

iii

Abstract

Because many software systems used for business today are considered legacy

systems, the need for software evolution techniques has never been greater. We

propose a novel evolution methodology for legacy systems that integrates the

concepts of features, regression testing, and Component-Based Software

Engineering (CBSE). Regression test suites are untapped resources that contain

important information about the features of a software system. By exercising each

feature with its associated test cases using code profilers and similar tools, code

can be located and refactored to create components. The unique combination of

Feature Engineering and CBSE makes it possible for a legacy system to be

modernized quickly and affordably. We develop a new framework to evolve

legacy software that maps the features to fine-grained software components

refactored from their feature implementation. In this dissertation, we make the

following contributions: First, a new methodology to evolve legacy code is

developed that improves the maintainability of evolved legacy systems. Second,

the technique describes a clear understanding between features and functionality,

and relationships among features using our feature model. Third, the

methodology provides guidelines to construct feature-based reusable components

using our fine-grained component model. Fourth, we bridge the complexity gap

by identifying feature-based test cases and developing feature-based reusable

components. We show how to reuse existing tools to aid the evolution of legacy

systems rather than re-writing special purpose tools for program slicing and

requirement management. We have validated our approach on the evolution of a

real-world legacy system. By applying this methodology, American Financial

Systems, Inc. (AFS), has successfully restructured its enterprise legacy system

and reduced the costs of future maintenance.

iv

Acknowledgments

Writing a dissertation is a long tedious process. It requires tremendous amount of hard

work, self-discipline, sacrifice and support from others. I have been very fortunate to

have several people in my life that supported me in many ways to help complete this

dissertation. Without following people’s help, I would not have been able to finish this

work:

I am grateful to my advisor Dr. George T. Heineman. It has been serendipitous and

fateful that I have come to know him. His guidance, attention to detail, hard work,

friendly demeanor and ability to motivate has helped me professionally, academically and

personally all these years. I would not have been able to complete this dissertation

without his help, support and valuable input.

I am thankful to AFS for supporting my academic career. AFS has provided partial

funding and a fertile ground to apply research ideas. There are several co-workers at

AFS who have provided valuable input and support in my research endeavors. In

particular, I am grateful to Dan Johnson, Lisa Amaya Price, Mary Mullay and German

Rincon.

I am thankful to my father Dr. M. C. Mehta for being a role model. I wish I were a

medical Dr. like him. I am proud to be his son and I appreciate his support, love and

interest in my academic career. I am also grateful to my parents (both, Indian and

American) and friends for believing in me and constantly providing support. Special

thanks goes to Alex Rose and Suzie Gath for their help and support.

Lastly but certainly not the least, I am so very grateful to my wife Heather. No words can

express my gratitude towards her. She has been a pillar of support for all these years.

Her belief, support, help, patience, sacrifice and love have allowed me to pursue the PhD

program. Heather – “you are the wind beneath my wings”. I dedicate this dissertation to

you and our kids Rani and Amber!

v

To Heather, Rani and Amber

vi

Table of Content

1 Introduction... 1

1.1 Managing Legacy Systems.. 2
1.1.1 Status quo.. 2
1.1.2 Rewrite legacy system .. 2
1.1.3 Replace legacy system .. 3
1.1.4 Incrementally evolve legacy system ... 3
1.1.5 Summary... 4

1.2 Problem description.. 4

1.3 Motivation ... 7
1.3.1 Reduce future maintenance costs.. 7
1.3.2 Reuse components in multiple product lines 8
1.3.3 Reduce the complexity gap... 8

1.4 Our Approach ... 9

1.5 Scope ... 12
1.5.1 Locating system features... 13
1.5.2 Evolving features into components:.. 14

1.6 Assumptions .. 14

1.7 Scope and Contributions... 15

1.8 Road Map.. 17

2 Methodology Overview... 19

2.1 Methodology steps .. 19
2.1.1 Evolution reasons.. 20
2.1.2 Identify features with problems .. 20
2.1.3 Map test cases to features ... 20
2.1.4 Map features to functions.. 21
2.1.5 Identify feature implementation and CORE 21
2.1.6 Refactor and create components ... 22
2.1.7 Plug the component in the legacy system..................................... 22
2.1.8 Verify results... 22
2.1.9 Reuse... 23
2.1.10 Measure results ... 23

2.2 Factors affecting methodology ... 23
2.2.1 Each legacy system is unique ... 23

vii

2.2.2 Role of the Internet ... 25
2.2.3 Regression Testing Process... 27
2.2.4 Source Code Profilers and Coverage Tools 32
2.2.5 Refactoring Techniques .. 33

2.3 Summary ... 34

3 Related Work .. 36

3.1 Introduction... 36

3.2 Locating Program Features.. 37
3.2.1 Motivation... 37
3.2.2 Models... 39
3.2.3 Technique.. 43
3.2.4 Applicability ... 44
3.2.5 Reasons for a new feature model .. 46

3.3 Software Evolution.. 50
3.3.1 Incremental Evolution... 50
3.3.2 Legacy System Evolution ... 55
3.3.3 Architectural Reconstruction .. 56

3.4 Feature Engineering ... 58
3.4.1 Features ... 58
3.4.2 Feature Interaction .. 60
3.4.3 Requirements Analysis ... 60
3.4.4 Function Points ... 61

3.5 Component Based Software Engineering (CBSE) 63
3.5.1 Evolution... 63
3.5.2 Wrapping... 64
3.5.3 COTS .. 64
3.5.4 Reuse... 65
3.5.5 Features ... 66
3.5.6 Fine-Grained Components .. 67
3.5.7 Product Line.. 68
3.5.8 Previous experience with components and evolution................... 69

3.6 Program Understanding ... 71

3.7 Regression Testing .. 72

3.8 Separation of Concerns and Aspect Oriented Programming 73

3.9 Summary ... 75

viii

4 Models .. 76

4.1 Feature Model... 76
4.1.1 Feature Definition ... 78
4.1.2 Feature Implementation (FI) ... 79

4.1.2.1 Case I: Non-interacting (unrelated) features............................. 81
4.1.2.2 Case II: Partially interacting features.. 81
4.1.2.3 Case III: Fully interacting features ... 82
4.1.2.4 Case IV: Interacting sub-features.. 82
4.1.2.5 Case V: Interacting super-features.. 83
4.1.2.6 Summary... 84
4.1.2.7 Regression Testing.. 84

4.1.3 Features and Functions ... 89
4.1.3.1 Step 1: Map test case and features .. 91
4.1.3.2 Step 2: Run test case and profiler ... 91
4.1.3.3 Step 3: Develop heuristics .. 94

Sub-features .. 95
Feature implementation (FI)... 95
CORE .. 95
Base-line Architecture .. 95
Neighboring features (K) .. 96
Evolution threshold (T) ... 97

4.1.4 Feature interactions... 100
4.1.4.1 Shared Stateless Function (SS) ... 102
4.1.4.2 Shared State-Full Function (SSF) ... 102
4.1.4.3 Dependent Data (DD) ... 102
4.1.4.4 Dependent Function (DF) ... 102

4.1.5 Feature Relationships.. 103
4.1.5.1 Categories ... 103
4.1.5.2 Determining Feature Relationships... 106
4.1.5.3 Altered and Required via DD ... 108
4.1.5.4 Altered and Required via SSF... 108
4.1.5.5 Shared via DD and SSF .. 109
4.1.5.6 Compete via DD ... 109
4.1.5.7 Conflict via SSF.. 110
4.1.5.8 Summary... 110

4.2 Fine-Grained Component Model.. 112
4.2.1 Property Set... 113
4.2.2 Property Get .. 114
4.2.3 Feature Implementation (FI) ... 114
4.2.4 Stateless Function(s) ... 114

ix

4.2.5 Internal State ... 115
4.2.6 External Dependencies.. 115

4.3 Evolving Feature Implementation into Fine-Grained Components ... 116
4.3.1 Evolution Considerations.. 121

4.3.1.1 Scenario I - Understanding T(K,FI,C) 121
4.3.1.2 Scenario II - Evolving Unrelated Features.............................. 121
4.3.1.3 Scenario III - Evolving Related Features................................ 122

4.3.1.3.1 Primitive Features ... 123
4.3.1.3.2 Determining Feature Relationships................................... 127

4.4 Budget Analysis Model ... 133

4.5 Formal Model ... 134
4.5.1 Data Model.. 136
4.5.2 Preliminary Definition .. 145
4.5.3 Feature Interaction .. 146
4.5.4 Classifying Functions.. 147
4.5.5 Identifying Interactions within a Functions 148
4.5.6 CORE.. 148
4.5.7 Threshold .. 148
4.5.8 Summary... 149

4.6 Evolution Manager Utility .. 151

4.7 Summary ... 154

5 A Simple Example... 155

6 Case Study ... 167

6.1 Evolution reasons.. 169
6.1.1 AMS occasionally freezes during Input Processing 169
6.1.2 The cost of adding a new item into Input Processing is high..... 170
6.1.3 The lack of code reuse between the desktop and web version of
AMS 171

6.2 Identify feature(s) with problems .. 171

6.3 Map test cases to features ... 172

6.4 Map features to functions.. 173

6.5 Identify FI and CORE ... 175
6.5.1 Variable Analysis.. 180

6.6 Refactor and create components... 183
6.6.1 Identify problems .. 183

x

6.6.1.1 Circular dependencies ... 183
6.6.1.2 Readiness of dependent items... 183
6.6.1.3 Assignments and Suppression intermingled with Error
Processing... 184

6.6.2 Refactor... 185
6.6.2.1 Removed UNREADY array ... 185
6.6.2.2 Replaced recursive calls with sequential calls 185
6.6.2.3 Separated Assignments, Suppression, and Error Processing code
 186

6.6.3 Create Fine-Grained Components... 186
6.6.3.1 Relationships... 187

Dependent ... 187
Required.. 188
Altered... 188

6.6.3.2 Interfaces... 189
6.6.3.3 Properties .. 190
6.6.3.4 Feature Implementation .. 191
6.6.3.5 Stateless Functions.. 192
6.6.3.6 Maintaining State .. 193
6.6.3.7 External Dependencies.. 193

6.7 Plug the fine-grained components into AMS 198

6.8 Verify results ... 201

6.9 Reuse ... 201

6.10 Measure Results .. 202
6.10.1 Solving the system-locking problem .. 202
6.10.2 Cost of adding a new item .. 203
6.10.3 Reusability between AMS and the web version of AMS 204

6.11 Summary ... 206

7 Conclusions.. 208

7.1 Lessons Learned.. 208
7.1.1 Methodology Applicability... 208
7.1.2 Sensitivity relative to Average Coverage (C) 210
7.1.3 Selecting Evolvable Features.. 213
7.1.4 Sorting Feature Function Matrix... 217
7.1.5 Reusable Components and Web Applications............................ 219
7.1.6 Issues In Reusing Components Across Product Lines................ 221

7.1.6.1 Configuration Management .. 221
7.1.6.2 Deployment... 222

xi

7.1.6.3 Training... 225
7.1.7 Global Variables ... 226

7.1.7.1 Explicit Definiton.. 226
7.1.7.2 Reducing Global Variables ... 227

7.1.8 Availability of Regression Tests... 227
7.1.9 Automating Tasks ... 228
7.1.10 Dead code and coverage ... 228
7.1.11 Core and Reducing Dependence on Variables: 229
7.1.12 Performance .. 229
7.1.13 Component Interface Issues.. 230
7.1.14 Measuring Success.. 230

7.2 Contributions .. 231
7.2.1 Incremental Evolution Methodology .. 231
7.2.2 Feature Model ... 232
7.2.3 Fine-grained Component Model ... 232
7.2.4 Complexity Gap .. 233

7.3 Future Work .. 233
7.3.1 Metrics .. 234
7.3.2 Threshold .. 234
7.3.3 Multi-threaded features ... 235
7.3.4 Extending the evolution manager utility..................................... 235
7.3.5 Object-Oriented Systems .. 236
7.3.6 Systems whose source code is unavailable................................. 237
7.3.7 Real-time Systems .. 237
7.3.8 Tools to manage feature evolution.. 238
7.3.9 Tools to automate selection of test cases 238
7.3.10 Extending the budget analysis model ... 239
7.3.11 Extending the component and formal model 239
7.3.12 Using our methodology with tools other than code profilers 240
7.3.13 Application of our methodology for program understanding 240

7.4 Summary ... 240

List of Acronyms ... 243

Glossary ... 245

References .. 256

Appendices .. 256
Appendix A: AFS Master System... 256
Appendix B: AMS Architecture ... 259

xii

Appendix C: AMS Regression Testing Utility ... 263
Appendix D: Mathematical Preliminaries .. 270
Appendix E: List of contemporary coverage and profile tools................... 272
Appendix F: List of Common Refactoring Techniques.............................. 274
Appendix G: Evolution Manager Utility .. 278

Bibliography .. 283

xiii

List of Figures
Figure 1.1: An Incremental Evolution Methodology is Needed............................. 5
Figure 1.2: The Big Picture... 12
Figure 2.1: Evolution Methodology. .. 19
Figure 2.2: Component Sharing by Two Product Lines. 27
Figure 2.3: Running the System in Batch Mode... 32
Figure 4.1: Elements of Feature Model. ... 77
Figure 4.2: Definition of a Feature. .. 78
Figure 4.3: Two Features in Function (fx) but Not Interacting. 81
Figure 4.4: Two Features Partially Interacting in Function (fx)............................ 82
Figure 4.5: Two Features Fully-Interacting in Function (fx). 82
Figure 4.6: Interacting Sub-Feature in Function (fx). ... 83
Figure 4.7: Interacting Super-Features in Function (fx).. 83
Figure 4.8: Pseudo-code to Determine Clusters. .. 89
Figure 4.9: A Feature may be Invoked by Several Test Cases. 90
Figure 4.10: Pseudo-code for Heuristics... 99
Figure 4.11: Classification of Feature Interaction. ... 100
Figure 4.12: Feature Interaction via Functions and Data.................................... 101
Figure 4.13: Feature Relationships. .. 105
Figure 4.14: Fine-Grained Component Model.. 112
Figure 4.15: Evolving FI into a Fine-Grained Component................................. 116
Figure 4.16: Example of Unrelated Features in One Function. 122
Figure 4.17: Function Implementing Code for Only One Feature. 123
Figure 4.18: Implementation of Dependent Data. .. 124
Figure 4.19: Feature Updates Global Variable. .. 124
Figure 4.20: Single Function Implementing Several Features............................ 126
Figure 4.21: Example of Required Relationship... 128
Figure 4.22: Example of Required Relationship... 129
Figure 4.23: Example of Alteration Relationship. .. 130
Figure 4.24: Example of Shared Relationship. ... 131
Figure 4.25: Examples of Conflict Relationships. .. 132
Figure 4.26: Example of Compete Relationships. .. 132
Figure 4.27: Data Model Used as Basis for Formalism. 140
Figure 4.28: Evolution Manager Utility.. 153
Figure 5.1: ATM Function Implemented in VB. .. 157
Figure 5.2: Summary of Features in ATM Function. ... 158
Figure 5.3: CORE Library Functions.. 161
Figure 5.4: Modified ATM using Deposit Component. 162
Figure 5.5: Deposit Component.. 163
Figure 5.6: ATM Function, Withdrawal and Show Balance Components. 164
Figure 5.7: Integrating Withdrawal and Deposit into Transfer Component. 166

xiv

Figure 6.1: Fragment for Validating Values for Item 9. 170
 Figure 6.2: Item 9 (Pre-evolution). .. 182
Figure 6.3: Dependent Items... 184
Figure 6.4: Dependent Feature Example. ... 188
Figure 6.5: Required Feature Example. .. 188
Figure 6.6: Altered Feature Example.. 189
Figure 6.7: Pseudo-code for Assignments Feature Implementation.................... 194
Figure 6.8: Pseudo-code for Error Processing Feature Implementation............ 195
Figure 6.9: Pseudo-code for Suppression Feature Implementation. 196
Figure 6.10: Pseudo-code for Error Processing Core Implementation. 197
Figure 6.11: Pseudo-code for Suppression Core Implementation. 198
Figure 6.12: Integrating Assignments, Error Processing and Suppression

Components. ... 200
Figure 6.13: Resuing Fine-Grained Components in AFS Product Lines............ 202
 Figure 6.14: Input Processing Component Infrastructure. 206
Figure 7.1: Coverage Sensitivity in AMS... 212
Figure 7.2: Reusable Components Between Desktop and Internet Application. 220
Figure B.0.1: Interactions Among the Input, Calculation, and Output Engines. 261
Figure B.0.2: AFS Master System – Calculation Processing. 262

xv

List of Tables
Table 2.1: Properties of Evolvable Features. .. 22
Table 2.2: Legacy System Characteristics where the Methodology is Applied. .. 25
Table 2.3: Regression Testing Process. .. 29
Table 2.4: Properties of Regression Testing Procedures. 31
Table 2.5: Properties of Code Coverage and Profiler Tools. 33
Table 2.6: Methodology Showing Input and Output of Each Step....................... 35
Table 3.1: Comparison of Closely Related Work. ... 49
Table 4.1: Feature/Functions Relationships.. 79
Table 4.2:Test Cases vs. Items.. 88
Table 4.3: Test-case and Items before RankSort. ... 88
Table 4.4: Clustering after RankSort. ... 89
Table 4.5:Test Case and Feature Mapping. .. 91
Table 4.6: Test Case and Function Relationship by Profiler. 93
Table 4.7: Test Case, Features, Function and LOC. ... 93
Table 4.8: UNION of all LOC for a Feature Implementation. 94
Table 4.9: Percentage LOC (Feature-Function Relationship). 94
Table 4.10: Evolution Threshold (T). ... 98
Table 4.11: Altered and Required Relationship via DD. 108
Table 4.12: Altered and required relationship via SSF....................................... 109
Table 4.13: Shared Relationship via DD. ... 109
Table 4.14: Shared Relationship via SSF. .. 109
Table 4.15: Compete Relationship via DD. .. 110
Table 4.16: Conflict Relationship via SSF. .. 110
Table 4.17: Budget Analysis... 134
Table 4.18: Data Model - System Information. .. 141
Table 4.19: Data Model - Feature/Function Part. ... 142
Table 4.20: Data Model - Feature Interaction Part. .. 143
Table 4.21: Data Model - Component Definition... 144
Table 5.1: ATM Operatioal Requirements. .. 155
Table 5.2: Summary of Test Cases and Features in ATM Sub-system. 159
Table 5.3: Profiler Results on ATM Test Cases. .. 160
Table 6.1: An Example Assignments, Suppression and Error Processing. 172
Table 6.2: An Example of Valid Input Combination for Testing Item 9............ 172
Table 6.3: AMS Input Processing Test Case and Feature Mapping (selective

listing). .. 172
Table 6.4: Profiler Listing of Features and Test Cases (selective listing). 173
Table 6.5: Feature and Function Mapping (selective listing). 174
Table 6.6: Partial AMS Feature Function Matrix. .. 177
Table 6.7: Base-Line Architecture of the Three AMS Engines.......................... 178
Table 6.8: List of CORE Functions Extracted from AMS.................................. 179

xvi

Table 6.9: Input Processing Variable Analysis. ... 181
Table 6.10: Example of Circular Dependencies ... 183
Table 6.11: Variable Analysis (Pre/Post evolution partial listing). 186
Table 6.12: Component Interfaces. ... 190
Table 6.13: Component Properties. .. 191
Table 6.14: Steps for Adding a New Item. ... 203
Table 6.15: Budget analysis for input processing project................................... 205
Table 7.1: Coverage Sensitivity Data in AMS.. 212
Table 7.2: Evolable Features... 215
Table 7.3: Heuristics (partial listing). .. 217
 Table 7.4: Unsorted Feature Function Matrix... 218
Table 7.5: Sorted Feature-Function Matrix. ... 219
Table 7.6: EBJ and COM Comparison. .. 225
Table 7.7: Global variable naming convention... 227
Table G.0.1: Implementation details on Evolution Manager Utility. 279

1

1 Introduction

Increasingly, organizations view their software assets as investments that grow in

value rather than liabilities whose value depreciates over time [97]. Organizations

are under tremendous pressure to evolve their existing systems to better respond

to marketplace need and stay competitive. This constant pressure to evolve is

driven by escalating expectations of the customer for new enterprise standards,

new products and system features, and improved performance. Evolution is also

necessary to cope with endless new software releases.

We borrow the definition of legacy system from [114]:

Any software system that is currently in operation is considered legacy

system.

Legacy systems provide the support for businesses around the world. They

manage vast volumes of data while supporting millions of transactions each day.

The National Science Foundation [54] estimates that legacy systems capture and

manage 75% of the world’s data and that by virtue of their size and importance to

business, they consume at least 80% of available information technology

resources. To effectively evolve legacy systems in such a rapidly changing

environment organizations must answer two questions [31]: What are the critical

success factors of system evolution? How can a system be evolved without

adversely affecting operations and revenue?

2

When legacy systems are small and involve only a fraction of an organization’s

activities, it is possible to consider redesigning and replacing a system or

subsystem that no longer satisfies that organization’s needs. However, legacy

systems that have grown to be the main source of revenue are often substantial

investments whose replacement is more difficult, if not impossible. These legacy

systems provide a competitive advantage to many organizations but are expensive

to maintain. Thus, these organizations face a dilemma - they cannot afford lose

their competitive advantage nor can they ignore the high maintenance cost. At the

same time, organizations are under pressure to reduce costs. This dissertation is

motivated by these pressing business concerns.

1.1 Managing Legacy Systems

There are many strategies for managing legacy systems [98][64][83]:

1.1.1 Status quo

Do nothing. This is the easiest option and, in reality, most often chosen by an

organization. However, this option is not attractive to many organizations because

it will not improve their competitive edge in the future and leaves legacy systems

maintenance costs high.

1.1.2 Rewrite legacy system

Sometimes an organization will embrace new development and deployment

technology to rewrite the legacy system. Apart from using the legacy system to

be retired as a “design guide”, this option does not leverage off the organization’s

3

substantial investment in the prior system. Redevelopment of large “mission

critical” legacy systems takes a long time, costs a lot of money, and carries a high

degree of risk of failure. In most cases, it is very difficult to build a strong

business case for the redevelopment of a legacy system.

1.1.3 Replace legacy system

Replacing a legacy system with another existing solution can be a practical option

when the proposed solution provides a good functional fit to the business

requirements of an organization. Rarely is this the case, however. Most often, the

existing solution requires considerable enhancement and customization in order

for it to meet business needs. This customization is generally difficult and

expensive. Alternatively, at the loss of competitive advantage, the organization

can change its business practices to fit the proposed solution, which may be a

risky proposition. Replacement does not leverage off the current investment in

the legacy system(s) to be retired. Finally, adopting a proposed solution can be a

lengthy and expensive exercise.

1.1.4 Incrementally evolve legacy system

Incremental evolution of legacy systems focuses on problems that are most visible

to end-users. Rather than replacing or rewriting the entire legacy system,

incremental evolution directly “fixes” the end-users’ problems “one at a time”.

This option leverages off current investment because it provides a smooth

transition path to new technology and infrastructure in a timely and cost-effective

4

manner. Importantly, incremental evolution supports the needs of organizations

to continually provide stability and accuracy. Incremental evolution is the only

choice left to many organizations that wish to continue to receive revenue from

software systems and stay competitive. However, many incremental evolution

initiatives do not sufficiently incorporate the end-user’s point of reference (or

features) [111]; such lack of consideration can leave end-users unsatisfied and

frustrated because they may not see the benefit of these initiatives.

1.1.5 Summary

Analyzing all options at hand to manage legacy systems it is clear that

incremental evolution is the best because it considers perspectives of the end-

user’s and all stakeholders point of view. Thus, we strongly believe that

incrementally evolving legacy system is the most efficient option for managing

legacy system.

1.2 Problem description

Researchers [116][82][47][3][4] have identified the two domains around which

the entire field of software engineering revolves: the problem domain and the

solution domain. End-users interact with the system by inputting their information

in the form of input files that the system uses or through a direct user interface.

Because these users are directly concerned with system features, their perspective

is always in the problem domain. Developers (and the software process team) are

primarily concerned with creating and maintaining software development life

5

cycle artifacts such as components; their perspective is therefore firmly rooted in

the solution domain.

Figure 1.1: An Incremental Evolution Methodology is Needed.

A major source of difficulty in developing, delivering, and evolving successful

software is the complexity gap that exists between the problem and the solution

domains (as termed by Raccoon [82]) as shown in Figure 1.1. To view evolution

from a single domain upsets the delicate balance between the two domains.

Evolution focused solely on the problem domain may lead to changes that

degrade the structure of the original code; similarly, evolution based solely on

technical merits could create changes unacceptable to end-users. External

evolutionary pressures drive the implementation of new enhancements and

functionality by causing developers to focus on implementing the business logic

that is directly visible to end-users, such as a menu item that spell checks a

Problem

Solution
Domain

Internal Evolutionary
Pressures

External Evolutionary
Pressures

Complexity Gap

6

document in a word processing application. While responding to external

pressures, developers often bypass standard processes to meet project deadlines;

this results in inferior coding, such as adding a global variable when one is not

required. Internal evolutionary pressures force the developers to either restructure

or refactor their code so the future enhancement or maintenance becomes

manageable and cost-effective. During such evolution, the code is refactored, and

protocols and standards are reestablished. Furthermore, the end-users should

always benefit from the evolution initiatives.

The repeated modification of a legacy system has a cumulative effect that

increases system complexity because of lack of documentation and implicit

communication between the system’s components. Eventually, existing

information systems become too fragile to modify and too important to discard;

organizations must consider modernizing these legacy systems so that they remain

viable. Incremental evolution offers an approach to transforming a legacy system

into one that can evolve in a disciplined manner. To be successful, evolution

requires insights from software, managerial, and economic perspectives [114].

Thus, businesses must sponsor and endorse evolution initiatives. Such

endorsement becomes easier if the end-user’s perspective is kept as primary focus

of the evolution initiative. Yet, another way to secure organization’s endorsement

is to show that the evolution initiative can result in reusable software assets. In

cases where businesses have multiple product lines, it is desirable to leverage

7

evolution initiatives from one legacy system to another [87]. One such way of

leveraging is sharing reusable software assets such as components.

Simply stated, the problem is that businesses are looking for an incremental

evolution methodology that can reduce future maintenance cost, bridge the

complexity gap and leverage evolution results across product lines, without

disrupting their operations.

1.3 Motivation

We are motivated by the following three objectives:

• Evolve system features into components to reduce future maintenance

costs.

• Reuse evolved components in multiple product lines.

• Reduce the complexity gap between user expectations and software

functionality.

1.3.1 Reduce future maintenance costs

One objective of this research is to reduce the maintenance cost of features that

are hard to maintain. We identify these system features with the help of end-

users, locate their implementation within the source code and then evolve them

into reusable units. In one of the first dissertations on Feature Engineering,

Turner [25] mentioned the possibility of using Feature Engineering for software

evolution, but he was focused on using features for configuration management.

To the best of our knowledge, there has been no attempt to use Feature

8

Engineering as the basis for identifying parts of legacy software for evolution

purposes. We have developed techniques for identifying evolvable features with

high maintenance costs to be refactored into reusable software components. In

the accompanying case study discussed in detail in Chapter 6 for this dissertation,

we show that our methodology reduces maintenance costs.

1.3.2 Reuse components in multiple product lines

The Internet makes it possible for an organization to attract potential customers

from the global marketplace by breaking down communication barriers. The

Internet also increases the need to evolve and refactor legacy systems to new

hardware and software development platforms. Evolving a legacy software

system to become web-enabled is a challenging task for numerous reasons,

including poor documentation and high maintenance costs. One challenge for

evolving a legacy system into a web-enabled system is the need to provide

continuous availability of the system (and thus its revenue-generating income)

during the transition. Often organizations must support the two product lines

(desktop and the Internet) longer than expected, so there is a need for an evolution

methodology that reduces the maintenance cost during the migration period.

1.3.3 Reduce the complexity gap

End-users interact with the system and are directly concerned with its

functionality; their perspective is always in the problem domain. Developers (and

the rest of the software process team) are concerned with the creation and

9

maintenance of software development life cycle artifacts such as components and

executables; their perspective is rooted in the solution domain. One of the effects

of this gap is that changes are often required to features after software is released

thereby increasing maintenance costs. We are motivated to bridge the complexity

gap by mapping problem-domain features and the solution-domain functions in

the source code.

1.4 Our Approach

Various domain analysis and requirements engineering techniques push the end-

user’s perspective into the solution domain by either working toward design

[77][22][110] or through scenario and use cases [47][85][36]. These solutions

help the developers understand how a system is to be used, but they do not

address the solution domain concerns of software evolution, configuration

management, testing, and documentation. In addition, these techniques certainly

do not address the important issue of reducing the complexity gap [82].

Similarly, many software evolution techniques exist [97][111][64][105][80], but

none considered Feature Engineering as a software evolution driver. This is a

serious oversight because Feature Engineering is a promising discipline that can

help to reduce the complexity gap between user expectations and software

functionality. The techniques of software evolution and reengineering either

focus on entire system rewrites [117] or using reverse reengineering for

comprehension purposes [113] rather than incrementally evolving the legacy

10

system. There are other techniques [111][114][64][105][80], but they all explore

the solution domain only. There has been no attempt made to use Feature

Engineering as the basis for identifying parts of legacy software for evolution

purposes. Current software evolution and reengineering techniques continue to

work in the solution domain. The important problem of linking the problem

domain and the solution domain for the purposes of evolution remains unsolved.

Component-Based Software Engineering (CBSE) offers promising techniques to

solve the problem of component construction [2], but CBSE has not yet been

connected to the features that are present in a system; creating this connection

explicitly is one of the contributions of this dissertation. This connection, in

essence, is a mapping problem. The functionality provided by CBSE solutions

must be mapped to the features available to the end-user.

We have developed a novel evolution methodology that integrates the concepts of

features, regression tests, and CBSE. Regression test suites are untapped

resources that contain important information about the features for a software

system. CBSE is one of the best techniques for engineering and reengineering

modular systems. Combining these two disciplines makes it possible for a legacy

system to be modernized quickly and affordably. By combining Feature

Engineering and CBSE to the problem of software evolution, this dissertation will

answer the following questions:

1. How can features be used to create components in a legacy system?

11

2. How can the complexity gap be reduced using features and components?

3. What is a feature and how is a feature related to functions within the

source code?

Our methodology answers these questions based on two important goals: (G1)

Identify system features that have already exhibited disproportionate maintenance

costs and are likely to change. (G2) Extract fine-grained components from these

features within the legacy system to share between the original desktop platform

and a planned web application.

12

Figure 1.2: The Big Picture.

1.5 Scope

The overall scope of this dissertation is summarized in Figure 1.2. Our work

revolves around four areas of software engineering, namely requirements

engineering, software maintenance, CBSE, and general software engineering

practice. Specifically, we use ideas from Feature Engineering, Testing, and

CBSE to develop an evolution methodology. Our evolution methodology consists

of a feature model and component model and is supported by various software

Evolving Legacy Systems Features into Fine-Grained Components

Requirements
Engineering

CBSE
Software

Maintenance
Software

Engineering

Features,
Functionality

and
Complexity

Gap

Software
Evolution

Component
Construction

Testing,
Validation,

Application of
existing tools

and other

Feature Model
Evolution

Model

Fine-Grained
Component

Model

Formal Model,
Regression

Testing,
Profiler and

Budget
Analysis

Following areas of Software Engineering are directly involved

Within Software Engineering following area are explored

Following contributions are made in the respective areas

Evolution Methodology

13

engineering practices such code coverage tools. Furthermore, we provide a solid

foundation for these models using relational calculus and first order logic. The

methodology proposed in this dissertation does not reduce the complexity of a

legacy system, but it will help to clarify that complexity by explicitly defining

component interfaces.

To further increase productivity and demonstrate the immediate usability of the

techniques outlined above, we use several tools that are already available in the

marketplace, in particular, the NuMega ® True Time Code Profiler [56].

While several disciplines of software engineering are related to this dissertation,

we are primarily concerned with developing a software evolution methodology

using Feature Engineering and CBSE. This dissertation will not address all the

issues associated with requirements engineering, CBSE, Testing or Configuration

Management. The two main areas of software engineering that are directly

addressed through this methodology are:

1.5.1 Locating system features

Our methodology enables developers to trace functions within the source code

that implement particular feature(s) by running regression test cases. We

incorporate ideas from Feature Engineering, regression test cases and dynamic

slicing. This feature-function mapping can be used for program understanding by

identifying and associating structures that were previously ambiguous. However,

program understanding is outside the scope of our work. Likewise, our

14

dissertation is not about issues in testing and dynamic slicing, we simply use

regression test cases to locate feature-based program slices.

1.5.2 Evolving features into components:

Once feature implementations are located, we evolve them into components using

refactoring and CBSE techniques. We use Fowler’s [86] definition of refactoring

code: “a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable behavior.”

Our methodology is novel because we leverage off existing artifacts such as test

cases and code profiling utilities. While we do not address the issue of

architectural evolution, our methodology does produce better-structured

component-based code that can be evolved/maintained easily. Likewise,

refactoring alone cannot be used to evolve a system. While we make use of some

common refactoring techniques, this dissertation is not simply about refactoring

code. The methodology further promotes scheduled evolution in a systematic

way by clarifying the structure of program evolution, and its results are

measurable and can be validated.

1.6 Assumptions

Our methodology has three basic assumptions. First, we assume that the source

code for the legacy system to be evolved is available and that it was developed

using a modern programming language such as Visual Basic, C++, Java, or

Fortran. The reason for this assumption is that we use code-profiling tools for

15

tracing the source that implements a particular feature. If these code-profiling

tools are unavailable, they could be developed, but this is outside the scope of this

dissertation. Second, we assume that the legacy system has regression test suites.

These regression test suites are untapped resources from the evolution point of

view because they can be used to identify the features most important to the end-

users. Third, we assume that some domain knowledge and expertise is available,

although this is not a binding constraint. The purpose of this dissertation is not to

explore domain analysis; however, as a part of related work, several domain

analysis techniques are discussed.

This methodology is not intended for all legacy systems, neither will all software

evolution initiatives benefit from it. However, legacy systems that have kept up

with their compiler upgrades and maintained over a decade or more will greatly

benefit. We will discuss the characteristics of legacy systems and software

processes that can make use of this methodology and benefit in Chapter 2.

1.7 Scope and Contributions

The overall scope of this dissertation is sketched in Figure 1.2 and the

methodology is summarized in Figure 2.1. The major contribution of this

dissertation is the evolution methodology that integrates Feature Engineering,

software evolution, and CBSE. To validate our methodology, we examine the

evolution of a real-world legacy system, American Financial Systems (AFS)

Master System. Information about the legacy system’s features is obtained

16

through interviews with testers, project managers and the end-users of the system.

Researchers use refactoring to isolate the code associated with extracted features

to create components. These components are then inserted back into the legacy

system to continue functioning to verify the results of this technique. Our results

show an innovative use of existing regression test suites and give extra incentives

for designing and maintaining such test suites. In addition to verifying the

integrity of the system, regression test suites can be used to guide refactoring

efforts during software evolution to create reusable software assets (components)

within the enterprise.

In this dissertation, we make the following contributions: First, a new

methodology to evolve legacy code is developed that improves the maintainability

by reducing maintenance costs of evolved legacy systems. Second, the technique

describes a clear understanding between features and functionality, and

relationships among features using our feature model. Understanding the

interactions and relationships among features can bridge the complexity gap and

aid in evolving feature(s) with high maintenance costs. Third, the methodology

provides guidelines to construct feature-based reusable components using our

fine-grained component model. These fine-grained components can then be

reused across multiple product lines. Fourth, we bridge the complexity gap by

identifying feature-based test cases and developing feature-based reusable

17

components. Bridging this gap is important as it aligns user expectations and

software functionality.

1.8 Road Map

The rest of the dissertation is organized as follows:

Chapter 1 outlines the problem and the scope of this work. Chapter 2 provides an

overview of our methodology and discusses how the Internet plays an important

role for reusing components. We also discuss the role of refactoring and

regression test cases with respect to evolution. Chapter 3 presents a detailed

analysis of related work. We compare our work to other evolution methodologies

and techniques to locate program features. Chapter 4 provides the details on our

feature model, fine-grained component model, budget analysis model, and the

formal model. We also discuss Feature Engineering and its role in the evolution

of legacy systems. Feature Engineering addresses the problem of the complexity

gap in an explicit way [26]. Our feature model captures the relationships between

features and functionality. The chapter also addresses traceability and how it can

be used for program understanding within the context of Feature Engineering.

Our fine-grained component model shows how features can be extracted to create

fine-grained components. The budget analysis model provides elements that are

required to show cost benefit of our evolution methodology. Chapter 5 provides

an intuitive example to show the power of our methodology using a feature-based

evolution manager utility that assists in identifying a fine-grained component’s

18

properties and methods. Chapter 6 contains a case study of product evolution in a

software firm using our evolution methodology. Chapter 7 provides conclusions,

lessons learned, and future work.

19

2 Methodology Overview

In this chapter, we present an overview of our methodology and discuss the

factors that influenced its criteria, our methodology will be described in detail in

Chapter 4. Here we briefly outline basic concepts and models that our

methodology uses.

Figure 2.1: Evolution Methodology.

2.1 Methodology steps

Any evolution task must first examine the reasons that trigger evolution of a

legacy system; these reasons have been well documented in [97][114] and from

personal experience as a software engineer for over 10 years, the author agrees

that these reasons are sound. We start with recommended changes to end-users

20

features. The reasons for evolving the system are then mapped to their associated

features within the system. The system features are then identified and the code

that implements each feature is identified. The code is then extracted to create a

fine-grained component. The fine-grained component is inserted back into the

legacy system to validate results in three ways. First, we match the output of the

regression tests after the insertion with original output. Second, we measure the

cost of maintaining the feature after evolution and compare that to the prior costs

(hopefully showing a cost-benefit). Third, the newly created components are

reused in other product lines. The outline of our methodology is shown in Figure

2.1. Specifically, there are ten steps to our methodology.

2.1.1 Evolution reasons

The end-users work with testers and project managers to report the problems they

are facing with a particular feature or a group of features. If features are common

among product lines then they are likely be candidates for reuse.

2.1.2 Identify features with problems

The testers, project managers, and developers work together to identify the

underlying feature that is the source of the maintenance problem(s).

2.1.3 Map test cases to features

Testers and end-users work together to select test cases from the regression test

suite for the feature(s) with problem(s). This step also compares the execution

21

trace of the selected test case with the entire regression test suite to ensure that we

do not miss any critical test cases that may be needed.

2.1.4 Map features to functions

Selected test cases are executed using code profilers to locate source code that

implements features. Features are well known for being “cross-cutting” through

software [87]. Cross-cutting means that a function can implement many features

and these features share the same code/data. A feature may be implemented in

many functions and share code/data with other features. The close relationship

between features and functions means that features will interact with each other.

This interaction is also defined as the feature-interaction problem in the literature

[87][116]. Our feature model helps to identify where features are located within

the legacy system, how features are related to other features, and how they

interact with each other.

2.1.5 Identify feature implementation and CORE

We analyze the data from the code profiler and the execution traces of the

regression test cases. Using heuristics, we then decide if creating components

will in fact benefit other product lines as well as the existing legacy system.

While a detailed description of the feature model and heuristics is provided in

Section 4.1.5, we briefly present in Table 2.1 the properties a feature should

posses to be a candidate for evolution.

22

Properties Description
Visible to end-user End-user must be able to execute the test case himself and see

the problems
Testable Testers must have test cases in the regression test suite to test

the feature
Exhibit recurring problems Fixing feature inadvertently affects other features
High maintenance cost Due to recurring problems and unwanted side affects the

feature’s maintenance cost is higher
Feature exists in other product
line

Reuse can be leveraged

Table 2.1: Properties of Evolvable Features.

2.1.6 Refactor and create components

Once the location of a feature within the code is identified and we decide to

extract the feature implementation into a component, we must refactor the code to

create component. Our fine-grained component model provides guidelines to

extract feature specific code/data. This code/data is then encapsulated in a fine-

grained component. A detailed description of the feature model is provided in

Section 4.1.5.

2.1.7 Plug the component in the legacy system

The developers integrate the components created in Step 2.1.6 in the target legacy

system. Many common integration techniques can be used for this purpose.

2.1.8 Verify results

The testers ensure that the stability of the newly integrated system is maintained

and that no side effects are introduced. The performance of the system is also

compared. This step usually results in running a full regression test.

23

2.1.9 Reuse

This is similar to Step 2.1.7 except that integration is now performed in other

product lines of the organization that share the feature that we have evolved.

2.1.10 Measure results

The project manager works with testers and the developers to use Budget Analysis

to report results to end-users and management. We show how maintenance costs

of the feature is reduced and how these feature-based components are reused

across product lines. The budget analysis presents the cost and the benefit of

applying the methodology.

2.2 Factors affecting methodology

Although our methodology is programming language-independent and does not

depend on specific code profiler tools, several factors affect our methodology.

These factors are as follows: uniqueness of legacy system, role of the Internet in

evolution, regression testing process, code coverage tools and refactoring

techniques.

2.2.1 Each legacy system is unique

In theory, our methodology is generic and can be applied to any legacy that meets

the list of assumptions discussed in Section 1.6; however we have only applied

this methodology to one large industrial sized application. As we describe this

legacy system throughout this dissertation, we hope to convince the reader that

our approach remains applicable to numerous other systems.

24

We now provide a brief description of the legacy system we used as our case

study. The legacy system used is called The Master System (AMS) a product of

American Financial Systems, Inc. (AFS). AFS, a small (60 employees) software

firm, develops software for the Corporate Owned Life Insurance (COLI) market.

AFS originally developed AMS in Microsoft DOS BASIC to integrate life

insurance and executive benefits using mathematical and financial modeling.

AFS evolved AMS from its original DOS version to the more modern Microsoft

Windows® operating system. Currently, AMS uses Microsoft Visual Basic 6.0

®. Appendix E contains an overview of the AMS architecture. There are about

500,000 lines of code in AMS. AMS is divided into the three engines described

in Appendix E. The evolution methodology was applied to the Input Engine with

a team of one project manager, one tester, and one developer.

