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Abstract 

Because many software systems used for business today are considered legacy 

systems, the need for software evolution techniques has never been greater.  We 

propose a novel evolution methodology for legacy systems that integrates the 

concepts of features, regression testing, and Component-Based Software 

Engineering (CBSE).  Regression test suites are untapped resources that contain 

important information about the features of a software system. By exercising each 

feature with its associated test cases using code profilers and similar tools, code 

can be located and refactored to create components. The unique combination of 

Feature Engineering and CBSE makes it possible for a legacy system to be 

modernized quickly and affordably. We develop a new framework to evolve 

legacy software that maps the features to fine-grained software components 

refactored from their feature implementation.  In this dissertation, we make the 

following contributions: First, a new methodology to evolve legacy code is 

developed that improves the maintainability of evolved legacy systems. Second, 

the technique describes a clear understanding between features and functionality, 

and relationships among features using our feature model.  Third, the 

methodology provides guidelines to construct feature-based reusable components 

using our fine-grained component model.  Fourth, we bridge the complexity gap 

by identifying feature-based test cases and developing feature-based reusable 

components.  We show how to reuse existing tools to aid the evolution of legacy 

systems rather than re-writing special purpose tools for program slicing and 

requirement management.  We have validated our approach on the evolution of a 

real-world legacy system. By applying this methodology, American Financial 

Systems, Inc. (AFS), has successfully restructured its enterprise legacy system 

and reduced the costs of future maintenance.  
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1 Introduction 

Increasingly, organizations view their software assets as investments that grow in 

value rather than liabilities whose value depreciates over time [97]. Organizations 

are under tremendous pressure to evolve their existing systems to better respond 

to marketplace need and stay competitive. This constant pressure to evolve is 

driven by escalating expectations of the customer for new enterprise standards, 

new products and system features, and improved performance. Evolution is also 

necessary to cope with endless new software releases.  

We borrow the definition of legacy system from [114]:  

Any software system that is currently in operation is considered legacy 

system.  

Legacy systems provide the support for businesses around the world. They 

manage vast volumes of data while supporting millions of transactions each day. 

The National Science Foundation [54] estimates that legacy systems capture and 

manage 75% of the world’s data and that by virtue of their size and importance to 

business, they consume at least 80% of available information technology 

resources.  To effectively evolve legacy systems in such a rapidly changing 

environment organizations must answer two questions [31]: What are the critical 

success factors of system evolution? How can a system be evolved without 

adversely affecting operations and revenue?   
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When legacy systems are small and involve only a fraction of an organization’s 

activities, it is possible to consider redesigning and replacing a system or 

subsystem that no longer satisfies that organization’s needs.  However, legacy 

systems that have grown to be the main source of revenue are often substantial 

investments whose replacement is more difficult, if not impossible. These legacy 

systems provide a competitive advantage to many organizations but are expensive 

to maintain. Thus, these organizations face a dilemma - they cannot afford lose 

their competitive advantage nor can they ignore the high maintenance cost.  At the 

same time, organizations are under pressure to reduce costs.  This dissertation is 

motivated by these pressing business concerns.   

1.1 Managing Legacy Systems 

There are many strategies for managing legacy systems [98][64][83]: 

1.1.1 Status quo  

Do nothing.  This is the easiest option and, in reality, most often chosen by an 

organization. However, this option is not attractive to many organizations because 

it will not improve their competitive edge in the future and leaves legacy systems 

maintenance costs high. 

1.1.2 Rewrite legacy system  

Sometimes an organization will embrace new development and deployment 

technology to rewrite the legacy system.  Apart from using the legacy system to 

be retired as a “design guide”, this option does not leverage off the organization’s 
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substantial investment in the prior system. Redevelopment of large “mission 

critical” legacy systems takes a long time, costs a lot of money, and carries a high 

degree of risk of failure.  In most cases, it is very difficult to build a strong 

business case for the redevelopment of a legacy system. 

1.1.3 Replace legacy system   

Replacing a legacy system with another existing solution can be a practical option 

when the proposed solution provides a good functional fit to the business 

requirements of an organization. Rarely is this the case, however. Most often, the 

existing solution requires considerable enhancement and customization in order 

for it to meet business needs. This customization is generally difficult and 

expensive. Alternatively, at the loss of competitive advantage, the organization 

can change its business practices to fit the proposed solution, which may be a 

risky proposition.  Replacement does not leverage off the current investment in 

the legacy system(s) to be retired.  Finally, adopting a proposed solution can be a 

lengthy and expensive exercise. 

1.1.4 Incrementally evolve legacy system   

Incremental evolution of legacy systems focuses on problems that are most visible 

to end-users.  Rather than replacing or rewriting the entire legacy system, 

incremental evolution directly “fixes” the end-users’ problems “one at a time”.  

This option leverages off current investment because it provides a smooth 

transition path to new technology and infrastructure in a timely and cost-effective 
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manner.  Importantly, incremental evolution supports the needs of organizations 

to continually provide stability and accuracy. Incremental evolution is the only 

choice left to many organizations that wish to continue to receive revenue from 

software systems and stay competitive. However, many incremental evolution 

initiatives do not sufficiently incorporate the end-user’s point of reference (or 

features) [111]; such lack of consideration can leave end-users unsatisfied and 

frustrated because they may not see the benefit of these initiatives.  

1.1.5 Summary   

Analyzing all options at hand to manage legacy systems it is clear that 

incremental evolution is the best because it considers perspectives of the end-

user’s and all stakeholders point of view.  Thus, we strongly believe that 

incrementally evolving legacy system is the most efficient option for managing 

legacy system. 

1.2 Problem description 

Researchers [116][82][47][3][4] have identified the two domains around which 

the entire field of software engineering revolves: the problem domain and the 

solution domain. End-users interact with the system by inputting their information 

in the form of input files that the system uses or through a direct user interface. 

Because these users are directly concerned with system features, their perspective 

is always in the problem domain. Developers (and the software process team) are 

primarily concerned with creating and maintaining software development life 
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cycle artifacts such as components; their perspective is therefore firmly rooted in 

the solution domain.  

Figure 1.1: An Incremental Evolution Methodology is Needed.  

 

A major source of difficulty in developing, delivering, and evolving successful 

software is the complexity gap that exists between the problem and the solution 

domains (as termed by Raccoon [82]) as shown in Figure 1.1. To view evolution 

from a single domain upsets the delicate balance between the two domains. 

Evolution focused solely on the problem domain may lead to changes that 

degrade the structure of the original code; similarly, evolution based solely on 

technical merits could create changes unacceptable to end-users. External 

evolutionary pressures drive the implementation of new enhancements and 

functionality by causing developers to focus on implementing the business logic 

that is directly visible to end-users, such as a menu item that spell checks a 
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document in a word processing application. While responding to external 

pressures, developers often bypass standard processes to meet project deadlines; 

this results in inferior coding, such as adding a global variable when one is not 

required. Internal evolutionary pressures force the developers to either restructure 

or refactor their code so the future enhancement or maintenance becomes 

manageable and cost-effective. During such evolution, the code is refactored, and 

protocols and standards are reestablished. Furthermore, the end-users should 

always benefit from the evolution initiatives.   

The repeated modification of a legacy system has a cumulative effect that 

increases system complexity because of lack of documentation and implicit 

communication between the system’s components. Eventually, existing 

information systems become too fragile to modify and too important to discard; 

organizations must consider modernizing these legacy systems so that they remain 

viable. Incremental evolution offers an approach to transforming a legacy system 

into one that can evolve in a disciplined manner. To be successful, evolution 

requires insights from software, managerial, and economic perspectives [114].  

Thus, businesses must sponsor and endorse evolution initiatives.  Such 

endorsement becomes easier if the end-user’s perspective is kept as primary focus 

of the evolution initiative.  Yet, another way to secure organization’s endorsement 

is to show that the evolution initiative can result in reusable software assets.  In 

cases where businesses have multiple product lines, it is desirable to leverage 
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evolution initiatives from one legacy system to another [87].  One such way of 

leveraging is sharing reusable software assets such as components.  

Simply stated, the problem is that businesses are looking for an incremental 

evolution methodology that can reduce future maintenance cost, bridge the 

complexity gap and leverage evolution results across product lines, without 

disrupting their operations. 

1.3 Motivation 

We are motivated by the following three objectives: 

• Evolve system features into components to reduce future maintenance 

costs. 

• Reuse evolved components in multiple product lines. 

• Reduce the complexity gap between user expectations and software 

functionality. 

1.3.1 Reduce future maintenance costs 

One objective of this research is to reduce the maintenance cost of features that 

are hard to maintain.  We identify these system features with the help of end-

users, locate their implementation within the source code and then evolve them 

into reusable units.  In one of the first dissertations on Feature Engineering, 

Turner [25] mentioned the possibility of using Feature Engineering for software 

evolution, but he was focused on using features for configuration management. 

To the best of our knowledge, there has been no attempt to use Feature 



 

 

8

Engineering as the basis for identifying parts of legacy software for evolution 

purposes.  We have developed techniques for identifying evolvable features with 

high maintenance costs to be refactored into reusable software components.   In 

the accompanying case study discussed in detail in Chapter 6 for this dissertation, 

we show that our methodology reduces maintenance costs. 

1.3.2 Reuse components in multiple product lines 

The Internet makes it possible for an organization to attract potential customers 

from the global marketplace by breaking down communication barriers. The 

Internet also increases the need to evolve and refactor legacy systems to new 

hardware and software development platforms.  Evolving a legacy software 

system to become web-enabled is a challenging task for numerous reasons, 

including poor documentation and high maintenance costs. One challenge for 

evolving a legacy system into a web-enabled system is the need to provide 

continuous availability of the system (and thus its revenue-generating income) 

during the transition. Often organizations must support the two product lines 

(desktop and the Internet) longer than expected, so there is a need for an evolution 

methodology that reduces the maintenance cost during the migration period. 

1.3.3 Reduce the complexity gap 

End-users interact with the system and are directly concerned with its 

functionality; their perspective is always in the problem domain.  Developers (and 

the rest of the software process team) are concerned with the creation and 
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maintenance of software development life cycle artifacts such as components and 

executables; their perspective is rooted in the solution domain.  One of the effects 

of this gap is that changes are often required to features after software is released 

thereby increasing maintenance costs.  We are motivated to bridge the complexity 

gap by mapping problem-domain features and the solution-domain functions in 

the source code. 

1.4 Our Approach 

Various domain analysis and requirements engineering techniques push the end-

user’s perspective into the solution domain by either working toward design 

[77][22][110] or through scenario and use cases [47][85][36]. These solutions 

help the developers understand how a system is to be used, but they do not 

address the solution domain concerns of software evolution, configuration 

management, testing, and documentation. In addition, these techniques certainly 

do not address the important issue of reducing the complexity gap [82].  

Similarly, many software evolution techniques exist [97][111][64][105][80], but 

none considered Feature Engineering as a software evolution driver.  This is a 

serious oversight because Feature Engineering is a promising discipline that can 

help to reduce the complexity gap between user expectations and software 

functionality.  The techniques of software evolution and reengineering either 

focus on entire system rewrites [117] or using reverse reengineering for 

comprehension purposes [113] rather than incrementally evolving the legacy 
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system.  There are other techniques [111][114][64][105][80], but they all explore 

the solution domain only. There has been no attempt made to use Feature 

Engineering as the basis for identifying parts of legacy software for evolution 

purposes. Current software evolution and reengineering techniques continue to 

work in the solution domain.  The important problem of linking the problem 

domain and the solution domain for the purposes of evolution remains unsolved.   

Component-Based Software Engineering (CBSE) offers promising techniques to 

solve the problem of component construction [2], but CBSE has not yet been 

connected to the features that are present in a system; creating this connection 

explicitly is one of the contributions of this dissertation.  This connection, in 

essence, is a mapping problem. The functionality provided by CBSE solutions 

must be mapped to the features available to the end-user.  

We have developed a novel evolution methodology that integrates the concepts of 

features, regression tests, and CBSE. Regression test suites are untapped 

resources that contain important information about the features for a software 

system.  CBSE is one of the best techniques for engineering and reengineering 

modular systems.  Combining these two disciplines makes it possible for a legacy 

system to be modernized quickly and affordably.  By combining Feature 

Engineering and CBSE to the problem of software evolution, this dissertation will 

answer the following questions:  

1. How can features be used to create components in a legacy system? 
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2. How can the complexity gap be reduced using features and components? 

3. What is a feature and how is a feature related to functions within the 

source code? 

Our methodology answers these questions based on two important goals: (G1) 

Identify system features that have already exhibited disproportionate maintenance 

costs and are likely to change. (G2) Extract fine-grained components from these 

features within the legacy system to share between the original desktop platform 

and a planned web application. 
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Figure 1.2: The Big Picture. 

1.5 Scope 

The overall scope of this dissertation is summarized in Figure 1.2. Our work 

revolves around four areas of software engineering, namely requirements 

engineering, software maintenance, CBSE, and general software engineering 

practice.  Specifically, we use ideas from Feature Engineering, Testing, and 

CBSE to develop an evolution methodology.  Our evolution methodology consists 

of a feature model and component model and is supported by various software 
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engineering practices such code coverage tools.  Furthermore, we provide a solid 

foundation for these models using relational calculus and first order logic.  The 

methodology proposed in this dissertation does not reduce the complexity of a 

legacy system, but it will help to clarify that complexity by explicitly defining 

component interfaces.  

To further increase productivity and demonstrate the immediate usability of the 

techniques outlined above, we use several tools that are already available in the 

marketplace, in particular, the NuMega ® True Time Code Profiler [56]. 

While several disciplines of software engineering are related to this dissertation, 

we are primarily concerned with developing a software evolution methodology 

using Feature Engineering and CBSE. This dissertation will not address all the 

issues associated with requirements engineering, CBSE, Testing or Configuration 

Management.  The two main areas of software engineering that are directly 

addressed through this methodology are: 

1.5.1 Locating system features 

Our methodology enables developers to trace functions within the source code 

that implement particular feature(s) by running regression test cases.  We 

incorporate ideas from Feature Engineering, regression test cases and dynamic 

slicing. This feature-function mapping can be used for program understanding by 

identifying and associating structures that were previously ambiguous.  However, 

program understanding is outside the scope of our work. Likewise, our 
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dissertation is not about issues in testing and dynamic slicing, we simply use 

regression test cases to locate feature-based program slices. 

1.5.2 Evolving features into components:   

Once feature implementations are located, we evolve them into components using 

refactoring and CBSE techniques.  We use Fowler’s [86] definition of refactoring 

code: “a change made to the internal structure of software to make it easier to 

understand and cheaper to modify without changing its observable behavior.”  

Our methodology is novel because we leverage off existing artifacts such as test 

cases and code profiling utilities.  While we do not address the issue of 

architectural evolution, our methodology does produce better-structured 

component-based code that can be evolved/maintained easily.  Likewise, 

refactoring alone cannot be used to evolve a system.  While we make use of some 

common refactoring techniques, this dissertation is not simply about refactoring 

code.  The methodology further promotes scheduled evolution in a systematic 

way by clarifying the structure of program evolution, and its results are 

measurable and can be validated.  

1.6 Assumptions 

Our methodology has three basic assumptions.  First, we assume that the source 

code for the legacy system to be evolved is available and that it was developed 

using a modern programming language such as Visual Basic, C++, Java, or 

Fortran.  The reason for this assumption is that we use code-profiling tools for 
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tracing the source that implements a particular feature.  If these code-profiling 

tools are unavailable, they could be developed, but this is outside the scope of this 

dissertation. Second, we assume that the legacy system has regression test suites. 

These regression test suites are untapped resources from the evolution point of 

view because they can be used to identify the features most important to the end-

users.   Third, we assume that some domain knowledge and expertise is available, 

although this is not a binding constraint. The purpose of this dissertation is not to 

explore domain analysis; however, as a part of related work, several domain 

analysis techniques are discussed. 

This methodology is not intended for all legacy systems, neither will all software 

evolution initiatives benefit from it. However, legacy systems that have kept up 

with their compiler upgrades and maintained over a decade or more will greatly 

benefit.  We will discuss the characteristics of legacy systems and software 

processes that can make use of this methodology and benefit in Chapter 2. 

1.7 Scope and Contributions 

The overall scope of this dissertation is sketched in Figure 1.2 and the 

methodology is summarized in Figure 2.1. The major contribution of this 

dissertation is the evolution methodology that integrates Feature Engineering, 

software evolution, and CBSE.  To validate our methodology, we examine the 

evolution of a real-world legacy system, American Financial Systems (AFS) 

Master System. Information about the legacy system’s features is obtained 
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through interviews with testers, project managers and the end-users of the system.  

Researchers use refactoring to isolate the code associated with extracted features 

to create components. These components are then inserted back into the legacy 

system to continue functioning to verify the results of this technique.  Our results 

show an innovative use of existing regression test suites and give extra incentives 

for designing and maintaining such test suites. In addition to verifying the 

integrity of the system, regression test suites can be used to guide refactoring 

efforts during software evolution to create reusable software assets (components) 

within the enterprise.    

In this dissertation, we make the following contributions: First, a new 

methodology to evolve legacy code is developed that improves the maintainability 

by reducing maintenance costs of evolved legacy systems. Second, the technique 

describes a clear understanding between features and functionality, and 

relationships among features using our feature model. Understanding the 

interactions and relationships among features can bridge the complexity gap and 

aid in evolving feature(s) with high maintenance costs. Third, the methodology 

provides guidelines to construct feature-based reusable components using our 

fine-grained component model.  These fine-grained components can then be 

reused across multiple product lines.   Fourth, we bridge the complexity gap by 

identifying feature-based test cases and developing feature-based reusable 



 

 

17

components.  Bridging this gap is important as it aligns user expectations and 

software functionality. 

1.8 Road Map 

The rest of the dissertation is organized as follows:  

Chapter 1 outlines the problem and the scope of this work. Chapter 2 provides an 

overview of our methodology and discusses how the Internet plays an important 

role for reusing components.  We also discuss the role of refactoring and 

regression test cases with respect to evolution.   Chapter 3 presents a detailed 

analysis of related work.  We compare our work to other evolution methodologies 

and techniques to locate program features.  Chapter 4 provides the details on our 

feature model, fine-grained component model, budget analysis model, and the 

formal model.  We also discuss Feature Engineering and its role in the evolution 

of legacy systems. Feature Engineering addresses the problem of the complexity 

gap in an explicit way [26]. Our feature model captures the relationships between 

features and functionality. The chapter also addresses traceability and how it can 

be used for program understanding within the context of Feature Engineering.  

Our fine-grained component model shows how features can be extracted to create 

fine-grained components.  The budget analysis model provides elements that are 

required to show cost benefit of our evolution methodology.  Chapter 5 provides 

an intuitive example to show the power of our methodology using a feature-based 

evolution manager utility that assists in identifying a fine-grained component’s 
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properties and methods. Chapter 6 contains a case study of product evolution in a 

software firm using our evolution methodology.  Chapter 7 provides conclusions, 

lessons learned, and future work.   
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2 Methodology Overview 

In this chapter, we present an overview of our methodology and discuss the 

factors that influenced its criteria, our methodology will be described in detail in 

Chapter 4.   Here we briefly outline basic concepts and models that our 

methodology uses. 

Figure 2.1: Evolution Methodology.  

2.1 Methodology steps 

Any evolution task must first examine the reasons that trigger evolution of a 

legacy system; these reasons have been well documented in [97][114] and from 

personal experience as a software engineer for over 10 years, the author agrees 

that these reasons are sound.  We start with recommended changes to end-users 



 

 

20

features.  The reasons for evolving the system are then mapped to their associated 

features within the system.  The system features are then identified and the code 

that implements each feature is identified.  The code is then extracted to create a 

fine-grained component.  The fine-grained component is inserted back into the 

legacy system to validate results in three ways. First, we match the output of the 

regression tests after the insertion with original output. Second, we measure the 

cost of maintaining the feature after evolution and compare that to the prior costs 

(hopefully showing a cost-benefit). Third, the newly created components are 

reused in other product lines.  The outline of our methodology is shown in Figure 

2.1. Specifically, there are ten steps to our methodology.   

2.1.1 Evolution reasons  

The end-users work with testers and project managers to report the problems they 

are facing with a particular feature or a group of features.  If features are common 

among product lines then they are likely be candidates for reuse. 

2.1.2 Identify features with problems 

The testers, project managers, and developers work together to identify the 

underlying feature that is the source of the maintenance problem(s). 

2.1.3 Map test cases to features 

Testers and end-users work together to select test cases from the regression test 

suite for the feature(s) with problem(s). This step also compares the execution 
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trace of the selected test case with the entire regression test suite to ensure that we 

do not miss any critical test cases that may be needed.  

2.1.4 Map features to functions 

Selected test cases are executed using code profilers to locate source code that 

implements features.  Features are well known for being “cross-cutting” through 

software [87].  Cross-cutting means that a function can implement many features 

and these features share the same code/data.  A feature may be implemented in 

many functions and share code/data with other features.  The close relationship 

between features and functions means that features will interact with each other.  

This interaction is also defined as the feature-interaction problem in the literature 

[87][116].  Our feature model helps to identify where features are located within 

the legacy system, how features are related to other features, and how they 

interact with each other. 

2.1.5 Identify feature implementation and CORE 

We analyze the data from the code profiler and the execution traces of the 

regression test cases.  Using heuristics, we then decide if creating components 

will in fact benefit other product lines as well as the existing legacy system.  

While a detailed description of the feature model and heuristics is provided in 

Section 4.1.5, we briefly present in Table 2.1 the properties a feature should 

posses to be a candidate for evolution. 
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Properties Description 
Visible to end-user End-user must be able to execute the test case himself and see 

the problems 
Testable Testers must have test cases in the regression test suite to test 

the feature 
Exhibit recurring problems Fixing feature inadvertently affects other features  
High maintenance cost Due to recurring problems and unwanted side affects the 

feature’s maintenance cost is higher 
Feature exists in other product 
line 

Reuse can be leveraged 

Table 2.1: Properties of Evolvable Features. 

 

2.1.6 Refactor and create components 

Once the location of a feature within the code is identified and we decide to 

extract the feature implementation into a component, we must refactor the code to 

create component. Our fine-grained component model provides guidelines to 

extract feature specific code/data.  This code/data is then encapsulated in a fine-

grained component.  A detailed description of the feature model is provided in 

Section 4.1.5.  

2.1.7 Plug the component in the legacy system  

The developers integrate the components created in Step 2.1.6 in the target legacy 

system.  Many common integration techniques can be used for this purpose. 

2.1.8 Verify results  

The testers ensure that the stability of the newly integrated system is maintained 

and that no side effects are introduced.  The performance of the system is also 

compared.  This step usually results in running a full regression test. 
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2.1.9 Reuse 

This is similar to Step 2.1.7 except that integration is now performed in other 

product lines of the organization that share the feature that we have evolved. 

2.1.10 Measure results 

The project manager works with testers and the developers to use Budget Analysis 

to report results to end-users and management.  We show how maintenance costs 

of the feature is reduced and how these feature-based components are reused 

across product lines. The budget analysis presents the cost and the benefit of 

applying the methodology. 

2.2 Factors affecting methodology 

Although our methodology is programming language-independent and does not 

depend on specific code profiler tools, several factors affect our methodology.  

These factors are as follows: uniqueness of legacy system, role of the Internet in 

evolution, regression testing process, code coverage tools and refactoring 

techniques. 

2.2.1 Each legacy system is unique 

In theory, our methodology is generic and can be applied to any legacy that meets 

the list of assumptions discussed in Section 1.6; however we have only applied 

this methodology to one large industrial sized application.  As we describe this 

legacy system throughout this dissertation, we hope to convince the reader that 

our approach remains applicable to numerous other systems. 
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We now provide a brief description of the legacy system we used as our case 

study. The legacy system used is called The Master System (AMS) a product of 

American Financial Systems, Inc. (AFS).  AFS, a small (60 employees) software 

firm, develops software for the Corporate Owned Life Insurance (COLI) market.  

AFS originally developed AMS in Microsoft DOS BASIC to integrate life 

insurance and executive benefits using mathematical and financial modeling.  

AFS evolved AMS from its original DOS version to the more modern Microsoft 

Windows® operating system.  Currently, AMS uses Microsoft Visual Basic 6.0 

®.  Appendix E contains an overview of the AMS architecture.  There are about 

500,000 lines of code in AMS.  AMS is divided into the three engines described 

in Appendix E.  The evolution methodology was applied to the Input Engine with 

a team of one project manager, one tester, and one developer. 

There are several benefits in using the above-mentioned legacy system for this 

case study. First, there is historical data available on the system’s maintenance 

costs, in terms of upgrades and evolution.  This data will be used to validate 

results from the applied methodology.  Second, although the tools and 

methodology used are language-independent, our use of a VB case study means 

that other legacy systems in VB can immediately benefit from our results.  

According to Microsoft, there are about 4 million Visual Basic developers 

worldwide as of December 2001 [69].  Third, AFS has a mature software process 

where the project manager, tester, and developer work together to manage a 
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software release.  Table 2.2 summarizes the characteristics of the legacy code to 

which the methodology was applied. 

Characteristics Description 
1. Age of target legacy system  14 years  
2. Lines of code 500,700  
3. Lines of code implementing feature being 
evolved 

12,000 

4. Size of the project team  One developer, one tester, and one project 
manager 

5. Size of production team 30 
6. Programming language  Microsoft Visual Basic™ 6.0 
7. Compile time 1 hour 
8. Runtime environment Windows desktop OS (9.x to 2000) 
9. Version control software  Microsoft Source Safe™ 6.0 
10. Product lines AMS, AMS-WEB, DTS, DTS-WEB, SDEV 
11. Software Process Mature, with ability to provide past maintenance 

cost and track current costs per release per 
individual 

12. Past evolution record of target legacy system System was kept up with compiler and OS 
upgrades.  It is a desktop system used by over 
5000 end-users and many features are added per 
year 

13. Industry Financial Services 
14. Regression Test Time 3 days 

Table 2.2: Legacy System Characteristics where the Methodology is Applied. 

 

2.2.2 Role of the Internet 

There is an increasing need to evolve and refactor legacy systems to new 

hardware and software development paradigms [115][104][37] such as the 

Internet because the Internet makes it possible for an organization to attract 

potential customers from the global marketplace by breaking down 

communication barriers. Agarwal and Mishra identified that web-enabling a 

legacy system requires a combination of approaches, such as redevelopment, 

wrapping, evolution, reuse, component-off-the-shelf (COTS) integration, and 
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configuration management [104].  One challenge for evolving a legacy system to 

become web-enabled is the need to provide continuous availability of the system 

(and thus its revenue-generating income) during the transition.  For example, it is 

quite natural to continue to support a desktop version of application while its web 

counterpart is first launched.  Thus, it is inevitable that organizations will 

maintain two product lines for an indefinite time-period because the time-period 

to migrate may be longer than expected.  It is difficult for these organizations to 

justify the cost for maintaining more than one platform to the end-users.  Thus, 

these organizations need an evolution methodology to help them reduce the 

maintenance cost during the migration period.   One way to reduce this cost is to 

share components between the two versions of the application during and post 

migration (as shown in  

Figure 2.2). Reusing components between the two platforms raises several 

interesting issues such as configuration management and deployment as shown in  

Figure 2.2.  A detailed analysis of which components can be reused along with 

platform issues is provided in Chapter 6.   
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Figure 2.2: Component Sharing by Two Product Lines. 

 

2.2.3 Regression Testing Process 

Our methodology depends on regression test cases and a robust regression testing 

process.  Regression testing has been extensively studied by researchers 

[46][127][48][41][40] from a theoretical point of view.  Their theories show how 

to minimize and prioritize test cases to reduce the time of execution of the 

regression test suite.  Researchers have also analyzed the source code and 

identified the test cases that should be part of the regression test suite in order to 

maximize the code coverage. Although test case minimization, prioritization and 

automatic-creation is important, we found that organizations primarily use 

regression test cases to measure the stability of a legacy system from one version 

to another.   To the best of our knowledge there has been no investigation on 
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applying regression testing in industrial environments specifically for 

evolutionary reasons.  Some of the important issues mentioned in [11]: 

• Regression testing is used extensively.  In fact, other than functional 

testing (or black-box testing) and software inspection, regression testing is 

the most commonly used software testing technique. 

• The frequent and extensive use of regression testing has led companies to 

develop in-house regression testing tools to automate the process.   

• In some companies, all existing test cases are rerun in regression testing.  

In other words, minimizing test cases for rerun has not been a critical issue 

for these companies.   

• New test cases are added to the regression test suite to reflect defects 

previously identified by end-users. 

• End-users often apply their own regression test cases when they receive a 

new version of a system to ensure proper functioning of their favored 

features.  This is a particularly important observation for our research 

because we analyze the regression test cases to help identify the 

implementation of system features in the code.     

Different companies use different processes to develop and maintain software, 

such as the waterfall model and the spiral model.  However, many companies [14] 

along with AFS follow certain steps in regression testing as shown in Table 2.3: 
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Normal 
 

Description 

1. Modification request An issue is written when a defect is found in the system 
2. Source code changes The defect fix may require source code change 
3. Test case selection The fix is confirmed by use of test case(s) 
4. Execution of test cases Test cases are included in the regression run and are executed 
5. Examine test results Results from regression are analyzed 
6. Failure identification Test cases which fail are identified 
7. Fault migration A further fix is required by the developer 

Table 2.3: Regression Testing Process. 

 

• Modification request: When a defect is found by an end-user and verified 

by the organization, a modification request is created. 

• Source code changes: The required software artifacts (requirement 

documentation, design specifications and source code) are changed to 

reflect the modification request. 

• Test case selection: The modifications made to the software must be tested 

using test cases. Testers and Engineers work together to develop test cases 

to exercise the modified functionality.  The selection of test cases is often 

a manual, analytical, iterative, and a time-consuming process.  The goal in 

this step is to obtain the right test cases rather than minimizing the number 

of test cases.  

• Execution of test cases: Test cases are scheduled to run.  Since the number 

of test-case are often large, this step is usually automated in the form of 

batch mode operation that involves little or no user interaction.  
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• Examine the test results: The results from one version of the software are 

compared to a previous version to ensure that the changes included in a 

given version do not disturb the stability of the software in previous 

versions.  In the case of new functionality, the results must be manually 

verified. 

• Failure identification and fault mitigation: If the source code is suspected 

to be faulty, the developer examines and fixes the source code that caused 

the test case(s) to fail.  In case of failure of the new functionality, this step 

often demands that the requirement and design specifications be reviewed 

and possibly modified. 

Table 2.4 summarizes the requirements of a regression testing process.  Figure 2.3 

shows how the system is run in a batch mode.  Essentially, the steps are as 

following: 

• The list of test cases to be executed are stored in a batch script file 

• The system is invoked via its batch interface 

• The test cases are executed and system reads test cases information from a 

predefined data source 

• The system processes some initialization functions such as connection to 

the database, paint screens and set global variables 
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• The test cases execute the features that they represent and store the output 

to an external ASCII text file.  This output can be compared to the prior 

version’s execution to measure stability 

• The system shuts down and executes cleanup tasks such as resetting the 

global variables and closing the database connections  

Properties Description 
Availability of regression test suite Regression test suite is used to measure stability of 

the system from one version to another.  We assume 
that regression test suites are available. 

Ability to identify feature-specific test 
cases 

Usually testers or project managers have this 
information. 

Command-line execution of legacy system Executing the legacy system with command-line 
options allows the system to execute the test cases 
that belong to the regression test suite the system in 
a batch mode thereby saving time. 

Ability to output results in an ASCII text 
file 

Using command-line option to execute the output of 
the system should be stored in an ASCII text file. 

Ability to compare text files from one 
version to another 

The output from one version can be compared to 
another to identify any unexpected changes. 

Table 2.4: Properties of Regression Testing Procedures. 

 

Running the system in a batch mode is a sign of a mature system because the 

system must be programmed to accept test case data in a command line interface.  

However, this interface is an efficient way to test the system and we recommend 

that a legacy system have such functionality.  Many times the test cases may not 

be readily available in database or a file but are either manually inputted or an 

automated system may not be in place.  Our methodology can still be applied in 

the absence of the batch interface or an automated testing system in place by 

manually entering the input data and executing the system one test case at a time.  
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Figure 2.3: Running the System in Batch Mode. 

   

As we can see, legacy systems undergo a fair amount of testing and they have a 

rich set of regression test suites and testing in place.  While the nature and details 

of regression testing will vary from system to system, and organization to 

organization, our methodology is independent of the actual details.  The sole 

dependence is on the availability of test suites.  If meta-data about the test suites is 

available, our methodology will be more powerful and precise.  Appendix C 

describes the AMS regression-testing tool and its batch capability in detail. 

2.2.4 Source Code Profilers and Coverage Tools 

Code coverage analysis is the process of finding areas of a program not exercised 

by a set of test cases, creating additional test cases to increase coverage, and 

determining a quantitative measure of code coverage.  A code coverage analyzer 
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automates this process.  A profiler application provides information about which 

lines actually run, how many times a line is run, duration, and variable reference-

use analysis. Coverage and profiling enable a developer to identify problem areas 

in an application, especially dead code and performance bottlenecks.  Table 2.5 

provides a list of features in currently available commercial profiler and coverage 

tools; most contemporary tools are able to provide the data needed for our 

methodology.  The methodology can easily be tailored to use any code profiling 

tool that provides the required information in Table 2.5. 

 

Properties Description 
Coverage percentage Several commercial products provide this data 

when the tool is ran with input data.  It 
represents the percentage of lines covered 
within a given function. 

Line numbers covered Line numbers are important because our 
methodology uses them in identifying which 
lines are covered. 

Call sequence of function A stack dump that the tool provides 
Number of lines per 
function 

Total number of lines per function 

Reference-use of variables This list allow us to see the location of local 
and global variables being changed 

Table 2.5: Properties of Code Coverage and Profiler Tools. 

 

2.2.5 Refactoring Techniques 

Refactoring is a disciplined process of changing a software system in such a way 

as to improve the internal structure of the code while leaving the external 

behavior unmodified.  Fowler states, refactoring is essentially “improving the 

design of the code after it has been written.” [86].  Fowler recommends 
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refactoring at three points in the coding process:  when adding functionality; when 

fixing a bug; and when evolving.  While refactoring techniques vary from project 

to project and depend on programming languages, we strongly agree with 

Fowler’s last recommendation.  We found that refactoring code into components 

in our methodology allows the developers to provide meaning to the data 

structures and functions that have lost their meaning over time.  We provide a list 

of common refactoring techniques in Appendix F that we used in our case study 

when applying the methodology.  Whichever refactoring techniques are 

applicable, the end result using our methodology is the same, namely, the creation 

of a fine-grained component. 

2.3 Summary 

Our methodology can be summarized in one sentence; by exercising each feature 

with its associated test cases using code profilers and similar tools, feature 

implementations can be located and refactored to create reusable fine-grained 

components. In this chapter, we outlined the ten-step methodology that will be 

discussed in detail in Chapter 4.  We discussed factors that affect our 

methodology and hopefully convinced readers of the general applicability of the 

methodology to numerous legacy systems. A summary of each step and their 

input and output is outlined in Table 2.6.  In Chapter 3, we discuss other research 

initiatives that are closely related to our work to show the novelty of our 

approach. 
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Input 

 
Output 

 

 
Sequential 

methodology steps 
Requirement Responsibility Deliverables Responsibility 

1. Evolution reasons 
and problem report 

Detailed textual 
description 

End-user, tester 
and project 
manager 

List of product lines 
where the feature is 
used 

Tester, project 
manager and 
developer 

2. Identify feature(s) 
with problems 

Textual 
description and 
list of product 
lines. 

Tester and project 
manager 

Map problem to 
feature(s). 

Tester and project 
manager 

3. Map feature(s) and 
test case(s) 

Map problems 
to feature(s) 

Tester and end-
user 

Select test cases from 
regression suite for 
the feature.  Analyze 
and verify test cases. 
Regression test suite 
cluster compared 
with selected test 
cases cluster. Add 
missing test cases to 
selected list 

Tester 

4. Map features to 
functions 

Selected test 
cases, code 
coverage tool 
and legacy 
system 

Developer Feature-function 
cluster, feature-
variable cluster and 
CORE functions 
report 

Developer 

5. Identify feature 
implementation and 
CORE using Feature 
Model 

Feature-
function, 
feature-variable 
cluster and 
CORE 
functions report 

Developers, tester, 
end-users and 
project manager 

Impact analysis, 
evolvable feature, 
and refactoring 
decision 

Developer 

6. Refactor and create 
components using the 
fine-grained 
component model 

Feature 
implementation
, legacy system 
and CORE 

Developer Fine-grained 
components and 
CORE library 

Developer 

7. Plug the component 
in the legacy system 

Fine-grained 
components 
and CORE 
library 

Developer Integrated legacy 
system 

Developer 

8. Verify results by 
running regression  

Integrated 
legacy system 

Developer Regression testing 
results.  Report 
problem fix. 

Tester 

9. Reuse fine-grained 
components in other 
product lines 

Fine-grained 
components, 
usage guide and 
other product 
lines 

Developers Run regression after 
integration on all 
integrated product 
lines 

Tester 

10. Measure results in 
terms of cost and 
report fix to end-users 

Past and current 
feature 
maintenance 
cost, cost to 
apply the 
methodology  

Project manager Budget analysis 
report showing the 
result of applying the 
methodology 

Project manager 

Table 2.6: Methodology Showing Input and Output of Each Step.  
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3 Related Work 

3.1 Introduction 

To date, we have found no work that incorporates features, CBSE, and regression 

test cases to evolve a legacy system. The novel combination of Feature 

Engineering and CBSE presented by this dissertation greatly benefits software 

evolution by bridging the complexity gap between the problem domain and the 

solution domain. 

There are many areas of software engineering that are related to our research: 

Software Evolution, Architectural Reconstruction, Feature Engineering, 

Product Lines, Requirements Analysis, CBSE, Program Understanding, 

Regression Testing, Separation of Concerns and AOP. We feel that work in the 

area of locating system features has most directly affected our research.  In 

Section 3.2, we analyze and document the shortcomings of existing techniques in 

the literature for locating program features.  After carefully reviewing all the 

existing techniques for locating program features, we found that there was a need 

for feature model and fine-grained component model for software evolution.  

