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Abstract

An adverse drug event (ADE) is an injury resulting from medical intervention re-

lated to a drug. Many ADEs are detected only during the post-marketing phase of the

drug when it is used by a more diverse population than during clinical trials. Early

detection of the ADE incidents is crucial for timely assessment, mitigation and preven-

tion of future occurrences of ADEs. Natural Language Processing (NLP) techniques

towards ADE information detection from medical narratives provides an effective way

of post-marketing drug safety monitoring and pharmacovigilance.

My dissertation studies the problem of detecting ADE information from medi-

cal narratives at different levels of granularity: word-level, sentence-level and multi-

grained (word-level + sentence-level) using supervised machine learning techniques.

In this dissertation research, we first propose an Ensemble learning approach for

fine-grained word-level information detection. Existing supervised machine learning

approaches towards biomedical Named Entity Recognition (NER) are limited in their

ability to identify certain entity types and result in significant performance difference

in terms of accuracy. Another critical problem faced by NER in the biomedical context

is that the data is highly skewed for these challenging entity types. We propose a novel

methodology called Tiered Ensemble Learning System with Diversity (TELS-D) to ad-

dress the above challenges in NER. We propose a balanced, under-sampled bagging

strategy that is dependent on the level of imbalance to overcome the class imbalance

problem. Next we propose an ensemble of heterogeneous recognizers approach that

leverages a novel ensemble combiner.

Second, we propose Sequence labeling for word-level information detection using

deep learning. Although Electronic health records (EHR) contain valuable ADE infor-

mation, the EHR text tends to be noisy and comprised of medical and non-medical

abbreviations, acronyms, numbers, misspelled words and semantic type ambiguity

among certain named entities - making it difficult to detect critical information. We

propose the Dual-Level Embedding for Adverse Drug Event Detection framework

(DLADE) by adapting a three-layered, deep learning RNN architecture of (1) Bi-directional

Long Short-Term Memory (Bi-LSTM) for character-level word representation to en-

code the morphological features of the medical terminology, (2) Bi-LSTM for capturing



the contextual information of each word within a sentence, and (3) Conditional Ran-

dom Fields for the final label prediction by also considering the surrounding words.

In addition, we propose a rule-based EHR text preprocessor for transforming the EHR

text into clean tokenized text input essential for the success of the subsequently ap-

plied computational detection method. Our proposed NER system was ranked first in

the MADE1.0 NLP Challenge for Detecting ADE information from EHR.

Third, we propose a multi-grained joint modelling approach for word-level and

sentence-level information detection using deep learning. Existing ADE detection

from text can be either fine-grained (ADE entity recognition) or coarse-grained (ADE

assertive sentence classification), with limited efforts leveraging inter-dependencies

among these two granularities. Moreover, in most attention-based neural network

models for sentence classification only a single round of attention focusing on simple

semantic information is applied for learning the importance of words and the overall

representation of the sentence. We design a multi-grained joint deep network model

MGADE to concurrently solve both ADE tasks MGADE takes advantage of their sym-

biotic relationship, with a transfer of knowledge between the two levels of granularity.

Our dual-attention mechanism constructs multiple distinct representations of a sen-

tence that capture both task-specific and semantic in-formation in the sentence, pro-

viding stronger emphasis on the key elements essential for sentence classification.

In several comprehensive experimental studies, namely, one for each part of this

dissertation, we demonstrate the superiority of the proposed strategies over the state-

of-the-art techniques with respect to precision, recall and F1-measure.
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1 Introduction

1.1 Background

1.1.1 Adverse Drug Events

Adverse Event (AE) according to World Health Organization (WHO) is any untoward

medical occurrence that may appear during treatment with a pharmaceutical product

but which does not necessarily have a causal relationship with the treatment [1]. An ad-

verse drug event (ADE) is an injury resulting from medical intervention related to a drug1

[2, 3, 4]. This includes medication errors, adverse drug reactions, allergic reactions, and

overdoses. Adverse Drug Reactions (ADR), a subset of ADEs, that refers to an unexpected

harm caused by the normal use of medication at the normal dosage [1]. ADRs are known

to be a leading cause of death in the United States [5]. They are are also responsible for

millions of hospitalizations and prolonged hospital stays costing billions of dollars to the

health care systems2 [6].

