding the layout, type, and visualization of data to improve on how such data

is represented and displayed to teachers.

Stage 3. Jul, Aug, Sep: As most, if not all, Development Teachers will likely not

be using ASSISTments with students during summer months, they will be asked

to look at past student data to continue to regularly provide feedback during de-

velopment. By this stage, however, it is also the goal to provide the Development

Teachers with an initial version of LIVE-CHART. This initial version will be de-

signed to play back, in real time or at slightly faster speed, student data from a class

period from the previous academic year. In this way, the prototype will simulate a

real time classroom by playing back pre-recorded student log data and displaying

notifications to teachers as if they were present in the class.

Use of this prototype will help to gain feedback on the types and frequency of

student notifications through the system, the user interface, and will also be the first

chance that the teachers will be able to provide feedback on classroom-level data.

By looking at clickstream data of individual students, as was the case in the first two

stages, it is likely easy for teachers to find something that is worth addressing and

taking action within each student’s sequence of actions. By allowing the teacher to

select which students to address from a classroom display (and limiting the displayed

170



actions up to that instant of the simulated class period), we can learn not only which

types of notifications are important to teachers, but also when such notifications are

important; the temporal information is likely just as important to consider when

deciding what to present to teachers (e.g. it is likely unhelpful to notify a teacher

of a student behavior multiple times in a short time span, but perhaps there are

instances where this would be important).

Stage 4. Oct, Nov, Dec: The final stage of the first year of development is

aimed at improving the prototype version of LIVE-CHART to allow for real-time

functionality in real classrooms. Following the development cycle of stage 3 and

subsequently the feedback gained from the Development Teachers during that time,

it is the goal to provide such teachers with a version of the tool that can be used in

their real classrooms during the first half of the academic year. The Development

Teachers will be asked to use the prototype in their classrooms at least once per

week and continue to look at pre-recorded class periods as had been done in stage

3 on nights where the tool had not been used. We will ask the teachers to, on the

night following usage of the tool in their classrooms, follow the same procedure of

looking at and providing feedback for the tool using pre-recorded class periods, but

specifically replaying the class period where the tool had been used on the previous

day; this will allow the teacher to provide feedback on the usage of the tool in the

classroom, as it is unlikely that the teacher will have sufficient time during the class

period to do so.

Stage 5. Jan, Feb, Mar (year 2): It is the goal of development to produce an

initial version of the HAND-RAISE tool and begin implementing its functionality

within the ASSISTments tutor and LIVE-CHART by the end of this stage. As

the HAND-RAISE functionality is a focal point of the intervention described in

this project, while facilitated through the real time functionality of LIVE-CHART,
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it is important to allow teachers time to test the functionality and utility of the

tool in real classroom settings. The initial version will allow students to select

an option to raise their hands and articulate a question that is then sent to the

teacher’s LIVE-CHART display. Allowing the teacher to be able to address such

student questions is vital to the implementation of the intervention. Subsequent

development on additional functionality, such as allowing teachers to direct questions

to other students, is also planned to be implemented by the end of this stage. The

goal is to allow the Development Teachers the opportunity to use all aspects of the

tool and provide feedback on the usage (in addition to other design elements) before

evaluating the tool with the Pilot Teachers during the subsequent academic year.

Timeline for Participants

The timeline for the Development Teachers and Pilot teachers is illustrated by Fig-

ure 5 over the 3 year period of the grant. The timeline focuses early on the iterative

development of the system using feedback from the Development Teachers as de-

tailed in the previous section, while working toward the final pilot version of the

intervention to be deployed to the Pilot Teachers in Fall of 2020. The Pilot Teach-

ers will participate in several in-class live training/demonstration sessions that will

occur at the beginning and end of the final two full academic years as will be de-

tailed further in Section C.3. During the last academic year (2020-2021), the Pilot

teachers will use LIVE-CHART and HAND-RAISE in their classrooms, allowing for

final analyses and evaluation of the intervention during the final months of the grant

period.

Figure 5: The timeline for participants.
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8.3.3 Method of Evaluation

The evaluation of the HAND RAISE Intervention as delivered through the LIVE

CHART tool focuses on three overarching research questions in alignment with the

project’s goals: improving students’ confidence and skill in asking and articulating

questions, improving students’ confidence in answering questions of both the teacher

and those of their peers, and helping to prevent the decline of interest in STEM-

related fields that is observed between kindergarten and high school. We plan to

evaluate the effectiveness of the HAND-RAISE intervention along these three di-

mensions through the use of surveys and quantitative field observations collected in

Years 2 and 3 of the grant period. The next 3 sections detail this planned evaluation

process.

Does the HAND-RAISE Intervention build student confidence to ask

questions and diversify the students who do ask questions in the class-

room?

It is important for students to feel comfortable in their learning environment to ask

questions when they need more information, clarification, or further instruction to

complete their work. It is similarly important for students to build the skill set of

being able to effectively articulate their questions so that a teacher, instructor, or

even peer can address the problem; it often difficult to help a student who simply says

“I don’t get it” when asked to articulate a question about the material. Conversely,

however, we certainly do not want students to take advantage of the system as

is sometimes exhibited in the over-use of hints; asking too many questions may

be indicative of a student attempting to game the system, asking for help before

applying themselves to learning the assigned topic. It is for these reasons that

an integral aspect of HAND-RAISE is that it requires students to articulate their
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question when they use the tool; certainly some students will still give the “I don’t

get it” response, but then the teacher is equipped with the ability to require a

student to re-articulate the question before s/he addresses the problem. Similarly,

the teacher has control over what the resulting action is when a student uses HAND-

RAISE from the system; through LIVE-CHART, the teacher is able to use the

reported information to determine if the student is using the tool effectively and

respond accordingly by either speaking with the student, allowing another peer to

answer the question, ask the student to re-articulate their question, or even instruct

the student to try the problem before using the tool.

In order to evaluate the intervention on its effectiveness in improving student

question asking behavior, we will use quantitative field observations collected by

Dr. Kreisberg during a set of live in-class teacher trainings/demonstrations. Dr.

Kreisberg will, as part of the intended teacher trainings, attend each of the Pilot

Teachers’ classes at the beginning and end of the academic years coinciding with

years 2 and 3 of the grant. The teachers will be instructed beforehand to assign

a selected homework assignment through ASSISTments for the preceding night,

and Dr. Kreisberg will lead a homework review/discussion to demonstrate effective

practices. Dr. Kreisberg will be equipped with her own version of LIVE-CHART

for each classroom designed specifically for data collection. During this session,

Dr. Kreisberg will present the students with a poorly-formed question pertaining

to the content from their previous night’s homework, in that a necessary piece of

information will be omitted from the problem description; she will ask students to

spend a few minutes to solve the problem, and turn her attention to her tablet so as

to pretend not to see the hands that undoubtedly will begin to raise. Dr. Kreisberg

will use her version of LIVE-CHART to record the students who have raised their

hand and, after one minute to give students an opportunity to raise their hands,
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will call on a student and take their question (likely pertaining to the missing piece

of information).

In year 2, as the Pilot Teachers will not yet have used LIVE-CHART or HAND-

RAISE in their classroom, the collected observations of students who raise their

hands will act as a baseline measure of comparison for observations collected in year

3, but also will help indicate how hand raising behavior normally changes from the

beginning to the end of the school year. Observations will, again, be collected at the

beginning and end of each academic year to help control for differences in content

difficulty (when comparing across years) and observe changes in individual student

behavior (within student from the beginning to the end of each school year). The

collected observations will be used to determine if 1) the number of hand raises in the

classroom increase when students are faced with insufficiently-formed or confusing

problems and 2) if the diversity of students who raise their hands increases as a

result of the HAND-RAISE intervention.

Does the HAND-RAISE Intervention build student confidence to answer

questions of their teacher and peers and diversify the students who raise

their hands to answer questions in the classroom?

In addition to the ability to articulate questions, it is important for students to also

build confidence and be able to articulate answers to questions asked by a teacher

or a peer. It is important for students to feel comfortable in raising their hand to

answer a question when the solution is known as it helps the teacher properly assess

who understands the material as she is introducing new topics. The HAND-RAISE

tool addresses and attempts to build a base of confidence and skill set focused on

articulating answers through support of peer assistance. If the teacher chooses to

connect a student who has their hand raised as indicated through LIVE-CHART
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with another student (whether a starred student or otherwise), or if the teacher

has enabled the tool to automatically choose another student, this provides another

student the opportunity to address a peer’s question anonymously. The act of

helping another student on a topic where the helper has demonstrated understanding

of the topic is aimed at building confidence in not only solving problems, but actively

helping others to solve problems.

To evaluate the effectiveness of the HAND-RAISE Intervention in improving

students’ confidence and ability to articulate answers to questions, we will similarly

utilize quantitative field observations collected by Dr. Kreisberg during a set of live

in-class teacher trainings/demonstrations. As described in the previous section, Dr.

Kreisberg will go to the classrooms of the 25 Pilot Teachers at the beginning and

end of each academic year coinciding with years 2 and 3 of the grant. Again, she will

lead a homework review/discussion based on a known assignment given to students

as homework for the preceding night. From this assignment, Dr. Kreisberg will pre-

select a problem to use as an example during the review session. Dr. Kreisberg’s

LIVE-CHART tool, specialized to help in the collection of observations, will display

each student’s performance on the pre-selected problem on the classroom display

such that she is able to see which students answered the problem correctly; the

problem will be pre-selected based on difficulty in an effort to maximize the num-

ber of students who answered the problem correctly. With this information, Dr.

Kreisberg will display the problem to the class and ask which students can provide

a solution, prompting students to raise their hands. Dr. Kreisberg will then pause

to give students an opportunity to raise their hands to offer a solution and record

such students through her LIVE-CHART tool before then calling on a student and

proceeding. With the observations of which students raised their hands, a measure

of effectiveness can be calculated as a percentage of students who knew the solution
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(as indicated by which students answered the problem correctly on the homework

assignment) raised their hand to offer an answer.

This measure, as compared from year 2 without use of the HAND-RAISE and

LIVE-CHART tools to year 3 with such tools, and also from the beginning of each

academic year to the end of each academic year, will give an indication of how

student hand raising behavior for the purpose of answer questions is impacted by

use of such tools in the classroom. Similarly, the described metric (percentage

of students who know the answer that raise their hands) can be observed within

smaller subgroups of students to understand if there are heterogeneous effects across

students; specifically, as previous works have identified female and minority students

as being less likely to engage in classroom discussions and activities with the same

level of interest as some of their peers (Greenfield, 1997; Bernacki et al., 2016),

it is a goal of this project to improve not only the help-seeking behavior of such

students but also their level of engagement in answering questions during classroom

discussion.

Does the HAND-RAISE Intervention help to reduce the decline of inter-

est in STEM-related fields?

The decline of interest and motivation pertaining to STEM-related subjects from

kindergarten through high school has been well-studied and documented in the

United States (Alexander et al., 2012; Gottfried et al., 2009; Sorge, 2007; George,

2006) as well as internationally (Potvin & Hasni, 2014; OECD, 2006; Sjberg, &

Schreiner, 2005; Osborne and Dillon, 2008). Several explanations have been offered

to explain this decline as listed briefly in Section A, but it is likely that there is

no single cause, suggesting that there is likely no single “one size fits all” solution.

However, building better teacher-student and student-peer interactions, particularly
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in cases of help-seeking and answering behaviors, is a promising area to focus in

order to build confidence and increase student engagement in the classroom; through

such confidence and engagement, more opportunities arise to build student interest

in STEM. It is for this reason that the HAND-RAISE Intervention provides the

necessary tools to allow the teacher to help facilitate these types of interactions while

students are working in class and providing an environment aimed at supporting

student engagement and confidence when asking and answering questions.

It is the aim of this intervention to increase student engagement, confidence, and

interest in STEM-related subjects to reduce the widely-documented decline of such

constructs over the course of the school year. In order to measure and evaluate the

impact of the HAND-RAISE Intervention on student interest, particularly in that of

math as it is this project’s domain of focus, we will use a series of surveys given to the

students of the 25 Pilot Teachers over the course of the academic years coinciding

with years 2 and 3 of the grant. These surveys will help to gain a sense of each

student’s interest and perceived engagement toward math and STEM, their level of

confidence in raising their hands in class to ask and answer questions, and also their

sense of belonging amongst their peers in the classroom environment. We will derive

the relevant survey items from previously developed, studied, and validated sources

(Mahoney, 2010; Ostrow, 2018) and distribute the surveys to students through the

Pilot Teachers at the beginning and end of year 2, before use of the tool in the

classroom to measure the normal decline of these measures over a single school

year, and then at the beginning and end of year 3 to measure how the use of

HAND-RAISE in the classroom impacts each of these measures.

Similarly as is planned for the evaluation methods described in Sections C.3.a and

C.3.b, we will explore potential heterogeneous effects within subgroups of students.

Particularly, as larger declines of interest have been observed in female and minority
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students, we will focus on such students to measure any potential effects of the tool.

8.4 Broader Impacts

The development and deployment of the HAND-RAISE Intervention to real class-

room environments opens several opportunities to help develop better-informed

teacher interactions and support the development of positive help-seeking and question-

answer behaviors that have potential to expand beyond the use cases described in

this proposal. The development of such skill sets are vital to success in STEM-

related fields and can help foster better student achievement and engagement in

this educational subjects. By focussing on student behaviors and performance as it

occurs in the classroom, this project can take advantage of the opportunities made

possible through the use of computer-based learning platforms to lead to positive

impacts on student learning while helping prevent the decline of student interest in

STEM fields.

8.5 Intellectual merit

The proposed project will help us better understand how teacher-student interac-

tions and student help-seeking and question-answering behaviors impact engagement

and interest in STEM-related subjects.
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Part III

Understanding the Role of

Student Knowledge, Behavior, and

Affect in Productive Perseverance
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Chapter 9

Studying Affect Dynamics and

Chronometry Using Sensor-Free

Detectors

Botelho, A. F., Baker, R. S., Ocumpaugh, J., & Heffernan, N. T. (2018, July).

Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors. In Pro-

ceedings of the 11th International Conference on Educational Data Mining, 157-166.