These models will be discussed in Chapter 4.  Sections 3.3 through 3.8 present a 

broader perspective on the work from areas related to our research activities. 
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3.2 Locating Program Features 

There are known techniques [18][6][92][99] to locate program features using 

execution slices, however they are predominantly used for system debugging 

rather than evolution.  As far as identifying program features, there are four 

researchers whose work is directly related to ours. Wilde and Scully (WS) [99] 

pioneered the use of execution trace to locate the implementation of features; 

Wong et. al. (W) [125], Reps et. al. (R) [121] and Deprez and Lakhotia (DL) [71] 

developed techniques that operate on execution traces to collect information about 

features.  In this section, we compare and contrast their work relative to ours.  We 

will compare the motivation, models, techniques and applicability of each of their 

work.  Table 3.1 summarizes our findings. 

3.2.1 Motivation 

(WS) developed their technique to locate program features for the maintainers of 

the private branch telephone exchange (PBX) switch.  This switch had several 

hundred features that users could use such as ‘speed calling’ or ‘call waiting’.  

Maintainers of the PBX often needed to locate the code that implemented one of 

these features.  Their motivation is best described in one phrase, software 

reconnaissance, which implies “preliminary survey of enemy terrain” where the 

software program is considered as an enemy whose secrets must be extracted.  

The general idea of software reconnaissance is to aid developers in program 

understanding and to debug and enhance program features.  Software 
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reconnaissance can also be used to recover some requirements traceability 

information from old code.   

(W) developed a technique to identify the feature implementation for program 

understanding, debugging, and testing.  Their study reported how to apply an 

execution slice-based technique to a reliability and performance evaluator to 

identify the code that is unique to a feature, or is common to a group of features. 

Supported by χSuds tools [1], the program features in the source code are tracked 

down to files, functions and lines of code. Their study suggests that the technique 

provides software developers and maintainers with a good starting point for quick 

program understanding during debugging and testing. 

(R) described techniques to help with testing and debugging, using information 

obtained from path profiling.  They instrumented a program to collect the path 

information for an execution run. With such an instrumented program, each 

execution of the program generates a path spectrum.  Their technique compares 

path spectra from different runs of the program to identify paths in the program 

along which control diverges in the two runs.  By choosing input datasets to hold 

all factors constant but one, the divergence can be attributed to this factor.  The 

point of divergence itself may not be the cause of the underlying problem, but it 

provides a starting place for a developer to begin his/her exploration.  (R) is also 

motivated by program understanding and debugging, specifically in analyzing 

year 2000 (Y2K) problems. 
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Lastly, (DL) were successful in mapping program features to code using input 

sets.  They extended (WS)’s idea of software reconnaissance after (WS) reported 

that, “The most time consuming step, and the one most difficult to automate, is the 

preparation and running of test cases”.  (DL) present a formalism to automate 

mapping from program features to code by partitioning input-sets into invoking 

and non-invoking sets.  Although their motivation is largely theoretical, (DL) 

believe that applying their theory would be used for program understanding. 

Our methodology complements and extends the work of the four researchers 

mentioned above.  We are motivated by the three factors described in Section 1.3. 

We know the researchers have had different motivations for locating features 

implemented in the source code.  Due to these different motivations and the 

varying techniques to locate the features, they defined the research elements 

differently.   

3.2.2 Models 

The research elements that concern us most are features, functionality, test case 

and components.   

(WS) interchangeably used feature, functionalities and functional requirements 

for the end-user features. They define a feature to be anything that is testable. (W) 

defined a feature as an abstract description of a functionality given in a 

specification. (R) has no formal definition of a feature.  (DL) definitions are 

formally based on the grammar of a program; they parse the input sets of a 
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program and define features based on language syntax. While both (W) and (WS) 

consider the end-user’s perspective, neither provides any insight on evolution or 

considers the solution domain’s point of view (POV). (DL) is not practical 

because it requires formal automata to represent features, which most maintainers 

and programmers performing evolution do not have available; (DL) also avoids 

discussing the solution domain’s POV. Our approach (see Chapter 4) defines 

features in a comprehensive manner by considering both the problem and the 

solution domain.  

Our definition for feature is rooted in the problem domain by focusing on the 

requirements but shows how a feature can be used in software evolution. For 

example, a system might support a feature that performs complex calculations in 

batch mode without user interaction. To an end-user, POV this feature is a time 

saver because input can be stored in a file or a database to be used at a later time. 

At the same time, testers might employ this feature to enable regression testing 

between two versions of the system during maintenance; developers might design 

a specific set of modules to process user input without user interaction to analyze 

code coverage. 

(WS) reported that considering a subroutine (i.e., function) is not enough to 

address the feature interaction problem.  They found that a finer level of 

granularity is needed.  They solved this issue by using arc of program flow graphs 

as components.  According to their work, it is easy to produce the necessary 
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execution data using any test coverage tool that produces branch of decision 

coverage.  It is important to note that global data is not mentioned in (WS), but 

legacy systems have many global variables and usually the global data is shared 

between two or more features. Our feature model addresses the issue of shared 

global data. 

(W) was primarily interested in calculating how close one feature is to the 

program component rather than another feature. (W) presented three metrics to 

calculate relationships between feature and component namely; disparity between 

a feature and a component, the concentration of a feature in a program component 

and finally dedication of a program component to a feature.  (W) defined a  

component to be the source file where the feature was implemented.  Because 

these metrics are only an approximation, as they do not address the feature 

interaction problem directly, they simply use set theory and statistics principles to 

calculate the intersecting set between the interacting features. 

(R) follows the approach of (WS) using program graphs to solve the feature 

interaction problem.  Using path coverage from different input data sets they were 

able to identify code associated with a given feature.  They numbered the paths 

with a unique source node and sink node.  Every cycle contained one back edge, 

which can be identified using depth-first search.  Since their motivation was only 

to solve the year 2000 problem not much attention was paid to the shared global 

data or shared code.  Additionally, their approach has not been applied in 
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identifying features other than the year 2000 problem.  Their approach leaves the 

burden of relating features and program to the programmer. 

(DL) identified the feature interaction problem and labeled it as an imprecision 

due to feature coupling. Their work identified the code that is executed by 

invoking input sets vs. excluding sets; by calculating the difference between the 

two sets they determined the execution traces.  They attempted to solve the 

feature interaction problem by selecting large input sets.  They suggested that the 

best way to minimize imprecision is to execute a program with large input sets 

that invoke different combinations of features.  Using such an approach, one 

would hope that the complete implementation of each feature has been covered by 

some of the input sets.  While theoretically it is possible to minimize the 

imprecision, this solution will be problematic in cases when two or more test 

cases invoke the same set of features. 

Our solution (see Section 4.1.4) to feature interaction is rigorous and intuitive.  

We believe that it overcomes the shortcomings of the four researchers.  Unlike 

their approaches, our approach addresses the issue of global data discussed 

earlier.  In addition, our work is independent of the type of input sets selected.  

We also explore the feature-feature relationships in far more detail than the other 

researchers.  Our feature model identifies functions that implement more than one 

feature but instrumentation does not show any differences between the execution 

paths. 
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3.2.3 Technique 

Generally, all four researchers developed techniques to identify program features 

using the following generic steps: 

1. Identify or build input sets that invoke the feature. 

2. Identify or build input sets that do not invoke the feature. 

3. Execute the instrumented program with each input sets to create its 

execution trace. 

4. Classify each execution trace in the invoking category if its input sets 

invoke the feature or in the non-invoking category if it does not. 

5. Apply a method that operates on execution traces to map the feature to the 

code.  

However, when we look beyond these generic steps to the specifics of the 

researchers’ techniques, we see differences. Although there are some similarities 

between (WS) and our approach, such as the concept of CCOMPS and IICOMPS, 

these similarities remain at different level of granularities. Our model addresses 

these sets at a much finer level of detail by considering local and global variables 

(and functions) that may be shared between two or more features. (R) does not 

assign code to a feature but rather identifies the points of divergence between 

several execution traces and the programmer is responsible for determining the 

relationship between feature implementation and a feature from this divergent 

point. (W) identifies program features in C and C++ programs by running a small, 
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carefully selected set of tests. While (W) provides metrics to measure a feature’s 

relationship to the code, there is no explicit discussion of relationships among 

features.  Furthermore, (W) metrics show severe shortcomings when two or more 

features may have the same slice for different test cases. 

3.2.4 Applicability 

(WS)’s work has been realized in a tool called TraceGraph.  Two case studies on 

large-scale systems, written in ‘C’, have been reported in [78].  TraceGraph 

provides a visual display of the program's trace that allows changes in execution 

to be distinguished.  It is important to note the limitations that TraceGraph shares 

with Software Reconnaissance. First, it may only be used to locate features that 

the program’s user can control. Most programs contain a significant amount of 

common code that is always executed on every non-trivial test. While a 

maintainer may need to locate some specific part of this common code, such as 

the symbol table handler in a compiler, neither TraceGraph nor Software 

Reconnaissance can help. Second, as for any dynamic analysis technique, the 

results depend to some extent on the test cases used. If a feature is sometimes 

handled one way and sometimes another, neither technique will find the full 

extent of the feature unless the maintainer supplies input that cover both cases. On 

the other hand, both techniques will identify unwanted code components if the 

“with” tests accidentally include functionality that is absent in the “without” 

cases. Finally, both techniques only provide starting points for the exploration of 
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code. The maintainer still needs to do the hard work of studying each identified 

component and understanding how it fits into the rest of the target system. 

(W)’s work has been realized in a tool suite called χSuds [1].  The tools were 

developed in the Telcordia Applied Research laboratories to analyze the dynamic 

behavior of software and to allow the user to visualize program data through 

graphical user interface. The tasks of determining code coverage, finding a 

minimized test set, debugging, identifying what part of the software implements a 

specific feature, profiling program performance, and finding static program 

relationships are made available to the developer by the various tools.  The tool 

suite focuses on the testing and maintenance of C and C++ systems.  xVue is the 

software maintenance tool in χSuds tool suite.  To determine where a feature is 

implemented in a program, one would run a small, carefully selected, set of tests; 

some that involve the feature and others that do not. Such tests are classified into 

three categories: invoking tests, excluding tests and don't_know tests.  xVue 

analyzes traces of program execution to find program components that were 

executed in the invoking tests but not in the excluding tests.   The χSuds tool suite 

is commercially available and has been tested on large C and C++ programs.  

However, it faces similar shortcomings as TraceGraph. 

(R)’s work has been realized in a tool called DynaDiff [121].  DynaDiff is not a 

commercial tool and has been built at the University of Wisconsin. DynaDiff 

works on programs that run under Solaris on Sun SPARC stations.  It is a 
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software visualization tool like TraceGraph and xVue.  DynaDiff itself is 

language independent as long as the compiler (of the target program being 

analyzed) can create symbolic debug information. DynaDiff has been tested on 

small programs (as prototype case studies.)  

(DL)’s work is theoretical in nature and there are no tools available that realize it 

as of yet.  Their technique itself is an independent programming language but 

developers must have advanced knowledge of BNF grammar to develop a toolset 

to support their technique. 

Although we are working on developing tools, we have applied our methodology 

in an industrial strength application, namely AMS (see section 2.2.1).  We 

focused on evolving the Input Processing (12 KLOC) functionality of AMS. Input 

Processing validates and prepares data from user inputs so AMS can perform 

complex calculations to generate various reports.  After applying our 

methodology, AFS is using evolved components in two of their product lines 

namely, AMS and the web version of AMS.  Our methodology works with any 

programming language as long as there are code profilers (or similar) tools 

available for that language.    

3.2.5 Reasons for a new feature model 

The approaches of these four researchers have several shortcomings.  In 

particular, there are six issues: 
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How to select input cases: All four rely on the developers to generate the input 

cases and then attempts to generate execution traces for all input sets. In industrial 

strength applications, the size of the input set makes such data collection 

impossible.  Since regression test cases reflect the end-user feature, they are 

already focused so it is not necessary to collect execution traces on all inputs or to 

divide the input sets into invoking or non-invoking category.  Thus, we suggest 

that regression test cases are the best choice for the input cases. 

How to capture relationships between features: We present several feature 

relationships (among features) that can exist within a function that can implement 

more than one feature. These relationships are important because; they not only 

can be used for traceability purposes but can also lay groundwork for future 

evolution. Our heuristics allow developers to quickly determine whether a feature 

is evolvable or not. 

How to classify functions called from a feature implementation: We classify 

whether these functions are Stateless (SS), Stateful (SSF), or Dependant (DF) in 

nature. This is more than just stack dump or calling sequence because by knowing 

the types of the functions, one could implement the component’s interfaces and its 

private/public methods. 

How to classify core software: If all related test cases execute SS functions then 

it is likely that those functions belong to the core. WS makes no distinction 

between the states. We decided to treat the core as a shared reusable library only 
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when the functions are SS while the four researchers focused on calculating the 

set differences and manipulating anomalies (because core gets executed with 

every execution). 

How to manage shared variables: Since large industrial legacy applications are 

notorious for having global variables, it is important that the technique to identify 

feature addresses what to do when two or more features share a single global 

variable. Our model also integrates the local variables that are shared among 

features. 

How to discover feature interactions when code coverage has no apparent 

differences: While all four researchers identify the feature implementation, it is 

not clear what happens when a single function implements more than one feature 

and execution traces do not reveal any differences (i.e., the coverage is exactly the 

same for all features in a function). Our approach can help developers understand 

how a feature is related to another feature in such a circumstance. 

Although most of these works derive results from execution traces left by the 

execution of a program with input sets, none use the methodology we propose. 

Based upon our analysis of the locating program features techniques, there was a 

distinct need for a more detailed model and definition for features. While all 

related models are more-or-less equivalent in expressive power, our work was 

motivated by the need to evolve legacy systems which made it infeasible to 

simply use many of these existing models. 
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Table 3.1: Comparison of Closely Related Work.  

 

 

 
Approaches 
 
Factors 

 
Wilde and Scully 

 
Wong et al. 

 
Reps at al. 

 
Deprez and 

Lakhotia 

 
Our Methodology 

 
Motivation 

Program 
Understanding 

Program 
Understanding and 
Debugging 

Year 2000 
Solution 

Program 
Understanding and 
Testing 

Evolution, 
Bridging the 
Complexity Gap 
and Software 
Reuse 

 
Key Elements and their 
Definitions 

Features are 
defined to be 
entities that must 
be testable.  
Subroutines are 
defined to be lines 
of code as 
components as 
opposed to FI. 

Feature is same as 
functionality 
represented in 
specification. 
Source files, 
Subroutines and 
lines of code as 
components as 
opposed to FI. 

Feature and 
Component 
definitions are left 
to the developer. 
No definition 
presented.   

Feature is defined to 
be the language used 
in feature syntax. The 
program components 
are defined to be 
statements, and 
procedure as opposed 
to FI. Execution 
Traces are defined. 

Features, FI and 
components are 
defined explicitly 
with end-use 
perspectives in 
mind.  Core, 
Execution Traces 
are also defined. 

 
Technique  

Input sets 
developed by 
maintainers are 
used to identify 
program features 
using 
instrumentation 
and tracing tools 

Difference 
between execution 
traces (via input 
sets) that invoke a 
feature and do not 
is calculated. 

Input sets are 
executed to 
generate program 
graph and path 
spectrum is 
analyzed. Input 
sets are varied 
incrementally.   

Features are mapped 
to input cases. Input 
set is classified into 
invoking and 
excluding sets.  
Finally execution 
traces of all input sets 
are collected so set 
differences can be 
calculated. 

Regression tests 
used by testers and 
end-users that 
represent features 
are run in 
conjunction with 
code profiler to 
identify feature 
implementation for 
evolution purpose. 

 
Formalism 

 
Set theory based 

Statistical and Set 
Theory based. 

Graph theory 
based 

BNF grammar and 
Formal Automata 
based 

Relational Model 
and First Order 
Logic based 

 
Applicability 

Used in two large-
scale C programs 
for research 
purposes but only 
as prototype.  
Commercial 
application yet to 
be seen.  Appears 
to be scalable. 

Used in a medium 
sized C program.  
Appears to be 
scalable.  Three 
metrics (approx. 
only) are 
developed to 
calculate disparity, 
dedication and 
concentration 
between features 
and program. 

Used in solving 
Year 2000 
problem.  Cannot 
be used to identify 
specific end-users 
features as each 
graph requires 
several inputs and 
usually results in 
huge permutations. 

Theoretic in nature.  
No real practical 
application seen.  
Since it depends on 
large input data it 
takes a long time to 
identify relevant 
code.  Generating 
BNF grammar is also 
cumbersome. 

Used in evolution 
of features of large 
VB program into 
reusable 
components.  In 
addition, feature 
and component 
model provide 
sound theoretical 
background. 

 
Tools 

 
TRACEVIEW 

 
χSuds/χVue  

 
DYNADIFF 

 
None 

 
Any Code Profiler 

 
Feature Interaction 
Problem 

Identify and 
suggested solving 
by selecting 
proper test cases 

Identify and 
suggested solving 
by selecting proper 
test cases 

Generally ignored 
but attempted to 
solve it implicitly 
by analyzing 
program graph via 
brute force 

Identified and 
suggested solving by 
selecting large 
number of test cases 

Identify and 
provide solid 
model to evolve 
features that share 
code and data into 
components 

Mapping Test Cases and 
Features 

Left to 
developers.  End-
user perspective is 
ignored.  

Left to developers. 
End-user 
perspective is 
ignored. 

Brute force. End-
user perspective is 
ignored. 

Must use large test 
suite and end-user 
perspective is 
ignored. 

Regression test 
cases are used as 
they represent the 
end-user features 

Generates Reusable 
Components 

 
No 

 
No 

 
No 

 
No 

 
Yes 

 
Programming Language 
Dependent 

 
Yes 

 
Yes 

 
No but compiler 
should be able to 
generate symbolic 
debug info. 

 
No 

 
No 

 
Addresses Global Data 
Issue in identifying features 

 
No 

 
No 

 
No 

 
No 

 
Yes 

 
Identifies and addresses 
Core  

 
Yes, Partially 

 
No 

 
No 

 
No 

 
Yes 
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3.3 Software Evolution 

There are many approaches to the general problem of software evolution. 

3.3.1 Incremental Evolution 

While there is agreement on the importance of evolving legacy systems, it is hard 

to find a consensus on what the best model for evolution should be.  Many models 

have been proposed over time, and these models differ not only in their 

approaches, but also in the way they define the deliverables of their 

methodologies.  Importantly, the discourse among software engineering experts 

on the proper approach to legacy system evolution seems to have reached a 

stalemate in an old debate between two conflicting ideologies. These ideologies 

argue over the main problem of whether it is in the best interests of an 

organization if a large mission-critical legacy system is re-written or replaced all 

at once in its entirety, or is incrementally-evolved. 

Over time, academics and industry experts such as Ransom et al.[76], Brodie et 

al. [83], and Tilley et al. [114] have introduced a number of names to describe 

these two approaches. Two of the most popular ones in use today to describe a 

model's persuasion in this dichotomy are the terms "Chicken Little" and "Cold 

Turkey."   In this section, we discuss various models and approaches associated 

with incrementally evolving ("Chicken Little") the legacy systems. 

The earliest references to these two terms that can be found date from 1991, and 

the pioneering DARWIN project from the University of California, Berkeley. The 
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results of the project introduced "Chicken Little" as an approach to iteratively 

(also called "incrementally") evolve legacy systems [51]. As the DARWIN model 

was perfected, the incremental nature of the approach was stressed as the model 

was drawn out in eleven easy-to-remember "steps," each of which started with the 

word "Incrementally." This approach answers a clear "no" to the all-at-once 

question. With Chicken Little, "data gateways" are developed and introduced 

between the legacy system and the target system to maintain data consistency 

throughout a project.  The key difference between DARWIN and our 

methodologies is that DARWIN addresses incremental evolution at architectural 

level rather than end-user feature level.  Another important difference between 

DARWIN and our methodology is that DARWIN makes use of object-oriented 

techniques rather than CBSE. 

The SEI at CMU developed a technique for developing an incremental code-

migration strategy for large legacy Common Business-Oriented Language 

(COBOL) systems [19]. Specifically, the technical report published by SEI 

describes a case study that involves the modernization of a large Supply System 

(SS). The system consists of approximately two million lines of COBOL code 

operating in a mainframe environment. The SEI developed the System Analysis 

and Migration (SAM) tool to generate a code migration strategy based upon 

legacy system analysis data. SAM considers a set of factors that includes 

minimizing scaffolding code (code that is discarded before the completion of the 
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project), balancing iterations, and grouping related functionality.  SAM generates 

a call graph that allows developers to identify program elements with 

dependencies.  These dependencies can be prioritized for evolution purposes.  

While the program elements can be viewed as end-users features, the SAM tool is 

dependent on COBOL.  Our approach is programming language independent; we 

use existing source-code profiler to identify feature implementation.  While a call 

graph can be used to understand program dependencies, our feature model 

provides feature-function matrix that shows an intuitive view of program 

dependencies.  Finally, there is no mention of the issue of global data in SAM. 

The Incremental Software Evolution of Real-Time System (INSERT) project was 

started by DARPA, SEI and NASA in 1992 [16].  The goal of INSERT is to 

improve war fighting capabilities of F16 fighter jets by incrementally evolving 

software systems used in the F16’s operating and other software system.  While 

there are similarities between INSERT and our methodological goals, the two 

approaches are different because of following reasons. First, our approach does 

not account for real-time systems.  Second, the primary objective of INSERT is to 

incrementally replace F16’s software components with COTS.  Our methodology 

suggests refactoring of problematic feature implementation.  Third, our approach 

targets identification and refactoring of specific problem areas (end-users 

features) while INSERT provides guide to replacing entire sub-system. 
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Entity-Life Modeling (ELM) is a method of software engineering that has 

elements in common with both function-oriented and object-oriented methods 

[13]. As in object-oriented design methods, the first step is the identification of 

objects from the problem domain, the identification of object attributes and 

operations belonging to each object, and the design of class structures that 

encapsulate state information and export attributes to other objects as needed.  

ELM departs from object-oriented methods in its ability to manage the timing and 

ordering of events as in some function-oriented methods. Threads of execution are 

defined wherein entities exhibit sequential behavior by operating on objects, 

perhaps concurrently with other entities. The application of ELM to evolution 

involves the identification of entities and their threads of execution. Some 

dynamic slicing may be necessary to identify objects and their behaviors. The 

steps in the application of ELM to incremental evolution may be listed as follows: 

1. Identification of entities 

2. Identification of concurrent tasks 

3. Creation of Buhr diagrams 

4. Design of interface objects 

5. Composition of state transition diagrams 

The entities in ELM method can be analogous to features in our methodologies.  

While ELM is certainly an incremental evolution methodology, the main 

difference between our methodology and ELM is that our methodology has not 
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been tested on object-oriented systems and ELM has not been tested on function-

based system.  

The observation that software systems undergo continuing changes was first put 

forward by Belady and Lehman [79]. They termed this dynamic behavior of 

software systems evolution and carried out empirical research on about 20 

releases of the OS/360 operating 

system. The investigation led to five “laws” of software evolution: Continuing 

Change; Increasing Complexity; The Fundamental Law of Program Evolution; 

Conservation of Organizational Stability; and Conservation of Familiarity. These 

laws have been systematically studied by several researchers such as.  Lehman 

and his colleagues have begun new investigations into software evolution. The 

FEAST/1 project (1996-1998) aimed to construct black- and white-box models of 

software system evolution, with special attention to feedback phenomena. The 

results of studying several data series from their industrial collaborators support, 

or at least do not contradict, the laws of software evolution formulated in the 

1970s.  Moreover, three new laws have been identified: Continuing Growth, 

Declining Quality and Feedback System. The recently completed FEAST/2 

project focused on control and exploitation of process behavior.    

There is a direct correlation between Lehman et al. third law (The Fundamental 

Law of Program Evolution) and sixth law (Continuing Growth) with our notion of 

incremental evolution.  Both the laws support the hypothesis that focusing on 
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specific problem areas within the legacy system businesses can justify return on 

investment (ROI).  While there is no direct relationship between the case studies, 

we agree with Lehman et al.  Furthermore, researchers such as Basili et al. [122], 

Coleman et al. [28], Kremerer at al. [21] and Kafura [30] have all used call graph 

and similar techniques to identify program dependencies based on Lehman’s third 

and sixth laws of evolution to propose incremental evolution methodologies. 

3.3.2 Legacy System Evolution 

Many software evolution techniques exist, [96][64][105] but they focus on 

solution domain and do not consider Feature Engineering as a software evolution 

driver.  In one of the first dissertations on Feature Engineering, Turner [25] 

mentioned the possibility of using Feature Engineering for software evolution 

purposes in his work, but he concluded that evolution was outside the scope of his 

work. The techniques of software evolution and reengineering either focus on 

entire system rewrites or simply deal with reverse reengineering for 

comprehension purposes.   

System evolution is a broad term that covers a continuum from adding a field in a 

database to completely re-implementing a system.  These system evolution 

activities can be divided into three categories: rewrite, evolution, and replacement 

[98][96].  Repeated system maintenance supports business needs sufficiently for a 

time, but as the system becomes increasingly outdated, maintenance falls behind 

the business needs. An evolution effort is then required that represent a greater 
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effort, both in time and functionality, than the maintenance activity.  Finally, 

when the old system can no longer be evolved, it must be replaced or rewritten.  

Determining the category of evolutionary activity that is most appropriate at 

different points in the life cycle is a daunting challenge.  Should a system 

continue to be maintained or should it be modernized? Should the system be 

replaced or rewritten? To make the correct decision, the legacy system must be 

fully assessed in order to analyze the implications of each action. Ransom et. al. 

describe an assessment technique for determining if a legacy system should be 

replaced, modernized, or maintained [76].  Current software evolution and 

reengineering techniques continue to work in the solution domain.  The important 

problem of linking the problem domain and the solution domain for the purposes 

of evolution remains unsolved.  

3.3.3 Architectural Reconstruction 

Architectural reconstruction is the process where the “as-built” architecture of an 

implemented system is obtained from the existing legacy system. This is done 

through a detailed analysis of the system using tool support. The tools extract 

information about the system and aid in building and aggregating successive 

levels of abstraction. If the reconstruction is successful, the end result is an 

architectural representation of the system that aids in reasoning about the system.  

There have been several efforts in architecture analysis and reconstruction. The 

Software Engineering Institute (SEI) has developed Dali [106].  Other examples 
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of architectural reconstruction efforts include Sneed’s reengineering effort [49], 

the software renovation factories of Verhoef et al. [123], and the re-architecting 

tool suite by Krikhaar of Philips Research [108].  In almost all the software 

architecture reconstruction efforts, the process comprises the following five 

phases: 

• View extraction phase obtains information from various sources.  

• Database construction phase involves converting the extracted information 

into a relational database format.   

• View fusion phase combines various views of the information stored in 

the database.   

• The architecture reconstruction phase builds abstractions and 

representations and to generate an architectural representation.  

• Finally, the Architecture Analysis phase analyzes the resulting 

architecture. 

There appear to be several similarities and differences between Architectural 

Reconstruction and our work. 

Our motivation is to incrementally evolve legacy system features with problems.  

Architectural reconstruction attempts to migrate the entire legacy system to a 

newer architecture.  We rely on code profilers to get information regarding feature 

implementation. Likewise, code profilers can also be used to populate the 

database in the fusion phase.  It appears that architectural reconstruction can be 
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used to identify feature implementation, not just the architecture.  However, there 

is no mention of evolving feature implementation into components for reuse. 

By considering end-user’s features we bridge the complexity gap between the 

problem and the solution domain.  Architectural reconstruction works in the 

solution domain only by focusing on extracting an architecture from the legacy 

system. 

The outcome of architectural reconstruction effort is different than ours.  We are 

focused in creating reusable components as opposed to representing architectures.    

3.4 Feature Engineering 

3.4.1 Features 

There is little reference to the word “feature” or to the practice of “Feature 

Engineering” in existing software engineering and other technical literature.   For 

the most part, the use of the term feature has been used in regard to the research 

issue being addressed, such as features of a particular methodology or technique. 

One particular research effort, Feature Oriented Domain Analysis (FODA) 

explicitly uses the term [77]. However, FODA referred to a specific feature, not 

the concept of feature.  There are a few typical examples along the same lines as 

FODA in the published work of Kamigaki et. al. and Larrondo-Petrie, et. al. 

[129][90].  The SEI FODA feature model ties business models together by 

structuring and relating feature sets [87]. The FODA framework explores how this 

structured information can be leveraged across the software development effort. 
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Griss extended the FODA methodology to create an explicit feature model of 

functionality to facilitate reuse-driven software engineering [87]. We agree with 

Griss that a feature model integrates the viewpoint of both the user and the 

developer; in this dissertation, we show the practical application of this integrated 

perspective. 

Cusumano and Selby describe the strong orientation of software development 

toward the use of feature teams and feature-driven architectures at Microsoft 

Corporation [84]. While this orientation has more to do with project management 

than with product life-cycle artifacts and activities, there is a significant interest in 

features among many software development teams. Feature enhancements 

provide both a competitive tool and a healthy revenue stream from product 

upgrades.  For requirements, a use-case based method is used to determine the 

feature set that should be added to a new product.  Using focus group and 

automated testing these features are given scores.  Features that score highly in 

the usage scenarios are most likely to be incorporated into the next product 

version.  Microsoft’s approach to features concentrates on specific features to be 

added to existing products.  Feature Engineering, in contrast, is a general set of 

approaches geared toward understanding the concept of features and making use 

of the feature relationships in a disciplined fashion across the solution domain.  
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3.4.2 Feature Interaction 

The feature interaction literature is primarily focused on telecommunications 

networks [116]. Telecommunications networks are massive, complex, distributed 

systems that incorporates a variety of hardware and software elements. In this 

domain, features represent capabilities that are incrementally added to a telephony 

network. The presence of multiple independent component providers makes the 

feature interaction problem even more difficult. Telecommunications networks 

provide many examples of features, such as call waiting, call forwarding, and 

voice mail; the primary focus is on understanding how features interact, rather 

than how the features will be evolved. Our feature model and fine-grained 

component model addresses evolution of interacting features.  

3.4.3 Requirements Analysis 

Features are problem space entities, and requirement engineering is the discipline 

that is focused on providing a concise, consistent, unambiguous, and complete 

definition of the problem domain. Years ago, researchers identified features as a 

natural organization of the problem space [4][101]. According to Turner et al. 

[26], Feature Engineering reemphasizes the need for requirement analysis efforts 

to identify the desired Feature set. While there are a few close synonyms for 

feature, such as goal and root requirement, surprisingly few approaches in the 

research literature concentrate on this organization of a system’s functionality. 

Several approaches in requirements engineering approach the Feature 
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identification required by Feature Engineering. Hsia and Gupta [101] have 

worked on automated techniques for grouping requirement specifications. Their 

purpose is to support incremental delivery of system functionality. The cohesive 

structures that Hsia and Gupta search to identify are abstract data types (ADTs). It 

is clear that ADTs are a solution domain concept with limited relevance in the 

problem domain. In addition, their work requires using a development 

methodology based on ADTs. The goal of delivering ADT-based prototypes 

transcends analysis and forces a particular design choice. While [101] appears to 

reduce the complexity gap via ADTs we differ by reducing the same gap via 

regression test cases.  Likewise, Karlsson and Ryan [73] seek to prioritize 

requirements using a cost-value evaluation of pairs of requirements. Since the 

number of requirement pairs grows as the square of the number of requirements, 

their approach is suited to high-level requirements identified in the problem 

domain. Their techniques can be used to trace artifacts in the solution domain.  

While there are similarities in the requirements analysis work regarding mapping 

the problem domain to solution domain, we differ mainly by using regression test 

cases as the starting point because most legacy systems do not have original 

requirements definition. 

3.4.4 Function Points 

Function point analysis is potentially applicable to Feature Engineering. The basic 

notion of this discipline is that the functionality of a software project can be 
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objectively estimated independent of the implementation. Function point analysis 

considers five system characteristics: application inputs, application outputs, user 

inquiries, data files, and interfaces to other applications. Each application has a 

function point rating, which presumably can be determined objectively once the 

system specification is created.  Capers Jones asserts that function point metrics 

have substantially replaced the older lines-of-code metrics for purposes of 

economic and productivity analysis [20]. Since the introduction of this metric, 

numerous refinements have been introduced, and in 1986, the International 

Function Point Users Group was formed to enhance the technique. Despite 

advances in function point analysis, subjective judgments remain a difficulty 

because of lack of evolutionary initiatives. 

Five early goals were identified for the function point metric: 

1. Relate to external features of the software 

2. Deal with features important to the user base 

3. Be applicable early in the life cycle 

4. Relate to economic productivity 

5. Be independent of source code or language 

These goals are well aligned with, but considerably narrower than, the feature-

engineering ideas identified in this dissertation. Since function point metrics are 

based on visible aspects of a software system, they fit naturally within the feature 

view of a software system. Function point analysis might be useful for estimating 
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the development effort required to implement a particular feature. It might also be 

used to evaluate the complexity of various implementation alternatives during the 

feature design phase. By applying the metric to the incremental development 

required for adding features to a system, the cost and impact of each feature can 

potentially be estimated. 

3.5 Component Based Software Engineering (CBSE)   

Although Component Based Software Engineering (CBSE) provides viable 

techniques to develop modularized software systems, the components are often 

designed and implemented from scratch rather than re-engineering them from 

within a legacy system.  In practice, CBSE is used as a design and construction 

tool, not an evolution tool [95][126][94][38].   In this section, we summarize 

many of the sub-discipline of CBSE as they relate to our dissertation. 

3.5.1 Evolution 

Recent approaches to evolution within CBSE, such as ArchStudio [102], focus on 

evolving systems that are already designed and constructed from well-defined 

components and connectors. The emerging discipline of Software Architecture as 

defined by Garlan and Shaw is concerned with a level of design that addresses 

structural issues of a software system, such as global control structure, 

synchronization and protocols of communication between components [29]. 

Software Architecture is thus able to address many issues in the development of 

large-scale distributed applications by using off-the-shelf components. In 
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particular, it is a useful vehicle for managing coarse-grained software evolution, 

as observed by Medvidovic and Taylor[94].  However, Software Architecture 

does not provide an efficient solution for legacy system evolution. 

Evolving a legacy system by wrapping it into a component is a common practice 

[115].  However, such wrapping results in coarse-grained components and does 

not address the issue of complexity gap.  Our methodology identifies features that 

are a candidate for evolution and incrementally evolves them at much finer 

granularity.   

3.5.2 Wrapping 

While wrapping is a perfectly viable solution to evolve a legacy system onto a 

newer platform, our motivation is rooted in addressing problems associated with 

end-user features. 

3.5.3 COTS 

COTS can certainly provide functionality pertaining to the feature we are 

interested in, however we see following major differences in using COTS 

compared to our fine-grained components: 

Researchers have found that COTS selection is a lengthy and arduous process 

[27][112]. The first step of the process is to determine the best COTS components 

candidate. The next step in the process is to determine if these components can be 

integrated, either directly, or through wrappers or other “glue” code. Determining 
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if components can be integrated is also a complex process, as vendor claims are 

not always believable. If these components cannot be easily integrated, it is 

necessary to consider alternate products that may not be best choice but are 

compatible with other technologies. To make matters worse, the environment is 

constantly changing with new components and emerging product versions; 

existing products going away or being refocused, and evolving vendor 

relationships.  This is hardly the case with our fine-grained components as these 

fine-grained components are evolved from within the legacy code they integrate 

well and provide the specific functionality that is needed. 

COTS components are black boxes whose source code is not available for 

modification.   Since fine-grained components are developed using an existing 

legacy system, its source code is readily available. 

3.5.4 Reuse 

One of the main ideas behind CBSE is to promote software reuse either within the 

product line or across multiple product lines [95][23][75].  However, the claim for 

such reuse has been challenged because CBSE has not been able to deliver its 

promise.  Furthermore, the dynamic nature of requirements and software process 

pose a big hurdle for CBSE as far as reusability of components is concerned 

[126][44][66].  Since our methodology gathers the requirements and the 

specifications from an existing legacy system, we can simply refactor feature 

implementations into fine-grained components. Avoiding the complex process of 
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gathering requirements to create components from scratch allows us to take the 

best of CBSE, namely component model and component specification, without 

having to consider time-consuming CBSE activities such as buy vs. build 

analysis, selecting a component model, or a component technology. 

3.5.5 Features 

CBSE offers promising techniques to solve the problem of component 

construction [2], but CBSE has not yet been connected to the features that are 

present in a system; creating this connection explicitly is one of the contributions 

of this dissertation. The functionality provided by CBSE solutions must be 

mapped to the Feature available to the end-user.    

To the best of our knowledge, features and components have not been studied 

together in light of legacy system’s evolution.  Two areas that appear to bring the 

aspect of features to components are feature-oriented programming (FOP) and 

Feature-oriented classification of components (FOCS). 

FOP is used for developing new systems [24] and has not been used in evolving 

existing legacy systems.  However, FOP can be used to create feature-oriented 

components, which can possibly be used with our methodology.  Integration of 

components created using FOP is outside the scope of our work. 

FOCS is a component classification scheme using graphs [67].   Components are 

described by sets of features, called descriptors. Each feature represents a 

property or attribute of the component. To support the understanding and 
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construction of descriptors, features are organized in a classification scheme. 

Storage and retrieval of components is done by means of these features sets. A 

thesaurus assists in the understanding of features.  Searching is done with the help 

of descriptors. Users construct a descriptor (using an editor) containing the 

features the searched component should provide. This descriptor is interpreted as 

a query to the database of classified components.   While there appears to be no 

direct relation to our work, FOCS can be used to store fine-grained components 

created by our methodology.  

3.5.6 Fine-Grained Components 

Granularity is the word that describes how much functionality is found in a 

component, or a set of components that work together. In the literature, two types 

of components exist: fine grained and coarse grained [38].  In [38], James Carey 

and Brent Carlson describe two types of components based on their many years 

with the San-Francisco project. The authors differentiate fine-grained components 

from course-grained components. Carey and Carlson make a persuasive case for 

the use of fine-grained components; they argue that such components are required 

for business domains where well-defined dependencies can be carefully managed. 

We strongly agree with Carey and Carlson, as our fine-grained component model 

encapsulates the feature we are interested in evolving for reusability across 

product lines within the same organization.   
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There are also similarities between our fine-grained components and ability to 

modify its code.  According to [45], there are three possibilities for modifying a 

component: 

White box where access to source code allows a component to be significantly 

rewritten to operate with other components.  Gray box where source code of a 

component is not modified but the component provides its own extension 

language or Application Programming Interface (API).  Black box where only a 

binary executable form of the component is available and there is no extension 

language or API.   Our fine-grained component model is intended to be used 

across the product lines with an organization.  Since the component may contain 

feature-based trade secrets, organizations may decide to not market it but to use 

the component exclusively.  Since the code is available, technically all three 

approaches to the modification can be applied.  However, we suggest a black box 

approach be used since fine-grained components are lightweight and provide 

feature specific functionality whose code need not be changed. 