Clinical trials have limitations - they are restricted to certain populations, to a limited

number of people, who may not always be representative of the population of all potential

users of the drug, and conducted for a short period of time where it might not be possible to

detect all potential ADEs. Many such ADEs are detected only during the post-marketing

phase of the drug when it is used by a more diverse and much larger population than

during clinical trials. Reducing the incidence of ADEs is extremely important for public

health safety and reduced health-care costs.

1.1.2 Adverse Drug Event (ADE) Detection

Pharmacovigilance according to World Health Organization (WHO) is defined as the sci-

ence and activities related to the detection, assessment, understanding and prevention of

ADEs or other drug-related problems [1]. The specific aims of pharmacovigilance are to
1https:// health.gov/our-work/health-care-quality/adverse-drug-events
2https://www.fda.gov/drugs/drug-interactions-labeling/preventable-adverse-drug-reactions-focus-

drug-interactions
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improve patient care, public health and safety in relation to the use of medicines; con-

tribute to the assessment of benefit, harm, effectiveness and risk of medicines, encourage

their safe, rational and more effective use; and promote understanding, education and

clinical training in pharmacovigilance and its effective communication to the public. Post-

marketing safety data collection and risk assessment based on observational data are crit-

ical for evaluating and characterizing a product’s risk profile and for making informed

decisions on risk minimization.

Pharmacovigilance activities in the post-approval phase, principally involve the iden-

tification and evaluation of safety signals [7]. To oversee the safety and effectiveness of

drugs in the post-marketing phase, different pharmacovigilance approaches are employed.

Spontaneous reporting systems (SRS) such as the FDA Adverse Event Reporting System

(FAERS) monitor ADE incidence reports submitted by consumers, healthcare profession-

als and drug manufacturers. These reports are reviewed by FDA staff to identify potential

drug safety concerns and, when necessary, to recommend appropriate actions to improve

product safety.

Real-time real-world data gathered during routine clinical visits such as Electronic

Health Records (EHR), hospital discharge summaries and medical prescription claims

have the ability to quantify the incidence or risk of ADEs, can identify patients at risk,

and have the potential to provide more accurate and earlier ADE detection. For exam-

ple, under the Sentinel Initiative [8], FDA is developing a new postmarketing surveillance

system to monitor the safety of approved medical products in real time . The system cur-

rently uses administrative claims data, but FDA aspires to utilize EHR data for the same

purpose in the later phases of the system development. Previous studies [9, 10] have pro-

posed signal-detection strategies that combine data from FAERS and EHRs by requiring

signaling in both sources, leading to improved accuracy of signal detection.
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1.1.3 The Gap: Structuring Unstructured Narratives

In 2015, over 1.7 million of incidents had been reported to FAERS and the number has

steadily been growing - making the drug review process increasingly challenging [11].

Similarly, following the Health Information Technology for Economic and Clinical Health

Act (HITECH Act) legislation in 2009, there has been a significant increase in the number of

health care institutions who have adopted EHRs. To effectively identify drug safety signals

in a timely manner from the exploding amount of reports with limited human resources,

the review processes are being enhanced by advanced data mining and visualization tech-

nologies [12, 13, 14]. However, most of these technologies rely on information organized in

a structured format. Thus they require that the unstructured narratives first be processed

and converted into structured information.

Although data sources such as SRS and EHR have both structured fields and unstruc-

tured free-form text fields, the unstructured narratives often contain information that is

left blank in the structured fields. More importantly, these narratives are rich in detailed

additional information regarding the ADE that could not be captured in rigorous struc-

tured menus. However, it is cumber-some, time consuming and error-prone to manually

extract and enter the structured information from the narratives into the database. There-

fore, efficient computational methods are required to automate the process of extracting

information from the unstructured ADE narratives into structured format for advanced

analytics. This is vital for timely detection, assessment and prevention of future incidents

of ADEs while also making the clinical review process more productive and effective.