There are several benefits in using the above-mentioned legacy system for this

case study. First, there is historical data available on the system’s maintenance

costs, in terms of upgrades and evolution. This data will be used to validate

results from the applied methodology. Second, although the tools and

methodology used are language-independent, our use of a VB case study means

that other legacy systems in VB can immediately benefit from our results.

According to Microsoft, there are about 4 million Visual Basic developers

worldwide as of December 2001 [69]. Third, AFS has a mature software process

where the project manager, tester, and developer work together to manage a

25

software release. Table 2.2 summarizes the characteristics of the legacy code to

which the methodology was applied.

Characteristics Description
1. Age of target legacy system 14 years
2. Lines of code 500,700
3. Lines of code implementing feature being
evolved

12,000

4. Size of the project team One developer, one tester, and one project
manager

5. Size of production team 30
6. Programming language Microsoft Visual Basic™ 6.0
7. Compile time 1 hour
8. Runtime environment Windows desktop OS (9.x to 2000)
9. Version control software Microsoft Source Safe™ 6.0
10. Product lines AMS, AMS-WEB, DTS, DTS-WEB, SDEV
11. Software Process Mature, with ability to provide past maintenance

cost and track current costs per release per
individual

12. Past evolution record of target legacy system System was kept up with compiler and OS
upgrades. It is a desktop system used by over
5000 end-users and many features are added per
year

13. Industry Financial Services
14. Regression Test Time 3 days

Table 2.2: Legacy System Characteristics where the Methodology is Applied.

2.2.2 Role of the Internet

There is an increasing need to evolve and refactor legacy systems to new

hardware and software development paradigms [115][104][37] such as the

Internet because the Internet makes it possible for an organization to attract

potential customers from the global marketplace by breaking down

communication barriers. Agarwal and Mishra identified that web-enabling a

legacy system requires a combination of approaches, such as redevelopment,

wrapping, evolution, reuse, component-off-the-shelf (COTS) integration, and

26

configuration management [104]. One challenge for evolving a legacy system to

become web-enabled is the need to provide continuous availability of the system

(and thus its revenue-generating income) during the transition. For example, it is

quite natural to continue to support a desktop version of application while its web

counterpart is first launched. Thus, it is inevitable that organizations will

maintain two product lines for an indefinite time-period because the time-period

to migrate may be longer than expected. It is difficult for these organizations to

justify the cost for maintaining more than one platform to the end-users. Thus,

these organizations need an evolution methodology to help them reduce the

maintenance cost during the migration period. One way to reduce this cost is to

share components between the two versions of the application during and post

migration (as shown in

Figure 2.2). Reusing components between the two platforms raises several

interesting issues such as configuration management and deployment as shown in

Figure 2.2. A detailed analysis of which components can be reused along with

platform issues is provided in Chapter 6.

27

Figure 2.2: Component Sharing by Two Product Lines.

2.2.3 Regression Testing Process

Our methodology depends on regression test cases and a robust regression testing

process. Regression testing has been extensively studied by researchers

[46][127][48][41][40] from a theoretical point of view. Their theories show how

to minimize and prioritize test cases to reduce the time of execution of the

regression test suite. Researchers have also analyzed the source code and

identified the test cases that should be part of the regression test suite in order to

maximize the code coverage. Although test case minimization, prioritization and

automatic-creation is important, we found that organizations primarily use

regression test cases to measure the stability of a legacy system from one version

to another. To the best of our knowledge there has been no investigation on

Components
Legacy
System

(Desktop)

Web
Based
System

C1

C6
C5

C3C2

C7
C4

Legacy
System

(Evolved-
Desktop
Platform)

Evolution
Methodology

Reuse

Reuse

Configuration Management Issues
Change Management Issues
Deployment Issues

Components
Legacy
System

(Desktop)

Web
Based
System

C1

C6
C5

C3C2

C7
C4

Legacy
System

(Evolved-
Desktop
Platform)

Evolution
Methodology

Reuse

Reuse

Configuration Management Issues
Change Management Issues
Deployment Issues

28

applying regression testing in industrial environments specifically for

evolutionary reasons. Some of the important issues mentioned in [11]:

• Regression testing is used extensively. In fact, other than functional

testing (or black-box testing) and software inspection, regression testing is

the most commonly used software testing technique.

• The frequent and extensive use of regression testing has led companies to

develop in-house regression testing tools to automate the process.

• In some companies, all existing test cases are rerun in regression testing.

In other words, minimizing test cases for rerun has not been a critical issue

for these companies.

• New test cases are added to the regression test suite to reflect defects

previously identified by end-users.

• End-users often apply their own regression test cases when they receive a

new version of a system to ensure proper functioning of their favored

features. This is a particularly important observation for our research

because we analyze the regression test cases to help identify the

implementation of system features in the code.

Different companies use different processes to develop and maintain software,

such as the waterfall model and the spiral model. However, many companies [14]

along with AFS follow certain steps in regression testing as shown in Table 2.3:

29

Normal

Description

1. Modification request An issue is written when a defect is found in the system
2. Source code changes The defect fix may require source code change
3. Test case selection The fix is confirmed by use of test case(s)
4. Execution of test cases Test cases are included in the regression run and are executed
5. Examine test results Results from regression are analyzed
6. Failure identification Test cases which fail are identified
7. Fault migration A further fix is required by the developer

Table 2.3: Regression Testing Process.

• Modification request: When a defect is found by an end-user and verified

by the organization, a modification request is created.

• Source code changes: The required software artifacts (requirement

documentation, design specifications and source code) are changed to

reflect the modification request.

• Test case selection: The modifications made to the software must be tested

using test cases. Testers and Engineers work together to develop test cases

to exercise the modified functionality. The selection of test cases is often

a manual, analytical, iterative, and a time-consuming process. The goal in

this step is to obtain the right test cases rather than minimizing the number

of test cases.

• Execution of test cases: Test cases are scheduled to run. Since the number

of test-case are often large, this step is usually automated in the form of

batch mode operation that involves little or no user interaction.

30

• Examine the test results: The results from one version of the software are

compared to a previous version to ensure that the changes included in a

given version do not disturb the stability of the software in previous

versions. In the case of new functionality, the results must be manually

verified.

• Failure identification and fault mitigation: If the source code is suspected

to be faulty, the developer examines and fixes the source code that caused

the test case(s) to fail. In case of failure of the new functionality, this step

often demands that the requirement and design specifications be reviewed

and possibly modified.

Table 2.4 summarizes the requirements of a regression testing process. Figure 2.3

shows how the system is run in a batch mode. Essentially, the steps are as

following:

• The list of test cases to be executed are stored in a batch script file

• The system is invoked via its batch interface

• The test cases are executed and system reads test cases information from a

predefined data source

• The system processes some initialization functions such as connection to

the database, paint screens and set global variables

31

• The test cases execute the features that they represent and store the output

to an external ASCII text file. This output can be compared to the prior

version’s execution to measure stability

• The system shuts down and executes cleanup tasks such as resetting the

global variables and closing the database connections

Properties Description
Availability of regression test suite Regression test suite is used to measure stability of

the system from one version to another. We assume
that regression test suites are available.

Ability to identify feature-specific test
cases

Usually testers or project managers have this
information.

Command-line execution of legacy system Executing the legacy system with command-line
options allows the system to execute the test cases
that belong to the regression test suite the system in
a batch mode thereby saving time.

Ability to output results in an ASCII text
file

Using command-line option to execute the output of
the system should be stored in an ASCII text file.

Ability to compare text files from one
version to another

The output from one version can be compared to
another to identify any unexpected changes.

Table 2.4: Properties of Regression Testing Procedures.

Running the system in a batch mode is a sign of a mature system because the

system must be programmed to accept test case data in a command line interface.

However, this interface is an efficient way to test the system and we recommend

that a legacy system have such functionality. Many times the test cases may not

be readily available in database or a file but are either manually inputted or an

automated system may not be in place. Our methodology can still be applied in

the absence of the batch interface or an automated testing system in place by

manually entering the input data and executing the system one test case at a time.

32

Figure 2.3: Running the System in Batch Mode.

As we can see, legacy systems undergo a fair amount of testing and they have a

rich set of regression test suites and testing in place. While the nature and details

of regression testing will vary from system to system, and organization to

organization, our methodology is independent of the actual details. The sole

dependence is on the availability of test suites. If meta-data about the test suites is

available, our methodology will be more powerful and precise. Appendix C

describes the AMS regression-testing tool and its batch capability in detail.

2.2.4 Source Code Profilers and Coverage Tools

Code coverage analysis is the process of finding areas of a program not exercised

by a set of test cases, creating additional test cases to increase coverage, and

determining a quantitative measure of code coverage. A code coverage analyzer

Batch interface

Batch file listing test cases to
execute

Execute test case

System initialization

Execute feature implementation

System shutdown

Read test case
inputs

Write ASCII text
output

Batch interface

Batch file listing test cases to
execute

Execute test case

System initialization

Execute feature implementation

System shutdown

Read test case
inputs

Write ASCII text
output

33

automates this process. A profiler application provides information about which

lines actually run, how many times a line is run, duration, and variable reference-

use analysis. Coverage and profiling enable a developer to identify problem areas

in an application, especially dead code and performance bottlenecks. Table 2.5

provides a list of features in currently available commercial profiler and coverage

tools; most contemporary tools are able to provide the data needed for our

methodology. The methodology can easily be tailored to use any code profiling

tool that provides the required information in Table 2.5.

Properties Description
Coverage percentage Several commercial products provide this data

when the tool is ran with input data. It
represents the percentage of lines covered
within a given function.

Line numbers covered Line numbers are important because our
methodology uses them in identifying which
lines are covered.

Call sequence of function A stack dump that the tool provides
Number of lines per
function

Total number of lines per function

Reference-use of variables This list allow us to see the location of local
and global variables being changed

Table 2.5: Properties of Code Coverage and Profiler Tools.

2.2.5 Refactoring Techniques

Refactoring is a disciplined process of changing a software system in such a way

as to improve the internal structure of the code while leaving the external

behavior unmodified. Fowler states, refactoring is essentially “improving the

design of the code after it has been written.” [86]. Fowler recommends

34

refactoring at three points in the coding process: when adding functionality; when

fixing a bug; and when evolving. While refactoring techniques vary from project

to project and depend on programming languages, we strongly agree with

Fowler’s last recommendation. We found that refactoring code into components

in our methodology allows the developers to provide meaning to the data

structures and functions that have lost their meaning over time. We provide a list

of common refactoring techniques in Appendix F that we used in our case study

when applying the methodology. Whichever refactoring techniques are

applicable, the end result using our methodology is the same, namely, the creation

of a fine-grained component.

2.3 Summary

Our methodology can be summarized in one sentence; by exercising each feature

with its associated test cases using code profilers and similar tools, feature

implementations can be located and refactored to create reusable fine-grained

components. In this chapter, we outlined the ten-step methodology that will be

discussed in detail in Chapter 4. We discussed factors that affect our

methodology and hopefully convinced readers of the general applicability of the

methodology to numerous legacy systems. A summary of each step and their

input and output is outlined in Table 2.6. In Chapter 3, we discuss other research

initiatives that are closely related to our work to show the novelty of our

approach.

35

Input

Output

Sequential

methodology steps
Requirement Responsibility Deliverables Responsibility

1. Evolution reasons
and problem report

Detailed textual
description

End-user, tester
and project
manager

List of product lines
where the feature is
used

Tester, project
manager and
developer

2. Identify feature(s)
with problems

Textual
description and
list of product
lines.

Tester and project
manager

Map problem to
feature(s).

Tester and project
manager

3. Map feature(s) and
test case(s)

Map problems
to feature(s)

Tester and end-
user

Select test cases from
regression suite for
the feature. Analyze
and verify test cases.
Regression test suite
cluster compared
with selected test
cases cluster. Add
missing test cases to
selected list

Tester

4. Map features to
functions

Selected test
cases, code
coverage tool
and legacy
system

Developer Feature-function
cluster, feature-
variable cluster and
CORE functions
report

Developer

5. Identify feature
implementation and
CORE using Feature
Model

Feature-
function,
feature-variable
cluster and
CORE
functions report

Developers, tester,
end-users and
project manager

Impact analysis,
evolvable feature,
and refactoring
decision

Developer

6. Refactor and create
components using the
fine-grained
component model

Feature
implementation
, legacy system
and CORE

Developer Fine-grained
components and
CORE library

Developer

7. Plug the component
in the legacy system

Fine-grained
components
and CORE
library

Developer Integrated legacy
system

Developer

8. Verify results by
running regression

Integrated
legacy system

Developer Regression testing
results. Report
problem fix.

Tester

9. Reuse fine-grained
components in other
product lines

Fine-grained
components,
usage guide and
other product
lines

Developers Run regression after
integration on all
integrated product
lines

Tester

10. Measure results in
terms of cost and
report fix to end-users

Past and current
feature
maintenance
cost, cost to
apply the
methodology

Project manager Budget analysis
report showing the
result of applying the
methodology

Project manager

Table 2.6: Methodology Showing Input and Output of Each Step.

36

3 Related Work

3.1 Introduction

To date, we have found no work that incorporates features, CBSE, and regression

test cases to evolve a legacy system. The novel combination of Feature

Engineering and CBSE presented by this dissertation greatly benefits software

evolution by bridging the complexity gap between the problem domain and the

solution domain.

There are many areas of software engineering that are related to our research:

Software Evolution, Architectural Reconstruction, Feature Engineering,

Product Lines, Requirements Analysis, CBSE, Program Understanding,

Regression Testing, Separation of Concerns and AOP. We feel that work in the

area of locating system features has most directly affected our research. In

Section 3.2, we analyze and document the shortcomings of existing techniques in

the literature for locating program features. After carefully reviewing all the

existing techniques for locating program features, we found that there was a need

for feature model and fine-grained component model for software evolution.

These models will be discussed in Chapter 4. Sections 3.3 through 3.8 present a

broader perspective on the work from areas related to our research activities.

37

3.2 Locating Program Features

There are known techniques [18][6][92][99] to locate program features using

execution slices, however they are predominantly used for system debugging

rather than evolution. As far as identifying program features, there are four

researchers whose work is directly related to ours. Wilde and Scully (WS) [99]

pioneered the use of execution trace to locate the implementation of features;

Wong et. al. (W) [125], Reps et. al. (R) [121] and Deprez and Lakhotia (DL) [71]

developed techniques that operate on execution traces to collect information about

features. In this section, we compare and contrast their work relative to ours. We

will compare the motivation, models, techniques and applicability of each of their

work. Table 3.1 summarizes our findings.

3.2.1 Motivation

(WS) developed their technique to locate program features for the maintainers of

the private branch telephone exchange (PBX) switch. This switch had several

hundred features that users could use such as ‘speed calling’ or ‘call waiting’.

Maintainers of the PBX often needed to locate the code that implemented one of

these features. Their motivation is best described in one phrase, software

reconnaissance, which implies “preliminary survey of enemy terrain” where the

software program is considered as an enemy whose secrets must be extracted.

The general idea of software reconnaissance is to aid developers in program

understanding and to debug and enhance program features. Software

38

reconnaissance can also be used to recover some requirements traceability

information from old code.

(W) developed a technique to identify the feature implementation for program

understanding, debugging, and testing. Their study reported how to apply an

execution slice-based technique to a reliability and performance evaluator to

identify the code that is unique to a feature, or is common to a group of features.

Supported by χSuds tools [1], the program features in the source code are tracked

down to files, functions and lines of code. Their study suggests that the technique

provides software developers and maintainers with a good starting point for quick

program understanding during debugging and testing.

(R) described techniques to help with testing and debugging, using information

obtained from path profiling. They instrumented a program to collect the path

information for an execution run. With such an instrumented program, each

execution of the program generates a path spectrum. Their technique compares

path spectra from different runs of the program to identify paths in the program

along which control diverges in the two runs. By choosing input datasets to hold

all factors constant but one, the divergence can be attributed to this factor. The

point of divergence itself may not be the cause of the underlying problem, but it

provides a starting place for a developer to begin his/her exploration. (R) is also

motivated by program understanding and debugging, specifically in analyzing

year 2000 (Y2K) problems.

39

Lastly, (DL) were successful in mapping program features to code using input

sets. They extended (WS)’s idea of software reconnaissance after (WS) reported

that, “The most time consuming step, and the one most difficult to automate, is the

preparation and running of test cases”. (DL) present a formalism to automate

mapping from program features to code by partitioning input-sets into invoking

and non-invoking sets. Although their motivation is largely theoretical, (DL)

believe that applying their theory would be used for program understanding.

Our methodology complements and extends the work of the four researchers

mentioned above. We are motivated by the three factors described in Section 1.3.

We know the researchers have had different motivations for locating features

implemented in the source code. Due to these different motivations and the

varying techniques to locate the features, they defined the research elements

differently.

3.2.2 Models

The research elements that concern us most are features, functionality, test case

and components.

(WS) interchangeably used feature, functionalities and functional requirements

for the end-user features. They define a feature to be anything that is testable. (W)

defined a feature as an abstract description of a functionality given in a

specification. (R) has no formal definition of a feature. (DL) definitions are

formally based on the grammar of a program; they parse the input sets of a

40

program and define features based on language syntax. While both (W) and (WS)

consider the end-user’s perspective, neither provides any insight on evolution or

considers the solution domain’s point of view (POV). (DL) is not practical

because it requires formal automata to represent features, which most maintainers

and programmers performing evolution do not have available; (DL) also avoids

discussing the solution domain’s POV. Our approach (see Chapter 4) defines

features in a comprehensive manner by considering both the problem and the

solution domain.

Our definition for feature is rooted in the problem domain by focusing on the

requirements but shows how a feature can be used in software evolution. For

example, a system might support a feature that performs complex calculations in

batch mode without user interaction. To an end-user, POV this feature is a time

saver because input can be stored in a file or a database to be used at a later time.

At the same time, testers might employ this feature to enable regression testing

between two versions of the system during maintenance; developers might design

a specific set of modules to process user input without user interaction to analyze

code coverage.

(WS) reported that considering a subroutine (i.e., function) is not enough to

address the feature interaction problem. They found that a finer level of

granularity is needed. They solved this issue by using arc of program flow graphs

as components. According to their work, it is easy to produce the necessary

41

execution data using any test coverage tool that produces branch of decision

coverage. It is important to note that global data is not mentioned in (WS), but

legacy systems have many global variables and usually the global data is shared

between two or more features. Our feature model addresses the issue of shared

global data.

(W) was primarily interested in calculating how close one feature is to the

program component rather than another feature. (W) presented three metrics to

calculate relationships between feature and component namely; disparity between

a feature and a component, the concentration of a feature in a program component

and finally dedication of a program component to a feature. (W) defined a

component to be the source file where the feature was implemented. Because

these metrics are only an approximation, as they do not address the feature

interaction problem directly, they simply use set theory and statistics principles to

calculate the intersecting set between the interacting features.

(R) follows the approach of (WS) using program graphs to solve the feature

interaction problem. Using path coverage from different input data sets they were

able to identify code associated with a given feature. They numbered the paths

with a unique source node and sink node. Every cycle contained one back edge,

which can be identified using depth-first search. Since their motivation was only

to solve the year 2000 problem not much attention was paid to the shared global

data or shared code. Additionally, their approach has not been applied in

42

identifying features other than the year 2000 problem. Their approach leaves the

burden of relating features and program to the programmer.

(DL) identified the feature interaction problem and labeled it as an imprecision

due to feature coupling. Their work identified the code that is executed by

invoking input sets vs. excluding sets; by calculating the difference between the

two sets they determined the execution traces. They attempted to solve the

feature interaction problem by selecting large input sets. They suggested that the

best way to minimize imprecision is to execute a program with large input sets

that invoke different combinations of features. Using such an approach, one

would hope that the complete implementation of each feature has been covered by

some of the input sets. While theoretically it is possible to minimize the

imprecision, this solution will be problematic in cases when two or more test

cases invoke the same set of features.

Our solution (see Section 4.1.4) to feature interaction is rigorous and intuitive.

We believe that it overcomes the shortcomings of the four researchers. Unlike

their approaches, our approach addresses the issue of global data discussed

earlier. In addition, our work is independent of the type of input sets selected.

We also explore the feature-feature relationships in far more detail than the other

researchers. Our feature model identifies functions that implement more than one

feature but instrumentation does not show any differences between the execution

paths.

43

3.2.3 Technique

Generally, all four researchers developed techniques to identify program features

using the following generic steps:

1. Identify or build input sets that invoke the feature.

2. Identify or build input sets that do not invoke the feature.

3. Execute the instrumented program with each input sets to create its

execution trace.

4. Classify each execution trace in the invoking category if its input sets

invoke the feature or in the non-invoking category if it does not.

5. Apply a method that operates on execution traces to map the feature to the

code.

However, when we look beyond these generic steps to the specifics of the

researchers’ techniques, we see differences. Although there are some similarities

between (WS) and our approach, such as the concept of CCOMPS and IICOMPS,

these similarities remain at different level of granularities. Our model addresses

these sets at a much finer level of detail by considering local and global variables

(and functions) that may be shared between two or more features. (R) does not

assign code to a feature but rather identifies the points of divergence between

several execution traces and the programmer is responsible for determining the

relationship between feature implementation and a feature from this divergent

point. (W) identifies program features in C and C++ programs by running a small,

44

carefully selected set of tests. While (W) provides metrics to measure a feature’s

relationship to the code, there is no explicit discussion of relationships among

features. Furthermore, (W) metrics show severe shortcomings when two or more

features may have the same slice for different test cases.

3.2.4 Applicability

(WS)’s work has been realized in a tool called TraceGraph. Two case studies on

large-scale systems, written in ‘C’, have been reported in [78]. TraceGraph

provides a visual display of the program's trace that allows changes in execution

to be distinguished. It is important to note the limitations that TraceGraph shares

with Software Reconnaissance. First, it may only be used to locate features that

the program’s user can control. Most programs contain a significant amount of

common code that is always executed on every non-trivial test. While a

maintainer may need to locate some specific part of this common code, such as

the symbol table handler in a compiler, neither TraceGraph nor Software

Reconnaissance can help. Second, as for any dynamic analysis technique, the

results depend to some extent on the test cases used. If a feature is sometimes

handled one way and sometimes another, neither technique will find the full

extent of the feature unless the maintainer supplies input that cover both cases. On

the other hand, both techniques will identify unwanted code components if the

“with” tests accidentally include functionality that is absent in the “without”

cases. Finally, both techniques only provide starting points for the exploration of

45

code. The maintainer still needs to do the hard work of studying each identified

component and understanding how it fits into the rest of the target system.

(W)’s work has been realized in a tool suite called χSuds [1]. The tools were

developed in the Telcordia Applied Research laboratories to analyze the dynamic

behavior of software and to allow the user to visualize program data through

graphical user interface. The tasks of determining code coverage, finding a

minimized test set, debugging, identifying what part of the software implements a

specific feature, profiling program performance, and finding static program

relationships are made available to the developer by the various tools. The tool

suite focuses on the testing and maintenance of C and C++ systems. xVue is the

software maintenance tool in χSuds tool suite. To determine where a feature is

implemented in a program, one would run a small, carefully selected, set of tests;

some that involve the feature and others that do not. Such tests are classified into

three categories: invoking tests, excluding tests and don't_know tests. xVue

analyzes traces of program execution to find program components that were

executed in the invoking tests but not in the excluding tests. The χSuds tool suite

is commercially available and has been tested on large C and C++ programs.

However, it faces similar shortcomings as TraceGraph.

(R)’s work has been realized in a tool called DynaDiff [121]. DynaDiff is not a

commercial tool and has been built at the University of Wisconsin. DynaDiff

works on programs that run under Solaris on Sun SPARC stations. It is a

46

software visualization tool like TraceGraph and xVue. DynaDiff itself is

language independent as long as the compiler (of the target program being

analyzed) can create symbolic debug information. DynaDiff has been tested on

small programs (as prototype case studies.)

(DL)’s work is theoretical in nature and there are no tools available that realize it

as of yet. Their technique itself is an independent programming language but

developers must have advanced knowledge of BNF grammar to develop a toolset

to support their technique.

Although we are working on developing tools, we have applied our methodology

in an industrial strength application, namely AMS (see section 2.2.1). We

focused on evolving the Input Processing (12 KLOC) functionality of AMS. Input

Processing validates and prepares data from user inputs so AMS can perform

complex calculations to generate various reports. After applying our

methodology, AFS is using evolved components in two of their product lines

namely, AMS and the web version of AMS. Our methodology works with any

programming language as long as there are code profilers (or similar) tools

available for that language.

3.2.5 Reasons for a new feature model

The approaches of these four researchers have several shortcomings. In

particular, there are six issues:

47

How to select input cases: All four rely on the developers to generate the input

cases and then attempts to generate execution traces for all input sets. In industrial

strength applications, the size of the input set makes such data collection

impossible. Since regression test cases reflect the end-user feature, they are

already focused so it is not necessary to collect execution traces on all inputs or to

divide the input sets into invoking or non-invoking category. Thus, we suggest

that regression test cases are the best choice for the input cases.

How to capture relationships between features: We present several feature

relationships (among features) that can exist within a function that can implement

more than one feature. These relationships are important because; they not only

can be used for traceability purposes but can also lay groundwork for future

evolution. Our heuristics allow developers to quickly determine whether a feature

is evolvable or not.

How to classify functions called from a feature implementation: We classify

whether these functions are Stateless (SS), Stateful (SSF), or Dependant (DF) in

nature. This is more than just stack dump or calling sequence because by knowing

the types of the functions, one could implement the component’s interfaces and its

private/public methods.

How to classify core software: If all related test cases execute SS functions then

it is likely that those functions belong to the core. WS makes no distinction

between the states. We decided to treat the core as a shared reusable library only

48

when the functions are SS while the four researchers focused on calculating the

set differences and manipulating anomalies (because core gets executed with

every execution).

How to manage shared variables: Since large industrial legacy applications are

notorious for having global variables, it is important that the technique to identify

feature addresses what to do when two or more features share a single global

variable. Our model also integrates the local variables that are shared among

features.

How to discover feature interactions when code coverage has no apparent

differences: While all four researchers identify the feature implementation, it is

not clear what happens when a single function implements more than one feature

and execution traces do not reveal any differences (i.e., the coverage is exactly the

same for all features in a function). Our approach can help developers understand

how a feature is related to another feature in such a circumstance.

Although most of these works derive results from execution traces left by the

execution of a program with input sets, none use the methodology we propose.

Based upon our analysis of the locating program features techniques, there was a

distinct need for a more detailed model and definition for features. While all

related models are more-or-less equivalent in expressive power, our work was

motivated by the need to evolve legacy systems which made it infeasible to

simply use many of these existing models.

49

Table 3.1: Comparison of Closely Related Work.

Approaches

Factors

Wilde and Scully

Wong et al.

Reps at al.

Deprez and

Lakhotia

Our Methodology

Motivation

Program
Understanding

Program
Understanding and
Debugging

Year 2000
Solution

Program
Understanding and
Testing

Evolution,
Bridging the
Complexity Gap
and Software
Reuse

Key Elements and their
Definitions

Features are
defined to be
entities that must
be testable.
Subroutines are
defined to be lines
of code as
components as
opposed to FI.

Feature is same as
functionality
represented in
specification.
Source files,
Subroutines and
lines of code as
components as
opposed to FI.

Feature and
Component
definitions are left
to the developer.
No definition
presented.

Feature is defined to
be the language used
in feature syntax. The
program components
are defined to be
statements, and
procedure as opposed
to FI. Execution
Traces are defined.

Features, FI and
components are
defined explicitly
with end-use
perspectives in
mind. Core,
Execution Traces
are also defined.

Technique

Input sets
developed by
maintainers are
used to identify
program features
using
instrumentation
and tracing tools

Difference
between execution
traces (via input
sets) that invoke a
feature and do not
is calculated.

Input sets are
executed to
generate program
graph and path
spectrum is
analyzed. Input
sets are varied
incrementally.

Features are mapped
to input cases. Input
set is classified into
invoking and
excluding sets.
Finally execution
traces of all input sets
are collected so set
differences can be
calculated.

Regression tests
used by testers and
end-users that
represent features
are run in
conjunction with
code profiler to
identify feature
implementation for
evolution purpose.

Formalism

Set theory based

Statistical and Set
Theory based.

Graph theory
based

BNF grammar and
Formal Automata
based

Relational Model
and First Order
Logic based

Applicability

Used in two large-
scale C programs
for research
purposes but only
as prototype.
Commercial
application yet to
be seen. Appears
to be scalable.

Used in a medium
sized C program.
Appears to be
scalable. Three
metrics (approx.
only) are
developed to
calculate disparity,
dedication and
concentration
between features
and program.

Used in solving
Year 2000
problem. Cannot
be used to identify
specific end-users
features as each
graph requires
several inputs and
usually results in
huge permutations.

Theoretic in nature.
No real practical
application seen.
Since it depends on
large input data it
takes a long time to
identify relevant
code. Generating
BNF grammar is also
cumbersome.

Used in evolution
of features of large
VB program into
reusable
components. In
addition, feature
and component
model provide
sound theoretical
background.

Tools

TRACEVIEW

χSuds/χVue

DYNADIFF

None

Any Code Profiler

Feature Interaction
Problem

Identify and
suggested solving
by selecting
proper test cases

Identify and
suggested solving
by selecting proper
test cases

Generally ignored
but attempted to
solve it implicitly
by analyzing
program graph via
brute force

Identified and
suggested solving by
selecting large
number of test cases

Identify and
provide solid
model to evolve
features that share
code and data into
components

Mapping Test Cases and
Features

Left to
developers. End-
user perspective is
ignored.

Left to developers.
End-user
perspective is
ignored.

Brute force. End-
user perspective is
ignored.

Must use large test
suite and end-user
perspective is
ignored.

Regression test
cases are used as
they represent the
end-user features

Generates Reusable
Components

No

No

No

No

Yes

Programming Language
Dependent

Yes

Yes

No but compiler
should be able to
generate symbolic
debug info.

No

No

Addresses Global Data
Issue in identifying features

No

No

No

No

Yes

Identifies and addresses
Core

Yes, Partially

No

No

No

Yes

50

3.3 Software Evolution

There are many approaches to the general problem of software evolution.

3.3.1 Incremental Evolution

While there is agreement on the importance of evolving legacy systems, it is hard

to find a consensus on what the best model for evolution should be. Many models

have been proposed over time, and these models differ not only in their

approaches, but also in the way they define the deliverables of their

methodologies. Importantly, the discourse among software engineering experts

on the proper approach to legacy system evolution seems to have reached a

stalemate in an old debate between two conflicting ideologies. These ideologies

argue over the main problem of whether it is in the best interests of an

organization if a large mission-critical legacy system is re-written or replaced all

at once in its entirety, or is incrementally-evolved.

Over time, academics and industry experts such as Ransom et al.[76], Brodie et

al. [83], and Tilley et al. [114] have introduced a number of names to describe

these two approaches. Two of the most popular ones in use today to describe a

model's persuasion in this dichotomy are the terms "Chicken Little" and "Cold

Turkey." In this section, we discuss various models and approaches associated

with incrementally evolving ("Chicken Little") the legacy systems.

The earliest references to these two terms that can be found date from 1991, and

the pioneering DARWIN project from the University of California, Berkeley. The

51

results of the project introduced "Chicken Little" as an approach to iteratively

(also called "incrementally") evolve legacy systems [51]. As the DARWIN model

was perfected, the incremental nature of the approach was stressed as the model

was drawn out in eleven easy-to-remember "steps," each of which started with the

word "Incrementally." This approach answers a clear "no" to the all-at-once

question. With Chicken Little, "data gateways" are developed and introduced

between the legacy system and the target system to maintain data consistency

throughout a project. The key difference between DARWIN and our

methodologies is that DARWIN addresses incremental evolution at architectural

level rather than end-user feature level. Another important difference between

DARWIN and our methodology is that DARWIN makes use of object-oriented

techniques rather than CBSE.

The SEI at CMU developed a technique for developing an incremental code-

migration strategy for large legacy Common Business-Oriented Language

(COBOL) systems [19]. Specifically, the technical report published by SEI

describes a case study that involves the modernization of a large Supply System

(SS). The system consists of approximately two million lines of COBOL code

operating in a mainframe environment. The SEI developed the System Analysis

and Migration (SAM) tool to generate a code migration strategy based upon

legacy system analysis data. SAM considers a set of factors that includes

minimizing scaffolding code (code that is discarded before the completion of the

52

project), balancing iterations, and grouping related functionality. SAM generates

a call graph that allows developers to identify program elements with

dependencies. These dependencies can be prioritized for evolution purposes.

While the program elements can be viewed as end-users features, the SAM tool is

dependent on COBOL. Our approach is programming language independent; we

use existing source-code profiler to identify feature implementation. While a call

graph can be used to understand program dependencies, our feature model

provides feature-function matrix that shows an intuitive view of program

dependencies. Finally, there is no mention of the issue of global data in SAM.

The Incremental Software Evolution of Real-Time System (INSERT) project was

started by DARPA, SEI and NASA in 1992 [16]. The goal of INSERT is to

improve war fighting capabilities of F16 fighter jets by incrementally evolving

software systems used in the F16’s operating and other software system. While

there are similarities between INSERT and our methodological goals, the two

approaches are different because of following reasons. First, our approach does

not account for real-time systems. Second, the primary objective of INSERT is to

incrementally replace F16’s software components with COTS. Our methodology

suggests refactoring of problematic feature implementation. Third, our approach

targets identification and refactoring of specific problem areas (end-users

features) while INSERT provides guide to replacing entire sub-system.

53

Entity-Life Modeling (ELM) is a method of software engineering that has

elements in common with both function-oriented and object-oriented methods

[13]. As in object-oriented design methods, the first step is the identification of

objects from the problem domain, the identification of object attributes and

operations belonging to each object, and the design of class structures that

encapsulate state information and export attributes to other objects as needed.

ELM departs from object-oriented methods in its ability to manage the timing and

ordering of events as in some function-oriented methods. Threads of execution are

defined wherein entities exhibit sequential behavior by operating on objects,

perhaps concurrently with other entities. The application of ELM to evolution

involves the identification of entities and their threads of execution. Some

dynamic slicing may be necessary to identify objects and their behaviors. The

steps in the application of ELM to incremental evolution may be listed as follows:

1. Identification of entities

2. Identification of concurrent tasks

3. Creation of Buhr diagrams

4. Design of interface objects

5. Composition of state transition diagrams

The entities in ELM method can be analogous to features in our methodologies.

While ELM is certainly an incremental evolution methodology, the main

difference between our methodology and ELM is that our methodology has not

54

been tested on object-oriented systems and ELM has not been tested on function-

based system.

The observation that software systems undergo continuing changes was first put

forward by Belady and Lehman [79]. They termed this dynamic behavior of

software systems evolution and carried out empirical research on about 20

releases of the OS/360 operating

system. The investigation led to five “laws” of software evolution: Continuing

Change; Increasing Complexity; The Fundamental Law of Program Evolution;

Conservation of Organizational Stability; and Conservation of Familiarity. These

laws have been systematically studied by several researchers such as. Lehman

and his colleagues have begun new investigations into software evolution. The

FEAST/1 project (1996-1998) aimed to construct black- and white-box models of

software system evolution, with special attention to feedback phenomena. The

results of studying several data series from their industrial collaborators support,

or at least do not contradict, the laws of software evolution formulated in the

1970s. Moreover, three new laws have been identified: Continuing Growth,

Declining Quality and Feedback System. The recently completed FEAST/2

project focused on control and exploitation of process behavior.

There is a direct correlation between Lehman et al. third law (The Fundamental

Law of Program Evolution) and sixth law (Continuing Growth) with our notion of

incremental evolution. Both the laws support the hypothesis that focusing on

55

specific problem areas within the legacy system businesses can justify return on

investment (ROI). While there is no direct relationship between the case studies,

we agree with Lehman et al. Furthermore, researchers such as Basili et al. [122],

Coleman et al. [28], Kremerer at al. [21] and Kafura [30] have all used call graph

and similar techniques to identify program dependencies based on Lehman’s third

and sixth laws of evolution to propose incremental evolution methodologies.

3.3.2 Legacy System Evolution

Many software evolution techniques exist, [96][64][105] but they focus on

solution domain and do not consider Feature Engineering as a software evolution

driver. In one of the first dissertations on Feature Engineering, Turner [25]

mentioned the possibility of using Feature Engineering for software evolution

purposes in his work, but he concluded that evolution was outside the scope of his

work. The techniques of software evolution and reengineering either focus on

entire system rewrites or simply deal with reverse reengineering for

comprehension purposes.

System evolution is a broad term that covers a continuum from adding a field in a

database to completely re-implementing a system. These system evolution

activities can be divided into three categories: rewrite, evolution, and replacement

[98][96]. Repeated system maintenance supports business needs sufficiently for a

time, but as the system becomes increasingly outdated, maintenance falls behind

the business needs. An evolution effort is then required that represent a greater

56

effort, both in time and functionality, than the maintenance activity. Finally,

when the old system can no longer be evolved, it must be replaced or rewritten.

Determining the category of evolutionary activity that is most appropriate at

different points in the life cycle is a daunting challenge. Should a system

continue to be maintained or should it be modernized? Should the system be

replaced or rewritten? To make the correct decision, the legacy system must be

fully assessed in order to analyze the implications of each action. Ransom et. al.

describe an assessment technique for determining if a legacy system should be

replaced, modernized, or maintained [76]. Current software evolution and

reengineering techniques continue to work in the solution domain. The important

problem of linking the problem domain and the solution domain for the purposes

of evolution remains unsolved.

3.3.3 Architectural Reconstruction

Architectural reconstruction is the process where the “as-built” architecture of an

implemented system is obtained from the existing legacy system. This is done

through a detailed analysis of the system using tool support. The tools extract

information about the system and aid in building and aggregating successive

levels of abstraction. If the reconstruction is successful, the end result is an

architectural representation of the system that aids in reasoning about the system.

There have been several efforts in architecture analysis and reconstruction. The

Software Engineering Institute (SEI) has developed Dali [106]. Other examples

57

of architectural reconstruction efforts include Sneed’s reengineering effort [49],

the software renovation factories of Verhoef et al. [123], and the re-architecting

tool suite by Krikhaar of Philips Research [108]. In almost all the software

architecture reconstruction efforts, the process comprises the following five

phases:

• View extraction phase obtains information from various sources.

• Database construction phase involves converting the extracted information

into a relational database format.

• View fusion phase combines various views of the information stored in

the database.

• The architecture reconstruction phase builds abstractions and

representations and to generate an architectural representation.

• Finally, the Architecture Analysis phase analyzes the resulting

architecture.

There appear to be several similarities and differences between Architectural

Reconstruction and our work.

Our motivation is to incrementally evolve legacy system features with problems.

Architectural reconstruction attempts to migrate the entire legacy system to a

newer architecture. We rely on code profilers to get information regarding feature

implementation. Likewise, code profilers can also be used to populate the

database in the fusion phase. It appears that architectural reconstruction can be

58

used to identify feature implementation, not just the architecture. However, there

is no mention of evolving feature implementation into components for reuse.

By considering end-user’s features we bridge the complexity gap between the

problem and the solution domain. Architectural reconstruction works in the

solution domain only by focusing on extracting an architecture from the legacy

system.

The outcome of architectural reconstruction effort is different than ours. We are

focused in creating reusable components as opposed to representing architectures.

3.4 Feature Engineering

3.4.1 Features

There is little reference to the word “feature” or to the practice of “Feature

Engineering” in existing software engineering and other technical literature. For

the most part, the use of the term feature has been used in regard to the research

issue being addressed, such as features of a particular methodology or technique.

One particular research effort, Feature Oriented Domain Analysis (FODA)

explicitly uses the term [77]. However, FODA referred to a specific feature, not

the concept of feature. There are a few typical examples along the same lines as

FODA in the published work of Kamigaki et. al. and Larrondo-Petrie, et. al.

[129][90]. The SEI FODA feature model ties business models together by

structuring and relating feature sets [87]. The FODA framework explores how this

structured information can be leveraged across the software development effort.

59

Griss extended the FODA methodology to create an explicit feature model of

functionality to facilitate reuse-driven software engineering [87]. We agree with

Griss that a feature model integrates the viewpoint of both the user and the

developer; in this dissertation, we show the practical application of this integrated

perspective.

Cusumano and Selby describe the strong orientation of software development

toward the use of feature teams and feature-driven architectures at Microsoft

Corporation [84]. While this orientation has more to do with project management

than with product life-cycle artifacts and activities, there is a significant interest in

features among many software development teams. Feature enhancements

provide both a competitive tool and a healthy revenue stream from product

upgrades. For requirements, a use-case based method is used to determine the

feature set that should be added to a new product. Using focus group and

automated testing these features are given scores. Features that score highly in

the usage scenarios are most likely to be incorporated into the next product

version. Microsoft’s approach to features concentrates on specific features to be

added to existing products. Feature Engineering, in contrast, is a general set of

approaches geared toward understanding the concept of features and making use

of the feature relationships in a disciplined fashion across the solution domain.

60

3.4.2 Feature Interaction

The feature interaction literature is primarily focused on telecommunications

networks [116]. Telecommunications networks are massive, complex, distributed

systems that incorporates a variety of hardware and software elements. In this

domain, features represent capabilities that are incrementally added to a telephony

network. The presence of multiple independent component providers makes the

feature interaction problem even more difficult. Telecommunications networks

provide many examples of features, such as call waiting, call forwarding, and

voice mail; the primary focus is on understanding how features interact, rather

than how the features will be evolved. Our feature model and fine-grained

component model addresses evolution of interacting features.

3.4.3 Requirements Analysis

Features are problem space entities, and requirement engineering is the discipline

that is focused on providing a concise, consistent, unambiguous, and complete

definition of the problem domain. Years ago, researchers identified features as a

natural organization of the problem space [4][101]. According to Turner et al.

[26], Feature Engineering reemphasizes the need for requirement analysis efforts

to identify the desired Feature set. While there are a few close synonyms for

feature, such as goal and root requirement, surprisingly few approaches in the

research literature concentrate on this organization of a system’s functionality.