3.5.7 Product Line 

The general idea of a software product line is that the new product is formed by 

taking components from the base of existing legacy code using variation 

mechanisms such as parameterization or inheritance. Thus, building a new 

product (system) becomes more a matter of assembly or generation than creation; 

integration rather than programming. This form of reuse among product lines, 
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have been studied by various researchers such as [87][68][70][74][91][81].   

Among all the product line initiatives, the most related work is that of the two 

methods developed by the Software Engineering Institute (SEI). These methods 

are supposed to extract existing assets from the core of an existing product line. 

The Mining Architectures for Product Lines (MAP) method addresses assets at 

the architecture level, while the Options Analysis for Reengineering (OAR) 

method addresses assets at the component level.   While there are similarities in 

our motivations and those of MAP and OAR methods in reusing components, we 

differ in the following ways.   

We are motivated in reducing the complexity gap by considering problem and 

solution domain, while MAP and OAR work in the solution domain only.  Both 

MAP and OAR are not focused on incremental evolution while that is our intent. 

One of our goals is to reduce the maintenance cost of the feature to be evolved.  It 

is not clear from the literature that the MAP and OAR consider this factor.  MAP 

and OAR are more focused in the new product lines that use the extracted 

components from the legacy system while one of our goals is to plug the 

component in the original legacy system as well.   

3.5.8 Previous experience with components and evolution 

We mention two of our previously related works in this subsection, both of which 

are experience reports and provided preliminary motivation to work with 

components and evolution.   
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First, one of our previous works, carried out as part of the case study on AMS 

Output Engine, has contributed to research efforts in Software Architecture and 

CBSE [7]. This work sought to evolve earlier legacy systems so that recent ideas 

on architectural evolution could be applied.  The experience report describes a 

simple technique: abstracting the communication between two components into a 

connecting-component.  Using this abstraction, a stand-alone executable was 

easily converted into an ActiveX Component (DLL).  This research demonstrated 

that architectural analysis helps to achieve business objectives.  The methodology 

described in [7] forms the basis for our motivation in this dissertation because it 

is: 1) is incremental; 2) improves the architectural integrity of the legacy system 

by replacing implicit communication between system components with explicit, 

documented connecting-components; and 3) results in a better-documented 

architecture. 

Second, to further stress the importance of CBSE encapsulation and reuse 

techniques we briefly describe the concept of component integration and 

extension [8], which was applied in the Input Engine of AMS, In [8], we have 

shown that new features can be integrated and extended into the original 

component by using CBSE techniques.  Component integration and extension 

techniques improve code reusability among product lines and decrease 

maintenance costs for legacy code [8]. Component integration and extension 

techniques will encapsulate functions that implement features in context.  
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Encapsulating features into components will improve code reusability and will 

thus reduce the maintenance costs for legacy systems.  

3.6 Program Understanding 

Program slicing is another area that has potential for Feature Engineering and our 

component refactoring is inspired by this research.  The notion of program slicing 

began with Weiser [93]. Since then, several researchers have modified and 

expanded the concept of a program slice by proposing additional methods for 

determining slices. Current research frontiers on program slicing are covered by 

Tip [35]. In abstract terms, a program slice is a subset of a program representation 

that is based upon some preset criteria.  Traditionally, the criteria are formulated 

as program statements that affect the value of a variable at a particular place in the 

program text.  This formulation of the criterion dictates that a backwards slice be 

computed from the source statement in question. The notion of forward slices has 

also been explored. There are several ways that a program slice can be calculated, 

with one common technique relying upon program-dependence graphs.   

The slicing described so far is known as static slicing, because it relies only upon 

the program text. Researchers have also explored dynamic slicing, which takes 

into account program execution on a particular input set.  In general, dynamic 

slicing produces smaller slices, which is a benefit to the isolation of program 

faults. Program dicing is a term used to describe the intersection of multiple 

slices. Sloane expands the traditional notions of program slicing by generalizing 



 

 

72

the slicing criteria [12].  His approach relies upon marking an abstract syntax 

representation of the program using tree decoration capabilities inherent in 

attribute grammars. One of the advantages of Sloane’s approach is that it can 

easily be used to produce syntactically complete program slices that could be 

executed.  

Program slicing can be expanded to incorporate Feature Engineering. By feature 

slicing, one could extract a subset of the system that interacts with a particular 

feature. This would be of critical importance in maintaining individual features, 

for exploring feature interactions, and for constructing feature relationships in an 

existing system. Presumably, the intersecting feature slices would indicate 

potential interactions among feature implementations.  This notion was carried 

out to locate program features and their interactions but mainly for testing and 

debugging purposes and not evolving system features.     

3.7 Regression Testing 

Rothermel and Harrold [42] group a variety of selective regression testing 

approaches into three categories. Safe approaches require the selection of every 

existing test case that exercises any program element that could possibly be 

affected by a given program change. Minimization approaches attempt to select 

the smallest set of test cases necessary to test affected program elements at least 

once. Coverage approaches attempt to assure that some structural coverage 

criterion is met by the test cases that are selected.  All three categories have been 
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extensively studied by researchers [46][127][48][41][40][88][120][43][124] from 

a theoretical point of view to either minimize or prioritize test cases.    

While minimizing and prioritizing is important, there has been little discussion on 

applying regression testing in industrial environments, specifically for 

evolutionary reasons.  While researchers are mostly concerned with reducing the 

number of test cases for the testing process, other important issues in using 

regression testing in an industrial environment, such as considering regression test 

case in identifying feature implementation, remain an oversight.   Regression 

testing contain important information in the form of input that reflects the end-

user feature and the feature will be invoked. 

3.8 Separation of Concerns and Aspect Oriented Programming 

Two theories related to our work are the separation of concerns and Aspect-

Oriented Programming (AOP).  A software system consists of a set of artifacts, 

such as requirement specifications, designs, and code.  Each artifact consists of 

descriptive material in some formalism, the purpose of which is to model needed 

concepts in a manner appropriate for that artifact.  The formalisms differ for 

different projects, different phases, and different artifacts  perhaps even within an 

artifact. Different artifacts often share the same concepts, with each concept 

potentially described in a different way, and with different details, in different 

artifacts. For example, the word expression in the requirements and the term class 

expression in the design.   
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Many kinds of concerns are important during the software lifecycle. Dimensions 

of concern help to organize the space of concepts and units. Common dimensions 

of concern are data or object (leading to data abstraction) and function (leading to 

functional decomposition). Others include feature (both functional, such as 

“evaluation,” and cross cutting, such as “persistence”), role, and configuration. As 

illustrated by examples in their work, Tarr and Sutton explain that some 

dimensions of concern derive from the domain, often aligning with important 

domain concepts, while others come from system requirements, from the 

development process, and from internal details of the system itself [103]. In short 

there are a number of dimensions of concern that might be of importance for 

different purposes (e.g., comprehension, traceability, reusability, evolution 

potential), for different systems, and at different phases of the life cycle.  

However, even Tarr and Sutton admit that a large part of their theory is unproven, 

and we believe their approach will encounter great difficulties when applied to an 

existing legacy system. 

The AOP community has focused on identifying cross-cutting concerns that 

appear throughout numerous modules of a system implementation [39][128]. 

These aspects are treated as first-class entities that are “woven” together into the 

primary modularization to create a final working system. We have found it 

possible to encapsulate features that are likely to change into fine-grained 

components, thus avoiding the code-weaving phase of AOP. Also, our fine-
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grained components are truly reusable whereas aspects appear to only be usable in 

the context of the original modular decomposition. 

3.9 Summary 

In this chapter, we discussed the related work as it relates to our research.  We 

looked at several areas such as Software Evolution, Architectural Reconstruction, 

Feature Engineering, Product Lines, Requirements Analysis, CBSE, Program 

Understanding, Locating Systems Features, Regression Testing, Separation of 

Concerns and AOP.  Although Turner [25] had identified the problem we are 

addressing in our work, that was outside the scope of his work. Furthermore, four 

[5][125][121][99] researchers have described points which are related to our work 

as far as identifying program features is concerned, however; their motivation is 

restricted to program understanding and not to the evolution methodology we 

have developed.  To date, no software evolution technique has been proposed that 

addresses the important issue of evolving legacy code using CBSE and Feature 

Engineering.  We believe that if legacy code is modernized using Feature 

Engineering and CBSE then many organizations can benefit from the resulting 

technique. 

In Chapter 4, we will discuss the four models that are part of our evolution 

methodology namely Feature Model, Fine-Grained Component Model, Budget 

Analysis Model and Formal Model. 
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4 Models 

Our methodology depends on two important models. 

The Feature Model defines what a feature is, how it is 

implemented, how it interacts with other features, and how it is 

related to other features within the source code. 

The Fine-Grained Component Model describes the 

constituents of the refactored components using interfaces, 

properties, and methods. 

To support the results of our dissertation we also rely on two additional models: 

The Budget Analysis Model lists and describes the elements 

that are necessary for performing the cost-benefit analysis of 

our evolution methodology. 

The Formal Model provides the theoretical foundation for our 

evolution methodology.  The formal model is supported by the 

data model. 

4.1 Feature Model 

As we have already discussed, end-users often view a system in terms of its 

provided features. Intuitively, a feature is an identifiable unit of system 

functionality from the end-user’s perspective. Examples of features include the 
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ability of a word processor to spell check or the ability of an accounting system to 

generate a balance sheet statement for a given fiscal year. Software developers are 

expected to translate such feature-oriented requests into system design. Feature 

Engineering addresses the understanding of features in software systems and 

defines mechanisms for carrying a feature from the problem domain into the 

solution domain [26].  

Figure 4.1: Elements of Feature Model. 

 

Our feature model consists of following four elements as shown in Figure 4.1: 

Feature definition, what a feature is. 

Feature implementation, where and how features are implemented within the 

source code. 

Feature interaction, how a feature interacts with other features. 

Feature relationships, how a feature is related to other features. 

 

Feature Model

Definition Interaction

Relationship Implementation

Feature Model

Definition Interaction

Relationships Implementation
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4.1.1 Feature Definition 

We developed the following definition by integrating and extending existing 

definitions from [82][26]:  

 

A feature is a group of individual requirements that describes a unit of 
functionality with respect to a specific point of view relative to a software 
development life cycle (Figure 4.2). 
 

 

Figure 4.2: Definition of a Feature. 

 

This definition is rooted in the problem domain but shows how a feature can be 

used in software evolution. For example, a system might support a feature that 

performs complex calculations in batch mode without user interaction. To an end-
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user, this feature is a time saver because input can be stored in a file or a database 

to be used at a later time. At the same time, testers might employ this feature to 

enable regression testing between two versions of the system; developers might 

design a specific set of modules to process user input without user interaction to 

analyze code coverage. A code-profiling tool executing regression test cases 

exercising that feature can locate the feature implementation, and evolution of that 

feature can commence. 

 

 
Feature 

 
Functions 

 
Critical Evolution Viewpoint 

1 Many Solution domain 

Many 1 Problem domain 

1 1 None exists 

Many Many N/A – Must be decomposed 

Table 4.1: Feature/Functions Relationships. 

 

4.1.2 Feature Implementation (FI) 

End-users comprehend a system through its features but are unaware of the 

specific way in which these features are implemented. Software developers view 

the same system in terms of data types, local and global control, reusable 

functions, and units of testing and maintenance. Table 4.1 outlines how a feature 

might be implemented within function(s).   When addressing feature 

implementation we must consider following two scenarios: 
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• When function(s) and data (local and/or global variable) implements only 

one feature 

• When function(s) and data (local and/or global variable) implements more 

than one feature  

If the function and data implements only one feature than the evolution is trivial.  

While our models can certainly address the first scenario mentioned above, we are 

more interested in the second scenario because it is more likely that a function is 

involved in the implementation of more than one feature.  Thus, when we mention 

feature implementation we assume that the function implements more than one 

feature. We define feature implementation as following: 

A feature implementation (FI) is the set of statements (including data) 
within all functions that execute when that feature is invoked.  The feature 
is invoked by one or more test cases. 
 

When a single feature implementation contains code from many functions then 

the critical viewpoint regarding evolution is the solution domain because the 

feature “cross-cuts” the software [87]. Such code is often highly coupled and 

deeply embedded within the legacy system. When many related features are 

implemented by a single function then understanding the problem domain is 

critical for successful evolution. When a feature is implemented by a single 

function, evolution can be straightforward; a many-to-many relationship must be 

decomposed further for evolution (Table 4.1).  
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Given that a function(s) implements more than one feature, there are five cases 

that capture the essence of feature implementation.  In the following example 

assume that there is a function fx that is only involved in the implementation of 

two features FE1 and FE2.   

4.1.2.1 Case I: Non-interacting (unrelated) features 

Figure 4.3 show a function fx (the large rectangle) implementing two features FE1 

and FE2 represented as ovals. Even though these two features are implemented in 

a single function, they do not share any lines of code (LOC) or variables.  That is, 

FE1 ∩ FE2 = Ø.  At this level of abstraction, it is not important how much of fx is 

being executed. 

Figure 4.3: Two Features in Function (fx) but Not Interacting. 

 

4.1.2.2 Case II: Partially interacting features 

Figure 4.4 show two features FE1 and FE2 sharing LOC or variables in a function.  

This type of interaction is common and we will discuss this in further detail in 

Sections 4.2, and 4.3. That is, FE1 ∩ FE2 ≠ Ø. 

 

 

fx
 

FE1 FE2FE1 FE2
FE1 FE2
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Figure 4.4: Two Features Partially Interacting in Function (fx). 

 

4.1.2.3 Case III: Fully interacting features 

Figure 4.5 show two features FE1 and FE2 are fully interacting by sharing LOC 

and variables.  These features are tangled, as there is no apparent distinction 

between shared LOC and variables using dynamic slicing.  Our case study shows 

how to identify relationships and interactions among fully interacting features. 

That is, FE1 =FE2. 

 

 

 

 

Figure 4.5: Two Features Fully-Interacting in Function (fx). 

 

4.1.2.4 Case IV: Interacting sub-features  

Figure 4.6 show that FE1 is a subset of FE2. This could mean that FE2 is sub-

feature of FE1 or FE2 is composed of FE1.  There are several possibilities in this 
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scenario and we will discuss them in section 4.1.5 and 4.3.  Dynamic slicing 

cannot fully identify the code of either feature thus a closer look at the feature 

relationships is required.  That is, FE1 ⊂ FE2. 

Figure 4.6: Interacting Sub-Feature in Function (fx). 

 

4.1.2.5 Case V: Interacting super-features 

This is just the opposite of case IV as shown in Figure 4.7. That is, FE2 ⊂ FE1. 

Figure 4.7: Interacting Super-Features in Function (fx). 
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4.1.2.6 Summary 

At this level of abstraction we ignore the often complicated control flow within a 

function fx.  Given a function that is involved with no more that two features these 

five cases (non-interacting, partial-interacting, fully-interacting, interacting-sub 

and interacting-super features) describe the possible interactions among features.  

4.1.2.7 Regression Testing  

We propose a novel use of dynamic slicing [18] that uses regression test cases to 

identify where a feature is implemented in the legacy system and to incrementally 

refactor the code base to create fine-grained components that can be individually 

evolved and reused. 

Not every feature is evolved during system evolution, nor should each feature be 

encapsulated in a fine-grained component. We follow a heuristic we call “The law 

of two”: if a feature can be used in another system, its implementation becomes a 

candidate for reuse. From this candidate set, the organization must still select 

specific features to evolve.  These features must be associated with the existing 

test cases.  Once the features are associated with their test cases, our feature 

model identifies in which functions the features are implemented and what is the 

feature/function interactions exists. We have identified two scenarios to associate 

the test case to features: 

• Knowledge of the mapping of the test case to the features exists either via 

domain knowledge or in testing artifacts. 
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• Knowledge of the mapping of the test case to the features does not exist.  

In such a case, the input values of each regression test case can be 

analyzed using clustering techniques.   

Domain Knowledge 

There is no substitute for domain knowledge in legacy systems. Through using 

domain knowledge, it is possible to identify test cases that represent a particular 

feature or a group of features. It is also possible to construct test cases from 

scratch to exercise a feature.   Typically, in an industrial environment the testers 

have full knowledge of which test cases are used to exercise what features.  Our 

case study assumes that we have this knowledge. 

Documentation 

Legacy systems also have rich regression test suites that consist of hundreds of 

test cases. In some cases, test suites are well documented so we can identify easily 

the test cases used to exercise a given feature. 

Clustering and textual pattern analysis 

Our simple technique for grouping test cases to find the feature they represent is 

based on the premise that related test cases exercise either a feature or closely 

related features.  We describe a simple technique to cluster these related test cases 

in this section.  There are several clustering techniques described in the literature.  
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Clustering analysis is the organization of a collection of patterns (usually 
represented as a vector of measurements or a point in multidimensional 
space) into clusters based on similarity [89].  
 

Although, Jain et al. describes several clustering techniques, they (including other 

researchers) have not applied clustering techniques to group related test cases.  

The purpose of our research is not to explore the clustering techniques but to use 

them to identify the test case and feature mapping in the event that no 

documentation of domain knowledge exists.   We begin by describing the test 

cases used in this case study and then provide a simple model that can be used to 

cluster or logically arrange the test cases that represent the features that need 

evolution.  To illustrate the clustering heuristics consider 10 test cases with 5 sets 

of items that are considered the most important user inputs (Table 4.2).  We 

analyze the user input and give an ordinal value to each of the valid user inputs 

for a given Item.  For example, if item number 1 had ten valid user inputs then the 

user input was given a numeric value of 1 through 10 respectively.   We create a 

matrix of test cases and Items as shown in Table 3.  We then use existing tools 

such as Microsoft Excel™ to calculate statistical measures that can provide some 

insight on a group (or cluster) of related test cases.  For example, if we consider 

two test cases T4 and T6 (assuming that only items 4 and 5 vary while others are 

exactly the same) we calculate the regression and standard deviation values to 

find the best-fit lines.   T4, T6, T8 and T2 can be grouped together because their 

regression values are 2.4, 2.3, 2.2 and 2.1, which is much higher than other test 
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cases indicating that they can be grouped together.  Similarly, test cases T1, T3, 

T5, T7, T9 and T10 can be grouped together because they vary by item 1 and item 

5.  We can use any of the existing clustering algorithms in this step, but for 

simplicity, we use regression and standard deviation as our measure to help us 

define the best fit for the lines.  It is possible to use just regression as a measure.  

However, we suggest that both regression and standard deviation be used because 

it is quite possible that in a large set of data, two unrelated test cases may end up 

getting the same value.  Using standard deviation as an additional check can help 

identify such cases.   Using such heuristics we can group the test cases into two 

broad groups; group 1 that exercise feature 1 consists of T4, T6, T8 and T2 and 

group 2 that exercise feature 2 consists of T1, T3, T5, T7, T9 and T10 in this 

example (Table 4.2).   Likewise, Table 4.3 and Table 4.4 show the result of 

applying a RankSort clustering algorithm on the test case and items matrix.  Note 

that Table 4.2 and Table 4.4 result in identical clusters as far as mapping test case 

and features is concerned.  In addition, textual pattern analysis can also be used to 

group these related test cases because test cases often have textual input.  Using 

some pattern searching and developing a simple utility program, one can group 

the related test cases based upon pre-defined criteria.  We found that grouping 

these test cases into broad categories can help identify the mapping between test 

cases and features in cases when domain knowledge or documentation is not 
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available. The Pseudo-code for determining clusters for any matrix is shown in 

Figure 4.8. 

Table 4.2:Test Cases vs. Items. 

 

Table 4.3: Test-case and Items before RankSort. 

 

 

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5
T1 1 3 3 3 4
T2 1 1 1 8 8
T3 2 3 3 3 1
T4 1 1 1 9 9
T5 2 3 3 3 3
T6 1 1 1 8 9
T7 3 3 3 3 2
T8 1 1 1 9 8
T9 3 3 3 3 1

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5 Regression Std Dev

T4 1 1 1 9 9 2.4 4.38
T6 1 1 1 8 9 2.3 4.12
T8 1 1 1 9 8 2.2 4.12
T2 1 1 1 8 8 2.1 3.83
T1 1 3 3 3 4 0.6 1.1
T5 2 3 3 3 3 0.2 0.45
T3 2 3 3 3 1 -0.2 0.89
T7 3 3 3 3 2 -0.2 0.45
T9 3 3 3 3 1 -0.4 0.89

T10 4 3 3 3 1 -0.6 1.1
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Table 4.4: Clustering after RankSort. 

 

Figure 4.8: Pseudo-code to Determine Clusters. 

 

4.1.3 Features and Functions  

We need to identify the percentage of lines of code coverage of a specific feature 

within a function because this relationship can provide useful information 

regarding how and where a feature is implemented. This feature/function 

relationship can be achieved via test cases as these test cases represent the 

 Create Matrix (M): 
For (Test Case) 1 to I 

For (Input Item) 1 to J 
 M(I,J) =Convert (Input Item) to Valid Numeric Value 

Next (Input Item)   
Next (Test Case) 
Return (M) 
 

Apply Clustering Algorithms on (M): 
 Choose Any: 

 Regression + Standard Deviation  
RankSort  
Any Other 

 
Analyze Modified (M): 
 Identify Groups (clustered I) 

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5
T2 1 1 1 8 8
T6 1 1 1 8 9
T8 1 1 1 9 8
T4 1 1 1 9 9
T1 1 3 3 3 4
T9 2 3 3 3 1
T5 2 3 3 3 3
T9 3 3 3 3 1
T7 3 3 3 3 2
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features.  In order to successfully identify feature implementation within a 

function via test cases, we follow the three-step process:  

• Identify test case(s) that represent that feature. 

• Run the profiler to obtain test case and function execution traces in terms 

of lines of code.  

• Determine UNION of all the lines of code within a function can identify 

all the lines of code executed in a function by a test case representing that 

feature.  We can calculate the percentage coverage.  

Figure 4.9: A Feature may be Invoked by Several Test Cases. 

 

The feature/function relationship via test cases is either one:one or one:many. 

When a feature is represented by a single test case (one:one relationship) the code 

profiler can result in feature/function relationship rather easily as each test case is 

run and its execution traces are collected.  These execution traces consist of lines 

of code executed in a given function.  Even though a function itself can 

implement more than one feature since each test case represents only a single 

feature, the identification of lines of code and the coverage percentage within a 

Test Cases 
T3

T4 T5

Feature  
FE1 

Feature  
FE2

Feature  
FE3

T1 
T2

Features 
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function is rather trivial in this case because there is no need for the UNION step 

mentioned earlier. This is because most code coverage tools provide the 

percentage coverage information. 

One:many relationship is more realistic and it is shown in Figure 4.9.  It shows 

that a feature is invoked by many test cases.  This case is non-trivial because we 

must first group the test cases that represent the same feature.  

To identify the feature/function relationship, we discuss the three-step process in 

detail: 

4.1.3.1 Step 1: Map test case and features 

Test case and feature mapping in a matrix are as shown in Table 4.5.  The shaded 

portion means that the test case can invoke that feature.  The shaded cells simply 

represent that the feature is invoked by the test case.  As discussed in Chapter 2, 

we obtain this mapping from the testers and the end-users. 

Table 4.5:Test Case and Feature Mapping. 
4.1.3.2 Step 2: Run test case and profiler 

Test cases are run with the profiler and the results shown in Table 4.6.  Each cell 

contains the LOC executed by the profiler in function.  The next part of this step 

is to identify the LOC exercised by all test cases in a given function.  At this 

point, we introduce the features that are invoked by all the test cases as shown in 

Test Case
Features T1 T2 T3 T4 T5 T6 T7

FE1 ?   ? ? ?  

FE2  ?   ? ?  

FE3  ?   ? ? ?
FE4 ?  ?  ? ?  
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Table 4.7.  The next sub-step in this process is to eliminate the OR by making a 

UNION of all the LOC within the function that implements a feature.  The 

UNION enables us to determine all the lines of code executed by the feature 

within the function.  This is shown in Table 4.8.  Finally, we calculate the 

percentage coverage for the illustration purposes assuming 10 lines of code per 

function, as shown in Table 4.9. 
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Table 4.6: Test Case and Function Relationship by Profiler. 

 

Table 4.7: Test Case, Features, Function and LOC. 

 

Test Case            T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6

Functions/Features   FE1 FE2 FE3 FE4

fx 1,2,5,10 OR 1,2,3,4 1,2,3,4 1,2,3,4 OR 1,2,3,4
1,2,5,10 OR 

1,2,3,4

fy
1,2,3,5,8,10 OR 1,2,3,4,5 

OR 1,2,3,4
1,2,3,4,5,6,7,8,9,10 OR 

1,2,3,4 1,2,3,4,5,6,7,8,9,10 OR 1,2,3,4
1,2,3,5,8,10 OR 

1,2,3,4

fz 1,2,3,5,8,10 1,2,3,4 1,2,3,4 1,2,3,4

fa 0 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 0

fb

1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 

1,2,3,4,5,6,7,8,9,10 

1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 

1,2,3,4,5,6,7,8,9,10 

1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 

1,2,3,4,5,6,7,8,9,10 

1,2,3,4,5,6,7,8,9,1
0 OR 

1,2,3,4,5,6,7,8,9,1
0

fc 1,2,3,4,5,6 1,2,3,4,5,6,10 OR 1,2,3,4,5,6

1,2,3,4,5,6,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 
1,2,3,4,5,6,7,8,9,10 OR 

1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6

Functions/Test 
Cases T1 T2 T3 T4 T5 T6 T7

fx 1,2,5,10 0 0 0 0 1,2,3,4 1,2,3,4

fy 1,2,3,5,8,10
1,2,3,4,5,6,7,8,9,

10 0 1,2,3,4,5 0 1,2,3,4 0

fz 0 0 1,2,3,4,5 1,2,3,5,8,10 0 0 0

fa 0
1,2,3,4,5,6,7,8,9,

10 0 0 0 0 0

fb
1,2,3,4,5,6,7,8,9

,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,9,1

0
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,

9,10

fc 1,2,3,4,5,6 1,2,3,4,5,6,10 0 0 1,2,3,4,5,6
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,

9,10
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Table 4.8: UNION of all LOC for a Feature Implementation. 

 

 Table 4.9: Percentage LOC (Feature-Function Relationship).  

 

4.1.3.3 Step 3: Develop heuristics 

Table 4.9 provides information regarding how features and functions may be 

related.  Similar analysis regarding feature and data will be explored in Section 

4.1.5.2. The types of information we can deduce from Table 4.9 are as follows: 

Test Case  T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features   FE1 FE2 FE3 FE4

fx 1,2,3,4,5,10 1,2,3,4 1,2,3,4 1,2,3,4,5,10

fy 1,2,3,4,5,8,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4,5,8,10

fz 0 1,2,3,4 1,2,3,4 1,2,3,4

fa 0
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4

fb 1,2,3,4,5,6,7,8,9,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10
1,2,3,4,5,6,7,8,9,

10

fc 1,2,3,4,5,6 1,2,3,4,5,6,10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4,5,6

Test Case  T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features   FE1 FE2 FE3 FE4

fx 60% 40% 40% 60%

fy 70% 100% 100% 70%

fz 0 40% 40% 40%

fa 0 100% 100% 40%

fb 100% 100% 100% 100%

fc 60% 70% 100% 60%
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Sub-features 

While features are visible to end-users, they invariably consist of sub-features that 

may or may not be visible to the end-user.  These sub-features are usually present 

when a feature is tested by many test cases.   

Feature implementation (FI) 

Table 4.9 provides information on implementation of a given feature in many 

functions.  This information is very useful for our methodology.  FI is the number 

of functions the feature is implemented in. 

CORE  

If a function(s) is executed 100% of the time for all features then we define that 

function to be part of CORE.  Such functions are candidates for a shared library.  

Typically, functions that manipulate strings, round numbers, handle database 

connections etc. are part of CORE.  These functions are most always stateless. 

Base-line Architecture 

When the system is invoked in a batch mode as discussed in Section 2.2.3, all the 

test cases execute 100% of certain functions that are not part of any feature.  

These functions are typically part of system initialization, system shutdown and 

setting up global variables.  It is important to understand that these functions are 

not part of CORE but are part of system architecture and global control structure.  

Turner [26] also calls such functions as a base-line architecture.  These functions 

not shown in Table 4.9.  Base-line architecture is product specific and contains 
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specific caller-callee sequence, and is unlikely to be reusable into another 

components.  We argue that such code does not change often and is not a 

candidate for evolution into a component using our methodology.  Using domain 

expertise and results from the profiler, the base-line architecture is identified and 

subtracted from the code to be evolved.  However, if the base-line architecture 

itself is considered for evolution then it is important to realize that this 

architecture is represented at a coarse-grained (not fine-grained) level.  Thus, such 

evolution activities will result in either wrapping or re-architecting the entire 

legacy system, both of which is certainly outside the scope of this dissertation as 

discussed in Section 1.5.  Table 6.7 shows example of functions that are part of 

base-line architecture.  

Neighboring features (K) 

Using Table 4.9, we see how features may interact within a function. Traversing 

through the matrix, one can identify the features that are interacting within a 

function.  We start with a given feature and traverse down to each function where 

the coverage is greater than 0%.  Once the feature implementation is identified, 

we traverse in the horizontal direction to identify the coverage of other features in 

that function (greater than 0%).  Thus, traversing down, across and then up can 

provide which are the neighboring features (see Figure 4.10).  These neighboring 

features form relationships that we will discuss in Section 4.1.5. 
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Evolution threshold (T) 

Our methodology can be used to evolve any feature. However we found that 

rewriting is preferable to features that cross-cut across many functions and 

interact with a lot of features.  Using Table 4.9, heuristics concerning threshold 

can be developed that can identify features that are good candidates for evolution 

and that are not. 

We use Table 4.9 to identify neighboring features, the number of functions where 

the feature is implemented, and then we calculate the average coverage 

percentage within the function.  This provides us a threshold regarding evolving 

the feature, and provides heuristics on whether to continue with the evolution 

methodology or not.   We realize that the high and low values used in Table 4.9 to 

determine whether or not to continue with our methodology depend on the 

particular feature(s) and legacy system(s).  In our experience, we found that our 

methodology works best when K = 3, FI = 17 and C = 80% (a more detailed 

analysis is provided in Section 7.1.1).  As a rule-of-thumb, we can say that if K is 

high than the feature we are trying to evolve cross-cuts through many other 

features.  Conversely, if K is low than the feature we are trying to evolve is trivial.  

Likewise, if a feature is implemented in many functions (i.e. high FI) than the 

feature is likely to be scattered in numerous functions.  If FI is low (perhaps 1 or 

2) than it is a trivial case as the feature is totally contained in a low number of 

functions.   Lastly, if the average coverage of the feature within a function is low 
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than it certainly does not make sense to evolve that feature.  However, whether to 

continue or not is a function of K, FI and C all of which depend on the feature 

being evolved.  Figure 4.10 provides Pseudo-code for calculating K, FI, C and 

CORE. 

 Evolution Threshold (T)  
Feature to be 

evolved 
Neighboring 

feature 
(K) 

Number of 
functions 

(FI) 

Average 
Coverage 

(C) 

 
Continue? 

FEn High High High No 
FEn High High Low No 
FEn High Low Low No 
FEn High Low High Possibly 
FEn Low High High Possibly 
FEn Low High Low No 
FEn Low Low High Possibly 
FEn Low Low Low No 

Table 4.10: Evolution Threshold (T). 
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Map Test Case and Features: 
 For Each (Test Case) 
  Identify Features Represented 
 Next (Test Case) 
 Return Matrix (Test Case and Features) 
 
Run Test Case with Profiler: 
 For Each (Test Case) 
  Run Profiler to obtain LOC in Functions 
 Next (Test Case) 
 Return Matrix (Test Case and Functions) 
 
Map Features/Functions: 
 For Each (Feature) 
  Use Matrix (Test Case and Features) and Matrix (Test Case and Functions) 
  UNION LOC representing a Feature in Functions 
  Calculate Percentage Coverage of a Feature in a Function 
 Next (Feature) 
 Return Matrix_Features_Functions 
 
Develop Heuristics: 
 Select Feature Column to Evolve from Matrix_Features_Functions 
 
 Calculate F1: 
  For Row = 1 to MaxRow (Matrix_Features_Functions) 
   If Matrix_Features_Functions (Row, Column) >0% Then 
    F1 = F1 + 1 
   End if 
  Next Row 
  Return F1 
 
 Calculate K: 
  For Row = 1 to MaxRow (Matrix_Features_Functions) 
   If Matrix_Features_Functions (Row, Column) > 0% Then 
    For Columns = 1 to MaxColumns (Matrix_Features_Functions) 
    If Columns != Column Then 
    If Matrix_Features_Functions(Row, Columns) 0% Then 
     K = K +1 
                   End if 
                  End if 
                 Next Columns 
                   End if 
  Next Row 
  Return K 
 
 Calculate C: 
  For Row = 1 to MaxRow (Matrix_Features_Functions) 
   PercentageCoverage = Percentage Coverage +  
                                                     Matrix_Features_Functions(Row, Column) 
                                    Next Row 
                                   C = PercentageCoverage / MaxRow (Matrix_Features_Functions) 
                                   Return C 
  
Calculate CORE: 
  Array IsCORE(MaxRow (Matrix_Features_Functions)) 
                                    For Row = 1 to MaxRow (Matrix_Features_Functions) 
  For Columns = 1 to MaxColumns (Matrix_Features_Functions) 
   If Matrix_Features_Functions(Row, Columns) = 100% Then 
    IsCORE (Row (Function)) = TRUE 
   Else 
    IsCORE (Row (Function)) = FALSE 
    Break; 
   End if 
  Next Columns 
                                   Next Row  
  Return IsCORE(Row(Function)) 

Figure 4.10: Pseudo-code for Heuristics. 
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4.1.4 Feature interactions 

A legacy system has many features. These features must interact with each other 

to provide wider system functionality.  When features interact with each other, 

they have an “effect” on the system.  Depending upon the state of the legacy 

system, this effect can be either positive or negative (resulting in errors).  We 

must distinguish between intended interactions between features, interactions 

between features that are not intentional but don’t result in errors (or may even 

have positive side-effects) and unintended and undesirable feature interaction not 

known in advance and leading to faulty applications. Figure 4.11 shows a 

classification of feature interaction and their side effects. 

Figure 4.11: Classification of Feature Interaction. 
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Figure 4.12: Feature Interaction via Functions and Data. 

 

In Figure 4.12, functions are represented as rectangles, variables (both local and 

global) as circles, and features as pentagons. FIs are shaded using the same 

pattern as their corresponding feature (shown by the lines between pentagon and 

rectangle).  A feature implementation is the set of shaded regions among the 
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function rectangle.  When two or more feature implementations share common 

data or functions, there are four key interactions. 

4.1.4.1 Shared Stateless Function (SS) 

A stateless function [72] can be shared between two FIs. For example, all 

statements in function f3 are executed when both FE1 and FE2 are exercised and f3 

does not access any local or global data. 

4.1.4.2 Shared State-Full Function (SSF) 

A state-full function [72] can be shared between two features. Refactoring may be 

complex, involving analyzing global variable access and control structures. 

Function f2 accesses global variable g1 and since f2 is part of both FI1 and FI2, 

there is an implicit interaction between FE1 and FE2.  

4.1.4.3 Dependent Data (DD) 

An FI may be dependent on the data that is updated by another FI. For example, f1 

and f2 access the local variable v1 leading to an interaction between FE1 and FE2. 

4.1.4.4 Dependent Function (DF) 

An FI may be dependent on a function that is part of another FI. Function f2 calls 

function f1 (shown by the arrow in Figure 4.12) when FE1 is exercised but not 

when FE2 is exercised (note the consistent shading). The remaining statements in 

f1 (shaded white) are associated with another feature not shown and FE1 interacts 

with that feature. When a feature is fully contained in a single function, the 

implementation could be equally complex. Such a function may be stateless or it 
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could depend on global data (as is the case with f4 in Figure 4.12). As each feature 

is exercised, code-profiling (or similar) tools identify the code slices associated 

with each feature, providing the details necessary to identify interactions between 

features.  

4.1.5 Feature Relationships 

Turner identified several relationships among interacting features [26].   In this 

section, we integrate and extend Turner’s idea of feature relationships into our 

feature model.  Understanding feature relationships allows us to better: 

1. Interpret feature interactions as feature relationships refine the concept of 

interaction by providing specification through calling sequence. 

2. Refactor the existing FI into fine-grained component(s). 

3. Define the communication among fine-grained component(s) that will 

compose the large reusable unit. 

We will discuss how these relationships are implemented within FIs. 

4.1.5.1 Categories 

We expand this concept into direct and indirect relationships among interacting 

features and map it into FI.  We categorized the feature relationships in two broad 

categories as shown in Figure 4.13:  

1. Indirect relationships are problem domain relationships and are abstract 

in nature.  These relationships are important when talking to the end-user 

and usually exist at the application level rather than at the function level.  
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The end-user comprehends the system to be composed of several features 

and has a perspectives with respect to the software functionality.  Within 

the indirect relationship, a feature may be a composed, generalized, or 

specialized part of another feature. These relationships are usually visible 

to the end-user view and reside in the problem domain. 

2.  Direct relationships are solution domain entities.  These relationships 

may be visible to the end-users and typically consist of several sub-

features. These relationships have concrete FIs associated with them.  For 

example, in an application when the user performs “file open” command, 

the data is loaded from a database field and displayed on the screen. 

Within the code, the data may pass through series of transformation, such 

as error checking, checking dependency on other fields, and change its 

appearance. To an end-user, this feature may be that of a simple “file 

open”, but this feature is composed of several sub-features such as error-

checking, dependency-checking, and transform-view.  Both error-

checking and transform-view require dependency-checking to set certain 

state.  These relationships can be identified by inspecting the feature 

implementation.  Within the direct feature relationships, a feature 

relationship with another feature may be that of shared, altered, required, 

conflict, and compete. It is to be noted that both compete and conflict are 

example of features that are implemented using multiple operating system 
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threads.  In contrast, feature relationships of type required, shared and 

altered are examples of features that are implemented using single threads.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13: Feature Relationships. 