Abstract

Student affect has been found to correlate with short- and long-term learn-

ing outcomes, including college attendance as well as interest and involvement

in Science, Technology, Engineering, and Mathematics (STEM) careers. How-

ever, there still remain significant questions about the processes by which af-

fect shifts and develops during the learning process. Much of this research can

be split into affect dynamics, the study of the temporal transitions between

affective states, and affective chronometry, the study of how an affect state

emerges and dissipates over time. Thus far, these affective processes have been
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primarily studied using field observations, sensors, or student self-report mea-

sures; however, these approaches can be coarse, and obtaining finer-grained

data produces challenges to data fidelity. Recent developments in sensor-free

detectors of student affect, utilizing only the data from student interactions

with a computer-based learning platform, open an opportunity to study affect

dynamics and chronometry at moment-to-moment levels of granularity. This

work presents a novel approach, applying sensor-free detectors to study these

two prominent problems in affective research.

9.1 Introduction

The various affective states experienced by students during learning have received

significant attention from the research community for their prominence in the learn-

ing process. Student affect has been shown to correlate with several measures of

student achievement [CGSG04][PBSP+14][RBJ+09], has been found to be predictive

of whether students attend college several years later [PBBH13], and also whether

students choose to take steps towards careers in Science, Technology, Engineering,

and Mathematics (STEM) fields [SPOBH14]. While significant steps have been

taken toward understanding the inter-relationships between of affect and learning,

there are many questions that remain unanswered with regard to how affect is exhib-

ited by students over time as well has how such temporal trends may be informative

of student learning outcomes.

The temporality of student affect has been characterized into two areas of study,

affect dynamics [SC74] and affective chronometry. Affect dynamics studies temporal

shifts in affect to understand which transitions between affective states are most

common. A theoretically-grounded model of affective dynamics has been proposed

by D’Mello and Graesser [DG12], which suggests a typical resolution cycle, where
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students transition from engaged concentration to surprise to confusion and back to

engaged concentration, but which also hypothesizes alternative transitions, including

a path from confusion to frustration and boredom.

Affective chronometry also uses temporal measures, but focuses more closely

upon how individual affective states (e.g., boredom) behave over time. This was first

studied as a special case of affective dynamics, where researchers investigated how

frequent it was for an affective state to transition to itself (aka “self-transitions”).

More recently, D’Mello and Graesser [DG11] proposed instead investigating an affec-

tive state’s “half life,” or the decay in the probability of an affective state persisting

for a specific duration of time. [DG11] found evidence that six affective states ex-

hibit exponential decay in their probability over time. That is, the probability that a

student remains in a particular state decreases exponentially as the amount of time

that the student persists in that state increases. However, engaged concentration

(referred to as flow) showed a much slower decay rate than other affective states

(e.g., frustration).

There is now a growing body of research in affective dynamics and affective

chronometry, commonly using field observations [RBA+11][GSR+11], or self-reports

accompanied by video data [BD13][DG11]. These important studies have helped

to advance the field, but each method imposes different kinds of limitations on the

grain-size of the data. Continuous observation is impractical both for self-report

and field observation studies, and it is highly time-consuming for video recording

(which can also break down when the student moves away from his or her desk,

either for off-task reasons or for on-task purposes like peer-tutoring or requesting

assistance). Despite the limitations of these methods, they have often been pre-

ferred to sensor-free detectors of affect due to higher reliability/quality of the data

obtained. However, recent advances in sensor-free detection of affect, based on deep
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learning methods, have substantially increased the quality of models [BBH17], mak-

ing interaction-based detectors a viable alternative. While these models are also

not without limitations, their improved performance provides an alternative that

facilitates near-continuous labeling at scale. As such, the recent advent of higher-

quality detectors introduce the opportunity to study affect dynamics and affective

chronometry with fine levels of granularity at scale.

In this paper, we present research studying affect dynamics and affective chronom-

etry with the use of deep learning sensor-free affect detectors. We report the affect

dynamics and chronometry for four commonly-studied affective states: engaged con-

centration [Csi90] (also referred to as engagement, flow, and equilibrium), boredom

[Csi90][Mis96], confusion [CGSG04][KRP01], and frustration [KRP01][PSC93]. We

investigate these relationships in the real-world learning of just under a thousand stu-

dents, and compare our findings to prominent foundational research [DG11][DG12].

9.2 Previous Work

The theoretical model of affective dynamics proposed by D’Mello and Graesser

[DG12] has become widely recognized in the study of affective state transitions.

The model proposes a set of theoretically hypothesized transitions that have emerged

through the study of student affect, as illustrated by the simplified representation of

the model in Figure 9.1. While the full model observes numerous affective states in-

cluding surprise and delight, we restrict the analysis in this paper to the key affective

states of engaged concentration, boredom, confusion, and frustration.

The model hypothesizes that specific transitions between affective states are

particularly common. In this model, a student commonly begins in a state of equi-

librium (i.e. flow or engaged concentration). The student remains in this state until
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Figure 9.1: The proposed theoretical model of affect dynamics as presented by
D’Mello and Graesser [DG12]

novelty or difficulty emerges, at which point the student may transition to confu-

sion. The student may transition back to engaged concentration by resolving this

confusion, possibly experiencing delight upon the way. Alternatively, the student

my transition from confusion to frustration, at which point the model suggests that

the student is unlikely to transition back to the more productive cycle of engaged

concentration and confusion; instead, the student is more likely to transition from

frustration to boredom. As such, while students may be expected to oscillate be-

tween certain adjacent states in the model, the model suggests that it is unlikely for

students to transition to unconnected states as depicted in Figure 9.1.

The model has been explored in several studies [RBA+12][DG10] observing differ-

ences in student affect, and has become influential to other research studying affect

dynamics in the context of other constructs such as gaming the system [RBA+11].

Other studies prior to the publication of this model also studied affective dynamics

[BRX07][RRMB+08]. While the specific affective states studied across these projects
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vary, the four affective states studied in this work are among the most commonly

observed in this area of research. However, work in other paradigms also exists; for

example, Redondo [Red16] attempted to identify when a student’s affect shifts from

increasingly positive to becoming more negative, or vice-versa, in self-report Likert

scale data, finding that unexpectedly positive or negative affect typically indicated a

shift in overall affective trajectory. However, she did not compare the prevalence of

turning points found to overall base rates of affect, or analyze the chronometry of the

sequences she studied. In general, across these papers, estimates of student affect

have been collected through a range of methodologies including, most commonly,

quantitative field observations (QFOs) [GSR+11][GRD+13][RBA+11][OAB+17], but

also through self-reports in conjunction with post-hoc judgements of recorded video

[BD13][BD17].

While there have been a large number of projects investigating affective dynam-

ics, there has been substantially less research pertaining to affective chronometry.

The study of affective chronometry is at times seen in affective dynamics papers.

Among the papers investigating affective dynamics, several studies, including that

of Baker, Rodrigo, and Xolocotzin [BRX07] have found that state self-transitions,

where the student is in the same affective state in one observation as in the previous

observation, were often statistically significantly more likely than chance. This sug-

gests that students in each state do tend to persist for at least the duration of the

time interval between observations (1 minute in that article); however, this paper

did not observe the chronometry beyond this interval. In foundational work in this

area, D’Mello and Graesser [DG11] investigated the duration of different affective

states, proposing a methodology with which to evaluate the “half-life,” or decay of

individual affective states experienced by students. Using a computer-based system

known as AutoTutor, the authors used a combination of self-reports of the students

186



and expert and peer judgments of student affect made using recorded video in or-

der to measure and evaluate the length of time students commonly remained in

each experienced affective state. However, that work was conducted on a relatively

small number of subjects working on AutoTutor in a lab setting, on a task not re-

lated to their studies. It is therefore unclear whether the findings obtained in that

context will generalize to data from a classroom environment where students are

working on authentic educational tasks. The same methodology for measurement

and evaluation of affective chronometry as presented in that work will be applied

here to understand and compare affective chronometry – however, instead of using

self-report, this project will utilize sensor-free detectors of affect applied to data

collected from real students working in classroom environments.

9.2.1 Detectors of Student Affect

We apply the sensor-free detectors of student affect previously described in Botelho

et al. [BBH17] to our data in order to study affective dynamics and chronometry.

We use the same data set in this work from which the training set originally used in

Botelho et al. [BBH17] was sampled, to ensure maximum validity of the detectors.

In applying the detectors to this data set, we determined that several minor adjust-

ments needed to be made to the detectors, so that the training data set was aligned

to the ground truth observations in a way that could be more easily applied to the

unlabeled data. We also reduced the number of features used as input to the model

building algorithm. The detectors were refit using this adjusted dataset and pro-

duced performance metrics comparable to the previous work (average AUC = .74,

average Cohen’s Kappa = 0.20).

As in Botelho et al. [BBH17], these sensor-free detectors were developed using

a long short term memory (LSTM) [HS97] network, a type of deep learning model
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designed for time series data. LSTM networks use a large number of learned pa-

rameters with internal memory that can model temporal trends within the data to

make estimates that are better informed by previous time steps within the series.

Although the initial training sample was imbalanced, the use of resampling did not

improve model performance, and a min-max estimate scaling was used instead. The

LSTM model is trained as a sequence-to-sequence model, meaning that it accepts

an entire sequence of time steps as input and produces a sequence of outputs. These

outputs are in the form of a sequence of estimates of the probability that each of

four affective states of engaged concentration, boredom, confusion, and frustration

are occurring at each 20-second time step, or “clip,” within the data. We use this

sequence of probabilities to study affective dynamics and chronometry – the details

of these analyses are provided in later sections. The LSTM model was found to pro-

duce cross-validated AUC values that substantially outperformed prior sensor-free

detectors, which had previously exhibited an average AUC = 0.66, developed using

older algorithms with the same dataset [OBG+14][WHH15]. In addition, LSTM

models are designed to exploit the temporal character of the data, suggesting that

they will be able to model temporal changes and transitions between affective state

better than a model that treats each 20-second clip of student behavior as an inde-

pendent sample.

9.3 Methodology

9.3.1 Dataset

The data1 used in this work is comprised of action-level student data collected

within the ASSISTments learning platform [HH14]. ASSISTments is a computer-

1The data used in this work is made available at http://tiny.cc/EDM2018 affectdata
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based learning system used daily by thousands of students in real classrooms (over

50,000 a year) and hosts primarily middle school math content. The system has

been used in several previous papers to study student affect, in many cases using

sensor-free detectors of student affect.

Within this paper, we utilize a dataset originally used to develop sensor-free

automated detectors of student affect. Detectors were originally developed using

data collected by conducting field observations of student affect as 838 students

used ASSISTments. 3,127 20-second field observations were collected in total, with

gaps between one and several minutes between observations of the same student.

For this paper, we analyze the entire data set of interaction for those 838 students on

the days when observation occurred, 48,276 20-second segments of student behavior

in total. We format the data in terms of 20-second segments of behavior in order

to use the sensor-free detectors of affect, which were developed at this grain size (in

line with the original field observations, which were conducted at the same grain

size). The original training data set was highly imbalanced, with approximately

82% of observations coded as engaged concentration, 10% coded as boredom, 4%

coded as confused, and 4% coded as frustration. This imbalance is consistent with

previous research on the prevalence of these affective categories in systems such as

ASSISTments.

The sensor-free LSTM detectors were applied to this dataset, providing an esti-

mate of the probability of each of the four observed affective states for each of the

20-second segments of behavior within the system. The ground-truth labels used in

model training are removed from this dataset and instead are replaced with the es-

timates produced by the sensor-free detectors. We replaced the ground-truth labels

with the detector outputs so that the data would be comparable across all of the

48,276 observations.
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9.3.2 Affect Dynamics

The estimates produced by the sensor-free detectors, when applied to the analysis

dataset, are used to observe which transitions between affective states are frequent

and statistically significantly more likely than chance. As is described in the previous

section, the model produces four continuous-valued estimates corresponding with

the 4 affective states of engaged concentration, boredom, confusion, and frustration.

However, these estimates must be discretized and reduced to a single label describing

the most likely affective state exhibited by the student at each time step. It is not

sufficient to simply conclude that the most probable affective state (e.g. the affective

state with the highest confidence) is the current affective state. For example, the

model may predict very small values for all four affective states.

Instead, we first select a threshold that indicates that a specific affective state

is likely occurring during a specific clip. We use a threshold of 0.5, defining a

value above this threshold to be indicative of the presence of that corresponding

affective state for the time step. 0.5 is a reasonable threshold as the detectors

were previously run through a min-max scaling of the model outputs to remove

majority class bias (cf. [BBH17]). However, there exists the possibility, as expressed

in the example above, that no estimate across the four affective states surpasses

this defined threshold. In such cases, a fifth “Neutral/Other” affective state is

introduced to represent that none of the affective states we are studying is occurring;

this state has been included in similar previous analyses of affect dynamics as well

([GSR+11][GRD+13][RRMB+08][RBA+12][BD17][DG11]). Conversely, it is possible

for more than one estimate across the four outputs to surpass the defined threshold.

In this unusual case (less than 1% of our data), no single affective state label can

be applied and this clip (and transitions from and to this clip) is omitted from the

subsequent analyses.
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Figure 9.2: The resulting positive and significant affect transitions as compared to
the D’Mello and Graesser [DG12] theoretical model.

Once all estimates have been classified as either a single affective state or the

neutral state, transitions between these states within each student are computed.

As in [DG12], we omit self-transitions where the student remains in their current

affective state; these are instead represented through affective chronometry (see next

section). We report D’Mello’s L [DTG12] as a measure of the commonality of each

possible transition from a source affective state to a destination affective state along

with a corresponding p-value denoting the probability of this frequency of transition

being obtained by chance. The D’Mello’s L metric can be interpreted in a similar

manner to Cohen’s kappa, describing the degree to which each transition is more (or

less) likely than would be expected according to the overall proportion of occurrence

of the destination affective state across all cases. Values of D’Mello’s L below zero

are less likely than chance; values above zero represent the percent more likely than

chance the finding is. In other words, a D’Mello’s L of 0.4 represents a transition

that occurs 40% more often than would be expected from the destination state’s

base rate. We compute statistical significance of these transitions using the method
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originally proposed in [DTG12] – D’Mello’s L is computed for each student and

transition, and then the set of transitions is compared to 0 using a one-sample two-

tailed t-test. Benjamini and Hochberg’s [BH95] correction is used to control for the

substantial number of statistical comparisons conducted.