1.1.4 Computational Approaches for ADE Detection from Narratives

Information Extraction (IE) refers to the task of automatically extracting a predefined set

of information categories also known as named entities or concepts from natural language

text and classifying the relationships between the extracted entities. Named Entity Recog-

nition (NER), fundamental step in the IE process, refers to the sub-task of identifying and

3



classifying textual mentions of named entities from the natural language text. Relation Ex-

traction (RE) refers to the sub-task of classifying the associations or relationships between

the named entities that are identified in the NER task. An IE application generally involves

one or more of the sub-tasks.

Rule-based and machine learning are the two standard approaches to IE. Rule-based

extraction methods are user-defined rules for pattern matching to the raw text to extract

information [15]. However, manually creating rules covering all possible occurrences of

information categories that need to be extracted requires human expertise and is labor

intensive. Many of the IE sub-tasks such as NER can be formulated as classification prob-

lems. Machine learning-based extraction methods automatically learn from example pat-

terns found in the training dataset and aim to classify information in the narratives. Ma-

chine learning algorithms can be supervised or unsupervised or semi-supervised. For

supervised machine learning algorithms, the training examples have associated ground

truth labels, i.e., the correct input-output pairs for each example from which the algorithm

learns and then can predict new previously unseen examples. For unsupervised learning

algorithms on the contrary, the associated ground truth labels are not available and hence

the goal is to discover interesting patterns in the data using clustering algorithms.

Machine learning approaches for Natural Language Processing (NLP) to automatically

extract ADE entities and their relations from the unstructured medical narratives has been

an active area of research. For syntactic processing of the narratives, NLP tasks such as

sentence segmentation, word tokenization, parts-of-speech tagging, text lemmatization,

stop words removal, etc., are used in pre-processing of the text . For semantic process-

ing of the narratives, traditional machine learning based text classification and sequence

labeling techniques which assign categories, i.e., named entities, to text are used for entity

extraction (NER) and relation extraction. These techniques however require heavy feature

engineering resulting in a high-dimensional feature vectors that lead to over-fitting issues.

More recently, deep learning techniques with pre-trained word embeddings which are

dense lower-dimensional feature vectors have been shown to be promising techniques for

4



sequence labeling and NER tasks due to their ability to learn from the context surrounding

the words in a sequence. Attention mechanisms imitate human sight mechanism giving

more weight to certain words or phrases over others in the text. Research has also shown

that attention mechanisms have a greater impact on the neural networks for language

translation [16, 17, 18] and especially with regard to ADR detection [19, 20].

1.2 State-of-the-Art

Significant amount of research has been conducted in ADE text classification using su-

pervised machine learning approaches for NLP from unstructured medical narratives. We

first describe the relationship of this dissertation to the broader class of ADE text classifica-

tion approaches. Chapters 2, 3, and 4 discuss related work for each part of this dissertation

in more detail. Broadly, we can categorize the approaches into the following areas of work.

1. Document-level classification refers to the task where a text document is assigned

a class and classified as belonging to that specific class, for example the ADE class,

based on word features extracted from the full text document.

Machine Learning-based. Rochefort et al. [22] developed Support Vector Machine (SVM)-

based document classifiers with bag of words feature vector to classify EHR docu-

ments which contain deep vein thrombosis and pulmonary embolism. Wang et al.

[23] developed a logistic regression based document classifier with MeSH annota-

tions and textual information from the abstracts and titles as feature vectors to iden-

tify PubMed articles which denoted a drug-ADE relationship. They demonstrated

that the use of both semantic and syntactic features leads to improved performance

for identifying ADE relationships.

Deep Learning-based. Dev et al. [24] developed binary document classifier using lo-

gistic regression, random forests and 1-layer Long short-term memory (LSTM) to

classify an adverse event case as serious vs. non-serious. For the feature vectors

they have used Term-Frequency- Inverse-Document-Frequency (TF-IDF) and Binary

5



Count Vectorization (BCV) approaches from the information retrieval community to

encode the words. They demonstrated that BCV showed significantly better per-

formance in classifying the serious cases compared to the non-serious cases. While

the deep learning was shown to outperform the baseline machine learning models,

due to its lack of explainability the logistic and random forest were chosen over the

1-layer LSTM with word embeddings.

2. Word-level classification refers to the task where each word in the document is iden-

tified and classified as belonging to a certain pre-defined class, for example the ADE

class. A majority of the existing NER systems for concept extraction are based on

word-level detection.