Several approaches in requirements engineering approach the Feature

61

identification required by Feature Engineering. Hsia and Gupta [101] have

worked on automated techniques for grouping requirement specifications. Their

purpose is to support incremental delivery of system functionality. The cohesive

structures that Hsia and Gupta search to identify are abstract data types (ADTs). It

is clear that ADTs are a solution domain concept with limited relevance in the

problem domain. In addition, their work requires using a development

methodology based on ADTs. The goal of delivering ADT-based prototypes

transcends analysis and forces a particular design choice. While [101] appears to

reduce the complexity gap via ADTs we differ by reducing the same gap via

regression test cases. Likewise, Karlsson and Ryan [73] seek to prioritize

requirements using a cost-value evaluation of pairs of requirements. Since the

number of requirement pairs grows as the square of the number of requirements,

their approach is suited to high-level requirements identified in the problem

domain. Their techniques can be used to trace artifacts in the solution domain.

While there are similarities in the requirements analysis work regarding mapping

the problem domain to solution domain, we differ mainly by using regression test

cases as the starting point because most legacy systems do not have original

requirements definition.

3.4.4 Function Points

Function point analysis is potentially applicable to Feature Engineering. The basic

notion of this discipline is that the functionality of a software project can be

62

objectively estimated independent of the implementation. Function point analysis

considers five system characteristics: application inputs, application outputs, user

inquiries, data files, and interfaces to other applications. Each application has a

function point rating, which presumably can be determined objectively once the

system specification is created. Capers Jones asserts that function point metrics

have substantially replaced the older lines-of-code metrics for purposes of

economic and productivity analysis [20]. Since the introduction of this metric,

numerous refinements have been introduced, and in 1986, the International

Function Point Users Group was formed to enhance the technique. Despite

advances in function point analysis, subjective judgments remain a difficulty

because of lack of evolutionary initiatives.

Five early goals were identified for the function point metric:

1. Relate to external features of the software

2. Deal with features important to the user base

3. Be applicable early in the life cycle

4. Relate to economic productivity

5. Be independent of source code or language

These goals are well aligned with, but considerably narrower than, the feature-

engineering ideas identified in this dissertation. Since function point metrics are

based on visible aspects of a software system, they fit naturally within the feature

view of a software system. Function point analysis might be useful for estimating

63

the development effort required to implement a particular feature. It might also be

used to evaluate the complexity of various implementation alternatives during the

feature design phase. By applying the metric to the incremental development

required for adding features to a system, the cost and impact of each feature can

potentially be estimated.

3.5 Component Based Software Engineering (CBSE)

Although Component Based Software Engineering (CBSE) provides viable

techniques to develop modularized software systems, the components are often

designed and implemented from scratch rather than re-engineering them from

within a legacy system. In practice, CBSE is used as a design and construction

tool, not an evolution tool [95][126][94][38]. In this section, we summarize

many of the sub-discipline of CBSE as they relate to our dissertation.

3.5.1 Evolution

Recent approaches to evolution within CBSE, such as ArchStudio [102], focus on

evolving systems that are already designed and constructed from well-defined

components and connectors. The emerging discipline of Software Architecture as

defined by Garlan and Shaw is concerned with a level of design that addresses

structural issues of a software system, such as global control structure,

synchronization and protocols of communication between components [29].

Software Architecture is thus able to address many issues in the development of

large-scale distributed applications by using off-the-shelf components. In

64

particular, it is a useful vehicle for managing coarse-grained software evolution,

as observed by Medvidovic and Taylor[94]. However, Software Architecture

does not provide an efficient solution for legacy system evolution.

Evolving a legacy system by wrapping it into a component is a common practice

[115]. However, such wrapping results in coarse-grained components and does

not address the issue of complexity gap. Our methodology identifies features that

are a candidate for evolution and incrementally evolves them at much finer

granularity.

3.5.2 Wrapping

While wrapping is a perfectly viable solution to evolve a legacy system onto a

newer platform, our motivation is rooted in addressing problems associated with

end-user features.

3.5.3 COTS

COTS can certainly provide functionality pertaining to the feature we are

interested in, however we see following major differences in using COTS

compared to our fine-grained components:

Researchers have found that COTS selection is a lengthy and arduous process

[27][112]. The first step of the process is to determine the best COTS components

candidate. The next step in the process is to determine if these components can be

integrated, either directly, or through wrappers or other “glue” code. Determining

65

if components can be integrated is also a complex process, as vendor claims are

not always believable. If these components cannot be easily integrated, it is

necessary to consider alternate products that may not be best choice but are

compatible with other technologies. To make matters worse, the environment is

constantly changing with new components and emerging product versions;

existing products going away or being refocused, and evolving vendor

relationships. This is hardly the case with our fine-grained components as these

fine-grained components are evolved from within the legacy code they integrate

well and provide the specific functionality that is needed.

COTS components are black boxes whose source code is not available for

modification. Since fine-grained components are developed using an existing

legacy system, its source code is readily available.

3.5.4 Reuse

One of the main ideas behind CBSE is to promote software reuse either within the

product line or across multiple product lines [95][23][75]. However, the claim for

such reuse has been challenged because CBSE has not been able to deliver its

promise. Furthermore, the dynamic nature of requirements and software process

pose a big hurdle for CBSE as far as reusability of components is concerned

[126][44][66]. Since our methodology gathers the requirements and the

specifications from an existing legacy system, we can simply refactor feature

implementations into fine-grained components. Avoiding the complex process of

66

gathering requirements to create components from scratch allows us to take the

best of CBSE, namely component model and component specification, without

having to consider time-consuming CBSE activities such as buy vs. build

analysis, selecting a component model, or a component technology.

3.5.5 Features

CBSE offers promising techniques to solve the problem of component

construction [2], but CBSE has not yet been connected to the features that are

present in a system; creating this connection explicitly is one of the contributions

of this dissertation. The functionality provided by CBSE solutions must be

mapped to the Feature available to the end-user.

To the best of our knowledge, features and components have not been studied

together in light of legacy system’s evolution. Two areas that appear to bring the

aspect of features to components are feature-oriented programming (FOP) and

Feature-oriented classification of components (FOCS).

FOP is used for developing new systems [24] and has not been used in evolving

existing legacy systems. However, FOP can be used to create feature-oriented

components, which can possibly be used with our methodology. Integration of

components created using FOP is outside the scope of our work.

FOCS is a component classification scheme using graphs [67]. Components are

described by sets of features, called descriptors. Each feature represents a

property or attribute of the component. To support the understanding and

67

construction of descriptors, features are organized in a classification scheme.

Storage and retrieval of components is done by means of these features sets. A

thesaurus assists in the understanding of features. Searching is done with the help

of descriptors. Users construct a descriptor (using an editor) containing the

features the searched component should provide. This descriptor is interpreted as

a query to the database of classified components. While there appears to be no

direct relation to our work, FOCS can be used to store fine-grained components

created by our methodology.

3.5.6 Fine-Grained Components

Granularity is the word that describes how much functionality is found in a

component, or a set of components that work together. In the literature, two types

of components exist: fine grained and coarse grained [38]. In [38], James Carey

and Brent Carlson describe two types of components based on their many years

with the San-Francisco project. The authors differentiate fine-grained components

from course-grained components. Carey and Carlson make a persuasive case for

the use of fine-grained components; they argue that such components are required

for business domains where well-defined dependencies can be carefully managed.

We strongly agree with Carey and Carlson, as our fine-grained component model

encapsulates the feature we are interested in evolving for reusability across

product lines within the same organization.

68

There are also similarities between our fine-grained components and ability to

modify its code. According to [45], there are three possibilities for modifying a

component:

White box where access to source code allows a component to be significantly

rewritten to operate with other components. Gray box where source code of a

component is not modified but the component provides its own extension

language or Application Programming Interface (API). Black box where only a

binary executable form of the component is available and there is no extension

language or API. Our fine-grained component model is intended to be used

across the product lines with an organization. Since the component may contain

feature-based trade secrets, organizations may decide to not market it but to use

the component exclusively. Since the code is available, technically all three

approaches to the modification can be applied. However, we suggest a black box

approach be used since fine-grained components are lightweight and provide

feature specific functionality whose code need not be changed.

3.5.7 Product Line

The general idea of a software product line is that the new product is formed by

taking components from the base of existing legacy code using variation

mechanisms such as parameterization or inheritance. Thus, building a new

product (system) becomes more a matter of assembly or generation than creation;

integration rather than programming. This form of reuse among product lines,

69

have been studied by various researchers such as [87][68][70][74][91][81].

Among all the product line initiatives, the most related work is that of the two

methods developed by the Software Engineering Institute (SEI). These methods

are supposed to extract existing assets from the core of an existing product line.

The Mining Architectures for Product Lines (MAP) method addresses assets at

the architecture level, while the Options Analysis for Reengineering (OAR)

method addresses assets at the component level. While there are similarities in

our motivations and those of MAP and OAR methods in reusing components, we

differ in the following ways.

We are motivated in reducing the complexity gap by considering problem and

solution domain, while MAP and OAR work in the solution domain only. Both

MAP and OAR are not focused on incremental evolution while that is our intent.

One of our goals is to reduce the maintenance cost of the feature to be evolved. It

is not clear from the literature that the MAP and OAR consider this factor. MAP

and OAR are more focused in the new product lines that use the extracted

components from the legacy system while one of our goals is to plug the

component in the original legacy system as well.

3.5.8 Previous experience with components and evolution

We mention two of our previously related works in this subsection, both of which

are experience reports and provided preliminary motivation to work with

components and evolution.

70

First, one of our previous works, carried out as part of the case study on AMS

Output Engine, has contributed to research efforts in Software Architecture and

CBSE [7]. This work sought to evolve earlier legacy systems so that recent ideas

on architectural evolution could be applied. The experience report describes a

simple technique: abstracting the communication between two components into a

connecting-component. Using this abstraction, a stand-alone executable was

easily converted into an ActiveX Component (DLL). This research demonstrated

that architectural analysis helps to achieve business objectives. The methodology

described in [7] forms the basis for our motivation in this dissertation because it

is: 1) is incremental; 2) improves the architectural integrity of the legacy system

by replacing implicit communication between system components with explicit,

documented connecting-components; and 3) results in a better-documented

architecture.

Second, to further stress the importance of CBSE encapsulation and reuse

techniques we briefly describe the concept of component integration and

extension [8], which was applied in the Input Engine of AMS, In [8], we have

shown that new features can be integrated and extended into the original

component by using CBSE techniques. Component integration and extension

techniques improve code reusability among product lines and decrease

maintenance costs for legacy code [8]. Component integration and extension

techniques will encapsulate functions that implement features in context.

71

Encapsulating features into components will improve code reusability and will

thus reduce the maintenance costs for legacy systems.

3.6 Program Understanding

Program slicing is another area that has potential for Feature Engineering and our

component refactoring is inspired by this research. The notion of program slicing

began with Weiser [93]. Since then, several researchers have modified and

expanded the concept of a program slice by proposing additional methods for

determining slices. Current research frontiers on program slicing are covered by

Tip [35]. In abstract terms, a program slice is a subset of a program representation

that is based upon some preset criteria. Traditionally, the criteria are formulated

as program statements that affect the value of a variable at a particular place in the

program text. This formulation of the criterion dictates that a backwards slice be

computed from the source statement in question. The notion of forward slices has

also been explored. There are several ways that a program slice can be calculated,

with one common technique relying upon program-dependence graphs.

The slicing described so far is known as static slicing, because it relies only upon

the program text. Researchers have also explored dynamic slicing, which takes

into account program execution on a particular input set. In general, dynamic

slicing produces smaller slices, which is a benefit to the isolation of program

faults. Program dicing is a term used to describe the intersection of multiple

slices. Sloane expands the traditional notions of program slicing by generalizing

72

the slicing criteria [12]. His approach relies upon marking an abstract syntax

representation of the program using tree decoration capabilities inherent in

attribute grammars. One of the advantages of Sloane’s approach is that it can

easily be used to produce syntactically complete program slices that could be

executed.

Program slicing can be expanded to incorporate Feature Engineering. By feature

slicing, one could extract a subset of the system that interacts with a particular

feature. This would be of critical importance in maintaining individual features,

for exploring feature interactions, and for constructing feature relationships in an

existing system. Presumably, the intersecting feature slices would indicate

potential interactions among feature implementations. This notion was carried

out to locate program features and their interactions but mainly for testing and

debugging purposes and not evolving system features.

3.7 Regression Testing

Rothermel and Harrold [42] group a variety of selective regression testing

approaches into three categories. Safe approaches require the selection of every

existing test case that exercises any program element that could possibly be

affected by a given program change. Minimization approaches attempt to select

the smallest set of test cases necessary to test affected program elements at least

once. Coverage approaches attempt to assure that some structural coverage

criterion is met by the test cases that are selected. All three categories have been

73

extensively studied by researchers [46][127][48][41][40][88][120][43][124] from

a theoretical point of view to either minimize or prioritize test cases.

While minimizing and prioritizing is important, there has been little discussion on

applying regression testing in industrial environments, specifically for

evolutionary reasons. While researchers are mostly concerned with reducing the

number of test cases for the testing process, other important issues in using

regression testing in an industrial environment, such as considering regression test

case in identifying feature implementation, remain an oversight. Regression

testing contain important information in the form of input that reflects the end-

user feature and the feature will be invoked.

3.8 Separation of Concerns and Aspect Oriented Programming

Two theories related to our work are the separation of concerns and Aspect-

Oriented Programming (AOP). A software system consists of a set of artifacts,

such as requirement specifications, designs, and code. Each artifact consists of

descriptive material in some formalism, the purpose of which is to model needed

concepts in a manner appropriate for that artifact. The formalisms differ for

different projects, different phases, and different artifacts perhaps even within an

artifact. Different artifacts often share the same concepts, with each concept

potentially described in a different way, and with different details, in different

artifacts. For example, the word expression in the requirements and the term class

expression in the design.

74

Many kinds of concerns are important during the software lifecycle. Dimensions

of concern help to organize the space of concepts and units. Common dimensions

of concern are data or object (leading to data abstraction) and function (leading to

functional decomposition). Others include feature (both functional, such as

“evaluation,” and cross cutting, such as “persistence”), role, and configuration. As

illustrated by examples in their work, Tarr and Sutton explain that some

dimensions of concern derive from the domain, often aligning with important

domain concepts, while others come from system requirements, from the

development process, and from internal details of the system itself [103]. In short

there are a number of dimensions of concern that might be of importance for

different purposes (e.g., comprehension, traceability, reusability, evolution

potential), for different systems, and at different phases of the life cycle.

However, even Tarr and Sutton admit that a large part of their theory is unproven,

and we believe their approach will encounter great difficulties when applied to an

existing legacy system.

The AOP community has focused on identifying cross-cutting concerns that

appear throughout numerous modules of a system implementation [39][128].

These aspects are treated as first-class entities that are “woven” together into the

primary modularization to create a final working system. We have found it

possible to encapsulate features that are likely to change into fine-grained

components, thus avoiding the code-weaving phase of AOP. Also, our fine-

75

grained components are truly reusable whereas aspects appear to only be usable in

the context of the original modular decomposition.

3.9 Summary

In this chapter, we discussed the related work as it relates to our research. We

looked at several areas such as Software Evolution, Architectural Reconstruction,

Feature Engineering, Product Lines, Requirements Analysis, CBSE, Program

Understanding, Locating Systems Features, Regression Testing, Separation of

Concerns and AOP. Although Turner [25] had identified the problem we are

addressing in our work, that was outside the scope of his work. Furthermore, four

[5][125][121][99] researchers have described points which are related to our work

as far as identifying program features is concerned, however; their motivation is

restricted to program understanding and not to the evolution methodology we

have developed. To date, no software evolution technique has been proposed that

addresses the important issue of evolving legacy code using CBSE and Feature

Engineering. We believe that if legacy code is modernized using Feature

Engineering and CBSE then many organizations can benefit from the resulting

technique.

In Chapter 4, we will discuss the four models that are part of our evolution

methodology namely Feature Model, Fine-Grained Component Model, Budget

Analysis Model and Formal Model.

76

4 Models

Our methodology depends on two important models.

The Feature Model defines what a feature is, how it is

implemented, how it interacts with other features, and how it is

related to other features within the source code.

The Fine-Grained Component Model describes the

constituents of the refactored components using interfaces,

properties, and methods.

To support the results of our dissertation we also rely on two additional models:

The Budget Analysis Model lists and describes the elements

that are necessary for performing the cost-benefit analysis of

our evolution methodology.

The Formal Model provides the theoretical foundation for our

evolution methodology. The formal model is supported by the

data model.

4.1 Feature Model

As we have already discussed, end-users often view a system in terms of its

provided features. Intuitively, a feature is an identifiable unit of system

functionality from the end-user’s perspective. Examples of features include the

77

ability of a word processor to spell check or the ability of an accounting system to

generate a balance sheet statement for a given fiscal year. Software developers are

expected to translate such feature-oriented requests into system design. Feature

Engineering addresses the understanding of features in software systems and

defines mechanisms for carrying a feature from the problem domain into the

solution domain [26].

Figure 4.1: Elements of Feature Model.

Our feature model consists of following four elements as shown in Figure 4.1:

Feature definition, what a feature is.

Feature implementation, where and how features are implemented within the

source code.

Feature interaction, how a feature interacts with other features.

Feature relationships, how a feature is related to other features.

Feature Model

Definition Interaction

Relationship Implementation

Feature Model

Definition Interaction

Relationships Implementation

78

4.1.1 Feature Definition

We developed the following definition by integrating and extending existing

definitions from [82][26]:

A feature is a group of individual requirements that describes a unit of
functionality with respect to a specific point of view relative to a software
development life cycle (Figure 4.2).

Figure 4.2: Definition of a Feature.

This definition is rooted in the problem domain but shows how a feature can be

used in software evolution. For example, a system might support a feature that

performs complex calculations in batch mode without user interaction. To an end-

Feature
Description

SDLC Phases

Req. Design Coding Test

Test-cases
Feature

Implementation

Problem
Domain

Solution
Domain

Maintenance

Regression
Feature

Description

SDLC Phases

Req. Design Coding Test

Test-cases
Feature

Implementation

Problem
Domain

Solution
Domain

Maintenance

Regression

79

user, this feature is a time saver because input can be stored in a file or a database

to be used at a later time. At the same time, testers might employ this feature to

enable regression testing between two versions of the system; developers might

design a specific set of modules to process user input without user interaction to

analyze code coverage. A code-profiling tool executing regression test cases

exercising that feature can locate the feature implementation, and evolution of that

feature can commence.

Feature

Functions

Critical Evolution Viewpoint

1 Many Solution domain

Many 1 Problem domain

1 1 None exists

Many Many N/A – Must be decomposed

Table 4.1: Feature/Functions Relationships.

4.1.2 Feature Implementation (FI)

End-users comprehend a system through its features but are unaware of the

specific way in which these features are implemented. Software developers view

the same system in terms of data types, local and global control, reusable

functions, and units of testing and maintenance. Table 4.1 outlines how a feature

might be implemented within function(s). When addressing feature

implementation we must consider following two scenarios:

80

• When function(s) and data (local and/or global variable) implements only

one feature

• When function(s) and data (local and/or global variable) implements more

than one feature

If the function and data implements only one feature than the evolution is trivial.

While our models can certainly address the first scenario mentioned above, we are

more interested in the second scenario because it is more likely that a function is

involved in the implementation of more than one feature. Thus, when we mention

feature implementation we assume that the function implements more than one

feature. We define feature implementation as following:

A feature implementation (FI) is the set of statements (including data)
within all functions that execute when that feature is invoked. The feature
is invoked by one or more test cases.

When a single feature implementation contains code from many functions then

the critical viewpoint regarding evolution is the solution domain because the

feature “cross-cuts” the software [87]. Such code is often highly coupled and

deeply embedded within the legacy system. When many related features are

implemented by a single function then understanding the problem domain is

critical for successful evolution. When a feature is implemented by a single

function, evolution can be straightforward; a many-to-many relationship must be

decomposed further for evolution (Table 4.1).

81

Given that a function(s) implements more than one feature, there are five cases

that capture the essence of feature implementation. In the following example

assume that there is a function fx that is only involved in the implementation of

two features FE1 and FE2.

4.1.2.1 Case I: Non-interacting (unrelated) features

Figure 4.3 show a function fx (the large rectangle) implementing two features FE1

and FE2 represented as ovals. Even though these two features are implemented in

a single function, they do not share any lines of code (LOC) or variables. That is,

FE1 ∩ FE2 = Ø. At this level of abstraction, it is not important how much of fx is

being executed.

Figure 4.3: Two Features in Function (fx) but Not Interacting.

4.1.2.2 Case II: Partially interacting features

Figure 4.4 show two features FE1 and FE2 sharing LOC or variables in a function.

This type of interaction is common and we will discuss this in further detail in

Sections 4.2, and 4.3. That is, FE1 ∩ FE2 ≠ Ø.

fx

FE1 FE2FE1 FE2
FE1 FE2

82

Figure 4.4: Two Features Partially Interacting in Function (fx).

4.1.2.3 Case III: Fully interacting features

Figure 4.5 show two features FE1 and FE2 are fully interacting by sharing LOC

and variables. These features are tangled, as there is no apparent distinction

between shared LOC and variables using dynamic slicing. Our case study shows

how to identify relationships and interactions among fully interacting features.

That is, FE1 =FE2.

Figure 4.5: Two Features Fully-Interacting in Function (fx).

4.1.2.4 Case IV: Interacting sub-features

Figure 4.6 show that FE1 is a subset of FE2. This could mean that FE2 is sub-

feature of FE1 or FE2 is composed of FE1. There are several possibilities in this

FE1

FE2

FE1

2

fx

FE1

FE2

FE1

2

fx

fx

FE1 FE2FE1 FE2
FE1 FE2

fx

FE1 FE2FE1 FE2

fx

FE1 FE2FE1 FE2
FE1 FE2FE1 FE2

83

scenario and we will discuss them in section 4.1.5 and 4.3. Dynamic slicing

cannot fully identify the code of either feature thus a closer look at the feature

relationships is required. That is, FE1 ⊂ FE2.

Figure 4.6: Interacting Sub-Feature in Function (fx).

4.1.2.5 Case V: Interacting super-features

This is just the opposite of case IV as shown in Figure 4.7. That is, FE2 ⊂ FE1.

Figure 4.7: Interacting Super-Features in Function (fx).

FE1

FE2

FE1

FE2

fx

FE2

FE1

FE2

FE1

fx

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

FE2

FE1

fx

84

4.1.2.6 Summary

At this level of abstraction we ignore the often complicated control flow within a

function fx. Given a function that is involved with no more that two features these

five cases (non-interacting, partial-interacting, fully-interacting, interacting-sub

and interacting-super features) describe the possible interactions among features.

4.1.2.7 Regression Testing

We propose a novel use of dynamic slicing [18] that uses regression test cases to

identify where a feature is implemented in the legacy system and to incrementally

refactor the code base to create fine-grained components that can be individually

evolved and reused.

Not every feature is evolved during system evolution, nor should each feature be

encapsulated in a fine-grained component. We follow a heuristic we call “The law

of two”: if a feature can be used in another system, its implementation becomes a

candidate for reuse. From this candidate set, the organization must still select

specific features to evolve. These features must be associated with the existing

test cases. Once the features are associated with their test cases, our feature

model identifies in which functions the features are implemented and what is the

feature/function interactions exists. We have identified two scenarios to associate

the test case to features:

• Knowledge of the mapping of the test case to the features exists either via

domain knowledge or in testing artifacts.

85

• Knowledge of the mapping of the test case to the features does not exist.

In such a case, the input values of each regression test case can be

analyzed using clustering techniques.

Domain Knowledge

There is no substitute for domain knowledge in legacy systems. Through using

domain knowledge, it is possible to identify test cases that represent a particular

feature or a group of features. It is also possible to construct test cases from

scratch to exercise a feature. Typically, in an industrial environment the testers

have full knowledge of which test cases are used to exercise what features. Our

case study assumes that we have this knowledge.

Documentation

Legacy systems also have rich regression test suites that consist of hundreds of

test cases. In some cases, test suites are well documented so we can identify easily

the test cases used to exercise a given feature.

Clustering and textual pattern analysis

Our simple technique for grouping test cases to find the feature they represent is

based on the premise that related test cases exercise either a feature or closely

related features. We describe a simple technique to cluster these related test cases

in this section. There are several clustering techniques described in the literature.

86

Clustering analysis is the organization of a collection of patterns (usually
represented as a vector of measurements or a point in multidimensional
space) into clusters based on similarity [89].

Although, Jain et al. describes several clustering techniques, they (including other

researchers) have not applied clustering techniques to group related test cases.

The purpose of our research is not to explore the clustering techniques but to use

them to identify the test case and feature mapping in the event that no

documentation of domain knowledge exists. We begin by describing the test

cases used in this case study and then provide a simple model that can be used to

cluster or logically arrange the test cases that represent the features that need

evolution. To illustrate the clustering heuristics consider 10 test cases with 5 sets

of items that are considered the most important user inputs (Table 4.2). We

analyze the user input and give an ordinal value to each of the valid user inputs

for a given Item. For example, if item number 1 had ten valid user inputs then the

user input was given a numeric value of 1 through 10 respectively. We create a

matrix of test cases and Items as shown in Table 3. We then use existing tools

such as Microsoft Excel™ to calculate statistical measures that can provide some

insight on a group (or cluster) of related test cases. For example, if we consider

two test cases T4 and T6 (assuming that only items 4 and 5 vary while others are

exactly the same) we calculate the regression and standard deviation values to

find the best-fit lines. T4, T6, T8 and T2 can be grouped together because their

regression values are 2.4, 2.3, 2.2 and 2.1, which is much higher than other test

87

cases indicating that they can be grouped together. Similarly, test cases T1, T3,

T5, T7, T9 and T10 can be grouped together because they vary by item 1 and item

5. We can use any of the existing clustering algorithms in this step, but for

simplicity, we use regression and standard deviation as our measure to help us

define the best fit for the lines. It is possible to use just regression as a measure.

However, we suggest that both regression and standard deviation be used because

it is quite possible that in a large set of data, two unrelated test cases may end up

getting the same value. Using standard deviation as an additional check can help

identify such cases. Using such heuristics we can group the test cases into two

broad groups; group 1 that exercise feature 1 consists of T4, T6, T8 and T2 and

group 2 that exercise feature 2 consists of T1, T3, T5, T7, T9 and T10 in this

example (Table 4.2). Likewise, Table 4.3 and Table 4.4 show the result of

applying a RankSort clustering algorithm on the test case and items matrix. Note

that Table 4.2 and Table 4.4 result in identical clusters as far as mapping test case

and features is concerned. In addition, textual pattern analysis can also be used to

group these related test cases because test cases often have textual input. Using

some pattern searching and developing a simple utility program, one can group

the related test cases based upon pre-defined criteria. We found that grouping

these test cases into broad categories can help identify the mapping between test

cases and features in cases when domain knowledge or documentation is not

88

available. The Pseudo-code for determining clusters for any matrix is shown in

Figure 4.8.

Table 4.2:Test Cases vs. Items.

Table 4.3: Test-case and Items before RankSort.

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5
T1 1 3 3 3 4
T2 1 1 1 8 8
T3 2 3 3 3 1
T4 1 1 1 9 9
T5 2 3 3 3 3
T6 1 1 1 8 9
T7 3 3 3 3 2
T8 1 1 1 9 8
T9 3 3 3 3 1

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5 Regression Std Dev

T4 1 1 1 9 9 2.4 4.38
T6 1 1 1 8 9 2.3 4.12
T8 1 1 1 9 8 2.2 4.12
T2 1 1 1 8 8 2.1 3.83
T1 1 3 3 3 4 0.6 1.1
T5 2 3 3 3 3 0.2 0.45
T3 2 3 3 3 1 -0.2 0.89
T7 3 3 3 3 2 -0.2 0.45
T9 3 3 3 3 1 -0.4 0.89

T10 4 3 3 3 1 -0.6 1.1

89

Table 4.4: Clustering after RankSort.

Figure 4.8: Pseudo-code to Determine Clusters.

4.1.3 Features and Functions

We need to identify the percentage of lines of code coverage of a specific feature

within a function because this relationship can provide useful information

regarding how and where a feature is implemented. This feature/function

relationship can be achieved via test cases as these test cases represent the

 Create Matrix (M):
For (Test Case) 1 to I

For (Input Item) 1 to J
 M(I,J) =Convert (Input Item) to Valid Numeric Value

Next (Input Item)
Next (Test Case)
Return (M)

Apply Clustering Algorithms on (M):
 Choose Any:

 Regression + Standard Deviation
RankSort
Any Other

Analyze Modified (M):
 Identify Groups (clustered I)

Test Cases Item 1 Item 2 Item 3 Item 4 Item 5
T2 1 1 1 8 8
T6 1 1 1 8 9
T8 1 1 1 9 8
T4 1 1 1 9 9
T1 1 3 3 3 4
T9 2 3 3 3 1
T5 2 3 3 3 3
T9 3 3 3 3 1
T7 3 3 3 3 2

90

features. In order to successfully identify feature implementation within a

function via test cases, we follow the three-step process:

• Identify test case(s) that represent that feature.

• Run the profiler to obtain test case and function execution traces in terms

of lines of code.

• Determine UNION of all the lines of code within a function can identify

all the lines of code executed in a function by a test case representing that

feature. We can calculate the percentage coverage.

Figure 4.9: A Feature may be Invoked by Several Test Cases.

The feature/function relationship via test cases is either one:one or one:many.

When a feature is represented by a single test case (one:one relationship) the code

profiler can result in feature/function relationship rather easily as each test case is

run and its execution traces are collected. These execution traces consist of lines

of code executed in a given function. Even though a function itself can

implement more than one feature since each test case represents only a single

feature, the identification of lines of code and the coverage percentage within a

Test Cases
T3

T4 T5

Feature
FE1

Feature
FE2

Feature
FE3

T1
T2

Features

91

function is rather trivial in this case because there is no need for the UNION step

mentioned earlier. This is because most code coverage tools provide the

percentage coverage information.

One:many relationship is more realistic and it is shown in Figure 4.9. It shows

that a feature is invoked by many test cases. This case is non-trivial because we

must first group the test cases that represent the same feature.

To identify the feature/function relationship, we discuss the three-step process in

detail:

4.1.3.1 Step 1: Map test case and features

Test case and feature mapping in a matrix are as shown in Table 4.5. The shaded

portion means that the test case can invoke that feature. The shaded cells simply

represent that the feature is invoked by the test case. As discussed in Chapter 2,

we obtain this mapping from the testers and the end-users.

Table 4.5:Test Case and Feature Mapping.
4.1.3.2 Step 2: Run test case and profiler

Test cases are run with the profiler and the results shown in Table 4.6. Each cell

contains the LOC executed by the profiler in function. The next part of this step

is to identify the LOC exercised by all test cases in a given function. At this

point, we introduce the features that are invoked by all the test cases as shown in

Test Case
Features T1 T2 T3 T4 T5 T6 T7

FE1 ? ? ? ?

FE2 ? ? ?

FE3 ? ? ? ?
FE4 ? ? ? ?

92

Table 4.7. The next sub-step in this process is to eliminate the OR by making a

UNION of all the LOC within the function that implements a feature. The

UNION enables us to determine all the lines of code executed by the feature

within the function. This is shown in Table 4.8. Finally, we calculate the

percentage coverage for the illustration purposes assuming 10 lines of code per

function, as shown in Table 4.9.

93

Table 4.6: Test Case and Function Relationship by Profiler.

Table 4.7: Test Case, Features, Function and LOC.

Test Case T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6

Functions/Features FE1 FE2 FE3 FE4

fx 1,2,5,10 OR 1,2,3,4 1,2,3,4 1,2,3,4 OR 1,2,3,4
1,2,5,10 OR

1,2,3,4

fy
1,2,3,5,8,10 OR 1,2,3,4,5

OR 1,2,3,4
1,2,3,4,5,6,7,8,9,10 OR

1,2,3,4 1,2,3,4,5,6,7,8,9,10 OR 1,2,3,4
1,2,3,5,8,10 OR

1,2,3,4

fz 1,2,3,5,8,10 1,2,3,4 1,2,3,4 1,2,3,4

fa 0 1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6,7,8,9,10 0

fb

1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR

1,2,3,4,5,6,7,8,9,10

1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR

1,2,3,4,5,6,7,8,9,10

1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR

1,2,3,4,5,6,7,8,9,10

1,2,3,4,5,6,7,8,9,1
0 OR

1,2,3,4,5,6,7,8,9,1
0

fc 1,2,3,4,5,6 1,2,3,4,5,6,10 OR 1,2,3,4,5,6

1,2,3,4,5,6,10 OR
1,2,3,4,5,6,7,8,9,10 OR
1,2,3,4,5,6,7,8,9,10 OR

1,2,3,4,5,6,7,8,9,10 1,2,3,4,5,6

Functions/Test
Cases T1 T2 T3 T4 T5 T6 T7

fx 1,2,5,10 0 0 0 0 1,2,3,4 1,2,3,4

fy 1,2,3,5,8,10
1,2,3,4,5,6,7,8,9,

10 0 1,2,3,4,5 0 1,2,3,4 0

fz 0 0 1,2,3,4,5 1,2,3,5,8,10 0 0 0

fa 0
1,2,3,4,5,6,7,8,9,

10 0 0 0 0 0

fb
1,2,3,4,5,6,7,8,9

,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,9,1

0
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,

9,10

fc 1,2,3,4,5,6 1,2,3,4,5,6,10 0 0 1,2,3,4,5,6
1,2,3,4,5,6,7,8

,9,10
1,2,3,4,5,6,7,8,

9,10

94

Table 4.8: UNION of all LOC for a Feature Implementation.

 Table 4.9: Percentage LOC (Feature-Function Relationship).

4.1.3.3 Step 3: Develop heuristics

Table 4.9 provides information regarding how features and functions may be

related. Similar analysis regarding feature and data will be explored in Section

4.1.5.2. The types of information we can deduce from Table 4.9 are as follows:

Test Case T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features FE1 FE2 FE3 FE4

fx 1,2,3,4,5,10 1,2,3,4 1,2,3,4 1,2,3,4,5,10

fy 1,2,3,4,5,8,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4,5,8,10

fz 0 1,2,3,4 1,2,3,4 1,2,3,4

fa 0
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4

fb 1,2,3,4,5,6,7,8,9,10
1,2,3,4,5,6,7,8,9,

10
1,2,3,4,5,6,7,8,

9,10
1,2,3,4,5,6,7,8,9,

10

fc 1,2,3,4,5,6 1,2,3,4,5,6,10
1,2,3,4,5,6,7,8,

9,10 1,2,3,4,5,6

Test Case T1, T4, T5, T6 T2, T5,T6 T2, T5, T6,T7 T1, T5,T6
Functions/Features FE1 FE2 FE3 FE4

fx 60% 40% 40% 60%

fy 70% 100% 100% 70%

fz 0 40% 40% 40%

fa 0 100% 100% 40%

fb 100% 100% 100% 100%

fc 60% 70% 100% 60%

95

Sub-features

While features are visible to end-users, they invariably consist of sub-features that

may or may not be visible to the end-user. These sub-features are usually present

when a feature is tested by many test cases.

Feature implementation (FI)

Table 4.9 provides information on implementation of a given feature in many

functions. This information is very useful for our methodology. FI is the number

of functions the feature is implemented in.

CORE

If a function(s) is executed 100% of the time for all features then we define that

function to be part of CORE. Such functions are candidates for a shared library.

Typically, functions that manipulate strings, round numbers, handle database

connections etc. are part of CORE. These functions are most always stateless.

Base-line Architecture

When the system is invoked in a batch mode as discussed in Section 2.2.3, all the

test cases execute 100% of certain functions that are not part of any feature.

These functions are typically part of system initialization, system shutdown and

setting up global variables. It is important to understand that these functions are

not part of CORE but are part of system architecture and global control structure.

Turner [26] also calls such functions as a base-line architecture. These functions

not shown in Table 4.9. Base-line architecture is product specific and contains

96

specific caller-callee sequence, and is unlikely to be reusable into another

components. We argue that such code does not change often and is not a

candidate for evolution into a component using our methodology. Using domain

expertise and results from the profiler, the base-line architecture is identified and

subtracted from the code to be evolved. However, if the base-line architecture

itself is considered for evolution then it is important to realize that this

architecture is represented at a coarse-grained (not fine-grained) level. Thus, such

evolution activities will result in either wrapping or re-architecting the entire

legacy system, both of which is certainly outside the scope of this dissertation as

discussed in Section 1.5. Table 6.7 shows example of functions that are part of

base-line architecture.

Neighboring features (K)

Using Table 4.9, we see how features may interact within a function. Traversing

through the matrix, one can identify the features that are interacting within a

function. We start with a given feature and traverse down to each function where

the coverage is greater than 0%. Once the feature implementation is identified,

we traverse in the horizontal direction to identify the coverage of other features in

that function (greater than 0%). Thus, traversing down, across and then up can

provide which are the neighboring features (see Figure 4.10). These neighboring

features form relationships that we will discuss in Section 4.1.5.

97

Evolution threshold (T)

Our methodology can be used to evolve any feature. However we found that

rewriting is preferable to features that cross-cut across many functions and

interact with a lot of features. Using Table 4.9, heuristics concerning threshold

can be developed that can identify features that are good candidates for evolution

and that are not.

We use Table 4.9 to identify neighboring features, the number of functions where

the feature is implemented, and then we calculate the average coverage

percentage within the function. This provides us a threshold regarding evolving

the feature, and provides heuristics on whether to continue with the evolution

methodology or not. We realize that the high and low values used in Table 4.9 to

determine whether or not to continue with our methodology depend on the

particular feature(s) and legacy system(s). In our experience, we found that our

methodology works best when K = 3, FI = 17 and C = 80% (a more detailed

analysis is provided in Section 7.1.1). As a rule-of-thumb, we can say that if K is

high than the feature we are trying to evolve cross-cuts through many other

features. Conversely, if K is low than the feature we are trying to evolve is trivial.

Likewise, if a feature is implemented in many functions (i.e. high FI) than the

feature is likely to be scattered in numerous functions. If FI is low (perhaps 1 or

2) than it is a trivial case as the feature is totally contained in a low number of

functions. Lastly, if the average coverage of the feature within a function is low

98

than it certainly does not make sense to evolve that feature. However, whether to

continue or not is a function of K, FI and C all of which depend on the feature

being evolved. Figure 4.10 provides Pseudo-code for calculating K, FI, C and

CORE.

 Evolution Threshold (T)
Feature to be

evolved
Neighboring

feature
(K)

Number of
functions

(FI)

Average
Coverage

(C)

Continue?

FEn High High High No
FEn High High Low No
FEn High Low Low No
FEn High Low High Possibly
FEn Low High High Possibly
FEn Low High Low No
FEn Low Low High Possibly
FEn Low Low Low No

Table 4.10: Evolution Threshold (T).

99

Map Test Case and Features:
 For Each (Test Case)
 Identify Features Represented
 Next (Test Case)
 Return Matrix (Test Case and Features)

Run Test Case with Profiler:
 For Each (Test Case)
 Run Profiler to obtain LOC in Functions
 Next (Test Case)
 Return Matrix (Test Case and Functions)

Map Features/Functions:
 For Each (Feature)
 Use Matrix (Test Case and Features) and Matrix (Test Case and Functions)
 UNION LOC representing a Feature in Functions
 Calculate Percentage Coverage of a Feature in a Function
 Next (Feature)
 Return Matrix_Features_Functions

Develop Heuristics:
 Select Feature Column to Evolve from Matrix_Features_Functions

 Calculate F1:
 For Row = 1 to MaxRow (Matrix_Features_Functions)
 If Matrix_Features_Functions (Row, Column) >0% Then
 F1 = F1 + 1
 End if
 Next Row
 Return F1

 Calculate K:
 For Row = 1 to MaxRow (Matrix_Features_Functions)
 If Matrix_Features_Functions (Row, Column) > 0% Then
 For Columns = 1 to MaxColumns (Matrix_Features_Functions)
 If Columns != Column Then
 If Matrix_Features_Functions(Row, Columns) 0% Then
 K = K +1
 End if
 End if
 Next Columns
 End if
 Next Row
 Return K

 Calculate C:
 For Row = 1 to MaxRow (Matrix_Features_Functions)
 PercentageCoverage = Percentage Coverage +
 Matrix_Features_Functions(Row, Column)
 Next Row
 C = PercentageCoverage / MaxRow (Matrix_Features_Functions)
 Return C

Calculate CORE:
 Array IsCORE(MaxRow (Matrix_Features_Functions))
 For Row = 1 to MaxRow (Matrix_Features_Functions)
 For Columns = 1 to MaxColumns (Matrix_Features_Functions)
 If Matrix_Features_Functions(Row, Columns) = 100% Then
 IsCORE (Row (Function)) = TRUE
 Else
 IsCORE (Row (Function)) = FALSE
 Break;
 End if
 Next Columns
 Next Row
 Return IsCORE(Row(Function))

Figure 4.10: Pseudo-code for Heuristics.

100

4.1.4 Feature interactions

A legacy system has many features. These features must interact with each other

to provide wider system functionality. When features interact with each other,

they have an “effect” on the system. Depending upon the state of the legacy

system, this effect can be either positive or negative (resulting in errors). We

must distinguish between intended interactions between features, interactions

between features that are not intentional but don’t result in errors (or may even

have positive side-effects) and unintended and undesirable feature interaction not

known in advance and leading to faulty applications. Figure 4.11 shows a

classification of feature interaction and their side effects.

Figure 4.11: Classification of Feature Interaction.

Unintentional

interaction

Intentional

interaction

Positive
effect

Negative
effect

Effect

Positive
interaction

Positive
side effect

Negative side
effect

Implementation
error

Unintentional

interaction

Intentional

interaction

Positive
effect

Negative
effect

Effect

Positive
interaction

Positive
side effect

Negative side
effect

Implementation
error

101

Figure 4.12: Feature Interaction via Functions and Data.

In Figure 4.12, functions are represented as rectangles, variables (both local and

global) as circles, and features as pentagons. FIs are shaded using the same

pattern as their corresponding feature (shown by the lines between pentagon and

rectangle). A feature implementation is the set of shaded regions among the

1

1

1

*

*

g1

*
1

Feature

FE3

f1

Feature
FE1

v1

f2 f3 f4

Feature

FE2

102

function rectangle. When two or more feature implementations share common

data or functions, there are four key interactions.

4.1.4.1 Shared Stateless Function (SS)

A stateless function [72] can be shared between two FIs. For example, all

statements in function f3 are executed when both FE1 and FE2 are exercised and f3

does not access any local or global data.