 

We define each one of the feature relationships: 

A composed relationship shows how a feature is composed of several sub-
features.  An example of a composed relationship is that a bank account 
consists of savings and checking accounts. 
 
Generalized and specialized relationships usually co-exist and they 
depend of particular point of view and granularity.  An example of 
generalized feature is an application that can integrate assets and 
liabilities.  An example of specialized feature is an application that can 
integrate executive benefits and life insurance, where executive benefit is 
the liability to be funded by the life insurance asset. 
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When a feature is required to be present for other features to function, it is 
known as required relationship.  For example, in order for paste feature 
to work, the cut/copy feature must exist. 
 
When a group of feature share resources (global data, objects or other 
implementation) with other feature(s) then a shared relationship among 
features exists.  For example, Windows™ clipboard shares the text copied 
to it with other applications. 
 
When a feature’s state (global data, object or implementation) is altered 
by another feature then there is an altered relationship between features.  
For example, a textbox turns red in color when an error is identified (in its 
content).      
 

Most contemporary programming languages do not allow creating multiple 

threads within a function.  Thus, the feature relationships compete and conflict are 

found at an application level rather at a function level.  Our feature model 

addresses feature interaction issues at a finer-granularity (i.e. at a function level).  

We suggest that compete and conflict relationships be addressed at a higher level 

of abstraction (i.e. at the architectural level) rather than by our feature model.  

Furthermore, multithreaded systems probably need to be rewritten rather than 

evolved because of the inherent complexity in maintaining them. Direct 

relationships are most commonly found in the solution domain.     

4.1.5.2 Determining Feature Relationships 

While indirect relationships are important, their purpose is mainly to 

communicate with end-users.  There is no FI associated with indirect relationships 

because these relationships are abstract in nature.  Since we are interested in 

evolving the FIs into fine-grained components, our methodology is focused on 
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direct relationships.  The following three elements are important to understand 

how features are related: 

1. Granularity identifies any neighboring features associated with the feature 

that we are trying to evolve.  There are two levels of granularity, inter-

function and intra-function.  In the inter-function, the FI is exclusively in a 

function and that function does not implement any other FI.  The 

neighboring features communicate via global data.  Identification of FI is 

simple as features are already contained in independent functions.   These 

FI may not need any evolution.  In the case of intra-function, the function 

may have several FI and these FI may be interacting via global and/or 

local data.  Our methodology addresses feature interaction at an intra-

function level. 

2. Order of execution identifies which neighboring feature is executed first.   

3. Variable analysis identifies which variables (local and global) are used 

among neighboring features and how. Along with the order of execution, 

variable analysis identifies which global or local variables within the 

neighboring features changed due to the execution.   

We have developed techniques to identify feature relationships based upon 

order of execution, change in the state of variables, feature interaction and 

feature implementation.  Below are five scenarios that allow us to identify 

direct feature relationships: 
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4.1.5.3 Altered and Required via DD 

Both altered and required relationships have been shown in Table 4.11.  The 

sequence of execution is shown in the leftmost column.  The program declares a 

global variable g1.  Assume that FE1 sets the value of this global variable and FE2 

and FE3 use this variable only after it has been set.  Thus, FE2 and FE3 require 

FE1.    

The altered relationship assumes FI to be in one function (fx).  This FI could be 

any of the five cases discussed in Section 4.1.2.  FE1 declares and sets the  

value of a local variable v1.  FE2 changes the value of v1. Thus, there is an altered 

relationship between FE1 and FE2. 

Table 4.11: Altered and Required Relationship via DD. 

 

4.1.5.4 Altered and Required via SSF 

Like the scenario shown in Section 4.1.5.3, the alteration of a variable can also 

happen in an SSF.  Furthermore, the required relationship depends either on a 

local or a global variable, (also seen in Table 4.12).  

 

 

Execution Sequence Declare Set Use  Change 
Program g1

FE1 v1 v1,g1 v1

FE2 g1 v1

FE3 g1
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Table 4.12: Altered and required relationship via SSF. 

 

4.1.5.5 Shared via DD and SSF 

There is a subtle difference between a required and shared relationship.  The root 

of this difference is in the execution sequence.  While it is necessary for a 

required relationship to be executed sequentially, this constraint is not required by 

the shared relationship.  Thus, FE2 and FE3 can execute at any point in time as 

long as they simply use (share) the state of either local or global variable set by 

FE1.  This is true for both DD and SSF as shown in Table 4.13 and Table 4.14 

respectively. 

Table 4.13: Shared Relationship via DD. 

Table 4.14: Shared Relationship via SSF. 

 

4.1.5.6 Compete via DD 

Features can compete with each other.  In Table 4.15, FE2 and FE3 compete to 

change the values of variables v1 and g1 that was set by FE1.  The execution 

Execution Sequence Declare Set in fy Use in fx  Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1

FE2 OR FE3 v1,g1

Execution Sequence Declare Set in fy Use in fx  Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1

FE2 OR FE3 v1,g1

Execution Sequence Declare Set in fy Use in fx  Change fx or fy

Program g1

FE1 v1 v1,g1 v1

FE2 g1 v1

FE3 g1
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sequence of FE2 and FE3 is not important; only their intent to change the values of 

v1 and g1 is.  The scenario shown in Table 4.15 can also exist with SSF and DF.   

 

Table 4.15: Compete Relationship via DD. 

 

4.1.5.7 Conflict via SSF 

Features can be in conflict with each other.  This conflict happens when they are 

trying to set, use and change local/global variables at the same time.  This is 

shown in Table 4.16.  Although, a scenario with SSF is shown DD and DF can 

also exhibit the same scenario. 

Table 4.16: Conflict Relationship via SSF. 

4.1.5.8 Summary 

If a feature can be used in another system, its implementation becomes a 

candidate for reuse.  When features are represented by many test cases, FI can be 

identified by the UNION of lines of code within the function(s).  If test case and 

feature mapping is unknown, simple clustering techniques such as RankSort can 

help.  Running the entire regression test case provides several interesting 

heuristics and information on sub-features, FIs, CORE, base-line architecture, 

Execution Sequence Declare Set in fy Use in fx  Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1 v1,g1

FE1 OR FE2 OR  FE3 v1,g1 v1,g1

Execution Sequence Declare Set in fy Use in fx  Change fx or fy

Program g1

FE1 v1 v1,g1

FE2 AND FE3 v1,g1
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neighboring features and threshold.  Threshold data provides whether to continue 

with the methodology or not.  Features interact with each other via global and 

local data. There are four ways how features interact; SS, SSF, DD and DF.  

Feature interactions allow us to identify relationships among features.  

Understanding feature relationships allow us to refactor FI into explicit fine-

grained components.   Our methodology addresses evolution issues with single-

threaded direct relationships of type required, shared and altered.  
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4.2 Fine-Grained Component Model 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Fine-Grained Component Model. 

 

Our fine-grained component (FGC) model is technology-independent and can be 

implemented using any of the contemporary technologies such as Microsoft 

ActiveX/COM or SUN JavaBeans.  While an FGC can maintain like an EJB 

Session Bean, it may require basic data that is passed to it through its Properties.  

Since our evolution methodology is incremental, the FGC model encapsulates a 

feature implementation that can be invoked by its public interface.  A FGC can 

provide data back to the legacy system via Property Get.  A FGC can also 
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implement any SS and their interface.  Finally, a FGC can access any external 

dependencies (such as SSF, CORE, public functions within the legacy system or 

even other components) via specifying the external functions as shown in Figure 

4.14.   Likewise, the stateless functions can also have external dependencies (not 

shown in the figure). 

An FI is often scattered across many system functions and may access local or 

global data. FIs can be identified and encapsulated into fine-grained components 

using the component model shown in Figure 4.14.  

We borrow the definition of component and component model from [38]: 

A component is a software element that conforms to a component model 
and can be independently deployed and composed without modification 
according to a composition standard.  
 
A component model defines specific interaction and composition 
standards. 
 

Our fine-grained component model has the following aspects Properties, Feature 

Implementation, Stateless Functions, and Encapsulated State: 

4.2.1 Property Set 

Our feature model explains the importance of global and local variables when 

evaluating feature relationships, as discussed in Section 4.1.5.  Essentially, when 

we refactor the FI code in the legacy code we disable the old code within the 

legacy code.  This disabled code requires access to several local and global 
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variables from the legacy system.  Property Set is a way to pass these variables to 

the refactored FI.  Thus, Property Set must be called prior to invoking the FI. 

4.2.2 Property Get 

Like Property Set, the FI can change the state of certain local and global variables 

that the legacy system may need to continue to function properly.  Using Property 

Get, the legacy system retrieves the values of these local or global variables. 

4.2.3 Feature Implementation (FI) 

The FI from the legacy code is refactored and encapsulated here.  This may 

contain several functions, classes, local data and other data structure as the feature 

implementation.  This implementation provides an interface, which is called by 

the legacy system and other product lines.  This FI can call other fine-grained 

components, CORE or any other externally dependent functions as well. It acts as 

the single point of entry for the feature thus providing explicitness to a feature 

functionality encapsulated in FGC.  

4.2.4 Stateless Function(s) 

The FI may need Stateless functions (SS) that are not part of CORE, and other FI 

may not call that SS.  In such cases, this SS can be part of fine-grained 

component.  Its interface is exposed and can be called by the legacy system (or 

any parent application).  Like FI, the SS can also call other fine-grained 

components, CORE or any other externally dependent functions. 
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4.2.5 Internal State 

The fine-grained component may maintain its own state.  This is analogous to an 

EJB Session Bean.  This state is maintained by variables local to the component.  

Maintaining state has its advantages and disadvantages.  It allows for better 

performance as the fine-grained component retains the values of its variables from 

one call to another.  This saves the recalculation/resetting of variables.  However, 

in a multiple-user environment, maintaining state can overload the server 

resources because state is stored in memory.  State can also be serialized in a 

database, which usually provides a good compromise between performance and 

load issues discussed earlier.   Our fine-grained component model allows for 

maintaining the state but leaves the implementation to the developer.       

4.2.6 External Dependencies 

SSF, CORE and other components can be called “out” of the fine-grained 

component to access any data needed via this interface.  This interface can be 

implemented using “events” to access any state set by an SSF.  Typically, external 

dependencies are a list of declaration of functions and other components that the 

FI or the SS may need within FGC. 
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4.3 Evolving Feature Implementation into Fine-Grained 

Components 

Once we identify a FI using code profilers and similar tools such as χSuds [1] and 

NuMega’s TrueCoverage™[37], we refactor that FI into a fine-grained 

component. 

 

 Figure 4.15: Evolving FI into a Fine-Grained Component. 

 

In the fine-grained components developed in this dissertation, the interaction 

between components is clearly specified by the interfaces. Components can also 

access functionality using stateless interfaces. The FI is shielded from specific 

variable implementations by using the interface for external access; over time, the 

variable implementation will be replaced with explicit linkages to external 

interfaces.  
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The first step is to isolate each function that contains code belonging to the target 

FI. This analysis is often complex if because local variables, global variables, and 

dependent functions can be shared between FIs as discussed in Section 4.1.5. Our 

component model attempts to “share” the functions as well as the data that is 

scattered across various functions through explicit interfaces. 

The left part of Figure 4.15 shows a single function fx whose code is shared 

between FI1 and FI2. Similarly function fy is involved in FE3 and FE2.  The 

purpose of cascading functions is to show that FE2 is spread in many functions, 

and interacts with other features. This simple example highlights all 

characteristics of our model. Common code and variables include: calls to SS f1, 

global variable g1, and local variables v3 and v4. Extracting FI2 into comp2 

involves several artifacts. Function f1 can easily be extracted because it is 

stateless. Double arrowheads on the arrow to g1 show that it is both read and 

updated by FI2. Local variables v3 and v4 are used by both FIs but FI2 only reads 

v4 (as shown by arrowhead), while v3 is both updated and read by FI2; v4 is set by 

FE1 but v4 is used by FE2:1. FI2 also accesses global variable g2, SS function f2, 

and SSF f3.  There are several important regions in Figure 4.15. 

• FE1: The complete code in fx that belongs to FE1. 

• FE2: The complete code in fx that belongs to FE2. 

• FE2:1 FE2:1 is the shared code among FE1 and FE2 that is responsible for 

the cross-cutting problem associated with features that makes evolution of 
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legacy systems extremely difficult.  When two or more feature 

implementations share variables and functions, as shown above, one must 

evaluate how they share code and data.  The region FE2:1 implicitly 

defines feature relationships because either global or local variables are 

used or changed (see Section 4.1.5.2).  It is also important to understand 

the relationships among features during an evolution exercise.  A detailed 

analysis of feature relationships that can be found in FE2:1 is provided later 

in this chapter. 

• FE1.Exclusive: The complete code in fx that belongs exclusively to FE1 and is 

not shared with any other FIs including FE2:1. 

• FE2.Exclusive: The complete code in fx that belongs exclusively to FE2 and is 

not shared with any other FIs including FE2:1. 

Comp2 in Figure 4.15 encapsulates FI2 and has several public interfaces, 

represented by circles attached by lines to Comp2 to enable original code to access 

the moved artifacts. Comp2 maintains data previously local to fx, replaces global 

variable references with an interface that treats such data as properties, and 

contains stateless and state-full functions. Public interface I2 is the primary 

interface for Comp2. Stateless functions f1 and f2 are also encapsulated into 

Comp2 and they can be accessed via the public interfaces IF1 and IF2. SSF f3 is 

accessed with IF3; through an outgoing interface, it is assumed that f3 is not 

located inside Comp2 but its state is accessed via IF3.  Local and global variables 
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used by FI2 can be accessed via Get/Set properties. Additionally, the get 

property provides a way to share local and global variables with other feature 

implementations. As related features are evolved, the interaction between fine-

grained components will become increasingly specified and all implicit 

communication will vanish. Thus, we separate accessing variables from their 

implementation. When multiple features are extracted at the same time, many 

stateless functions will be common to several feature implementations; these will 

be encapsulated within a core component, rather than a fine-grained component, 

and will be treated as a shared library. 

The interface for Comp2 is a result of variables and functions that are needed for 

FE2 implementation.  We now discuss what constitutes the FE2 implementation 

both at the function and at the component level: 

FE2 implementation at the function level consists of code in function fx that is 

exercised only for FE2 (defined as FE2.Exclusive) plus the code implementation that 

is shared between FE2 and FE1, (defined as FE2:1).   FE2.Exclusive is simple to 

identify and typically it will be separated by explicit control structures such as 

IF…THEN…ELSE or SWITCH…CASE statements because it is unique to a 

particular feature implementation.  When evolving the exclusive code there are 

two possible routes developers can take; they can simply cut and paste this code 

into the component, or this code can be refactored and then implemented into the 

FE2 implementation of Comp2. Typically, the challenging part is to understand 
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rather than to identify FE2.Exclusive because as mentioned above code profiling tools 

will identify this unique code but understanding remains implicit many times.  

The more complicated case arises when we are dealing with FE2:1 because the 

code is sequentially executed in this shared part of fx making it hard to isolate the 

code associated with either FE1 or FE2.  The net result is that the test cases for 

feature 1 and feature 2 will reveal the same code in FE2:1.  At this point domain 

knowledge may be needed to understand the feature relationships for refactoring 

and evolution.  For example, it is possible that the FE2 implementation is 

dependent on the presence of FE1.  In such instances, it is possible that both 

feature implementations be evolved at the same time.   

Although there is no substitute for the domain knowledge, our feature model 

identifies various relationships that may exist among features and can address the 

issue discussed above. Using the results from Section 4.1.5, we can understand 

the relationships among the features that can provide the local and the global 

variables involved.  These variables (as discussed in Sections 4.1.2 and 4.1.5) can 

be used to: 

1. Identify FE1, FE2, and FE2:1 

2. Form the Property Get/Set of Comp2 

Evolving a FI into a component requires identifying the neighbouring features 

within a function and code exclusive to the feature to be evolved.  The variables 
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that are required to execute (or updated) the FI become the properties of the 

component.   

4.3.1 Evolution Considerations 

To provide heuristics for evolving FE2:1, we now discuss three possible scenarios 

are discussed: 

4.3.1.1 Scenario I - Understanding T(K,FI,C) 

If FE2 is scattered in FI functions and its average coverage percentage C in a 

given function is less than n in each of the functions, then the feature is probably 

not a good candidate for evolution because FE2 cannot be encapsulated easily into 

a component and the cost of evolution will be relatively higher.  Furthermore, the 

legacy system will continue to work so there is probably more need for 

refactoring than encapsulation in case there is a desire to reduce maintenance cost.  

The variables K, C, and FI can be application and/or domain specific. The 

application used as a case study in this dissertation uses a K =3 and C = 80%.   

4.3.1.2 Scenario II - Evolving Unrelated Features 

If FE1 and FE2 share a common implementation, and furthermore they are totally 

unrelated, then code for FE2 can simply be extracted and put in Comp2.  FE2 will 

have to be manually identified.  In this case, FE1 will remain functioning.   Since 

the features share a common implementation and usually there is no control 

statement that segregates these unrelated features, the code profiler may identify 

that each feature is fully covered as shown below in Pseudo-code (Figure 4.16).  
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Function X (i,b) implements FE1 and FE2; there is nothing common between these 

two features and they are totally unrelated.  However, the code profiler will 

identifies 100% coverage when FE1 or FE2 is analyzed independently.  In such 

cases, code for FE2 will have to be manually identified and then moved into the 

component CompFE2.  An in-depth analysis of grouping related features is 

provided in Section 4.3.1.3.2. 

Figure 4.16: Example of Unrelated Features in One Function. 

 

  

4.3.1.3 Scenario III - Evolving Related Features 

If FE2:1 implements two or more features and they are “related closely” to each 

other, then we can make a copy of the function with an understanding that we will 

probably evolve other features (shared in Fx) at some later point in time.  There 

are some configuration management issues with this case and must be handled 

carefully.  At a given point in time only one feature is extracted and evolved, as 

Function X (int i, boolean b)

Code for Feature 1
Use i
Use b
Rest of Feature 1 Code

Code for Feature 2
Use i
Use b
Rest of Feature 2 Code

End Function

Function X (int i, boolean b)

Code for Feature 1
Use i
Use b
Rest of Feature 1 Code

Call CompFE2.X(i,b)

End Function
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the evolution methodology is incremental in nature.   More details regarding 

feature relationships are discussed below. 

4.3.1.3.1 Primitive Features 

Before providing specific examples in Pseudo-code for each of the relationship 

types, we discuss simple cases of what happens when a function is not shared 

among features.  Although these examples are trivial, they do provide background 

information on how functions that implement multiple related-features should be 

handled.  In Figure 4.17, function X1 () implements code for Feature 2 and no 

other feature.  In addition, this code does not update any local or global variables.  

The evolved function simply calls a method in component, CompFE2 (not shown 

in the figure).  Note that the control flow within the legacy system is not 

modified. 

Figure 4.17: Function Implementing Code for Only One Feature. 

 

Figure 4.18 describes a dependent data example discussed earlier; FI2 uses the 

global variable.  Again, the control flow is not modified and code that implements 

FE2 is simply encapsulated into method X2.  An interesting point in this example 

is that compFE2 has a property for accepting the variable Y.  FE2 depends on the 

Function X1 ()

Code for Feature 2

End Function

Function X1 ()

Call CompFE2.X1

End Function
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global variable Y.  The setY property in compFE2 is used to pass the value of the 

global variable from the legacy system.  

Figure 4.18: Implementation of Dependent Data. 

 

A more involved example is shown Figure 4.19. When FI2 updates a global 

variable Y, a get property is needed to update the state of global variable in the 

legacy system.  Note that the legacy system first passes the global variable into 

the component before calling X3. 

Figure 4.19: Feature Updates Global Variable. 

 

These examples assumed that the function does not include any other feature 

implementation.  While these examples are good for showing the concept, in 

reality this is hardly the case, as a single function can be included in several 

features.  One such example is shown in Figure 4.20.  Function X4 () is involved 

in both FI1 and FI2, furthermore IsOdd () is used by both features.  The value of 

the dependent data v determines which feature will be invoked.  In addition, FI2 

Function X3 ()

Code for Feature 2
Change Global Variable Y
Rest for Feature 2 Code

End Function

Function X3 ()

CompFE2.SetY(Y)
Call CompFE2.X3
Y = CompFE2.GetY

End Function

Function X2 ()

Code for Feature 2
Use Global Variable Y
Rest for Feature 2 Code

End Function

Function X2 ()

Call CompFE2.SetY(Y)
Call CompFE2.X2

End Function
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changes the value of global variable Z.  In evolving FE2, FE2 must be considered 

in function X4 (); code that is common to both (and other) features must be 

identified and moved to relevant components.  For example, function A is moved 

inside component compFE2 because it is called only by FE1 and FE2.  IsOdd () is 

moved into core because it is SS and all the features call it.  Note that control flow 

that is common to both features remains in the evolved function. 
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Figure 4.20: Single Function Implementing Several Features. 

Function X4 (int i, boolean b)

Declare Local Variable v
v= Function A(i)
If b = True Then
   v = v + 1
Else
   v = v + 2
End if

If IsOdd(v) Then
   Code for Feature 1
   Use v,i
   Change Global Variable XX
   Rest of Feature 1 Code
Else
   Use Global Variable Z
   Code of Feature 2
   Use v,i
   Change Global Variable Z
   Rest for Feature 2 Code
End if

End Function

Function A (int i)

End Function

Function IsOdd( int v)

End Function

Function X4 (int i, boolean b)

Declare Local Variable v
v= CompFE2.A(i)
If b = True Then
   v = v + 1
Else
   v = v + 2
End if

If CORE.IsOdd(v) Then
   Code for Feature 1
   Use v,i
   Change Global Variable XX
   Rest for Feature 1 Code
Else
   Call CompFE2.SetZ(Z)
   Call CompFE2.X4(v,i)
   Z = CompFE2.GetZ(Z)
End if

End Function
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4.3.1.3.2 Determining Feature Relationships 

Since some of the basic ideas have been described above, the feature relationships 

are now discussed.  The relationships between features are implemented by 

functions.  The problem domain relationships are discussed in detail, with 

emphasis on required, alteration and shared, since all three of these feature 

relationships have a tendency to be implemented in more than one function.  

Feature relationships must be clearly understood for the purpose of evolution.  As 

an example, when a function is to be evolved and it implements more than one 

feature, it is quite possible that a code-profiler may not reveal the exact code 

associated with a given feature.  In fact, the profiler may result in the exact same 

code for both features as shown in Figure 4.21.  Function X () implements FE1 

and FE2.  However, the code-profiler results in the exact same lines of code as 

seen in the left block.  FE1 requires FE2 because dependent data i is changed by 

FE1 and used by FE2.  The global variable i is passed using GetI and SetI to both 

components namely, compFE2 and compFE1.  When Feature 2 only is evolved, 

the Pseudo-code may look like the one in the center block.  The right block 

represents the code after FE1 and FE2 both have been evolved.  The purpose in 

showing all three stages of evolution is to show that the methodology can be 

applied to evolve just one or both the features. 
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Figure 4.21: Example of Required Relationship. 

 

The example below in Figure 4.22 shows a more traditional function that has 

more than one feature implemented.  Note that code for Feature 2 is implemented 

only when the dependent data i is equal to Something.  If i is not equal to 

Something, Feature 2 is never invoked.  Thus FE2 requires FE1.  The right block 

simply encapsulates the Feature 2 code into a component along with dependent 

data i and b. 

Function X ()

Use Global i
Code for Feature 1
Change i to Something
Rest of Feature 1 Code

Code for Feature 2
Use i
Rest of Feature 2 Code

End Function

Function X ()

Use Global i
Code for Feature 1
Change i to Something
Rest of Feature 1 Code
Call CompFE2.SetI(i)
Call CompFE2.X
i =  CompFE2.GetI

End Function

Function X ()

Call CompFE2.SetI(i)
Call CompFE1.SetI(i)

Call CompFE1.X
Call CompFE2.SetI(CompFE1.GetI
Call CompFE2.X

End Function
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Figure 4.22: Example of Required Relationship. 

 

An alteration relationship is similar to required as shown in Figure 4.23.  The 

function prior to its evolution is the one to focus on because the one on the right 

can have similar implementation as the required relationship.  FE1 alters FE2 based 

upon SomeSpecificValue of b.  Since, entire code of FE2 is encapsulated, the 

evolved function in the right block looks similar to the required relationship; 

however, they are quite different. 

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
       Code for Feature 2
       Use b
       Rest of Feature 2 Code
End if

End Function

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
   Call CompFE2.Set(i)
   Call CompFE2.Set(b)
   Call CompFE2.X()
End if

End Function
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Figure 4.23: Example of Alteration Relationship. 

 

The next example illustrates a shared relationship implementation.  In  

Figure 4.24 this example, the state is shared among the two features via a shared-

state-full function A ().  Function A () holds the state in a static variable and that 

state is used by FE2. Since FE2 and FE1 use function A (), the two features are 

related; function A () can be some part of component comp FE2. Finally, the code 

for FE2 is actually moved into a method called X (). 

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
  Code for Feature 2
  Use b
   If b = SomeSpecificValue Then
       Do something different for Feature2
   Else
       Rest of Feature 2 Code
   End if

End if

End Function

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
      Call CompFe2.Set ( i )

                      Call CompFe2.Set ( b )
                      Call CompFe2..X ( )

End if

End Function
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Figure 4.24: Example of Shared Relationship. 

 

Even though conflict and competition are solution domain concerns, they usually 

do not share a common function as far as implementation is concerned as shown 

in Figure 4.25 and Figure 4.26.  As a result, these two types of direct feature 

relationships can be profiled easily with the code-profiler; however, evolution 

may require configuration level changes at a higher granularity.  For example, a 

conflict relationship exists when a batch process is trying to change the status of 

certain records in the database while the GUI is running.  Changing the status is, 

Function X (int c)

Declare Local Variable i
Call A(0)

i = Initialize
i = A(1)

IF c = SomeValue Then
    Code for Feature 1
    Use i
    More of Feature 1 Code
Else
    Code for Feature 2
    Use i
    More of Feature 2 Code
End if

End Function

Function A(int i)

Static Variable K
If i = 0 Then
   Calculation Code for K
   K = SomeValue
Else
   Return K
End if

End Function

Function X (int c)

Declare Local Variable i
Call CompFE2.A(0)

i = Initialize
i = CompFe2.A(1)

IF c = SomeValue Then
    Code for Feature 1
    Use i
    More of Feature 1 Code
Else
    Call CompoFe2.Set(i)

                    Call CompFe2.X
End if

End Function
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in fact, a feature but since it can be called from both batch and GUI there is a 

conflict.  Since both these features are implemented in separate functions, the 

code-profiler will identify them individually based upon the test cases.  The 

evolution of these two direct relationships (conflict and competition) is outside 

the scope of this dissertation.    The understanding is that these methods are called 

at different times so there will not be a problem. 

 

Figure 4.25: Examples of Conflict Relationships. 

Figure 4.26: Example of Compete Relationships. 

 

 

 

Function X ()
Trying to access a shared memory region
at time t

End Function

Function Y()
Trying to access the same shared memory
region at time t (as function X)

End Function

Function X ()
CompFe2.X

End Function

Function Y()
CompFe2.X

End Function

Function X ()
Update Rows in certain table of a Database 
via a Batch Process

End Function

Function Y()
Update Same Rows in certain table of a
Database via a GUI Process

End Function

Function X ()
CompFe2.X

End Function

Function Y()
CompFe2.Y

End Function
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4.4 Budget Analysis Model 

In this section, we describe a simple model that allows the project manager to 

quickly calculate the net gain or loss due to the application evolution 

methodology.  While there are several cost models such as COCOMO and others 

[15][17][109][130] that can be used, we show a simple model to track costs 

relevant to our methodology.   These items can be integrated into other cost 

models as well.  These costs are evaluated in Chapter 6 using our primary case 

study.  Other cost savings are also possible so this list is not exhaustive.  Note that 

original regression test-suites can be used to test feature-based as well as the 

CORE components.   It is important to note that testing feature-based and CORE 

components are two separate processes.  We suggest that CORE be integrated 

first and then tested, followed by the feature-based (and CORE) components.  The 

elements of our cost models are as following: 
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Table 4.17: Budget Analysis. 

 

4.5 Formal Model 

The feature model and the fine-grained component model are supported by a 

formal model that we now describe.  We use Relational Calculus as the basis of 

our formal model that was introduced by Codd [34].   Refer to Appendix D for 

Relational Calculus Preliminaries.  

A feature as described earlier is a group of individual requirements that describes 

a unit of functionality.  We also established that regression test cases are the way 

these features are exercised. The feature model describes how FIs (functions, 

local data and global data) is associated with the features.   

Element Description 
Cost of Mapping Features and Test-
Cases 

Time taken by the software team to identify and map features 
and test cases.  

Cost of identifying code using test cases 
and profiler 

Time taken by the software team to run the code coverage 
tool to identify feature implementation. 

Cost of Refactoring Time taken to analyze heuristics and FIs. 
Cost of Developing Components Time taken to develop feature-based fine-grained 

components 
Cost of Developing CORE Component Time taken to create the shared reusable library 
Cost of Configuration Management 
(CM) 

Time taken to develop CM activities among product lines 

Cost of Testing Time taken to test feature-based and CORE components 
Cost of Training and Documentation Time taken to develop users guide and train other members 

of the software process team 
Savings from Solving Feature Problems Time saved from fixing the feature specific problems.  It can 

be viewed as what would it cost in absence of the 
methodology 

Savings from improved architecture 
(reduced global variables, more explicit 
communication and better understanding 
of features) 

Time saved in training a new hire.  This element is hard to 
measure because it is always implied.  We were unable to 
measure it at AFS. 

Savings in reusing Core  Time saved in re-development efforts in other product lines 
Savings in reusing feature specific 
component 

Time saved in re-development efforts in other product lines 

Net Cost (+)/Savings (-)  Sum of all costs and savings.  Negative number means a 
profit. 
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Researchers [5][125][121][99] have proposed several execution slice-based 

heuristics to identify code that is uniquely related to a given feature.  Although 

code so identified provides an excellent starting point for program understanding 

and evolution, it is not sufficient to capture relationships such as SS, SSF, DF and 

DD (see Section 4.1.4).  To capture these relationships, we need to identify 

functions and data that are shared among features.  One approach is to use the 

union of the FI of related test cases to find a set of functions and data. 

Theoretically, we may need to use all test cases for a given legacy system and 

feature.  In practice, this is often not necessary because the evolution 

methodology we describe suggests three ways to group related test cases (see 

Section 4.1.3.1).  

The reason for using test cases with respect to the feature being examined is to 

avoid FIs that have nothing to do with this feature. If this is not possible (i.e., 

every input with respect to this feature also exercises some other feature), we need 

to subtract code that is uniquely used to implement the other features from the 

code identified by the union of such test cases.  A simple example explanation is 

as follows. Suppose a feature (say FE1) cannot be exercised without also having 

another feature FE2 exercised. Also, assume that FE2 can be exercised by itself.  

Under this situation, a way to find code used to implement FE1 is to first find code 

used to implement FE2 and FE1, then subtract the code uniquely related to FE2. 
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The formal model presented in this section forms the mathematical basis for the 

Feature and Fine-Grained Component Model discussed earlier.  Regression test 

cases, feature, feature implementation and fine-grained components are 

represented using Relational Calculus and First Order Predicate Logic.   

4.5.1 Data Model 

Figure 4.27 illustrates the data model that will be used as the basis for formalism 

using relational algebra.   The data model also provides the basis for the Evolution 

Manager Utility described in Section 4.6.  The data model contains the 

information regarding the legacy system, the feature function relationship, the 

feature interactions and finally the component definition.  The data model can be 

used to trace feature relationships, interactions, and component evolution of a 

legacy system. 

The data model can be divided into four parts: 

• System Information Part:  This part consists of the following six tables; 

Legacy_System, Release, Feature, Test_Case_Feature_Map, 

Function_List and Test_Cases.  The system information part describes the 

information about the legacy system’s release.  A release is a production 

version of the legacy system.   This part of the data model reflects a legacy 

system with many releases. Each release may have many associated 

features, functions and test cases. A feature can be represented by one or 

more test cases.  Table 4.18 provides more details on the specific tables 
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and their relationships of system information part of the data model.  The 

purpose of these tables are to capture information about the legacy system, 

the data can be entered manually into the database or import routines can 

bring the data from another system/sub-system. 

• Feature/Function Part:  This part of the data model stores the results 

from the profiler and is related to the system information.  The two parts 

are related by Function_ID in the tables Function_List and 

Feature_Function_Map. The feature/function part of the data model 

consists of Test_Cases_to_Function, Feature_Function_Map, 

Function_To_Vars and Variable tables.  Essentially, the test cases and the 

FI is determined by using profiler and Feature/Function mapping is stored 

in the Feature_Function_Map table.  Information about variables and their 

location within the function is kept within the Function_To_Vars and 

Variable tables.  Table 4.19 provides more details on the specific tables 

and their relationships of system information part of the data model.  

These tables are central to the collection of information for the 

methodology.   

• Feature Interaction Part:  This part of the data model contains 

information about feature interaction.  It consists of Shared_Stateful, 

Dependent_Data, Dependent_Function and Shared_Stateless tables.  This 

part is related to the feature/function part via the Execution_ID field 
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within the Feature_Function_Map and all the four tables listed above.  

This part of the data model is populated by the analyzing the feature 

interactions among features. The code profiler identifies the FI and data 

that is associated with a feature.  This FI may call functions (SS, SSF, DD, 

and DF, see section 4.1.4 for more details) that may be part of other FI.  

The table Shared_Stateful is populated if FI calls an SSF that is part of 

another FI.  Likewise, Shared_Stateless is populated if FI calls an SS that 

is part of another FI, and so on.  Currently, these tables are manually 

populated in the database but code can developed to identify SS, SSF, DD 

and DF from the calling FIs to automate this process.   Table 4.20 provides 

more details on the specific tables and their relationships of system 

information part of the data model. 

• Component Definition Part:  This part of the data model contains 

information regarding the component definition that is the result from 

applying the methodology.  It consists of  Component, 

Component_Interface, Component_Property_Set and 

Component_Property_Get tables.  This part is related to the feature 

interaction part via the Shared_Stateful_ID, Dependent_Data_ID, 

Dependent_Function_ID and Shared_Stateless_ID.  Component definition 

part stores the information regarding property get, property set and the 
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feature interface. Table 4.21 provides more details on the specific tables 

and their relationships of component definition part of the data model. 

There are several purpose of this data model.  First, it provides an intuitive 

understanding of the evolution process and maps the methodology steps to the 

physical tables.  Second, it provides the foundation of our formal model (see 

Section 4.5).  Third, it provides the foundation for the Evolution Manager 

Utility (see Section 4.6) that can be used to track the evolution process of our 

methodology. 
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Figure 4.27:  Data Model Used as Basis for Formalism.  
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Table Related Table: 
Relationship 

Keys Relationship 
Type 

Legacy_System Legacy_System: 
Release 

System_ID One-To-Many 

Release Legacy_System: 
Release 

System_ID One-To-Many 

 Release: 
Feature 

Release_ID One-To-Many 

 Release: 
Test_Cases 

Release_ID One-To-Many 

 Release: 
Function_List 

Release_ID One-To-Many 

Feature Feature: 
Test_Case_Feature_Map 

Feature_ID One-To-Many 

 Release: 
Feature 

Release_ID One-To-Many 

Test_Case_Feature_Map Feature: 
Test_Case_Feature_Map 

Feature_ID One-To-Many 

 Test_Cases: 
Test_Case_Feature_Map 

Test_Case_ID One-To-Many 

 Test_Case_Feature_Map: 
Feature_Function_Map 

Test_Case_Feature_ID One-To-Many 

Test_Cases Test_Cases: 
Test_Case_Feature_Map 

Test_Case_ID One-To-Many 

 Release: 
Test_Cases 

Release_ID One-To-Many 

 Test_Cases: 
Test_Cases_TO_Function 

Test_Case_ID One-To-Many 

Function_List Function_List: 
Test_Cases_TO_Function 

Function_ID One-To-Many 

 Function_List: 
Feature_Function_Map 

Function_ID One-To-Many 

 Release: 
Function_List 

Release_ID One-To-Many 

 Function_List: 
Function_TO_Vars 

Function_ID One-To-Many 

Table 4.18: Data Model - System Information.
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Table Related Table: 
Relationship 

Keys Relationship 
Type 

Feature_Function_Map Feature_Function_Map: 
Shared_Stateless 

Execution_Traces_ID One-To-Many 

 Feature_Function_Map: 
Shared_Stateful 

Execution_Traces_ID One-To-Many 

 Feature_Function_Map: 
Dependent_Data 

Execution_Traces_ID One-To-Many 

 Function_List: 
Feature_Function_Map 

Function_ID One-To-Many 

 Feature_Function_Map: 
Dependent_Function 

Execution_Traces_ID One-To-Many 

 Test_Case_Feature_Map: 
Feature_Function_Map 

Test_Case_Feature_ID One-To-Many 

Function_TO_Vars Variable: 
Function_TO_Vars 

Variable_ID One-To-Many 

 Function_List: 
Function_TO_Vars 

Function_ID One-To-Many 

Test_Cases_TO_Function Function_List: 
Test_Cases_TO_Function 

Function_ID One-To-Many 

 Test_Cases: 
Test_Cases_TO_Function 

Test_Case_ID One-To-Many 

Variable Variable: 
Function_TO_Vars 

Variable_ID One-To-Many 

Table 4.19: Data Model - Feature/Function Part. 
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Table Related Table: 
Relationship 

Keys Relationship 
Type 

Dependent_Data Feature_Function_Map: 
Dependent_Data 

Execution_Traces_ID One-To-Many 

 Dependent_Data: 
Component_Property_S 

Dependant_Data_ID One-To-Many 

 Dependent_Data: 
Component_Property_G 

Dependant_Data_ID One-To-Many 

Dependent_Function Dependent_Function: 
Component_Interface 

Dependant_Function_ID One-To-Many 

 Feature_Function_Map: 
Dependent_Function 

Execution_Traces_ID One-To-Many 

Shared_Stateful Shared_Stateful: 
Component_Interface 

Shared_Stateful_ID One-To-Many 

 Feature_Function_Map: 
Shared_Stateful 

Execution_Traces_ID One-To-Many 

Shared_Stateless Feature_Function_Map: 
Shared_Stateless 

Execution_Traces_ID 
 

One-To-Many 

 Shared_Stateless: 
Component_Interface 

Shared_Stateless_ID One-To-Many 

Table 4.20: Data Model - Feature Interaction Part. 
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Table Related Table: 
Relationship 

Keys Relationship 
Type 

Component Component_Interface: 
Component 

Interface_ID One-To-Many 

 Component_Property_G: 
Component 

Property_ID One-To-Many 

 Component_Property_S: 
Component 

Property_ID One-To-Many 

Component_Interface Component_Interface: 
Component 

Interface_ID One-To-Many 

 Shared_Stateful: 
Component_Interface 

Shared_Stateful_ID One-To-Many 

 Shared_Stateless: 
Component_Interface 

Shared_Stateless_ID One-To-Many 

 Dependent_Function: 
Component_Interface 

Dependant_Function_ID One-To-Many 

Component_Property_Get Component_Property_G: 
Component 

Property_ID One-To-Many 

 Dependent_Data: 
Component_Property_G 

Dependant_Data_ID One-To-Many 

Component_Property_Set Component_Property_S: 
Component 

Property_ID One-To-Many 

 Dependent_Data: 
Component_Property_S 

Dependant_Data_ID One-To-Many 

Table 4.21: Data Model - Component Definition. 