Machine Learning-based. Gurulingappa et al. [31] developed a machine-learning based

relation extraction system based on Java Simple Relation Extraction (JSRE) a re-trainable

and scalable classification platform that uses SVM with token-level textual features

such as part-of-speech (POS) tags, lemmas for the identification and extraction of

potential adverse drug event relations from MEDLINE case reports. Sampathkumar

et al. [32] utilized a lexicon-based approach for detecting mentions of ADRs from

online medical forums and then applied a Hidden Markov Model to detect relation-

ships between drug-ADR pairs. Ramesh et al. [33] developed a biomedical named

entity tagger using SVM with various categories of features such as syntactic, se-

mantic, morphological, affix, negation, hedging and discourse connective features

to improve the tagger performance in extracting medication and ADE information

from FAERS narratives. Chapman et al. [34] developed a Conditional Random Field

(CRF) model for NER and a random forest model for relation extraction with inno-

vative feature engineering leveraging word embeddings with induced word clusters

for dimensionality reduction. Wunnava et al. [35]

Deep Learning-based. Jagannatha and Yu [36] have employed a bidirectional LSTM-

CRF model with explicit modeling of pairwise potentials to label named entities

6



from electronic health records of cancer patients. Pandey et al. [19] proposed a

bidirectional recurrent neural network (RNN) with attention mechanism to extract

ADRs and classify the relationship between entities from Medline abstracts and EHR

datasets by incorporating word embeddings using Word2Vec and GloVe, biomedical

medical resources, drug- disease pairs from EHR text, abbreviations and positive-

negative phrases compiled from the corpus. Li et al. [37] developed a joint model

based on Bi-LSTM for simultaneously extracting drugs, diseases and adverse drug

events mentions and their ADE relations using the shortest dependency path be-

tween the target entities in the dependency trees to help with the relation classifi-

cation task. Li et al. [38] developed a combination of bidirectional LSTM (Bi-LSTM)

and CRF network to recognize entities and extract relationship between entities from

EHR using a multi-task learning (MTL) approach to improve the performance as

compared to learning the tasks individually.

In our previous work, Wunnava et al. [39], we presented a three-layer deep learning

architecture for identifying and labeling named entities from EHR, consisting of a Bi-

LSTM layer for character-level encoding, a Bi-LSTM layer for word-level encoding,

and a CRF layer for structured prediction. To better handle the noisy format of clini-

cal notes, we built a rule-based sentence and word tokenizer leading to a better per-

formance compared with using an off-the-shelf Natural Language Toolkit [40]. Our

proposed system was ranked first for the NER task in the MADE1.0 NLP challenge

for detecting medication and ADE related information from EHR. Dandala et al. [41]

and Yang et al. [42] applied a similar BiLSTM-CRF structure for NER task and were

placed second and third respectively in the challenge.

3. Sentence-level classification refers to the task where each sentence in the document

is assigned a class based on the word features in the sentence to detect ADE and

nonADE sentences.

Machine Learning-based. Gurulingappa et al. [43] developed a maximum entropy
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based classifier with morphological and syntactic textual features to identify and

extract sentences that provide information about drug-related adverse effects from

medical case reports. They also apply a lexicon-based approach to identify drug-

names and conditions from the extracted ADE assertive sentences. Nikfarjam et al.

[44] developed ADRMine, a CRF based system to extract ADRs mentions from user

posts in social media using embedded cluster features by clustering words based on

unsupervised pretrained word embeddings generated from unlabeled user posts in

social media. The similarity modeling between the words showed significant im-

provement in the recall. Sarker and Gonzalez [45] developed Naı̈ve Bayes (NB) and

SVM based NLP systems for the automatic classification of ADR assertive text seg-

ments from Twitter and Daily Strength using semantic features such as topics, con-

cepts, sentiments, and polarities. They have demonstrated that the integration of

information from compatible corpora in the form of multi-corpus training can signif-

icantly improve classification performance especially when the data sets are heavily

skewed.

Deep Learning-based. Huynh et al. [46] used Convolutional Neural Networks (CNN)

augmented with Attention mechanism using pre-trained word embeddings to de-

tect sentences describing ADEs. Their experiments however showed that CNN per-

formed better as compared to CNNA (with attention). Tafti et al. [47] utilized a

bigNN system based on feed forward artificial neural network to discover ADE sen-

tences on massive datasets downloaded from PubMed Central and social media.