4.1.4.2 Shared State-Full Function (SSF)

A state-full function [72] can be shared between two features. Refactoring may be

complex, involving analyzing global variable access and control structures.

Function f2 accesses global variable g1 and since f2 is part of both FI1 and FI2,

there is an implicit interaction between FE1 and FE2.

4.1.4.3 Dependent Data (DD)

An FI may be dependent on the data that is updated by another FI. For example, f1

and f2 access the local variable v1 leading to an interaction between FE1 and FE2.

4.1.4.4 Dependent Function (DF)

An FI may be dependent on a function that is part of another FI. Function f2 calls

function f1 (shown by the arrow in Figure 4.12) when FE1 is exercised but not

when FE2 is exercised (note the consistent shading). The remaining statements in

f1 (shaded white) are associated with another feature not shown and FE1 interacts

with that feature. When a feature is fully contained in a single function, the

implementation could be equally complex. Such a function may be stateless or it

103

could depend on global data (as is the case with f4 in Figure 4.12). As each feature

is exercised, code-profiling (or similar) tools identify the code slices associated

with each feature, providing the details necessary to identify interactions between

features.

4.1.5 Feature Relationships

Turner identified several relationships among interacting features [26]. In this

section, we integrate and extend Turner’s idea of feature relationships into our

feature model. Understanding feature relationships allows us to better:

1. Interpret feature interactions as feature relationships refine the concept of

interaction by providing specification through calling sequence.

2. Refactor the existing FI into fine-grained component(s).

3. Define the communication among fine-grained component(s) that will

compose the large reusable unit.

We will discuss how these relationships are implemented within FIs.

4.1.5.1 Categories

We expand this concept into direct and indirect relationships among interacting

features and map it into FI. We categorized the feature relationships in two broad

categories as shown in Figure 4.13:

1. Indirect relationships are problem domain relationships and are abstract

in nature. These relationships are important when talking to the end-user

and usually exist at the application level rather than at the function level.

104

The end-user comprehends the system to be composed of several features

and has a perspectives with respect to the software functionality. Within

the indirect relationship, a feature may be a composed, generalized, or

specialized part of another feature. These relationships are usually visible

to the end-user view and reside in the problem domain.

2. Direct relationships are solution domain entities. These relationships

may be visible to the end-users and typically consist of several sub-

features. These relationships have concrete FIs associated with them. For

example, in an application when the user performs “file open” command,

the data is loaded from a database field and displayed on the screen.

Within the code, the data may pass through series of transformation, such

as error checking, checking dependency on other fields, and change its

appearance. To an end-user, this feature may be that of a simple “file

open”, but this feature is composed of several sub-features such as error-

checking, dependency-checking, and transform-view. Both error-

checking and transform-view require dependency-checking to set certain

state. These relationships can be identified by inspecting the feature

implementation. Within the direct feature relationships, a feature

relationship with another feature may be that of shared, altered, required,

conflict, and compete. It is to be noted that both compete and conflict are

example of features that are implemented using multiple operating system

105

threads. In contrast, feature relationships of type required, shared and

altered are examples of features that are implemented using single threads.

Figure 4.13: Feature Relationships.

We define each one of the feature relationships:

A composed relationship shows how a feature is composed of several sub-
features. An example of a composed relationship is that a bank account
consists of savings and checking accounts.

Generalized and specialized relationships usually co-exist and they
depend of particular point of view and granularity. An example of
generalized feature is an application that can integrate assets and
liabilities. An example of specialized feature is an application that can
integrate executive benefits and life insurance, where executive benefit is
the liability to be funded by the life insurance asset.

Feature Relationships

Indirect
Direct

Single
threaded

Multi-
threaded

Compete Conflict Altered Shared

Required

Generalized

Specialized

Composed

Feature Relationships

Indirect
Direct

Single
threaded

Multi-
threaded

Compete Conflict Altered Shared

Required

Generalized

Specialized

Composed

106

When a feature is required to be present for other features to function, it is
known as required relationship. For example, in order for paste feature
to work, the cut/copy feature must exist.

When a group of feature share resources (global data, objects or other
implementation) with other feature(s) then a shared relationship among
features exists. For example, Windows™ clipboard shares the text copied
to it with other applications.

When a feature’s state (global data, object or implementation) is altered
by another feature then there is an altered relationship between features.
For example, a textbox turns red in color when an error is identified (in its
content).

Most contemporary programming languages do not allow creating multiple

threads within a function. Thus, the feature relationships compete and conflict are

found at an application level rather at a function level. Our feature model

addresses feature interaction issues at a finer-granularity (i.e. at a function level).

We suggest that compete and conflict relationships be addressed at a higher level

of abstraction (i.e. at the architectural level) rather than by our feature model.

Furthermore, multithreaded systems probably need to be rewritten rather than

evolved because of the inherent complexity in maintaining them. Direct

relationships are most commonly found in the solution domain.

4.1.5.2 Determining Feature Relationships

While indirect relationships are important, their purpose is mainly to

communicate with end-users. There is no FI associated with indirect relationships

because these relationships are abstract in nature. Since we are interested in

evolving the FIs into fine-grained components, our methodology is focused on

107

direct relationships. The following three elements are important to understand

how features are related:

1. Granularity identifies any neighboring features associated with the feature

that we are trying to evolve. There are two levels of granularity, inter-

function and intra-function. In the inter-function, the FI is exclusively in a

function and that function does not implement any other FI. The

neighboring features communicate via global data. Identification of FI is

simple as features are already contained in independent functions. These

FI may not need any evolution. In the case of intra-function, the function

may have several FI and these FI may be interacting via global and/or

local data. Our methodology addresses feature interaction at an intra-

function level.

2. Order of execution identifies which neighboring feature is executed first.

3. Variable analysis identifies which variables (local and global) are used

among neighboring features and how. Along with the order of execution,

variable analysis identifies which global or local variables within the

neighboring features changed due to the execution.

We have developed techniques to identify feature relationships based upon

order of execution, change in the state of variables, feature interaction and

feature implementation. Below are five scenarios that allow us to identify

direct feature relationships:

108

4.1.5.3 Altered and Required via DD

Both altered and required relationships have been shown in Table 4.11. The

sequence of execution is shown in the leftmost column. The program declares a

global variable g1. Assume that FE1 sets the value of this global variable and FE2

and FE3 use this variable only after it has been set. Thus, FE2 and FE3 require

FE1.

The altered relationship assumes FI to be in one function (fx). This FI could be

any of the five cases discussed in Section 4.1.2. FE1 declares and sets the

value of a local variable v1. FE2 changes the value of v1. Thus, there is an altered

relationship between FE1 and FE2.

Table 4.11: Altered and Required Relationship via DD.

4.1.5.4 Altered and Required via SSF

Like the scenario shown in Section 4.1.5.3, the alteration of a variable can also

happen in an SSF. Furthermore, the required relationship depends either on a

local or a global variable, (also seen in Table 4.12).

Execution Sequence Declare Set Use Change
Program g1

FE1 v1 v1,g1 v1

FE2 g1 v1

FE3 g1

109

Table 4.12: Altered and required relationship via SSF.

4.1.5.5 Shared via DD and SSF

There is a subtle difference between a required and shared relationship. The root

of this difference is in the execution sequence. While it is necessary for a

required relationship to be executed sequentially, this constraint is not required by

the shared relationship. Thus, FE2 and FE3 can execute at any point in time as

long as they simply use (share) the state of either local or global variable set by

FE1. This is true for both DD and SSF as shown in Table 4.13 and Table 4.14

respectively.

Table 4.13: Shared Relationship via DD.

Table 4.14: Shared Relationship via SSF.

4.1.5.6 Compete via DD

Features can compete with each other. In Table 4.15, FE2 and FE3 compete to

change the values of variables v1 and g1 that was set by FE1. The execution

Execution Sequence Declare Set in fy Use in fx Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1

FE2 OR FE3 v1,g1

Execution Sequence Declare Set in fy Use in fx Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1

FE2 OR FE3 v1,g1

Execution Sequence Declare Set in fy Use in fx Change fx or fy

Program g1

FE1 v1 v1,g1 v1

FE2 g1 v1

FE3 g1

110

sequence of FE2 and FE3 is not important; only their intent to change the values of

v1 and g1 is. The scenario shown in Table 4.15 can also exist with SSF and DF.

Table 4.15: Compete Relationship via DD.

4.1.5.7 Conflict via SSF

Features can be in conflict with each other. This conflict happens when they are

trying to set, use and change local/global variables at the same time. This is

shown in Table 4.16. Although, a scenario with SSF is shown DD and DF can

also exhibit the same scenario.

Table 4.16: Conflict Relationship via SSF.

4.1.5.8 Summary

If a feature can be used in another system, its implementation becomes a

candidate for reuse. When features are represented by many test cases, FI can be

identified by the UNION of lines of code within the function(s). If test case and

feature mapping is unknown, simple clustering techniques such as RankSort can

help. Running the entire regression test case provides several interesting

heuristics and information on sub-features, FIs, CORE, base-line architecture,

Execution Sequence Declare Set in fy Use in fx Change fx or fy

Program g1

FE1 v1 v1,g1 v1,g1 v1,g1

FE1 OR FE2 OR FE3 v1,g1 v1,g1

Execution Sequence Declare Set in fy Use in fx Change fx or fy

Program g1

FE1 v1 v1,g1

FE2 AND FE3 v1,g1

111

neighboring features and threshold. Threshold data provides whether to continue

with the methodology or not. Features interact with each other via global and

local data. There are four ways how features interact; SS, SSF, DD and DF.

Feature interactions allow us to identify relationships among features.

Understanding feature relationships allow us to refactor FI into explicit fine-

grained components. Our methodology addresses evolution issues with single-

threaded direct relationships of type required, shared and altered.

112

4.2 Fine-Grained Component Model

Figure 4.14: Fine-Grained Component Model.

Our fine-grained component (FGC) model is technology-independent and can be

implemented using any of the contemporary technologies such as Microsoft

ActiveX/COM or SUN JavaBeans. While an FGC can maintain like an EJB

Session Bean, it may require basic data that is passed to it through its Properties.

Since our evolution methodology is incremental, the FGC model encapsulates a

feature implementation that can be invoked by its public interface. A FGC can

provide data back to the legacy system via Property Get. A FGC can also

Set Get

Variable Provide
Variable Access

FI

Encapsulated
State

Stateless
Function(s)

Feature Interface

Stateless Interface

Properties
External
Dependencies

Set Get

Variable Provide
Variable Access

FI

Encapsulated
State

Stateless
Function(s)

Feature Interface

Stateless Interface

Properties
External
Dependencies

113

implement any SS and their interface. Finally, a FGC can access any external

dependencies (such as SSF, CORE, public functions within the legacy system or

even other components) via specifying the external functions as shown in Figure

4.14. Likewise, the stateless functions can also have external dependencies (not

shown in the figure).

An FI is often scattered across many system functions and may access local or

global data. FIs can be identified and encapsulated into fine-grained components

using the component model shown in Figure 4.14.

We borrow the definition of component and component model from [38]:

A component is a software element that conforms to a component model
and can be independently deployed and composed without modification
according to a composition standard.

A component model defines specific interaction and composition
standards.

Our fine-grained component model has the following aspects Properties, Feature

Implementation, Stateless Functions, and Encapsulated State:

4.2.1 Property Set

Our feature model explains the importance of global and local variables when

evaluating feature relationships, as discussed in Section 4.1.5. Essentially, when

we refactor the FI code in the legacy code we disable the old code within the

legacy code. This disabled code requires access to several local and global

114

variables from the legacy system. Property Set is a way to pass these variables to

the refactored FI. Thus, Property Set must be called prior to invoking the FI.

4.2.2 Property Get

Like Property Set, the FI can change the state of certain local and global variables

that the legacy system may need to continue to function properly. Using Property

Get, the legacy system retrieves the values of these local or global variables.

4.2.3 Feature Implementation (FI)

The FI from the legacy code is refactored and encapsulated here. This may

contain several functions, classes, local data and other data structure as the feature

implementation. This implementation provides an interface, which is called by

the legacy system and other product lines. This FI can call other fine-grained

components, CORE or any other externally dependent functions as well. It acts as

the single point of entry for the feature thus providing explicitness to a feature

functionality encapsulated in FGC.

4.2.4 Stateless Function(s)

The FI may need Stateless functions (SS) that are not part of CORE, and other FI

may not call that SS. In such cases, this SS can be part of fine-grained

component. Its interface is exposed and can be called by the legacy system (or

any parent application). Like FI, the SS can also call other fine-grained

components, CORE or any other externally dependent functions.

115

4.2.5 Internal State

The fine-grained component may maintain its own state. This is analogous to an

EJB Session Bean. This state is maintained by variables local to the component.

Maintaining state has its advantages and disadvantages. It allows for better

performance as the fine-grained component retains the values of its variables from

one call to another. This saves the recalculation/resetting of variables. However,

in a multiple-user environment, maintaining state can overload the server

resources because state is stored in memory. State can also be serialized in a

database, which usually provides a good compromise between performance and

load issues discussed earlier. Our fine-grained component model allows for

maintaining the state but leaves the implementation to the developer.

4.2.6 External Dependencies

SSF, CORE and other components can be called “out” of the fine-grained

component to access any data needed via this interface. This interface can be

implemented using “events” to access any state set by an SSF. Typically, external

dependencies are a list of declaration of functions and other components that the

FI or the SS may need within FGC.

116

4.3 Evolving Feature Implementation into Fine-Grained

Components

Once we identify a FI using code profilers and similar tools such as χSuds [1] and

NuMega’s TrueCoverage™[37], we refactor that FI into a fine-grained

component.

 Figure 4.15: Evolving FI into a Fine-Grained Component.

In the fine-grained components developed in this dissertation, the interaction

between components is clearly specified by the interfaces. Components can also

access functionality using stateless interfaces. The FI is shielded from specific

variable implementations by using the interface for external access; over time, the

variable implementation will be replaced with explicit linkages to external

interfaces.

117

The first step is to isolate each function that contains code belonging to the target

FI. This analysis is often complex if because local variables, global variables, and

dependent functions can be shared between FIs as discussed in Section 4.1.5. Our

component model attempts to “share” the functions as well as the data that is

scattered across various functions through explicit interfaces.

The left part of Figure 4.15 shows a single function fx whose code is shared

between FI1 and FI2. Similarly function fy is involved in FE3 and FE2. The

purpose of cascading functions is to show that FE2 is spread in many functions,

and interacts with other features. This simple example highlights all

characteristics of our model. Common code and variables include: calls to SS f1,

global variable g1, and local variables v3 and v4. Extracting FI2 into comp2

involves several artifacts. Function f1 can easily be extracted because it is

stateless. Double arrowheads on the arrow to g1 show that it is both read and

updated by FI2. Local variables v3 and v4 are used by both FIs but FI2 only reads

v4 (as shown by arrowhead), while v3 is both updated and read by FI2; v4 is set by

FE1 but v4 is used by FE2:1. FI2 also accesses global variable g2, SS function f2,

and SSF f3. There are several important regions in Figure 4.15.

• FE1: The complete code in fx that belongs to FE1.

• FE2: The complete code in fx that belongs to FE2.

• FE2:1 FE2:1 is the shared code among FE1 and FE2 that is responsible for

the cross-cutting problem associated with features that makes evolution of

118

legacy systems extremely difficult. When two or more feature

implementations share variables and functions, as shown above, one must

evaluate how they share code and data. The region FE2:1 implicitly

defines feature relationships because either global or local variables are

used or changed (see Section 4.1.5.2). It is also important to understand

the relationships among features during an evolution exercise. A detailed

analysis of feature relationships that can be found in FE2:1 is provided later

in this chapter.

• FE1.Exclusive: The complete code in fx that belongs exclusively to FE1 and is

not shared with any other FIs including FE2:1.

• FE2.Exclusive: The complete code in fx that belongs exclusively to FE2 and is

not shared with any other FIs including FE2:1.

Comp2 in Figure 4.15 encapsulates FI2 and has several public interfaces,

represented by circles attached by lines to Comp2 to enable original code to access

the moved artifacts. Comp2 maintains data previously local to fx, replaces global

variable references with an interface that treats such data as properties, and

contains stateless and state-full functions. Public interface I2 is the primary

interface for Comp2. Stateless functions f1 and f2 are also encapsulated into

Comp2 and they can be accessed via the public interfaces IF1 and IF2. SSF f3 is

accessed with IF3; through an outgoing interface, it is assumed that f3 is not

located inside Comp2 but its state is accessed via IF3. Local and global variables

119

used by FI2 can be accessed via Get/Set properties. Additionally, the get

property provides a way to share local and global variables with other feature

implementations. As related features are evolved, the interaction between fine-

grained components will become increasingly specified and all implicit

communication will vanish. Thus, we separate accessing variables from their

implementation. When multiple features are extracted at the same time, many

stateless functions will be common to several feature implementations; these will

be encapsulated within a core component, rather than a fine-grained component,

and will be treated as a shared library.

The interface for Comp2 is a result of variables and functions that are needed for

FE2 implementation. We now discuss what constitutes the FE2 implementation

both at the function and at the component level:

FE2 implementation at the function level consists of code in function fx that is

exercised only for FE2 (defined as FE2.Exclusive) plus the code implementation that

is shared between FE2 and FE1, (defined as FE2:1). FE2.Exclusive is simple to

identify and typically it will be separated by explicit control structures such as

IF…THEN…ELSE or SWITCH…CASE statements because it is unique to a

particular feature implementation. When evolving the exclusive code there are

two possible routes developers can take; they can simply cut and paste this code

into the component, or this code can be refactored and then implemented into the

FE2 implementation of Comp2. Typically, the challenging part is to understand

120

rather than to identify FE2.Exclusive because as mentioned above code profiling tools

will identify this unique code but understanding remains implicit many times.

The more complicated case arises when we are dealing with FE2:1 because the

code is sequentially executed in this shared part of fx making it hard to isolate the

code associated with either FE1 or FE2. The net result is that the test cases for

feature 1 and feature 2 will reveal the same code in FE2:1. At this point domain

knowledge may be needed to understand the feature relationships for refactoring

and evolution. For example, it is possible that the FE2 implementation is

dependent on the presence of FE1. In such instances, it is possible that both

feature implementations be evolved at the same time.

Although there is no substitute for the domain knowledge, our feature model

identifies various relationships that may exist among features and can address the

issue discussed above. Using the results from Section 4.1.5, we can understand

the relationships among the features that can provide the local and the global

variables involved. These variables (as discussed in Sections 4.1.2 and 4.1.5) can

be used to:

1. Identify FE1, FE2, and FE2:1

2. Form the Property Get/Set of Comp2

Evolving a FI into a component requires identifying the neighbouring features

within a function and code exclusive to the feature to be evolved. The variables

121

that are required to execute (or updated) the FI become the properties of the

component.

4.3.1 Evolution Considerations

To provide heuristics for evolving FE2:1, we now discuss three possible scenarios

are discussed:

4.3.1.1 Scenario I - Understanding T(K,FI,C)

If FE2 is scattered in FI functions and its average coverage percentage C in a

given function is less than n in each of the functions, then the feature is probably

not a good candidate for evolution because FE2 cannot be encapsulated easily into

a component and the cost of evolution will be relatively higher. Furthermore, the

legacy system will continue to work so there is probably more need for

refactoring than encapsulation in case there is a desire to reduce maintenance cost.

The variables K, C, and FI can be application and/or domain specific. The

application used as a case study in this dissertation uses a K =3 and C = 80%.

4.3.1.2 Scenario II - Evolving Unrelated Features

If FE1 and FE2 share a common implementation, and furthermore they are totally

unrelated, then code for FE2 can simply be extracted and put in Comp2. FE2 will

have to be manually identified. In this case, FE1 will remain functioning. Since

the features share a common implementation and usually there is no control

statement that segregates these unrelated features, the code profiler may identify

that each feature is fully covered as shown below in Pseudo-code (Figure 4.16).

122

Function X (i,b) implements FE1 and FE2; there is nothing common between these

two features and they are totally unrelated. However, the code profiler will

identifies 100% coverage when FE1 or FE2 is analyzed independently. In such

cases, code for FE2 will have to be manually identified and then moved into the

component CompFE2. An in-depth analysis of grouping related features is

provided in Section 4.3.1.3.2.

Figure 4.16: Example of Unrelated Features in One Function.

4.3.1.3 Scenario III - Evolving Related Features

If FE2:1 implements two or more features and they are “related closely” to each

other, then we can make a copy of the function with an understanding that we will

probably evolve other features (shared in Fx) at some later point in time. There

are some configuration management issues with this case and must be handled

carefully. At a given point in time only one feature is extracted and evolved, as

Function X (int i, boolean b)

Code for Feature 1
Use i
Use b
Rest of Feature 1 Code

Code for Feature 2
Use i
Use b
Rest of Feature 2 Code

End Function

Function X (int i, boolean b)

Code for Feature 1
Use i
Use b
Rest of Feature 1 Code

Call CompFE2.X(i,b)

End Function

123

the evolution methodology is incremental in nature. More details regarding

feature relationships are discussed below.

4.3.1.3.1 Primitive Features

Before providing specific examples in Pseudo-code for each of the relationship

types, we discuss simple cases of what happens when a function is not shared

among features. Although these examples are trivial, they do provide background

information on how functions that implement multiple related-features should be

handled. In Figure 4.17, function X1 () implements code for Feature 2 and no

other feature. In addition, this code does not update any local or global variables.

The evolved function simply calls a method in component, CompFE2 (not shown

in the figure). Note that the control flow within the legacy system is not

modified.

Figure 4.17: Function Implementing Code for Only One Feature.

Figure 4.18 describes a dependent data example discussed earlier; FI2 uses the

global variable. Again, the control flow is not modified and code that implements

FE2 is simply encapsulated into method X2. An interesting point in this example

is that compFE2 has a property for accepting the variable Y. FE2 depends on the

Function X1 ()

Code for Feature 2

End Function

Function X1 ()

Call CompFE2.X1

End Function

124

global variable Y. The setY property in compFE2 is used to pass the value of the

global variable from the legacy system.

Figure 4.18: Implementation of Dependent Data.

A more involved example is shown Figure 4.19. When FI2 updates a global

variable Y, a get property is needed to update the state of global variable in the

legacy system. Note that the legacy system first passes the global variable into

the component before calling X3.

Figure 4.19: Feature Updates Global Variable.

These examples assumed that the function does not include any other feature

implementation. While these examples are good for showing the concept, in

reality this is hardly the case, as a single function can be included in several

features. One such example is shown in Figure 4.20. Function X4 () is involved

in both FI1 and FI2, furthermore IsOdd () is used by both features. The value of

the dependent data v determines which feature will be invoked. In addition, FI2

Function X3 ()

Code for Feature 2
Change Global Variable Y
Rest for Feature 2 Code

End Function

Function X3 ()

CompFE2.SetY(Y)
Call CompFE2.X3
Y = CompFE2.GetY

End Function

Function X2 ()

Code for Feature 2
Use Global Variable Y
Rest for Feature 2 Code

End Function

Function X2 ()

Call CompFE2.SetY(Y)
Call CompFE2.X2

End Function

125

changes the value of global variable Z. In evolving FE2, FE2 must be considered

in function X4 (); code that is common to both (and other) features must be

identified and moved to relevant components. For example, function A is moved

inside component compFE2 because it is called only by FE1 and FE2. IsOdd () is

moved into core because it is SS and all the features call it. Note that control flow

that is common to both features remains in the evolved function.

126

Figure 4.20: Single Function Implementing Several Features.

Function X4 (int i, boolean b)

Declare Local Variable v
v= Function A(i)
If b = True Then
 v = v + 1
Else
 v = v + 2
End if

If IsOdd(v) Then
 Code for Feature 1
 Use v,i
 Change Global Variable XX
 Rest of Feature 1 Code
Else
 Use Global Variable Z
 Code of Feature 2
 Use v,i
 Change Global Variable Z
 Rest for Feature 2 Code
End if

End Function

Function A (int i)

End Function

Function IsOdd(int v)

End Function

Function X4 (int i, boolean b)

Declare Local Variable v
v= CompFE2.A(i)
If b = True Then
 v = v + 1
Else
 v = v + 2
End if

If CORE.IsOdd(v) Then
 Code for Feature 1
 Use v,i
 Change Global Variable XX
 Rest for Feature 1 Code
Else
 Call CompFE2.SetZ(Z)
 Call CompFE2.X4(v,i)
 Z = CompFE2.GetZ(Z)
End if

End Function

127

4.3.1.3.2 Determining Feature Relationships

Since some of the basic ideas have been described above, the feature relationships

are now discussed. The relationships between features are implemented by

functions. The problem domain relationships are discussed in detail, with

emphasis on required, alteration and shared, since all three of these feature

relationships have a tendency to be implemented in more than one function.

Feature relationships must be clearly understood for the purpose of evolution. As

an example, when a function is to be evolved and it implements more than one

feature, it is quite possible that a code-profiler may not reveal the exact code

associated with a given feature. In fact, the profiler may result in the exact same

code for both features as shown in Figure 4.21. Function X () implements FE1

and FE2. However, the code-profiler results in the exact same lines of code as

seen in the left block. FE1 requires FE2 because dependent data i is changed by

FE1 and used by FE2. The global variable i is passed using GetI and SetI to both

components namely, compFE2 and compFE1. When Feature 2 only is evolved,

the Pseudo-code may look like the one in the center block. The right block

represents the code after FE1 and FE2 both have been evolved. The purpose in

showing all three stages of evolution is to show that the methodology can be

applied to evolve just one or both the features.

128

Figure 4.21: Example of Required Relationship.

The example below in Figure 4.22 shows a more traditional function that has

more than one feature implemented. Note that code for Feature 2 is implemented

only when the dependent data i is equal to Something. If i is not equal to

Something, Feature 2 is never invoked. Thus FE2 requires FE1. The right block

simply encapsulates the Feature 2 code into a component along with dependent

data i and b.

Function X ()

Use Global i
Code for Feature 1
Change i to Something
Rest of Feature 1 Code

Code for Feature 2
Use i
Rest of Feature 2 Code

End Function

Function X ()

Use Global i
Code for Feature 1
Change i to Something
Rest of Feature 1 Code
Call CompFE2.SetI(i)
Call CompFE2.X
i = CompFE2.GetI

End Function

Function X ()

Call CompFE2.SetI(i)
Call CompFE1.SetI(i)

Call CompFE1.X
Call CompFE2.SetI(CompFE1.GetI
Call CompFE2.X

End Function

129

Figure 4.22: Example of Required Relationship.

An alteration relationship is similar to required as shown in Figure 4.23. The

function prior to its evolution is the one to focus on because the one on the right

can have similar implementation as the required relationship. FE1 alters FE2 based

upon SomeSpecificValue of b. Since, entire code of FE2 is encapsulated, the

evolved function in the right block looks similar to the required relationship;

however, they are quite different.

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
 Code for Feature 2
 Use b
 Rest of Feature 2 Code
End if

End Function

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
 Call CompFE2.Set(i)
 Call CompFE2.Set(b)
 Call CompFE2.X()
End if

End Function

130

Figure 4.23: Example of Alteration Relationship.

The next example illustrates a shared relationship implementation. In

Figure 4.24 this example, the state is shared among the two features via a shared-

state-full function A (). Function A () holds the state in a static variable and that

state is used by FE2. Since FE2 and FE1 use function A (), the two features are

related; function A () can be some part of component comp FE2. Finally, the code

for FE2 is actually moved into a method called X ().

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
 Code for Feature 2
 Use b
 If b = SomeSpecificValue Then
 Do something different for Feature2
 Else
 Rest of Feature 2 Code
 End if

End if

End Function

Function X ()

Declare Local Variable i
Declare Local Variable b
Code for Feature 1
i = Initialize
b = Initialize
Rest of Feature 1 Code
Change i to Something
Change b
More of Feature 1 Code

If i = Something Then
 Call CompFe2.Set (i)

 Call CompFe2.Set (b)
 Call CompFe2..X ()

End if

End Function

131

Figure 4.24: Example of Shared Relationship.

Even though conflict and competition are solution domain concerns, they usually

do not share a common function as far as implementation is concerned as shown

in Figure 4.25 and Figure 4.26. As a result, these two types of direct feature

relationships can be profiled easily with the code-profiler; however, evolution

may require configuration level changes at a higher granularity. For example, a

conflict relationship exists when a batch process is trying to change the status of

certain records in the database while the GUI is running. Changing the status is,

Function X (int c)

Declare Local Variable i
Call A(0)

i = Initialize
i = A(1)

IF c = SomeValue Then
 Code for Feature 1
 Use i
 More of Feature 1 Code
Else
 Code for Feature 2
 Use i
 More of Feature 2 Code
End if

End Function

Function A(int i)

Static Variable K
If i = 0 Then
 Calculation Code for K
 K = SomeValue
Else
 Return K
End if

End Function

Function X (int c)

Declare Local Variable i
Call CompFE2.A(0)

i = Initialize
i = CompFe2.A(1)

IF c = SomeValue Then
 Code for Feature 1
 Use i
 More of Feature 1 Code
Else
 Call CompoFe2.Set(i)

 Call CompFe2.X
End if

End Function

132

in fact, a feature but since it can be called from both batch and GUI there is a

conflict. Since both these features are implemented in separate functions, the

code-profiler will identify them individually based upon the test cases. The

evolution of these two direct relationships (conflict and competition) is outside

the scope of this dissertation. The understanding is that these methods are called

at different times so there will not be a problem.

Figure 4.25: Examples of Conflict Relationships.

Figure 4.26: Example of Compete Relationships.

Function X ()
Trying to access a shared memory region
at time t

End Function

Function Y()
Trying to access the same shared memory
region at time t (as function X)

End Function

Function X ()
CompFe2.X

End Function

Function Y()
CompFe2.X

End Function

Function X ()
Update Rows in certain table of a Database
via a Batch Process

End Function

Function Y()
Update Same Rows in certain table of a
Database via a GUI Process

End Function

Function X ()
CompFe2.X

End Function

Function Y()
CompFe2.Y

End Function

133

4.4 Budget Analysis Model

In this section, we describe a simple model that allows the project manager to

quickly calculate the net gain or loss due to the application evolution

methodology. While there are several cost models such as COCOMO and others

[15][17][109][130] that can be used, we show a simple model to track costs

relevant to our methodology. These items can be integrated into other cost

models as well. These costs are evaluated in Chapter 6 using our primary case

study. Other cost savings are also possible so this list is not exhaustive. Note that

original regression test-suites can be used to test feature-based as well as the

CORE components. It is important to note that testing feature-based and CORE

components are two separate processes. We suggest that CORE be integrated

first and then tested, followed by the feature-based (and CORE) components. The

elements of our cost models are as following:

134

Table 4.17: Budget Analysis.

4.5 Formal Model

The feature model and the fine-grained component model are supported by a

formal model that we now describe. We use Relational Calculus as the basis of

our formal model that was introduced by Codd [34]. Refer to Appendix D for

Relational Calculus Preliminaries.

A feature as described earlier is a group of individual requirements that describes

a unit of functionality. We also established that regression test cases are the way

these features are exercised. The feature model describes how FIs (functions,

local data and global data) is associated with the features.

Element Description
Cost of Mapping Features and Test-
Cases

Time taken by the software team to identify and map features
and test cases.

Cost of identifying code using test cases
and profiler

Time taken by the software team to run the code coverage
tool to identify feature implementation.

Cost of Refactoring Time taken to analyze heuristics and FIs.
Cost of Developing Components Time taken to develop feature-based fine-grained

components
Cost of Developing CORE Component Time taken to create the shared reusable library
Cost of Configuration Management
(CM)

Time taken to develop CM activities among product lines

Cost of Testing Time taken to test feature-based and CORE components
Cost of Training and Documentation Time taken to develop users guide and train other members

of the software process team
Savings from Solving Feature Problems Time saved from fixing the feature specific problems. It can

be viewed as what would it cost in absence of the
methodology

Savings from improved architecture
(reduced global variables, more explicit
communication and better understanding
of features)

Time saved in training a new hire. This element is hard to
measure because it is always implied. We were unable to
measure it at AFS.

Savings in reusing Core Time saved in re-development efforts in other product lines
Savings in reusing feature specific
component

Time saved in re-development efforts in other product lines

Net Cost (+)/Savings (-) Sum of all costs and savings. Negative number means a
profit.

135

Researchers [5][125][121][99] have proposed several execution slice-based

heuristics to identify code that is uniquely related to a given feature. Although

code so identified provides an excellent starting point for program understanding

and evolution, it is not sufficient to capture relationships such as SS, SSF, DF and

DD (see Section 4.1.4). To capture these relationships, we need to identify

functions and data that are shared among features. One approach is to use the

union of the FI of related test cases to find a set of functions and data.

Theoretically, we may need to use all test cases for a given legacy system and

feature. In practice, this is often not necessary because the evolution

methodology we describe suggests three ways to group related test cases (see

Section 4.1.3.1).

The reason for using test cases with respect to the feature being examined is to

avoid FIs that have nothing to do with this feature. If this is not possible (i.e.,

every input with respect to this feature also exercises some other feature), we need

to subtract code that is uniquely used to implement the other features from the

code identified by the union of such test cases. A simple example explanation is

as follows. Suppose a feature (say FE1) cannot be exercised without also having

another feature FE2 exercised. Also, assume that FE2 can be exercised by itself.

Under this situation, a way to find code used to implement FE1 is to first find code

used to implement FE2 and FE1, then subtract the code uniquely related to FE2.

136

The formal model presented in this section forms the mathematical basis for the

Feature and Fine-Grained Component Model discussed earlier. Regression test

cases, feature, feature implementation and fine-grained components are

represented using Relational Calculus and First Order Predicate Logic.

4.5.1 Data Model

Figure 4.27 illustrates the data model that will be used as the basis for formalism

using relational algebra. The data model also provides the basis for the Evolution

Manager Utility described in Section 4.6. The data model contains the

information regarding the legacy system, the feature function relationship, the

feature interactions and finally the component definition. The data model can be

used to trace feature relationships, interactions, and component evolution of a

legacy system.

The data model can be divided into four parts:

• System Information Part: This part consists of the following six tables;

Legacy_System, Release, Feature, Test_Case_Feature_Map,

Function_List and Test_Cases. The system information part describes the

information about the legacy system’s release. A release is a production

version of the legacy system. This part of the data model reflects a legacy

system with many releases. Each release may have many associated

features, functions and test cases. A feature can be represented by one or

more test cases. Table 4.18 provides more details on the specific tables

137

and their relationships of system information part of the data model. The

purpose of these tables are to capture information about the legacy system,

the data can be entered manually into the database or import routines can

bring the data from another system/sub-system.

• Feature/Function Part: This part of the data model stores the results

from the profiler and is related to the system information. The two parts

are related by Function_ID in the tables Function_List and

Feature_Function_Map. The feature/function part of the data model

consists of Test_Cases_to_Function, Feature_Function_Map,

Function_To_Vars and Variable tables. Essentially, the test cases and the

FI is determined by using profiler and Feature/Function mapping is stored

in the Feature_Function_Map table. Information about variables and their

location within the function is kept within the Function_To_Vars and

Variable tables. Table 4.19 provides more details on the specific tables

and their relationships of system information part of the data model.

These tables are central to the collection of information for the

methodology.

• Feature Interaction Part: This part of the data model contains

information about feature interaction. It consists of Shared_Stateful,

Dependent_Data, Dependent_Function and Shared_Stateless tables. This

part is related to the feature/function part via the Execution_ID field

138

within the Feature_Function_Map and all the four tables listed above.

This part of the data model is populated by the analyzing the feature

interactions among features. The code profiler identifies the FI and data

that is associated with a feature. This FI may call functions (SS, SSF, DD,

and DF, see section 4.1.4 for more details) that may be part of other FI.

The table Shared_Stateful is populated if FI calls an SSF that is part of

another FI. Likewise, Shared_Stateless is populated if FI calls an SS that

is part of another FI, and so on. Currently, these tables are manually

populated in the database but code can developed to identify SS, SSF, DD

and DF from the calling FIs to automate this process. Table 4.20 provides

more details on the specific tables and their relationships of system

information part of the data model.

• Component Definition Part: This part of the data model contains

information regarding the component definition that is the result from

applying the methodology. It consists of Component,

Component_Interface, Component_Property_Set and

Component_Property_Get tables. This part is related to the feature

interaction part via the Shared_Stateful_ID, Dependent_Data_ID,

Dependent_Function_ID and Shared_Stateless_ID. Component definition

part stores the information regarding property get, property set and the

139

feature interface. Table 4.21 provides more details on the specific tables

and their relationships of component definition part of the data model.

There are several purpose of this data model. First, it provides an intuitive

understanding of the evolution process and maps the methodology steps to the

physical tables. Second, it provides the foundation of our formal model (see

Section 4.5). Third, it provides the foundation for the Evolution Manager

Utility (see Section 4.6) that can be used to track the evolution process of our

methodology.

140

Figure 4.27: Data Model Used as Basis for Formalism.

141

Table Related Table:
Relationship

Keys Relationship
Type

Legacy_System Legacy_System:
Release

System_ID One-To-Many

Release Legacy_System:
Release

System_ID One-To-Many

 Release:
Feature

Release_ID One-To-Many

 Release:
Test_Cases

Release_ID One-To-Many

 Release:
Function_List

Release_ID One-To-Many

Feature Feature:
Test_Case_Feature_Map

Feature_ID One-To-Many

 Release:
Feature

Release_ID One-To-Many

Test_Case_Feature_Map Feature:
Test_Case_Feature_Map

Feature_ID One-To-Many

 Test_Cases:
Test_Case_Feature_Map

Test_Case_ID One-To-Many

 Test_Case_Feature_Map:
Feature_Function_Map

Test_Case_Feature_ID One-To-Many

Test_Cases Test_Cases:
Test_Case_Feature_Map

Test_Case_ID One-To-Many

 Release:
Test_Cases

Release_ID One-To-Many

 Test_Cases:
Test_Cases_TO_Function

Test_Case_ID One-To-Many

Function_List Function_List:
Test_Cases_TO_Function

Function_ID One-To-Many

 Function_List:
Feature_Function_Map

Function_ID One-To-Many

 Release:
Function_List

Release_ID One-To-Many

 Function_List:
Function_TO_Vars

Function_ID One-To-Many

Table 4.18: Data Model - System Information.

142

Table Related Table:
Relationship

Keys Relationship
Type

Feature_Function_Map Feature_Function_Map:
Shared_Stateless

Execution_Traces_ID One-To-Many

 Feature_Function_Map:
Shared_Stateful

Execution_Traces_ID One-To-Many

 Feature_Function_Map:
Dependent_Data

Execution_Traces_ID One-To-Many

 Function_List:
Feature_Function_Map

Function_ID One-To-Many

 Feature_Function_Map:
Dependent_Function

Execution_Traces_ID One-To-Many

 Test_Case_Feature_Map:
Feature_Function_Map

Test_Case_Feature_ID One-To-Many

Function_TO_Vars Variable:
Function_TO_Vars

Variable_ID One-To-Many

 Function_List:
Function_TO_Vars

Function_ID One-To-Many

Test_Cases_TO_Function Function_List:
Test_Cases_TO_Function

Function_ID One-To-Many

 Test_Cases:
Test_Cases_TO_Function

Test_Case_ID One-To-Many

Variable Variable:
Function_TO_Vars

Variable_ID One-To-Many

Table 4.19: Data Model - Feature/Function Part.

143

Table Related Table:
Relationship

Keys Relationship
Type

Dependent_Data Feature_Function_Map:
Dependent_Data

Execution_Traces_ID One-To-Many

 Dependent_Data:
Component_Property_S

Dependant_Data_ID One-To-Many

 Dependent_Data:
Component_Property_G

Dependant_Data_ID One-To-Many

Dependent_Function Dependent_Function:
Component_Interface

Dependant_Function_ID One-To-Many

 Feature_Function_Map:
Dependent_Function

Execution_Traces_ID One-To-Many

Shared_Stateful Shared_Stateful:
Component_Interface

Shared_Stateful_ID One-To-Many

 Feature_Function_Map:
Shared_Stateful

Execution_Traces_ID One-To-Many

Shared_Stateless Feature_Function_Map:
Shared_Stateless

Execution_Traces_ID

One-To-Many

 Shared_Stateless:
Component_Interface

Shared_Stateless_ID One-To-Many

Table 4.20: Data Model - Feature Interaction Part.

144

Table Related Table:
Relationship

Keys Relationship
Type

Component Component_Interface:
Component

Interface_ID One-To-Many

 Component_Property_G:
Component

Property_ID One-To-Many

 Component_Property_S:
Component

Property_ID One-To-Many

Component_Interface Component_Interface:
Component

Interface_ID One-To-Many

 Shared_Stateful:
Component_Interface

Shared_Stateful_ID One-To-Many

 Shared_Stateless:
Component_Interface

Shared_Stateless_ID One-To-Many

 Dependent_Function:
Component_Interface

Dependant_Function_ID One-To-Many

Component_Property_Get Component_Property_G:
Component

Property_ID One-To-Many

 Dependent_Data:
Component_Property_G

Dependant_Data_ID One-To-Many

Component_Property_Set Component_Property_S:
Component

Property_ID One-To-Many

 Dependent_Data:
Component_Property_S

Dependant_Data_ID One-To-Many

Table 4.21: Data Model - Component Definition.

145

4.5.2 Preliminary Definition

Let:

LS be a Legacy System consists of functions and global data, LS = (F,G).

Define FE to be the set of all feature in LS and F is the set of all functions, fi ∈ F.

FEi represents a specific feature. Let T be the set of regression test case that are

part of LS, T = {t1, t2, t3, t4, ….. tn}, ti refers to a specific test case within T.

The profiling of LS can determine which FIs are executed for any test case ti ∈ T.

Thus, we define a relation EXERCISES over T × F such that EXERCISES(ti, fi) is

true if fi is exercised by test case ti.

We now define a relation that links test cases and features together. There are

many different ways to view the features in FE but we are concerned with

members of FE that can be represented by a subset of T. Thus we can define a

relation REPRESENTS over T × FE such that REPRESENTS(ti, FEi) is true if

test case ti represents feature FEi.