 

 

145

 

4.5.2 Preliminary Definition 

Let: 

LS be a Legacy System consists of functions and global data, LS = (F,G). 

Define FE to be the set of all feature in LS and F is the set of all functions, fi ∈  F. 

FEi represents a specific feature. Let T be the set of regression test case that are 

part of LS, T = {t1, t2, t3, t4, ….. tn}, ti refers to a specific test case within T. 

The profiling of LS can determine which FIs are executed for any test case ti ∈  T. 

Thus, we define a relation EXERCISES over T × F such that EXERCISES(ti, fi) is 

true if fi is exercised by test case ti.   

We now define a relation that links test cases and features together.  There are 

many different ways to view the features in FE but we are concerned with 

members of FE that can be represented by a subset of T.  Thus we can define a 

relation REPRESENTS over T × FE such that REPRESENTS(ti, FEi) is true if 

test case ti represents feature FEi.   

Minimal Constraint → ∀  FEi ∃  tj Such that REPRESENTS(tj,FEi)  

Coverage Constraint → ∀  ti ∃  FEj Such that REPRESENTS(ti,FEj) 

Non Pervasive Constraint → (Not ∃ ) FEi ∀  tj Such that REPRESENTS(tj,FEi), this 

means that no feature is tested by all test cases. 
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Let FIi be a feature implementation as defined in the feature model and  

FEi be a feature of LS that is exercised when Ki is executed, ki is a set of test cases 

such that ki ⊂  T. For example, Ki = {t1, t5, t11}; note that Ki ≠ T by the non- 

pervasive constraint.  We define the USES(fi,fj) relation over F × F that identifies 

when function fi invokes function fj.  We are not ready to provide precise 

definition of the term feature implementation.  Define FIi as the implementation 

of FEi in LS such that FIi = {f | ∀  t ∈  T, f ∈  F, REPRESENTS(t, FEi) ∧  

EXERCISES(t,f)}.  Note that FIi will be the way we refer to the implementation 

of FEi. 

4.5.3 Feature Interaction 

Features interact because their underlying feature implementation overlap.  Two 

features FEi and FEj interact functionally when FIi ∩ FIj ≠ Ø.  Two features can 

also interact through data.  If we define G to be set of global variables in LS, 

LOCALS (fi) to be set of local variables within a function fi, D(fi) = {d | 

USES(fi,d) ∧  (d ∈  {G ∪  LOCALS(fi)})}, and DATASCOPE(FEi) = { d ∈  D(fi) 

∧  f ∈  FIi} then the two features interact through data when DATASCOPE(FIi) ∩ 

DATASCOPE(FIj) ≠ Ø.    Note that data interaction model is not powerful to 
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capture alias or pointers to data (such as a SQL statement).  We chose to ignore 

such details at this time since our methodology is capable of identifying the data 

that is required to create components. It is also useful to discuss the concept of 

neighboring features, that is, features that share their implementation with the 

target (feature to be evolved) feature. NEIGHBOR(FEi) = { FEj | FEj ≠ FEi ∧  

(FIi ∩ FIj ≠ Ø)} 

4.5.4 Classifying Functions  

A function is Shared Stateless (SS) when D(f) = {Ø ∧  ∃  FEi ,FEj | f ∈  FIi ∩ f ∈  

FIj} 

A function is Shared State-Full (SSF) when D(f) = {Ø ∧  ∃  FEi ,FEj | ∃  d ∈  D(f) 

∧  d ∈  DATASCOPE(FEi) ∧  d ∈  DATASCOPE(FEj)} 

A function is Dependent Data (DD) when ∃  FEi, FEj, fx ,d, fy | d ∈  

DATASCOPE(FEi) ∩ DATASCOPE(FEj)  ∧  USES(fx,d) ∧  fx ∈  FIi) ∧  

USES(fy,d) ∧  fy ∈  FIj ∧  fx  ≠ fy. 

A function is Dependent Function (DF) when ∃   FEi ,FEj, fx , fy , fz | fx ∈  FIi) ∧  fy 

∈  FIj)  ∧  USES(fx, fy) ∧   USES(fy, fz) ∧  fx  ≠ fy. 
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4.5.5 Identifying Interactions within a Functions 

We need to capture the interactions within a function between features.  We 

define TRACE(t,f) = {N} where N is a natural number representing the lines of 

code executed within function f  when test case t is exercised.  The function 

definition can be defined to be FDef = N X f. Given that there may be a second 

feature whose implementation may overlap within f, we need to separate the code 

within the function f.  We define SCOPE(FEi,f) = ∀  ti ∪ TRACE(ti,f) ∧  f ∈  FIi..  

This allows us to define the code that is exclusive to the feature as 

EXCLUSIVE(FEi,f) = SCOPE(FEi,f) - ∪  SCOPE(FEj,f) ∀  FEj  ≠ FEi. 

4.5.6 CORE 

We assume that all functions that belong to CORE are stateless and that they are 

exercised by all test cases.  We define CORE = {f∈ FIi|∀  t∈ T,EXERCISES(t,f) ∧  

SS(t,f)}. 

4.5.7 Threshold 

As defined in Section 4.1.3.3 that Threshold consists of FI, K and C where FI is 

the number of functions (note that this is same as feature implementation), K is 

the number of neighboring features and C is the average coverage of a FE across 

all FIs. 
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Generalized Feature Set (GFS) for FEi for a given function fx= Cardinality(∀ Ti | 

REPRESENTS(Ti, FEi) ∧  EXERCISES(Ti,fx)).  It means set of features 

implemented in a given function. 

When |GFS|  = 1 it indicates that the function implements only one features 

|GFS| > Χ represents Evolution Threshhold.   It means that if a function 

implements more than Χ features in it, then it is probably not a good candidate for 

our methodology unless the function belongs to CORE.  

Threshold can also be defined as a combination of (|FI|, |K|, C), where |FI| = 

Cardinality(∀ FIi, FEi | FIi), |K| = Cardinality(∀ FIi,FEi |NEIGHBOR(FEi)) and C = 

(Cardinality(∀ FEi | EXCLUSIVE(FEi,f))/|FI|)*100. 

Figure 4.27 illustrates the data model that can be used as the basis for formalism 

using relational algebra and first order logic.   

4.5.8 Summary 

We presented a formal representation of our methodology in this section.  Using 

relational calculus and first-order-logic we defined Feature Implementation, 

Feature Interactions, Classification of Functions into SS, DD, DF and SSF, and 

CORE.  Most important aspect of our formal model is the fact that it is based on 

relational data model described in Section 4.5.1.  We identified a weakness in 

representation of data when the data is a pointer or an alias (such as a SQL 

statement).  We also represented important elements of our methodology such as 
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GFS, Threshold and Neighboring features.  The next section describes the 

evolution manager utility that is based on the data model and it proved to be a 

useful tool in our case study.  
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4.6 Evolution Manager Utility 

We developed a utility called evolution manager based upon the data model 

discussed in Section 4.5.  Figure 4.28 shows an overview of evolution manager 

functions.  The key features of evolution manager utility are: 

• Feature function relationships based upon test case and features, and test 

case and functions  

• Feature function relationship in terms of coverage percentage 

• Exclusive coverage of a feature within a function 

• Calculate Threshold T(FI,K,C) 

• Variable usage (set or use) by a feature within a function 

• Feature implementation in terms of which lines of code and variables 

implement the feature 

•  Several tracking reports such as feature lists, function lists, or features 

within a release etc 

The following results from the profiler are imported into the evolution manager: 

• Line(s) of code executed in each function by a test case 

• Local and global Variables used and updated in each function 

In addition to the information imported from the profiler, the evolution manager’s 

data model accounts for following data (user input): 
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• Test cases used in each release, provided by testers 

• Mapping of test case and features, provided by testers 

Using SQL statements and matrix calculations, the evolution manager generates 

reports that allow us to identify feature implementation.  The feature 

implementation is then used to refactor the code to create component.  The utility 

does not refactor the code but provides tracking and identification of feature 

implementation based upon information discussed above.  Among the key reports 

that the utility provides are feature/function mapping, feature exclusive lines of 

code in a function, threshold and recommendation for component’s properties.  

The evolution manager utility can be used to help automate the methodology by 

taking the following steps: 

• Populate the system information part of the data model either by importing 

data from another system or by manually entering the data through some 

simple user interfaces screens. 

• Develop logic to identify feature/function interaction by identifying SS, 

SSF, DD and DF; note that this will involve programming language-

dependent logic.  This will result in populating the feature interaction part. 

• Develop logic to populate the component definition part, this can be 

achieved by identifying which variables are set/used by FI.   
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Appendix G provides detail on the evolution manager utility and implementation 

of the example discussed in Chapter 5. 

 

Figure 4.28: Evolution Manager Utility. 
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4.7 Summary 

Four models were discussed in this chapter, namely the feature model, fine-

grained component model, the budget analysis model and the formal model.  The 

feature model describes our definition and understanding of features.  It address 

the feature interaction problem by considering relationships among features.  We 

also discussed heuristics using feature implementation.  The fine-grained 

component model describes our definition and understanding of components and 

component model.  Both feature and fine-grained component models are used to 

evolve feature implementations into reusable components.  We also described a 

simple budget analysis model and items that should be tracked so the 

methodology can be verified.  Finally, we provided theoretical foundation of our 

feature and fine-grained component model in formal model. 
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5 A Simple Example 

To illustrate indirect feature relationships and evolution methodology; we have 

extended a small example that first appeared in [5].  We extended the example to 

show how our evolution methodology can be used to encapsulate a group of 

related features.  The purpose of this example is to show how our evolution 

methodology can be used to trace source code associated with test cases; how the 

traced code can be encapsulated into components; and finally, how these 

components can be reused. 

As described in [5] and informally observed, an Automatic Teller Machine’s 

(ATM) operational requirements are shown in Table 5.1. 

ATM Operational Requirements 
1. A customer must be automatically prompted for a Personal Identification Number (PIN). 
2. After the input of a PIN, the customer must be offered a set of operations: make a 

deposit, make a withdrawal, or check one account balance. 
3. After an operation has completed, the customer must have the opportunity to start another 

operation. 
4. At any point of an operation, the customer must be able to cancel the current operation 

and be asked whether to continue with another operation. 
5.  After the operation is chosen, the customer must select the account on which to perform 

the operation: checking or savings. 
6.  In the case of a withdrawal, the customer must enter a positive number that represents 

the amount to withdraw from the selected account.  Furthermore, if the withdrawal is 
done on the checking account then the amount must be less than or equal to $300.   

7.  In the case of a deposit, the customer must be able to insert bills of $5, $10, $20, $50 or 
$100 into the ATM.  The corresponding account must be credited.  

8. In the case of a balance operation, the balance of the corresponding account must be 
displayed on the screen. 

9.  When the series of operations is terminated, the customer must decide whether a receipt 
should be printed.  Given a positive response, a receipt with the balance information of 
all accounts that have been affected during the transaction should be printed. 

Table 5.1: ATM Operatioal Requirements. 
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This ATM function was implemented in Visual Basic (See Figure 5.1).  In 

addition, a feature analysis and test-case analysis was also performed to map 

feature and test cases.  Note that details of functions such as Make_Deposit () and 

Make_Withdrawal () are omitted for space reasons.  Line numbers are used for 

reference as they will be utilized when profiling the code using test cases.  An 

interesting observation regarding the ATM example is that there is an indirect 

composition relationship because an Account is comprised of Checking and 

Savings. 
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G l o b a l  P I N
G l o b a l  A c c o u n t _ C h o i c e
G l o b a l  A m o u n t
G l o b a l  C h e c ki n g _ F l a g
G l o b a l  S a v i n g s_ F l a g
G l o b a l  R e c e i p t _ C h o i c e
G l o b a l  C u st o m e r_ R e c

F u n c t i o n  A T M ()
1 . P r i n t  (" E n t e r P I N " )
2 . R e a d (P I N )
3 . C u st o m e r_ R e c  =  G e t _ C u st o m e r(P I N )
4 . D o
5 . C l e a r_ S c re e n
6 . P ri n t  (1 .  D e p o si t ,  2 .  W i t h d ra w ,  3 .  B a l a n c e ,  0  t o  E n d )
7 . R e a d  (C o d e )
8 . I F  C o d e  >  0  T h e n  P ri n t  (1 .  C h e c ki n g ,  2 .  S a v i n g s)
9 . I F  C o d e  >  0  T h e n  R e a d  (A c c o u n t _ C h o i c e )
1 0 . I F  C o d e  =  1  T h e n
1 1 .      A m o u n t  =  G e t _ M o n e y (C u st o m e r_ R e c )
1 2 .       I F  A m o u n t  >  0  A n d  A c c o u n t _ C h o i c e  =  1  T h e n
1 3 .           M a ke _ D e p o si t (C u st o m e r_ R e c ,  A m o u n t ,  " C " )
1 4 .           C h e c ki n g _ F l a g  =  T ru e
1 5 .       E L S E I F  A m o u n t  >  0  A n d  A c c o u n t _ C h o i c e  =  2  T h e n
1 6 .           M a ke _ D e p o si t (C u st o m e r_ R e c ,  A m o u n t ,  " S " )
1 7 .           S a v i n g s_ F l a g  =  T ru e
1 8 .       E N D  I F
1 9 . E L S E I F  C o d e  =  2  T h e n
2 0 .        C l e a r_ S c re e n
2 1 .        P r i n t  (" E n t e r A m o u n t " )
2 2 .        R e a d (A m o u n t )
2 3 .        I F  A c c o u n t _ C h o i c e  =  1  T H E N
2 4 . I F  A m o u n t  < =  3 0 0  A N D  A m o u n t  > 0  T H E N
2 5 .     M a ke _ W i t h d ra w a l (C u st o m e r_ R e c ,  A m o u n t ,  " C " )
2 6 .                     C h e c ki n g _ F l a g  =  T ru e
2 7 . E L S E I F  A m o u n t  > 3 0 0  T H E N
2 8 .      P r i n t  (" E rro r:  C a n n o t  w i t h d ra w  m o re  t h a n  3 0 0 " )
2 9 . E N D  I F
3 0 .         E L S E I F  A c c o u n t _ C h o i c e  =  2  T H E N
3 1 .  M a ke _ W i t h d ra w a l (C u st o m e r_ R e c ,  A m o u n t ,  " S " )
3 2 .                  S a v i n g s_ F l a g  =  T ru e
3 3 .          E N D  I F
3 4 . E L S E I F  C o d e  =  3  T h e n
3 5 .          I F  A c c o u n t _ C h o i c e  =  1  T h e n
3 6 .              D i sp l a y _ B a l a n c e (C u st o m e r_ R e c , " C " )
3 7 .                          E L S E I F  A c c o u n t _ C h o i c e  =  2  T h e n
3 8 .              D i sp l a y _ B a l a n c e (C u st o m e r_ R e c , " S " )
3 9 .          E N D  I F
4 0 . E N D  I F
4 1 . W h i l e  (C o d e  i s N O T  E q u a l  t o  0 )
4 2 . P r i n t  (" D o  y o u  w a n t  a  R e c e i p t ? ,  1 .  Y e s,  2 .  N o " )
4 3 . R e a d (R e c e i p t _ c h o i c e )
4 4 . I f  R e c e i p t _ C h o i c e  =  1  T h e n
4 5 .     I F  C h e c ki n g _ F l a g  T H E N
4 6 .         P r i n t _ I N F O (C u st o m e r_ R e c , " C " )
4 7 .     E L S E I F  S a v i n g s_ F l a g  T H E N
4 8 .         P r i n t _ I N F O (C u st o m e r_ R e c , " S " )
4 9 .                E N D  I F
5 0 . E N D I F
5 1 . E j e c t _ C a rd ()
E n d  F u n c t i o n

 

Figure 5.1: ATM Function Implemented in VB. 

 

There are several features and sub-features in this example.  They are summarized 

in Figure 5.2: 
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FE1: Customer Session
FE2: Enter PIN
FE3: ATM Operations
FE4: End of ATM
FE5: Receipt (Print)
FE6: Get Receipt
FE7: Skip Receipt
FE8: Withdrawal
FE9: Checking Withdrawal
FE10: Savings Withdrawal
FE11: Abort Withdrawal
FE12: Deposit
FE13: Checking Deposit
FE14: Savings Deposit
FE15: Abort Deposit
FE16: Verify Balance
FE17: Checking Balance
FE18: Savings Balance
FE19: Abort Balance
FE20:Amount to Withdraw
FE21: Amount to Deposit
FE22:Verify Limits
FE23: Abort Withdrawal
FE24: Accept Money
FE25 Enter Digit

 

Figure 5.2: Summary of Features in ATM Function. 

 

Again, the deposit feature comprises a deposit either in the checking account or 

the savings account.  Similarly, withdrawal can also be viewed as an indirect 

relationship of type composition.  The next step is to analyze test cases that 

exercise the features in ATM sub-system.   
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Test Case Content Mapped Features 

t1 123 Deposit Savings 100 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25 

t2 123 Deposit Checkings 100 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE13,FE21,FE22,F
E23,FE23,FE25 

t3 123 Withdraw Checkings 20 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE8,FE9,FE20,FE25 

t4 123 Withdraw Checkings 500 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE8,FE9,FE20,FE25 

t5 123 Withdraw Savings 200 Finished Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE8,FE10,FE20,FE25 

t6 123 Balance Checking Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE16,FE25 

t7 123 Balance Savings Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE18,FE25 

t8 123 Deposit Savings 50 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25 

Table 5.2: Summary of Test Cases and Features in ATM Sub-system. 

 

Note that not all features are worth analyzing for the purpose of creating 

components.  The main features that are of interest are Deposit, Withdrawal and 

Balance inquiries of checking and the savings account. The eight test cases are a 

complete set of test cases that exercise the three features of interest.  For example, 

test case number 5 will withdraw $200 from savings account and will generate a 

receipt before giving the card back to the customer. 

Before the components can be created, code must be located and features must be 

analyzed and prioritized.  Some features are better candidates than others as far as 

their evolution is concerned.  While feature analysis and prioritization can identify 

the reasons to evolve features, their implementation in terms of functions and 

variables is indeed very important.  One such technique, described in this 

dissertation is to identify code associated with a feature is to run source-code 
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profiler with the test cases.  In this simple example, the following code was 

revealed after running all eight test cases (Table 5.3): 

 

Test 
Case 

Content Lines of Code 

t1 123 Deposit Savings 100 End Finished No 1-9,10,11,12,15-18,41-44,51 

t2 123 Deposit Checkings 100 End Finished  No 1-9,10,11,12,13-14,41-44,45-46,51 

t3 123 Withdraw Checkings 20 End Finished No 1-9 
10,19,20,21,22,23,24,25,26,30,33,41,42,43,44,51 

t4 123 Withdraw Checkings 500 End Finished No 1-9, 
10,19,20,21,22,23,27,28,29,30,33,41,42,43,44,51 

t5 123 Withdraw Savings 200 End Finished Yes 1-9, 
10,19,20,21,22,23,30,31,32,33,41,42,43,44,45,47,48,
49,50,51 

t6 123 Balance Checking Finsihed Yes 1-9,34-36,41,42,43,44,45,46,50,51 

t7 123 Balance Savings Finsihed Yes 1-9,34-36,41,42,43,44,45,47,48,49,50,51 

t8 123 Deposit Savings 50 Finsihed Finished Yes 1-9,10,11,12,15-18,41-44,47-51 

 Table 5.3: Profiler Results on ATM Test Cases. 

 

Once the code has been identified, it can then be refactored and evolved.  There 

are several refactoring techniques that have been described in the literature.  The 

purpose of this dissertation is not to describe the refactoring techniques but to use 

them in the evolution methodology.  Note that there are functions that the ATM 

function calls with all the test cases.  Since these functions are common to all test 

cases and features, they can be collected and bundled into a library called CORE, 

as shown in Figure 5.3: 
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Figure 5.3: CORE Library Functions. 

 

Assuming that the deposit feature needs evolution, the following code snippet 

outlines how the code is identified, evolved into a component and called from the 

legacy function ATM ().  Note that CORE is also shown as a part of the 

incremental evolution.  The Deposit component has three set properties, namely 

Customer_Rec, Amount and Account Choice.  The Customer_Rec is used to 

access the customer record, Amount property determines how much to deposit 

and Account Choice tells the component into which account (Checking or 

Savings) the deposit should be made.  Note that the Account Choice variable can 

further be refactored into a CONSTANT variable for explicitness.  The return 

values of the deposit component are represented by the get property.  There are 

three get properties that the caller of the deposit component can use, Balance, 

Function PRINT(s)
End Function

Function Read(s)
End Function

Function Get_Customer(s)
End Function

Function Clear_Screen
End Function

Function Print_Info(Customer_Rec,s)
End Function

Function Send_Back_Card
End Function
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Checking Flag, and Savings Flag.  The Balance property tells the caller what the 

balance is after making a deposit to either account.  The flag properties simply tell 

the caller which account was affected.  The deposit functionality is encapsulated 

in the function deposit() of component deposit as shown below.  The calling of 

the component is also shown in Figure 5.4 and 

Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.4: Modified ATM using Deposit Component. 

Function ATM() 
 CORE.Print ("Enter PIN") 
 CORE.Read(PIN) 
 Customer_Rec = CORE.Get_Customer(PIN) 
 Do 
  CORE.Clear_Screen 
  CORE.Print (1. Deposit, 2. Withdraw, 3. Balance, 0 to End) 
  CORE.Read (Code) 
  IF Code > 0 Then CORE.Print (1. Checking, 2. Savings, 3. Cancel) 
  IF Code > 0 Then CORE.Read (Account_Choice) 
  IF Code = 1 Then  
      CORE.Clear_Screen 
      CORE.Print(“Enter Amount”)  
                             Amount=CORE.Read(Amount) 
      ComponentDeposit.Amount=Amount 
      ComponentDeposit.PIN = PIN 
      ComponentDeposit.Account_Choice = Account_Choice 
      ComponentDeposit.Deposit 
      Balance = ComponentDeposit.Balance 
      Checking_Flag = ComponentDeposit.Checking_Flag 
      Savings_Flag = ComponentDeposit.Savings_Flag   
  ELSEIF Code = 2 Then 
         Clear_Screen 
         Print ("Enter Amount") 
         Read(Amount) 
         IF Account_Choice = 1 THEN 
   IF Amount <= 300 AND Amount >0 THEN 
       Make_Withdrawal(Customer_Rec, Amount, "C") 
                        Checking_Flag = True 
   ELSEIF Amount >300 THEN 
        Print ("Error: Cannot withdraw more than 300") 
   END IF   
          ELSEIF Account_Choice = 2 THEN 
    Make_Withdrawal(Customer_Rec, Amount, "S") 
                                                             Savings_Flag = True 
           END IF  
  ELSEIF Code = 3 Then 
           IF Account_Choice = 1 Then 
               Display_Balance(Customer_Rec,"C")  
                          ELSEIF Account_Choice = 2 Then 
               Display_Balance(Customer_Rec,"S")  
           END IF 
  END IF  
 While (Code is NOT Equal to 0) 
 CORE.Print ("Do you want a Receipt?, 1. Yes, 2. No") 
 CORE.Read(Receipt_Choice) 
 If Receipt_Choice = 1 Then 
     IF Checking_Flag THEN 
         CORE.Print_INFO(Customer_Rec,"C")  
     ELSEIF Savings_Flag THEN 
         CORE.Print_INFO(Customer_Rec,"S")  
                       END IF  
 ENDIF 
 CORE.Eject_Card() 
End Function 
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Figure 5.5: Deposit Component. 

 

To show the power of incremental evolution methodology, Withdrawal and 

Display Balance is evolved.  Figure 5.6 shows what the evolved function and the 

new components look like.  Note that properties (get and set) are used to pass the 

global variables.  The public function provides the interface to the caller.  The 

private functions encapsulate the withdrawal functionality. 

Property Set PIN
Property Set Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Private  Function
Make_Deposit(Customer_Rec,Amount,Account_Type)
Balance is Updated here
End Function

Private Function Get_Money(Customer_Rec)
End Function

Public Function Deposit()
Customer_Record = CORE.Get_Customer(PIN)
IF Amount > 0 And Account_Choice = 1 Then

                    Make_Deposit(Customer_Record, Amount, "C")
                    Checking_Flag = True
                ELSEIF Amount > 0 And Account_Choice = 2 Then
                    Make_Deposit(Customer_Record Amount, "S")
                    Savings_Flag = True

END IF
End Function
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Function AT M ()

CORE .Print ("Ente r P IN")
CORE .Read(P IN)
Custom er_Rec = CORE.G et_Custom er(P IN)
Do

CORE.Clear_Screen
CORE.P rint (1 . Depos it,2 .Withdraw ,3 .Ba lance , 0  to End)
CORE.Read (Code)
CORE.P rint (1 . Check ing, 2 . Savings , 3 . Cance l)
CORE.Read (Account_Choice)
IF Code  = 1 T hen
    CORE.Clear_Screen
    CORE.Print ("Ente r Amount")
    Amount=CO RE.Read(Am ount)
    Com pDepos it.Amount = Am ount
    Com pDepos it.P IN = P IN
    Com pDepos it.Account_Choice = Account_Choice
    Com pDepos it.Depos it
    Balance = Com pDeposit.Ba lance
    Check ing_Flag = CompDeposit.Check ing_Flag  
    Sav ings_Flag = Com pDepos it.Sav ings_Flag
ELSEIF Code  = 2 T hen
     CO RE.Clear_Screen
     CORE.Print ("Ente r Amount")
     Amount=CO RE.Read(Am ount)
     Com pWithdrawa l.Amount = Am ount
     Com pWithdrawa l.M ax_Amount = 300
     Com pWithdrawa l.P IN = P IN
     Com pWithdrawa l.Account_Choice = Account_Choice
     Com pWithdrawa l.Withdrawa l
     Balance = CompWithdrw a l.Ba lance
     Check ing_Flag = CompWithdrawa l.Check ing_Flag  
     S av ings_Flag = CompWithdraw al.Sav ings_Flag
ELSEIF Code  = 3 T hen
        Com pShowBalance.P in = P IN
        Com pShowBalance.Account_Choice
        Com p.ShowBalance
END IF

Whi le  (Code  i s NOT  Equa l  to  0 )
CORE .Print ("Do you w ant a  Receipt?, 1 . Yes , 2 . No")
CORE .Read(Rece ipt_Choice )
If Rece ipt_Choice = 1  Then
    IF Check ing_Flag THE N
        CORE.Print_ INFO(Custom er_Rec ,"C")
    E LSEIF Sav ings_Flag THEN
        CORE.Print_ INFO(Custom er_Rec ,"S")

                       END IF
ENDIF
CORE .E jec t_Card()

End  Fucn tion

Prope rty Se t P IN
Prope rty Se t Accoun t_Cho ice
Prope rty Se t Am ount
P rope rt Se t M ax_Am oun t

P rope rty Ge t Balance
Prope rty Ge t Checking_Flag
Prope rty Ge t Savings_Flag

Private   Function
M ake_WIthdrawa l (Custom er_Rec,Am oun t,Accoun t_T ype )
Ba lance  i s Upda ted  he re
End  Function

Private  Function  Ge t_M oney(P IN)
End  Function

Pub l i c Function  Wi thd rawa l ()
Custom er_Rec = Core .Ge t_Custom er(P IN)
 IF Accoun t_Cho ice  = 1  T HEN
     IF Am oun t <= M AX_Am oun t AND Am oun t >0  T HEN
         M ake_Wi thd rawa l (Custom er_Rec, Am ount, "C" )
         Checking_Flag  = T rue
      ELSEIF Am oun t >M AX_Am oun t T HEN
          Co re.P rin t ("E rror: Canno t wi thdraw m ore  than

M AX_Am oun t
      END IF
ELSEIF A ccoun t_Cho ice = 2  T HEN
      M ake_Wi thdrawa l (Custom er_Rec, Am oun t, "S ")
      Savings_Flag  = T rue
END IF

End  Function

Prope rty Se t P IN
Private  P rope rty Se t Account_Cho ice
Function Disp lay_Ba lance (Custom er_Reco rd ,Accoun t_T ype)
End  Function

Pub l i c Function  ShowBa lance()
Custom er_Rec = Core .Ge t_Custom er(P IN)
IF Accoun t_Cho ice  = 1  T hen
    Disp lay_Ba lance (Custom er_Rec,"C")
ELSEIF A ccoun t_Cho ice = 2  T hen

                     Disp lay_Ba lance(Custom er_Rec,"S")
                E ND IF
End  Function

 

Figure 5.6: ATM Function, Withdrawal and Show Balance Components. 
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The last and final part of the example shows how the components can be used to 

add new functionality in the old legacy ATM function. In addition to these 

components being reused, they also open door for potential use in the platforms 

such as Wire Transfer Application or Internet Banking.  Note that the new transfer 

component is created by integrating the deposit and the withdrawal components 

Figure 5.7. 
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Figure 5.7: Integrating Withdrawal and Deposit into Transfer Component. 

 

 

 

  Function AT M_Evolved()

CORE.Print ("Enter PIN")
CORE.Read(PIN)
Customer_Rec = CORE.Get_Customer(PIN)
Do

CORE.Clear_Screen
CORE.Print (1. Deposit,2.Withdraw,3.Balance 4.Transfer, 0 to End)
CORE.Read (Code)
CORE.Print (1. Checking, 2. Savings, 3. Cancel)
CORE.Read (Account_Choice)
IF Code = 1 T hen
    CORE.Clear_Screen
    CORE.Print ("Enter Amount")
    Amount=CORE.Read(Amount)
    CompDeposit.Amount = Amount
    CompDeposit.PIN = PIN
    CompDeposit.Account_Choice = Account_Choice
    CompDeposit.Deposit
    Balance = CompDeposit.Balance
    Checking_Flag = CompDeposit.Checking_Flag
    Savings_Flag = CompDeposit.Savings_Flag
ELSEIF Code = 2 T hen
     CORE.Clear_Screen
     CORE.Print ("Enter Amount")
     Amount=CORE.Read(Amount)
     CompWithdrawal.Amount = Amount
     CompWithdrawal.Max_Amount = 300
     CompWithdrawal.PIN = PIN
     CompWithdrawal.Account_Choice = Account_Choice
     CompWithdrawal.Withdrawal
     Balance = CompWithdrawal.Balance
     Checking_Flag = CompWithdrawal.Checking_Flag
     Savings_Flag = CompWithdrawal.Savings_Flag
ELSEIF Code = 3 T hen
        CompShowBalance.Pin = PIN
        CompShowBalance.Account_Choice
        Comp.ShowBalance
ELSEIF Code = 4 Then
         CORE.Print (1. Checking, 2. Savings)
         CORE.Read (Destination_Account_Choice)
         CompTransfer.PIN = PIN
         CompTransfer.Amount = Amount
         CompTransfer.Source_Account_Choice = Account_Choice
         CompTransfer.Destination_Account_Choice =

Destination_Account_Choice
         CompTransfer.Transfer
          If Destination_Account_Choice = 1  Or Account_Choice = 2
              Checking_Flag = True
          End if
          If Destination_Account_Choice = 2  Or Account_Choice = 2

     Savings_Flag = True
          End if
END IF

Whi le (Code is NOT  Equal to 0)
CORE.Print ("Do you want a Ticket?, Yes, No")
CORE.Read(Ticket_choice)
CompTicket.PIN = PIN
CompTicket.Ticket_Choice = Ticket_Choice
CompTicket.Ticket(Checking_Flag,Savings_Flag)
CORE.Send_Back_Card()

End Function

Transfe
r

Property Set PIN
Property Set Source_Account_Choice
Property Set Destination_Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Public Function Transfer()
IF Amount > 0

                    CompWithdrawal.PIN = PIN
    CompDeposit.PIN = PIN
    CompWithdrawal.Amount = Amount
    CompDeposit.Amount = Amount

                    CompWithdrawal.Account_Choice =
Source_Acount_Choice

    CompDeposit.Account_Choice =
    Destination_Account_Choice
    CompWithdrawal.Withdrawal ( )
    CompDeposit.Deposit ( )
    CompBalance.PIN = PIN
    CompBalance.Account_Choice=Source_Account_Choice
    CompBalance.ShowBalance
    CompBalance.Account_Choice=

Destination_Account_Choice
    CompBalance.ShowBalance
END IF

End Function
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6 Case Study 

We applied the ten-step methodology outlined in Section 2.1 to the Master 

System (AMS), a product of American Financial Systems (AFS). AFS is a 60-

person software firm that develops software for the corporate-owned life 

insurance market. AFS has developed AMS over the past 14 years to integrate life 

insurance and executive benefits using mathematical and financial modeling. 

AMS was first developed using Microsoft BASIC. Over the years, Microsoft has 

evolved BASIC into the more modern programming language, Visual Basic (VB). 

AFS ensured that the latest Microsoft compiler technology was used with each 

successive version of AMS. AMS is typical of long-lived software systems in that 

it has evolved from its original DOS version to a more modern Windows version.  

Appendix A lists the most important features of AMS.  Appendix B describes the 

overall architecture of AMS.  To illustrate the results of our methodology, we 

focused on the Input Processing functionality of AMS. Input Processing validates 

and prepares data from user inputs (also called items) so AMS can perform 

complex calculations to generate various reports. To an end-user, Input 

Processing has two purposes, Suppression and Error Processing.   Suppression is 

a feature that either shows or hides an item in the user interface based upon the 

value of another item. Error Processing is a feature that validates item values. 
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There are 450 items in AMS and many of them are interdependent. Upon closer 

examination of Input Processing, we found that AMS also makes several 

Assignments (user input is stored as strings and is later assigned to types such as 

Integer, Single, Double, or Array). While Assignments are a hidden feature to the 

end-user, developers must naturally consider all three features when evolving the 

Input Processing of AMS. 

The AMS data model for Input Processing is a hierarchy of plan, employee, and 

policy level information. A plan can have many employees and an employee can 

have many life insurance policies. A database stores a Master File Table that 

contains the 450 plan items that constitute a plan. Individual employee items are 

stored in a Census File Table and can vary for each employee in the plan. The 

Census File Table is associated with the Master File Table. For example, a plan 

with 3 employees might store all common information in the Master File Table, 

while storing each employee’s age in the Census File Table. About 75% of the 

plan items can vary from employee to employee. An AMS test case is created 

from the combination of Master File and Census File data. AFS maintains a 

regression test suite (Appendix C) of nearly 450 test cases with an average size of 

10 employees per test case. Running all regression tests executes AMS nearly 

7,500 times. AMS provides a batch facility for executing regression tests and 

storing output to a text file. 
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The interdependencies among plan items are quite complex. For example, the 

value of the retirement age item for an individual cannot be less than the 

policy issue age item; Input Processing must enforce this constraint when 

either value changes. In addition, if the policy issue age item is greater 

than 75 then other items should be suppressed because certain policies may not be 

issued to persons older than 45 in some states. There are numerous, more 

complicated interdependencies within AMS items too detailed to discuss here. 

When a user-input in an item invalidates a constraint, AMS must display a 

message indicating the specific problem (note that suppressed items are not 

involved in Error Processing).  

6.1 Evolution reasons 

After a series of discussions with AMS project managers, marketers, testers, and 

key end-users, we found three reasons to evolve Input Processing. 

6.1.1 AMS occasionally freezes during Input Processing 

Many plan items are interdependent and so is their shared error-processing code. 

For example, Item 9 assigns certain key variables whose value will determine 

whether Item 16 is valid. In the code fragment validating values for Item 9, 

shown in Figure 6.1, global variable nItem is set to 16 and Process_Items is 

called to check for errors in the assignment of the item identified by nItem (Item 

16). Item 16’s code section (not shown) sets a global error flag, nError_F, to 

indicate whether Item 16 has a problem, which in turn means Item 9 is not ready. 
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It is easy for developers to forget to reset the value of nItem back to the value of 

the calling Item number (in this case Item 9) resulting in an unbounded recursion 

that freezes the system during user input. 

 

nItem = 16 
call Process_Items 
nItem = 9 
If nError_F = 1 then 

Set Up Error Variables 
End if 

Figure 6.1: Fragment for Validating Values for Item 9. 

 

6.1.2 The cost of adding a new item into Input Processing is high  

AFS developers required an average of three days to add just a single item 

because of implicit communication via global variables and the spaghetti-like 

calling process of the dependent items. Developers adding a new plan item must 

add a field to the database tables and update the data dictionary. Then it is 

necessary to code the complex logic of item dependence across the three features, 

namely, Assignments, Error Processing, and Suppression. Developers must 

identify the list of items that need to be suppressed based upon the input value of 

the new item and any errors must be generated. When adding an item, the 

processing of key global variables would often change, causing unexpected side 

effects. For example, incorrectly setting the value of nItem brought back errors 

that were previously fixed. Adding new items would often require unrelated items 
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to be suppressed since the Suppression and Error Processing features are 

dependent on the Assignments feature. 

6.1.3 The lack of code reuse between the desktop and web version of 

AMS  

Since the web-based version of AMS required similar logical processing of plan 

items, AFS wanted to extract a reusable component from the legacy system to use 

within both systems. AFS wanted to avoid the costs of maintaining two divergent 

code bases, so solving this problem proved to be the greatest motivation for this 

evolution effort. 