9.3.3 Affective Chronometry

Our methodology for affective chronometry closely follows that of D’Mello and

Graesser [DG11], with whom we compare our findings. In their analysis, the rate

of decay was calculated as a probability of each state persisting over a 60-80 second

window, using affect labels aggregated across multiple observation methods includ-

ing the use of self-reports and both peer- and expert-observers. The probability

that each affective state persisted (i.e. Pr(Et = Et+20)) was computed for 20 second

intervals within that window.

The analysis in this paper uses the same discretized affect labels described in

the previous section, transforming a sequence of sets of four probabilities to a sin-

gle most-likely affective state per clip. The sequence of labels is broken into a

set of episodes of each affective state, where an episode describes a series of non-

transitioning affect that starts when the student transitions into the state and ends

when the student transitions out of the state. A cumulative sum of time, in seconds,

is calculated for each episode to measure how long each student remained in each

affective state. With this value, a probability that a state will persist beyond a

defined number of seconds can be calculated.

Due to the nature of our affect detection approach, persistence is estimated in

20 second intervals. At each interval, the probability that a student remains in each

current affective state is calculated for durations up to 300 seconds, or 5 minutes.

The resulting 16 probabilities (for durations of 0, 20, 40, ... , 300 seconds) can then
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be used to compare the rates of decay across each of the observed affective states.

9.4 Results

9.4.1 Observing Affect Dynamics

The affective state transitions, measured by D’Mello’s L, are reported in Table 9.1

with accompanying significance. Aside from those transitions that occur to/from

the neutral/other state, the most common significant transition appears to occur

between confusion and engaged concentration, followed by that of frustration to

engaged concentration. Contrary to the theoretical model proposed by D’Mello and

Graesser [DG12], significant transitions are found between engaged concentration

and boredom as well as from boredom to engaged concentration. The findings

suggest that students do not transition between these states through others as in

the proposed theoretical model, but can occur directly.

It is further illustrated in the table that no state is found to transition to con-

fusion more likely than chance, for which there are several possible explanations.

Confusion was the least-frequently detected state as estimated by the sensor-free

model (under 1.0% of the dataset). As such, it is likely that there simply were not

enough instances of detected confusion in the data to produce significant results,

possibly because the model had difficulty detecting confusion, contributing to an

under-sampling of this state as estimated by the model.

These positive and significant transitions as identified by Table 9.1 are illustrated

in Figure 9.2 for better comparison to the theoretical model depicted in Figure 9.1.

Not only do the already-identified transitions become clearer, the number of tran-

sitions occurring to and from the neutral/other state, listed simply as “no label” in

that figure, are also made prominent. As described in the generation of this fifth
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state, this represents those estimates where no model estimates across the four af-

fective states exceeded the defined threshold. It is important to note that this state

may not be a single state at all, but rather comprehensively represents all other

affective states exhibited by students that are not observed in the analysis. As such,

it is difficult to make meaningful claims or draw significant conclusions regarding

transitions occurring to or from this state.

The divergence of the emerging transitions and the theoretical model indicate

that there are fewer oscillations that are detected by the machine-learned method.

While not included in the theoretical model, D’Mello and Graesser propose in the

same work [DG12] that oscillations can occur between all adjacent affective states

within the graph under certain conditions, but that is certainly not the case as seen

in Figure 9.2 gained from the empirical results of this work. This suggests that

the learned model finds that students do not commonly transition back and forth

between states such as confusion and frustration as often as hypothesized by the

theoretical model, but no other such cases emerge.

9.4.2 Observing Affective Chronometry

The results of our affective chronometry analysis illustrate the length of time stu-

dents commonly spend in each affective state before transitioning to either another

observed state or the neutral/other state. The results of this analysis, depicted

in Figure 9.3, show notable differences in affective half-life between affective states.

Engaged concentration and boredom exhibit much more gradual declines as opposed

to both confusion and frustration which both exhibit steep and rapid decay. Just

as was done in the previous work of D’Mello and Graesser [DG11], the decay can be

quantified by fitting an exponential function to each of the observed states. Again,

as the neutral/other state may comprehensively represent multiple states that are
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Figure 9.3: The probability of a student persisting in each affective state over time.

not measured in this work, this state is not included in the analyses of affective

chronometry; if included, the results may simply illustrate an average decay over

non-included affective states.

The value of decay for each state, as calculated by fitting an exponential curve to

each states probability of persisting (Pr(No Change)) over time. Engaged concen-

tration (decay = -0.003) and boredom (decay = -0.004) are found to have similarly

gradual decay as compared to that of the remaining two states. Frustration (de-

cay = -0.01) and confusion (decay = -0.024) are found to decay significantly faster.

Of the studied states, only confusion is found to fail to persist past 5 minutes.

While the affective decay of engaged concentration, boredom, and frustration

follow the general trend found by the work of D’Mello and Graesser in previous

work [DG11], confusion deviates from this alignment. This difference is illustrated by

Figures 9.4 and 9.5. Figure 9.4 illustrates the plotted exponential fit lines that were

learned from the estimates produced by the sensor-free detectors. For comparison,

Figure 9.5 illustrates the plotted exponential decay, as reported in Table 1 of D’Mello

and Graesser [DG11]. From this, it becomes apparent that confusion is found to
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exhibit similar decay patterns to that of engaged concentration and boredom, being

more gradual over time, than that of frustration.

The other distinctive difference that emerges from the comparison of Figures 9.4 and 9.5

is that of the average time for decay across all affective states. This suggests that

the average time that students remain in any affective state, as determined by the

sensor-free model, is consistently longer than those found in D’Mello and Graesser

[DG11]. The previous work reports that students rarely remained in a single state

for longer than 60 seconds, and, following the learned exponential curve in Fig-

ure 9.5, no state seems to persist beyond 3 minutes, with most states reaching a

probability of persisting close to 0 long before that time point. In comparison, each

of the affective states, with the exception of confusion, are found to persist past the

5 minute time point, with engaged concentration and boredom seemingly persisting

significantly beyond this point. Even in considering the 60 second timeframe, the

fastest decaying state of confusion exhibits students persisting beyond this interval.

The divergence of the decay rates as exhibited by the estimates of the sensor-

free model and those of the empirical findings reported in [DG11] may be due to a

combination of differences between the two works. One possible explanation is the

difference in learning contexts and the different learning interactions being studied

in each of the two works. In this work, for example, the students comprising the

dataset were in a classroom environment interacting with the computer-based system

of ASSISTments. The previous study reported by [DG11], had students interacting

with different software, namely that of AutoTutor, and also took place in a controlled

lab setting. The domain of study also exhibits differences in that the students

in AutoTutor were answering questions pertaining to computer literacy that are

described as requiring students to answer in several sentences. The students using

ASSISTments, however, were middle school students working on math content. The
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Figure 9.4: The plotted exponential decay of each affective state as estimated by
the sensor-free affect detectors.

differences between both the content and the environment could have a distinct effect

on the states of affect exhibited by students as well as the length of time students

persist in each affective state.

9.5 Discussion and Future Work

The current work presents, to the knowledge of the authors, the first application

of sensor-free affect detectors to study affect dynamics and affective chronometry.

In studying affective dynamics, we can compare our results to a past theoretical

model of affect dynamics proposed by D’Mello and Graesser [DG12], as well as

other past empirical work. In affective chronometry, we can compare our results

to past work [DG11], also by D’Mello and Graesser. The resulting model of affect

dynamics produced by the application of sensor-free detectors shares little with the

theorized model in regard to the significant transitions that emerged. Most notably,

our model suggests oscillations between engaged concentration and boredom which
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Figure 9.5: The plotted exponential decay of each affective state as reported in
Table 1 of D’Mello and Graesser [DG11]

are hypothesized not to occur significantly in the theorized model; it has been found

in other empirical work, however, that transitions between engaged concentration

and boredom do appear [BD13][BD17]. The model of affective chronometry finds a

similar pattern to D’Mello and Graesser in terms of which affective states are shorter

and longer, but we find that all affective states last longer in our data set than in

their previous work.

The application of sensor-free detectors to the study of student affect provides

the opportunity to study how such affect is exhibited in students at greater scale

and at second-by-second levels of granularity. In addition, automated detectors are

a less intrusive method of data collection than more traditional methods. As the de-

tectors utilize only data recorded from computer-based systems, they can estimate

a student’s affective state without interrupting their work, as can be the case with

self-reporting methods, and does not hold a risk of observer effects where students

change their behavior due to the presence of a human coder. The method also does
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not require the use of additional technology such as physical and physiological sen-

sors that may be difficult to deploy in classrooms at scale. Given the greater scale

facilitated by automated affect detectors, future research may be able to study not

just overall affective dynamics and chronometry but how dynamics and chronometry

vary between different activities, different student populations, and even at differ-

ent times of day. The better understanding of affective dynamics and chronometry

that this may afford may have several benefits. Understanding a system’s affec-

tive dynamics may be useful for encouraging positive transitions and suppressing

negative transitions. Understanding affective chronometry may help us understand

when negative emotion is problematic. Although some confusion is associated with

positive learning outcomes [LDG12], extended confusion is associated with worse

student performance [LPOB13]. Understanding whether a student’s confusion or

frustration lasts longer than the expected duration may indicate that a student is

struggling and is in need of intervention.

As the scale of the application of automated detectors increases for the study of

affective dynamics, the means of evaluating common transitions will likely need to

evolve as well. After a certain data set size, all transitions will become significant.

Even in this paper, with a relatively limited data set, fairly low values of D’Mello’s

L reached statistical significance. Future work may need to explore new methods of

identifying and evaluating affect dynamics, perhaps by simply exploring reasonable

means of leveraging D’Mello’s L as a measure of magnitude to identify meaningfully

frequent links, not just those that are simply statistically significantly more likely

than chance.

There are potential limitations to the current work that may be addressed by

future research in this area. First, while the sensor-free detectors used in this work,

as presented in [BBH17], exhibit significantly superior performance to previous de-
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veloped detectors with regard to AUC, improving the performance of these models

further may help to improve transition and chronometry estimates, particularly of

the less common labels of confusion and frustration. Utilizing methods to supple-

ment less-frequently occurring labels of student affect (though the common method

of resampling did not, in fact, enhance these detectors) or utilizing unlabeled data

to better inform model estimates through co-training may improve model perfor-

mance and produce more accurate measurements of affect dynamics and affective

chronometry. It also may make sense to use different confidence thresholds for dif-

ferent affective states to adjust for the differences in the conservatism of different

detectors that emerge from having different base rates.

Although consisting of a small portion of the data used in this work, the analyses

did not include cases of co-occurring labels as estimated by the model. The estimates

produced by the sensor-free detectors, even when the ground truth labels used to

train such detectors did not observe co-occuring affective states themselves, is able

to produce such cases, providing the opportunity to observe such cases in future

work. Identifying which states are likely to co-occur, as well as include such cases

in analyses of state transitions and affect state decay, will help to gain a better

understanding of the relationships between affective states as well as to student

performance.

A final opportunity for future work is in regard to observing affect dynamics

and chronometry in experimental settings, as in the case of randomized controlled

trials (RCTs). Several works have used analyses of state transitions to observe

differences in affect exhibited between experimental conditions [RBA+12][DG10].

As the training set used to develop affect detectors does not contain experiment

data, it is at this time uncertain if they generalize to behaviors exhibited outside

of normal usage of the learning platform. Future work can observe how well such
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detectors generalize to such populations of users and samples.
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Table 9.1: The transitions between affective states. D’Mello’s L values are shown.
Transitions that are statistically significantly more likely than chance, after Ben-
jamini and Hochberg’s post-hoc correction, are denoted *.

From State To State D’Mello’s L p-value

Engaged
Concentration Engaged Concentration — —

Boredom 0.260* ¡0.001
Confusion 0.004 0.136
Frustration -0.12* 0.012
Neutral/Other 0.481* ¡0.001

Boredom Engaged Concentration 0.194* ¡0.001
Boredom — —
Confusion -0.004 0.208
Frustration 0.036* ¡0.001
Neutral/Other 0.235* ¡0.001

Confusion Engaged Concentration 0.341* 0.006
Boredom -0.127* ¡0.001
Confusion — —
Frustration -0.026* 0.001
Neutral/Other -0.156 0.157

Frustration Engaged Concentration 0.279* ¡0.001
Boredom -0.107* ¡0.001
Confusion 0.008 0.391
Frustration — —
Neutral/Other 0.279* ¡0.001

Neutral/Other Engaged Concentration 0.753* ¡0.001
Boredom -0.057* ¡0.001
Confusion 0.003 0.302
Frustration 0.015* 0.007
Neutral/Other — —
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Chapter 10

Refusing to Try: Characterizing

Early Stopout on Student

Assignments

Botelho, A. F., Varatharaj, A., VanInwegen, E., & Heffernan, N. T. (2019, March).

Refusing to Try: Characterizing Early Stopout on Student Assignments. In Pro-

ceedings of the 9th International Conference on Learning Analytics and Knowledge,

391-400. ACM.

Abstract

A prominent issue faced by the education research community is that of

student attrition. While large research efforts have been devoted to studying

course-level attrition, widely referred to as dropout, less research has been fo-

cused on finer-grained assignment-level attrition commonly observed in K-12

classrooms. This later instantiation of attrition, referred to in this paper as

“stopout,” is characterized by students failing to complete their assigned work,

but the cause of such behavior are not often known. This becomes a large

203



problem for educators and developers of learning platforms as students who

give up on assignments early are missing opportunities to learn and practice

the material which may affect future performance on related topics; simi-

larly, it is difficult for researchers to develop, and subsequently difficult for

computer-based systems to deploy interventions aimed at promoting produc-

tive persistence once a student has ceased interaction with the software. This

difficulty highlights the importance to understand and identify early signs of

stopout behavior in order to provide aid to students preemptively to promote

productive persistence in their learning. While many cases of student stopout

may be attributable to gaps in student knowledge and indicative of strug-

gle, student attributes such as grit and persistence may be further affected

by other factors. This work focuses on identifying different forms of stopout

behavior in the context of middle school math by observing student behav-

iors at the sub-problem level. We find that students exhibit disproportionate

stopout on the first problem of their assignments in comparison to stopout on

subsequent problems, identifying a behavior that we call “refusal,” and use

the emerging patterns of student activity to better understand the potential

causes underlying stopout behavior early in an assignment.