4. Multi-level classification which is a hybrid combination of two or more of the clas-

sification levels (i.e., document-level, word-level, sentence-level) in order to jointly

classify information at multiple levels for multiple tasks in a single joint, end-to-end

model. Multi-task learning (MTL) refers to training the model for multiple related

tasks in parallel where information learned from a task can then be used to train an-

other task [48]. Learning these tasks simultaneously may significantly improve the
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performance as compared to learning the tasks individually. Zhang et al. [49] devel-

oped a multi-task learning model where they combined the word-level NER model

with the document-level binary classification in a {Document-level + Word-level}

model to both extract the Adverse Events (AE) from a case narrative and concur-

rently also classify the narrative document as serious or non-serious.

In our recent work, Wunnava et al. [50], we presented a dual-attention network for

multi-grained ADE detection to jointly identify ADE entities and ADE assertive sen-

tences from EHR narratives. Our model effectively supports knowledge sharing be-

tween the two levels of granularity, i.e., words and sentences, improving the overall

quality of prediction on both tasks. Our solution features significant performance

improvements over state-of-the-art models on both tasks.

Figure 1 shows the state-of-the-art landscape of ADE information extraction with respect

to the classification goals and computational approaches used. Our research (blue col-

ored boxes in Figure 1) is specifically focused on exploring Word-level, Sentence-level and

{Word-level + Sentence-level} multi-level ADE information extraction using supervised

machine learning and deep learning approaches. From an application viewpoint, the mo-

tivation behind the the {Word-level + Sentence-level} is that it closely mimics the work-

flow for processing a ADE narrative. One important property of human perception is that

one does not tend to process a whole scene in its entirety at once. Instead humans focus

attention selectively on parts of the visual space to acquire information when and where it

is needed, and combine information from different fixations over time to build up an inter-

nal representation of the scene, guiding future eye movements and decision making [51].

As humans, we typically scan the text first, searching for keywords which relate to our

search. Once we identify the keywords in a line or sentence, we read the entire sentence to

understand the meaning of the sentence, that is, its entities and their relations.
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Figure 1: State-of-the-Art: Landscape of ADE Information Extraction.

1.3 Research Challenges

Although medical narratives contain valuable ADE information, processing them tends to

be computationally difficult. A major hurdle with processing medical narratives is that the

text is unstructured, comprised of different formats and styles depending upon the report

source and does not always conform to grammar. Numerous challenges arise when detect-

ing pre-defined information categories (named entities) such as drugnames, dosage, duration,

indications, ADE etc., from such narratives. In this dissertation, we focus on the following

open problems.

1. Narratives contain medical and non-medical abbreviations, acronyms, numbers and

misspelled words which make it difficult to recognize the critical information.
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2. Entities can span across multiple words, about one to seven words per entity. Second,

they could be expressed as a combination of entity-specific medical terms as well

as non-medical descriptive text [35]. For instance, in the phrase “coronary artery

disease related event prophylaxis”, the words “related” and “event” are descriptive

text while the rest are medical terms.

3. Narratives often contain information such as relevant medical history of the patient,

family history and other diagnosis that is not related to ADE information categories.

Semantic type ambiguity refers to the fact a word can have more than one interpre-

tation depending on the context in which it is used. Semantic type ambiguity, also

known as entity ambiguity is prevalent among certain named entities such as ADEs,

Indications, other Signs & symptoms. Depending upon the context in which it is

used, a word such as “headache” can be classified either an ADE, indication, a sign

or a symptom. The context is also complicated by negated words.

4. Narratives are predominately composed of large chunks of texts with sparse rele-

vant phrases specific to the named entities. For instance, in the MADE1.0 challenge

training dataset, a de-identified dataset of EHR notes of 21 cancer patients from the

University of Massachusetts Medical School [52], only 2.2% of the total annotations

are for ADE and 4.7% for Indication while 50.2% are of Sign & Symptom. The data is

highly skewed especially for the ADE entity leading to a class imbalanced dataset.