6.2 Identify feature(s) with problems 

The testers test the Suppression and Error Processing of each item by inputting 

the valid entries for the particular item.  Due to interdependencies, test cases are 

designed to test the combined effect of items.  For example Item 9 may have a 

valid input of 1 and 2, the result (Suppression and Error Processing) of inputting 

1 may be different than inputting 2.  End-user views Suppression and Error 

Processing of each item (and some valid combinations) when inputting values in 

the item fields.  Each item and the valid combinations of items can be viewed as a 

unit for testing Suppression and Error Processing.  For identifying features with 

problems, we consider each item to be an independent feature.  An example of 

how Item 9 handles Error Processing and Suppression of other items is shown in 

Table 6.1.  Table 6.2 shows a partial listing of valid input and their combinations 
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resulting in 4 test cases; any other input combination should generate errors.  It is 

also to be noted that the rest of the item inputs remain the same for these 4 test 

cases. 

Input Processing 
(each item and valid combinations with other items are represented by test cases) 

Assignments (hidden) Error Processing (visible) Suppression (visible) 
Item 9 has a valid input of 1 and 2.   Any value other than 1 and 2 should 

generate error.  Certain inputs for 
Items 5, 13, and 119 should not be 
allowed if Item 9 is 2, and they should 
generate errors. 

An entry of 1 should un-suppress 
Items 30, 44 and 144 

Table 6.1: An Example Assignments, Suppression and Error Processing. 

 

Item Valid Input 
9 1 2 

 
5 

 
1 

 
5 

 
2 
 

 
3 

13 <12/12/1990 >12/12/1990 <1/1/1991 1/12/1991 
119 1 2 3 5 

Table 6.2: An Example of Valid Input Combination for Testing Item 9. 

 

6.3 Map test cases to features 

Each item is representative of Input Processing feature to the end-user.  Testers 

and end-users work together to provide the test case and feature mapping, shown 

in Table 6.3.  

Table 6.3:  AMS Input Processing Test Case and Feature Mapping (selective listing). 

 

Features/Test Case T1 T2 T3 T4 T5 T6 T7 T8
Item_5
Item_9
Item_13
Item_16
Item_19
Item_26
Item_119
Item_212
Item_431
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6.4 Map features to functions  

Table 6.4: Profiler Listing of Features and Test Cases (selective listing). 

 

To map features to functions, we instrumented the source code of AMS (only 

need to do this once) using code-coverage software and ran all regression tests. 

Appendix C describes the AMS regression-testing tool and its capabilities in 

detail. We then analyzed the coverage results and grouped related test cases 

together that exercised the input-processing feature for each item.  A partial list of 

our result is shown in Table 6.4 and Table 6.5.  Recall that to obtain a feature 

function relationship we follow the three-step process (see Section 4.1.3): 

1. Obtain a feature and test case matrix as shown in Table 6.3. 

2. Run the profiler on each of the test cases as shown in Table 6.4 to obtain 

the LOC within each function. 

3. Finally, we obtain feature function relationship by combining steps 1 and 

2 as shown in Table 6.5. We used the code-coverage tool TrueCoverage™ 

from NuMega® which works with many programming languages such as 

VB, Java, C++, and some scripting languages. Since AMS uses batch 

Functions/Test Case T1 T2 T3 T4 T5 T6

Process_Items

1,2,3,4,5,6,7,8,9,100,101,1
02,105,106,107,108,141,14
2,143,144,151

1,2,3,4,5,6,7,8,9,10
0,101,102,103,104,
141,142,143,145,1
46,151

1,2,3,4,5,6,7,8,9,90,91,
92,93,94,95,96,97,98,9
9,100,119,120,121,122
,123,124,125,126,130,
133,141,142,143,144,1
51

1,2,3,4,5,6,7,8,9,90,91,92,93,
94,95,96,97,98,99,100,119,1
20,121,122,123,127,128,129,
130,133,141,142,143,144,15
1

1,2,3,4,5,6,7,8,9,90,91,92,93,9
4,95,96,97,98,99,100,119,120,
121,122,123,130,131,132,133,
141,142,143,144,145,147,148,
149,150,151

1,2,3,4,5,6,7,8,9, 
134,135,136,141,
142,143,144,145,
146,150,151

Calc_N 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
Process_Asterisks 1,2 1,2 1,2 1,2 1,2 1,2

Year_Values_From_Series 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10
1,2,3,4,5,6,7.8.9,

10
COL_EDIT 1 1 1 1 1 1
Census_Item 1,2 1,2 0 0 0 0
Within_Bounds 1 1 1 1 1 1
Nth_Elem_in_String 0 0 1,2 0 1,2 0
Mort_Fnctn 0 0 0 0 0 1,2,3,4,5,6,7,8,9
Adjust_Ages 0 1,2 0 0 1,2 1,2
Query_Check 1 1 1 1 1 1
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processing for its regression testing, it was easy to produce instrumented 

output against all the 250 regression test cases. However, these 

instrumented images were stored using TrueCoverage’s proprietary file 

format, so we had to manually export each file into Excel for further 

analysis. The TrueCoverage tool has a merge utility that aggregated the 

results of all 250 test cases that were instrumented. This merge utility 

revealed that 95% of AMS was covered using the 250 test cases. We are 

currently identifying whether the rest of the code is either unused or if 

there are hidden features within the system that are not being exercised. 

For each test case, we used TrueCoverage to identify the functions 

executed, the percentage of lines covered within each of these functions, 

and the variables used.  

Table 6.5: Feature and Function Mapping (selective listing). 

 

Features/Functions Process_Items Calc_N Process_Asterisks Year_Values_From_Series COL_EDIT Census_Item

Item_5

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1
26,127,128,129,130,131,132,133,141,142,143,144,145,147,

148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_9

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1

26,127,128,129,130,133,141,142,143,144,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_13

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1

32,133,141,142,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_16

001,002,003,004,005,006,007,008,009,100,101,102,103,10
4,105,106,107,108,115,116,117,118,141,142,143,144,145,1

46,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_19
001,002,003,004,005,006,007,008,009,100,101,102,103,10

4,141,142,143,145,146,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_26

001,002,003,004,005,006,007,008,009,100,101,102,105,10
6,107,108,115,116,117,118,141,142,143,144,147,148,149,1

50,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_212
001,002,003,004,005,006,007,008,009,134,135,136,141,14

2,143,144,145,146,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_119

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1

32,133,141,142,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_431
001,002,003,004,005,006,007,008,009,134,135,136,141,14

2,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001
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6.5 Identify FI and CORE 

Table 6.5 provides a selective and pre-sorted listing of all the relevant functions 

(FI) for the input-processing feature.   In order to arrive at feature function listing, 

we must identify the base-line architecture and the CORE as these functions are 

executed for all test cases at all times.  The main difference between the base-line 

architecture and the CORE is that the base-line architecture changes the state of 

global variables and other sub-systems such as databases, at an architectural level.  

CORE on the other hand contains stateless functions that are utility functions.  A 

list of base-line architectural functions and CORE is shown in Table 6.7 and 

Table 6.8 respectively. 

Running regression test cases for all items (representing the Input Processing 

feature) resulted in following information regarding FI for Input Processing: 

• Since each item represented the Input Processing feature we aggregated 

the profiler information for all items.  The aggregation process was similar 

to UNION of all lines of code process discussed in Section 4.1.3.2.  

Aggregated information revealed that Input Processing is implemented in 

17 functions. A partial listing of those functions is shown in Table 6.4. 

• Many items shared same lines of code indicating either a circular 

dependency as mentioned earlier or dependent on some base items (such 

as Item 9).  The shared lines of code can be seen in Table 6.5. 
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• About 68% of Input Processing is implemented in Process_Items function.  

Another 16 functions were either used in implicit communication or were 

stateless in nature.  The three neighboring features included Assignment, 

Error Processing, and Suppression.  The threshold (FI = 17, K = 3, C = 

80%) suggests that we continue with the refactoring. 

We ran all the 250 regression test cases to see how Input Processing measured 

relative to the rest of the features.  A partial result of the regression test case is 

shown in Table 6.6.  We will discuss this matrix in more detail in Chapter 7.  

However, the interesting region to observe is the shaded area on the top left which 

represents part of Input Processing.  FE1, FE2, and FE3 represent Assignment, 

Error Processing and the Suppression sub-features respectively. Process_Items 

is represented by f2. Functions f5, f6 and f7 are shared stateless but only within the 

scope of Input Processing features, such examples being functions query_check, 

calc_n and asterisks_item (also shown in Table 6.4). Functions f18, f19, and f20 

are CORE functions file_exists, integer_maximum, and 

integer_minimum also shown in the Table 6.8.   Comparing Input Processing 

features (FE1, FE2, and FE3) to the rest of the features shown in Table 6.8, we 

observe that Input Processing is a natural choice for evolution because of its 

threshold value (FI = 17, K = 3 and C  = 80%) relative to the other features. 
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Table 6.6: Partial AMS Feature Function Matrix. 

Test Cases T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Function\Features FE1 FE2 FE3 FE4 FE 5 FE6 FE7 FE8 FE9 FE10 FE 11 FE 12 Type

f1 100 100 100 0 0 0 0 0 0 0 0 0 SS

f2 80 80 90 0 0 0 0 0 0 0 0 0 DF

f3 100 100 100 0 0 0 0 0 0 0 0 0 SS

f4 70 75 80 0 0 0 0 0 0 0 0 0 DD

f5 100 100 100 0 0 0 0 0 0 0 0 0 SS

f6 100 100 100 0 0 0 0 0 0 0 0 0 SS

f7 100 100 100 0 0 0 0 0 0 0 0 0 SS

f8 0 0 0 80 90 0 0 0 0 0 0 0 DF

f9 0 0 0 100 100 0 0 0 0 0 0 0 DF

f10 0 0 0 0 0 11 12 0 0 0 0 0 SSF

f11 0 0 0 0 0 33 44 0 0 0 0 0 SSF

f12 0 0 0 0 0 12 15 0 0 0 0 0 SSF

f13 0 0 0 0 0 15 15 0 0 0 0 0 SS

f14 0 0 0 0 0 22 22 0 0 0 0 0 SS

f15 0 0 0 0 0 32 38 0 0 0 0 0 SS

f16 0 0 0 0 0 15 15 15 15 15 15 15 SS

f17 0 0 0 0 0 22 22 22 22 22 22 22 SS

f18 100 100 100 100 100 100 100 100 100 100 100 100 SS

f19 100 100 100 100 100 100 100 100 100 100 100 100 SS

f20 100 100 100 100 100 100 100 100 100 100 100 100 SS

f21 0 0 0 0 0 32 38 12 56 89 66 63 DD

f22 0 0 0 0 0 22 22 34 52 23 43 34 DD

f23 0 0 0 0 0 32 38 22 44 33 45 32 DD
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Table 6.7: Base-Line Architecture of the Three AMS Engines.

 BASE-LINE ARCHITECTURE Purpose 

 Input Engine  
1 MAIN Required by the programming language 

2 VERIFY_USER Validate User 

3 LOAD_LICENSE_FORM Display licensing information 

4 SET_RUNTIME_PARAMETERS Load some key global variables 

5 OPEN_CASE Open Master and Census File 

6 LOAD_MAIN_FORM Master form is loaded in memory 

7 OPEN_ITEM_FILE Meta data is loaded 

8 MERGE_USER_DATA Merge user data into new structure 

9 INPUT_PROCESSING Assignment, Error Processing and Suppression 

10 SETUP_HELP_FILES Load Help files in memory 

11 INITIALIZE_DISPLAY_VARIABLES Setup more global variables 

12 SETUP_USER_PROFILES Load selected user preferences 

13 DISPLAY_BUTTONS Load and show icons in the main form 

14 DISPLAY_MASTER_FILE Show screens with master file data 

15 DISPLAY_CENSUS_FILE Show screens with census file data 

16 SETUP_STATUS_BAR Show status of current user selection 

17 EXIT_INPUT_ENGINE Close connections, reset variables and end  

  
 Calculation Engine  

1 PROCESS_CASE Setup global variables 

2 MAIN_CALC Start calculations 

3 PROCESS_EACH_EMPLOYEE Loads assumptions to be calculated 

4 INITIALIZE_EACH_EMPLOYEE Setup global variables for Employee 

5 PROCESS_EACH_YEAR Calculation for each year 

6 INITIALIZE_EACH_YEAR Setup yearly global variables 

7 MANDATORY_CALCULATIONS_PER_YEAR Compulsory calculations per year 

8 PRINT_EACH_YEAR Print stored variables 

9 ACCUMULATE_RESULTS Accumulate certain key variables 

10 STORE_RUNTIME_ERRORS Collect run time errors 

11 CLOSE_RUN Reset variables and database connection 

12 EXIT_CALC_ENGINE Exit engine and return control to Input Engine 

  
 Output Engine  

1 PROCESS_CASE Setup global variables 

2 OPEN_DATABASE Connect to the database that has data to print 

3 EVALUATE_REQUESTS Which reports to print 

4 LOAD_REPORTING_DATA Fetch data to be printed 
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Table 6.8: List of CORE Functions Extracted from AMS. 

LIST OF CORE FUNCTIONS Return Value
1 APPEND_TO_STRING (string source, string newstring) String
2 ARRAY_TO_RECORD ( string a()) Recordset
3 BACKUP_DATABASE (string sourcedatabase, string targetdatabase) Boolean
4 BUBBLE_SORT (string a()) Sorted Array
5 CLOSE_DATABASE (string databasename) Boolean
6 COMPARE_RECORDS (recordset a, recordset b) Boolean
7 CONNECT_DATABASE (string databasename) Boolean
8 DATABASE_EXISTS (string databasename) Boolean
9 DATE_TO_AGE (date a, date todaysdate) Integer AGE
10 DATE_TO_NUMBER (date a) Double
11 DIRECTORY_EXISTS (string pathname) Boolean
12 DOUBLE_MAXIMUM (double a, double b) Double
13 DOUBLE_MINIMUM (double a, double b) Double
14 DOUBLE_ROUND (double a, int n) Double
15 ERROR_LOG (string filename, string message) Boolean
16 EXECUTE_SQL (string sql) Boolean
17 FIELD_EXISTS (string fieldname) Boolean
18 FILE_EXISTS (string a) Boolean
19 INTEGER_MAXIMUM (int a, int b) Integer
20 INTEGER_MINIMUM (int a, int b) Integer
21 IS_A_CURRENCY (string a) Boolean
22 IS_A_VALID_USER (string username, string password) Boolean
23 IS_ALPHA (string a) Boolean
24 IS_BLANK (string a) Boolean
25 IS_DATE (string a) Boolean
26 IS_NULL (string a) Boolean
27 IS_NUMBER (string a) Boolean
28 OPEN_DATABASE (string databasename) Boolean
29 READ_INI_FILE (string filename, object returned) Object
30 READ_REGISTRY_KEY (string keyname) Boolean
31 RECORD_TO_ARRAY (recordset a) Array
32 REMOVE_FROM_STRING(string source, string target) String
33 SINGLE_MAXIMUM (single a, single b) Single
34 SINGLE_MINIMUM (single a, single b) Single
35 SINGLE_ROUND (single a, int n) Single
36 STRING_TO_DOUBLE_ARRAY (string a) Double
37 STRING_TO_INTEGER_ARRAY (string a) Integer
38 STRING_TO_SINGLE_ARRAY (string a) Array
39 SWAP (variant a, variant b) VOID
40 TABLE_EXISTS (string tablename) Boolean
41 WRITE_INI_FILE (string filename, object) Boolean
42 WRITE_REGISTRY_KEY (string keyname) Boolean
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6.5.1 Variable Analysis 

AMS program architecture has 1,205 global variables.  All the global variables 

are declared and initialized at the program level.  However, these global variables 

are shared among features and are changed dynamically to facilitate implicit 

communication.  A summary of key variables is shown in Table 6.9.  The input 

values are read into sI$() array which is used by many features within the AMS 

system.  The sI$() array is converted into its numeric counterpart within the Input 

Processing feature by the Assignment sub-features.  An example of this 

conversion can be seen in the statement nContract_Number = Val(sI$(9)) in  

Figure 6.2.  nContract_Number, which is a global variable, is then used 

throughout the AMS system.  Each of the items uses, sets, and changes the state 

of several global variables thereby increasing coupling between the features.     

These global variables are also used for implicit communication between features.  

For example, UNREADY(), nError_F, nError_Item  and nItem can be changed 

by items other than the ones who set them indicating a possible relationship 

among the items and features.    

 Figure 6.2 suggests that three types of relationships exist among the Input 

Processing features:  

• Error Processing and Suppression depend on Assignments.   
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• Suppression state of certain items is altered depending upon Assignments 

of certain items.   

• Error Processing and Suppression share global variables set by 

Assignments. 

Variable Purpose Declare Set Use Change 

sI$() 
Stores item 
information 
as read 
from 
database 

Program Program Input 
Processing 
and other 
features 

 

Numeric Value of 
sI$(). All items are 
assigned into 
internal variables 
such as 
nContract_Number, 
nDB_Option etc.  

Assignment 
of string 
arrays into 
numerical 
variables. 

Program Input 
Processing 
(Assignment 
Sub-feature) 

Input 
Processing 
(Error 
Processing, 
Suppression) 
and 
Calculation 
Engine 

 

nError_F, 
nError_Item 

Indicates if 
an item is 
in error 

Program Input 
Processing 
(Error 
Processing) 

Input 
Processing 
(Error 
Processing, 
Suppression) 

Input 
Processing 
(Other 
items) 

UNREADY() Indicates if 
an item is 
ready with 
its 
numerical 
value 

Program Input 
Processing 
(Assignment) 

Input 
Processing 
(Assignment) 

Input 
Processing 
(Other 
items) 

nSuppress_F Indicates if 
an item is 
suppressed 

Program Input 
Processing 
(Suppression) 

Input 
Processing 
(Suppression) 

Input 
Processing 
(Other 
items) 

nItem Indicates 
which item 
is being 
processed 

Program Input 
Processing 
(Assignment) 

Input 
Processing 
(Assignment) 

Input 
Processing 
(Other 
items) 

Table 6.9: Input Processing Variable Analysis. 
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 Figure 6.2: Item 9 (Pre-evolution). 

 

 

 

 

 



 

 

183

6.6 Refactor and create components 

We identified the following problems in the Input Processing feature of AMS: 

 

6.6.1 Identify problems 

This step identifies problems associated with the feature implementation. 

6.6.1.1 Circular dependencies 

As Table 5 shows, Item 9 is dependent on Item 119 and Item 119 is dependent 

on Item 13, which in fact is dependent on Item 9. We found eight such circular 

dependencies that were the ultimate cause of system freezes as verified by the 

defect tracking system for AMS. 

 

Item Dependencies (in order) 
5 9, 56, 119 
9 16, 119 
13 5, 9, 22 
19 158 
119 13 

Table 6.10: Example of Circular Dependencies 

 

6.6.1.2 Readiness of dependent items 

To solve the circular dependencies and determine an item’s state during 

assignment, we found that the original developers used an array called UNREADY: 

when an item is dependent on another item that still needs to be evaluated, the 

original item is identified as being in the UNREADY state. Each item had a ready 

and unready state. The code fragment in Figure 6.3 illustrates this: Item 5 is 
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assumed to be ready by setting UNREADY(5) to 1. The item’s value is then 

evaluated and the global nError_F is set to be greater than 1 in case of invalid 

input. The UNREADY state for Item 5 will be set to the error flag’s value indicating 

that the item is not ready. Items are processed sequentially so if another item 

dependent upon Item 5 needs its value then the calling item will use UNREADY(5). 

The implicit setting of item state resulted in bad patches to solve circular 

dependencies. 

 
nUnready(5) = 1       ‘ 1 = ready 
call Fix_Date(nItem) 
if nError_F > 0 Then 
  nUnready(5) = nError_F 
end If 

Figure 6.3: Dependent Items. 

 

6.6.1.3 Assignments and Suppression intermingled with Error Processing 

 As items were evaluated for dependencies and error conditions the original code 

also set the values of internal program variables. AMS often uses a time series in 

most plan items. An example of a time series is “100,1,200,5” which means that 

from years 1 through 5, the value is 100 and from year 5 onwards it is 200. Time 

series presents complicated problems because the data needs to be evaluated over 

a period of time (or processed via the Input Processing) and errors can be present 

in any year. We found that internal Assignments were often used inconsistently 

and intermingled with Error Processing and Suppression. 
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Once we identify feature implementations, we refactor the code as outlined in 

Section 6.6.2. Refactoring removes global variables and converts implicit 

communication to explicit. Refactoring may require extensive analysis, especially 

if two or more features interact or interfere within a given source function. We 

have found that the refactoring results in fine-grained components with low 

coupling and high cohesion. 

6.6.2 Refactor 

For Error Processing, Suppression, and Assignments we refactored the code as 

follows: 

6.6.2.1 Removed UNREADY array 

The UNREADY array forced the Assignments and Suppression code to be highly 

coupled. We replaced this global array with a component that accepted a 

collection of errors. Then we developed routines (add, display, and delete) to 

access the collection for one individual or the entire census data. 

6.6.2.2 Replaced recursive calls with sequential calls  

In the original system, Error Processing, Suppression and Assignments were 

largely recursive. Essentially, a single large routine (Process_Items) inspected 

each item using a lengthy case statement; when an item needed to check 

dependencies for another item, a recursive call was made. After some analysis, we 

replaced this function with a simpler more sequential control flow 
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6.6.2.3 Separated Assignments, Suppression, and Error Processing code  

After analyzing Input Processing, we were able to remove circular dependencies 

by first executing Assignments for certain core items. We found this was 

consistent with all three features.  

6.6.3 Create Fine-Grained Components 

To determine which code artifacts to encapsulate, we analyzed variable usage for 

all three features: Error Processing (EP), Suppression (S), and Assignments (A). 

The result is shown in Table 6.11. (EP/S means variables involved both in EP and 

S). 

Table 6.11: Variable Analysis (Pre/Post evolution partial listing). 

 

 

 
                         Pre-Evolution                                                                                     Post-Evolution 
              (Feature Related Variables)                                                                    (Component Properties) 
 

 
Feature 
Interaction 
 

 
Global 
variables 

 
Local 
Variables 

 
Stateless 
Functions 

 
State-full 
Functions 

 
Relation 
Type 

 
Component 
Property 
GetValue 

 
Component 
Property 
SetValue 
 

 
Local  
To  
Component 

 
AFS 
CORE 
Parameters 
 

 
Error 
Processing 

 
35 

 
5 

 
4 

 
2 

 
N/A 

 
25 
 

 
10 

 
5 

 
6 

 
Suppression 

 
14 

 
8 

 
6 

 
4 

 
N/A 

 
10 
 

 
12 

 
6 

 
4 

 
Assignment 

 
50 

 
5 

 
8 

 
5 

 
N/A 

 
55 
 

 
5 

 
4 

 
4 

 
Error 
Processing 
and 
Suppression 

 
 
11 

 
 
3 

 
 
3 

 
 
3 

 
 
Dependent 
Required 

 
 
8 

 
 
6 

 
 
2 

 
 
4 

 
Error 
Processing 
and 
Assignment 

 
 
20 

 
 
5 

 
 
4 

 
 
3 

 
 
Dependent 

 
 
17 

 
 
8 

 
 
3 

 
 
4 

 
Suppression 
and 
Assignment 

 
 
25 
 

 
 
6 

 
 
3 

 
 
2 

 
Dependent 
Alteration 

 
 
18 

 
 
12 
 

 
 
4 

 
 
2 

 
Error 
Processing, 
Suppression 
and 
Assignment 

 
 
8 

 
 
9 

 
 
2 

 
 
2 

 
 
Required 

 
 
6 

 
 
7 

 
 
4 

 
 
4 
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When creating fine-grained components, these variables and functions become 

properties of a component. The first two columns in Table 6 count the global (G) 

and local (L) variables involved in a particular feature implementation when 

related test cases are executed. Columns three and four show how many functions, 

both stateless (SS) and state-full (SSF), are covered. The component makes output 

values available using GetValue (Parameter). Conversely, SetValue 

(Parameter) will set the property inside the component. Because we are 

refactoring, the sum of the first four columns for each row must equal the sum of 

the last four columns.  

To define the interface for the fine-grained components, we must identify the 

possible relationships between features. 

6.6.3.1 Relationships 

In Input Processing we find the examples of the following types of direct 

relationships among features. 

Dependent 

In AMS all features share key item values. The code fragment in Figure 6.4 shows 

how key items are evaluated first and used in Suppression and Assignments. The 

variable QMarkInBPFA is set to true if Item 16 has a “?”. We convert this 

variable into a read-only property of the Assignments component that can be read 

by other components. 
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Dim QMarkInBPFA As Boolean 
Dim QmarkInUlPremType As Boolean 
Dim XInBPFA As Boolean 
Dim ISBEN As Boolean 
 
QMarkInBPFA = isfloated(Values(16), False)  
QmarkInUlPremType = isfloated(Values(174), False)   
XInBPFA = XInItem(Values(16)) 
ISBEN = InStr(Values(26), “,BEN,”) > 0 or 
        InStr(Values(26), “,A/T.BEN,”) > 0) 

Figure 6.4: Dependent Feature Example. 

 

Required 

 The function in  

Figure 6.5 implements the relationship between Suppression and Error 

Processing. If an item is suppressed, then errors associated with it are unnecessary 

and can be removed. Because two features can directly interact with each other, 

the extracted fine-grained components will have clearly defined interfaces that 

declare this interaction. 

 

 

 

 

 

Figure 6.5: Required Feature Example. 

  

Altered 

The state of Suppression of a given item is altered by the entries in another item. 

For example, the Suppression state of Item 98 in  

Public sub RemoveErrorsForSuppressedItems ( 
   suppressarray() as Integer, Errors as Collection) 
dim x, itemNum as Integer 
 dim s as String 
 for x = Errors.count to 1 step -1 
   itemNum = AFSCore.FVAL(Mid$(Errors.Item(x), 
               InStr(Errors.Item(x), “>“) + 1)) 
   if suppressarray(ItemNum) <> 0 then 
 Errors.Remove(x) 
   end if 
 next x 
End Sub 



 

 

189

 

Figure 6.6 can be modified with the right condition. Note that the Assignments 

component’s properties are used to alter the Suppression state. If the UI changes 

the value for any field that can alter Item 98, the Suppression state is also altered. 

The global array nSuppress() is transformed into a read/write property of the 

Suppression component. 

 

 

 

 

 

Figure 6.6: Altered Feature Example. 

 

Once feature relationships and properties are determined, we can create the 

component’s interface.  

6.6.3.2 Interfaces 

Input Processing was refactored into six components: Assignments, Error 

Processing, Suppression, Error Processing Core, Suppression Core, and AFS 

Core. While Assignments, Error Processing, and Suppression perform specific 

duties of the three specified features, the core components manage data structures 

and contain stateless functions.  In implementing these features, core items were 

if Assignments.QMarkInBPFA or (Assignments.XInBPFA and 
Assignments.SipFloat) or Assignments.ISBEN then 

  nSuppress(98) = UnSuppressTheItem(nSuppress(98)) else 
  nSuppress(98) = SuppressTheItem(nSuppress(98)) 

end if 
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evaluated first and each item was called sequentially instead of recursively. 

Feature relationships were identified and coded as shown earlier.  

The list of interface for all six components that we created are shown in the Table 

6.12.  Public interfaces that are available to the client is shown in column 2 and 

column 3 lists all the components public methods.  The Error Processing core and 

the Suppression core components are not important by themselves but they are 

important in conjunction with the Error Processing the Suppression components 

respectively.  “Methods” column (column 3 in Table 6.12) implements the feature 

implementation, which will discussed later in this section.   Note that only the 

public methods are listed in column 3. 

Component Interface Methods 
Assignments  clsAssignment Assignments 

Error Processing  clsErrorProcessing ErrorChecking 

Error Processing 
Core 

clsEProcessingCore AddError 
ClearError 
RemoveError 
RemoveErrorForSuppressed
Item 
ClearAllErrors 

Suppression clsSuppression SetTheSuppressCodes 

Suppression Core clsSuppressionCore SuppressTheItem 
UnSuppressTheItem 
 

AFS Core clsAFSCore See Table 6.8 
Table 6.12: Component Interfaces. 

  

6.6.3.3 Properties 

Once feature relationships were identified, the global variables used in the 

implicit communications were used to determine property set and get.  The 
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general logic for invoking a feature is to set the components properties, call its 

public method (feature implementation) and finally retrieve the results through the 

property get.  It is the calling program’s responsibility to set the components 

properties (both get and set).  A list of properties, get and set for the six 

components is shown in the Table 6.13.  It is to be noted that dictionary and 

collection objects are built-in data structures like array.  They are used to set 

individual items values rather than setting them up individually.  AFS CORE does 

not need any properties, as all its methods are public and stateless.    

Component Interface.Public Method Property Set Property Get 
Assignments clsAssignments 

.Assignments 
sI$() Dictionary 

(nItem, Value) 
Error Processing clsErrorProcessing 

.ErrorProcessing 
Dictionary 
(nItem, Value) 

Collection 
(nItem, Error_Message, 
Error_Code) 

Suppression clsSuppression 
.SetTheSuppressCode 

Dictionary 
(nItem, Value) and 
Collection 
(nItem, 
Error_Message, 
Error_Code) 

Dictionary 
(nItem, 
SuppressionCode) 

Error Processing CORE clsErrorProcessingCORE 
.AddError 
.ClearError 
.RemoveError 
.RemoveErrorForSuppressItem 
.ClearAllErrors 

Dictionary 
(nItem, Value) 

Collection 
(nItem, Error_Message, 
Error_Code) 

Suppression CORE clsSuppressionCore 
.SuppressTheItem 
.UnSuppressTheItem 
 

Dictionary 
(nItem, Value) and 
Collection 
(nItem, 
Error_Message, 
Error_Code) 

Dictionary 
(nItem, 
SuppressionCode) 

AFS  
CORE 

clsAFSCORE 
.AFSCORE 

None None 

Table 6.13: Component Properties. 

 

6.6.3.4 Feature Implementation 

Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 all show how the 

Input Processing component is implemented using Error Processing, 
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Suppression, Assignments and supporting core (AFS CORE, Suppression CORE 

and Error Processing CORE) fine-grained components.   Assignments 

component’s properties are set by the calling program and then its public method 

Sub Assignments is called.  Sub Assignments has following three tasks: 

• to calculate base-items first, as these item values are used by other items. 

• to sequentially calculate the value of each of the items. 

• to update the local dictionary object which is accessed through the 

property get by the calling parent program. 

Likewise, Error Processing and Suppression features also follow the similar 

implementation.   However, their tasks are slightly different. Error Processing 

uses an items dictionary object and sets an internal collection object that can be 

accessed through property get.  Suppression uses items dictionary object and error 

collection object to setup the Suppression state (0 or 1) of each item in an internal 

data structure called SuppressionDictionary to be accessed through the get 

property.  The CORE items do not have any feature implementation.  These 

components contain stateless components.       

6.6.3.5 Stateless Functions 

Figure 6.7, Figure 6.8, and Figure 6.9 all show a partial listing of stateless 

functions needed for the feature implementation.  These functions can also be 

accessed by other components or by the calling parents.  An example of a 

stateless function that is encapsulated within the Assignments component is Public 
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Function Set_Ret_Ages().  This function calculates retirement age based upon a 

date string that is passed to it.  Although these stateless functions are accessible 

and can be used by other components and the program, having them encapsulated 

with the features provides a clearer understanding of the feature’s scope and 

involvement. 

6.6.3.6 Maintaining State 

Figure 6.7, Figure 6.8, and Figure 6.9 all show that the components maintain their 

state for efficiency.  For example, if the Assignments component public method is 

called a second time (intentionally or unintentionally) and the items values have 

not changed, then the public sub Assignments does not recalculate the entire set of 

item variables because the source (sI$()) has not changed.  Similar 

implementation characteristics can also be seen in the Error Processing and the 

Suppression components. 

6.6.3.7 External Dependencies  

At the top of Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 we 

list all the external components and functions the components are going to use 

such as AFS CORE and WindowsFileScripting object.  VB provides built-in 

programming constructs such as collection and dictionary objects that are like 

indexed arrays. 
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Figure 6.7: Pseudo-code for Assignments Feature Implementation. 

 

 



 

 

195

 

Figure 6.8: Pseudo-code for Error Processing Feature Implementation. 
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Figure 6.9: Pseudo-code for Suppression Feature Implementation. 
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Figure 6.10: Pseudo-code for Error Processing Core Implementation. 
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Figure 6.11: Pseudo-code for Suppression Core Implementation.  

 

6.7 Plug the fine-grained components into AMS 

The last and final part of creating the component was to integrate all six 

components into one unit that performed Input Processing in an integrated 

environment.  Using standard configuration management and compiler directives, 

old code in AMS was disabled to integrate the new components. Since the code 

profiler provides all the relevant functions, it was rather simple to insert the Input 

Processing component.   The Pseudo-code for integrating the Input Processing 

component is shown in Figure 6.12.  The compiler directive 
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InputProcessing_Evolution is used to enable the new components and disable 

the old code, including the global variables declared at the program level.  This 

compiler directive is set at the program level and can be turn off easily in case the 

testers report adverse side effects due to the new components.  Note that 

UNREADY() array is not used in the refactored code.  The new components 

(AFSCORE, Assignments, Suppression and Error Processing) are declared 

globally at the program level so they can be used by other sub programs.  The 

return value of Assignments components is then passed to other sub programs 

such as the calculation engine.  Likewise, the return values of Error Processing 

components passed to the Error Processing GUI and the return value of the 

Suppression component is passed to the Main GUI sub programs respectively.    

The integrated component is shown in Figure 6.14.  
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Figure 6.12: Integrating Assignments, Error Processing and Suppression Components. 

Global sI$(), nItem 
 
#IF InputProcessing_Evolution = True Then 

Global AssignmentsDictionary(nItem, Value) 
Global ErrorsCollection(nItem, Error_Message, Error_Code) 
Global SuppressionDictionary(nItem, Value) 
Global AFSCORE as AFSCORE 
Global Assignments as Assignments 
Global ErrorProcessing as ErrorProcessing 
Global Suppression as Suppression 

#ELSE 
Global nError_F, UNREADY() 

#END IF 
 
Sub InputProcessing() 

 
#IF InputProcessing_Evolution = True Then 
  

‘Assignment Component 
 Set Assignments.sI$() = sI$()  
 Call Assignments.Assignments 
 AssignmentsDictionary(item,Value) =  

Get Assignments.Dictionary(item,Value) 
  

‘Error Processing Component 
 Set ErrorProcessing.Dictionary(item,Value) = Dictionary(item,Value) 
 ErrorProcessing.ErrorProcessing 

ErrorsCollection(nItem, Error_Message, Error_Code) =  
Get ErrorProcessing.Collection (nItem, Error_Message, Error_Code)
  
 

 ‘Suppression Component 
 Set Suppression.Dictionary(item,Value) = Dictionary(item,Value) 

Set Suppression.ErrorsCollection(nItem, Error_Message, 
Error_Code)=ErrorsCollection(nItem, Error_Message, Error_Code)  
Suppression.Suppression 
SuppressionDictionary(item,Value) =  
Get Suppression.Dictionary(item,Value) 

  
#ELSE 
 ‘Following code will use, set or change global variables declared above 

  ‘Items are called recursively 
For nItem = 1 to 450 

Call Item_Hub_Code(i) 
  Next nItem 

#END IF 
End Sub 
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6.8 Verify results 

We performed a regression test of the Input Processing code to gather data pre 

and post evolution of these three features.  We then compare the results to make 

sure we have not broken anything during the evolution process. The regression 

was automated by using GUI testing tools, and the AMS system has a built-in 

regression utility that sends the output to an ASCII text file.  This text file was 

compared pre and post evolution to ensure that no side affects were introduced.  

In addition, the testers perform several tests to ensure proper working of the Input 

Processing.   

6.9 Reuse 

The Input Processing component is integrated in the WEB AMS in exactly the 

same fashion as the desktop AMS.  The return value from the collection and 

dictionary objects is used by Microsoft server-side scripting language VBScript® 

because the WEB version of AMS uses VBScript® as opposed to the desktop 

version of AMS that uses VB.  VBScript and VB behave similarly as far as 

integrating the Input Processing components are concerned.  Input Processing 

components were deployed on the web server so the user interface layer can use 

Assignments, Error Processing and Suppression features.  AFS CORE component 

was deployed on both servers namely, the web server and the application server.  

AFS CORE is also used by other product lines on all servers. 
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AFS Product lines Components Deployment 
AMS (Desktop) Assignments, Error 

Processing, Suppression, 
Error Processing Core, 
Suppression Core and AFS 
CORE 

Desktop machines 

AFS WEB Assignments, Error 
Processing, Suppression, 
Error Processing Core, 
Suppression Core and AFS 
CORE 

Web Server  

AFS WEB AFS CORE Application Server 
DTS and DTS WEB AFS CORE Web Server and Application 

Server 
Sdev AFS CORE Web Server and Application 

Server 
Figure 6.13: Resuing Fine-Grained Components in AFS Product Lines. 

 

6.10 Measure Results 

To measure the success of our methodology, we perform a validation against the 

evolution reasons.  To reiterate, there were three primary reasons why we wanted 

to evolve the Input Processing into a component-based solution.   

6.10.1 Solving the system-locking problem  

The component-based implementation is a linear solution.  In all three features, 

core items are evaluated first and then each of the items is individually evaluated.  

In addition, the communication between items is not done via the global variables.  

This communication is explicitly replaced by implementation of the feature 

relationship code discussed earlier.  The original design was recursive in nature 

with no explicit condition to stop the recursion.  The recursion was stopped 

implicitly by setting global variables or arrays that became error prone as more 
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and more items with complex hierarchy and relationships were introduced.  

Replacing the recursive design with a linear design solved the system-locking 

issue.  

6.10.2 Cost of adding a new item  

The average time to add a new item and code all the relevant Assignment, Error 

Processing and Suppression logic took 3 days prior to applying the evolution 

methodology.  After evolution, we collected data on adding 4 new items and the 

average time spent was about 1.25 days.  The steps for adding a new item are as 

follows (Table 6.14):  

 
Steps – Pre-Evolution 

 
Steps – Post-Evolution 

 
Add Item to Master File Table Same 
Add Item to Data Dictionary and assign 
its properties 

Same 

Create, Initialize and Assign Global 
Variable for Assignment 

Code GetValue in Assignment Component. 

Setup UNREADY Array Not Needed 
Code dependent items using recursion for 
Error Processing (mixed with 
Assignment and Suppression code)  

Code Error Processing Component, but each 
item has its own spot rather than mixed with 
other items.  Also, core items may also 
evaluated first but not necessarily. 