10.1 Introduction

Persistence is an essential factor of student learning as it is important for students

to have the opportunity to work through problems and apply deliberate practice,

particularly when exhibiting early struggle when learning new material. The study

of this construct of learning has led to research into such student attributes as grit

[DPMK07], perseverance [PS+04], as well as other representations of high student

persistence such as academic tenacity [DWC14], productive struggle [War15], and
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productive failure [Kap08]. All of these theories of learning recognize that persis-

tence is necessary in order for students to effectively overcome difficulties faced when

learning new material. It is similarly understood that the lack of persistence can

deprive students of the opportunity to effectively learn new and difficult material

which may then propagate to affect the students’ ability to learn subsequent post-

requisite content. It is important, therefore, to ensure that students are able to

take advantage of practice opportunities when they will be productive for learning

and identify struggling students early to provide them with the help they need to

succeed.

While not all representations of persistence are productive, such as the case of

wheel spinning behavior (e.g. see [BG13]), it is often beneficial for students to exhibit

high persistence during early learning opportunities. In this way, early student

attrition becomes a significant problem for instructors and learning platforms as it

is difficult to develop and deploy learning interventions and provide aid to students

who cease interaction with the course or learning software. Not all student attrition,

however, is exhibited in the same way and can emerge at varying levels of granularity.

With the emergence of massive open online courses (MOOCs), attrition in the

form of student dropout has received a large amount of attention and research. The

reasoning for which a student exhibits dropout, characterized as ceasing interac-

tion with or explicitly leaving a course, has also been a well-studied problem within

MOOCs [CRK15][XCSM16][YSAR13][RCY+14][LSHR15] as such courses often ob-

serve high attrition rates. Although dropout of this nature is not commonly observed

in K-12 classrooms, attrition is still a prominent problem within this context and has

received significantly less attention and research focus in previous years. Particu-

larly as more classrooms begin to utilize computer-based learning platforms to assign

classwork and homework, supplement instruction, and provide aid to students, there

205



are new opportunities to study student attrition at fine granular levels.

In the context of K-12 classrooms, it is common to observe student attrition at

the assignment-level, where students begin an assignment but fail or choose not to

complete the assigned work. This behavior, which we call “stopout,” is distinctly

different from the course-level dropout that is observed in MOOCs as students likely

return to work on subsequent assignments; the student remains in the course, but

did not finish the assigned work. Similar to the study of dropout, the reasoning

for stopout behavior is not often known, but observing the immediate prior action

that a student takes before stopout occurs within a given assignment may help to

provide insight into the cause of the behavior. A student who exhibits stopout early

in an assignment may do so for different reasons than a student who exhibits the

behavior after attempting several problems, or learning opportunities as they will

be referred in this work.

10.1.1 Student Refusal

In order to provide sufficient context for the goals and motivation of the current

work, we must first describe a student behavior that emerged during a previous

unpublished analysis of student stopout on a per-problem level conducted in 2015;

this analysis is repeated here and will be described with greater detail in Section

4.2.

In observing when stopout occurs within student assignments, what quickly be-

came apparent was that there seemed to be a disproportionate number of students

exhibiting stopout on the first learning opportunity. Assuming that there would

be a reasonably consistent failure rate over each opportunity, we found that stu-

dent stopout by opportunity followed an exponential, or more specifically, Weibull

distribution as is commonly observed in survival analyses [MM94]. However, while
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Figure 10.1: The flowchart of possible student actions resulting in either quitting
(refusal or stopout) or mastery of the assignment.

most of the data followed this trend, the number of students exhibiting the behav-

ior on the first opportunity was nearly double what would be expected by the fit

exponential curve, as will also be demonstrated by Figure 10.4 in Section 4.2.

This behavior, which we call “refusal” was first used to identify problematic con-

tent within the learning system in which it was discovered, and is explored further

in this work in an effort to better understand student interactions with the learn-

ing platform that may be indicative of early stopout behavior. The goal of this

work is to explore the student actions associated with stopout and refusal behav-

ior to better understand the potential causes of assignment-level student attrition

within a computer-based learning platform. As students who exhibit refusal stop

out of their assignments with little-to-no recorded interactions, it is these students

who are arguably most important to identify in order to develop effective learning

interventions to address any potential causes of this unproductive behavior.

In this research, we conduct a set of fine-grained analyses to determine the

frequency of stopout as it correlates to the to the estimated knowledge level of each

student in conjunction with the specific actions taken within the system immediately
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prior to their stopout. We also then extend these analyses to include the dataset

collected by Lang et al. [LHOW15] wherein they study the role of confidence on

student learning using self-report surveys in a randomized controlled trial.

We seek to show in this paper that:

1. Student stopout after the first problem can be stochastically modelled as an

exponential decay, but that this model fails to account for roughly half of the

stopout that occurs on the first problem.

2. Specific actions (immediately prior to stopout) by students correlate with dif-

ferent patterns of stopout over time.

3. High stopout on the first problem correlates to low levels of self-reported con-

fidence.

10.2 Background

The study of stopout in computer-based systems has largely focused on MOOCs in

recognition of the often large attrition rates experienced by such courses. While the

actions available to students in such courses often makes for feature-rich datasets

with which to study attrition, the dropout behavior exhibited within such systems

tend to observe contextual factors including the attitude of the student [CRK15],

the estimated knowledge level of the student [KH15] combined with the effort ex-

hibited by the student [YSAR13], as well as several other contextual factors such as

technology, time management [WJ09], and other social factors [RCY+14].

Within these, however, it becomes clear that stopout behavior is not random

but is seemingly motivated by more internal factors than external. The student is

ultimately making the choice to dropout or stopout; many times, this is predictively
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so [SS14], supporting the need to further understand why attrition occurs.

The problem of student stopout, however, is more prominent in K-12 classrooms

than that of dropout experienced more in MOOC settings. In many cases, students

choose to enroll in MOOCs, and can easily dropout due to a host of reasons briefly

described above with little consequence. The problem of stopout in younger students

is much more associated with a lack of persistence or motivation at an assignment-

level rather than at the course-level.

The more general study of student persistence has led to a large amount of re-

search exploring various aspects of the construct. Connotatively, persistence is often

associated with positive learning behaviors, but in reality observes both beneficial

and adverse effects depending on the context of which it is exhibited. It is intuitive

that persistence can be beneficial when paired with productive learning behaviors,

where learning occurs over time by making errors or receiving help. The productiv-

ity of persistence and perseverance is sometimes described by the construct of “grit”

[DPMK07].

However, persistence may also be unproductive, as is the case of “wheel spinning”

[BG13][GB15]. Wheel spinning describes the case when students attempt multiple

problems but struggle to learn the material; this is analogous to a car that is stuck

in mud or snow that “spins its wheels” but makes little to no progress. In such

cases, stopout is sometimes encouraged as a more productive action, so long as the

student takes such an opportunity to seek help from an instructor or parent.

In this work, we examine student behaviors that suggest a lack of persistence,

i.e. when students stopout early in the assignment. While stopout may be en-

couraged in very select scenarios, as in the case of wheel spinning, it is generally

considered a negative learning behavior as students lose the opportunity to learn

through additional practice opportunities.
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10.3 Dataset

The dataset used in this work consists of student log data collected as real students

work in ASSISTments [HH14][RFMM16], a web-based learning platform aimed at

supporting teachers and providing students with immediate correctness feedback

on homework and classwork. The system hosts content across K-12 grade levels

and even some college content, but is focused largely on middle school math con-

tent. Within the system, teachers can use the content provided by the system or

create their own to assign to their students. The data used in this work is com-

prised mastery-based assignments, referred to as “skill builders” within the system.

These skill builders usually give students isomorphic questions (generated from one

or closely related templates) that have been previously generated, but randomly

presented to the students; templates and questions are tightly associated in a single

skill or sub-skill. Since the problems that student see are randomly selected from a

large pool, we examine data not per problem, but rather per opportunity - i.e. the

first problem a student sees is opportunity 1, the second is opportunity 2, etc.

Within the ASSISTments system, after opening a given problem, students can

either submit an answer (and will receive instant correctness feedback), or they may

use a help feature, such as requesting a hint. Hints (the most common type of help in

this dataset) are usually written as some version of a complete worked out solution,

often broken into pieces; the last hint (colloquially referred to as the bottom-out

hint) gives the answer to the problem. If a student enters an incorrect answer (or

requests a hint), they may then enter any number of attempts and use as many or

as few of the hints as needed; the student must enter the correct answer before they

are able to proceed to the next question. In order to successfully complete a Skill

Builder, a student must enter the correct answer on the first attempt, using no help
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Figure 10.2: The frequency of student stopout by learning opportunity. Stopout
on the first opportunity appears to be disproportionately larger than subsequent
opportunities.

features, three times in a row.

Thus, at any given moment, a student can be said to be in one of three mutu-

ally exclusive conditions: Quit (either refusal or stopout), Working, or Mastery, as

illustrated by Figure 10.1. The primary dataset in this analysis was taken from a

previous school year; we also used the dataset from [LHOW15], which also comes

from a prior academic year. Thus, when looking at the datasets, students have

either attained mastery or have quit.

As we examine the behavior of students who have quit, we also note the action

taken immediately prior to quitting. In ASSISTments, there are four possible ac-

tions a student may take before quitting a Skill Builder: they may have Opened an

Opportunity (but have done nothing else), entered a Correct Attempt, entered an

Incorrect Attempt, or made a Help Request. In this analysis, we make no differen-

tiation of whether the help requested gave an initial step in the solution or the final

answer.

In this paper, we will use the term stopout to refer to any student who leaves
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(and never returns to) an unfinished assignment. Furthermore, for reasons discussed

below, we refer to one specific type of stopout as refusal - that is, students who quit

an assignment having only opened the first problem, without using any hint features

or entering an attempt to answer it.

The data used in this work uses data from the 2016-2017 academic year and

includes information recorded from 3,641 distinct students who exhibited stopout on

skill builder assignments. Each row of the dataset corresponds to a single assignment

attempted by a student. As this work is studying only those who exhibited stopout,

students who complete each assignment are not included in the data or analyses.

In an effort to remove cases where the completion of an assignment may have been

optional, only assignments that had been started by at least 10 students and have

an overall completion rate higher than 75% were considered for the analyses.

A second dataset, described further in Section 4.4, was also used to observed the

relationship between stopout behavior and student confidence. This data consists

of students interacting with the ASSISTments learning platform for a randomized

controlled trial studying student confidence [LHOW15]. From the dataset used in

that work, we extracted all students from the treatment condition (e.g. the students

who received a confidence survey prior to beginning their assignment) who exhibited

stopout during the assignment; this excludes any student who stopped out on the

initial survey as well as students who finished the survey but did not begin the

first non-survey problem of the assignment. The resulting dataset used in this work

consists of 438 distinct students who exhibited stopout.
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Figure 10.3: The exponential curve fit to stopout on the first ten learning opportu-
nities. The line is a poor fit seemingly due to stopout on the first item.

10.4 Methodology

10.4.1 Characterizing Early Stopout and Refusal

It is important to clarify, before describing our analyses, how we have defined stopout

within the data. In any sense, just as it has been described in earlier sections, stopout

is exhibited when a student begins an assignment and fails or refuses to finish that

assignment. It follows, then, that students who never begin an assignment did not

exhibit stopout and are therefore not included in our data or analyses1. It is found

that when students do stopout, however, it occurs after four distinct kinds of actions

taken in the system. Students stopout either during a problem, or exhibit stopout

after completing a problem but before progressing to the subsequent problem; in this

later case, the student managed to enter the correct answer, but stopped out before

seeing the next problem. In such a case, we mark the student as stopping out on the

following opportunity. For example, if the student enters the correct answer to the

first problem, or opportunity, but does not begin the second problem, that student

is said to have stopped out on the second opportunity as the first problem was

1Although we would have preferred to include these students in our analyses, given the variety
of grading policies of individual teachers we would be unable to determine how many students
were required to complete an assignment, but never even opened it. We can state for certain how
many students opened the assignment and failed to complete it; we cannot state for certain how
many students should have opened the assignment, but did not.
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Figure 10.4: The exponential curve fit to stopout on opportunities 2 through 10,
extended to show predicted stopout on the first problem.

sufficiently completed. When students stopout during a problem, before entering

the correct response, those students are said to have stopped out on that learning

opportunity (e.g. the student opens the first problem makes an incorrect attempt,

or even no attempt, and then stops out is defined as the student stopping out on

the first opportunity).

In order to better understand the behavior associated with stopout on skill

builder assignments, it is important to first understand how stopout is exhibited

independent of students and assignments. As was introduced in Section 1.1, we

can explore this by simply observing the trends of stopout over all student assign-

ments in the data. We first observe the distribution of where stopout occurs in an

assignment by plotting the frequency of stopout by opportunity, as illustrated in

Figure 10.2. Again, as introduced in Section 1.1, it is clear that there is a large

number of students who stopout on the first, and subsequently the the eleventh

opportunities; this observed spike on the eleventh opportunity can be attributed to

students reaching the “daily limit” within the system which stops students who have

not completed the assignment by the tenth opportunity, suggesting that they seek

help and return to complete the subsequent day (e.g. to help prevent wheel spin-

ning behavior). While the increased stopout observed on the eleventh opportunity

to students who do not return after reaching the daily limit, no such reasoning can

easily be given to explain the increased stopout observed on the first opportunity.
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While visually it appears that there is disproportionate stopout on the first

item as compared to subsequent opportunities, we first attempt to show this by

exploring the modeling of stopout by opportunity. As the distribution appears to

fit an exponential decay function, we fit two such curves to compare the goodness

of model fit. We first fit an exponential curve to opportunities 1 through 10, as seen

in Figure 10.3. We compare this model to another exponential curve that uses just

opportunities 2 through 10, as seen in Figure 10.4. The comparison of these two

models shows that there is disproportionate stopout that occurs on the first item.

The R-squared values confirm this, with the first model exhibiting an R-squared

value of .816 calculated over opportunities 2 through 10, and the second model

exhibiting an R-squared value of .991 calculated over the same range. The model

using just opportunities 2 through 10 fit an exponential curve nearly perfectly to

the real data, illustrating where the expected stopout on the first opportunity is if

it were to follow the same trend; in this regard, over twice as many students stopout

on the first item as expected (an estimated 1,371 as compared to the observed 3,076

students). The observed difference between the expected and the observed number

of students exhibiting stopout on the first learning opportunity is hypothesized

to describe the estimated number of students exhibiting refusal as introduced in

Section 1.1.