Minimal Constraint → ∀ FEi ∃ tj Such that REPRESENTS(tj,FEi)

Coverage Constraint → ∀ ti ∃ FEj Such that REPRESENTS(ti,FEj)

Non Pervasive Constraint → (Not ∃) FEi ∀ tj Such that REPRESENTS(tj,FEi), this

means that no feature is tested by all test cases.

146

Let FIi be a feature implementation as defined in the feature model and

FEi be a feature of LS that is exercised when Ki is executed, ki is a set of test cases

such that ki ⊂ T. For example, Ki = {t1, t5, t11}; note that Ki ≠ T by the non-

pervasive constraint. We define the USES(fi,fj) relation over F × F that identifies

when function fi invokes function fj. We are not ready to provide precise

definition of the term feature implementation. Define FIi as the implementation

of FEi in LS such that FIi = {f | ∀ t ∈ T, f ∈ F, REPRESENTS(t, FEi) ∧

EXERCISES(t,f)}. Note that FIi will be the way we refer to the implementation

of FEi.

4.5.3 Feature Interaction

Features interact because their underlying feature implementation overlap. Two

features FEi and FEj interact functionally when FIi ∩ FIj ≠ Ø. Two features can

also interact through data. If we define G to be set of global variables in LS,

LOCALS (fi) to be set of local variables within a function fi, D(fi) = {d |

USES(fi,d) ∧ (d ∈ {G ∪ LOCALS(fi)})}, and DATASCOPE(FEi) = { d ∈ D(fi)

∧ f ∈ FIi} then the two features interact through data when DATASCOPE(FIi) ∩

DATASCOPE(FIj) ≠ Ø. Note that data interaction model is not powerful to

147

capture alias or pointers to data (such as a SQL statement). We chose to ignore

such details at this time since our methodology is capable of identifying the data

that is required to create components. It is also useful to discuss the concept of

neighboring features, that is, features that share their implementation with the

target (feature to be evolved) feature. NEIGHBOR(FEi) = { FEj | FEj ≠ FEi ∧

(FIi ∩ FIj ≠ Ø)}

4.5.4 Classifying Functions

A function is Shared Stateless (SS) when D(f) = {Ø ∧ ∃ FEi ,FEj | f ∈ FIi ∩ f ∈

FIj}

A function is Shared State-Full (SSF) when D(f) = {Ø ∧ ∃ FEi ,FEj | ∃ d ∈ D(f)

∧ d ∈ DATASCOPE(FEi) ∧ d ∈ DATASCOPE(FEj)}

A function is Dependent Data (DD) when ∃ FEi, FEj, fx ,d, fy | d ∈

DATASCOPE(FEi) ∩ DATASCOPE(FEj) ∧ USES(fx,d) ∧ fx ∈ FIi) ∧

USES(fy,d) ∧ fy ∈ FIj ∧ fx ≠ fy.

A function is Dependent Function (DF) when ∃ FEi ,FEj, fx , fy , fz | fx ∈ FIi) ∧ fy

∈ FIj) ∧ USES(fx, fy) ∧ USES(fy, fz) ∧ fx ≠ fy.

148

4.5.5 Identifying Interactions within a Functions

We need to capture the interactions within a function between features. We

define TRACE(t,f) = {N} where N is a natural number representing the lines of

code executed within function f when test case t is exercised. The function

definition can be defined to be FDef = N X f. Given that there may be a second

feature whose implementation may overlap within f, we need to separate the code

within the function f. We define SCOPE(FEi,f) = ∀ ti ∪ TRACE(ti,f) ∧ f ∈ FIi..

This allows us to define the code that is exclusive to the feature as

EXCLUSIVE(FEi,f) = SCOPE(FEi,f) - ∪ SCOPE(FEj,f) ∀ FEj ≠ FEi.

4.5.6 CORE

We assume that all functions that belong to CORE are stateless and that they are

exercised by all test cases. We define CORE = {f∈ FIi|∀ t∈ T,EXERCISES(t,f) ∧

SS(t,f)}.

4.5.7 Threshold

As defined in Section 4.1.3.3 that Threshold consists of FI, K and C where FI is

the number of functions (note that this is same as feature implementation), K is

the number of neighboring features and C is the average coverage of a FE across

all FIs.

149

Generalized Feature Set (GFS) for FEi for a given function fx= Cardinality(∀ Ti |

REPRESENTS(Ti, FEi) ∧ EXERCISES(Ti,fx)). It means set of features

implemented in a given function.

When |GFS| = 1 it indicates that the function implements only one features

|GFS| > Χ represents Evolution Threshhold. It means that if a function

implements more than Χ features in it, then it is probably not a good candidate for

our methodology unless the function belongs to CORE.

Threshold can also be defined as a combination of (|FI|, |K|, C), where |FI| =

Cardinality(∀ FIi, FEi | FIi), |K| = Cardinality(∀ FIi,FEi |NEIGHBOR(FEi)) and C =

(Cardinality(∀ FEi | EXCLUSIVE(FEi,f))/|FI|)*100.

Figure 4.27 illustrates the data model that can be used as the basis for formalism

using relational algebra and first order logic.

4.5.8 Summary

We presented a formal representation of our methodology in this section. Using

relational calculus and first-order-logic we defined Feature Implementation,

Feature Interactions, Classification of Functions into SS, DD, DF and SSF, and

CORE. Most important aspect of our formal model is the fact that it is based on

relational data model described in Section 4.5.1. We identified a weakness in

representation of data when the data is a pointer or an alias (such as a SQL

statement). We also represented important elements of our methodology such as

150

GFS, Threshold and Neighboring features. The next section describes the

evolution manager utility that is based on the data model and it proved to be a

useful tool in our case study.

151

4.6 Evolution Manager Utility

We developed a utility called evolution manager based upon the data model

discussed in Section 4.5. Figure 4.28 shows an overview of evolution manager

functions. The key features of evolution manager utility are:

• Feature function relationships based upon test case and features, and test

case and functions

• Feature function relationship in terms of coverage percentage

• Exclusive coverage of a feature within a function

• Calculate Threshold T(FI,K,C)

• Variable usage (set or use) by a feature within a function

• Feature implementation in terms of which lines of code and variables

implement the feature

• Several tracking reports such as feature lists, function lists, or features

within a release etc

The following results from the profiler are imported into the evolution manager:

• Line(s) of code executed in each function by a test case

• Local and global Variables used and updated in each function

In addition to the information imported from the profiler, the evolution manager’s

data model accounts for following data (user input):

152

• Test cases used in each release, provided by testers

• Mapping of test case and features, provided by testers

Using SQL statements and matrix calculations, the evolution manager generates

reports that allow us to identify feature implementation. The feature

implementation is then used to refactor the code to create component. The utility

does not refactor the code but provides tracking and identification of feature

implementation based upon information discussed above. Among the key reports

that the utility provides are feature/function mapping, feature exclusive lines of

code in a function, threshold and recommendation for component’s properties.

The evolution manager utility can be used to help automate the methodology by

taking the following steps:

• Populate the system information part of the data model either by importing

data from another system or by manually entering the data through some

simple user interfaces screens.

• Develop logic to identify feature/function interaction by identifying SS,

SSF, DD and DF; note that this will involve programming language-

dependent logic. This will result in populating the feature interaction part.

• Develop logic to populate the component definition part, this can be

achieved by identifying which variables are set/used by FI.

153

Appendix G provides detail on the evolution manager utility and implementation

of the example discussed in Chapter 5.

Figure 4.28: Evolution Manager Utility.

Profiler Results
(Test Case and Function Mapping)

(Function and Variable Usage)

Evolution Manager
(Import Process Populate Tables

Test_Case_To_Functions and
Variables)

Evolution Database

Evolution Manager
(Feature Function Mapping by

Analyzing Test Case and Features and
Test Case and Test Case and

Functions)

Feature Function
Mapping Each Cell
Shows LOC and %

Coverage.

R
eport

Evolution Manager
(Feature Interaction by Analyzing LOC

common among Feature and LOC
exclusive for a given Feature)

Feature Common
and Exlusive

R
eport

Evolution Manager
(Threshold Calculation and Many other

Reports)

T(FI,K,C) and
Other tracking

reports

R
eport

154

4.7 Summary

Four models were discussed in this chapter, namely the feature model, fine-

grained component model, the budget analysis model and the formal model. The

feature model describes our definition and understanding of features. It address

the feature interaction problem by considering relationships among features. We

also discussed heuristics using feature implementation. The fine-grained

component model describes our definition and understanding of components and

component model. Both feature and fine-grained component models are used to

evolve feature implementations into reusable components. We also described a

simple budget analysis model and items that should be tracked so the

methodology can be verified. Finally, we provided theoretical foundation of our

feature and fine-grained component model in formal model.

155

5 A Simple Example

To illustrate indirect feature relationships and evolution methodology; we have

extended a small example that first appeared in [5]. We extended the example to

show how our evolution methodology can be used to encapsulate a group of

related features. The purpose of this example is to show how our evolution

methodology can be used to trace source code associated with test cases; how the

traced code can be encapsulated into components; and finally, how these

components can be reused.

As described in [5] and informally observed, an Automatic Teller Machine’s

(ATM) operational requirements are shown in Table 5.1.

ATM Operational Requirements
1. A customer must be automatically prompted for a Personal Identification Number (PIN).
2. After the input of a PIN, the customer must be offered a set of operations: make a

deposit, make a withdrawal, or check one account balance.
3. After an operation has completed, the customer must have the opportunity to start another

operation.
4. At any point of an operation, the customer must be able to cancel the current operation

and be asked whether to continue with another operation.
5. After the operation is chosen, the customer must select the account on which to perform

the operation: checking or savings.
6. In the case of a withdrawal, the customer must enter a positive number that represents

the amount to withdraw from the selected account. Furthermore, if the withdrawal is
done on the checking account then the amount must be less than or equal to $300.

7. In the case of a deposit, the customer must be able to insert bills of $5, $10, $20, $50 or
$100 into the ATM. The corresponding account must be credited.

8. In the case of a balance operation, the balance of the corresponding account must be
displayed on the screen.

9. When the series of operations is terminated, the customer must decide whether a receipt
should be printed. Given a positive response, a receipt with the balance information of
all accounts that have been affected during the transaction should be printed.

Table 5.1: ATM Operatioal Requirements.

156

This ATM function was implemented in Visual Basic (See Figure 5.1). In

addition, a feature analysis and test-case analysis was also performed to map

feature and test cases. Note that details of functions such as Make_Deposit () and

Make_Withdrawal () are omitted for space reasons. Line numbers are used for

reference as they will be utilized when profiling the code using test cases. An

interesting observation regarding the ATM example is that there is an indirect

composition relationship because an Account is comprised of Checking and

Savings.

157

G l o b a l P I N
G l o b a l A c c o u n t _ C h o i c e
G l o b a l A m o u n t
G l o b a l C h e c ki n g _ F l a g
G l o b a l S a v i n g s_ F l a g
G l o b a l R e c e i p t _ C h o i c e
G l o b a l C u st o m e r_ R e c

F u n c t i o n A T M ()
1 . P r i n t (" E n t e r P I N ")
2 . R e a d (P I N)
3 . C u st o m e r_ R e c = G e t _ C u st o m e r(P I N)
4 . D o
5 . C l e a r_ S c re e n
6 . P ri n t (1 . D e p o si t , 2 . W i t h d ra w , 3 . B a l a n c e , 0 t o E n d)
7 . R e a d (C o d e)
8 . I F C o d e > 0 T h e n P ri n t (1 . C h e c ki n g , 2 . S a v i n g s)
9 . I F C o d e > 0 T h e n R e a d (A c c o u n t _ C h o i c e)
1 0 . I F C o d e = 1 T h e n
1 1 . A m o u n t = G e t _ M o n e y (C u st o m e r_ R e c)
1 2 . I F A m o u n t > 0 A n d A c c o u n t _ C h o i c e = 1 T h e n
1 3 . M a ke _ D e p o si t (C u st o m e r_ R e c , A m o u n t , " C ")
1 4 . C h e c ki n g _ F l a g = T ru e
1 5 . E L S E I F A m o u n t > 0 A n d A c c o u n t _ C h o i c e = 2 T h e n
1 6 . M a ke _ D e p o si t (C u st o m e r_ R e c , A m o u n t , " S ")
1 7 . S a v i n g s_ F l a g = T ru e
1 8 . E N D I F
1 9 . E L S E I F C o d e = 2 T h e n
2 0 . C l e a r_ S c re e n
2 1 . P r i n t (" E n t e r A m o u n t ")
2 2 . R e a d (A m o u n t)
2 3 . I F A c c o u n t _ C h o i c e = 1 T H E N
2 4 . I F A m o u n t < = 3 0 0 A N D A m o u n t > 0 T H E N
2 5 . M a ke _ W i t h d ra w a l (C u st o m e r_ R e c , A m o u n t , " C ")
2 6 . C h e c ki n g _ F l a g = T ru e
2 7 . E L S E I F A m o u n t > 3 0 0 T H E N
2 8 . P r i n t (" E rro r: C a n n o t w i t h d ra w m o re t h a n 3 0 0 ")
2 9 . E N D I F
3 0 . E L S E I F A c c o u n t _ C h o i c e = 2 T H E N
3 1 . M a ke _ W i t h d ra w a l (C u st o m e r_ R e c , A m o u n t , " S ")
3 2 . S a v i n g s_ F l a g = T ru e
3 3 . E N D I F
3 4 . E L S E I F C o d e = 3 T h e n
3 5 . I F A c c o u n t _ C h o i c e = 1 T h e n
3 6 . D i sp l a y _ B a l a n c e (C u st o m e r_ R e c , " C ")
3 7 . E L S E I F A c c o u n t _ C h o i c e = 2 T h e n
3 8 . D i sp l a y _ B a l a n c e (C u st o m e r_ R e c , " S ")
3 9 . E N D I F
4 0 . E N D I F
4 1 . W h i l e (C o d e i s N O T E q u a l t o 0)
4 2 . P r i n t (" D o y o u w a n t a R e c e i p t ? , 1 . Y e s, 2 . N o ")
4 3 . R e a d (R e c e i p t _ c h o i c e)
4 4 . I f R e c e i p t _ C h o i c e = 1 T h e n
4 5 . I F C h e c ki n g _ F l a g T H E N
4 6 . P r i n t _ I N F O (C u st o m e r_ R e c , " C ")
4 7 . E L S E I F S a v i n g s_ F l a g T H E N
4 8 . P r i n t _ I N F O (C u st o m e r_ R e c , " S ")
4 9 . E N D I F
5 0 . E N D I F
5 1 . E j e c t _ C a rd ()
E n d F u n c t i o n

Figure 5.1: ATM Function Implemented in VB.

There are several features and sub-features in this example. They are summarized

in Figure 5.2:

158

FE1: Customer Session
FE2: Enter PIN
FE3: ATM Operations
FE4: End of ATM
FE5: Receipt (Print)
FE6: Get Receipt
FE7: Skip Receipt
FE8: Withdrawal
FE9: Checking Withdrawal
FE10: Savings Withdrawal
FE11: Abort Withdrawal
FE12: Deposit
FE13: Checking Deposit
FE14: Savings Deposit
FE15: Abort Deposit
FE16: Verify Balance
FE17: Checking Balance
FE18: Savings Balance
FE19: Abort Balance
FE20:Amount to Withdraw
FE21: Amount to Deposit
FE22:Verify Limits
FE23: Abort Withdrawal
FE24: Accept Money
FE25 Enter Digit

Figure 5.2: Summary of Features in ATM Function.

Again, the deposit feature comprises a deposit either in the checking account or

the savings account. Similarly, withdrawal can also be viewed as an indirect

relationship of type composition. The next step is to analyze test cases that

exercise the features in ATM sub-system.

159

Test Case Content Mapped Features

t1 123 Deposit Savings 100 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25

t2 123 Deposit Checkings 100 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE13,FE21,FE22,F
E23,FE23,FE25

t3 123 Withdraw Checkings 20 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE8,FE9,FE20,FE25

t4 123 Withdraw Checkings 500 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE8,FE9,FE20,FE25

t5 123 Withdraw Savings 200 Finished Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE8,FE10,FE20,FE25

t6 123 Balance Checking Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE16,FE25

t7 123 Balance Savings Finished Yes FE1,FE2,FE3,FE4,FE5,FE6,FE18,FE25

t8 123 Deposit Savings 50 Finished Finished No FE1,FE2,FE3,FE4,FE5,FE7,FE12,FE14,FE21,FE22,F
E23,FE23,FE25

Table 5.2: Summary of Test Cases and Features in ATM Sub-system.

Note that not all features are worth analyzing for the purpose of creating

components. The main features that are of interest are Deposit, Withdrawal and

Balance inquiries of checking and the savings account. The eight test cases are a

complete set of test cases that exercise the three features of interest. For example,

test case number 5 will withdraw $200 from savings account and will generate a

receipt before giving the card back to the customer.

Before the components can be created, code must be located and features must be

analyzed and prioritized. Some features are better candidates than others as far as

their evolution is concerned. While feature analysis and prioritization can identify

the reasons to evolve features, their implementation in terms of functions and

variables is indeed very important. One such technique, described in this

dissertation is to identify code associated with a feature is to run source-code

160

profiler with the test cases. In this simple example, the following code was

revealed after running all eight test cases (Table 5.3):

Test
Case

Content Lines of Code

t1 123 Deposit Savings 100 End Finished No 1-9,10,11,12,15-18,41-44,51

t2 123 Deposit Checkings 100 End Finished No 1-9,10,11,12,13-14,41-44,45-46,51

t3 123 Withdraw Checkings 20 End Finished No 1-9
10,19,20,21,22,23,24,25,26,30,33,41,42,43,44,51

t4 123 Withdraw Checkings 500 End Finished No 1-9,
10,19,20,21,22,23,27,28,29,30,33,41,42,43,44,51

t5 123 Withdraw Savings 200 End Finished Yes 1-9,
10,19,20,21,22,23,30,31,32,33,41,42,43,44,45,47,48,
49,50,51

t6 123 Balance Checking Finsihed Yes 1-9,34-36,41,42,43,44,45,46,50,51

t7 123 Balance Savings Finsihed Yes 1-9,34-36,41,42,43,44,45,47,48,49,50,51

t8 123 Deposit Savings 50 Finsihed Finished Yes 1-9,10,11,12,15-18,41-44,47-51

 Table 5.3: Profiler Results on ATM Test Cases.

Once the code has been identified, it can then be refactored and evolved. There

are several refactoring techniques that have been described in the literature. The

purpose of this dissertation is not to describe the refactoring techniques but to use

them in the evolution methodology. Note that there are functions that the ATM

function calls with all the test cases. Since these functions are common to all test

cases and features, they can be collected and bundled into a library called CORE,

as shown in Figure 5.3:

161

Figure 5.3: CORE Library Functions.

Assuming that the deposit feature needs evolution, the following code snippet

outlines how the code is identified, evolved into a component and called from the

legacy function ATM (). Note that CORE is also shown as a part of the

incremental evolution. The Deposit component has three set properties, namely

Customer_Rec, Amount and Account Choice. The Customer_Rec is used to

access the customer record, Amount property determines how much to deposit

and Account Choice tells the component into which account (Checking or

Savings) the deposit should be made. Note that the Account Choice variable can

further be refactored into a CONSTANT variable for explicitness. The return

values of the deposit component are represented by the get property. There are

three get properties that the caller of the deposit component can use, Balance,

Function PRINT(s)
End Function

Function Read(s)
End Function

Function Get_Customer(s)
End Function

Function Clear_Screen
End Function

Function Print_Info(Customer_Rec,s)
End Function

Function Send_Back_Card
End Function

162

Checking Flag, and Savings Flag. The Balance property tells the caller what the

balance is after making a deposit to either account. The flag properties simply tell

the caller which account was affected. The deposit functionality is encapsulated

in the function deposit() of component deposit as shown below. The calling of

the component is also shown in Figure 5.4 and

Figure 5.5.

 Figure 5.4: Modified ATM using Deposit Component.

Function ATM()
 CORE.Print ("Enter PIN")
 CORE.Read(PIN)
 Customer_Rec = CORE.Get_Customer(PIN)
 Do
 CORE.Clear_Screen
 CORE.Print (1. Deposit, 2. Withdraw, 3. Balance, 0 to End)
 CORE.Read (Code)
 IF Code > 0 Then CORE.Print (1. Checking, 2. Savings, 3. Cancel)
 IF Code > 0 Then CORE.Read (Account_Choice)
 IF Code = 1 Then
 CORE.Clear_Screen
 CORE.Print(“Enter Amount”)
 Amount=CORE.Read(Amount)
 ComponentDeposit.Amount=Amount
 ComponentDeposit.PIN = PIN
 ComponentDeposit.Account_Choice = Account_Choice
 ComponentDeposit.Deposit
 Balance = ComponentDeposit.Balance
 Checking_Flag = ComponentDeposit.Checking_Flag
 Savings_Flag = ComponentDeposit.Savings_Flag
 ELSEIF Code = 2 Then
 Clear_Screen
 Print ("Enter Amount")
 Read(Amount)
 IF Account_Choice = 1 THEN
 IF Amount <= 300 AND Amount >0 THEN
 Make_Withdrawal(Customer_Rec, Amount, "C")
 Checking_Flag = True
 ELSEIF Amount >300 THEN
 Print ("Error: Cannot withdraw more than 300")
 END IF
 ELSEIF Account_Choice = 2 THEN
 Make_Withdrawal(Customer_Rec, Amount, "S")
 Savings_Flag = True
 END IF
 ELSEIF Code = 3 Then
 IF Account_Choice = 1 Then
 Display_Balance(Customer_Rec,"C")
 ELSEIF Account_Choice = 2 Then
 Display_Balance(Customer_Rec,"S")
 END IF
 END IF
 While (Code is NOT Equal to 0)
 CORE.Print ("Do you want a Receipt?, 1. Yes, 2. No")
 CORE.Read(Receipt_Choice)
 If Receipt_Choice = 1 Then
 IF Checking_Flag THEN
 CORE.Print_INFO(Customer_Rec,"C")
 ELSEIF Savings_Flag THEN
 CORE.Print_INFO(Customer_Rec,"S")
 END IF
 ENDIF
 CORE.Eject_Card()
End Function

163

Figure 5.5: Deposit Component.

To show the power of incremental evolution methodology, Withdrawal and

Display Balance is evolved. Figure 5.6 shows what the evolved function and the

new components look like. Note that properties (get and set) are used to pass the

global variables. The public function provides the interface to the caller. The

private functions encapsulate the withdrawal functionality.

Property Set PIN
Property Set Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Private Function
Make_Deposit(Customer_Rec,Amount,Account_Type)
Balance is Updated here
End Function

Private Function Get_Money(Customer_Rec)
End Function

Public Function Deposit()
Customer_Record = CORE.Get_Customer(PIN)
IF Amount > 0 And Account_Choice = 1 Then

 Make_Deposit(Customer_Record, Amount, "C")
 Checking_Flag = True
 ELSEIF Amount > 0 And Account_Choice = 2 Then
 Make_Deposit(Customer_Record Amount, "S")
 Savings_Flag = True

END IF
End Function

164

Function AT M ()

CORE .Print ("Ente r P IN")
CORE .Read(P IN)
Custom er_Rec = CORE.G et_Custom er(P IN)
Do

CORE.Clear_Screen
CORE.P rint (1 . Depos it,2 .Withdraw ,3 .Ba lance , 0 to End)
CORE.Read (Code)
CORE.P rint (1 . Check ing, 2 . Savings , 3 . Cance l)
CORE.Read (Account_Choice)
IF Code = 1 T hen
 CORE.Clear_Screen
 CORE.Print ("Ente r Amount")
 Amount=CO RE.Read(Am ount)
 Com pDepos it.Amount = Am ount
 Com pDepos it.P IN = P IN
 Com pDepos it.Account_Choice = Account_Choice
 Com pDepos it.Depos it
 Balance = Com pDeposit.Ba lance
 Check ing_Flag = CompDeposit.Check ing_Flag
 Sav ings_Flag = Com pDepos it.Sav ings_Flag
ELSEIF Code = 2 T hen
 CO RE.Clear_Screen
 CORE.Print ("Ente r Amount")
 Amount=CO RE.Read(Am ount)
 Com pWithdrawa l.Amount = Am ount
 Com pWithdrawa l.M ax_Amount = 300
 Com pWithdrawa l.P IN = P IN
 Com pWithdrawa l.Account_Choice = Account_Choice
 Com pWithdrawa l.Withdrawa l
 Balance = CompWithdrw a l.Ba lance
 Check ing_Flag = CompWithdrawa l.Check ing_Flag
 S av ings_Flag = CompWithdraw al.Sav ings_Flag
ELSEIF Code = 3 T hen
 Com pShowBalance.P in = P IN
 Com pShowBalance.Account_Choice
 Com p.ShowBalance
END IF

Whi le (Code i s NOT Equa l to 0)
CORE .Print ("Do you w ant a Receipt?, 1 . Yes , 2 . No")
CORE .Read(Rece ipt_Choice)
If Rece ipt_Choice = 1 Then
 IF Check ing_Flag THE N
 CORE.Print_ INFO(Custom er_Rec ,"C")
 E LSEIF Sav ings_Flag THEN
 CORE.Print_ INFO(Custom er_Rec ,"S")

 END IF
ENDIF
CORE .E jec t_Card()

End Fucn tion

Prope rty Se t P IN
Prope rty Se t Accoun t_Cho ice
Prope rty Se t Am ount
P rope rt Se t M ax_Am oun t

P rope rty Ge t Balance
Prope rty Ge t Checking_Flag
Prope rty Ge t Savings_Flag

Private Function
M ake_WIthdrawa l (Custom er_Rec,Am oun t,Accoun t_T ype)
Ba lance i s Upda ted he re
End Function

Private Function Ge t_M oney(P IN)
End Function

Pub l i c Function Wi thd rawa l ()
Custom er_Rec = Core .Ge t_Custom er(P IN)
 IF Accoun t_Cho ice = 1 T HEN
 IF Am oun t <= M AX_Am oun t AND Am oun t >0 T HEN
 M ake_Wi thd rawa l (Custom er_Rec, Am ount, "C")
 Checking_Flag = T rue
 ELSEIF Am oun t >M AX_Am oun t T HEN
 Co re.P rin t ("E rror: Canno t wi thdraw m ore than

M AX_Am oun t
 END IF
ELSEIF A ccoun t_Cho ice = 2 T HEN
 M ake_Wi thdrawa l (Custom er_Rec, Am oun t, "S ")
 Savings_Flag = T rue
END IF

End Function

Prope rty Se t P IN
Private P rope rty Se t Account_Cho ice
Function Disp lay_Ba lance (Custom er_Reco rd ,Accoun t_T ype)
End Function

Pub l i c Function ShowBa lance()
Custom er_Rec = Core .Ge t_Custom er(P IN)
IF Accoun t_Cho ice = 1 T hen
 Disp lay_Ba lance (Custom er_Rec,"C")
ELSEIF A ccoun t_Cho ice = 2 T hen

 Disp lay_Ba lance(Custom er_Rec,"S")
 E ND IF
End Function

Figure 5.6: ATM Function, Withdrawal and Show Balance Components.

165

The last and final part of the example shows how the components can be used to

add new functionality in the old legacy ATM function. In addition to these

components being reused, they also open door for potential use in the platforms

such as Wire Transfer Application or Internet Banking. Note that the new transfer

component is created by integrating the deposit and the withdrawal components

Figure 5.7.

166

Figure 5.7: Integrating Withdrawal and Deposit into Transfer Component.

 Function AT M_Evolved()

CORE.Print ("Enter PIN")
CORE.Read(PIN)
Customer_Rec = CORE.Get_Customer(PIN)
Do

CORE.Clear_Screen
CORE.Print (1. Deposit,2.Withdraw,3.Balance 4.Transfer, 0 to End)
CORE.Read (Code)
CORE.Print (1. Checking, 2. Savings, 3. Cancel)
CORE.Read (Account_Choice)
IF Code = 1 T hen
 CORE.Clear_Screen
 CORE.Print ("Enter Amount")
 Amount=CORE.Read(Amount)
 CompDeposit.Amount = Amount
 CompDeposit.PIN = PIN
 CompDeposit.Account_Choice = Account_Choice
 CompDeposit.Deposit
 Balance = CompDeposit.Balance
 Checking_Flag = CompDeposit.Checking_Flag
 Savings_Flag = CompDeposit.Savings_Flag
ELSEIF Code = 2 T hen
 CORE.Clear_Screen
 CORE.Print ("Enter Amount")
 Amount=CORE.Read(Amount)
 CompWithdrawal.Amount = Amount
 CompWithdrawal.Max_Amount = 300
 CompWithdrawal.PIN = PIN
 CompWithdrawal.Account_Choice = Account_Choice
 CompWithdrawal.Withdrawal
 Balance = CompWithdrawal.Balance
 Checking_Flag = CompWithdrawal.Checking_Flag
 Savings_Flag = CompWithdrawal.Savings_Flag
ELSEIF Code = 3 T hen
 CompShowBalance.Pin = PIN
 CompShowBalance.Account_Choice
 Comp.ShowBalance
ELSEIF Code = 4 Then
 CORE.Print (1. Checking, 2. Savings)
 CORE.Read (Destination_Account_Choice)
 CompTransfer.PIN = PIN
 CompTransfer.Amount = Amount
 CompTransfer.Source_Account_Choice = Account_Choice
 CompTransfer.Destination_Account_Choice =

Destination_Account_Choice
 CompTransfer.Transfer
 If Destination_Account_Choice = 1 Or Account_Choice = 2
 Checking_Flag = True
 End if
 If Destination_Account_Choice = 2 Or Account_Choice = 2

 Savings_Flag = True
 End if
END IF

Whi le (Code is NOT Equal to 0)
CORE.Print ("Do you want a Ticket?, Yes, No")
CORE.Read(Ticket_choice)
CompTicket.PIN = PIN
CompTicket.Ticket_Choice = Ticket_Choice
CompTicket.Ticket(Checking_Flag,Savings_Flag)
CORE.Send_Back_Card()

End Function

Transfe
r

Property Set PIN
Property Set Source_Account_Choice
Property Set Destination_Account_Choice
Property Set Amount

Property Get Balance
Property Get Checking_Flag
Property Get Savings_Flag

Public Function Transfer()
IF Amount > 0

 CompWithdrawal.PIN = PIN
 CompDeposit.PIN = PIN
 CompWithdrawal.Amount = Amount
 CompDeposit.Amount = Amount

 CompWithdrawal.Account_Choice =
Source_Acount_Choice

 CompDeposit.Account_Choice =
 Destination_Account_Choice
 CompWithdrawal.Withdrawal ()
 CompDeposit.Deposit ()
 CompBalance.PIN = PIN
 CompBalance.Account_Choice=Source_Account_Choice
 CompBalance.ShowBalance
 CompBalance.Account_Choice=

Destination_Account_Choice
 CompBalance.ShowBalance
END IF

End Function

167

6 Case Study

We applied the ten-step methodology outlined in Section 2.1 to the Master

System (AMS), a product of American Financial Systems (AFS). AFS is a 60-

person software firm that develops software for the corporate-owned life

insurance market. AFS has developed AMS over the past 14 years to integrate life

insurance and executive benefits using mathematical and financial modeling.

AMS was first developed using Microsoft BASIC. Over the years, Microsoft has

evolved BASIC into the more modern programming language, Visual Basic (VB).

AFS ensured that the latest Microsoft compiler technology was used with each

successive version of AMS. AMS is typical of long-lived software systems in that

it has evolved from its original DOS version to a more modern Windows version.

Appendix A lists the most important features of AMS. Appendix B describes the

overall architecture of AMS. To illustrate the results of our methodology, we

focused on the Input Processing functionality of AMS. Input Processing validates

and prepares data from user inputs (also called items) so AMS can perform

complex calculations to generate various reports. To an end-user, Input

Processing has two purposes, Suppression and Error Processing. Suppression is

a feature that either shows or hides an item in the user interface based upon the

value of another item. Error Processing is a feature that validates item values.

168

There are 450 items in AMS and many of them are interdependent. Upon closer

examination of Input Processing, we found that AMS also makes several

Assignments (user input is stored as strings and is later assigned to types such as

Integer, Single, Double, or Array). While Assignments are a hidden feature to the

end-user, developers must naturally consider all three features when evolving the

Input Processing of AMS.

The AMS data model for Input Processing is a hierarchy of plan, employee, and

policy level information. A plan can have many employees and an employee can

have many life insurance policies. A database stores a Master File Table that

contains the 450 plan items that constitute a plan. Individual employee items are

stored in a Census File Table and can vary for each employee in the plan. The

Census File Table is associated with the Master File Table. For example, a plan

with 3 employees might store all common information in the Master File Table,

while storing each employee’s age in the Census File Table. About 75% of the

plan items can vary from employee to employee. An AMS test case is created

from the combination of Master File and Census File data. AFS maintains a

regression test suite (Appendix C) of nearly 450 test cases with an average size of

10 employees per test case. Running all regression tests executes AMS nearly

7,500 times. AMS provides a batch facility for executing regression tests and

storing output to a text file.

169

The interdependencies among plan items are quite complex. For example, the

value of the retirement age item for an individual cannot be less than the

policy issue age item; Input Processing must enforce this constraint when

either value changes. In addition, if the policy issue age item is greater

than 75 then other items should be suppressed because certain policies may not be

issued to persons older than 45 in some states. There are numerous, more

complicated interdependencies within AMS items too detailed to discuss here.

When a user-input in an item invalidates a constraint, AMS must display a

message indicating the specific problem (note that suppressed items are not

involved in Error Processing).

6.1 Evolution reasons

After a series of discussions with AMS project managers, marketers, testers, and

key end-users, we found three reasons to evolve Input Processing.

6.1.1 AMS occasionally freezes during Input Processing

Many plan items are interdependent and so is their shared error-processing code.

For example, Item 9 assigns certain key variables whose value will determine

whether Item 16 is valid. In the code fragment validating values for Item 9,

shown in Figure 6.1, global variable nItem is set to 16 and Process_Items is

called to check for errors in the assignment of the item identified by nItem (Item

16). Item 16’s code section (not shown) sets a global error flag, nError_F, to

indicate whether Item 16 has a problem, which in turn means Item 9 is not ready.

170

It is easy for developers to forget to reset the value of nItem back to the value of

the calling Item number (in this case Item 9) resulting in an unbounded recursion

that freezes the system during user input.

nItem = 16
call Process_Items
nItem = 9
If nError_F = 1 then

Set Up Error Variables
End if

Figure 6.1: Fragment for Validating Values for Item 9.

6.1.2 The cost of adding a new item into Input Processing is high

AFS developers required an average of three days to add just a single item

because of implicit communication via global variables and the spaghetti-like

calling process of the dependent items. Developers adding a new plan item must

add a field to the database tables and update the data dictionary. Then it is

necessary to code the complex logic of item dependence across the three features,

namely, Assignments, Error Processing, and Suppression. Developers must

identify the list of items that need to be suppressed based upon the input value of

the new item and any errors must be generated. When adding an item, the

processing of key global variables would often change, causing unexpected side

effects. For example, incorrectly setting the value of nItem brought back errors

that were previously fixed. Adding new items would often require unrelated items

171

to be suppressed since the Suppression and Error Processing features are

dependent on the Assignments feature.

6.1.3 The lack of code reuse between the desktop and web version of

AMS

Since the web-based version of AMS required similar logical processing of plan

items, AFS wanted to extract a reusable component from the legacy system to use

within both systems. AFS wanted to avoid the costs of maintaining two divergent

code bases, so solving this problem proved to be the greatest motivation for this

evolution effort.

6.2 Identify feature(s) with problems

The testers test the Suppression and Error Processing of each item by inputting

the valid entries for the particular item. Due to interdependencies, test cases are

designed to test the combined effect of items. For example Item 9 may have a

valid input of 1 and 2, the result (Suppression and Error Processing) of inputting

1 may be different than inputting 2. End-user views Suppression and Error

Processing of each item (and some valid combinations) when inputting values in

the item fields. Each item and the valid combinations of items can be viewed as a

unit for testing Suppression and Error Processing. For identifying features with

problems, we consider each item to be an independent feature. An example of

how Item 9 handles Error Processing and Suppression of other items is shown in

Table 6.1. Table 6.2 shows a partial listing of valid input and their combinations

172

resulting in 4 test cases; any other input combination should generate errors. It is

also to be noted that the rest of the item inputs remain the same for these 4 test

cases.

Input Processing
(each item and valid combinations with other items are represented by test cases)

Assignments (hidden) Error Processing (visible) Suppression (visible)
Item 9 has a valid input of 1 and 2. Any value other than 1 and 2 should

generate error. Certain inputs for
Items 5, 13, and 119 should not be
allowed if Item 9 is 2, and they should
generate errors.

An entry of 1 should un-suppress
Items 30, 44 and 144

Table 6.1: An Example Assignments, Suppression and Error Processing.

Item Valid Input
9 1 2

5

1

5

2

3

13 <12/12/1990 >12/12/1990 <1/1/1991 1/12/1991
119 1 2 3 5

Table 6.2: An Example of Valid Input Combination for Testing Item 9.

6.3 Map test cases to features

Each item is representative of Input Processing feature to the end-user. Testers

and end-users work together to provide the test case and feature mapping, shown

in Table 6.3.

Table 6.3: AMS Input Processing Test Case and Feature Mapping (selective listing).

Features/Test Case T1 T2 T3 T4 T5 T6 T7 T8
Item_5
Item_9
Item_13
Item_16
Item_19
Item_26
Item_119
Item_212
Item_431

173

6.4 Map features to functions

Table 6.4: Profiler Listing of Features and Test Cases (selective listing).

To map features to functions, we instrumented the source code of AMS (only

need to do this once) using code-coverage software and ran all regression tests.

Appendix C describes the AMS regression-testing tool and its capabilities in

detail. We then analyzed the coverage results and grouped related test cases

together that exercised the input-processing feature for each item. A partial list of

our result is shown in Table 6.4 and Table 6.5. Recall that to obtain a feature

function relationship we follow the three-step process (see Section 4.1.3):

1. Obtain a feature and test case matrix as shown in Table 6.3.

2. Run the profiler on each of the test cases as shown in Table 6.4 to obtain

the LOC within each function.

3. Finally, we obtain feature function relationship by combining steps 1 and

2 as shown in Table 6.5. We used the code-coverage tool TrueCoverage™

from NuMega® which works with many programming languages such as

VB, Java, C++, and some scripting languages. Since AMS uses batch

Functions/Test Case T1 T2 T3 T4 T5 T6

Process_Items

1,2,3,4,5,6,7,8,9,100,101,1
02,105,106,107,108,141,14
2,143,144,151

1,2,3,4,5,6,7,8,9,10
0,101,102,103,104,
141,142,143,145,1
46,151

1,2,3,4,5,6,7,8,9,90,91,
92,93,94,95,96,97,98,9
9,100,119,120,121,122
,123,124,125,126,130,
133,141,142,143,144,1
51

1,2,3,4,5,6,7,8,9,90,91,92,93,
94,95,96,97,98,99,100,119,1
20,121,122,123,127,128,129,
130,133,141,142,143,144,15
1

1,2,3,4,5,6,7,8,9,90,91,92,93,9
4,95,96,97,98,99,100,119,120,
121,122,123,130,131,132,133,
141,142,143,144,145,147,148,
149,150,151

1,2,3,4,5,6,7,8,9,
134,135,136,141,
142,143,144,145,
146,150,151

Calc_N 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,3,4,5,6
Process_Asterisks 1,2 1,2 1,2 1,2 1,2 1,2

Year_Values_From_Series 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10 1,2,3,4,5,6,7.8.9,10
1,2,3,4,5,6,7.8.9,

10
COL_EDIT 1 1 1 1 1 1
Census_Item 1,2 1,2 0 0 0 0
Within_Bounds 1 1 1 1 1 1
Nth_Elem_in_String 0 0 1,2 0 1,2 0
Mort_Fnctn 0 0 0 0 0 1,2,3,4,5,6,7,8,9
Adjust_Ages 0 1,2 0 0 1,2 1,2
Query_Check 1 1 1 1 1 1

174

processing for its regression testing, it was easy to produce instrumented

output against all the 250 regression test cases. However, these

instrumented images were stored using TrueCoverage’s proprietary file

format, so we had to manually export each file into Excel for further

analysis. The TrueCoverage tool has a merge utility that aggregated the

results of all 250 test cases that were instrumented. This merge utility

revealed that 95% of AMS was covered using the 250 test cases. We are

currently identifying whether the rest of the code is either unused or if

there are hidden features within the system that are not being exercised.

For each test case, we used TrueCoverage to identify the functions

executed, the percentage of lines covered within each of these functions,

and the variables used.

Table 6.5: Feature and Function Mapping (selective listing).

Features/Functions Process_Items Calc_N Process_Asterisks Year_Values_From_Series COL_EDIT Census_Item

Item_5

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1
26,127,128,129,130,131,132,133,141,142,143,144,145,147,

148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_9

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,124,125,1

26,127,128,129,130,133,141,142,143,144,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_13

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1

32,133,141,142,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_16

001,002,003,004,005,006,007,008,009,100,101,102,103,10
4,105,106,107,108,115,116,117,118,141,142,143,144,145,1

46,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_19
001,002,003,004,005,006,007,008,009,100,101,102,103,10

4,141,142,143,145,146,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_26

001,002,003,004,005,006,007,008,009,100,101,102,105,10
6,107,108,115,116,117,118,141,142,143,144,147,148,149,1

50,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001 001,002

Item_212
001,002,003,004,005,006,007,008,009,134,135,136,141,14

2,143,144,145,146,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_119

001,002,003,004,005,006,007,008,009,090,091,092,093,09
4,095,096,097,098,099,100,119,120,121,122,123,130,131,1

32,133,141,142,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

Item_431
001,002,003,004,005,006,007,008,009,134,135,136,141,14

2,143,144,145,147,148,149,150,151
001,002,003,
004,005,006 001,002 001,002,003,004,005,006,010 001

175

6.5 Identify FI and CORE

Table 6.5 provides a selective and pre-sorted listing of all the relevant functions

(FI) for the input-processing feature. In order to arrive at feature function listing,

we must identify the base-line architecture and the CORE as these functions are

executed for all test cases at all times. The main difference between the base-line

architecture and the CORE is that the base-line architecture changes the state of

global variables and other sub-systems such as databases, at an architectural level.