Use Error Flag from Dependent Items to 
generate Errors 

Errors are added to a collection.  No global 
variables are needed.   

Add Error Text into look-up tables Same 
Code dependent items using recursion for 
Suppression 

Code Suppression component just like the Error 
Processing component.     

Set Suppression code array Suppression code array is automatically a part 
of interface of Suppression component. 

Cost of debugging is high due to implicit 
communication and poorly implemented 
recursive routine 

Virtually no debugging is necessary but must 
understand component interfaces 

Table 6.14: Steps for Adding a New Item. 
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6.10.3 Reusability between AMS and the web version of AMS   

There were six resulting components from this evolution exercise.  Assignment, 

Error Processing, Suppression, Error Processing Core, Suppression Core and 

AFS Core. AFS Core is used in all of the AFS product lines (comprising 4 

different projects), since it contains basic routines such as rounding functions and 

file I/O etc.    The other five components are used in the two platforms of the 

AMS software, the desktop and the Internet.  Table 6.15 shows cost and benefit 

involved in reusability. The net cost of the evolution exercise using this 

methodology so far has produced no loss or gain, but it is to be noted that there 

are certain hidden savings that we have not been able to capture until now, such as 

effect on training of new hires.  It is expected that average savings identified in 

rows 14-16 (See Table 6.15) will eventually result in more favorable savings. We 

are currently in the process of gathering the data. 
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Effort Cost (+) /Savings (-) 
(Measured in months) 

Cost of Mapping Features and Test-Cases +1 
Cost of identifying code using test cases and profiler +1 
Cost of Refactoring +2 
Cost of Developing Error Processing Component +1 
Cost of Developing Suppression Component +1 
Cost of Developing Assignment Component +1 
Cost of Developing AFS Core Component +1 
Cost of Configuration Management +1 
Cost of Testing +2 
Cost of Training and Documentation +1 
Savings from solving system-locking problem (from 10/1/01 
to 1/2/03)* 

-1 

Saving from improvement in adding a new Item (from 10/1/01 
to 1/2/03)* 

-1 

Savings from improved architecture (reduced global variables, 
more explicit communication and better understanding of 
features) 

N/A (data is being 
gathered**) 

Savings in reusing AFS Core in 4 projects.  Including cost of 
testing and integration. 

-4 

Savings in reusing Suppression, Assignment and Error 
Processing Component in desktop and Internet version of 
AMS.  Including cost of testing and integration. 

 
-6 

Net Cost (+)/Savings (-) (from 10/1/01 to 1/2/03)* 0 
Table 6.15: Budget analysis for input processing project. 

 

* Calculated as opportunity cost, i.e. time we would have spent otherwise (from 

10/1/01 to 1/2/03) 

 

** This data will be reflected as cost of training a developer before and after the 

change.  Due to challenging economic environment AFS has not hired a new 

trainee as of 1/2/2003.  Thus, we will be gathering this data as AFS starts hiring 

new trainees.
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 Figure 6.14: Input Processing Component Infrastructure. 

 

6.11 Summary 

We applied our ten-step methodology to identify and refactor the code to create 

reusable input processing component at AFS.  We applied our feature model to 

identify the feature implementation.  The original Input Processing feature 

represented the fully interacting feature implementation discussed in Section 

4.1.2.3.  The Assignment, Error Processing and Suppression code were 

intermingled.  The feature relationships between the three features was identified 

by analyzing the implicit communication using techniques described in Section 
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4.1.5.2.  The input-processing feature is comprised of Assignments, Suppression 

and Error Processing features.  We created six reusable fine-grained components 

namely, clsAssignments, clsSuppression, clsErrorProcessing, clsSuppressionCore, 

clsErrorProcessingCore and clsAFSCORE, using our fine-grained component 

model.  The clsSuppressionCore and clsErrorProcessingCore components support   

clsSuppression and clsErrorProcessing respectively.   We plugged the components 

using compiler directives into AMS.  We then verified the evolution reason by 

running regression pre and post evolution, reusing the component and fixing the 

system-lock problem.  AMS and WEB-AMS shared all six components.  

AFSCORE component is being shared in all four AFS product lines.  Using our 

budget model, we monitored and reported the cost/benefit of the entire effort.  

Our methodology shows a break-even in terms of costs and benefits incurred so 

far.  There are some implicit benefits such as better understanding of features and 

reduced global variables, for which we are still collecting data.  We consider our 

evolution initiative a success in applying our methodology to the Input Processing  

project.  We will discuss lessons learned, our contributions and future work in the 

next chapter. 
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7 Conclusions 

This chapter discusses the lessons learned in developing and applying our 

methodology, contributions made, and what avenues could be taken for future 

work. 

7.1 Lessons Learned 

In this section, based on our case study, we evaluate the benefits and limitations 

of our methodology.  

7.1.1 Methodology Applicability 

Although our methodology is programming language-independent and does not 

depend on specific code profiler tools, several factors affect the applicability of 

our methodology.  These factors are as follows: organization’s product-lines, 

maturity of software process, type of legacy system and refactoring choices. 

Our methodology has been applied and tested in a scenario where there was one 

primary legacy system and other product-lines were being developed from 

scratch.  In addition, the existing legacy system was experiencing maintenance 

costs of certain key features which were visible to the end-user.  Furthermore, 

these features were also common across product-lines.   While it is certainly 

possible to apply our methodology and refactor problematic feature 

implementation even in the case when these feature implementation are not 

common across product-line,.  we argue that businesses will earn most return on 
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investment (ROI) under the scenario when refactored feature implementation can 

be reused across multiple product lines.  In AFS’ case, we found that Input 

Processing feature implementation was experiencing high maintenance cost which 

when refactored was reused across two product AMS lines namely, the desktop 

and web-enabled. 

Organizations that are looking to apply our methodology must have a mature 

software process in place.  Maturity of software process can be determined by 

various factors such as CMM level, ISO 9001 level, availability of regression test 

process and ability to track costs of making changes to the legacy system.  CMM 

level II and above, and ISO 9001 level I and above, both recommend availability 

of regression test process and ability to track costs when making changes.  It is 

certainly important for organizations to be certified in CMM or ISO 9001, we 

suggest that our methodology will work best when there is a mature software 

process in place that has ability to perform regression test with each release and 

has ability to track costs of making changes. 

Our methodology has been applied and tested in a function-based system with lots 

of global variables, functions and subroutines.  While the methodology steps are 

programming language independent and type of legacy system independent, our 

methodology has not been applied on an object-oriented (OO) or a real-time 

legacy system.  While it is possible to identify feature implementation of an OO 

system using a source code profiler, there are several complicated issues in OO 
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such as polymorphism, overloading and inheritance that could result in same 

feature implementation of two features which would further complicate 

refactoring.  Likewise, our methodology has not been tested on the systems with 

multiple thread of execution commonly found in real-time systems.  We 

acknowledge the fact that our methodology will have to be customized in 

addressing evolution of OO and real-time legacy systems.    

Once feature implementation is identified, our methodology provides a template 

for identifying lines of code that need refactoring.  In addition, this template also 

provides the properties  (Get and Set) for the refactored component.  However, it 

is up to the developers to refactor the code into a component using the best 

possible design.  Our methodology will work the best when the refactored unit has 

a lower maintenance cost itself. 

7.1.2 Sensitivity relative to Average Coverage (C) 

Not all features are an ideal candidate for this methodology. Using domain 

knowledge and enterprise initiatives, it is possible to identify features that either 

are a good candidate for reuse or have maintenance problems.  

In Table 4.10, we have shown whether to continue with the methodology or not 

based upon the Threshold (T).   Based upon the data collected from AMS (see 

Table 7.3) we believe that generally the average coverage (C) determines how 

sensitive a particular feature is for evolution.  The end-users and testers identified 

the feature that needed evolution for our AMS case study.  However, it is quite 
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possible that selecting a feature for evolution the candidate features (note that the 

feature must still satisfy the law of two as discussed in Section 4.1.2.7) the 

decision for evolution is solely based on C.  In this section, we will discuss how 

sensitive the case study Threshold values are.  We found that the Input Processing 

had the following values for Threshold, Neighbouring Feature (K) = 3, Feature 

Implementation (FI) = 17 and Average Coverage (C)  = 80%.  Analyzing the 

feature/function matrix of Input Engine of AMS we found following: 

If we reduced the C to be about 50% we found that K was increased to 8 and FI 

was increased to 19.  If we reduced the C to be about 25% we found that K was 

increased to 21 and FI was increased to 99.  Both the above finding indicates that 

we are dealing with less cohesive code, hinting that evolution would take longer 

(for a more detail analysis see Section 7.1.3).  If C was increased to be greater 

than 90% we found that K was decreased to 2 and FI decreased to 1, indicating a 

trivial case.  K=0, FI=0 and C=100% represent the CORE.  The data is shown in  

Table 7.1 and Figure 7.1.  Note that Figure 7.1 shows C on the x-axis (represents 

the first data point of 10%, 2 means 25%, 3 means 50% and so on) and a scale on 

the y-axis which is used to plot FI and K.  The values shown in  

Table 7.1 are shown plotted in Figure 7.1.  We can see from Figure 7.1 as C 

decreases the distance between FI and K increases indicating more time to evolve 

these features and likewise as C increases distance between FI and K decreases 

indicating lesser time to evolve.  We found that C for our case study was best 
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suited around 80%, which is the fourth data point in Figure 7.1 (suggesting an 

optimum for AMS’s Input Engine given the budget in terms of time/resources).  

Note that different parts of the legacy system may be sensitive to C, a more 

empirical study is suggested as a part of future work (see Section 7.3.2).    

 

 

Table 7.1: Coverage Sensitivity Data in AMS. 

 

Figure 7.1: Coverage Sensitivity in AMS. 
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7.1.3 Selecting Evolvable Features 

In the case of AMS, if a feature is spread out across many functions, and if the 

code execution is below 80% using selected test cases within each of the 

functions, the feature is not a good candidate. For example, the primary function 

of AMS is to integrate executive benefits and life insurance using complex non-

linear algorithms. Life insurance acts as an asset to fund the executive benefits. 

There are many legal-, accounting-, insurance- and benefits-related constraints, 

which play an important role in the asset/liability match within AMS. Such 

constraints are scattered throughout AMS, and make up less than 20-25% in any 

given function. Our experience tells us that the constraints themselves will 

certainly not be good candidates for evolution because they do not change 

frequently, and they probably cannot be reused in other AFS product lines. Good 

candidates are those features that change often, are concentrated in fewer 

functions, depend on or share global variables as a means of communication and 

can be reused across product lines. 

Our methodology provides several heuristics to avoid feature interaction issues by 

identifying closely related features. If two feature implementations are highly 

correlated, then it is certain that these features are intertwined, and a rewrite is 

probably warranted.  

Heuristics on features that are evolvable can be further elucidated by close 

analysis of Table 7.2.  This table displays the results of running the profiler with 
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regression test cases, after the test cases have been mapped to the features.  Each 

row represents a particular function; each function has been mapped to a pre-

defined function type (SS, DF, DD, SSF – see List of Acronyms and Glossary), as 

indicated in the rightmost column.  For example, f1 is of the type Shared Stateless 

Function (SS).  Each column represents a regression test case Tn (while our 

methodology supports multiple test cases representing a single feature we omit 

this detail for the purpose of this discussion); each test case is mapped to a feature 

(FE n).  For example, T1 is mapped to FE1.  The numeric value in each cell is the 

percentage of coverage for the specific feature by that function.  For example, f1 

has 100% coverage for FE 1 in T1. 

The concept of threshold is essential in this analysis of evolvability.  For a given 

feature-function relationship, the threshold is based on the number of functions 

(FI), the number of neighboring features (K), and the percentage of coverage (C) 

for the feature in each function.  The coverage level must be significant; we have 

selected 80% as the minimum for evolvability based upon our experience with the 

AMS.  There are two special cases:  (1) The trivial case: K = 1 and F = 1; the 

feature and the function are coterminous; (2) C = 0: zero coverage, hence there is 

no feature-function relationship.   Optimum values for evolvability, for a given 

legacy system (LS), might be K = 3, FI = 17, C = 80%, with no cross-cutting and 

no trivial cases. 
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Another important concept in this analysis is traceability.  This is the ability, 

using a code-profiling tool, to traverse the implementation code path in order to 

identify feature-function relationships.  Traceability can be used to examine three 

types of relationships: (1) function-to-feature; (2) feature-to-function; (3) feature-

to-feature.  The NuMega ® True Time Code Profiler [56] was used in this 

analysis. 

The following describes feature or function categories in terms of evolvability.  

Each category (in upper-case below) corresponds to a colored section in Table 

7.2. 

Table 7.2: Evolable Features. 

Test Cases T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Function\Features FE1 FE2 FE3 FE4 FE 5 FE6 FE7 FE8 FE9 FE10 FE 11 FE 12 Type

f1 100 100 100 0 0 0 0 0 0 0 0 0 SS

f2 80 80 90 0 0 0 0 0 0 0 0 0 DF

f3 100 100 100 0 0 0 0 0 0 0 0 0 SS

f4 70 75 80 0 0 0 0 0 0 0 0 0 DD

f5 100 100 100 0 0 0 0 0 0 0 0 0 SS

f6 100 100 100 0 0 0 0 0 0 0 0 0 SS

f7 100 100 100 0 0 0 0 0 0 0 0 0 SS

f8 0 0 0 80 90 0 0 0 0 0 0 0 DF

f9 0 0 0 100 100 0 0 0 0 0 0 0 DF

f10 0 0 0 0 0 11 12 0 0 0 0 0 SSF

f11 0 0 0 0 0 33 44 0 0 0 0 0 SSF

f12 0 0 0 0 0 12 15 0 0 0 0 0 SSF

f13 0 0 0 0 0 15 15 0 0 0 0 0 SS

f14 0 0 0 0 0 22 22 0 0 0 0 0 SS

f15 0 0 0 0 0 32 38 0 0 0 0 0 SS

f16 0 0 0 0 0 15 15 15 15 15 15 15 SS

f17 0 0 0 0 0 22 22 22 22 22 22 22 SS

f18 100 100 100 100 100 100 100 100 100 100 100 100 SS

f19 100 100 100 100 100 100 100 100 100 100 100 100 SS

f20 100 100 100 100 100 100 100 100 100 100 100 100 SS

f21 0 0 0 0 0 32 38 12 56 89 66 63 DD

f22 0 0 0 0 0 22 22 34 52 23 43 34 DD
f23 0 0 0 0 0 32 38 22 44 33 45 32 DD
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Functions that are shared stateless (SS) and have 100% coverage for all test cases 

can be shared in a common library, as CORE.   Functions 18-20 in Table 7.2 meet 

these requirements. 

If a feature is contained within a few functions, and if the code execution is above 

80% using selected test cases within each of the functions (above threshold), this 

feature is a good candidate to be EVOLVABLE.  Features 1-3, implemented in 

Functions 1-7, and Features 4-5, implemented in Functions 8-12, meet these 

requirements.  

 A CROSS-CUT feature is dispersed in too many functions and the coverage 

values are below threshold.  Features 6-7 illustrate this category.   A cross-cut 

feature is not recommended for evolution because the impact of change can create 

several unforeseen errors and the cost will exceed the benefits. 

The shaded area (Feature 8 through Feature 12, and function f16 through f23) 

represents the inverse of cross-cutting, another type not recommended for 

evolution, NON-EVOLVABLE; while the features are implemented in a 

reasonable number of functions, the functions implement a large number of 

features, and the coverage values are below threshold.   

The ZERO COVERAGE category includes all cells in the feature-function 

matrix, which have no coverage.  These are the white cells in Table 7.2. 

Our experience with AMS features is shown in Table 7.3 (partial listing).  The 

Input Processing feature that was evolved, had a K=3, FI = 17 and C = 80%.  We 
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also found that there were features within AMS that were implemented within one 

function only and no other feature was implemented in that function.  An example 

of such a feature is importing data from another database.  Cash value calculation 

is an example of non-evolvable feature because its FI is shared by nine other 

features in a single function which means the impact of change will be 

unfavorable.  Likewise, a cross-cutting feature, like a constraint to a non-linear 

equation solve, is also not a favorable candidate for evolution because it is 

dispersed in so many different features.  Finally, we discovered CORE of 42 

functions as shown in Table 7.3. 

Table 7.3: Heuristics (partial listing).  

7.1.4 Sorting Feature Function Matrix  

When regression test suite is run with a profiler, the amount of data can be 

overwhelming.  AMS has over 250 test case files in its regression test suite.  

When the profiler generates the feature function coverage matrix, it is not sorted 

and the feature-function coverage data is scattered as shown in Table 7.4. 

K FI C

Number of Neighboring Features Number of Functions Avg. Coverage Feature Heuristics

3 17 80.00 Input Processing Evolable

1 1 100.00 Import Trivial

10 1 100.00 Cash Value Calc Not-Evolvable

1 54 35.00 Solve Constraint Cross-Cut

- 42 100.00 - Core
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 Table 7.4: Unsorted Feature Function Matrix. 

 

When we look at the evolution threshold, we must cluster the data into group of 

related features and their FIs.  We make use of RankSort algorithm to cluster the 

feature-function matrix.  Ranksort allows sorting over multiple columns.  A 

detailed description and analysis of Ranksort can be found in [107].  We have also 

implemented RankSort algorithm in our utility that was discussed in Chapter 5.  

The data shown in Table 7.4 is sorted using RankSort that then resembles Table 

7.5. 

Unsorted Features
Functions FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 FE11 FE12

f8 0 0 0 80 90 0 0 0 0 0 0 0
f9 0 0 0 100 100 0 0 0 0 0 0 0
f10 0 0 0 0 0 11 12 0 0 0 0 0
f11 0 0 0 0 0 33 44 0 0 0 0 0
f12 0 0 0 0 0 12 15 0 0 0 0 0
f13 0 0 0 0 0 15 15 0 0 0 0 0
f14 0 0 0 0 0 22 22 0 0 0 0 0
f15 0 0 0 0 0 32 38 0 0 0 0 0
f16 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
f18 100 100 100 100 100 100 100 100 100 100 100 100
f1 100 100 100 0 0 0 0 0 0 0 0 0
f4 70 75 80 0 0 0 0 0 0 0 0 0
f21 0 0 0 0 0 32 38 12 56 89 66 63
f1 100 100 100 0 0 0 0 0 0 0 0 0
f5 100 100 100 0 0 0 0 0 0 0 0 0
f21 0 0 0 0 0 22 22 34 52 23 43 34
f19 100 100 100 100 100 100 100 100 100 100 100 100
f2 80 80 90 0 0 0 0 0 0 0 0 0
f6 100 100 100 0 0 0 0 0 0 0 0 0
f7 100 100 100 0 0 0 0 0 0 0 0 0
f20 100 100 100 100 100 100 100 100 100 100 100 100
f23 0 0 0 0 0 32 38 22 44 33 45 32
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Table 7.5: Sorted Feature-Function Matrix. 

 

7.1.5 Reusable Components and Web Applications 

Section 2.2.2 discussed the importance of the Internet in evolving legacy systems.  

At AFS, while we already had our flagship product AMS in operation, we were 

developing its web counterpart which presented challenges and opportunities.  In 

our search to reuse components across our product lines, we found that a web 

applications forces a system to be composed of smaller stateless units which in 

turn forces a monolithic legacy system to be decomposed into smaller more 

manageable units.  Web applications are typically are comprised of three tiers 

namely web server, application server and database server as shown in Figure 7.2.  

In evaluating reusability between AMS and AMS-Web, we found that between 

the two product lines there were four common indirect features specifically; Input 

Processing, Reporting, Business Logic Calculation and Data Access as shown in 

Sorted Features
Functions FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 FE11 FE12

f1 100 100 100 0 0 0 0 0 0 0 0 0
f2 80 80 90 0 0 0 0 0 0 0 0 0
f3 100 100 100 0 0 0 0 0 0 0 0 0
f4 70 75 80 0 0 0 0 0 0 0 0 0
f5 100 100 100 0 0 0 0 0 0 0 0 0
f6 100 100 100 0 0 0 0 0 0 0 0 0
f7 100 100 100 0 0 0 0 0 0 0 0 0
f8 0 0 0 80 90 0 0 0 0 0 0 0
f9 0 0 0 100 100 0 0 0 0 0 0 0
f10 0 0 0 0 0 11 12 0 0 0 0 0
f11 0 0 0 0 0 33 44 0 0 0 0 0
f12 0 0 0 0 0 12 15 0 0 0 0 0
f13 0 0 0 0 0 15 15 0 0 0 0 0
f14 0 0 0 0 0 22 22 0 0 0 0 0
f15 0 0 0 0 0 32 38 0 0 0 0 0
f16 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
f18 100 100 100 100 100 100 100 100 100 100 100 100
f19 100 100 100 100 100 100 100 100 100 100 100 100
f20 100 100 100 100 100 100 100 100 100 100 100 100
f21 0 0 0 0 0 32 38 12 56 89 66 63
f22 0 0 0 0 0 22 22 34 52 23 43 34
f23 0 0 0 0 0 32 38 22 44 33 45 32
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Figure 7.2.  While all four features were converted into reusable units using the 

methodology; Input Processing feature was evolved using the methodology, 

Reporting and Business Logic features were evolved via wrapping and, Data 

Access feature is part of CORE. 

Figure 7.2: Reusable Components Between Desktop and Internet Application. 
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7.1.6 Issues In Reusing Components Across Product Lines 

While reusing components is an excellent idea across product lines, we found 

several inherent problems: 

7.1.6.1 Configuration Management  

Configuration management and version control are key issues and must be 

addressed carefully when a component is shared across product lines.  It is also 

important to decide how many versions of reusable components are going to be 

maintained and supported.  We found that configuration is more complicated in a 

product line context for two reasons:  

1. A change must be considered not from the point of view of a single 

product, but in terms of keeping the changed component used by all of the 

products that currently employ it. 

2. It is more likely that it will be necessary to maintain separate versions of 

reusable components, as opposed to simply supplying the most recent one, 

as may suffice in one-at-a-time development.  

At AFS we found that strong, centralized architectural control is key to product 

line development, but so is management of change and evolution. In the 

development phase, the architect answers to a single set of products, and their 

needs are often complex. But in a product line, the architect answers to users of 

all versions of the system, and keeping the product line intact is more important 
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than making changes to accommodate a single product's needs.  In order to 

address the above-mentioned issues we created a team of software developers 

whose main job was to manage the versions of the shared components.  

7.1.6.2 Deployment 

Given that fine-grained components needed to be integrated for use within 

product lines, there are two technology alternatives that we considered:  

1. For the local component model (for the use within AMS) we compared 

Microsoft’s Active X and Sun’s JavaBeans. 

2. For distributed component model (for the use within AMS-WEB) we 

compared Microsoft’ COM (COM/DCOM/MTS/COM+) and Sun’ 

Enterprise JavaBeans (EJB).   

We decided to use Microsoft COM for deploying both AMS and AMS-WEB 

product lines for the following reasons: 

a. Integrating Active X components in our existing enterprise framework is 

easier than JavaBeans since not all our developers know Java 

programming language. 

b. Our enterprise framework and legacy code uses COM as an underlying 

technology. 

c. We did not want to deal with the bridge technology that would try to 

connect COM and JavaBeans [62].  For example, it is possible to raise 

events from JavaBeans and catch them in Active X components.  
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However, there are known problems with this integration specifically 

when handling exceptions. 

d. Our users use Windows operating system at-large so interoperability is not 

an issue for AFS. 

e. EJB offers several nifty and powerful features but is quite complex.  

Because not all our developers are Object-Oriented literate and we have 

already spent so much in Microsoft technologies, we feel that COM is a 

better choice for our server-based implementations as well.  We feel that 

COM is simple. Thus, we chose COM for deploying components on the 

server side as well. 

Table 7.6 summarizes the comparisons.  Although, it made good technical and 

business sense to use COM as an underlying technology for deploying our fine-

grained components we faced the following challenges in implementing the 

reusable units in AMS-WEB: 

1. Our fine-grained components had to be deployed in MTS 

(Microsoft Transaction Server) when using with AMS-WEB.  

While the installation of MTS was simple, it did add another layer 

of complexity for our developers.  We also found that Input 

Processing components under MTS’ performance was slower than 

the AMS version.  
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2. COM’s deployment data is stored in the Windows registry; this is 

cumbersome and presents several faults as far as portability is 

concerned.  Registry entries can be exported and imported if a 

server is moved but this is an error prone procedure. 

3. Server-based COM components cannot be configured as stateful or 

stateless. They're always stateless.  Remote clients use DCOM to 

invoke methods in COM objects on server machines. For access 

from Internet-enabled clients via HTTP, the COM Executive is 

loaded into Internet Information Server (IIS) the Web server built 

into Windows 2000 OS.  We had to enhance our fine-grained 

component model to maintain state.  

4. The AMS-WEB versions of components had to be configured for 

security in the application server.  The security settings required 

setting several parameters in the registry of Windows 2000 OS, 

which is cumbersome and errorprone. 
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Properties EJB EJB COM COM 

Component Language Java only VB, C++, Java, C# and Others

Platforms All Windows 2000 

Middleware Vendors 30+ Microsoft 

Legacy Integration RMI/JNI, CORBA, Connectors COM TI, MSMQ, OLE DB 

Deployment method XML descriptor file GUI and Registry 

Protocol Any DCOM 

Component Persistence Serialization No 

Stateless components Yes Yes 

Stateful components Yes No 

Persistent components Yes  No 

Method-granularity transactions Yes No 

Middle-tier load balancing Most vendors Supported via app. server 

Middle-tier data caching Some vendors No 

Queued components No Yes 

Single-vendor solution No Yes 

Middleware comes with OS No Yes 

Development tools Choice of many Microsoft Dev Studio 

Table 7.6: EBJ and COM Comparison. 

 

7.1.6.3 Training 

Fine-grained components deployment on the server and configuration 

management required more training to our developers than we had originally 

anticipated.  While we were successfully able to train our developers on our 

methodology and fine-grained components, we found that server-based 

deployment of fine-grained components required extra effort.   We did not include 
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training time for deployment on the server in our budget analysis model because 

this time was not an extra step required by our methodology.  In other words, in 

absence of our methodology this step would have to be performed anyway. 

7.1.7 Global Variables 

We were pleasantly surprise to observe following: 

1. Better definition of feature-based global variables 

2. Reducing global variables when feature relationships are shared and 

required. 

7.1.7.1 Explicit Definiton 

We found that in all cases that the legacy system is full of global variables.  These 

global variables are declared and initialized in numerous functions. Typically, FE1 

would set the value of a global variable g1 and FE2 or subsequent feature(s) may 

either use (shared/required feature relationship) or change (alter feature 

relationship) g1. This implicit communication is common in legacy system.  As a 

side effect of our methodology, we renamed the global variables based upon the 

neighboring features and their relationships.  Providing better name to the global 

variables implied two benefits: 

1. It suggests explicit relationships among features thereby reducing 

confusion. 

2. Changing the state of the global variable can provide some clue regarding 

the impact it may have on related feature(s). 
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Table 7.7 illustrates the concept discussed above.  The new names of global 

variables G1 and G2 depends on feature relationships between the two features 

that they have been involved in. 

Old Global 
Variable 
Name 

 
Program 

 
FE1 

 
FE2 

 
Feature 
Relationship 

New Global 
Variable Name 

G1 Declare Set Use Shared G1_FE1_FE2_S 
G2 Declare Set Change Altered G2_FE1_FE2_A 

Table 7.7: Global variable naming convention. 

 

7.1.7.2 Reducing Global Variables 

We found that the program does not need to declare the global variable if the 

relationships between the features is either shared or required.  The global 

variables can be encapsulated within the feature-based fine-grained components, 

and be accessed as needed by the rest of the program. 

7.1.8 Availability of Regression Tests 

While we have no empirical studies to show that most systems have regression 

test suites to measure stability between releases, such test suites are important 

from a business perspective [10]. An informal survey of seven legacy systems 

revealed that all of them had adequate regression test suites. We therefore believe 

it is reasonable to assume that most businesses either have these test suites 

(although they may not refer to them as such) or are generating these test suites 

manually each time a new release is scheduled.  
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7.1.9 Automating Tasks  

To instrument the source code we compiled the source code image with 

TrueCoverage™. Since the regression testing is already being done in batch 

mode, it was easy to get the instrumented output to compare against all 250 

regression test cases. However, these instrumented images were in a 

TrueCoverage™ specific file format. TrueCoverage™ does provide an automated 

way to export the specific file format. We had to manually export each file into a 

standard file format (comma-separated values) just to import into a spreadsheet 

tool for further analysis. This process needs to be better automated and the 

TrueCoverage™ vendor has indicated that future releases will have this 

functionality. 

7.1.10 Dead code and coverage 

We assume that a comprehensive set of regression tests is available for identifying 

code associated with the given feature(s). In our case study, we found that even 

after executing all test cases, not all of the code associated with Input Processing 

was executed. We believe that the unexecuted code contained either hidden 

features or is dead code. For example, 12 routines were never called at all. Also, 

nearly 17% of the code was not executed in the original code. We put all the 

unused code in a separate file and documented it. Incremental feature evolution 

gives us the implementation of core (AFS Core).  



 

 

229

7.1.11 Core and Reducing Dependence on Variables:  

After refactoring the AFS Core component, we manually identified the 

parameters for each of the 42 stateless functions. Since AFS Core is being used in 

four AFS product lines, this effort was worthwhile because these 42 functions do 

not create any side effects and use no global variables. In addition to AFS Core, 

there are two additional supporting core components: Suppression Core and Error 

Processing Core. These supporting core components encapsulate the worker 

functions and states (i.e., business logic) used by Suppression and Error 

Processing components. The supporting core components are created to provide 

flexibility in future evolution if any underlying data structure is changed for 

managing Suppression or Error Processing. For example, Error Processing Core 

contains functions to add, remove, and edit errors to a collection object. In the 

future, if the collection object is replaced by an array or another structure, such 

encapsulation will allow AFS to change only the working functions and the 

interface for the business logic will remain the same. Therefore, each of the six 

components has well-defined interfaces with no side effects. Their properties and 

methods are categorized explicitly using GetValue/SetValue.  

7.1.12 Performance  

In refactoring the recursion into linear functions, the performance of AMS was 

unaffected. We observed a 2% decrease in execution time once AFS Core was 
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introduced. We attribute this improvement to the removal of global variables and 

in-line code.  

7.1.13 Component Interface Issues  

Our methodology initially created components with too many interfaces. To 

resolve this issue, we used a Collection Object provided in the VB programming 

language to hide the list of these variables. Different programming languages may 

require a different implementation of methods and properties. Furthermore, the 

collection object was divided into two basic types, GetValue/SetValue with 

the parameter of the variable name as an index key.  

7.1.14 Measuring Success  

The true measure of a successful evolution methodology is in reduced future 

maintenance costs. We have only just begun the long-term task of collecting 

maintenance data on the refactored system. We found that the features we evolved 

for AMS as components can be reused in two platforms, both desktop and 

Internet. Although reuse involves integration, configuration management, and 

testing costs, the savings on development costs made this exercise highly 

successful. As briefly shown in Table 6.15, the net estimated cost of this project is 

one month’s salary for the AFS development team. Once long-term cost 

reductions are factored in, the resulting savings will be favorable. The 

performance of the refactored system is acceptable and it no longer freezes during 
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input. Also, AFS is now using AFS Core in all four of its product lines (an 

unexpected side effect). 

 

7.2 Contributions 

In this dissertation, we have made the following contributions: First, an 

incremental methodology to evolve legacy code is developed that improves the 

maintainability of evolved legacy systems. Second, the technique describes a clear 

understanding between features and functionality, and relationships among 

features using our feature model.  Third, the methodology provides guidelines to 

construct feature-based reusable components using our fine-grained component 

model.  Fourth, we bridge the complexity gap by identifying feature-based test 

cases and developing feature-based reusable components. 

7.2.1 Incremental Evolution Methodology 

Our ten-step methodology is incremental in nature and can provide rapid results.  

Our methodology provides “exit-points” in case the developers/testers are not 

satisfied with any of the results.  For example, heuristics discussed in this 

dissertation identify which features are good candidate for evolution and which 

ones are not.  We have identified input and output criteria for each step of our 

methodology, and at any step if a parameter is missing the developer can stop the 

whole process without any side effect.  Although we have not done so, this 

methodology can also be used to evolve multiple features at the same time. 
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7.2.2 Feature Model 

Our feature model defines features in a way that considers evolution in mind.  Our 

feature model provides a guide to identify the feature implementation within the 

source code.  We have identified and provided solutions to various cases when 

features interact with each other and reveal the same code for feature(s) to be 

evolved.  We provide a simple clustering technique to group test cases, which 

represent same indirect features.  In addition, our feature model provides ample 

description on thorny issue of feature interaction and provides an intuitive way of 

addressing the issue by considering feature relationships.  Another major 

contribution of our feature model is a technique to associate multiple test cases 

with a single feature and develop a feature/function relationship.  Finally, our 

feature model forms the basis of providing heuristics to the user by providing 

insights on sub-features, feature implementation, CORE, neighboring features and 

evolution threshold. 

7.2.3 Fine-grained Component Model 

Feature Implementations (FIs) can be refactored into fine-grained components, 

which can then be reused across multiple product lines.  Our fine-grained 

component model is simple to use and has minimum requirements in the sense 

that it allows the developers to provide better definition to the FI and the variables 

involved in invoking that FI.  We provide guidelines for evolving a FI into a fine-

grained component: A component’s properties can simplify complicated scenarios 
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such as when a code profiler results in same code for more than one feature in a 

function. 

Finally, our fine-grained component model reduces global variables if feature 

relationships are shared or required. 

7.2.4 Complexity Gap 

We bridge the complexity gap in two ways.  First, we map the regression test 

cases to the features and create a feature/function matrix.  This matrix is used to 

select evolvable features.  Regression test cases reflect the end-user feature; they 

are already focused so it is not necessary to collect execution traces on all inputs 

or to divide the input sets into invoking or non-invoking category as proposed by 

other researchers.  We suggest that regression test cases are the best choice for the 

input cases because regression test cases contain information regarding features. 

They can be used as a common entity between the end-user and the software 

team.  Second, the fine-grained components are feature-based components as they 

implement a specific feature or a group of related features.  Since these 

components are focused on specific features, we believe that they can represent 

end-user requirements in a much more explicit way thereby bridging the gap 

between user expectations and what the software can provide. 

7.3 Future Work 

American Financial Systems, Inc. has nearly ten years of longitudinal data on 

their legacy system. We are currently expanding our evaluation to model the 
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development costs in adding, modifying, or removing system features. Now that 

AFS has refactored parts of its legacy system, we will carefully monitor their 

development and maintenance teams to determine the impact of the software 

evolution methodology. We hope that other organizations will be inspired by the 

success of AFS to carefully evaluate their regression test suites to determine the 

feasibility of creating their own reusable fine-grained components.  

The work carried out in this research effort opens the door for several interesting 

as we now describe.  

7.3.1 Metrics 

The methodology presented in this dissertation can be further enhanced by 

including several metrics such as: quantifying the relationships between test 

cases, quantifying the relationship between the features, quantifying impact 

analysis when a feature implementation is altered, quantifying the relationship 

between the fine-grained components and the legacy system and, quantifying the 

complexity gap.   

7.3.2 Threshold 

The concept of threshold can be studied with respect to following:  

1. Different parts of the legacy system:  We applied our methodology in the 

Input Processing.  The methodology can be applied to different areas of 

AMS (See Appendix B for more detail) such as: 

a. Calculation Engine 
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b. Output Engine 

c. Utility functions such as import and export 

2. Legacy systems with different architecture:  Legacy systems can have 

various architectural styles such as pipe and filter, event based, implicit 

invocation, layered, repository oriented, table driven, blackboard and 

object oriented [29].  We applied our methodology in the Input Processing 

of AMS, which appears closest to that of pipe and filter.  While our 

methodology is architectural-style independent, it will be interesting to see 

the results of applying our methodology to the legacy system with various 

architectural styles. 

7.3.3 Multi-threaded features 

Our methodology has been developed and tested with single-threaded features. 

Our case study included features with relationships shared, required, and altered.  

Typically, multi-threaded features implement competition and conflicting 

relationships [26].  While we can certainly identify features with these 

relationships, our methodology does not provide enough guidance in converting 

such Feature Implementations (FIs) into fine-grained components.  More work 

needs to be done in this area. 

7.3.4 Extending the evolution manager utility 

The evolution manager utility that we discussed in Section 4.6 can be extended.  

The main purpose of our utility is to show that a Feature Implementation (FI) can 
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be identified.  This FI typically needs local and global variables, which in turn 

becomes the component’s interface.  We evaluated various code profilers and 

used their output of in the utility.  Extending the utility to automatically import 

the information on static and dynamic slicing from various code profiles would be 

a good improvement.  The main purpose of our evolution manager utility is to 

identify FI in terms of Lines of Code (LOC) and variable involved.  While we are 

able to show the power of relational database by modeling LOC and variables 

used, this utility does not yet provide any insights into refactoring.  Extending the 

utility to provide refactoring insights can be helpful.  There are several other 

enhancements that can be made to this utility such as maintaining release versions  

and adding more reports. 

7.3.5 Object-Oriented Systems 

The case study presented in this dissertation uses a legacy system that has lots of 

global variable and is not object oriented.  It will be interesting to apply our 

technique on an object-oriented system with complex class hierarchies.  There are 

several code profilers that are available for most of the object-oriented languages 

such as Java or C++.  Indeed, many legacy systems are object-oriented.  These 

legacy systems can benefit from our methodology if our methodology is extended 

to include object-oriented systems.    Code profilers can gather information about 

the legacy system’s classes that implement features.  These classes will have to be 

then analyzed using our feature model.  Refactoring of these classes can result in 
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some core classes that can then be shared.  It appears that analyzing object-

oriented system will be quite challenging and it presents its own research issues.  

We leave this interesting problem to be solved as part of future work. 

7.3.6 Systems whose source code is unavailable 

At this time it may appear far-fetched but our methodology could be extended to 

include techniques to analyze systems whose source code is not available.  There 

are legacy systems whose source code is either lost or unavailable for one or more 

reasons.  While our methodology uses source functions to provide heuristics on 

evolvable features, this can be changed to simply extract features by running 

regression test cases.  Essentially, input and output can be compared to identify 

systems behavior.  By comparing the input against the full regression test suite, 

the features can be identified and the system can be executed to generate output. 