It is for this reason that it becomes even more pertinent to understand what

causes so many students to exhibit refusal, as they stopout before even trying to

learn the material. From this alone, it is unclear if students are exhibiting refusal

due to a lack of knowledge or confidence, or if other behaviors are the cause, such

as those associated with frustration or boredom. The analyses described in the next

section, while non-causal, will help to provide insight into the behaviors associated

with student stopout.
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10.4.2 Categorizing Stopout Behavior

While the previous analysis observed stopout across all students, we further explore

the behaviors associated with stopout for each student assignment. As described,

there are several student level factors that may affect how the behavior is interpreted.

For example, an estimated higher knowledge student who stops out on the first item

without taking any action is likely to do so for different reasons than an estimated

lower knowledge student with the same recorded activity; in the first sense, it may

be boredom that causes the student to stop out after determining he/she is already

comfortable with the material, while the later student may stopout due to low

confidence in their ability to solve. It is likely that students cannot be dichotomized

so cleanly, where a higher knowledge student stops out due to low confidence, but the

analysis presented here will act as an initial step toward identifying these potential

causes.

We use one student-level and 4 action-level covariates to group students by their

last recorded activity before exhibiting stopout for each assignment. As the same

student may stopout on different assignments for varying reasons, each student-

assignment is treated as a separate sample, with grouping performed at the assign-

ment level.

At the student-level, we estimate student knowledge based on the percent of cor-

rectly answered items attempted before beginning the observed assignment. This

estimate will help to identify students who commonly answer problems correctly

from those who often struggle to learn new material. As this covariate exhibits a

positive skew, the value is squared to produce a more normal distribution repre-

senting estimated student knowledge. This transformed prior percent correct for

each student will be used in subsequent analyses and referred to simply as prior

correctness for simplicity.
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The action-level covariates used in this work describe the last action recorded

by the system for each student in each assignment. As all students in the dataset

exhibited stopout, this represents the last activity taken by the student before stop-

ping out of the assignment. Each action is represented as a binary value, and is

limited to just the last action taken by the student. These actions are as follows:

• Opened Problem - denoting that the student opened the problem but made

no subsequent action.

• Correct Attempt - the student entered a correct response to complete the

problem, but did not progress to the subsequent problem.

• Help Request - the student requested an on-demand hint or scaffolded ques-

tion, but made no further attempt to answer the problem.

• Incorrect Attempt - the student entered a response but the answer was incor-

rect.

We group students by their prior correctness and last recorded action using k-

means clustering to gain an understanding of the different behaviors that emerge

associated with student stopout. Determining the correct value of k in this type of

analysis is important to the interpretability of the results. We determine this value

using a short grid-search using different values of k between 2 and 15 and observing

the variance of within-sum of squares between the emerging clusters similar to a

skree plot used in principal component analysis. From this step, a value of 6 is

determined to best partition the data; values 5 and 7 were additionally explored,

but did not lead to large differences in interpretation, further supporting the usage

of 6 groups to summarize the data.
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Figure 10.5: The resulting clusters of student prior correctness and last action per-
taining to student stopout.

10.4.3 Stopout Behavior by Opportunity

Once student assignments have been grouped into the 6 clusters described in the

previous section, we can further identify how the behaviors associated with stopout

change with the opportunity. As we observe differential dropout on the first learn-

ing opportunity as compared with subsequent opportunities, we are hoping to ob-

serve differences in behaviors across learning opportunities to help explain this phe-

nomenon. By observing how the distribution of the clusters changes with each

learning opportunity, we can gain an understanding of which behaviors, if any, oc-

cur most on the first opportunity as compared to subsequent opportunities.

We limit our analysis to just the first three learning opportunities. As the number

of students present decreases with each opportunity due to stopout, the number of

students on later opportunities makes it difficult to make fair comparisons to earlier

problems that are better represented by higher numbers of students. Additionally, as

students know the threshold of completion being three consecutive correct responses,

observing the first three opportunities highlights those students who exhibit the

lowest persistence, stopping out on or before the earliest problem of which the

assignment can be completed.
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The distribution of the clusters is observed, filtering to include those who stopout

on the first, second, and third opportunities and visualizing how this distribution

changes. As fewer students are available for each opportunity, a proportional dis-

tribution is used by dividing the number of students included in each cluster by the

total number of students who exhibit stopout at each respective opportunity.

10.4.4 Observing Student Confidence

Just as is the case with stopout behavior as a whole, refusal likely occurs as a result of

many factors. In this work, however, we focus on exploring the relationship between

two such possible factors with refusal behavior: lack of knowledge and confidence.

As detailed in the description of our cluster analysis, we use prior correctness as

an indicator of how well the student is expected to know the material; students

who perform well on prior material often exhibit comparatively high performance

on subsequent content as the student has demonstrated knowledge of foundational

material. In this way, estimated knowledge, or lack thereof, can be explored amongst

students exhibiting stopout and refusal behaviors.

In order to observe the relationship between these behaviors and confidence,

however, we utilize an auxiliary dataset consisting of students who participated in a

randomized controlled trial with the ASSISTments platform in an earlier academic

year [LHOW15]. In this study, students assigned to the experimental condition were

asked to answer a survey item before starting the assignment (and then subsequently

asked again during the assignment, although only the initial survey was used in

this work). Students were shown an example of the problems that would be seen

in the assignment and asked them to self-report their level of confidence on a 5-

point scale ranging from 0% (not confident at all) to 100% (very confident). Using

the subsequent student data collected from the student assignments, we apply the
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Figure 10.6: The proportional distribution of samples within each cluster over the
first three learning opportunities.

clusters developed in Section 4.2 to observe any significant differences in reported

confidence between each of the clusters. In regard to refusal behavior specifically,

we also compare differences in reported confidence for students who exhibit stopout

on the first opportunity.

10.5 Results and Discussion

The resulting 6 clusters of student prior knowledge and last recorded action is il-

lustrated in Figure 10.5. Being the only continuous variable, the prior correctness

appears to be a distinguishing factor among the student activity. This measure, be-

ing close to normally distributed after the described transformation, is represented

as a z-scored value across the 6 groups in the figure; cluster 6, for example, represents

the highest knowledge students who stopped out after an incorrect answer. Again,
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this figure is the clustering as performed over the entire dataset independent of the

learning opportunity on which students exhibited stopout. The resulting clusters

further distinguish themselves by the last action taken by each student, with no

cluster found to contain more than one type of action taken by students. This find-

ing supports the claim that the stopout behavior is contextual, as it is not the case

that a cluster represents, for example, estimated low knowledge students regardless

of the last action taken.

The number of student assignments that fall within each cluster is denoted under

each column along with the cluster number. From this, it becomes clear that the

majority of students, regardless of high or low knowledge, stop out at the start of a

problem without taking action as illustrated by clusters 2 and 5. The clusters with

the fewest students, clusters 1 and 3, appear to have the lowest knowledge students

who stop out after a help request and after a correct response respectively. The

remaining groups, clusters 4 and 6, both contain students who exhibit stopout after

an incorrect response, but represent opposing knowledge estimates.

While the clusters themselves seem to offer some interpretation as to the types

of behaviors exhibited by students in the context of estimated knowledge, the final

analysis offers an opportunity to observe these groupings by opportunity as well.

Figure 10.6 depicts the results of this comparison, observing the distribution of

student assignments that belong to each cluster by opportunity. Cluster 3 is found

to have the fewest overall students proportionally in the first three opportunities; as

this is not the smallest cluster when observing all student assignments, this suggests

that this behavior is exhibited more on later opportunities. It is also the case, due

to our definition of stopout, that no student can stopout on the first opportunity

following a correct response. Aside from this, cluster 1 similarly contains the fewest

number of students that also appears to be less affected by opportunity as no clear
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Figure 10.7: The reported confidence of students within each cluster with associated
95% confidence intervals.

trend emerges within this cluster.

The remaining four clusters, however, do exhibit interesting trends over the

first three opportunities. Clusters 4 and 6 exhibit increasing numbers of students

stopping out following incorrect responses, though distinguishable by the estimated

knowledge level of students found within these clusters. Cluster 2 conversely exhibits

a decreasing number of high knowledge students exhibiting stopout at the start of a

problem before taking any further action. Finally, cluster 5 contains a notable trend

in that the number of low knowledge students stopping out on the first item before

taking action is noticeably higher than subsequent opportunities and exhibits no

increasing or decreasing trend beyond this point within the observed opportunities.

For this reason, it is likely that the cause for the disproportionate stopout on the

first learning opportunity is largely due to students within clusters 2 and 5; these,

again, are the students exhibiting refusal by our definition. Furthermore, the number

of students who fall within clusters 2 and 5 on the first learning opportunity are

1,025 and 954, respectively, which, when subtracted from the total number of 3,076
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Figure 10.8: The reported confidence of students who stopout on the first learning
opportunity as compared with students who stopout after the first learning oppor-
tunity with associated 95% confidence intervals.

students who exhibited stopout on the first opportunity as illustrated in Figure 10.2,

the resulting 1,097 falls much closer to the expected 1,371 students as determined by

our fit exponential model described in Section 4.1. We are not attempting to claim,

of course, that this simple comparison of sample sizes fully explains the observed

disproportionate stopout exhibited on the first learning opportunity, but the results

of our analyses coupled with these comparisons do suggest that refusal behavior

accounts for a majority of the phenomenon.

It is found, comparing the results of both the clustering analysis and compari-

son of cluster distributions across learning opportunities, that the disproportionate

stopout tends to occur regardless of knowledge level, at the beginning of the problem

before taking any action. This problem becomes more perplexing considering the

effort to remove optional assignments using a completion threshold during data col-

lection and filtering. Assuming that at least a majority of optional assignments and

outlier cases are removed during that cleaning process, the fact that the two largest

clusters are still comprised of those students who stopout without taking action

further stresses the need to understand the definitive causes of such behavior.
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The results of our final analyses are depicted in Figures 10.7 and 10.8, comparing

the reported confidence measures of students by both cluster (Figure 10.7) and

first opportunity versus subsequent opportunities (Figure 10.8). As the number of

students who exhibited stopout in this supplementary dataset is significantly less

than that observed in our earlier analyses, the 95% confidence intervals vary greatly.

In observing Figure 10.7, for example, the majority of intervals overlap making us

unable to claim reliable differences between many of the clusters. However, two

clusters, 2 and 6, do emerge as significantly different with regard to the level of

reported confidence. These two clusters represent the highest performing students

compared to other clusters and yet exhibit vastly different levels of confidence, with

the lower confident students being those who stopout without making any action

in the problem. It is important to clarify that this figure includes students who

stopout across all opportunities and not specifically those who stopout on the first

opportunity (e.g. Cluster 2 here is not specifically students exhibiting refusal). It

is also important to recognize that all reports of student confidence are reliably

smaller than 0.8 (and several being even lower), suggesting that a large number of

students who exhibited stopout, unsurprisingly, were not confident in their ability

to successfully complete the assignment.

Figure 10.8 illustrates a significant difference found between the reported con-

fidence of students who exhibit stopout on the first opportunity as compared to

students who stopout on subsequent opportunities. It is important to clarify, how-

ever, that this comparison includes all students who stopout on the first opportunity

in a single group as opposed to comparing students specifically exhibiting refusal

(i.e. stopping on the first opportunity after taking no action) as it was found that

very few students exhibited refusal in the supplementary dataset (only 4 students

were found). This is contrary to the proportion that was found in other skill builder
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dataset, but may be attributable to the context of the study; we believe refusal may

occur as students realize that they are not confident in their ability to successfully

complete the assignment, and as their confidence is revealed by the survey item,

it is likely that students who would have exhibited refusal simply never began the

assignment and subsequently would not exist in our dataset (as they saw no learning

opportunities of the assignment). Despite this, we still see a significant difference

between students who stopout on the first opportunity when compared to stopout

on subsequent opportunities, suggesting that confidence, perhaps even more so than

knowledge (in considering clusters 2 and 6 in Figure 10.5), is associated with refusal

and early stopout behavior in student assignments.

10.6 Contributions and Future Work

The current work represents an initial step toward better understanding the causes

of student stopout in K-12 classrooms by exploring the student actions and at-

tributes associated with such behavior. With this in mind, this work can act as a

foundation for future research aimed at finding more causal links between behavior

and stopout as. A simple approach, as the students do not drop out of the respective

courses, would be to survey students to determine the reasons for stopping out of

an assignment.

There are several limitations to the current work that can be addressed with

further research as well. The first is in the scope of the behaviors considered for

grouping student assignments. In the analyses presented in this work, only the last

action taken by the student was considered within the clustering. This feature can be

vastly improved by generating more descriptive features of student activity or even

by utilizing earlier information pertaining to each student. Another limitation of the
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current work is the lack of contextual information pertaining to each assignment.

The clustering is performed observing only student attributes as it is believed that

this is most important to understand the behaviors associated with stopout, but

understanding how these attributes interact with assignment-level features, such as

the difficulty of the subject matter, may be helpful to understanding the concept as

well.

Another limitation of the current work is the lack of causality of our analyses.

While it is among the goals of this work to identify potential causes of stopout and

refusal behavior, all analyses conducted are limited to correlation rather than causal

claims. Future work may be able to address this by conducting randomized con-

trolled trials aimed at identifying and deploying interventions to prevent potential

stopout and refusal behaviors.

The contributions of the current work are 3-fold toward understanding the be-

haviors and actions associated with student assignment-level attrition in K-12 class-

rooms. First, the current work identified a disproportionate stopout on the first

opportunity as compared with subsequent opportunities. While stopout tends to

follow an exponential decay, this does not extend to the first learning opportunity.

This highlights a need to research this phenomenon further to direct the develop-

ment of learning interventions aimed at deterring students from giving up to early

or too easily when faced with difficult content. We show in this work that a large

proportion of this early stopout is likely attributable to a behavior we have identified

as refusal.

The second contribution is in the exploration of student actions associated with

stopout. With the 6 groups of student knowledge-action interactions that emerged

from the analysis, these clusters form the basis to conduct further research exploring

their predictive power in other aspects of student learning. These groups of students
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highlight that low persistence, as defined by student stopout, is not exhibited in the

same way across all students or even across students of similar prior knowledge.