CORE on the other hand contains stateless functions that are utility functions. A

list of base-line architectural functions and CORE is shown in Table 6.7 and

Table 6.8 respectively.

Running regression test cases for all items (representing the Input Processing

feature) resulted in following information regarding FI for Input Processing:

• Since each item represented the Input Processing feature we aggregated

the profiler information for all items. The aggregation process was similar

to UNION of all lines of code process discussed in Section 4.1.3.2.

Aggregated information revealed that Input Processing is implemented in

17 functions. A partial listing of those functions is shown in Table 6.4.

• Many items shared same lines of code indicating either a circular

dependency as mentioned earlier or dependent on some base items (such

as Item 9). The shared lines of code can be seen in Table 6.5.

176

• About 68% of Input Processing is implemented in Process_Items function.

Another 16 functions were either used in implicit communication or were

stateless in nature. The three neighboring features included Assignment,

Error Processing, and Suppression. The threshold (FI = 17, K = 3, C =

80%) suggests that we continue with the refactoring.

We ran all the 250 regression test cases to see how Input Processing measured

relative to the rest of the features. A partial result of the regression test case is

shown in Table 6.6. We will discuss this matrix in more detail in Chapter 7.

However, the interesting region to observe is the shaded area on the top left which

represents part of Input Processing. FE1, FE2, and FE3 represent Assignment,

Error Processing and the Suppression sub-features respectively. Process_Items

is represented by f2. Functions f5, f6 and f7 are shared stateless but only within the

scope of Input Processing features, such examples being functions query_check,

calc_n and asterisks_item (also shown in Table 6.4). Functions f18, f19, and f20

are CORE functions file_exists, integer_maximum, and

integer_minimum also shown in the Table 6.8. Comparing Input Processing

features (FE1, FE2, and FE3) to the rest of the features shown in Table 6.8, we

observe that Input Processing is a natural choice for evolution because of its

threshold value (FI = 17, K = 3 and C = 80%) relative to the other features.

177

Table 6.6: Partial AMS Feature Function Matrix.

Test Cases T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Function\Features FE1 FE2 FE3 FE4 FE 5 FE6 FE7 FE8 FE9 FE10 FE 11 FE 12 Type

f1 100 100 100 0 0 0 0 0 0 0 0 0 SS

f2 80 80 90 0 0 0 0 0 0 0 0 0 DF

f3 100 100 100 0 0 0 0 0 0 0 0 0 SS

f4 70 75 80 0 0 0 0 0 0 0 0 0 DD

f5 100 100 100 0 0 0 0 0 0 0 0 0 SS

f6 100 100 100 0 0 0 0 0 0 0 0 0 SS

f7 100 100 100 0 0 0 0 0 0 0 0 0 SS

f8 0 0 0 80 90 0 0 0 0 0 0 0 DF

f9 0 0 0 100 100 0 0 0 0 0 0 0 DF

f10 0 0 0 0 0 11 12 0 0 0 0 0 SSF

f11 0 0 0 0 0 33 44 0 0 0 0 0 SSF

f12 0 0 0 0 0 12 15 0 0 0 0 0 SSF

f13 0 0 0 0 0 15 15 0 0 0 0 0 SS

f14 0 0 0 0 0 22 22 0 0 0 0 0 SS

f15 0 0 0 0 0 32 38 0 0 0 0 0 SS

f16 0 0 0 0 0 15 15 15 15 15 15 15 SS

f17 0 0 0 0 0 22 22 22 22 22 22 22 SS

f18 100 100 100 100 100 100 100 100 100 100 100 100 SS

f19 100 100 100 100 100 100 100 100 100 100 100 100 SS

f20 100 100 100 100 100 100 100 100 100 100 100 100 SS

f21 0 0 0 0 0 32 38 12 56 89 66 63 DD

f22 0 0 0 0 0 22 22 34 52 23 43 34 DD

f23 0 0 0 0 0 32 38 22 44 33 45 32 DD

178

Table 6.7: Base-Line Architecture of the Three AMS Engines.

 BASE-LINE ARCHITECTURE Purpose

 Input Engine
1 MAIN Required by the programming language

2 VERIFY_USER Validate User

3 LOAD_LICENSE_FORM Display licensing information

4 SET_RUNTIME_PARAMETERS Load some key global variables

5 OPEN_CASE Open Master and Census File

6 LOAD_MAIN_FORM Master form is loaded in memory

7 OPEN_ITEM_FILE Meta data is loaded

8 MERGE_USER_DATA Merge user data into new structure

9 INPUT_PROCESSING Assignment, Error Processing and Suppression

10 SETUP_HELP_FILES Load Help files in memory

11 INITIALIZE_DISPLAY_VARIABLES Setup more global variables

12 SETUP_USER_PROFILES Load selected user preferences

13 DISPLAY_BUTTONS Load and show icons in the main form

14 DISPLAY_MASTER_FILE Show screens with master file data

15 DISPLAY_CENSUS_FILE Show screens with census file data

16 SETUP_STATUS_BAR Show status of current user selection

17 EXIT_INPUT_ENGINE Close connections, reset variables and end

 Calculation Engine

1 PROCESS_CASE Setup global variables

2 MAIN_CALC Start calculations

3 PROCESS_EACH_EMPLOYEE Loads assumptions to be calculated

4 INITIALIZE_EACH_EMPLOYEE Setup global variables for Employee

5 PROCESS_EACH_YEAR Calculation for each year

6 INITIALIZE_EACH_YEAR Setup yearly global variables

7 MANDATORY_CALCULATIONS_PER_YEAR Compulsory calculations per year

8 PRINT_EACH_YEAR Print stored variables

9 ACCUMULATE_RESULTS Accumulate certain key variables

10 STORE_RUNTIME_ERRORS Collect run time errors

11 CLOSE_RUN Reset variables and database connection

12 EXIT_CALC_ENGINE Exit engine and return control to Input Engine

 Output Engine

1 PROCESS_CASE Setup global variables

2 OPEN_DATABASE Connect to the database that has data to print

3 EVALUATE_REQUESTS Which reports to print

4 LOAD_REPORTING_DATA Fetch data to be printed

179

Table 6.8: List of CORE Functions Extracted from AMS.

LIST OF CORE FUNCTIONS Return Value
1 APPEND_TO_STRING (string source, string newstring) String
2 ARRAY_TO_RECORD (string a()) Recordset
3 BACKUP_DATABASE (string sourcedatabase, string targetdatabase) Boolean
4 BUBBLE_SORT (string a()) Sorted Array
5 CLOSE_DATABASE (string databasename) Boolean
6 COMPARE_RECORDS (recordset a, recordset b) Boolean
7 CONNECT_DATABASE (string databasename) Boolean
8 DATABASE_EXISTS (string databasename) Boolean
9 DATE_TO_AGE (date a, date todaysdate) Integer AGE
10 DATE_TO_NUMBER (date a) Double
11 DIRECTORY_EXISTS (string pathname) Boolean
12 DOUBLE_MAXIMUM (double a, double b) Double
13 DOUBLE_MINIMUM (double a, double b) Double
14 DOUBLE_ROUND (double a, int n) Double
15 ERROR_LOG (string filename, string message) Boolean
16 EXECUTE_SQL (string sql) Boolean
17 FIELD_EXISTS (string fieldname) Boolean
18 FILE_EXISTS (string a) Boolean
19 INTEGER_MAXIMUM (int a, int b) Integer
20 INTEGER_MINIMUM (int a, int b) Integer
21 IS_A_CURRENCY (string a) Boolean
22 IS_A_VALID_USER (string username, string password) Boolean
23 IS_ALPHA (string a) Boolean
24 IS_BLANK (string a) Boolean
25 IS_DATE (string a) Boolean
26 IS_NULL (string a) Boolean
27 IS_NUMBER (string a) Boolean
28 OPEN_DATABASE (string databasename) Boolean
29 READ_INI_FILE (string filename, object returned) Object
30 READ_REGISTRY_KEY (string keyname) Boolean
31 RECORD_TO_ARRAY (recordset a) Array
32 REMOVE_FROM_STRING(string source, string target) String
33 SINGLE_MAXIMUM (single a, single b) Single
34 SINGLE_MINIMUM (single a, single b) Single
35 SINGLE_ROUND (single a, int n) Single
36 STRING_TO_DOUBLE_ARRAY (string a) Double
37 STRING_TO_INTEGER_ARRAY (string a) Integer
38 STRING_TO_SINGLE_ARRAY (string a) Array
39 SWAP (variant a, variant b) VOID
40 TABLE_EXISTS (string tablename) Boolean
41 WRITE_INI_FILE (string filename, object) Boolean
42 WRITE_REGISTRY_KEY (string keyname) Boolean

180

6.5.1 Variable Analysis

AMS program architecture has 1,205 global variables. All the global variables

are declared and initialized at the program level. However, these global variables

are shared among features and are changed dynamically to facilitate implicit

communication. A summary of key variables is shown in Table 6.9. The input

values are read into sI$() array which is used by many features within the AMS

system. The sI$() array is converted into its numeric counterpart within the Input

Processing feature by the Assignment sub-features. An example of this

conversion can be seen in the statement nContract_Number = Val(sI$(9)) in

Figure 6.2. nContract_Number, which is a global variable, is then used

throughout the AMS system. Each of the items uses, sets, and changes the state

of several global variables thereby increasing coupling between the features.

These global variables are also used for implicit communication between features.

For example, UNREADY(), nError_F, nError_Item and nItem can be changed

by items other than the ones who set them indicating a possible relationship

among the items and features.

 Figure 6.2 suggests that three types of relationships exist among the Input

Processing features:

• Error Processing and Suppression depend on Assignments.

181

• Suppression state of certain items is altered depending upon Assignments

of certain items.

• Error Processing and Suppression share global variables set by

Assignments.

Variable Purpose Declare Set Use Change

sI$()
Stores item
information
as read
from
database

Program Program Input
Processing
and other
features

Numeric Value of
sI$(). All items are
assigned into
internal variables
such as
nContract_Number,
nDB_Option etc.

Assignment
of string
arrays into
numerical
variables.

Program Input
Processing
(Assignment
Sub-feature)

Input
Processing
(Error
Processing,
Suppression)
and
Calculation
Engine

nError_F,
nError_Item

Indicates if
an item is
in error

Program Input
Processing
(Error
Processing)

Input
Processing
(Error
Processing,
Suppression)

Input
Processing
(Other
items)

UNREADY() Indicates if
an item is
ready with
its
numerical
value

Program Input
Processing
(Assignment)

Input
Processing
(Assignment)

Input
Processing
(Other
items)

nSuppress_F Indicates if
an item is
suppressed

Program Input
Processing
(Suppression)

Input
Processing
(Suppression)

Input
Processing
(Other
items)

nItem Indicates
which item
is being
processed

Program Input
Processing
(Assignment)

Input
Processing
(Assignment)

Input
Processing
(Other
items)

Table 6.9: Input Processing Variable Analysis.

182

 Figure 6.2: Item 9 (Pre-evolution).

183

6.6 Refactor and create components

We identified the following problems in the Input Processing feature of AMS:

6.6.1 Identify problems

This step identifies problems associated with the feature implementation.

6.6.1.1 Circular dependencies

As Table 5 shows, Item 9 is dependent on Item 119 and Item 119 is dependent

on Item 13, which in fact is dependent on Item 9. We found eight such circular

dependencies that were the ultimate cause of system freezes as verified by the

defect tracking system for AMS.

Item Dependencies (in order)
5 9, 56, 119
9 16, 119
13 5, 9, 22
19 158
119 13

Table 6.10: Example of Circular Dependencies

6.6.1.2 Readiness of dependent items

To solve the circular dependencies and determine an item’s state during

assignment, we found that the original developers used an array called UNREADY:

when an item is dependent on another item that still needs to be evaluated, the

original item is identified as being in the UNREADY state. Each item had a ready

and unready state. The code fragment in Figure 6.3 illustrates this: Item 5 is

184

assumed to be ready by setting UNREADY(5) to 1. The item’s value is then

evaluated and the global nError_F is set to be greater than 1 in case of invalid

input. The UNREADY state for Item 5 will be set to the error flag’s value indicating

that the item is not ready. Items are processed sequentially so if another item

dependent upon Item 5 needs its value then the calling item will use UNREADY(5).

The implicit setting of item state resulted in bad patches to solve circular

dependencies.

nUnready(5) = 1 ‘ 1 = ready
call Fix_Date(nItem)
if nError_F > 0 Then
 nUnready(5) = nError_F
end If

Figure 6.3: Dependent Items.

6.6.1.3 Assignments and Suppression intermingled with Error Processing

 As items were evaluated for dependencies and error conditions the original code

also set the values of internal program variables. AMS often uses a time series in

most plan items. An example of a time series is “100,1,200,5” which means that

from years 1 through 5, the value is 100 and from year 5 onwards it is 200. Time

series presents complicated problems because the data needs to be evaluated over

a period of time (or processed via the Input Processing) and errors can be present

in any year. We found that internal Assignments were often used inconsistently

and intermingled with Error Processing and Suppression.

185

Once we identify feature implementations, we refactor the code as outlined in

Section 6.6.2. Refactoring removes global variables and converts implicit

communication to explicit. Refactoring may require extensive analysis, especially

if two or more features interact or interfere within a given source function. We

have found that the refactoring results in fine-grained components with low

coupling and high cohesion.

6.6.2 Refactor

For Error Processing, Suppression, and Assignments we refactored the code as

follows:

6.6.2.1 Removed UNREADY array

The UNREADY array forced the Assignments and Suppression code to be highly

coupled. We replaced this global array with a component that accepted a

collection of errors. Then we developed routines (add, display, and delete) to

access the collection for one individual or the entire census data.

6.6.2.2 Replaced recursive calls with sequential calls

In the original system, Error Processing, Suppression and Assignments were

largely recursive. Essentially, a single large routine (Process_Items) inspected

each item using a lengthy case statement; when an item needed to check

dependencies for another item, a recursive call was made. After some analysis, we

replaced this function with a simpler more sequential control flow

186

6.6.2.3 Separated Assignments, Suppression, and Error Processing code

After analyzing Input Processing, we were able to remove circular dependencies

by first executing Assignments for certain core items. We found this was

consistent with all three features.

6.6.3 Create Fine-Grained Components

To determine which code artifacts to encapsulate, we analyzed variable usage for

all three features: Error Processing (EP), Suppression (S), and Assignments (A).

The result is shown in Table 6.11. (EP/S means variables involved both in EP and

S).

Table 6.11: Variable Analysis (Pre/Post evolution partial listing).

 Pre-Evolution Post-Evolution
 (Feature Related Variables) (Component Properties)

Feature
Interaction

Global
variables

Local
Variables

Stateless
Functions

State-full
Functions

Relation
Type

Component
Property
GetValue

Component
Property
SetValue

Local
To
Component

AFS
CORE
Parameters

Error
Processing

35

5

4

2

N/A

25

10

5

6

Suppression

14

8

6

4

N/A

10

12

6

4

Assignment

50

5

8

5

N/A

55

5

4

4

Error
Processing
and
Suppression

11

3

3

3

Dependent
Required

8

6

2

4

Error
Processing
and
Assignment

20

5

4

3

Dependent

17

8

3

4

Suppression
and
Assignment

25

6

3

2

Dependent
Alteration

18

12

4

2

Error
Processing,
Suppression
and
Assignment

8

9

2

2

Required

6

7

4

4

187

When creating fine-grained components, these variables and functions become

properties of a component. The first two columns in Table 6 count the global (G)

and local (L) variables involved in a particular feature implementation when

related test cases are executed. Columns three and four show how many functions,

both stateless (SS) and state-full (SSF), are covered. The component makes output

values available using GetValue (Parameter). Conversely, SetValue

(Parameter) will set the property inside the component. Because we are

refactoring, the sum of the first four columns for each row must equal the sum of

the last four columns.

To define the interface for the fine-grained components, we must identify the

possible relationships between features.

6.6.3.1 Relationships

In Input Processing we find the examples of the following types of direct

relationships among features.

Dependent

In AMS all features share key item values. The code fragment in Figure 6.4 shows

how key items are evaluated first and used in Suppression and Assignments. The

variable QMarkInBPFA is set to true if Item 16 has a “?”. We convert this

variable into a read-only property of the Assignments component that can be read

by other components.

188

Dim QMarkInBPFA As Boolean
Dim QmarkInUlPremType As Boolean
Dim XInBPFA As Boolean
Dim ISBEN As Boolean

QMarkInBPFA = isfloated(Values(16), False)
QmarkInUlPremType = isfloated(Values(174), False)
XInBPFA = XInItem(Values(16))
ISBEN = InStr(Values(26), “,BEN,”) > 0 or
 InStr(Values(26), “,A/T.BEN,”) > 0)

Figure 6.4: Dependent Feature Example.

Required

 The function in

Figure 6.5 implements the relationship between Suppression and Error

Processing. If an item is suppressed, then errors associated with it are unnecessary

and can be removed. Because two features can directly interact with each other,

the extracted fine-grained components will have clearly defined interfaces that

declare this interaction.

Figure 6.5: Required Feature Example.

Altered

The state of Suppression of a given item is altered by the entries in another item.

For example, the Suppression state of Item 98 in

Public sub RemoveErrorsForSuppressedItems (
 suppressarray() as Integer, Errors as Collection)
dim x, itemNum as Integer
 dim s as String
 for x = Errors.count to 1 step -1
 itemNum = AFSCore.FVAL(Mid$(Errors.Item(x),
 InStr(Errors.Item(x), “>“) + 1))
 if suppressarray(ItemNum) <> 0 then
 Errors.Remove(x)
 end if
 next x
End Sub

189

Figure 6.6 can be modified with the right condition. Note that the Assignments

component’s properties are used to alter the Suppression state. If the UI changes

the value for any field that can alter Item 98, the Suppression state is also altered.

The global array nSuppress() is transformed into a read/write property of the

Suppression component.

Figure 6.6: Altered Feature Example.

Once feature relationships and properties are determined, we can create the

component’s interface.

6.6.3.2 Interfaces

Input Processing was refactored into six components: Assignments, Error

Processing, Suppression, Error Processing Core, Suppression Core, and AFS

Core. While Assignments, Error Processing, and Suppression perform specific

duties of the three specified features, the core components manage data structures

and contain stateless functions. In implementing these features, core items were

if Assignments.QMarkInBPFA or (Assignments.XInBPFA and
Assignments.SipFloat) or Assignments.ISBEN then

 nSuppress(98) = UnSuppressTheItem(nSuppress(98)) else
 nSuppress(98) = SuppressTheItem(nSuppress(98))

end if

190

evaluated first and each item was called sequentially instead of recursively.

Feature relationships were identified and coded as shown earlier.

The list of interface for all six components that we created are shown in the Table

6.12. Public interfaces that are available to the client is shown in column 2 and

column 3 lists all the components public methods. The Error Processing core and

the Suppression core components are not important by themselves but they are

important in conjunction with the Error Processing the Suppression components

respectively. “Methods” column (column 3 in Table 6.12) implements the feature

implementation, which will discussed later in this section. Note that only the

public methods are listed in column 3.

Component Interface Methods
Assignments clsAssignment Assignments

Error Processing clsErrorProcessing ErrorChecking

Error Processing
Core

clsEProcessingCore AddError
ClearError
RemoveError
RemoveErrorForSuppressed
Item
ClearAllErrors

Suppression clsSuppression SetTheSuppressCodes

Suppression Core clsSuppressionCore SuppressTheItem
UnSuppressTheItem

AFS Core clsAFSCore See Table 6.8
Table 6.12: Component Interfaces.

6.6.3.3 Properties

Once feature relationships were identified, the global variables used in the

implicit communications were used to determine property set and get. The

191

general logic for invoking a feature is to set the components properties, call its

public method (feature implementation) and finally retrieve the results through the

property get. It is the calling program’s responsibility to set the components

properties (both get and set). A list of properties, get and set for the six

components is shown in the Table 6.13. It is to be noted that dictionary and

collection objects are built-in data structures like array. They are used to set

individual items values rather than setting them up individually. AFS CORE does

not need any properties, as all its methods are public and stateless.

Component Interface.Public Method Property Set Property Get
Assignments clsAssignments

.Assignments
sI$() Dictionary

(nItem, Value)
Error Processing clsErrorProcessing

.ErrorProcessing
Dictionary
(nItem, Value)

Collection
(nItem, Error_Message,
Error_Code)

Suppression clsSuppression
.SetTheSuppressCode

Dictionary
(nItem, Value) and
Collection
(nItem,
Error_Message,
Error_Code)

Dictionary
(nItem,
SuppressionCode)

Error Processing CORE clsErrorProcessingCORE
.AddError
.ClearError
.RemoveError
.RemoveErrorForSuppressItem
.ClearAllErrors

Dictionary
(nItem, Value)

Collection
(nItem, Error_Message,
Error_Code)

Suppression CORE clsSuppressionCore
.SuppressTheItem
.UnSuppressTheItem

Dictionary
(nItem, Value) and
Collection
(nItem,
Error_Message,
Error_Code)

Dictionary
(nItem,
SuppressionCode)

AFS
CORE

clsAFSCORE
.AFSCORE

None None

Table 6.13: Component Properties.

6.6.3.4 Feature Implementation

Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 all show how the

Input Processing component is implemented using Error Processing,

192

Suppression, Assignments and supporting core (AFS CORE, Suppression CORE

and Error Processing CORE) fine-grained components. Assignments

component’s properties are set by the calling program and then its public method

Sub Assignments is called. Sub Assignments has following three tasks:

• to calculate base-items first, as these item values are used by other items.

• to sequentially calculate the value of each of the items.

• to update the local dictionary object which is accessed through the

property get by the calling parent program.

Likewise, Error Processing and Suppression features also follow the similar

implementation. However, their tasks are slightly different. Error Processing

uses an items dictionary object and sets an internal collection object that can be

accessed through property get. Suppression uses items dictionary object and error

collection object to setup the Suppression state (0 or 1) of each item in an internal

data structure called SuppressionDictionary to be accessed through the get

property. The CORE items do not have any feature implementation. These

components contain stateless components.

6.6.3.5 Stateless Functions

Figure 6.7, Figure 6.8, and Figure 6.9 all show a partial listing of stateless

functions needed for the feature implementation. These functions can also be

accessed by other components or by the calling parents. An example of a

stateless function that is encapsulated within the Assignments component is Public

193

Function Set_Ret_Ages(). This function calculates retirement age based upon a

date string that is passed to it. Although these stateless functions are accessible

and can be used by other components and the program, having them encapsulated

with the features provides a clearer understanding of the feature’s scope and

involvement.

6.6.3.6 Maintaining State

Figure 6.7, Figure 6.8, and Figure 6.9 all show that the components maintain their

state for efficiency. For example, if the Assignments component public method is

called a second time (intentionally or unintentionally) and the items values have

not changed, then the public sub Assignments does not recalculate the entire set of

item variables because the source (sI$()) has not changed. Similar

implementation characteristics can also be seen in the Error Processing and the

Suppression components.

6.6.3.7 External Dependencies

At the top of Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10 and Figure 6.11 we

list all the external components and functions the components are going to use

such as AFS CORE and WindowsFileScripting object. VB provides built-in

programming constructs such as collection and dictionary objects that are like

indexed arrays.

194

Figure 6.7: Pseudo-code for Assignments Feature Implementation.

195

Figure 6.8: Pseudo-code for Error Processing Feature Implementation.

196

Figure 6.9: Pseudo-code for Suppression Feature Implementation.

197

Figure 6.10: Pseudo-code for Error Processing Core Implementation.

198

Figure 6.11: Pseudo-code for Suppression Core Implementation.

6.7 Plug the fine-grained components into AMS

The last and final part of creating the component was to integrate all six

components into one unit that performed Input Processing in an integrated

environment. Using standard configuration management and compiler directives,

old code in AMS was disabled to integrate the new components. Since the code

profiler provides all the relevant functions, it was rather simple to insert the Input

Processing component. The Pseudo-code for integrating the Input Processing

component is shown in Figure 6.12. The compiler directive

199

InputProcessing_Evolution is used to enable the new components and disable

the old code, including the global variables declared at the program level. This

compiler directive is set at the program level and can be turn off easily in case the

testers report adverse side effects due to the new components. Note that

UNREADY() array is not used in the refactored code. The new components

(AFSCORE, Assignments, Suppression and Error Processing) are declared

globally at the program level so they can be used by other sub programs. The

return value of Assignments components is then passed to other sub programs

such as the calculation engine. Likewise, the return values of Error Processing

components passed to the Error Processing GUI and the return value of the

Suppression component is passed to the Main GUI sub programs respectively.

The integrated component is shown in Figure 6.14.

200

Figure 6.12: Integrating Assignments, Error Processing and Suppression Components.

Global sI$(), nItem

#IF InputProcessing_Evolution = True Then

Global AssignmentsDictionary(nItem, Value)
Global ErrorsCollection(nItem, Error_Message, Error_Code)
Global SuppressionDictionary(nItem, Value)
Global AFSCORE as AFSCORE
Global Assignments as Assignments
Global ErrorProcessing as ErrorProcessing
Global Suppression as Suppression

#ELSE
Global nError_F, UNREADY()

#END IF

Sub InputProcessing()

#IF InputProcessing_Evolution = True Then

‘Assignment Component
 Set Assignments.sI$() = sI$()
 Call Assignments.Assignments
 AssignmentsDictionary(item,Value) =

Get Assignments.Dictionary(item,Value)

‘Error Processing Component
 Set ErrorProcessing.Dictionary(item,Value) = Dictionary(item,Value)
 ErrorProcessing.ErrorProcessing

ErrorsCollection(nItem, Error_Message, Error_Code) =
Get ErrorProcessing.Collection (nItem, Error_Message, Error_Code)

 ‘Suppression Component
 Set Suppression.Dictionary(item,Value) = Dictionary(item,Value)

Set Suppression.ErrorsCollection(nItem, Error_Message,
Error_Code)=ErrorsCollection(nItem, Error_Message, Error_Code)
Suppression.Suppression
SuppressionDictionary(item,Value) =
Get Suppression.Dictionary(item,Value)

#ELSE
 ‘Following code will use, set or change global variables declared above

 ‘Items are called recursively
For nItem = 1 to 450

Call Item_Hub_Code(i)
 Next nItem

#END IF
End Sub

201

6.8 Verify results

We performed a regression test of the Input Processing code to gather data pre

and post evolution of these three features. We then compare the results to make

sure we have not broken anything during the evolution process. The regression

was automated by using GUI testing tools, and the AMS system has a built-in

regression utility that sends the output to an ASCII text file. This text file was

compared pre and post evolution to ensure that no side affects were introduced.

In addition, the testers perform several tests to ensure proper working of the Input

Processing.

6.9 Reuse

The Input Processing component is integrated in the WEB AMS in exactly the

same fashion as the desktop AMS. The return value from the collection and

dictionary objects is used by Microsoft server-side scripting language VBScript®

because the WEB version of AMS uses VBScript® as opposed to the desktop

version of AMS that uses VB. VBScript and VB behave similarly as far as

integrating the Input Processing components are concerned. Input Processing

components were deployed on the web server so the user interface layer can use

Assignments, Error Processing and Suppression features. AFS CORE component

was deployed on both servers namely, the web server and the application server.

AFS CORE is also used by other product lines on all servers.

202

AFS Product lines Components Deployment
AMS (Desktop) Assignments, Error

Processing, Suppression,
Error Processing Core,
Suppression Core and AFS
CORE

Desktop machines

AFS WEB Assignments, Error
Processing, Suppression,
Error Processing Core,
Suppression Core and AFS
CORE

Web Server

AFS WEB AFS CORE Application Server
DTS and DTS WEB AFS CORE Web Server and Application

Server
Sdev AFS CORE Web Server and Application

Server
Figure 6.13: Resuing Fine-Grained Components in AFS Product Lines.

6.10 Measure Results

To measure the success of our methodology, we perform a validation against the

evolution reasons. To reiterate, there were three primary reasons why we wanted

to evolve the Input Processing into a component-based solution.

6.10.1 Solving the system-locking problem

The component-based implementation is a linear solution. In all three features,

core items are evaluated first and then each of the items is individually evaluated.

In addition, the communication between items is not done via the global variables.

This communication is explicitly replaced by implementation of the feature

relationship code discussed earlier. The original design was recursive in nature

with no explicit condition to stop the recursion. The recursion was stopped

implicitly by setting global variables or arrays that became error prone as more

203

and more items with complex hierarchy and relationships were introduced.

Replacing the recursive design with a linear design solved the system-locking

issue.

6.10.2 Cost of adding a new item

The average time to add a new item and code all the relevant Assignment, Error

Processing and Suppression logic took 3 days prior to applying the evolution

methodology. After evolution, we collected data on adding 4 new items and the

average time spent was about 1.25 days. The steps for adding a new item are as

follows (Table 6.14):

Steps – Pre-Evolution

Steps – Post-Evolution

Add Item to Master File Table Same
Add Item to Data Dictionary and assign
its properties

Same

Create, Initialize and Assign Global
Variable for Assignment

Code GetValue in Assignment Component.

Setup UNREADY Array Not Needed
Code dependent items using recursion for
Error Processing (mixed with
Assignment and Suppression code)

Code Error Processing Component, but each
item has its own spot rather than mixed with
other items. Also, core items may also
evaluated first but not necessarily.

Use Error Flag from Dependent Items to
generate Errors

Errors are added to a collection. No global
variables are needed.

Add Error Text into look-up tables Same
Code dependent items using recursion for
Suppression

Code Suppression component just like the Error
Processing component.

Set Suppression code array Suppression code array is automatically a part
of interface of Suppression component.

Cost of debugging is high due to implicit
communication and poorly implemented
recursive routine

Virtually no debugging is necessary but must
understand component interfaces

Table 6.14: Steps for Adding a New Item.

204

6.10.3 Reusability between AMS and the web version of AMS

There were six resulting components from this evolution exercise. Assignment,

Error Processing, Suppression, Error Processing Core, Suppression Core and

AFS Core. AFS Core is used in all of the AFS product lines (comprising 4

different projects), since it contains basic routines such as rounding functions and

file I/O etc. The other five components are used in the two platforms of the

AMS software, the desktop and the Internet. Table 6.15 shows cost and benefit

involved in reusability. The net cost of the evolution exercise using this

methodology so far has produced no loss or gain, but it is to be noted that there

are certain hidden savings that we have not been able to capture until now, such as

effect on training of new hires. It is expected that average savings identified in

rows 14-16 (See Table 6.15) will eventually result in more favorable savings. We

are currently in the process of gathering the data.

205

Effort Cost (+) /Savings (-)
(Measured in months)

Cost of Mapping Features and Test-Cases +1
Cost of identifying code using test cases and profiler +1
Cost of Refactoring +2
Cost of Developing Error Processing Component +1
Cost of Developing Suppression Component +1
Cost of Developing Assignment Component +1
Cost of Developing AFS Core Component +1
Cost of Configuration Management +1
Cost of Testing +2
Cost of Training and Documentation +1
Savings from solving system-locking problem (from 10/1/01
to 1/2/03)*

-1

Saving from improvement in adding a new Item (from 10/1/01
to 1/2/03)*

-1

Savings from improved architecture (reduced global variables,
more explicit communication and better understanding of
features)

N/A (data is being
gathered**)

Savings in reusing AFS Core in 4 projects. Including cost of
testing and integration.

-4

Savings in reusing Suppression, Assignment and Error
Processing Component in desktop and Internet version of
AMS. Including cost of testing and integration.

-6

Net Cost (+)/Savings (-) (from 10/1/01 to 1/2/03)* 0
Table 6.15: Budget analysis for input processing project.

* Calculated as opportunity cost, i.e. time we would have spent otherwise (from

10/1/01 to 1/2/03)

** This data will be reflected as cost of training a developer before and after the

change. Due to challenging economic environment AFS has not hired a new

trainee as of 1/2/2003. Thus, we will be gathering this data as AFS starts hiring

new trainees.

206

 Figure 6.14: Input Processing Component Infrastructure.

6.11 Summary

We applied our ten-step methodology to identify and refactor the code to create

reusable input processing component at AFS. We applied our feature model to

identify the feature implementation. The original Input Processing feature

represented the fully interacting feature implementation discussed in Section

4.1.2.3. The Assignment, Error Processing and Suppression code were

intermingled. The feature relationships between the three features was identified

by analyzing the implicit communication using techniques described in Section

Input Processing

A

MasterFile
Census File
Policy File

Read

clsErrorProcessingGUI

clsSuppressionCore

clsAssignment

Save

clsAFSCore

EP

clsErrorProcessing

Show UI

Save

GUI

S

clsSuppression

EP Core

clsErrorProcessingCore

S Core

EP GUI

AFS Core

207

4.1.5.2. The input-processing feature is comprised of Assignments, Suppression

and Error Processing features. We created six reusable fine-grained components

namely, clsAssignments, clsSuppression, clsErrorProcessing, clsSuppressionCore,

clsErrorProcessingCore and clsAFSCORE, using our fine-grained component

model. The clsSuppressionCore and clsErrorProcessingCore components support

clsSuppression and clsErrorProcessing respectively. We plugged the components

using compiler directives into AMS. We then verified the evolution reason by

running regression pre and post evolution, reusing the component and fixing the

system-lock problem. AMS and WEB-AMS shared all six components.

AFSCORE component is being shared in all four AFS product lines. Using our

budget model, we monitored and reported the cost/benefit of the entire effort.

Our methodology shows a break-even in terms of costs and benefits incurred so

far. There are some implicit benefits such as better understanding of features and

reduced global variables, for which we are still collecting data. We consider our

evolution initiative a success in applying our methodology to the Input Processing

project. We will discuss lessons learned, our contributions and future work in the

next chapter.

208

7 Conclusions

This chapter discusses the lessons learned in developing and applying our

methodology, contributions made, and what avenues could be taken for future

work.

7.1 Lessons Learned

In this section, based on our case study, we evaluate the benefits and limitations

of our methodology.

7.1.1 Methodology Applicability

Although our methodology is programming language-independent and does not

depend on specific code profiler tools, several factors affect the applicability of

our methodology. These factors are as follows: organization’s product-lines,

maturity of software process, type of legacy system and refactoring choices.

Our methodology has been applied and tested in a scenario where there was one

primary legacy system and other product-lines were being developed from

scratch. In addition, the existing legacy system was experiencing maintenance

costs of certain key features which were visible to the end-user. Furthermore,

these features were also common across product-lines. While it is certainly

possible to apply our methodology and refactor problematic feature

implementation even in the case when these feature implementation are not

common across product-line,. we argue that businesses will earn most return on

209

investment (ROI) under the scenario when refactored feature implementation can

be reused across multiple product lines. In AFS’ case, we found that Input

Processing feature implementation was experiencing high maintenance cost which

when refactored was reused across two product AMS lines namely, the desktop

and web-enabled.

Organizations that are looking to apply our methodology must have a mature

software process in place. Maturity of software process can be determined by

various factors such as CMM level, ISO 9001 level, availability of regression test

process and ability to track costs of making changes to the legacy system. CMM

level II and above, and ISO 9001 level I and above, both recommend availability

of regression test process and ability to track costs when making changes. It is

certainly important for organizations to be certified in CMM or ISO 9001, we

suggest that our methodology will work best when there is a mature software

process in place that has ability to perform regression test with each release and

has ability to track costs of making changes.

Our methodology has been applied and tested in a function-based system with lots

of global variables, functions and subroutines. While the methodology steps are

programming language independent and type of legacy system independent, our

methodology has not been applied on an object-oriented (OO) or a real-time

legacy system. While it is possible to identify feature implementation of an OO

system using a source code profiler, there are several complicated issues in OO

210

such as polymorphism, overloading and inheritance that could result in same

feature implementation of two features which would further complicate

refactoring. Likewise, our methodology has not been tested on the systems with

multiple thread of execution commonly found in real-time systems. We

acknowledge the fact that our methodology will have to be customized in

addressing evolution of OO and real-time legacy systems.

Once feature implementation is identified, our methodology provides a template

for identifying lines of code that need refactoring. In addition, this template also

provides the properties (Get and Set) for the refactored component. However, it

is up to the developers to refactor the code into a component using the best

possible design. Our methodology will work the best when the refactored unit has

a lower maintenance cost itself.

7.1.2 Sensitivity relative to Average Coverage (C)

Not all features are an ideal candidate for this methodology. Using domain

knowledge and enterprise initiatives, it is possible to identify features that either

are a good candidate for reuse or have maintenance problems.

In Table 4.10, we have shown whether to continue with the methodology or not

based upon the Threshold (T). Based upon the data collected from AMS (see

Table 7.3) we believe that generally the average coverage (C) determines how

sensitive a particular feature is for evolution. The end-users and testers identified

the feature that needed evolution for our AMS case study. However, it is quite

211

possible that selecting a feature for evolution the candidate features (note that the

feature must still satisfy the law of two as discussed in Section 4.1.2.7) the

decision for evolution is solely based on C. In this section, we will discuss how

sensitive the case study Threshold values are. We found that the Input Processing

had the following values for Threshold, Neighbouring Feature (K) = 3, Feature

Implementation (FI) = 17 and Average Coverage (C) = 80%. Analyzing the

feature/function matrix of Input Engine of AMS we found following:

If we reduced the C to be about 50% we found that K was increased to 8 and FI

was increased to 19. If we reduced the C to be about 25% we found that K was

increased to 21 and FI was increased to 99. Both the above finding indicates that

we are dealing with less cohesive code, hinting that evolution would take longer

(for a more detail analysis see Section 7.1.3). If C was increased to be greater

than 90% we found that K was decreased to 2 and FI decreased to 1, indicating a

trivial case. K=0, FI=0 and C=100% represent the CORE. The data is shown in

Table 7.1 and Figure 7.1. Note that Figure 7.1 shows C on the x-axis (represents

the first data point of 10%, 2 means 25%, 3 means 50% and so on) and a scale on

the y-axis which is used to plot FI and K. The values shown in

Table 7.1 are shown plotted in Figure 7.1. We can see from Figure 7.1 as C

decreases the distance between FI and K increases indicating more time to evolve

these features and likewise as C increases distance between FI and K decreases

indicating lesser time to evolve. We found that C for our case study was best

212

suited around 80%, which is the fourth data point in Figure 7.1 (suggesting an

optimum for AMS’s Input Engine given the budget in terms of time/resources).

Note that different parts of the legacy system may be sensitive to C, a more

empirical study is suggested as a part of future work (see Section 7.3.2).

Table 7.1: Coverage Sensitivity Data in AMS.

Figure 7.1: Coverage Sensitivity in AMS.

0

20

40

60

80

100

120

140

Log Constraints Callback Input
Processing

Import/Export CORE
0

5

10

15

20

25

30

35

40

K (Neighboring Feature)
FI (Functions)

Feature K (Neighboring Feature) FI (Functions) C (Avg. Coverage)
Log 125 35 10%
Constraints 99 21 25%
Callback 8 19 50%
Input Processing 3 17 80%
Import/Export 2 1 90%
CORE 0 0 100%

213

7.1.3 Selecting Evolvable Features

In the case of AMS, if a feature is spread out across many functions, and if the

code execution is below 80% using selected test cases within each of the

functions, the feature is not a good candidate. For example, the primary function

of AMS is to integrate executive benefits and life insurance using complex non-

linear algorithms. Life insurance acts as an asset to fund the executive benefits.

There are many legal-, accounting-, insurance- and benefits-related constraints,

which play an important role in the asset/liability match within AMS. Such

constraints are scattered throughout AMS, and make up less than 20-25% in any

given function. Our experience tells us that the constraints themselves will

certainly not be good candidates for evolution because they do not change

frequently, and they probably cannot be reused in other AFS product lines. Good

candidates are those features that change often, are concentrated in fewer

functions, depend on or share global variables as a means of communication and

can be reused across product lines.

Our methodology provides several heuristics to avoid feature interaction issues by

identifying closely related features. If two feature implementations are highly

correlated, then it is certain that these features are intertwined, and a rewrite is

probably warranted.

Heuristics on features that are evolvable can be further elucidated by close

analysis of Table 7.2. This table displays the results of running the profiler with

214

regression test cases, after the test cases have been mapped to the features. Each

row represents a particular function; each function has been mapped to a pre-

defined function type (SS, DF, DD, SSF – see List of Acronyms and Glossary), as

indicated in the rightmost column. For example, f1 is of the type Shared Stateless

Function (SS). Each column represents a regression test case Tn (while our

methodology supports multiple test cases representing a single feature we omit

this detail for the purpose of this discussion); each test case is mapped to a feature

(FE n). For example, T1 is mapped to FE1. The numeric value in each cell is the

percentage of coverage for the specific feature by that function. For example, f1

has 100% coverage for FE 1 in T1.

The concept of threshold is essential in this analysis of evolvability. For a given

feature-function relationship, the threshold is based on the number of functions

(FI), the number of neighboring features (K), and the percentage of coverage (C)

for the feature in each function. The coverage level must be significant; we have

selected 80% as the minimum for evolvability based upon our experience with the

AMS. There are two special cases: (1) The trivial case: K = 1 and F = 1; the

feature and the function are coterminous; (2) C = 0: zero coverage, hence there is

no feature-function relationship. Optimum values for evolvability, for a given

legacy system (LS), might be K = 3, FI = 17, C = 80%, with no cross-cutting and

no trivial cases.

215

Another important concept in this analysis is traceability. This is the ability,

using a code-profiling tool, to traverse the implementation code path in order to

identify feature-function relationships. Traceability can be used to examine three

types of relationships: (1) function-to-feature; (2) feature-to-function; (3) feature-

to-feature. The NuMega ® True Time Code Profiler [56] was used in this

analysis.

The following describes feature or function categories in terms of evolvability.

Each category (in upper-case below) corresponds to a colored section in Table

7.2.

Table 7.2: Evolable Features.