This behavior can be statistically studied to identify features of interest.  Once 

features are fully understood they can then be rewritten.  CBSE techniques can be 

used to integrate newly created components into legacy system whose source is 

not available. 

7.3.7 Real-time Systems 

Our methodology has been applied in a legacy system that is used in integrating 

executive benefits with life insurance.  The AMS legacy system is by no means a 

real-time system.  If the real-time systems are instrumented to collect the output 

data then desired features could be studies, identified and refactored as needed.  
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This instrumentation can be in many forms such as code profiler, debug lines or 

log files.  Many real-time systems have advanced logging capabilities.  That could 

be used to analyze and refactor features of interests. 

7.3.8 Tools to manage feature evolution 

 Figure 4.27 outlines the data model used as a basis for our formal model.  We 

chose a relational model because it is intuitive and easily applicable in our 

context.  The formal model provides a theoretical foundation to our techniques.  

While we have successfully applied our methodology, we believe that it is lacking 

a tool to manage the feature evolution process.  This tool can be built from the 

idea presented in our formal model.  The formal model is actually based upon the 

data model.  This data model contains useful information regarding shared 

function and data.  It can select the functions and data shared among features and 

can automatically copy them into the relational model as the developers are using 

this methodology.  As this database grows, it will provide meaningful information 

for traceability and future maintenance.   We believe that several tools can be 

developed that can use the data model presented in this dissertation. 

7.3.9 Tools to automate selection of test cases 

We have presented two techniques to select the regression test cases in our case 

study.  These techniques are usage of clustering and textual pattern analysis.  

Future work can include development of some tools that can automate this task.  

Essentially, these tools can analyze the pool of heterogeneous data that is either 
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part of regression test suite or is associated with the documentation that supports 

regression test cases.  These tools can group the related test cases (thus related 

features) based upon certain rules.   

7.3.10 Extending the budget analysis model 

The budget analysis model can be extended to include several other variables that 

may be interesting from a project management perspective.  While the budget 

analysis presented in the conclusion Section 6.10 includes variables that are 

sufficient to suggest that our approach is indeed worthwhile, it can certainly be 

extended to include costs more accurately using COCOMO or COCOTS model 

[15][17][109][130].    Furthermore, the budget analysis presented in Section 7.1 

can include several other line items such as opportunity cost. 

7.3.11 Extending the component and formal model 

Our component model considers two features at a given point in time. See Figure 

4.15, which shows view of the function being analyzed as fx, fy etc.  We feel that 

there is an opportunity to analyze more than two features at a given time.  This 

would increase the complexity of the analysis but we believe that the component 

model could be extended to use more than two features at a time. 

Similarly, the formal model could be extended to include several metrics such as 

provided in Wong et al. [125].  These metrics could provide several interesting 

views such as what is the relationship between components properties and 

variables used in a feature prior to its evolution or a scattering index indicating 
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how many functions a particular feature is scattered in and what is its relationship 

with other features within the function. 

7.3.12 Using our methodology with tools other than code profilers 

We have developed and used our methodology with source code profilers.  There 

are other tools that could be used to collect the data we want, such as compilers 

with symbolic debug information or user-defined instrumentation.  

7.3.13 Application of our methodology for program understanding 

Although we argued rather rigorously in the related work section that motivation 

of our work is software evolution rather than program understanding, we believe 

that our methodology can be used to understand program as well.  Using 

regression test cases and code profiler, the execution paths can be studied to 

understand which part of the program is being used more than the other and so on.  

Similarly, functions involved in a particular feature can be traced and watched for 

testing and debugging purposes. 

7.4 Summary 

We discussed lessons learned, our contributions and future work in this chapter.  

We presented heuristics for selecting the features that are best suited for 

evolution.   We discussed the concept of threshold that allows us to select sutable 

candidates for evolution.  Threshold consists of a function of number of 

neighbouring features, number of functions and average coverage.  We discussed 

the importance of RankSort and clustering.  Upgrading existing desktop 
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applications into web-based application allows us to identify features that can be 

reused using our methodology.  There are several issues in reusing components 

among applications such as configuration management, deployment and training 

personnel.   Legacy systems that have large number of global variables can 

benefit from our methodology in two ways, first our methodology provides better 

definition of feature-based global variables and, second it reduces global variables 

when feature relationships are shared and required.  Our methodology assumes 

availability of regression test suites and code coverage profilers.  We believe that 

this constraint is not severe.  We successfully applied our methodology in a large 

industrial application.   Our contributions consists of an incrementally evolution 

methodology, a feature model and a fine-grained component model.  These 

models are supported by formal model and budget analysis model.    We bridge 

the complexity gap in two ways; first by mapping the regression test cases to the 

features and creating a feature/function matrix, second by creating feature-based 

fine-grained components.   We have provided several avenues for future research 

such as developing metrics to measure feature/function relationships, collecting 

information and calculating threshold for various parts of the legacy system, 

extending our methodology for multi-threaded features, enhancing the evolution 

manager utility, applying our methodology for OO systems and extending our 

models.   
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We hope that we have convinced the reader that our methodology is easily 

applicable and measurable, incremental in nature and has solid theoretical 

foundation. 
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List of Acronyms 

ADT  Abstract Data Type 

AFS   American Financial Systems, Inc.  

AMS   AFS Master System 

AOP  Aspect-Oriented Programming 

API  Application Programming Interface 

C  Average Coverage 

CBSE   Component Based Software Engineering  

COTS  component-off-the-shelf  

DD    Dependent Data 

DF   Dependent Function 

FE   Feature in a Legacy System 

FEi   a feature of Legacy System that is exercised when ki is executed 

FGC  Fine-grained component model 

FI   Feature implementation as defined in the feature model 

FIi  An implementation of FEi in LS 

FOCS  Feature Oriented Classification of System 

FODA  Feature Oriented Domain Analysis  

FOP  Feature Oriented Programming 
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G   A set of global variables in a Legacy System 

GUI  Graphical User Interface 

gi   The set of global variables involved in FIi 

ki   A set of test cases such that ki ∈  T 

K  Neigboring Features 

LOC  Lines of Code 

LS   Legacy System 

MAP  Mining Analysis of Product Lines 

OAR  Options Analysis Re-engineering 

SEI  Software Engineering Institute 

SS    Shared Stateless Function 

SSi   The set of shared stateless functions in FIi 

SSF   Shared State-Full Function 

T   Threshold 

V   The set of local variables in FIi 

vi   The set of local variables directly affected by FIi 



 

 

245

 

Glossary 

χχχχSuds. A tool developed by Telecordia Technologies where program features in 

the source code are tracked down to files, functions and lines of code. 

 

Altered Relationship. When a feature’s state (global data, object or 

implementation) is altered by another feature then there is an altered relationship 

between features.   

 

Architectural reconstruction. Architectural reconstruction is the process where 

the “as-built” architecture of an implemented system is obtained from the existing 

legacy system. 

 

Aspect Oriented Programming (AOP).  An approach in which cross-cutting 

concerns that appear throughout numerous modules of a system implementation 

are identified and then integrated into the primary modularization to create a final 

working system. 

 

Assignments.  AMS’s Input Processing’s sub-feature which converts user input 

from strings to types such as Integer, Single, Double, or Array. 
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Base-line Architecture.  Specific caller-callee sequence within a program, and is 

unlikely to be reusable into another components. 

 

Black Box Technique: A binary executable form of the component is available 

and there is no extension language or API. 

 

Budget Analysis Model: The budget analysis model presents the cost and the 

benefit of applying the methodology. 

 

Clustering Analysis. It is the organization of a collection of patterns (usually 

represented as a vector of measurements or a point in multidimensional space) 

into clusters based on similarity. 

 

Coarse-grained software evolution.  Evolution focused on large-scale structural 

issues of a software system, such as global control structure, synchronization and 

protocols of communication between components. 

 

Code refactoring.  Improving the design of existing software code without 

altering the behavior. 
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Code profiler.  A tool for analyzing software code which performs functions 

such as identification of  performance bottlenecks and verification that code 

changes have improved performance. 

 

Complexity gap.  The gap between the problem domain the solution domain. 

 

Component.  A software element that conforms to a component model and can 

be independently deployed and composed without modification according to a 

composition standard. 

 

Component Based Software Engineering (CBSE).  An approach to software 

design that utilizes components as the core structural elements. 

 

Component model.  A model which defines specific interaction and composition 

standards. 

 

Composed relationship. It shows how a feature is composed of several sub-

features.  An example of a composed relationship is that a bank account consists 

of savings and checking accounts. 
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Configuration management.  Application of technical and administrative 

controls to characteristics, change processing, and implementation of 

configuration items in a software system. 

 

CORE.  Shared Stateless function(s) that are executed 100% of the time for all 

features then we define that function to be part of CORE.  Such functions are 

candidates for a shared library.   

 

Cross-cutting. Mean that a function can implement many features and these 

features share the same code/data. 

 

Data Model. The data model is used to trace feature relationships, interactions 

and component evolution of a legacy system. 

 

Dependent Data.  An FI may be dependent on the data that is updated by another 

FI.  This can be local or global variable. 

 

Dependent Function. An FI may be dependent on a function that is part of 

another FI. 
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Evolution Manager Utility.  Utility used in recording and tracing the 

methodology steps. 

 

Error Processing.  Error Processing is a sub-feature of AMS’s Input Processing 

feature that validates item values. 

 

External Dependencies. SSF, CORE and other components can be called “out” 

of the fine-grained component to access any data needed via this interface.  

External Dependencies is a list of external program/component declaration within 

a fine-grained component. 

 

Feature. It is a group of individual requirements that describes a unit of 

functionality with respect to a specific point of view relative to a software 

development life cycle. 

 

Feature Engineering.  The area of study that addresses the understanding of 

features in software systems and then defines a set of mechanisms for carrying a 

Feature from the problem domain into the solution domain (thereby reducing the 

complexity gap). 
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Feature Implementation. It is the set of statements (including data) within all 

functions that execute when that feature is invoked.  The feature is invoked by 

one or more test cases. 

 

Feature Interaction.  Features must interact with each other to provide wider 

system functionality.  When features interact with each other, they have an 

“effect” on the system.  This effect can be positive or negative. 

 

Feature Model. helps to identify where features are located within the legacy 

system, how features are related to other features, and how they interact with each 

other. 

 

Feature Oriented Domain Analysis (FODA).  A method of system analysis 

which provides a generic description of the requirements of a class of systems and 

a set of approaches for their implementation, based on the feature set of the 

system. 

 

Feature Relationships. Feature relationships refine the concept of interaction by 

providing specification through calling sequence among features sharing 

data/functions. 
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Fine-grained components.  Components whose interaction is clearly specified by 

the interfaces provided by each feature interface. 

 

Fine-grained component model. It provides guidelines to extract feature specific 

code/data. 

 

Formal Model.  It provides the theoretical foundation for our 

evolution methodology.  The formal model is supported by the data 

model. 

 

Function Point Analysis. The basic notion of this discipline is that the 

functionality of a software project can be objectively estimated independent of the 

implementation. 

 

Gray Box Technique: Source code of a component is not modified but the 

component provides its own extension language or Application Programming 

Interface (API). 

 

Input Processing. It validates and prepares data from user inputs (also called 

items) so AMS can perform complex calculations to generate various reports. 
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Item.  Field within the AMS system. 

 

Law Of Two, The: If a feature can be used in another system, its implementation 

becomes a candidate for reuse. 

 

Legacy Code.  A system or application which continues to be used because of the 

cost of replacing or redesigning it, often despite its poor competitiveness and 

compatibility with modern equivalents. 

 

Legacy System. Any software system that is currently in operation is considered 

legacy system. 

 

Methodology: Used for evolving legacy system’s features by exercising each 

feature with its associated test cases using code profilers and similar tools, feature 

implementations can be located and refactored to create reusable fine-grained 

components. 

 

Neighboring Features (K). Number of features interacting within a function 

Opportunity Cost. 
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Problem domain.  User expectations and concerns, pertaining to software 

functionality. 

 

Property Get: It is a way to retrieve the values of local or global variables from 

the component. 

 

Property Set. It is a way to pass these variables to the refactored FI/component.   

 

Regression Testing.  Part of the test phase of software development where, as 

new modules are integrated into the system and the added functionality is tested, 

previously tested functionality is re-tested to assure that no new module has 

corrupted the system. 

 

Required Relationship. When a feature is required to be present for other 

features to function is known as Required Relationship. 

 

Requirement Engineering. Requirement Engineering is the discipline that is 

focused on providing a concise, consistent, unambiguous, and complete definition 

of the problem domain. 
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Shared Relationship. When a group of feature share resources (global data, 

objects or other implementation) with other feature(s) then a shared relationship 

among features exists.   

 

Software Architecture.  The way a system is designed; the way components fit 

together. 

 

Software Evolution:  See Methodology. 

 

Software Reconnaissance: Implies “preliminary survey of enemy terrain” where 

software program is considered as an enemy whose secrets must be extracted.   

 

Solution domain.  Developer concerns regarding the creation and maintenance of 

software development life cycle artifacts such as components. 

 

State-full Function.  A state-full function can be shared between two features.  It 

maintains state and is used as a means to communicate by features. 

 

Stateless Function. A stateless function can be shared between two FIs and does 

not retain any state. 
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Suppression.  Suppression is a sub-feature of AMS’s Input Processing feature 

that either shows or hides an item in the user interface based upon the input for 

another item. 

 

Threshold:  Optimal number of neighboring features, the number of functions 

and the average coverage percentage within the function.  It provides heuristics on 

whether to continue with the evolution methodology or not.   

 

Traceability.  Ability of a code-profiling tool to trace the source code 

implementing a specific feature. 

 

White Box Technique. Access to source code allows a component to be 

significantly rewritten to operate with other components.   
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References 

Appendices 

Appendix A: AFS Master System 

• The AFS Master System (AMS) is used daily by hundreds of top 
insurance producers successfully competing in the supplemental benefits 
market. Key features include: 

 
• True 32-bit power of the latest Windows operating systems, featuring 

user-friendly interface, high-quality graphic output, drag-and-drop input 
from other applications, and unparalleled presentation capabilities  

 
• Quick preparation of illustrations and proposals to support new sales  
 
• Ability to re-project plans to adjust for changing plan assumptions  
 
• Easy entry and control of all census data and convenient handling of an 

infinite number of lives with the Census Manager database, allowing sorts 
on any census item and the option to zoom into individual census records  

 
• Power to tailor plans to clients' complex needs by combining all types of 

benefits and insurance products in a single, composite illustration  
 
• Flexibility to make as many changes as needed in any design variable in 

any illustration, including tax brackets, cost of money, salary increase 
rates, term rider amounts, split dollar premium bonuses, etc.  

 
• Easy navigation among appropriate sales concepts, advice on accounting 

issues and case design, and guidance on the impact of each selection with 
hypertext help and the package design wizard  

 
• Handles and integrates all types of executive benefits sales, including 

SERPs, True Deferral Plans, 162 Bonus Plans, Split Dollar Plans, Death 
Benefit Only Plans, and all types of Group Carve-Out Plans  

 
• Provides highly flexible Group Carve-Out modeling  
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• Solves for appropriate amounts of insurance financing, taking into account 
MEC status projections, multiple-target cash values, rollout solves, 
maximum withdrawal solves, year-by-year benefit tracking and various 
combinations of solves  

 
• Demonstrates emerging shortfalls in benefit funding, and solves for 

additional insurance  
 
• Saves historical values of a case so re-projections can utilize the 

accumulated historical data  
 
• Accounts for benefits and insurance amounts according to FAS 87, FAS 

107, FAS 109, and APB 12  
 
• Provides TAMRA analysis, MEC compliance with sophisticated MEC 

avoidance options, and in-force re-projections, including illustration of 
multiple in-force policies for the same individual  

 
• Anticipates financial impact of a program through the use of partial 

mortality  
 
• Runs universal, variable, traditional, and all types of interest-sensitive 

products concurrently on one system  
 
• Controls and tests new policy outlay options  
 
• Assesses and projects material changes, flags MEC status, and adjusts 

policy taxation  
 
• Controls and updates flexible term riders; tests for re-projected amounts 

and limits  
 
• Handles all forms of loans, partial surrenders, and changes in dividend 

options  
 
• Individual Executive Reports - A wide range of reports on any individual 

on a given run  
 
• Composite Reports - An equally wide range of composite reports on a 

given run  
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• Assumption Page and Report - Lists all assumptions made in the 

illustration Census and Master File. 
 

• Benefit Report - Provides selected census information and a summary of 
insurance and benefit information for each plan participant and calculates 
group totals when applicable  

 
• New Business Reports - Automatically uploads census data and policy 

information to the home office, feeding new business and policy 
administration systems  

 
• Output to Access and Excel - Sends output directly to database tables and 

worksheets for further processing and formatting without having to parse 
and reformat ASCII text files 
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Appendix B: AMS Architecture 

There are three sub-systems that constitute the AFS Master System ® (AMS):, the 

Input Engine, the Calculation Engine and the Output Engine.  The Input Engine is 

an ActiveX executable, the Calculation Engine is also an ActiveX executable and 

the Output Engine is a standalone executable.  In addition, Microsoft Access ® is 

used as the data repository.  MS Access ® is used both to manage the user’s data 

and as a communication vehicle between the three engines (see Figure B.0.1).   

ActiveX is part of AMS’s COM (Component Object Model) technology.  Thus by 

creating ActiveX components via VB, COM components are actually created at 

the same time.  The Input Engine performs input data validation (along with other 

functionality such as Import, Export, Menus, /Census Manager) and “prepares” 

data for the Calculation Engine.  The Calculation Engine performs calculations 

(see Figure B.0.1) and dumps the data into an MS Access ® Table.  Through MS 

Windows ® API and a “polling” mechanism the Output Engine is instructed to 

generate reports. User Data is stored in the Master and Census Tables of MS 

Access ®.  

Figure B.2 provides an overview of the interactions between the three entities 

(Input, Calculation and Output). There are two main communication vehicles that 

help the communication between entities; the Status Run Table and the Run 

Form.   
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Status Run Table is created by the Input Engine; it contains a variety of status 

information about the progress of calculation and printing.  When the Calculation 

Engine is done with calculating, a status of “6” is posted to the record(s).  When 

the Output Engine reads (polls) that status of “6”, it performs reporting and finally 

updates the status to “14” when done.  There are many records in the Status Run 

Table in a given session.  Both the Calculation and Output Engines operate 

asynchronously. Run Form is part of the Input Engine.  The Input and Calculation 

Engines communicate via a “callback mechanism”.  The Run Form displays 

messages to the user that are sent from the Calculation and Output Engines.  

When the Calculation Engine sends messages to the Run Form, they are sent via 

the “callbacks”.  However, when the Output Engine sends messages to the Run 

Form, they are done via the Windows API (since the Output Engine is a 

standalone executable). 
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Figure B.0.1: Interactions Among the Input, Calculation, and Output Engines. 
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Figure B.0.2: AFS Master System – Calculation Processing. 
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Appendix C: AMS Regression Testing Utility 

Overview 
 
AFS Quality Control Analysis is the process of monitoring that interactions and 

interdependencies are maintained in proper working order throughout the 

implementation of controlled system changes. Simply put, this analysis verifies 

that changes between versions occur only where expected and do not adversely 

affect other areas of the system. 

AMS provides a feature to help address this process through the Batch Processing 

Utility.  The Batch Processing Utility offers an effective and timesaving method 

to generate a series of file-based calculations for a predetermined set of test cases. 

As part of your Quality Control effort, the Batch Processing Utility will provide 

the necessary information to help analyze the accuracy of the system through a 

representative sampling of control cases that illustrate the system's functionality.  

Figures C.1 and C.2 show how AMS regression tool is invoked via the AMS GUI 

and the regression tool’s GUI respectively. 

The Batch Utility contains the following features: 
 

• Test cases are organized into a matrix.  
 
• Output may be produced for all or some of the cases. 
 
• Output can be sent to ASCII, Excel, Access, or to a Printer.  
 
• Individual test files may be added or deleted. 
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• Groups of test files can be categorized and submitted by category to the 
Batch Processor for calculation.  

 
• The Matrix Report can be printed to document the results produced 

through the Batch processor. 
 
• The Matrix Report includes the category, master file name, census file 

name, CVF file name, file prefix, file description as well as any user 
comments concerning the file output. 

 
Figure C.1: Invoking regresssion testing utility via AMS GUI. 

Figure C.2: AMS regresssion testing utility user interface. 
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Build a Batch Processing Utility Matrix 

Test File Creation: 
 
Create and view each representative master, census and case file in your 
‘working’ test database. 
 
This ‘working’ test database will be the basis for your ‘Batch’ database.  
Ultimately, the ‘Batch’ database will not be used for any testing apart from Batch 
Processing. This strategy will help maintain the integrity of your ‘Batch’ database 
and will also bypass any confusion that may arise when the Batch Utility is used 
to create output for your file comparisons. In addition, as you create your test 
files, be aware of the report columns for these files. It is important to include 
appropriate and illustrative column sets. 
 
File Import: 
 
After each file is reviewed, import the representative master, census or case files 
into your ‘Batch’ database.  
 
Only files that are in the active database may be added to the Batch Processing 
Utility Matrix.  The 'Add' function will not create new master, census or case 
files, but rather include existing files in the matrix.  
 

Add Files to a Batch Processing Utility Matrix:  
 
Click on the Category drop down and type in a category name.  Use the Category 
entry as an identifier for groups of cases. This categorization will become helpful 
if you decide to either include or exclude groups of cases from the batch run. 
From the Master File Drop Down list, select the master file. If applicable, from 
the Census Master File Drop Down list, select the census file.  If the case does not 
have a census, select ‘STARTUP’ from the drop down list. 
 
Enter a five characters prefix for the test case.  This prefix will be used if the test 
case is sent to Access, Excel, or ASCII.  The Batch Processor takes the five 
characters prefix and appends information from the release and version 
information that is contained in the executable.  For example; if the file prefix 
were ‘IL-01’ and the executable number was 33.0.11, the system would produce a 
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file with the following name --- IL-01330.11 It is good practice to verify the 
initial file output.  
 
Note: 
 
An alternative to the method described above involves the ‘Add’ icon.  This 'Add' 
function will not create new master, census or case files, but rather includes 
existing files in the matrix.  
 
Only files that are in the active database may be added to the Batch Processing 
Utility Matrix.  To add files that are not in the current test database, first import 
them into the active database. 
 
The STARTUP census file is assumed as the default census for master files that 
are added. 
 
Use the Category entry as an identifier for groups of cases. This is also helpful in 
excluding groups of cases from a batch run. 
 
A file may be added to the matrix once per category. 
 
Delete Files from a Batch Processing Utility Matrix:    
 

Click the Delete icon.   
 
Using the Record Selector, highlight the file(s) to be deleted.  
 
For multiple file selection, hold down the CTRL key and click on each file that 
you want.  To select a group of files that are next to each other, click on the first 
or last file of the group, and then hold down the SHIFT key while clicking on the 
file at the end of the group that you want to select. 
 
Click OK. 
 
In the Confirm Deletion window, click Yes to delete the cases. 
You may click No to exit the delete option entirely or click Cancel to return to the 
Select one or more box and redefine the files to be deleted. 
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The record(s) corresponding to the deleted file(s) will be deleted from the Batch 
Processing Utility Matrix. 
 
Deleting a file from the matrix does not delete if from the database. 
 
You can add a file that has been deleted from the matrix back into the matrix at 
later time. 
 
 
 
Find Entries in a Batch Processing Utility Matrix: 
 
On the Tools menu, point to Batch Processing Utility. 
 
In the Case Selection box, click the category that you want to find. 
 
Click Find. 
 
The Record Selector will move to the first entry in the matrix that has the 
specified category. 
 

Print a Batch Processing Utility Matrix Report    
 
The Matrix Report includes a detailed list of the cases in the Batch Processing 
Utility Matrix which has been sorted by category.  The report includes any file 
descriptions and comments that have been entered into the grid. 
  
On the Tools menu, point to the Batch Processing Utility. 
On the File menu, click Print or Click on the ‘Printer’ icon.   
The Matrix Report will be printed to the default printer specified in the AFS Print 
Utility Configuration window. 
 
Direct Batch Run Output to Printer or File 
 
On the Tools menu, point to Batch Processing Utility. 
 
In the Output To box: 
 
Click Printer to print the output to the default printer specified in the AFS Print  
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Utility Configuration window 
 
Click Excel File to direct the output to an Excel spreadsheet  
 
Click Access to direct the output to an Access database 
 
Click ASCII Text to direct the output to a text file 
 
If you choose to direct the output to an Excel file or to an ASCII text file, then in 
the Path box, specify the location of the output file.  You may type in the full path 
name or use the Browse feature. 
 
 
Run Batch Output: 
 
Prior to a run, make sure that the Run ‘types’ are set correctly for your cases. 
All cases with run types of 'In-force' and 'Proposal' will be included in the batch 
run.  Cases with run type of 'Excluded' are not included in the run.   
 
To select cases for a Batch Run: 
 
On the Tools menu, point to Batch Processing Utility. 
 
Individually or by category, set the Run Types for the Batch Run. 
 
Direct the Batch Output 
 
Click Submit Run. 
 
Note: 
 
The Status box for each case will reflect where the case is in the run process. 

An 'X' in the status box signifies that the case has not been selected for the run. 

'Run request' signifies the case is currently being processed, while 'Scheduled' 

means that the case has been selected and has not yet been processed. 
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In a batch run, a case with run type of Proposal is run with a normal run (without 

a CVF file), while a case with run type of In-force is run with a CVF file.  This is 

equivalent to the Normal Run (F3) and In-force Run (Shift-F3) options in the Run 

menu in the Master Control Panel. Figure C.3 shows partial AMS regression test 

suite.  The AMS system can also run via command-line executing each of the 

records shown in Figure C.3. 

 

Figure C.3: AMS Regression Test Suite. 
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Appendix D: Mathematical Preliminaries 

The mathematical concept underlying the relational model is the set-theoretic 
relation that is a subset of the Cartesian product of a list of domains. This set-
theoretic relation gives the model its name. Formally a domain is simply a set of 
values. For example the set of integers is a domain. Also the set of character 
strings of length 20 and the real numbers are examples of domains.  
 
The Cartesian product of domains D1, D2, ... Dk, written D1 × D2 × ... × Dk is the 
set of all k-tuples v1, v2, ... vk, such that v1 ∈  D1, v2 ∈  D2, ... vk ∈  Dk.  
For example, with k=2, D1={0,1} and D2={a, b, c} then D1 × D2 is {(0,a), (0,b), 
(0,c), (1,a), (1,b), (1,c)}.  
 
A Relation is any subset of the Cartesian product of one or more domains: R ⊆  
D1 × D2 × ... × Dk.  
 
For example {(0,a), (0,b), (1,a)} is a relation; it is in fact a subset of D1 × D2.  
 
The members of a relation are called tuples.  Each relation of some Cartesian 
product D1 × D2 × ... × Dk is said to have arity k and is therefore a set of k-tuples.  
A relation can be viewed as a table where every tuple is represented by a row and 
every column corresponds to one component of a tuple. Giving names (called 
attributes) to the columns leads to the definition of a relation scheme.  
 
A relation scheme R is a finite set of attributes A1, A2, ... Ak. There is a domain Di, 
for each attribute Ai, 1 ≤ i ≤ k, where the values of the attributes are taken from. 
We often write a relation scheme as R(A1, A2, ... Ak).  
 
A relation scheme is just a kind of template whereas a relation is an instance of a 
relation scheme. The relation consists of tuples (and can therefore be viewed as a 
table); not so the relation scheme.  
 
Operations: Relational Algebra consists of a set of operations on relations: 
 
SELECT (Ω): extracts tuples from a relation that satisfy a given restriction. Let R 
be a table that contains an attribute A. ΩA=a(R) = {t ∈  R &mid; t(A) = a} where t 
denotes a tuple of R and t(A) denotes the value of attribute A of tuple t.  
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PROJECT (∏): extracts specified attributes (columns) from a relation. Let R be a 
relation that contains an attribute X. ∏X(R) = {t(X) &mid; t ∈  R}, where t(X) 
denotes the value of attribute X of tuple t. 
 
PRODUCT (×): builds the Cartesian product of two relations. Let R be a table 
with arity k1 and let S be a table with arity k2. R × S is the set of all k1 + k2-tuples 
whose first k1 components form a tuple in R and whose last k2 components form a 
tuple in S.  
 
UNION (∪ ): builds the set-theoretic union of two tables. Given the tables R and S 
(both must have the same arity), the union R ∪  S is the set of tuples that are in R 
or S or both.  
 
INTERSECT (∩): builds the set-theoretic intersection of two tables. Given the 
tables R and S, R ∩ S is the set of tuples that are in R and in S. We again require 
that R and S have the same arity.  
 
DIFFERENCE (/ or &setmn;): builds the set difference of two tables. Let R and S 
again be two tables with the same arity. R / S is the set of tuples in R but not in S.  
 
 JOIN (∏): connects two tables by their common attributes. Let R be a table with 
the attributes A, B and C and let S be a table with the attributes C, D and E. There 
is one attribute common to both relations, the attribute C. R ∏ S = 
∏R.A,R.B,R.C,S.D,S.E(∏R.C=S.C(R × S)). What are we doing here? We first calculate the 
Cartesian product R × S. Then we select those tuples whose values for the 
common attribute C are equal (∏R.C = S.C). Now we have a table that contains the 
attribute C two times and we correct this by projecting out the duplicate column. 
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Appendix E: List of contemporary coverage and profile tools 

The information on coverage tools includes the results of a comparative feature 
analysis by Paterson Technology [57]. 
 

• C-Cover is a coverage tool made by Bullseye [52]  Platforms: Win32, 
Unix; languages: C/C++.  It is highly customizable and flexible.  Among 
its features are support for multiple threads, processes, users;  support for 
DLLs, shared libraries, device drivers, ActiveX, DirectX, COM, and time-
critical applications; and full support for both C++ and C including 
templates, exception handling, inline functions, namespace. 

 
• TrueCoverage is a coverage tool made by NuMega [56].  Platform: 

Win32; languages: C/C++, Java, VB.  TrueCoverage analyzes and reports 
how much of an application's code was, or was not executed. This analysis 
and reporting can cover an individual testing session or a combination of 
“n” number of testing sessions. TrueCoverage reports this data down to 
the individual line of code and function levels. 

 
• PureCoverage is a coverage tool produced by Rational [60].  Platforms: 

Win32, Unix; languages: C/C++, Java, VB.  It automatically pinpoints 
areas of code that code that have and have not been exercised during 
testing. PureCoverage exposes untested code in the target application, 
including components with or without source code such as third party 
controls or system DLLs. 

 
• TCAT is a coverage tool made by Software Research [61].  Platforms: 

Win32, Unix; languages: C/C++, Java. It features both static source code 
analysis and coverage analysis.  It  can be either GUI or command-line 
driven. 

 
• LiveCoverage is a coverage tool from PatersonTechnology [58].  

Platform: Win32; languages: C/C++, VB.  The tool is capable of 
monitoring multi-threaded and multi-process scenarios, as well as out-of-
process COM servers.  Both interactive and automated modes are 
available. 

 
• Visual FoxPro Coverage Profiler from Microsoft [50] contains both a 

coverage analyzer and a profiler application.  The tool consists of a 
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customizable coverage engine and a multiwindow analysis application.   
The coverage analyzer can be automated to run without user interaction. 

 
• ActiveOptimizer pdProfiler from Hallogram Publishing [55] is a VB 

profiler with remote tracing and code coverage.  It has minimal effect on 
application performance.  It gives a complete execution trace of the 
application run. 

 
• VB-Miner from CAST [53] is a source code analyzer for VB on Win32 

platforms.  Provides graphic representation of elements internal to the 
target module, external elements, and all interactions between these 
elements. 
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Appendix F: List of Common Refactoring Techniques 

The following technique synopses are taken from Fowler [86].  We found these 
useful in our refactoring efforts. 
 

Add Parameter 

• Motivation: Method needs more information from caller. 

• Technique: Add parameter for object that can pass on this 
information. 

 

Change Bidirectional Association to Unidirectional 

• Motivation: Two-way association where one class no 
longer needs features from other 

• Technique: Drop unneeded end of association. 

 

Consolidate Conditional Expression  

• Motivation: Sequence of conditional tests with same result 

• Technique: Combine into single conditional expression and 
extract. 

 

Consolidate Duplicate Conditional Fragments 

• Motivation: Same code fragment in all branches of 
conditional expression 

• Technique: Move it outside of expression. 

 

Convert Procedural Design to Objects 

• Motivation: Code written in procedural style 

• Technique: Turn data records into objects, break up 
behavior, and move the behavior to the objects. 

 

Decompose Conditional 

• Motivation: Complicated conditional statement 
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• Technique: Extract methods from the condition, the then 
part, and the else parts. 

Duplicate Observed Data 

• Motivation: Domain data available only to GUI, domain 
methods need access. 

• Technique: Copy data to domain object.  Create observer to 
synchronize the duplicated data. 

 

Extract Interface 

• Motivation: Multiple clients use same subset of class 
interface, or two classes have partial common 
interface. 

• Technique: Extract the subset into an interface. 

 

Extract Method 

• Motivation: Code fragment can be grouped together. 

• Technique: Turn fragment into method with self-
explanatory name. 

 

Extract Subclass 

• Motivation: Class has features used only in some instances. 

• Technique: Create subclass for that feature subset. 

 

Introduce Explaining Variable 

• Motivation: Complicated expression 

• Technique: Put expression result, or expression parts, in 
temporary variable with self-explanatory name. 
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Parameterize Method 

• Motivation: Several methods do similar things with 
different values inside the method body. 

• Technique: Create one method with parameter for the 
different values. 

 

Remove Assignments to Parameters 

• Motivation: Code assigns to a parameter. 

• Technique: Use temporary variable instead. 

Remove Control Flag 

• Motivation: Variable acts as control flag for series of 
Boolean expressions.  

• Technique: Use break or return instead. 

 

Remove Parameter 

• Motivation: Parameter no longer used by method body 

• Technique: Remove it. 

 

Rename Method 

• Motivation: Method name not indicative of purpose 

• Technique: Rename it. 

 

Replace Array with Object 

• Motivation: Certain array elements mean different things. 

• Technique: Replace array with object with field for each 
element. 
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Replace Parameter with Explicit Methods 

• Motivation: Method runs different code depending on 
values of enumerated parameter. 

• Technique: Create separate method for each parameter 
value. 

 

Replace Parameter with Method 

• Motivation: Object invokes method 1, passes result as 
method 2 parameter.  Receiver can also invoke method 1. 

• Technique: Remove parameter; let receiver invoke method  

 

Split Temporary Variable 

• Motivation: Temporary variable assigned more than once, 
but is not loop variable or collecting temporary 
variable. 

• Technique: Make separate temporary variable for each 
assignment. 
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Appendix G: Evolution Manager Utility 

Figure G.1 shows evolution manager utility list of features:   

• Feature function relationship based upon test case and features, and test 
case and functions (Figure G.2) 

• Feature function relationship in terms of coverage percentage (Figure G.3) 
• Exclusive coverage of a feature within a function (Figure G.4) 
• Threshold T(FI,K,C) (Figure G.5) 
• Variable usage (set or use) by a feature within a function (Figure G.6) 
• Feature implementation in terms of which lines of code and variables 

implement the feature (Figure G.7) 
• Several tracking reports such as feature lists, function lists, features within 

a release etc 
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Main Functions with input parameters, return values and SQL statements 
used: 

 
Purpose: This function is used to retrieve and compile data for feature-function 

relationships. 
Parameters: None 
Return Value: A recordset with the following structure: 

• Feature_ID: Unique identifier for each feature  
• Function_ID: Unique identifier for each function  
• Feature_Name : The name of the feature 
• Function_Name : The name of the function 
• Total_Lines : Total number of lines of function 
• Common_Lines : Comma separated list of lines common to all 

test cases for the current feature - function pair 
• Test_Cases : Comma separated list of test cases for the current 

feature - function pair 
• All_Lines : Comma separated list of all lines in all test cases for 

the current feature - function pair 
• Exclusive_Lines : Comma separated list of exclusive lines in all 

test cases for the current feature - function pair 
• Common_Lines_Count : Number of lines in common lines list 
• All_Lines_Count : Number of lines in ALL lines list 
• Exclusive_Lines_Count : Number of lines in exclusive lines list 
• Common_Coverage : Common_Lines_Count / Total_Lines * 100 
• All_Coverage : All_Lines_Count / Total_Lines * 100 
• Exclusive_Coverage : Exclusive_Lines_Count / Total_Lines * 

100 
 

Expected Initial Status: Any 
Expected Final Status: rstRet contains feature-function information for future information requests. 
SQL Statements: SELECT DISTINCT Test_Cases_TO_Function.Used_Lines, 

Test_Cases_TO_Function.Test_Case_ID, Function_List.Function_ID, 
Feature.Feature_ID, Feature.Feature_Name, Function_List.Function_Name  
FROM Function_List RIGHT JOIN  (Feature RIGHT JOIN 
(Test_Cases_TO_Function LEFT JOIN Test_Case_Feature_Map  
ON Test_Cases_TO_Function.Test_Case_ID = 
Test_Case_Feature_Map.Test_Case_ID)  
ON Feature.Feature_ID = Test_Case_Feature_Map.Feature_ID)  
ON Function_List.Function_ID = Test_Cases_TO_Function.Function_ID; 
 
This statement is used to get the properties of the relation feature - function. It 
can be anywhere from NO-LINES to ALL-LINES relation. The selection 
takes all the test cases related with a feature (Test_Case_Feature_Map), and 
then selects all the functions related with each of the test cases 
(Test_Cases_TO_Function). 
 

 SELECT Function_Name, Feature_Name, Feature_ID, Function_ID, 
Total_Lines FROM Function_List, Feature ORDER BY Feature_Name 
 
This statement is used to get the function-feature pairs and the information 
about them.  The data is used later to make sure all GRID information is 
included. A JOIN is not used between the tables because we want all possible 
function-feature combinations. 
 

Table G.0.1: Implementation details on Evolution Manager Utility. 
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Figure G.1: Evolution manager list of features. 

 

 

Figure G.2: Feature function relationships for ATM example. 
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Figure G.3: Feature function coverage (ATM example). 

Figure G.4: Exclusive coverage by withdrawal feature in ATM function. 
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 Figure G.5: Threshold in ATM example. 

Figure G.6: Variable usage for withdrawal feature in ATM function. 

Figure G.7: Withdrwal FI (feature lines of code and variables). 
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