Furthermore, the actions associated with stopout behavior are found to change over

each learning opportunity, suggesting that, unsurprisingly, the reason for stopout is

dependent on where the behavior occurs within each assignment.

Finally, it is clear from this work, as well as the work of Lang et al. [LHOW15],

that confidence is strongly related to student assignment-level attrition, perhaps

even more so than gaps in student knowledge, supporting the need for learning

interventions to address this factor to promote more productive learning practices.

This confidence level, while comparatively low for all students who exhibited stopout

in our analyses, appeared lowest for students who exhibited stopout behavior on

the first learning opportunity. Similarly, the level of confidence for high knowledge

students was divided between two of the identified clusters of students, suggesting

that confidence is not directly dependent on prior knowledge.
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Chapter 11

Identifying the Constructs

Underlying Models of Student

Knowledge, Behavior, and Affect

Botelho, A.F. (2019). Identifying the Constructs Underlying Models of Student

Knowledge, Behavior, and Affect. Manuscript in Preparation

11.1 Introduction

Failure is a difficult yet inevitable aspect of the learning process, and a person’s re-

action to failure can impact later performance. This work represents, to the authors

knowledge, the first such set of analyses aimed to look across a wide range of ma-

chine learning models developed to measure student knowledge, behavior, and affect

in order to identify and explore the underlying represented learning constructs. In

this way, this work seeks to bridge the gaps that exist between theory and methods

and further validate and explore the deeper relationships between the constructs of
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learning that are being measured.

This work explores these various detectors, sorted into a folksonomy consisting of

the three categories of student knowledge, behavior, and affect, to explore the dimen-

sionality of constructs measured. As the chosen detectors attempt to model different

aspects of student engagement, it is hypothesized that the constructs that emerge

will represent those theorized to be closely related to measures of productive and

unproductive persistence. In this way, it is the primary goal of this work to bridge

the gap in research that has been conducted on student engagement through the

development and application of various detectors and observe how these measures

relate to each other as well as distinguish productive and unproductive perseverance

and how predictive these are of longer-term learning outcomes.

11.1.1 Given a variety of commonly used assessment mea-

sures of student success, what is the dimensionality

of the constructs measured by these assessments?

Based on the prior research in education and learning analytics, it is hypothesized

here that many commonly-observed student assessment measures are correlated. In

other words, it has previously been observed that high performing students tend

to consistently perform well while low performing students tend to perform poorly

across assessments (c.f. [BWH15]). It is not clear, however, what the dimensionality

of these measures are in regard to the constructs that are being measured.
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11.1.2 What is the dimensionality of constructs measured

by the observed detectors of student knowledge, be-

havior and affect?

Many of the detectors of student knowledge, behavior, and affect identified and

described in the next section attempt to measure varying aspects of student engage-

ment while working through a learning task. While many have been developed with

different learning theories in mind (i.e. measuring behavioral constructs rather than

affective), it is not unreasonable to assume that these detectors exhibit overlap in

regard to the underlying constructs being measured. It is uncertain, however, the

degree of overlap across these differing detectors.

11.1.3 What is the relationship between the learning con-

structs measured by the observed assessment mea-

sures and those constructs represented by the detec-

tors of student knowledge, behavior, and affect?

Many of the detectors of student knowledge, behavior, and affect were developed in

consideration of one or more of the observed assessment measures. It is not clear,

however, how the underlying constructs relate to each other across these detectors

and assessment measures.
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11.1.4 Which constructs represented by the detectors of

student knowledge, behavior, and affect are reliable

predictors of short- and long-term outcomes?

The reliability and predictive power of identified learning constructs measured by

the detector models can be used to better understand their relationship with the

observed learning outcome measures.

11.2 Detectors and Outcome Measures

11.2.1 Detectors of Student Knowledge

In the last two decades of research pertaining to learning analytics and educational

data mining, the field has produced numerous models attempting to quantify stu-

dent knowledge. By observing student correctness on problems within and across

knowledge components, one can gain an understanding of how well students have

seemingly mastered such content based on their predicted ability to answer future

problems of the same skills. As such, a large subgroup of these fields of educational

research has emerged surrounding the prediction of student ‘next problem correct-

ness’. While this endeavor holds little practical significance in terms of developing

learning interventions (as recent attempts to improve such models have proven to

yield only marginally small improvements), such models may be utilized for their

original purpose of measuring student knowledge.

Among these models of student knowledge, however, few have been as arguably

pivotal as the bayesian knowledge tracing model [CA95]. Among the four learned

parameters of the model, two attempt to quantify each student’s knowledge state

as the prior knowledge and current level of mastery (both as binary learned and

231



unlearned state representations). Using bayesian models, researchers can look at

student answers and estimate the student’s knowledge state or if it is instead at-

tributable to the student guessing at the answer (e.g. answering correctly despite

not knowing the material) or slipping (e.g. knowing the material yet answering

incorrectly) as a probability.

Another popular knowledge model, Performance Factors Analysis [PJCK09],

takes a similar next-problem correctness approach though with a much simpler

logistic-regression-based methodology. Unlike BKT, the PFA model observes just

the number of correct and incorrect responses of students to construct a model of

how likely a student is to correctly answer a problem of a given knowledge com-

ponent. In the case of this model, this probability can be used to describe the

knowledge level of the student.

More recently, deep learning methods, describing a family of techniques utilizing

multi-layered neural networks, have exhibited an increase in usage in a wide-range

of fields. This can be attributed to increased development support, advances in

technology, and subsequently promising performance when compared to more tra-

ditional methods. A type of deep learning model, known as a recurrent neural

network [WZ89], has been the basis of several recent works that suggest notable

improvements to estimating short-term student performance. The development of

the Deep Knowledge Tracing (DKT) model [PBH+15] was among the first applica-

tions of this type of deep learning model within an educational context, reporting

vast improvements over the widely applied models of BKT and PFA. While others

found that these improvements were largely overestimated [KLM16][XZVIB16], the

method still shows promise in its ability to model student knowledge over time.

While the DKT model is described here in an effort to comprehensively describe

widely-cited models of student knowledge, this particular model is not observed
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alongside the other detectors in this work. While the two models of BKT and PFA

are intended to measure the same outcomes of knowledge through next problem

correctness, DKT was omitted from the analyses of this work. This decision was

also made considering that the DKT model represents student knowledge as a 200-

value vector and would therefore detract from the interpretability of the analyses;

the study of DKT’s representation of student knowledge has been explored in prior

work [YY18], and the inclusion of this model in similar analyses as described in this

paper is planned for future work.

11.2.2 Detectors of Student Behavior

A large amount of previous research has focused on modeling student behavior in

computer-based systems. One of the most informative forms of data that can be

provided to teachers is not the end result or performance metric alone, but data that

can describe the process that contributed to a result. As such, detectors of student

behavior have emerged in the field of learner analytics and, among other systems,

their application and further development have been studied using ASSISTments

data.

Whether or not a student is attending to a learning task, described as on- and

conversely off-task behavior, can help to distinguish levels idleness and critical think-

ing. From the point of view of the learning software, it is only known that a student

is engaged when taking action within the system; it is the periods between such

action, however, where learning occurs. Previous work has observed student on/off

task behavior [BRX07][PBSP+14] in an effort to identify when a student actively

engaging in the learning task. In addition to this detector, this work proposes to ex-

tend this detector by similarly interacting estimates of student on/off task behavior

with a measure of time on task.
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One of the more negative behaviors that has been studied is that of students

“gaming of the system,” or cheating the system, referred to hereafter simply as

“gaming” [BCKW04][PBdCO15]. Student gaming is exhibited in a number of ways

depending on the type of assignment and availability of computer-provided tutor-

ing. This behavior can be described as a student progressing through an assignment

by exploiting an aspect of the system rather than administering effort to learn the

material. In such cases, the student may proceed quickly through the assignment,

exhausting all computer-provided tutoring to reveal the correct answers (it is com-

mon to see these students finishing such assignments in just a few minutes’ time,

while the rest of the class takes significantly longer depending on the difficulty and

number of questions). Developments toward detecting this behavior can help inform

teachers that a student has not applied effort and likely does not know the assigned

material despite having “completed” the assignment.

Another detector of student behavior observes a measure of student carelessness

[BWH+08][PBBH13] during a learning task. This detector is based on the concept of

student “slip” popularized by the bayesian knowledge tracing model. Carelessness

is described as contextual slip, or the likelihood that, for a given problem, the

student answered incorrectly despite having mastery of the material. Conversely,

the detector of contextual guess is intended to measure the opposing case of a student

answering correctly despite not knowing the material.

11.2.3 Detectors of Student Affect

Students’ emotion and affective state have been proven as significant predictors

of short- and long-term performance [CGSG04][PBSP+14]. Using student affect

detectors researchers have reliably predicted affect from ASSISTments logs have

used estimates affective state to better predict state test scores [PBSP+14], college
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attendance [PBBH13], STEM-related college majors [SPOBH14], and how these

detectors generalize across rural, urban, and suburban contexts [OBG+14]. With

such works pointing to the importance of detecting and measuring student affect, the

argument for their inclusion in this proposal is well-founded in this prior research.

A significant amount of research has been conducted on the detection of student

affect state by aligning ASSISTments data to collected quantitative field observa-

tions using the Baker Rodrigo Ocumpaugh Monitoring Protocol (BROMP) [OBR15].

This protocol allows human coders to observe students in the classroom while work-

ing within the learning system and label them based on one of four commonly studied

affective states: engaged concentration [Csi90], frustration [KRP01][PSC93], bore-

dom [Csi90][Mis96], and confusion [CGSG04][KRP01].

Initial development of sensor-free affect detectors, utilizing only the recorded

student log data aligned with human-labeled observations, explored a number of

tree-based, rule-based, and Bayesian models, ultimately reporting moderate model

accuracy above chance [OBG+14]. Later,[WHH15] improved upon these initial af-

fect models by incorporating more information pertaining to skill, or knowledge

component, as well as class-level features. Most recently, Heffernan and colleagues

[BBH17] explored the application of deep learning models, exhibiting a significant

increase to model performance. That work compared three variants of recurrent

neural networks - traditional recurrent, LSTM, and Gated Recurrent Unit networks

- as sequence-to-sequence models to estimate labeled student affect states.

A comprehensive list of included detectors, sorted by the identified folksonomy,

is provided in Table 11.1.
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Category Detector

Detectors of Student Knowledge
BKT Knowledge Estimate
PFA Knowledge Estimate

Detectors of Student Behavior

Off-Task
Gaming the System
Wheel Spinning
Stopout
Contextual Slip
Contextual Guess

Detectors of Student Affect

Engaged Concentration
Boredom
Confusion
Frustration

Table 11.1: The list of observed detectors of student knowledge, behavior, and affect.

11.2.4 Measures of Unproductive Perseverance

Several previous works have attempted to model student wheel spinning behavior

in several platforms including Cognitive tutor [MCS16] and ASSISTments [BG13],

while other work has explored policies to help prevent wheel spinning [GB15]. As

previously described, wheel spinning is the behavior in which a student exhibits high

persistence in a learning task, but unable to obtain sufficient understanding of the

learning materials. The term “wheel spinning” is analogous to a car that is stuck

in snow or mud; despite devoting effort into moving, the wheels will spin without

getting anywhere.

In this work, we will be using the definition of wheel spinning given in [BG13]

as failing to reach mastery after seeing ten learning opportunities. It is for this

reason that prior work observing wheel spinning has pertained to student interac-

tions with mastery-based assignments. Mastery-based assignments, as opposed to

traditional assignments that require students to answer all assigned problems, in-

stead require students to demonstrate a sufficient level of understanding, or mastery,

of the assigned material in order to complete the assignment. In the case of AS-
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SISTments, this threshold of understanding, by default, requires students to simply

answer three consecutive problems correctly on the first attempt without the use of

computer-provided aid.

Conversely from that of wheel spinning, student attrition, characterized by a

student failing or refusing to complete a given assignment, describes cases of low

persistence. In the context of K-12 classrooms, it is common to observe student

attrition at the assignment-level, where students begin an assignment but fail or

choose not to complete the assigned work. This behavior, which has been referred

to as “stopout,” [BVIH19] is distinctly different from the course-level dropout that

is observed in MOOCs as students likely return to work on subsequent assignments;

the student remains in the course, but did not finish the assigned work. As is

the definition used in [BVP+ss], stopout is defined as mutually exclusive to that

of wheel spinning as it is considered desirable to stop attempting problems once

wheel spinning behavior has been exhibited; as such, stopout is defined as the lack

of assignment completion before the 10th problem, or learning opportunity.

Similarly, it was identified in [BVIH19] and further explored in [BVP+ss] that

stopout exhibited early in an assignment is seemingly different from that of later

stopout and includes a behavior identified as “refusal,” particularly when such at-

trition occurs on the first problem. As such, stopout will further be broken into two

categories corresponding to early stopout (lack of completion on or before the third

learning opportunity) and later stopout (lack of completion between the fourth and

9th opportunities inclusively).