Test Cases T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12
Function\Features FE1 FE2 FE3 FE4 FE 5 FE6 FE7 FE8 FE9 FE10 FE 11 FE 12 Type

f1 100 100 100 0 0 0 0 0 0 0 0 0 SS

f2 80 80 90 0 0 0 0 0 0 0 0 0 DF

f3 100 100 100 0 0 0 0 0 0 0 0 0 SS

f4 70 75 80 0 0 0 0 0 0 0 0 0 DD

f5 100 100 100 0 0 0 0 0 0 0 0 0 SS

f6 100 100 100 0 0 0 0 0 0 0 0 0 SS

f7 100 100 100 0 0 0 0 0 0 0 0 0 SS

f8 0 0 0 80 90 0 0 0 0 0 0 0 DF

f9 0 0 0 100 100 0 0 0 0 0 0 0 DF

f10 0 0 0 0 0 11 12 0 0 0 0 0 SSF

f11 0 0 0 0 0 33 44 0 0 0 0 0 SSF

f12 0 0 0 0 0 12 15 0 0 0 0 0 SSF

f13 0 0 0 0 0 15 15 0 0 0 0 0 SS

f14 0 0 0 0 0 22 22 0 0 0 0 0 SS

f15 0 0 0 0 0 32 38 0 0 0 0 0 SS

f16 0 0 0 0 0 15 15 15 15 15 15 15 SS

f17 0 0 0 0 0 22 22 22 22 22 22 22 SS

f18 100 100 100 100 100 100 100 100 100 100 100 100 SS

f19 100 100 100 100 100 100 100 100 100 100 100 100 SS

f20 100 100 100 100 100 100 100 100 100 100 100 100 SS

f21 0 0 0 0 0 32 38 12 56 89 66 63 DD

f22 0 0 0 0 0 22 22 34 52 23 43 34 DD
f23 0 0 0 0 0 32 38 22 44 33 45 32 DD

216

Functions that are shared stateless (SS) and have 100% coverage for all test cases

can be shared in a common library, as CORE. Functions 18-20 in Table 7.2 meet

these requirements.

If a feature is contained within a few functions, and if the code execution is above

80% using selected test cases within each of the functions (above threshold), this

feature is a good candidate to be EVOLVABLE. Features 1-3, implemented in

Functions 1-7, and Features 4-5, implemented in Functions 8-12, meet these

requirements.

 A CROSS-CUT feature is dispersed in too many functions and the coverage

values are below threshold. Features 6-7 illustrate this category. A cross-cut

feature is not recommended for evolution because the impact of change can create

several unforeseen errors and the cost will exceed the benefits.

The shaded area (Feature 8 through Feature 12, and function f16 through f23)

represents the inverse of cross-cutting, another type not recommended for

evolution, NON-EVOLVABLE; while the features are implemented in a

reasonable number of functions, the functions implement a large number of

features, and the coverage values are below threshold.

The ZERO COVERAGE category includes all cells in the feature-function

matrix, which have no coverage. These are the white cells in Table 7.2.

Our experience with AMS features is shown in Table 7.3 (partial listing). The

Input Processing feature that was evolved, had a K=3, FI = 17 and C = 80%. We

217

also found that there were features within AMS that were implemented within one

function only and no other feature was implemented in that function. An example

of such a feature is importing data from another database. Cash value calculation

is an example of non-evolvable feature because its FI is shared by nine other

features in a single function which means the impact of change will be

unfavorable. Likewise, a cross-cutting feature, like a constraint to a non-linear

equation solve, is also not a favorable candidate for evolution because it is

dispersed in so many different features. Finally, we discovered CORE of 42

functions as shown in Table 7.3.

Table 7.3: Heuristics (partial listing).

7.1.4 Sorting Feature Function Matrix

When regression test suite is run with a profiler, the amount of data can be

overwhelming. AMS has over 250 test case files in its regression test suite.

When the profiler generates the feature function coverage matrix, it is not sorted

and the feature-function coverage data is scattered as shown in Table 7.4.

K FI C

Number of Neighboring Features Number of Functions Avg. Coverage Feature Heuristics

3 17 80.00 Input Processing Evolable

1 1 100.00 Import Trivial

10 1 100.00 Cash Value Calc Not-Evolvable

1 54 35.00 Solve Constraint Cross-Cut

- 42 100.00 - Core

218

 Table 7.4: Unsorted Feature Function Matrix.

When we look at the evolution threshold, we must cluster the data into group of

related features and their FIs. We make use of RankSort algorithm to cluster the

feature-function matrix. Ranksort allows sorting over multiple columns. A

detailed description and analysis of Ranksort can be found in [107]. We have also

implemented RankSort algorithm in our utility that was discussed in Chapter 5.

The data shown in Table 7.4 is sorted using RankSort that then resembles Table

7.5.

Unsorted Features
Functions FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 FE11 FE12

f8 0 0 0 80 90 0 0 0 0 0 0 0
f9 0 0 0 100 100 0 0 0 0 0 0 0
f10 0 0 0 0 0 11 12 0 0 0 0 0
f11 0 0 0 0 0 33 44 0 0 0 0 0
f12 0 0 0 0 0 12 15 0 0 0 0 0
f13 0 0 0 0 0 15 15 0 0 0 0 0
f14 0 0 0 0 0 22 22 0 0 0 0 0
f15 0 0 0 0 0 32 38 0 0 0 0 0
f16 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
f18 100 100 100 100 100 100 100 100 100 100 100 100
f1 100 100 100 0 0 0 0 0 0 0 0 0
f4 70 75 80 0 0 0 0 0 0 0 0 0
f21 0 0 0 0 0 32 38 12 56 89 66 63
f1 100 100 100 0 0 0 0 0 0 0 0 0
f5 100 100 100 0 0 0 0 0 0 0 0 0
f21 0 0 0 0 0 22 22 34 52 23 43 34
f19 100 100 100 100 100 100 100 100 100 100 100 100
f2 80 80 90 0 0 0 0 0 0 0 0 0
f6 100 100 100 0 0 0 0 0 0 0 0 0
f7 100 100 100 0 0 0 0 0 0 0 0 0
f20 100 100 100 100 100 100 100 100 100 100 100 100
f23 0 0 0 0 0 32 38 22 44 33 45 32

219

Table 7.5: Sorted Feature-Function Matrix.

7.1.5 Reusable Components and Web Applications

Section 2.2.2 discussed the importance of the Internet in evolving legacy systems.

At AFS, while we already had our flagship product AMS in operation, we were

developing its web counterpart which presented challenges and opportunities. In

our search to reuse components across our product lines, we found that a web

applications forces a system to be composed of smaller stateless units which in

turn forces a monolithic legacy system to be decomposed into smaller more

manageable units. Web applications are typically are comprised of three tiers

namely web server, application server and database server as shown in Figure 7.2.

In evaluating reusability between AMS and AMS-Web, we found that between

the two product lines there were four common indirect features specifically; Input

Processing, Reporting, Business Logic Calculation and Data Access as shown in

Sorted Features
Functions FE1 FE2 FE3 FE4 FE5 FE6 FE7 FE8 FE9 FE10 FE11 FE12

f1 100 100 100 0 0 0 0 0 0 0 0 0
f2 80 80 90 0 0 0 0 0 0 0 0 0
f3 100 100 100 0 0 0 0 0 0 0 0 0
f4 70 75 80 0 0 0 0 0 0 0 0 0
f5 100 100 100 0 0 0 0 0 0 0 0 0
f6 100 100 100 0 0 0 0 0 0 0 0 0
f7 100 100 100 0 0 0 0 0 0 0 0 0
f8 0 0 0 80 90 0 0 0 0 0 0 0
f9 0 0 0 100 100 0 0 0 0 0 0 0
f10 0 0 0 0 0 11 12 0 0 0 0 0
f11 0 0 0 0 0 33 44 0 0 0 0 0
f12 0 0 0 0 0 12 15 0 0 0 0 0
f13 0 0 0 0 0 15 15 0 0 0 0 0
f14 0 0 0 0 0 22 22 0 0 0 0 0
f15 0 0 0 0 0 32 38 0 0 0 0 0
f16 0 0 0 0 0 15 15 15 15 15 15 15
f17 0 0 0 0 0 22 22 22 22 22 22 22
f18 100 100 100 100 100 100 100 100 100 100 100 100
f19 100 100 100 100 100 100 100 100 100 100 100 100
f20 100 100 100 100 100 100 100 100 100 100 100 100
f21 0 0 0 0 0 32 38 12 56 89 66 63
f22 0 0 0 0 0 22 22 34 52 23 43 34
f23 0 0 0 0 0 32 38 22 44 33 45 32

220

Figure 7.2. While all four features were converted into reusable units using the

methodology; Input Processing feature was evolved using the methodology,

Reporting and Business Logic features were evolved via wrapping and, Data

Access feature is part of CORE.

Figure 7.2: Reusable Components Between Desktop and Internet Application.

End User

Web Server – Tier I

(Input Processing Components)

(Reporting Components)

Application Server – Tier II

(Business Logic Components)

(Data Access Components)

Database Server – Tier I

Internet

End User

Monolithic Legacy System

(Input Processing Feature)

(Reporting Feature)

(Business Logic Feature)

(Data Access Feature)

Desktop

End User

Web Server – Tier I

(Input Processing Components)

(Reporting Components)

Application Server – Tier II

(Business Logic Components)

(Data Access Components)

Database Server – Tier I

Internet

End User

Monolithic Legacy System

(Input Processing Feature)

(Reporting Feature)

(Business Logic Feature)

(Data Access Feature)

Desktop

221

7.1.6 Issues In Reusing Components Across Product Lines

While reusing components is an excellent idea across product lines, we found

several inherent problems:

7.1.6.1 Configuration Management

Configuration management and version control are key issues and must be

addressed carefully when a component is shared across product lines. It is also

important to decide how many versions of reusable components are going to be

maintained and supported. We found that configuration is more complicated in a

product line context for two reasons:

1. A change must be considered not from the point of view of a single

product, but in terms of keeping the changed component used by all of the

products that currently employ it.

2. It is more likely that it will be necessary to maintain separate versions of

reusable components, as opposed to simply supplying the most recent one,

as may suffice in one-at-a-time development.

At AFS we found that strong, centralized architectural control is key to product

line development, but so is management of change and evolution. In the

development phase, the architect answers to a single set of products, and their

needs are often complex. But in a product line, the architect answers to users of

all versions of the system, and keeping the product line intact is more important

222

than making changes to accommodate a single product's needs. In order to

address the above-mentioned issues we created a team of software developers

whose main job was to manage the versions of the shared components.

7.1.6.2 Deployment

Given that fine-grained components needed to be integrated for use within

product lines, there are two technology alternatives that we considered:

1. For the local component model (for the use within AMS) we compared

Microsoft’s Active X and Sun’s JavaBeans.

2. For distributed component model (for the use within AMS-WEB) we

compared Microsoft’ COM (COM/DCOM/MTS/COM+) and Sun’

Enterprise JavaBeans (EJB).

We decided to use Microsoft COM for deploying both AMS and AMS-WEB

product lines for the following reasons:

a. Integrating Active X components in our existing enterprise framework is

easier than JavaBeans since not all our developers know Java

programming language.

b. Our enterprise framework and legacy code uses COM as an underlying

technology.

c. We did not want to deal with the bridge technology that would try to

connect COM and JavaBeans [62]. For example, it is possible to raise

events from JavaBeans and catch them in Active X components.

223

However, there are known problems with this integration specifically

when handling exceptions.

d. Our users use Windows operating system at-large so interoperability is not

an issue for AFS.

e. EJB offers several nifty and powerful features but is quite complex.

Because not all our developers are Object-Oriented literate and we have

already spent so much in Microsoft technologies, we feel that COM is a

better choice for our server-based implementations as well. We feel that

COM is simple. Thus, we chose COM for deploying components on the

server side as well.

Table 7.6 summarizes the comparisons. Although, it made good technical and

business sense to use COM as an underlying technology for deploying our fine-

grained components we faced the following challenges in implementing the

reusable units in AMS-WEB:

1. Our fine-grained components had to be deployed in MTS

(Microsoft Transaction Server) when using with AMS-WEB.

While the installation of MTS was simple, it did add another layer

of complexity for our developers. We also found that Input

Processing components under MTS’ performance was slower than

the AMS version.

224

2. COM’s deployment data is stored in the Windows registry; this is

cumbersome and presents several faults as far as portability is

concerned. Registry entries can be exported and imported if a

server is moved but this is an error prone procedure.

3. Server-based COM components cannot be configured as stateful or

stateless. They're always stateless. Remote clients use DCOM to

invoke methods in COM objects on server machines. For access

from Internet-enabled clients via HTTP, the COM Executive is

loaded into Internet Information Server (IIS) the Web server built

into Windows 2000 OS. We had to enhance our fine-grained

component model to maintain state.

4. The AMS-WEB versions of components had to be configured for

security in the application server. The security settings required

setting several parameters in the registry of Windows 2000 OS,

which is cumbersome and errorprone.

225

Properties EJB EJB COM COM

Component Language Java only VB, C++, Java, C# and Others

Platforms All Windows 2000

Middleware Vendors 30+ Microsoft

Legacy Integration RMI/JNI, CORBA, Connectors COM TI, MSMQ, OLE DB

Deployment method XML descriptor file GUI and Registry

Protocol Any DCOM

Component Persistence Serialization No

Stateless components Yes Yes

Stateful components Yes No

Persistent components Yes No

Method-granularity transactions Yes No

Middle-tier load balancing Most vendors Supported via app. server

Middle-tier data caching Some vendors No

Queued components No Yes

Single-vendor solution No Yes

Middleware comes with OS No Yes

Development tools Choice of many Microsoft Dev Studio

Table 7.6: EBJ and COM Comparison.

7.1.6.3 Training

Fine-grained components deployment on the server and configuration

management required more training to our developers than we had originally

anticipated. While we were successfully able to train our developers on our

methodology and fine-grained components, we found that server-based

deployment of fine-grained components required extra effort. We did not include

226

training time for deployment on the server in our budget analysis model because

this time was not an extra step required by our methodology. In other words, in

absence of our methodology this step would have to be performed anyway.

7.1.7 Global Variables

We were pleasantly surprise to observe following:

1. Better definition of feature-based global variables

2. Reducing global variables when feature relationships are shared and

required.

7.1.7.1 Explicit Definiton

We found that in all cases that the legacy system is full of global variables. These

global variables are declared and initialized in numerous functions. Typically, FE1

would set the value of a global variable g1 and FE2 or subsequent feature(s) may

either use (shared/required feature relationship) or change (alter feature

relationship) g1. This implicit communication is common in legacy system. As a

side effect of our methodology, we renamed the global variables based upon the

neighboring features and their relationships. Providing better name to the global

variables implied two benefits:

1. It suggests explicit relationships among features thereby reducing

confusion.

2. Changing the state of the global variable can provide some clue regarding

the impact it may have on related feature(s).

227

Table 7.7 illustrates the concept discussed above. The new names of global

variables G1 and G2 depends on feature relationships between the two features

that they have been involved in.

Old Global
Variable
Name

Program

FE1

FE2

Feature
Relationship

New Global
Variable Name

G1 Declare Set Use Shared G1_FE1_FE2_S
G2 Declare Set Change Altered G2_FE1_FE2_A

Table 7.7: Global variable naming convention.

7.1.7.2 Reducing Global Variables

We found that the program does not need to declare the global variable if the

relationships between the features is either shared or required. The global

variables can be encapsulated within the feature-based fine-grained components,

and be accessed as needed by the rest of the program.

7.1.8 Availability of Regression Tests

While we have no empirical studies to show that most systems have regression

test suites to measure stability between releases, such test suites are important

from a business perspective [10]. An informal survey of seven legacy systems

revealed that all of them had adequate regression test suites. We therefore believe

it is reasonable to assume that most businesses either have these test suites

(although they may not refer to them as such) or are generating these test suites

manually each time a new release is scheduled.

228

7.1.9 Automating Tasks

To instrument the source code we compiled the source code image with

TrueCoverage™. Since the regression testing is already being done in batch

mode, it was easy to get the instrumented output to compare against all 250

regression test cases. However, these instrumented images were in a

TrueCoverage™ specific file format. TrueCoverage™ does provide an automated

way to export the specific file format. We had to manually export each file into a

standard file format (comma-separated values) just to import into a spreadsheet

tool for further analysis. This process needs to be better automated and the

TrueCoverage™ vendor has indicated that future releases will have this

functionality.

7.1.10 Dead code and coverage

We assume that a comprehensive set of regression tests is available for identifying

code associated with the given feature(s). In our case study, we found that even

after executing all test cases, not all of the code associated with Input Processing

was executed. We believe that the unexecuted code contained either hidden

features or is dead code. For example, 12 routines were never called at all. Also,

nearly 17% of the code was not executed in the original code. We put all the

unused code in a separate file and documented it. Incremental feature evolution

gives us the implementation of core (AFS Core).

229

7.1.11 Core and Reducing Dependence on Variables:

After refactoring the AFS Core component, we manually identified the

parameters for each of the 42 stateless functions. Since AFS Core is being used in

four AFS product lines, this effort was worthwhile because these 42 functions do

not create any side effects and use no global variables. In addition to AFS Core,

there are two additional supporting core components: Suppression Core and Error

Processing Core. These supporting core components encapsulate the worker

functions and states (i.e., business logic) used by Suppression and Error

Processing components. The supporting core components are created to provide

flexibility in future evolution if any underlying data structure is changed for

managing Suppression or Error Processing. For example, Error Processing Core

contains functions to add, remove, and edit errors to a collection object. In the

future, if the collection object is replaced by an array or another structure, such

encapsulation will allow AFS to change only the working functions and the

interface for the business logic will remain the same. Therefore, each of the six

components has well-defined interfaces with no side effects. Their properties and

methods are categorized explicitly using GetValue/SetValue.

7.1.12 Performance

In refactoring the recursion into linear functions, the performance of AMS was

unaffected. We observed a 2% decrease in execution time once AFS Core was

230

introduced. We attribute this improvement to the removal of global variables and

in-line code.

7.1.13 Component Interface Issues

Our methodology initially created components with too many interfaces. To

resolve this issue, we used a Collection Object provided in the VB programming

language to hide the list of these variables. Different programming languages may

require a different implementation of methods and properties. Furthermore, the

collection object was divided into two basic types, GetValue/SetValue with

the parameter of the variable name as an index key.

7.1.14 Measuring Success

The true measure of a successful evolution methodology is in reduced future

maintenance costs. We have only just begun the long-term task of collecting

maintenance data on the refactored system. We found that the features we evolved

for AMS as components can be reused in two platforms, both desktop and

Internet. Although reuse involves integration, configuration management, and

testing costs, the savings on development costs made this exercise highly

successful. As briefly shown in Table 6.15, the net estimated cost of this project is

one month’s salary for the AFS development team. Once long-term cost

reductions are factored in, the resulting savings will be favorable. The

performance of the refactored system is acceptable and it no longer freezes during

231

input. Also, AFS is now using AFS Core in all four of its product lines (an

unexpected side effect).

7.2 Contributions

In this dissertation, we have made the following contributions: First, an

incremental methodology to evolve legacy code is developed that improves the

maintainability of evolved legacy systems. Second, the technique describes a clear

understanding between features and functionality, and relationships among

features using our feature model. Third, the methodology provides guidelines to

construct feature-based reusable components using our fine-grained component

model. Fourth, we bridge the complexity gap by identifying feature-based test

cases and developing feature-based reusable components.

7.2.1 Incremental Evolution Methodology

Our ten-step methodology is incremental in nature and can provide rapid results.

Our methodology provides “exit-points” in case the developers/testers are not

satisfied with any of the results. For example, heuristics discussed in this

dissertation identify which features are good candidate for evolution and which

ones are not. We have identified input and output criteria for each step of our

methodology, and at any step if a parameter is missing the developer can stop the

whole process without any side effect. Although we have not done so, this

methodology can also be used to evolve multiple features at the same time.

232

7.2.2 Feature Model

Our feature model defines features in a way that considers evolution in mind. Our

feature model provides a guide to identify the feature implementation within the

source code. We have identified and provided solutions to various cases when

features interact with each other and reveal the same code for feature(s) to be

evolved. We provide a simple clustering technique to group test cases, which

represent same indirect features. In addition, our feature model provides ample

description on thorny issue of feature interaction and provides an intuitive way of

addressing the issue by considering feature relationships. Another major

contribution of our feature model is a technique to associate multiple test cases

with a single feature and develop a feature/function relationship. Finally, our

feature model forms the basis of providing heuristics to the user by providing

insights on sub-features, feature implementation, CORE, neighboring features and

evolution threshold.

7.2.3 Fine-grained Component Model

Feature Implementations (FIs) can be refactored into fine-grained components,

which can then be reused across multiple product lines. Our fine-grained

component model is simple to use and has minimum requirements in the sense

that it allows the developers to provide better definition to the FI and the variables

involved in invoking that FI. We provide guidelines for evolving a FI into a fine-

grained component: A component’s properties can simplify complicated scenarios

233

such as when a code profiler results in same code for more than one feature in a

function.

Finally, our fine-grained component model reduces global variables if feature

relationships are shared or required.

7.2.4 Complexity Gap

We bridge the complexity gap in two ways. First, we map the regression test

cases to the features and create a feature/function matrix. This matrix is used to

select evolvable features. Regression test cases reflect the end-user feature; they

are already focused so it is not necessary to collect execution traces on all inputs

or to divide the input sets into invoking or non-invoking category as proposed by

other researchers. We suggest that regression test cases are the best choice for the

input cases because regression test cases contain information regarding features.

They can be used as a common entity between the end-user and the software

team. Second, the fine-grained components are feature-based components as they

implement a specific feature or a group of related features. Since these

components are focused on specific features, we believe that they can represent

end-user requirements in a much more explicit way thereby bridging the gap

between user expectations and what the software can provide.

7.3 Future Work

American Financial Systems, Inc. has nearly ten years of longitudinal data on

their legacy system. We are currently expanding our evaluation to model the

234

development costs in adding, modifying, or removing system features. Now that

AFS has refactored parts of its legacy system, we will carefully monitor their

development and maintenance teams to determine the impact of the software

evolution methodology. We hope that other organizations will be inspired by the

success of AFS to carefully evaluate their regression test suites to determine the

feasibility of creating their own reusable fine-grained components.

The work carried out in this research effort opens the door for several interesting

as we now describe.

7.3.1 Metrics

The methodology presented in this dissertation can be further enhanced by

including several metrics such as: quantifying the relationships between test

cases, quantifying the relationship between the features, quantifying impact

analysis when a feature implementation is altered, quantifying the relationship

between the fine-grained components and the legacy system and, quantifying the

complexity gap.

7.3.2 Threshold

The concept of threshold can be studied with respect to following:

1. Different parts of the legacy system: We applied our methodology in the

Input Processing. The methodology can be applied to different areas of

AMS (See Appendix B for more detail) such as:

a. Calculation Engine

235

b. Output Engine

c. Utility functions such as import and export

2. Legacy systems with different architecture: Legacy systems can have

various architectural styles such as pipe and filter, event based, implicit

invocation, layered, repository oriented, table driven, blackboard and

object oriented [29]. We applied our methodology in the Input Processing

of AMS, which appears closest to that of pipe and filter. While our

methodology is architectural-style independent, it will be interesting to see

the results of applying our methodology to the legacy system with various

architectural styles.

7.3.3 Multi-threaded features

Our methodology has been developed and tested with single-threaded features.

Our case study included features with relationships shared, required, and altered.

Typically, multi-threaded features implement competition and conflicting

relationships [26]. While we can certainly identify features with these

relationships, our methodology does not provide enough guidance in converting

such Feature Implementations (FIs) into fine-grained components. More work

needs to be done in this area.

7.3.4 Extending the evolution manager utility

The evolution manager utility that we discussed in Section 4.6 can be extended.

The main purpose of our utility is to show that a Feature Implementation (FI) can

236

be identified. This FI typically needs local and global variables, which in turn

becomes the component’s interface. We evaluated various code profilers and

used their output of in the utility. Extending the utility to automatically import

the information on static and dynamic slicing from various code profiles would be

a good improvement. The main purpose of our evolution manager utility is to

identify FI in terms of Lines of Code (LOC) and variable involved. While we are

able to show the power of relational database by modeling LOC and variables

used, this utility does not yet provide any insights into refactoring. Extending the

utility to provide refactoring insights can be helpful. There are several other

enhancements that can be made to this utility such as maintaining release versions

and adding more reports.

7.3.5 Object-Oriented Systems

The case study presented in this dissertation uses a legacy system that has lots of

global variable and is not object oriented. It will be interesting to apply our

technique on an object-oriented system with complex class hierarchies. There are

several code profilers that are available for most of the object-oriented languages

such as Java or C++. Indeed, many legacy systems are object-oriented. These

legacy systems can benefit from our methodology if our methodology is extended

to include object-oriented systems. Code profilers can gather information about

the legacy system’s classes that implement features. These classes will have to be

then analyzed using our feature model. Refactoring of these classes can result in

237

some core classes that can then be shared. It appears that analyzing object-

oriented system will be quite challenging and it presents its own research issues.

We leave this interesting problem to be solved as part of future work.

7.3.6 Systems whose source code is unavailable

At this time it may appear far-fetched but our methodology could be extended to

include techniques to analyze systems whose source code is not available. There

are legacy systems whose source code is either lost or unavailable for one or more

reasons. While our methodology uses source functions to provide heuristics on

evolvable features, this can be changed to simply extract features by running

regression test cases. Essentially, input and output can be compared to identify

systems behavior. By comparing the input against the full regression test suite,

the features can be identified and the system can be executed to generate output.

This behavior can be statistically studied to identify features of interest. Once

features are fully understood they can then be rewritten. CBSE techniques can be

used to integrate newly created components into legacy system whose source is

not available.

7.3.7 Real-time Systems

Our methodology has been applied in a legacy system that is used in integrating

executive benefits with life insurance. The AMS legacy system is by no means a

real-time system. If the real-time systems are instrumented to collect the output

data then desired features could be studies, identified and refactored as needed.

238

This instrumentation can be in many forms such as code profiler, debug lines or

log files. Many real-time systems have advanced logging capabilities. That could

be used to analyze and refactor features of interests.

7.3.8 Tools to manage feature evolution

 Figure 4.27 outlines the data model used as a basis for our formal model. We

chose a relational model because it is intuitive and easily applicable in our

context. The formal model provides a theoretical foundation to our techniques.

While we have successfully applied our methodology, we believe that it is lacking

a tool to manage the feature evolution process. This tool can be built from the

idea presented in our formal model. The formal model is actually based upon the

data model. This data model contains useful information regarding shared

function and data. It can select the functions and data shared among features and

can automatically copy them into the relational model as the developers are using

this methodology. As this database grows, it will provide meaningful information

for traceability and future maintenance. We believe that several tools can be

developed that can use the data model presented in this dissertation.

7.3.9 Tools to automate selection of test cases

We have presented two techniques to select the regression test cases in our case

study. These techniques are usage of clustering and textual pattern analysis.

Future work can include development of some tools that can automate this task.

Essentially, these tools can analyze the pool of heterogeneous data that is either

239

part of regression test suite or is associated with the documentation that supports

regression test cases. These tools can group the related test cases (thus related

features) based upon certain rules.

7.3.10 Extending the budget analysis model

The budget analysis model can be extended to include several other variables that

may be interesting from a project management perspective. While the budget

analysis presented in the conclusion Section 6.10 includes variables that are

sufficient to suggest that our approach is indeed worthwhile, it can certainly be

extended to include costs more accurately using COCOMO or COCOTS model

[15][17][109][130]. Furthermore, the budget analysis presented in Section 7.1

can include several other line items such as opportunity cost.

7.3.11 Extending the component and formal model

Our component model considers two features at a given point in time. See Figure

4.15, which shows view of the function being analyzed as fx, fy etc. We feel that

there is an opportunity to analyze more than two features at a given time. This

would increase the complexity of the analysis but we believe that the component

model could be extended to use more than two features at a time.

Similarly, the formal model could be extended to include several metrics such as

provided in Wong et al. [125]. These metrics could provide several interesting

views such as what is the relationship between components properties and

variables used in a feature prior to its evolution or a scattering index indicating

240

how many functions a particular feature is scattered in and what is its relationship

with other features within the function.

7.3.12 Using our methodology with tools other than code profilers

We have developed and used our methodology with source code profilers. There

are other tools that could be used to collect the data we want, such as compilers

with symbolic debug information or user-defined instrumentation.

7.3.13 Application of our methodology for program understanding

Although we argued rather rigorously in the related work section that motivation

of our work is software evolution rather than program understanding, we believe

that our methodology can be used to understand program as well. Using

regression test cases and code profiler, the execution paths can be studied to

understand which part of the program is being used more than the other and so on.

Similarly, functions involved in a particular feature can be traced and watched for

testing and debugging purposes.

7.4 Summary

We discussed lessons learned, our contributions and future work in this chapter.

We presented heuristics for selecting the features that are best suited for

evolution. We discussed the concept of threshold that allows us to select sutable

candidates for evolution. Threshold consists of a function of number of

neighbouring features, number of functions and average coverage. We discussed

the importance of RankSort and clustering. Upgrading existing desktop

241

applications into web-based application allows us to identify features that can be

reused using our methodology. There are several issues in reusing components

among applications such as configuration management, deployment and training

personnel. Legacy systems that have large number of global variables can

benefit from our methodology in two ways, first our methodology provides better

definition of feature-based global variables and, second it reduces global variables

when feature relationships are shared and required. Our methodology assumes

availability of regression test suites and code coverage profilers. We believe that

this constraint is not severe. We successfully applied our methodology in a large

industrial application. Our contributions consists of an incrementally evolution

methodology, a feature model and a fine-grained component model. These

models are supported by formal model and budget analysis model. We bridge

the complexity gap in two ways; first by mapping the regression test cases to the

features and creating a feature/function matrix, second by creating feature-based

fine-grained components. We have provided several avenues for future research

such as developing metrics to measure feature/function relationships, collecting

information and calculating threshold for various parts of the legacy system,

extending our methodology for multi-threaded features, enhancing the evolution

manager utility, applying our methodology for OO systems and extending our

models.

242

We hope that we have convinced the reader that our methodology is easily

applicable and measurable, incremental in nature and has solid theoretical

foundation.

243

List of Acronyms

ADT Abstract Data Type

AFS American Financial Systems, Inc.

AMS AFS Master System

AOP Aspect-Oriented Programming

API Application Programming Interface

C Average Coverage

CBSE Component Based Software Engineering

COTS component-off-the-shelf

DD Dependent Data

DF Dependent Function

FE Feature in a Legacy System

FEi a feature of Legacy System that is exercised when ki is executed

FGC Fine-grained component model

FI Feature implementation as defined in the feature model

FIi An implementation of FEi in LS

FOCS Feature Oriented Classification of System

FODA Feature Oriented Domain Analysis

FOP Feature Oriented Programming

244

G A set of global variables in a Legacy System

GUI Graphical User Interface

gi The set of global variables involved in FIi

ki A set of test cases such that ki ∈ T

K Neigboring Features

LOC Lines of Code

LS Legacy System

MAP Mining Analysis of Product Lines

OAR Options Analysis Re-engineering

SEI Software Engineering Institute

SS Shared Stateless Function

SSi The set of shared stateless functions in FIi

SSF Shared State-Full Function

T Threshold

V The set of local variables in FIi

vi The set of local variables directly affected by FIi

245

Glossary

χχχχSuds. A tool developed by Telecordia Technologies where program features in

the source code are tracked down to files, functions and lines of code.

Altered Relationship. When a feature’s state (global data, object or

implementation) is altered by another feature then there is an altered relationship

between features.

Architectural reconstruction. Architectural reconstruction is the process where

the “as-built” architecture of an implemented system is obtained from the existing

legacy system.

Aspect Oriented Programming (AOP). An approach in which cross-cutting

concerns that appear throughout numerous modules of a system implementation

are identified and then integrated into the primary modularization to create a final

working system.

Assignments. AMS’s Input Processing’s sub-feature which converts user input

from strings to types such as Integer, Single, Double, or Array.

246

Base-line Architecture. Specific caller-callee sequence within a program, and is

unlikely to be reusable into another components.

Black Box Technique: A binary executable form of the component is available

and there is no extension language or API.

Budget Analysis Model: The budget analysis model presents the cost and the

benefit of applying the methodology.

Clustering Analysis. It is the organization of a collection of patterns (usually

represented as a vector of measurements or a point in multidimensional space)

into clusters based on similarity.

Coarse-grained software evolution. Evolution focused on large-scale structural

issues of a software system, such as global control structure, synchronization and

protocols of communication between components.

Code refactoring. Improving the design of existing software code without

altering the behavior.

247

Code profiler. A tool for analyzing software code which performs functions

such as identification of performance bottlenecks and verification that code

changes have improved performance.

Complexity gap. The gap between the problem domain the solution domain.

Component. A software element that conforms to a component model and can

be independently deployed and composed without modification according to a

composition standard.

Component Based Software Engineering (CBSE). An approach to software

design that utilizes components as the core structural elements.

Component model. A model which defines specific interaction and composition

standards.

Composed relationship. It shows how a feature is composed of several sub-

features. An example of a composed relationship is that a bank account consists

of savings and checking accounts.

248

Configuration management. Application of technical and administrative

controls to characteristics, change processing, and implementation of

configuration items in a software system.

CORE. Shared Stateless function(s) that are executed 100% of the time for all

features then we define that function to be part of CORE. Such functions are

candidates for a shared library.

Cross-cutting. Mean that a function can implement many features and these

features share the same code/data.

Data Model. The data model is used to trace feature relationships, interactions

and component evolution of a legacy system.

Dependent Data. An FI may be dependent on the data that is updated by another

FI. This can be local or global variable.

Dependent Function. An FI may be dependent on a function that is part of

another FI.

249

Evolution Manager Utility. Utility used in recording and tracing the

methodology steps.

Error Processing. Error Processing is a sub-feature of AMS’s Input Processing

feature that validates item values.

External Dependencies. SSF, CORE and other components can be called “out”

of the fine-grained component to access any data needed via this interface.

External Dependencies is a list of external program/component declaration within

a fine-grained component.

Feature. It is a group of individual requirements that describes a unit of

functionality with respect to a specific point of view relative to a software

development life cycle.

Feature Engineering. The area of study that addresses the understanding of

features in software systems and then defines a set of mechanisms for carrying a

Feature from the problem domain into the solution domain (thereby reducing the

complexity gap).

250

Feature Implementation. It is the set of statements (including data) within all

functions that execute when that feature is invoked. The feature is invoked by

one or more test cases.

Feature Interaction. Features must interact with each other to provide wider

system functionality. When features interact with each other, they have an

“effect” on the system. This effect can be positive or negative.

Feature Model. helps to identify where features are located within the legacy

system, how features are related to other features, and how they interact with each

other.

Feature Oriented Domain Analysis (FODA). A method of system analysis

which provides a generic description of the requirements of a class of systems and

a set of approaches for their implementation, based on the feature set of the

system.

Feature Relationships. Feature relationships refine the concept of interaction by

providing specification through calling sequence among features sharing

data/functions.

251

Fine-grained components. Components whose interaction is clearly specified by

the interfaces provided by each feature interface.

Fine-grained component model. It provides guidelines to extract feature specific

code/data.

Formal Model. It provides the theoretical foundation for our

evolution methodology. The formal model is supported by the data

model.

Function Point Analysis. The basic notion of this discipline is that the

functionality of a software project can be objectively estimated independent of the

implementation.

Gray Box Technique: Source code of a component is not modified but the

component provides its own extension language or Application Programming

Interface (API).

Input Processing. It validates and prepares data from user inputs (also called

items) so AMS can perform complex calculations to generate various reports.

252

Item. Field within the AMS system.

Law Of Two, The: If a feature can be used in another system, its implementation

becomes a candidate for reuse.

Legacy Code. A system or application which continues to be used because of the

cost of replacing or redesigning it, often despite its poor competitiveness and

compatibility with modern equivalents.

Legacy System. Any software system that is currently in operation is considered

legacy system.

Methodology: Used for evolving legacy system’s features by exercising each

feature with its associated test cases using code profilers and similar tools, feature

implementations can be located and refactored to create reusable fine-grained

components.

Neighboring Features (K). Number of features interacting within a function

Opportunity Cost.

253

Problem domain. User expectations and concerns, pertaining to software

functionality.

Property Get: It is a way to retrieve the values of local or global variables from

the component.

Property Set. It is a way to pass these variables to the refactored FI/component.

Regression Testing. Part of the test phase of software development where, as

new modules are integrated into the system and the added functionality is tested,

previously tested functionality is re-tested to assure that no new module has

corrupted the system.

Required Relationship. When a feature is required to be present for other

features to function is known as Required Relationship.

Requirement Engineering. Requirement Engineering is the discipline that is

focused on providing a concise, consistent, unambiguous, and complete definition

of the problem domain.

254

Shared Relationship. When a group of feature share resources (global data,

objects or other implementation) with other feature(s) then a shared relationship

among features exists.

Software Architecture. The way a system is designed; the way components fit

together.

Software Evolution: See Methodology.

Software Reconnaissance: Implies “preliminary survey of enemy terrain” where

software program is considered as an enemy whose secrets must be extracted.

Solution domain. Developer concerns regarding the creation and maintenance of

software development life cycle artifacts such as components.

State-full Function. A state-full function can be shared between two features. It

maintains state and is used as a means to communicate by features.

Stateless Function. A stateless function can be shared between two FIs and does

not retain any state.

255

Suppression. Suppression is a sub-feature of AMS’s Input Processing feature

that either shows or hides an item in the user interface based upon the input for

another item.

Threshold: Optimal number of neighboring features, the number of functions

and the average coverage percentage within the function. It provides heuristics on

whether to continue with the evolution methodology or not.

Traceability. Ability of a code-profiling tool to trace the source code

implementing a specific feature.

White Box Technique. Access to source code allows a component to be

significantly rewritten to operate with other components.

256

References

Appendices

Appendix A: AFS Master System

• The AFS Master System (AMS) is used daily by hundreds of top
insurance producers successfully competing in the supplemental benefits
market. Key features include:

• True 32-bit power of the latest Windows operating systems, featuring

user-friendly interface, high-quality graphic output, drag-and-drop input
from other applications, and unparalleled presentation capabilities

• Quick preparation of illustrations and proposals to support new sales

• Ability to re-project plans to adjust for changing plan assumptions

• Easy entry and control of all census data and convenient handling of an

infinite number of lives with the Census Manager database, allowing sorts
on any census item and the option to zoom into individual census records

• Power to tailor plans to clients' complex needs by combining all types of

benefits and insurance products in a single, composite illustration

• Flexibility to make as many changes as needed in any design variable in

any illustration, including tax brackets, cost of money, salary increase
rates, term rider amounts, split dollar premium bonuses, etc.

• Easy navigation among appropriate sales concepts, advice on accounting

issues and case design, and guidance on the impact of each selection with
hypertext help and the package design wizard

• Handles and integrates all types of executive benefits sales, including

SERPs, True Deferral Plans, 162 Bonus Plans, Split Dollar Plans, Death
Benefit Only Plans, and all types of Group Carve-Out Plans

• Provides highly flexible Group Carve-Out modeling

257

• Solves for appropriate amounts of insurance financing, taking into account
MEC status projections, multiple-target cash values, rollout solves,
maximum withdrawal solves, year-by-year benefit tracking and various
combinations of solves

• Demonstrates emerging shortfalls in benefit funding, and solves for

additional insurance

• Saves historical values of a case so re-projections can utilize the

accumulated historical data

• Accounts for benefits and insurance amounts according to FAS 87, FAS

107, FAS 109, and APB 12

• Provides TAMRA analysis, MEC compliance with sophisticated MEC

avoidance options, and in-force re-projections, including illustration of
multiple in-force policies for the same individual

• Anticipates financial impact of a program through the use of partial

mortality

• Runs universal, variable, traditional, and all types of interest-sensitive

products concurrently on one system

• Controls and tests new policy outlay options

• Assesses and projects material changes, flags MEC status, and adjusts

policy taxation

• Controls and updates flexible term riders; tests for re-projected amounts

and limits

• Handles all forms of loans, partial surrenders, and changes in dividend

options

• Individual Executive Reports - A wide range of reports on any individual

on a given run

• Composite Reports - An equally wide range of composite reports on a

given run

258

• Assumption Page and Report - Lists all assumptions made in the

illustration Census and Master File.

• Benefit Report - Provides selected census information and a summary of
insurance and benefit information for each plan participant and calculates
group totals when applicable

• New Business Reports - Automatically uploads census data and policy

information to the home office, feeding new business and policy
administration systems

• Output to Access and Excel - Sends output directly to database tables and

worksheets for further processing and formatting without having to parse
and reformat ASCII text files

259

Appendix B: AMS Architecture

There are three sub-systems that constitute the AFS Master System ® (AMS):, the

Input Engine, the Calculation Engine and the Output Engine. The Input Engine is

an ActiveX executable, the Calculation Engine is also an ActiveX executable and

the Output Engine is a standalone executable. In addition, Microsoft Access ® is

used as the data repository. MS Access ® is used both to manage the user’s data

and as a communication vehicle between the three engines (see Figure B.0.1).

ActiveX is part of AMS’s COM (Component Object Model) technology. Thus by

creating ActiveX components via VB, COM components are actually created at

the same time. The Input Engine performs input data validation (along with other

functionality such as Import, Export, Menus, /Census Manager) and “prepares”

data for the Calculation Engine. The Calculation Engine performs calculations

(see Figure B.0.1) and dumps the data into an MS Access ® Table. Through MS

Windows ® API and a “polling” mechanism the Output Engine is instructed to

generate reports. User Data is stored in the Master and Census Tables of MS

Access ®.

Figure B.2 provides an overview of the interactions between the three entities

(Input, Calculation and Output). There are two main communication vehicles that

help the communication between entities; the Status Run Table and the Run

Form.

260

Status Run Table is created by the Input Engine; it contains a variety of status

information about the progress of calculation and printing. When the Calculation

Engine is done with calculating, a status of “6” is posted to the record(s). When

the Output Engine reads (polls) that status of “6”, it performs reporting and finally

updates the status to “14” when done. There are many records in the Status Run

Table in a given session. Both the Calculation and Output Engines operate

asynchronously. Run Form is part of the Input Engine. The Input and Calculation

Engines communicate via a “callback mechanism”. The Run Form displays

messages to the user that are sent from the Calculation and Output Engines.

When the Calculation Engine sends messages to the Run Form, they are sent via

the “callbacks”. However, when the Output Engine sends messages to the Run

Form, they are done via the Windows API (since the Output Engine is a

standalone executable).

261

Figure B.0.1: Interactions Among the Input, Calculation, and Output Engines.

UserData
and File

Input
Other

File

Status Run

Calculation

Output

Run

Figure

262

Figure B.0.2: AFS Master System – Calculation Processing.