While the particular focus of this work is on outcomes pertaining to productive

and unproductive perseverance, additional measures are observed to gain under-

standing of relationship between the learning constructs represented by the ob-

served detectors and other outcomes that describe student learning. Among these
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Outcome Measure Description

Wheel Spinning
Whether the student fails to complete a skill builder
assignment on or before the 10th learning opportunity

Early Stopout
The student fails or refuses to complete the assignment on
or before the 3rd learning opportunity

Later Stopout
The student fails or refuses to complete the assignment
between the 4th and 9th learning opportunities, inclusively

Next Problem Correctness
The binary correctness of the students first response on the
next problem (with a help request treated as incorrect)

Next First Action
Whether the first action on the next problem will be an
attempt to answer (=1) or a help request (=0)

Assignment Completion Whether the student completes the current assignment

Number of Problems
A simple count of the number of problems attempted
by the student on the assignment

Inverse Mastery Speed
The inverse of the number of problems needed to correctly
answer 3 problems correctly in a row without the use of
computer-provided aid (or 0 when this threshold is not met)

TerraNova Score
The end-of-year standardized test score available for a subset
of students

Table 11.2: The description of outcome measures

additional outcomes that include short-term performance measures of next problem

correctness and next first action, perhaps most notable is the outcome of TerraNova

Score. This distal measure represents student performance on an end-of-year stan-

dardized assessment; the inclusion of such a measure, particularly as it was delivered

externally to the observed learning platform of ASSISTments, can act as a measure

to externally validate the importance of constructs underlying the observed detec-

tors. A comprehensive list and short description of each included outcome measure

is provided in Table 11.2.
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11.3 Methodology

11.3.1 Data

The data1 used in the methods described in this work consists of three datasets

collected through the ASSISTments online learning platform; the scale of this data

is described in Table 11.3. ASSISTments is a web-based learning platform that

provides the tools for teachers to assign classwork or homework content for which

students receive immediate correctness feedback [HH14]. While working through

each assignment, many problems supply students with optional aid in the form of

either hints or scaffolding questions. Hints, of which there may be from 0 up to

several available, supply students with an instructional message, while scaffolding,

when available, breaks the problem into smaller steps to solve. In addition to these,

the system provides a “bottom-out” hint for every problem that supplies the stu-

dents with the correct answer if the student is unable to solve the problem as, by

default, students are not allowed to progress to subsequent problems until the cor-

rect response is entered inside ASSISTments. The analyses described in this work

includes only student interaction data with mastery-based assignments, known as

“skill builders” in the system, where the completion threshold is designated to sim-

ply require students to answer three consecutive problems correctly without the

use of computer-provided aid (i.e., without hints, scaffolding, or bottom-out hints);

students are continually presented with problems consisting of a single or a small

number of related knowledge components until this completion threshold is met. In

recognition of wheel spinning as an undesirable learning behavior, the system imple-

ments a “daily limit,” stopping students on the skill builder assignment for the day

if the completion threshold is not reached by the tenth problem (except in the case

1All data and code used in the analyses described here are made openly available at the following
link: http://tiny.cc/dissertation_data
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Dataset 1
(Remnant)

Dataset 2 Dataset 3

Number of Students 30,266 16,504 12,105*
Number of Assignments 9,284 3,420 3,349

Number of Classes 1,212 641 395
*663 Students across 36 classes have an associated TerraNova Sore

Table 11.3: Counts of students, assignments, and classes across the three datasets.

where the student is about to reach the threshold on or directly following the tenth

problem); the system provides the student with an instruction to seek additional

help and return to the assignment on the subsequent day.

As teachers using the system assign a range of content, both made available

through the system as well as self-built material, all datasets used in this work in-

clude skill builder assignments where at least 10 students started the assignment

and the overall completion rate is at least 70% on the assignment within the class.

These limitations help to remove outliers such as sample classes and optional supple-

mentary assignments where the teacher does not expect and require every student

to complete. These outlier cases are excluded as we would argue that attrition due

to such factors is not stopout as we have defined it within this task (e.g. low un-

productive persistence). This filtering process is the same as was used in prior work

[BVIH19] characterizing early stopout behavior.

The usage of three datasets serves the purpose of providing sufficient held-out

data for the purpose of validating the methods described in the next section. The

first dataset, for example, consists of student data from the 2012-2013, 2013-2014,

and 2018-2019 academic years. This dataset, henceforth called the “remnant (named

after the remnant defined in [SBPH18]used to describe students from outside each

experiment), contains the student data necessary to train each of the detector models

listed in Table 11.1. For example, the data used to train the models of affect, off-task

behavior, and gaming observed in [BBHon] is a subset of the remnant as these models
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were again applied in the current work. The sole purpose of this remnant dataset

is for model training, development, and evaluation (as in the case of a few models

for which new modeling methods were applied as is described in the next section),

after which such models are subsequently applied to the other two datasets used in

this work. While the remnant does contain some overlap with our third dataset in

regard to which academic years of students are represented (described later in this

section), it is important to emphasize that there is no overlap in regard to students

across the three datasets used in this work.

Once the detector models have been trained and evaluated using the remnant,

they are then applied to the second dataset and used for the next set of analyses

in which a factor analysis is applied across the generated detector estimates. This

second dataset consists of student skill builder data from the 2016-2017 and 2017-

2018 academic years. It is with this dataset that a factor analysis is conducted

across the detector estimates to identify the underlying represented constructs. The

dataset is scaled to include the two aforementioned academic years in an attempt

to maximize the representative populations of students to benefit the extrapolation

of analyses and models to new students from differing academic years.

The third and final dataset consists of student skill builder data from the 2013-

2014 and 2014-2015 academic years and includes only those students involved in

the ASSISTments efficacy trial conducted within the state of Maine [RFMM16]. It

is with this final dataset that the final set of analyses are conducted to validate

the factor analysis applied to the second dataset using a confirmatory factor anal-

ysis, explore the relationship between underlying constructs using an exploratory

structural equation model, and finally examine the relationship of the measured

constructs on short and long-term learning outcomes. Each student in this dataset,

in addition to the interaction data collected within ASSISTments, also has an associ-
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ated TerraNova state test score given at the end of the academic year. Teachers and

their students participated in the study for a single year within one of two cohorts,

each following seventh grade mathematics curricula across a variety of textbooks

that were incorporated into ASSISTments (i.e. allowing teachers to assign the same

content through ASSISTments that they had in previous years using traditional

methods). This aspect is important to specify as teachers were certainly not re-

quired to assign skill builders during this study, however a majority did use such

assignments regularly, providing a sufficiently-scaled dataset to conduct the analyses

described in this work.

11.3.2 Detector Models

Many of the detectors utilized in this work were previously developed in previous

works using ASSISTments data (some of these models, such as gaming, were first

developed in another system and then appropriated and re-fit using ASSISTments

data [PBdCO15]). Of the detectors listed in Table 11.1, the detectors of student

affect, off-task behavior, and gaming were directly applied from prior work com-

paring the use of machine-learned and expert-generated features [BBHon]; the best

performing detector model of each was trained and applied as was described in that

prior work, utilizing recurrent long short term memory (LSTM) networks, co-trained

using labeled and unlabled data. This, again, was made possible as the training data

utilized in that work was incorporated into the remnant used here. All models used

in this work with the exception of the BKT and PFA models were applied to data

separated into approximately 20 second clips of student activity. This follows the

same methodology as was applied in prior works [OBG+14][BBH17][BBOH18]. The

BKT and PFA models were applied at the problem-level, and the estimates of each

other detector are later aggregated to this problem level for subsequent analyses.
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The remaining detector models, however, needed to be either trained or re-fit

using the remnant dataset. For the BKT model and PFA models, for example,

this required simply training each of these on the specific skills contained within

the remnant. The structure of each of these models is well-defined by prior works;

one model per skill was created for each BKT and PFA using the basic formu-

lation of each model (e.g., while some extensions to BKT have been proposed in

[PH10a][PH11][WH13], only the traditional 4-parameter BKT model was applied

in this work). It was found that not all problems in the dataset contained a skill-

tagging. For these cases, a skill tag was either generated using the common core

state standard [A+10] identifier often contained within the name of each skill builder,

or labeled as “no skill” for any remaining cases. This step also helps to extrapolate

these models to the other datasets which may contain data from skills that did not

exist in the remnant; such cases could simply use the “no skill” model as a noisy

estimate of student knowledge as it is averaged across multiple unlabeled skills.

Once trained, the knowledge parameter of the BKT model is used when applying

the model to the subsequent datasets. Similarly, the PFA model is trained on the

same set of skills and the models estimate of next problem correctness is used as a

measure of student knowledge for subsequent analyses.

The detectors of contextual guess and slip had previously been fit to ASSIST-

ments data [PBSP+14][PBBH13], but were readdressed in this work following the

successful application of deep learning methods for similar tasks in previous works

[BBH17][BBOH18][BBHon]. For this task, the same methodology as is described

in [dBCA08] is utilized in the current work to generate labels of contextual guess

and slip using triplets of estimates from the previously-described BKT model; the

student performance on a given problem and the two subsequent problems is used

in conjunction with the parameter estimates from BKT to label each problem with
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a probability label corresponding with either guessing (when the student answered

the problem correctly) or slipping (when the student answered the problem incor-

rectly). With these probability labels, a deep learning model is applied following

the same structure as the detector models described in [BBHon] and using the same

set of 92 features as utilized in that work. The models used the same structure with

only two small differences: 1) 50 hidden nodes were used in place of 200 (chosen by

comparing each of these models using a small hold-out set), and 2) as the previous

work observed binary labels and the contextual guess and slip are continuous val-

ues, a linear output function was used in place of the softmax output utilized in the

prior work. A separate model is trained to predict each contextual guess and slip,

producing a model estimate for each clip of student activity in the remnant. The

models were evaluated within the remnant using a 10-fold cross validation resulting

in R2 values of .391 and .301 for the models of contextual guess and slip respectively.

Previous work explored the development of early detectors of student stopout

and wheel spinning [BVP+ss]. The purpose of that work, however, was to explore

aspects of model transfer to identify the commonality of machine-learned features

for predicting each of stopout and wheel spinning. As such, these models are re-

fit in this current work with the intention of using them as predictive models of

these behaviors. Similar to the models of contextual guess and slip, the same model

structure as was used for the detectors described in [BBHon] were used for consis-

tency. While two small changes were described for the contextual guess and slip

models, it was found that the exact same model structure as the off-task detector

from [BBHon] led to the better performing models when applied to a small holdout

set (after similarly testing a smaller hidden layer). A model was trained for each

stopout and wheel spinning using the same definition of these behaviors as was used

in [BVP+ss], where wheel spinning describes students who have not mastered a skill
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builder on or after the tenth problem and stopout is mutually exclusive describing

students who do not complete the assignment before the ninth problem (it is impor-

tant to emphasize that stopout is further divided in later analyses conducted here

as expressed in Table 11.2. These models were similarly evaluated using a 10-fold

cross validation within the remnant and exhibited ROC AUC values of 0.878 and

0.731 for wheel spinning and stopout respectively. Once evaluated, the models are

trained on the full remnant dataset and then applied to the second dataset as was

done for each other detector.

11.4 Factor Analyses

An exploratory factor analysis (EFA) was applied to address the first research ques-

tion focused on identifying the underlying constructs measured by the observed

outcomes listed in Table 11.2. Using the second dataset, all outcomes were observed

at the problem level. As the granularity of outcomes varied (e.g. next problem

correctness compared to assignment completion), all outcomes were observed at the

problem level, with higher-level outcomes being represented as duplicated values for

each problem. TerraNova score was not included in this analysis as 1) no students in

the second dataset had associated TerraNova scores, but also 2) there would likely

be a large amount of noise in comparing problem-level outcomes to an end-of-year

assessment. The two remaining non-binary outcomes of Number of Problems and

Inverse Mastery Speed were transformed into approximated normal distributions for

the purpose of the EFA and normalized using z-scoring.

In applying the EFA, a maximum likelihood extraction method was used with an

oblimin rotation; these allow for correlated factors to be extracted and are common

choices when performing a EFA such as this. Allowing for correlated factors in this
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Factor 1
(Wheel Spin)

Factor 2
(Completion)

Factor 3
(Later Stopout)

Factor 4
(Early Stopout)

Number of Problems 1.0
Assignment Complete 0.93

Early Stopout -0.63
Later Stopout -0.72

Next First Action
Next Problem Correct -0.44

Wheel Spin 0.71
Inverse Mastery Speed -0.83

Variance Explained 30.7% 12.7% 8.6% 6.3%

Table 11.4: The EFA factor loadings observing the student learning assessment
measures.

particular analysis is important as it is likely that many learning constructs exhibit

relationships. The number of factors is determined using a parallel analysis [Hor65].

The results of the EFA are reported in Table 11.4. From this table, it can be seen

that 4 factors emerge from the outcome labels. In this regard, the second, third,

and fourth outcomes each exhibit a single aligned label, and are therefore referred to

by the aligned labels of Assignment Completion, Later Stopout, and Early Stopout

respectively (with the later two found to inversely represent the factors). The final

factor, represented with a high number of problems, wheel spinning, and inversely

next problem correctness and inverse mastery speed, appears to highly relate to the

definition of wheel spinning; students are attempting a large number of problems

with a low percent correct (demonstrating low knowledge). It is also important to

recognize that the outcome of Next First Action did not align highly to any of the

four factors.

An additional EFA was applied to address second research question focused on

identifying the underlying constructs measured by the observed detectors listed in

Table 11.1. Using the second dataset to which each of the detectors were applied,

each detector was aggregated to the problem-level using a simple average; this en-
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Factor 1
(Negative Affect)

Factor 2
(Carelessness)

Factor 3
(Knowledge)

Factor 4
(Disengagement)

Confusion 0.96
Concentration -0.98

Boredom 0.81 0.45
Frustration 0.99

Off Task 0.92
Contextual Guess -0.94

Contextual Slip 0.88
Stopout 0.43

Wheel Spin 0.50 -0.43
Gaming 0.31

BKT P(Know) 0.83
PFA 0.75

Variance Explained 30.3% 17.9% 13.0% 10.8%

Table 11.5: The EFA factor loadings observing the detector models.

sures that there is a single estimate per detector for each problem started by each

student. Aggregation to this level ensures consistency in regard to the granularity of

each of the detectors as well as better alignment to the most fine-grained outcomes

observed (e.g. next problem correctness and next first action). After aggregation,

several simple transforms were applied to the detectors so that they follow a more

approximate normal distribution as there are several advantages to then when ap-

plying EFA. All estimates were then z-scored within their respective detector to

standardize their values.

Similar to the previous EFA, maximum likelihood with oblimin rotation was used

to extract factors. These factors are reported in Table 11.5. The number of factors

was determined using the same method as the previous EFA conducted over the

observed outcomes, and similarly found 4 factors represented by the detectors. In

this case, none of the factors were represented by a single detector, suggesting that

groups of detectors are measuring a common set of underlying learning constructs in

potentially different ways. While the current work does not attempt to measure the

degree to which these detectors overlap, such an analysis would be worth attention
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in future work.

The first factor identified consists of the four estimates produced by the affect

detector model, with confusion, boredom, and frustration aligning positively, and

concentration aligning negitively. Such an alignment loosely corresponds with as-

pects of disequilibrium hypothesized by DMello and Graesser (2012) [DG12], but as

the alignment also suggests a level of disengagement, this first factor will simply be

referred to as Negative Affect.