Start

Read Configuration Files
Read User Data

Assign Fields
Draw Screen and Sets Menus

Word
Processing /

Wait For
User

 F3/RUN Button

F5F1
Read Help File
Display Help

based onField

Determine Census
Fields, Read
Census File,

Display Census

AFS Master System - Calculation Processing

Process RUN

Anymore EEs
to ProcessNo

Yes

Main Calculator

Individual
Processor

Anymore
Durations to

process

No

Annual Mandatory Calculation
Output to Access (Y,A,B,C,V,E,F)

Next Duration

Anymore
Policies to
Process

Yes

N
o

Yes

Figure 3.0

263

Appendix C: AMS Regression Testing Utility

Overview

AFS Quality Control Analysis is the process of monitoring that interactions and

interdependencies are maintained in proper working order throughout the

implementation of controlled system changes. Simply put, this analysis verifies

that changes between versions occur only where expected and do not adversely

affect other areas of the system.

AMS provides a feature to help address this process through the Batch Processing

Utility. The Batch Processing Utility offers an effective and timesaving method

to generate a series of file-based calculations for a predetermined set of test cases.

As part of your Quality Control effort, the Batch Processing Utility will provide

the necessary information to help analyze the accuracy of the system through a

representative sampling of control cases that illustrate the system's functionality.

Figures C.1 and C.2 show how AMS regression tool is invoked via the AMS GUI

and the regression tool’s GUI respectively.

The Batch Utility contains the following features:

• Test cases are organized into a matrix.

• Output may be produced for all or some of the cases.

• Output can be sent to ASCII, Excel, Access, or to a Printer.

• Individual test files may be added or deleted.

264

• Groups of test files can be categorized and submitted by category to the
Batch Processor for calculation.

• The Matrix Report can be printed to document the results produced

through the Batch processor.

• The Matrix Report includes the category, master file name, census file

name, CVF file name, file prefix, file description as well as any user
comments concerning the file output.

Figure C.1: Invoking regresssion testing utility via AMS GUI.

Figure C.2: AMS regresssion testing utility user interface.

265

Build a Batch Processing Utility Matrix

Test File Creation:

Create and view each representative master, census and case file in your
‘working’ test database.

This ‘working’ test database will be the basis for your ‘Batch’ database.
Ultimately, the ‘Batch’ database will not be used for any testing apart from Batch
Processing. This strategy will help maintain the integrity of your ‘Batch’ database
and will also bypass any confusion that may arise when the Batch Utility is used
to create output for your file comparisons. In addition, as you create your test
files, be aware of the report columns for these files. It is important to include
appropriate and illustrative column sets.

File Import:

After each file is reviewed, import the representative master, census or case files
into your ‘Batch’ database.

Only files that are in the active database may be added to the Batch Processing
Utility Matrix. The 'Add' function will not create new master, census or case
files, but rather include existing files in the matrix.

Add Files to a Batch Processing Utility Matrix:

Click on the Category drop down and type in a category name. Use the Category
entry as an identifier for groups of cases. This categorization will become helpful
if you decide to either include or exclude groups of cases from the batch run.
From the Master File Drop Down list, select the master file. If applicable, from
the Census Master File Drop Down list, select the census file. If the case does not
have a census, select ‘STARTUP’ from the drop down list.

Enter a five characters prefix for the test case. This prefix will be used if the test
case is sent to Access, Excel, or ASCII. The Batch Processor takes the five
characters prefix and appends information from the release and version
information that is contained in the executable. For example; if the file prefix
were ‘IL-01’ and the executable number was 33.0.11, the system would produce a

266

file with the following name --- IL-01330.11 It is good practice to verify the
initial file output.

Note:

An alternative to the method described above involves the ‘Add’ icon. This 'Add'
function will not create new master, census or case files, but rather includes
existing files in the matrix.

Only files that are in the active database may be added to the Batch Processing
Utility Matrix. To add files that are not in the current test database, first import
them into the active database.

The STARTUP census file is assumed as the default census for master files that
are added.

Use the Category entry as an identifier for groups of cases. This is also helpful in
excluding groups of cases from a batch run.

A file may be added to the matrix once per category.

Delete Files from a Batch Processing Utility Matrix:

Click the Delete icon.

Using the Record Selector, highlight the file(s) to be deleted.

For multiple file selection, hold down the CTRL key and click on each file that
you want. To select a group of files that are next to each other, click on the first
or last file of the group, and then hold down the SHIFT key while clicking on the
file at the end of the group that you want to select.

Click OK.

In the Confirm Deletion window, click Yes to delete the cases.
You may click No to exit the delete option entirely or click Cancel to return to the
Select one or more box and redefine the files to be deleted.

267

The record(s) corresponding to the deleted file(s) will be deleted from the Batch
Processing Utility Matrix.

Deleting a file from the matrix does not delete if from the database.

You can add a file that has been deleted from the matrix back into the matrix at
later time.

Find Entries in a Batch Processing Utility Matrix:

On the Tools menu, point to Batch Processing Utility.

In the Case Selection box, click the category that you want to find.

Click Find.

The Record Selector will move to the first entry in the matrix that has the
specified category.

Print a Batch Processing Utility Matrix Report

The Matrix Report includes a detailed list of the cases in the Batch Processing
Utility Matrix which has been sorted by category. The report includes any file
descriptions and comments that have been entered into the grid.

On the Tools menu, point to the Batch Processing Utility.
On the File menu, click Print or Click on the ‘Printer’ icon.
The Matrix Report will be printed to the default printer specified in the AFS Print
Utility Configuration window.

Direct Batch Run Output to Printer or File

On the Tools menu, point to Batch Processing Utility.

In the Output To box:

Click Printer to print the output to the default printer specified in the AFS Print

268

Utility Configuration window

Click Excel File to direct the output to an Excel spreadsheet

Click Access to direct the output to an Access database

Click ASCII Text to direct the output to a text file

If you choose to direct the output to an Excel file or to an ASCII text file, then in
the Path box, specify the location of the output file. You may type in the full path
name or use the Browse feature.

Run Batch Output:

Prior to a run, make sure that the Run ‘types’ are set correctly for your cases.
All cases with run types of 'In-force' and 'Proposal' will be included in the batch
run. Cases with run type of 'Excluded' are not included in the run.

To select cases for a Batch Run:

On the Tools menu, point to Batch Processing Utility.

Individually or by category, set the Run Types for the Batch Run.

Direct the Batch Output

Click Submit Run.

Note:

The Status box for each case will reflect where the case is in the run process.

An 'X' in the status box signifies that the case has not been selected for the run.

'Run request' signifies the case is currently being processed, while 'Scheduled'

means that the case has been selected and has not yet been processed.

269

In a batch run, a case with run type of Proposal is run with a normal run (without

a CVF file), while a case with run type of In-force is run with a CVF file. This is

equivalent to the Normal Run (F3) and In-force Run (Shift-F3) options in the Run

menu in the Master Control Panel. Figure C.3 shows partial AMS regression test

suite. The AMS system can also run via command-line executing each of the

records shown in Figure C.3.

Figure C.3: AMS Regression Test Suite.

270

Appendix D: Mathematical Preliminaries

The mathematical concept underlying the relational model is the set-theoretic
relation that is a subset of the Cartesian product of a list of domains. This set-
theoretic relation gives the model its name. Formally a domain is simply a set of
values. For example the set of integers is a domain. Also the set of character
strings of length 20 and the real numbers are examples of domains.

The Cartesian product of domains D1, D2, ... Dk, written D1 × D2 × ... × Dk is the
set of all k-tuples v1, v2, ... vk, such that v1 ∈ D1, v2 ∈ D2, ... vk ∈ Dk.
For example, with k=2, D1={0,1} and D2={a, b, c} then D1 × D2 is {(0,a), (0,b),
(0,c), (1,a), (1,b), (1,c)}.

A Relation is any subset of the Cartesian product of one or more domains: R ⊆
D1 × D2 × ... × Dk.

For example {(0,a), (0,b), (1,a)} is a relation; it is in fact a subset of D1 × D2.

The members of a relation are called tuples. Each relation of some Cartesian
product D1 × D2 × ... × Dk is said to have arity k and is therefore a set of k-tuples.
A relation can be viewed as a table where every tuple is represented by a row and
every column corresponds to one component of a tuple. Giving names (called
attributes) to the columns leads to the definition of a relation scheme.

A relation scheme R is a finite set of attributes A1, A2, ... Ak. There is a domain Di,
for each attribute Ai, 1 ≤ i ≤ k, where the values of the attributes are taken from.
We often write a relation scheme as R(A1, A2, ... Ak).

A relation scheme is just a kind of template whereas a relation is an instance of a
relation scheme. The relation consists of tuples (and can therefore be viewed as a
table); not so the relation scheme.

Operations: Relational Algebra consists of a set of operations on relations:

SELECT (Ω): extracts tuples from a relation that satisfy a given restriction. Let R
be a table that contains an attribute A. ΩA=a(R) = {t ∈ R ∣ t(A) = a} where t
denotes a tuple of R and t(A) denotes the value of attribute A of tuple t.

271

PROJECT (∏): extracts specified attributes (columns) from a relation. Let R be a
relation that contains an attribute X. ∏X(R) = {t(X) ∣ t ∈ R}, where t(X)
denotes the value of attribute X of tuple t.

PRODUCT (×): builds the Cartesian product of two relations. Let R be a table
with arity k1 and let S be a table with arity k2. R × S is the set of all k1 + k2-tuples
whose first k1 components form a tuple in R and whose last k2 components form a
tuple in S.

UNION (∪): builds the set-theoretic union of two tables. Given the tables R and S
(both must have the same arity), the union R ∪ S is the set of tuples that are in R
or S or both.

INTERSECT (∩): builds the set-theoretic intersection of two tables. Given the
tables R and S, R ∩ S is the set of tuples that are in R and in S. We again require
that R and S have the same arity.

DIFFERENCE (/ or ∖): builds the set difference of two tables. Let R and S
again be two tables with the same arity. R / S is the set of tuples in R but not in S.

 JOIN (∏): connects two tables by their common attributes. Let R be a table with
the attributes A, B and C and let S be a table with the attributes C, D and E. There
is one attribute common to both relations, the attribute C. R ∏ S =
∏R.A,R.B,R.C,S.D,S.E(∏R.C=S.C(R × S)). What are we doing here? We first calculate the
Cartesian product R × S. Then we select those tuples whose values for the
common attribute C are equal (∏R.C = S.C). Now we have a table that contains the
attribute C two times and we correct this by projecting out the duplicate column.

272

Appendix E: List of contemporary coverage and profile tools

The information on coverage tools includes the results of a comparative feature
analysis by Paterson Technology [57].

• C-Cover is a coverage tool made by Bullseye [52] Platforms: Win32,
Unix; languages: C/C++. It is highly customizable and flexible. Among
its features are support for multiple threads, processes, users; support for
DLLs, shared libraries, device drivers, ActiveX, DirectX, COM, and time-
critical applications; and full support for both C++ and C including
templates, exception handling, inline functions, namespace.

• TrueCoverage is a coverage tool made by NuMega [56]. Platform:

Win32; languages: C/C++, Java, VB. TrueCoverage analyzes and reports
how much of an application's code was, or was not executed. This analysis
and reporting can cover an individual testing session or a combination of
“n” number of testing sessions. TrueCoverage reports this data down to
the individual line of code and function levels.

• PureCoverage is a coverage tool produced by Rational [60]. Platforms:

Win32, Unix; languages: C/C++, Java, VB. It automatically pinpoints
areas of code that code that have and have not been exercised during
testing. PureCoverage exposes untested code in the target application,
including components with or without source code such as third party
controls or system DLLs.

• TCAT is a coverage tool made by Software Research [61]. Platforms:

Win32, Unix; languages: C/C++, Java. It features both static source code
analysis and coverage analysis. It can be either GUI or command-line
driven.

• LiveCoverage is a coverage tool from PatersonTechnology [58].

Platform: Win32; languages: C/C++, VB. The tool is capable of
monitoring multi-threaded and multi-process scenarios, as well as out-of-
process COM servers. Both interactive and automated modes are
available.

• Visual FoxPro Coverage Profiler from Microsoft [50] contains both a

coverage analyzer and a profiler application. The tool consists of a

273

customizable coverage engine and a multiwindow analysis application.
The coverage analyzer can be automated to run without user interaction.

• ActiveOptimizer pdProfiler from Hallogram Publishing [55] is a VB

profiler with remote tracing and code coverage. It has minimal effect on
application performance. It gives a complete execution trace of the
application run.

• VB-Miner from CAST [53] is a source code analyzer for VB on Win32

platforms. Provides graphic representation of elements internal to the
target module, external elements, and all interactions between these
elements.

274

Appendix F: List of Common Refactoring Techniques

The following technique synopses are taken from Fowler [86]. We found these
useful in our refactoring efforts.

Add Parameter

• Motivation: Method needs more information from caller.

• Technique: Add parameter for object that can pass on this
information.

Change Bidirectional Association to Unidirectional

• Motivation: Two-way association where one class no
longer needs features from other

• Technique: Drop unneeded end of association.

Consolidate Conditional Expression

• Motivation: Sequence of conditional tests with same result

• Technique: Combine into single conditional expression and
extract.

Consolidate Duplicate Conditional Fragments

• Motivation: Same code fragment in all branches of
conditional expression

• Technique: Move it outside of expression.

Convert Procedural Design to Objects

• Motivation: Code written in procedural style

• Technique: Turn data records into objects, break up
behavior, and move the behavior to the objects.

Decompose Conditional

• Motivation: Complicated conditional statement

275

• Technique: Extract methods from the condition, the then
part, and the else parts.

Duplicate Observed Data

• Motivation: Domain data available only to GUI, domain
methods need access.

• Technique: Copy data to domain object. Create observer to
synchronize the duplicated data.

Extract Interface

• Motivation: Multiple clients use same subset of class
interface, or two classes have partial common
interface.

• Technique: Extract the subset into an interface.

Extract Method

• Motivation: Code fragment can be grouped together.

• Technique: Turn fragment into method with self-
explanatory name.

Extract Subclass

• Motivation: Class has features used only in some instances.

• Technique: Create subclass for that feature subset.

Introduce Explaining Variable

• Motivation: Complicated expression

• Technique: Put expression result, or expression parts, in
temporary variable with self-explanatory name.

276

Parameterize Method

• Motivation: Several methods do similar things with
different values inside the method body.

• Technique: Create one method with parameter for the
different values.

Remove Assignments to Parameters

• Motivation: Code assigns to a parameter.

• Technique: Use temporary variable instead.

Remove Control Flag

• Motivation: Variable acts as control flag for series of
Boolean expressions.

• Technique: Use break or return instead.

Remove Parameter

• Motivation: Parameter no longer used by method body

• Technique: Remove it.

Rename Method

• Motivation: Method name not indicative of purpose

• Technique: Rename it.

Replace Array with Object

• Motivation: Certain array elements mean different things.

• Technique: Replace array with object with field for each
element.

277

Replace Parameter with Explicit Methods

• Motivation: Method runs different code depending on
values of enumerated parameter.

• Technique: Create separate method for each parameter
value.

Replace Parameter with Method

• Motivation: Object invokes method 1, passes result as
method 2 parameter. Receiver can also invoke method 1.

• Technique: Remove parameter; let receiver invoke method

Split Temporary Variable

• Motivation: Temporary variable assigned more than once,
but is not loop variable or collecting temporary
variable.

• Technique: Make separate temporary variable for each
assignment.

278

Appendix G: Evolution Manager Utility

Figure G.1 shows evolution manager utility list of features:

• Feature function relationship based upon test case and features, and test
case and functions (Figure G.2)

• Feature function relationship in terms of coverage percentage (Figure G.3)
• Exclusive coverage of a feature within a function (Figure G.4)
• Threshold T(FI,K,C) (Figure G.5)
• Variable usage (set or use) by a feature within a function (Figure G.6)
• Feature implementation in terms of which lines of code and variables

implement the feature (Figure G.7)
• Several tracking reports such as feature lists, function lists, features within

a release etc

279

Main Functions with input parameters, return values and SQL statements
used:

Purpose: This function is used to retrieve and compile data for feature-function

relationships.
Parameters: None
Return Value: A recordset with the following structure:

• Feature_ID: Unique identifier for each feature
• Function_ID: Unique identifier for each function
• Feature_Name : The name of the feature
• Function_Name : The name of the function
• Total_Lines : Total number of lines of function
• Common_Lines : Comma separated list of lines common to all

test cases for the current feature - function pair
• Test_Cases : Comma separated list of test cases for the current

feature - function pair
• All_Lines : Comma separated list of all lines in all test cases for

the current feature - function pair
• Exclusive_Lines : Comma separated list of exclusive lines in all

test cases for the current feature - function pair
• Common_Lines_Count : Number of lines in common lines list
• All_Lines_Count : Number of lines in ALL lines list
• Exclusive_Lines_Count : Number of lines in exclusive lines list
• Common_Coverage : Common_Lines_Count / Total_Lines * 100
• All_Coverage : All_Lines_Count / Total_Lines * 100
• Exclusive_Coverage : Exclusive_Lines_Count / Total_Lines *

100

Expected Initial Status: Any
Expected Final Status: rstRet contains feature-function information for future information requests.
SQL Statements: SELECT DISTINCT Test_Cases_TO_Function.Used_Lines,

Test_Cases_TO_Function.Test_Case_ID, Function_List.Function_ID,
Feature.Feature_ID, Feature.Feature_Name, Function_List.Function_Name
FROM Function_List RIGHT JOIN (Feature RIGHT JOIN
(Test_Cases_TO_Function LEFT JOIN Test_Case_Feature_Map
ON Test_Cases_TO_Function.Test_Case_ID =
Test_Case_Feature_Map.Test_Case_ID)
ON Feature.Feature_ID = Test_Case_Feature_Map.Feature_ID)
ON Function_List.Function_ID = Test_Cases_TO_Function.Function_ID;

This statement is used to get the properties of the relation feature - function. It
can be anywhere from NO-LINES to ALL-LINES relation. The selection
takes all the test cases related with a feature (Test_Case_Feature_Map), and
then selects all the functions related with each of the test cases
(Test_Cases_TO_Function).

 SELECT Function_Name, Feature_Name, Feature_ID, Function_ID,
Total_Lines FROM Function_List, Feature ORDER BY Feature_Name

This statement is used to get the function-feature pairs and the information
about them. The data is used later to make sure all GRID information is
included. A JOIN is not used between the tables because we want all possible
function-feature combinations.

Table G.0.1: Implementation details on Evolution Manager Utility.

280

Figure G.1: Evolution manager list of features.

Figure G.2: Feature function relationships for ATM example.

281

Figure G.3: Feature function coverage (ATM example).

Figure G.4: Exclusive coverage by withdrawal feature in ATM function.

282

 Figure G.5: Threshold in ATM example.

Figure G.6: Variable usage for withdrawal feature in ATM function.

Figure G.7: Withdrwal FI (feature lines of code and variables).

283

Bibliography

[1] χSuds User’s Manual. Telecordia Technologies, 1998.

[2] A. Brown, “Component Based Software Engineering” IEEE Computer
Society, 1996, pp. 175-186.

[3] A. Davis and R. Rauscher, “Formal Techniques and Automatic Processing
to Ensure Correctness in Requirements Specifications”, Proceedings, 1st
Conference on Specifications of Reliable Software, IEEE Computer
Society, Cambridge, MA, April 1979, pp. 15-35.

[4] A. Davis, “The Design of a Family of Application-Oriented Requirements
Languages”, IEEE Computer, Vol. 15, No. 5, May 1982, pp. 21-28.

[5] A. Lakhotia and J. C. Deprez, “Restructuring Functions with Low
Cohesion”, Proceedings, 6th Working Conference on Reverse Engineering,
London, England, May 1996, pp. 36-46.

[6] A. Malony, D. Hammerslag, and D. Jabalonski, “Traceview: A Trace
Visualization Tool”, IEEE Software, September 1991, pp. 19-28.

[7] A. Mehta and G. Heineman, “Architectural Evolution of Legacy System”,
Proceedings, 23rd Annual International Computer Software and
Applications Conference, Phoenix, Arizona, August 1999, pp. 110-119.

[8] A. Mehta and G. Heineman, “COTS Integration and Extension
Workshop”, Continuing Collaborations for Successful COTS
Development, International Conference on Software Engineering,
Limerick, Ireland, May 2000, pp. 67-72.

[9] A. Mehta and G. Heineman, “Evolving Legacy System Features into Fine-
Grained Components”, ICSE 2002, Orlando, FL, May 2002, pp. 417-427.

[10] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
Testing in an Industrial Environment”, ACM Communications, Vol. 41,
May 1998, pp. 81-86.

[11] A. Onoma, W. Tsai, M. Poonawala, and H. Suganuma, “Regression
Testing in an Industrial Environment”, Communications of the ACM, Vol.
41. No.5, May 1998, pp. 81-86.

284

[12] A. Sloane and J. Holdsworth, “Beyond Traditional Program Slicing”,
Proceedings, 1996 International Symposium on Software Testing and
Analysis (ISSTA '96), ACM SIGSOFT, San Diego, CA, January 1996, pp.
180-186.

[13] B Sanden, “Designing control systems with Entity-life Modeling”, Journal
of Systems and Software, Vol. 28, No. 4, pp. 225-237.

[14] B. Beizer, Software Testing Techniques, Van Norstrand Reinhold, New
York, 1990.

[15] B. Boehm, Software Engineering Economics, Prentice Hall, 1981, pp.
182-194.

[16] B. Calloni, M. DelPrincipe and K. Littlejohn, INSERT: A COTS-based
Solution for Building High-Assurance Applications,
”Proceedings, Gateway to the New Millennium; 18th Digital Avionics
Systems Conference”, St Louis, MO, May 1999, pp. 101-112.

[17] B. Kitchenham and N. Taylor, “Software Project Development Cost
Estimation”, The Journal of Systems and Software, May 1985, pp. 267-
278.

[18] B. Korel and J. Laski, “Dynamic Program Slicing”, Information
Processing Letters, Vol. 29, No. 3, 1998, pp. 155-163.

[19] C. Dorda, L. Grace, P. Place, D. Plakosh, and R. Seacord, “Technical
Report - Incremental Modernization for Legacy Systems”, CMU/SEI-
2001-TN-006, July 2001.

[20] C. Jones, Applied Software Measurement: Assuring Productivity and
Quality, McGraw-Hill, 2nd Edition, 1996.

[21] C. Kemerer and S. Slaughter, “An empirical approach to studying
software evolution”, IEEE Transaction on Software Engineering, Vol. 25,
No. 6, pp. 493-509.

[22] C. Kop and H. Mayr, “Conceptual Pre-design: Bridging the Gap between
Requirements and Conceptual Design”, Proceedings, 3rd International
Conference on Requirements Engineering, IEEE Computer Society,
Tucson, AZ, April 1998, pp. 90-98.

285

[23] C. Lindig, “Concept-Based Component Retrieval”, Working Notes of the
IJCAI-95 Workshop: Formal Approaches to the Reuse of Plans, Proofs,
and Programs, Montreal, Canada, January 1995, pp. 99-110.

[24] C. Prehofer, "Feature-Oriented Programming: A Fresh Look at Objects",
European Conference on Object-Oriented Programming (ECOOP), 1997,
pp. 419-443.

[25] C. Turner, “Feature Engineering of Software Systems”, Ph.D. Thesis, May
1999.

[26] C. Turner, A. Fuggetta, L. Lavazza and, A. Wolf, “A Conceptual Basis for
Feature Engineering”, Journal of Systems and Software, Volume 49, Issue
1, December 1999, pp. 3-15.

[27] D. Carney, “Assembling Large Systems from COTS Components:
Opportunities, Cautions and Complexities”, SEI Monograph Series,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, June 1997, pp. 71-82.

[28] D. Coleman, B. Lowther, P. Oman, and D. Ash, “Using metrics to
evaluate software system maintainability”, IEEE Computer, Vol. 27. No.
8, pp. 44-49.

[29] D. Garlan and M. Shaw, “An Introduction to Software Architecture”,
Advances in Software Engineering and Knowledge Engineering, Vol. I,
World Scientific Publishing, January 1993, pp. 1-39.

[30] D. Kafura, “The use of software complexity metrics in software
maintenance”, IEEE Transaction on Software Engineering, Vol. 12, No. 4,
pp. 335-343.

[31] D. Smith, H. Muller, and S. Tilley, “The Year 2000 Problem: Issues and
Implications”, Technical Report CMU/SEI-97-TR-002, Software
Engineering Institute, Pittsburgh, Pennsylvania, 1997.

[32] DevPartner Studio User Manual, Compuware Corporation, 2000.

[33] E. Buss, “Investigating Reverse Engineering Technologies for the CAS
Program Understanding Project”, IBM Systems Journal, Vol. 33, No. 3,
1994, pp. 477-500.

286

[34] E. Codd, Relational Completeness of Data Base Sublanguages, Prentice
Hall, 1972, pp. 65-98.

[35] F. Tip, “A Survey of Program Slicing Techniques”, Technical Report CS-
R9428, Centrum voor Wiskunde Informatica, Amsterdam, The
Netherlands, 1994, pp. 35-42.

[36] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide”, 2nd Edition, Addison-Wesley, 1998, pp. 160-165.

[37] G. Bruno and R. Agarwal, “Modeling the Enterprise Engineering
Environment”, IEEE Transactions on Engineering Management, Vol. 44,
No. 1, February 1997, pp. 2-30.

[38] G. Heineman and W. Councill, Component-Based Software Engineering:
Putting The Pieces Together, Addison-Wesley, 2001.

[39] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M
Loingtier, and J. Irwin, “Aspect-Oriented Programming”, Proceedings,
11th European Conference on Object-Oriented Programming, Berlin,
Germany, June 1997, pp. 220-242.

[40] G. Rothermel and M. Harrold, “A Comparison of Regression Test
Selection Techniques”, Technical Report, Department of Computer
Science, Clemson University, October 1994, pp. 65-72.

[41] G. Rothermel and M. Harrold, “A Safe, Efficient Algorithm for
Regression Test Selection”, Proceedings, IEEE Software Maintenance
Conference, Montreal, Canada, September 1993, pp. 358–367.

[42] G. Rothermel and M. Harrold, “Analyzing Regression Test Selection
Techniques,” IEEE Transactions Software Engineering, Vol. 22, No. 8,
August 1996, pp. 529-551.

[43] G. Rothermel, R. Untch, C. Chu, and M. Harrold, “Test Case
Prioritization: An Empirical Study”, Proceedings, International
Conference on Software Maintenance, Oxford, UK, August 1999, pp.
179 188.

[44] G. Succi and F. Baruchelli, “The Cost of Standardizing Components for
Software Reuse”, Standard View, Vol. 5, No. 2, pp. 61-75.

287

[45] G. Valetto and G. Kaiser, "Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments", Proceedings, 7th

IEEE International Workshop on CASE, Toronto, Canada, July 1995, pp.
40-48.

[46] H. Agrawal, J. Horgan, E. Krauser, and S.A. London, “Incremental
Regression Testing”, Proceedings, IEEE Software Maintenance
Conference, Montreal, Quebec, September 1993, pp. 348–357.

[47] H. Kaindl, S. Kramer, and R. Kacsich, “A Case Study of Decomposing
Functional Requirements Using Scenarios” Proceedings, 3rd International
Conference on Requirements Engineering, IEEE Computer Society,
Vienna, Austria, April 1998, pp. 82-89.

[48] H. Leung and L. White, “Insights into Regression Testing”, Proceedings,
IEEE Software Maintenance Conference, Los Alamitos, CA, October
1989, pp. 60–69.

[49] H. Sneed, “Architecture and Functions of a Commercial Software
Reengineering Workbench”, Proceedings, 2nd Euromicro Conference on
Maintenance and Reengineering, Florence, Italy, March 1998, pp. 2-10.

[50] http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/fox7help/html/newcoverage_profiler_application.asp

[51] http://www.anubex.com/solutions!main.asp

[52] http://www.bullseye.com/ccoverFeature.html

[53] http://www.castsoftware.com/products/Miners/VB-Minerdetails.html

[54] http://www.cise.nsf.gov/new/evnt/wksp/presentations/software/sld005.htm

[55] http://www.hallogram.com/pdprofiler/index.html

[56] http://www.numega.com, Numega Corporation.

[57] http://www.patersontech.com/TestCoverage/Compare.htm

[58] http://www.patersontech.com/TestCoverage/LiveCoverage

[59] http://www.rational.com/

288

[60] http://www.rational.com/products/purecoverage_nt/prodinfo.jsp

[61] http://www.soft.com/TestWorks/

[62] http://www.sun.com

[63] IEEE Standard Glossary of Software Engineering Terminology, IEEE
Standards Collection, Software Engineering, IEEE, New York, NY, 1994,
pp. 54-55.

[64] J. Bergey, L. Northrop, and D. Smith, “Enterprise Framework for the
Disciplined Evolution of Legacy Systems“, CMU/SEI-97-TR-007, ADA
330880, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, July 1997, pp. 12-14.

[65] J. Bisbal, “Legacy Information Systems: Issues and Directions”, IEEE
Software, September 1999, pp. 103-111.

[66] J. Borstler, “Feature-oriented Classification for Software Reuse”,
Proceedings, 7th International Conference on Software Engineering and
Knowledge Engineering, Rockville, MD, September 1995, pp. 204-211.

[67] J. Borstler, “FOCS: A Classification System for Software Reuse”,
Proceedings, 11th Pacific Northwest Software Quality Conference,
Portland, OR, October 1993, pp. 201-211.

[68] J. Bosch, “Organizing for Software Product Lines”, Proceedings, 3rd
International Workshop on Software Architectures for Product Families,
Las Palmas de Gran Canaria, Spain, March 2000, pp. 60-71.

[69] J. Connell, Coding Techniques for Microsoft® Visual Basic® .NET,
Microsoft Press, December 2001, pp. 77.

[70] J. DeBaud and K. Schmid, “A Systematic Approach to Derive the Scope
of Software Product Lines”, Proceedings, 21st International Conference
on Software Engineering, Los Angeles, CA, May 1999, pp. 34-43.

[71] J. Deprez and A. Lakhotia, “A Formalism to Automate Mapping from
Program Features to Code”, Proceedings, 8th International Workshop on
Program Comprehension, International Conference on Software
Engineering 2000, Limerick, Ireland, May 2000, pp. 72-83.

289

[72] J. Field, G. Ramalingam, and F. Tip, “Parametric Program Slicing”, 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, CA, January 1995, pp. 379 – 392.

[73] J. Karlsson and K. Ryan, “A Cost-Value Approach for Prioritizing
Requirements”, IEEE Software, Vol. 14, No. 5, September 1997, pp. 67-
74.

[74] J. Kuusela and J. Savolainen, “Requirements Engineering for Product
Families”, Proceedings, 22nd of the International Conference on Software
Engineering, Limerick, Ireland, June, 2000, pp. 61-69.

[75] J. Penix and P. Alexander, “Using Formal Specifications for Component
Retrieval and Reuse”, Proceedings, 31st Hawaii International Conference
on System Sciences, Hawaii, November 1995, pp.356-65.

[76] J. Ransom, I. Sommerville and I. Warren, “A Method for Assessing
Legacy Systems for Evolution”, Proceedings, 2nd Euromicro Conference
on Software Maintenance and Reengineering, Palazzo degli Affari, Italy,
March 1998, pp. 46-53.

[77] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study”, Technical Report
CMU/SEI 90 TR 21, Software Engineering Institute, Pittsburgh,
Pennsylvania, 1990.

[78] K. Lukoit, N. Wilde, S. Stowell, and T. Hennessey, “TraceGraph:
Immediate Visual Location of Software Features”, Proceedings,
International Conference on Software Maintenance, San Jose, CA, May
2000, pp. 33 –39.

[79] L. Belady and M. Lehman, “A Model of Large Program Development”,
IBM Systems Journal, Vol. 15, No. 3, pp. 225-252.

[80] L. Brownsword and P. Clements, “A Case Study in Successful Product
Line Development”, CMU/SEI-96-TR-016, ADA 315802, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

[81] L. O'Brien and D. Smith, “MAP and OAR Methods: Techniques for
Developing Core Assets for Software Product Lines from Existing
Assets”, CMU/SEI-2002-TN-007, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, April 2002.

290

[82] L. Raccoon, “The Complexity Gap”, SIGSOFT Software Engineering
Notes, Vol. 20, No. 3, July 1995, pp. 37-44.

[83] M. Brodie and M. Stonebraker, “Migrating Legacy Systems: Gateways,
Interfaces and the Incremental Approach”, Morgan Kaufmann Publishers,
1995, pp. 171-185.

[84] M. Cusumano and R. Selby, Microsoft Secrets, The Free Press, New York,
1995, pp. 37-45.

[85] M. Fowler and K. Scott, “UML Distilled - Applying the Standard Object
Modeling Language”, Object Technology Series, Addison-Wesley, 1997,
pp. 150-172.

[86] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[87] M. Griss, “Implementing Product-Line Features with Component Reuse”,
Proceedings, 6th International Conference on Software Reuse, Springer-
Verlag, Vienna, Austria, June 2000, pp. 134-152.

[88] M. Harrold, R. Gupta, and M. Soffa, “A Methodology for Controlling the
Size of a Test Suite,” ACM Transactions Software Engineering and
Methodology, Vol. 2, No. 3, July 1993, pp. 270 285.

[89] M. Jain, M. Murty and P. J. Flynn, “Data Clustering: A Review”, ACM
Computing Surveys, Vol. 31, No. 3, September 1999, pp. 264-323.

[90] M. L. Petrie, K. R. Nair, and G. K. Raghavan, “A Domain Analysis of
Web Browser Architectures, Languages and Features”, Southcon 1996
Conference Record, 1996, pp. 168-174.

[91] M. Svahnberg and J. Bosch, “Issues Concerning Variability in Software
Product Lines”, Proceedings, 3rd International Workshop on Software
Architectures for Product Families, Las Palmas de Gran Canaria, Spain,
March 2000, pp. 50-60.

[92] M. Weiser, “Program Slicing”, IEEE Transactions on Software
Engineering, Vol. 10, No. 4, July 1984, pp. 352-357.

[93] M. Weiser, “Program Slicing”, Proceedings, 5th International Conference
on Software Engineering, IEEE Computer Society, New York, NY, March
1981, pp. 439-449.

291

[94] N. Medvidovic and R. Taylor, “Separating Fact from Fiction in Software
Architecture”, Proceedings, 3rd International Workshop on Software
Architecture, Orlando, FL, November 1998, pp. 105-108.

[95] N. Medvidovic, P. Oreizy, and R. Taylor, “Reuse of Off-the-shelf
Components in C2-style Architectures”, Proceedings, 1997 International
Conference on Software Engineering, Boston, MA, June 1997, pp. 692-
700.

[96] N. Weiderman, J. Bergey, D. Smith, and S. Tilley, “Approaches to Legacy
System Evolution”, CMU/SEI-97-TR-014, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, August 1997.

[97] N. Weiderman, J. Bergey, D. Smith, B. Dennis, and S. Tilley,
“Approaches to Legacy System Evolution”, Technical Report CMU/SEI-
97-TR-014, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[98] N. Weiderman, L. Northrop, D. Smith, S. Tilley, and K. Wallnau,
“Implications of Distributed Object Technology for Reengineering”,
CMU/SEI-97-TR-005 ADA326945, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, May 1997.

[99] N. Wilde and M. Scully, “Software Reconnaissance: Mapping Program
Features to Code”, Journal of Software Maintenance: Research &
Practice, Vol. 7, No. 5, May 1995, pp. 49-62.

[100] P. Fingar and J. Stikeleather, “Distributed Objects for Business: Getting
Started With the Next Generation of Computing”, Sunworld Online, Vol.
10, No. 4, March 1999, pp. 6-17.

[101] P. Hsia and A. Gupta, “Incremental Delivery Using Abstract Data Types
and Requirements Clustering”, Proceedings, 2nd International Conference
on Systems Integration, Los Alamitos, CA, June 1992, pp. 137-150.

[102] P. Oreizy, N. Medvidovic, and R. Taylor, “Architecture-based Runtime
Software Evolution”, Proceedings, 20th International Conference on
Software Engineering, Kyoto, Japan, April 1998, pp. 62-70.

[103] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, “N Degrees of Separation:
Multi-Dimensional Separation of Concerns”, Proceedings, International
Conference on Software Engineering, May 1999, pp. 107-119.

292

[104] R. Agarwal and N. Mishra, “Renaissance Project – Methods and Tools for
the Evolution and Reengineering of Legacy Systems”, Esprit Project,
Lancaster University, Lancaster, UK, June 1997, pp. 14-20.

[105] R. Bracho, “Integrating the Corporate Computing Environment with
ActiveWeb”, Active Software, Inc., Santa Clara, CA, 1997.
http://www.activesw.com.

[106] R. Kazman and S. Carriere, “Playing Detective: Reconstructing Software
Architecture from Available Evidence”, Journal of Automated Software
Engineering, Vol. 6, No. 2, April 1999, pp. 107-138.

[107] R. Knuth and O. Patashnik, “Concrete Mathematics”, Addison-Wesley,
1989, pp. 65-72.

[108] R. Krikhaar, Software Architecture Reconstruction, Ph.D. Thesis.
University of Amsterdam, Amsterdam, The Netherlands, 1999.

[109] R. Marwane and A. Mili, “Building Tailor-Made Software Cost Model:
Intermediate TUCOMO”, Information and Software Technology, March
1991, pp. 232-238.

[110] R. W. Krut, “Integrating 001 Tool Support into the Feature-Oriented
Domain Analysis Methodology”, Technical Report CMU/SEI 93 TR 01,
Software Engineering Institute, Pittsburgh, Pennsylvania, July 1993, pp.
12-20.

[111] S. Dorda, K. Wallnau, R. Seacord, and J. Robert, “A Survey of Legacy
System Modernization Approaches”, Technical Note CMU/SEI-00-TN-
003, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, April 2000, pp. 37-46.

[112] S. Hissam, “Experience Report: Correcting System Failure in a COTS
Information System”, Proceedings, International Conference on Software
Maintenance, IEEE Computer Society Press, Los Alamitos, CA, 1998, pp.
68-79.

[113] S. Letovsky and E. Soloway, “Delocalized Plans and Program
Comprehension”, IEEE Software, Vol. 19, No. 3, pp. 41-48.

[114] S. Tilley and D. Smith, “Legacy System Reengineering”, Presented at the
International Conference on Software Maintenance, Software Engineering

293

Institute, Carnegie Mellon University, Pittsburgh, PA, November 1996,
pp. 70-81.

[115] S. Tilley and D. Smith, “Perspectives on Legacy System Reengineering”,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA, May 1996, pp. 6-13.

[116] S. Tsang and E. Magill, “Learning to Detect and Avoid Run-Time Feature
Interactions in Intelligent Networks”, IEEE Transactions on Software
Engineering, Vol. 24, No. 10, October 1998, pp. 818-830.

[117] S. Woods, S. Carriere, and R. Kazman, “A Semantic Foundation for
Architectural Reengineering”, Proceedings, International Conference on
Software Maintenance (ICSM) 1999, Oxford, UK, September 1999, pp.
391-398.

[118] T. Ball and S. Eick, “Software Visualization in the Large. IEEE Computer,
Vol. 29, No. 4, April 1996, pp. 33-43.

[119] T. Ball, “Software Visualization in the Large”, Institute of Electrical and
Electronics Engineers (IEEE) Computer, Vol. 29, No. 4, April 1996, pp.
33-43.

[120] T. Chen and M. Lau, “Dividing Strategies for the Optimization of a Test
Suite,” Information Processing Letters, Vol. 60, No. 3, March 1996,
pp. 135 141.

[121] T. Reps, T. Ball, T. M. Das, and J. Larus, “The Use of Program Profiling
for Software Maintenance with Application to the Year 2000 Problem”.
Proceedings, European Software Engineering Conference
(ESEC)/Foundation of Software Engineering (FSE) 1997: 6th ESEC and
5th American Computing Machinery (ACM) SIGSOFT Symposium on the
FSE, Zurich, Switzerland, September 1997, pp. 432-449.

[122] V. Basili and K. Freburger, “Programming measurement and estimation in
the Software Engineering Laboratory”, The Journal of Systems and
Software, Vol. 2 No. 3, pp. 47-57.

[123] V. Brand, M. Sellink, and C. Verhoef, “Generation of Components for
Software Renovation Factories from Context-Free Grammars”,
Proceedings, 4th Working Conference on Reverse Engineering,
Amsterdam, The Netherlands, October 1997, pp. 144-153.

294

[124] W. Wong, J. Horgan, S. London, and A. Mathur, “Effect of Test Set
Minimization on Fault Detection Effectiveness,” Software Practice and
Experience, Vol. 28, No. 4, April 1998, pp. 347 369.

[125] W. Wong, S Gokahle, J. Horgan, and K Trivedi, “Locating Program
Features Using Execution Slices”, Proceedings, 2nd IEEE Symposium on
Application-Specific Systems and Software Engineering Technology,
Richardson, TX, March 1999, pp 68-79.

[126] Y. Chen and B. Cheng, “Formalizing and Automating Component Reuse”,
Proceedings, 9th IEEE International Conference on Tools with Artificial
Intelligence, Rockville, MD, August 1998, pp. 94-101.

[127] Y. Chen, D. Rosenblum, and K. Vo, “TestTube: A System for Selective
Regression Testing”, Proceedings, 16th International Conference on
Software Engineering, IEEE Computer Society, Los Alamitos, CA, May
1994, pp. 211-220.

[128] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn, “Using AspectC to
Improve the Modularity of Path-Specific Customization in Operating
System Code”, Joint 8th ESEC and 9th ACM SIGSOFT Symposium on the
FSE, Vienna, Austria, May 2001, pp. 88-98.

[129] Y. Kamigaki, T. Nara, S. Machida, A. Hakata, and K. Yamaguchi, “160
Gbits ATM Switching System for Public Network”, Global
Telecommunications Conference, November 1996, pp. 1380-1387.

[130] Y. Miyazaki and K. Mori, “Constructive Cost Model (COCOMO)
Evaluation and Tailoring”, Proceedings, 8th Conference on Software
Engineering, London, England, August 1985, pp. 292-299.