The second factor aligns highly with the contextual guess and slip (negatively and

positively, respectively), as well as both stopout and wheel spinning. It is important

to emphasize here that the detectors, while correlated with the respective labels on

which theyve been trained, are still an estimate of future performance (i.e. the

wheel spinning detector should not be interpreted as strongly as the true label of

wheel spinning). With this in mind, especially as stopout and wheel spinning both

positively align with this factor and represent conflicting measures of persistence, it is

believed that this factor is instead more representative of poor student performance

(as a contextual slip suggests that the problems are answered incorrectly). As such,

this factor will be referred to as Carelessness, following the alternative name given

to the contextual slip detector in previous works [SPdBR11].

The third and fourth factors are arguably the most identifiable factors that

emerged. In the case of factor three, for example, where the two detectors of student

knowledge aligned positively and wheel spinning aligned negatively, we conclude

with confidence that this factor is a representation of student knowledge and will

therefore be referred to as simply Knowledge. Finally, the last factor exhibited

positive alignment from the off-task, boredom, and gaming detectors. In this regard,

each of these represent a level of low student effort and disengagement from the

learning task. As such, this factor will be referred to as Disengagement.
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11.5 The Relationship Between Factors

With the EFA applied to the second dataset as described in the previous section, the

third and fourth research questions are addressed using the third and final dataset.

First, it is important to ensure that the alignment of factors is consistent between the

second and third datasets. For this reason, a confirmatory factor analysis (CFA)

is applied using the factor loadings from the previous EFA conducted across the

detector models. The model learned in the first EFA (in regard to the magnitude

and direction of factor loadings) is compared for goodness-of-fit within the third

dataset. Four commonly-reported CFA metrics are reported in Table 11.6. While

much of the prior work surrounding these metrics have relied on rules of thumb

to determine what constitutes a “good” fit, low values of RMSEA and SRMR are

considered better while high values (close to 1.0) of CFI are prefered. Another

commonly reported metric of a p-value calculated from a chi-squared analysis was

omitted from this analysis as it is sensitive to large sample sizes (the metric will

often be significant with large sample sizes, which was the case when applied here,

but this offers little further insight beyond the other metrics). These values do fall

within the commonly-accepted range of fit and therefore support that the model

does generalize across the two datasets.

RMSEA CFI SRMR
0.107 0.944 0.050

Table 11.6: The CFA measures of fit for the EFA observing the detector models.

A similar analysis was conducted on the EFA considering the outcome labels as

well with considerably lower goodness-of-fit; these metrics are reported in Table 11.7.

The poorer metrics suggest that the outcome labels are measuring either different

factors, or, as is hypothesized here, are measuring the factors in slightly different
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ways. This may be a result of differences in how teachers participating in the

ASSISTments efficacy trial assigned skill builder assignments (as they were often in

accompaniment with other textbook work), but it is important to emphasize that

this is merely speculation.

RMSEA CFI SRMR
0.351 0.506 0.174

Table 11.7: The CFA measures of fit for the EFA observing the student assessment
measures.

In order to address the third research question, we apply a ESEM to observe the

correlational and suggested causal relationships that emerge between the factors

identified from the EFAs conducted over the detectors and outcomes. The result of

this ESEM is illustrated in Figure 11.1.

From this, it is visible that the same factors emerge for the detectors, but there

are some differences in the emerging factors underlying the outcomes (as was sug-

gested by the CFA). Here, it can be seen that the same factors identified as Wheel

Spinning and Early Stopout do emerge, but two other factors emerged that were

not present in the previous EFA (corresponding to Next Problem Correctness and

additional loadings of outcomes alongside Assignment Completion). As these did

not generalize across the datasets, no strong claims can be made regarding these

additional factors. However, as the Wheel Spinning factor did emerge in both sets,

the ESEM does suggest that there is a relationship between the factors of Knowl-

edge (negatively) and Carelessness (positively) identified from the detector EFA.

A negative relationship is also found between the Knowledge and Carelessness fac-

tors. Intuitively, these relationships do make sense, particularly in the context of

the definition of wheel spinning. Generally this behavior is characterized as a stu-

dent exhibiting low knowledge and struggle (as seemingly captured by the factor
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Figure 11.1: The resulting structural equation model applied to the third dataset.

being referred to as Carelessness) which causes a high number of problems to be

attempted, low correctness, a need to request help (i.e. in the case of Next First

Action exhibiting a negative relationship) and, of course, wheel spinning behavior.

11.6 Predictive Models of Unproductive Perse-

verance and Performance

To address the final research question, the learning constructs represented by the

detectors of student knowledge, behavior, and affect are observed in relation to

each observed learning outcome. Particular focus, however, is given to the two

outcomes believed to most closely measure unproductive perseverance: assignment

wheel spinning and early stopout.

To achieve this, the factors developed from the detectors in the second dataset

are extracted as additional features in the third dataset using a linear combination
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Figure 11.2: The distributions of each factor extracted from the detector models.

of detector estimates (based on factor loadings). The distributions of these four

values is illustrated in Figure 11.2. From this, it can be seen that Carelessness and,

arguably, Negative Affect exhibit bimodal distributions. As such, two new binary

features are generated to indicate high and low modalities for each factor estimate

using 0 and 1 as the cut points for Negative Affect and Carelessness respectively.

With these points, each of these factors are z-scored within sub-distribution, col-

lapsing the values into an approximately-normal distribution. These transformed

features were then used in conjunction with the binary feature indicating high and

low sub-distributions as well as their interaction to capture these groupings. Knowl-

edge and Disengagement are then z-scored as well such that each of the factors are

standardized for use within the set of predictive models. The transformed distribu-

tions are illustrated in Figure 11.3.

A 2-level hierarchical linear model is used to model each of the observed out-

comes. As each of the factor estimates exist at the problem-level, each of the models

observes sets of problems nested within student. The model structure was deter-
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Figure 11.3: The transformed distributions of each factor extracted from the detector
models.

mined by observing the intraclass correlation of the null model (i.e. the multi-level

model fit only with intercepts) to compare a 2- and 3- level model with students

additionally nested within classes; it was found that the ICC did not suggest that a

3 model was necessary and there were a relatively small number of distinct classes

(n=36) on which to fit a multi-level model. The precise formula used for each

model, with the exception of the model predicting TerraNova score, is expressed in

the following equation:
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Outcomei = β1 ∗NegativeAffect+ β2 ∗ Carelessness+ β3 ∗Knowledge

+ β4 ∗Disengagement+ β5 ∗HighNegativeAffect

+ β6 ∗HighCarelessness

+ β7 ∗NegativeAffect×HighNegativeAffect

+ β8 ∗ Carelessness×HighCarelessness

+ (1|Student)

Where the final term denotes a random intercept fit for each student. As all

but the Number of Problems and Inverse Mastery Speed labels are binary, such

labels are represented using logit-based functions while the two non-binary labels

are modeled as linear; the transformed, normalized versions of Number of Problems

and Inverse Mastery Speed are used such that they follow an approximated-normal

distribution.

The beta coefficients for each of the predictors as well as the R2 values for each

model are reported in Table 11.8. The R2 appears as two values for the purpose of

the multi-level model, calculated using the “theoretical” method used in Nakagawa

et al., 2017 [NJS17]; the first value represents the variance explained by the fixed

effects (i.e. the factors extracted from the EFA applied to the detectors), while

the second value is a cumulative variance explained by the entire model (e.g. fixed

effects plus random effects).
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In first observing the resulting models for the outcome measures of Wheel Spin-

ning and Early Stopout, it can be seen that the predictors account for 15% and

10% of the variance respectively. However, in either case, the random effects (e.g.

those explained by the student level of the model) explain a much larger propor-

tion of variance. In the case of Wheel Spinning, the largest positive predictor is

that of the binary indicator of high carelessness, representing the higher-valued sub-

distribution. Similarly, the continuous-valued carelessness factor along with the in-

dicator of high negative affect all positively correlate with wheel spinning behavior.

What is also notable, aside from the unsurprising negative correlation of knowl-

edge, is the similarly negative correlation of disengagement. As disengagement is

positively correlated with early stopout, students are less likely to persist when ex-

hibiting this identified construct. Observing further differences between the models

observing Wheel Spinning and Stopout, the role of Negative Affect appears to be

inverted. Higher values of negative affect appear to correlate negatively with early

stopout; in other words, higher estimates of negative affect correlate with persistence

beyond the third problem. In this sense, this distinction appears to distinguish neg-

ative affect from disengagement. By further observing the label of Later Stopout, it

would appear that the identified construct of disengagement is attributable to early

stopout but then shifts where carelessness is then the more correlated factor with

later stopout and wheel spinning.

The subsequent models do also illustrate some relationships that are worth iden-

tifying. Unsurprisingly, knowledge has a strong positive relationship with Next First

Action, Next Problem Correctness, and Assignment Completion. The binary indi-

cator of high carelessness also appears to have a strong negative relationship across

all the models. Also rather surpising is that the model of Next Problem Correct-

ness exhibited the lowest amount of variance explained; furthermore, the low ICC
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Estimate Std. Error p-value
Intercept 0.057 0.151 0.707

High Negative Affect -0.058 0.038 0.130
Low Negative Affect -0.115 0.037 0.002**

High Carelessness 0.061 0.037 0.104
Low Carelessness -0.191 0.055 <0.001***

Knowledge -0.129 0.067 0.060
Disengagement -0.060 0.041 0.150

Level 2 ICC 0.625
R2 0.025 / 0.634

Table 11.9: The model results observing the distal outcome of TerraNova score.

suggests that there is little variance being explained at the student level for this

label.

11.6.1 Observing Distal Student Performance

The final model utilizing the extracted factors underlying the detectors of student

knowledge, behavior, and affect observes the distal outcome of TerraNova score.

Again, this score is an end-of-year assessment that was completed by students out-

side the learning platform of ASSISTments. As such, it acts as a truly external

measure on which to explore the identified constructs. While the previous set of

models observed shorter-term outcomes, it is likely unreasonable to expect a simi-

lar model to predict end-of-year test scores at an individual problem level without

capturing noise. As such, the extracted estimates are aggregated to the student

level. In the case of the two bimodal factors, each are separated and aggregated

separately as a “high” and “low” measure when averaged across each student’s se-

quence of problems solved over the year. A 2-level linear model is fit to the data

observing class as the second level (as the first level now represents a single student).

Each of the aggregated factors as well as TerraNova score are z-scored to produce

standardized coefficient estimates.
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The results of this model are reported in Table 11.9. From this, it is found that

only two of the aggregated factors are found to be statistically reliable. The values of

low negative affect and low carelessness each exhibit negative correlations with the

student TerraNova score. The estimate of knowledge is also suggestively positively

related, with a p-value that is just above the threshold of 0.05. Overall, the fixed

effects (i.e. the factors) account for only 2% of the variance as illustrated by the R2

value, while an additional 60% is explained by the class level of the model.

11.7 Conclusions

Across the several analyses described in this work, the constructs of Negative Af-

fect, Carelessness, and, to a lesser degree, Knowledge were consistently found to be

predictive of student learning outcomes. Disengagement, while found to be reliable

predictors of most observed outcomes, appeared to have the strongest relationship

with early stopout and a negative relationship with measures of higher persistence

such as wheel spinning. From these relationships, the results support the idea that

these constructs are distinguishing productive and unproductive aspects of persis-

tence. Future work can take these analyses a step further to look at interactions

across these factors and identify potential groupings of students.

The results reported in Tables 11.8 and 11.9 do identify reliable relationships

between the identified factors and commonly-observed outcomes, but in many cases

there is a considerable proportion of variance left unexplained by the models. Fur-

thermore, the outcomes of unproductive perseverance (i.e. wheel spinning and early

stopout) exhibited a large proportion of variance explained at the student-level. The

constructs explored in this work emerged from observing granular student interac-

tions with the system. Future work could also focus on exploring learning constructs
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that emerge at various levels of granularity in regard to the outcomes that are mea-

sured. In addition to this, as it was found that the factors underlying the observed

outcomes did not generalize well to the final dataset, future work could focus on

identifying teacher-level factors that may influence how such outcomes measure un-

derlying factors.

This work represents an initial step toward furthering our understanding of the

constructs of learning that emerge from the application of data-driven methods.

Identifying and measuring the relationship between these constructs can help to

guide future research toward developing interventions to address particular unpro-

ductive learning practices. Similarly, analyses such as those applied in this work

help to identify how to best measure these learning constructs in order to look for

differences that may occur from the application and deployment of directed learning

behaviors.
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Figure SD1: The homework assignment and existing item report used in class to review homework. The assignment has two problems; problem 1 is 
a straightforward systems of equations problem and problem 2 has five parts. Note the last problem, 2e, is an open response question (typical for 
EngageNY). The item report shows the results from 8 students. Take note of the common wrong answer of 0 for #1.



Figure SD2: The dialogue-initiation-interface. This is where the teacher goes to start a dialogue. For the 8 students the context-builder will select a 
student diagnosis (column 2) and then the dialogue-builder will select messages and actions for the teacher to select. The teacher can click on ‘show’ 
to see what content led to the diagnosis. The first message will be selected as a default. If the teacher decides not to send a dialogue start, then the 
teacher will be asked to “tell us why” (column 3) so the system can learn from the teachers decision. 



Figure SD3: After the teacher selects the message and action from the dialogue-initiation-interface the dialogue will begin. There will be a standard 
template for this dialogue start (center). It will include the student's name, a description of the context (in this example it is the series of actions the 
student performed as they did their homework that allowed DRIVER-SEAT to diagnose them as confused), the message, and the action required of 
the student. For Research Question 1, when we want to test to see if students respond better to dialogue starts with a personal teacher constructed 
format (left) or a generic computer constructed format (right). 



Figure SD4: In Stage 2 of the development process in year 1, the system will give suggestions of 3 diagnoses from which the teacher will choose one 
to focus. In this case, the teacher decided that Gaming was the most important diagnosis for Gangi. For Lalit, the teacher selected to focus on the 
evidence of learning and for Courtney the teacher opted for the default, confused. 



Figure SD5: In Stage 3 of the development process in year 1, the system will automatically select a diagnosis accompanied by evidence, but then the 
system will ask the teacher to select an action. In this example the teacher kept the suggestions for Lalit and Courtney, but changed the suggestion 
for Gangi. 
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