It is well known that in such situations, the ADE entity being the minority class is

not well learned and hence making it challenging to detect [53]. Supervised machine

learning approaches need large amount of data specific to the named entities to be

able to effectively learn the patterns in text and train the classification algorithms.

5. Existing ADE detection from text can be either fine-grained (i.e., identification of

ADE named entities) or coarse-grained (i.e., identification of sentences describing

ADEs), with limited efforts leveraging inter-dependencies among these two granu-

larities. Unfortunately, when the interaction between these two extraction tasks is

11



ignored, we miss the opportunity of the transfer of knowledge between the entity

and sentence prediction tasks.

1.4 Proposed Solutions

This dissertation focuses on tackling two distinct problem in the area of ADE detection.

(i) Word-level information detection to identify the relevant ADE entities in the narrative

and, (ii) Sentence-level information detection to identify ADE assertive sentence in the

narrative. The research work can be broadly summarized into the following three tasks:

Task 1: Ensemble learning approach for word-level information detection from med-

ical narratives. (Published works: [35, 54, 55])

The general problems of class imbalance and ensemble learning systems for classifica-

tion have been studied in the literature [53]. However, in the context of NER from medical

narratives, a collective approach to deal with both the class imbalance problem and the

limitations of any one individual classification method has not been studied extensively.

In this task, we developed a novel methodology called Tiered Ensemble Learning System

with Diversity (TELS-D) to address the above challenges in NER. TELS-D involves four

core steps:

1. Identify and generate diverse types of features from the textual narratives, includ-

ing syntactic, semantic, morphological and contextual features as components of the

extractors.

2. To address the class imbalance inherent in medical data used for machine learn-

ing training, we create a balanced training environment by applying undersampling

techniques.

3. We generate an ensemble of diverse classifiers by training a set of heterogeneous

learning algorithms in this balanced training environment.

4. We combine the intermediate results generated by each of the classifiers in the en-
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semble to create a meta-training feature set. That is, the class predictions from the

base learners are passed as input features to the meta-algorithm to learn what the

correct output is, given the prediction patterns of the base learner.

5. We train a “learner-over-learners” meta-algorithm over the meta-level features to cor-

rectly learn and classify the named entities in the narratives.

6. Evaluate the TELS-D system with measures commonly used for evaluating classifi-

cation methods such as Precision, Recall and F1-Measure at token-granularity level.

Task 2: Sequence labeling for word-level information detection from medical narra-

tives using Deep learning. (Published works: [39, 56, 57])

In recent years, deep learning models such as Recurrent Neural Network (RNN) mod-

els [58] and especially Long Short-Term Memory (LSTM) [59] due to their ability to learn

long-term dependencies from the context surrounding the words in a sequence have been

shown to be promising techniques for sequence tagging and NER tasks. In this task, we

developed a detection methodology by adapting a three layered deep learning RNN ar-

chitecture of:

1. Bi-LSTM for character-level word representation to encode the morphological fea-

tures of the medical terminology.

2. Bi-LSTM for capturing the contextual information of each word within a sentence.

3. Conditional Random Fields (CRF) for the final label prediction by also considering

the surrounding words.

4. Experiment with different word embedding methods commonly used in word-level

classification tasks to demonstrate the impact of an integrated usage of both domain-

specific and general purpose pre-trained word embedding for detecting adverse drug

events.
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5. Develop a rule-based EHR text preprocessor for providing clean tokenized text input

essential for the success of the proposed model.

6. Evaluate the system based on the strict matching in F1-score using exact phrase-

level evaluation. The metrics for evaluating the systems are Precision, Recall, F1-

score and the micro-averaged score which sums up the individual true positives,

false positives, and false negatives of the system for different sets and the apply them

to get the statistics.

Task 3: Multi-grained joint modelling approach for word-level and sentence-level

information detection using deep learning (Published works: [50])

Most previous approaches tackle multi-grained (word-level and sentence-level) infor-

mation detection problem in a pipe-lined manner, where the inter-dependencies among

the two levels of granularities are not well captured. Moreover, previous approaches

typically apply only a single round of attention focusing on simple semantic information

and consequently risks losing important cues. In this task, to tackle the above challenges,

we design a dual-attention based neural network model for multi-grained joint learning,

called MGADE, that jointly identifies both ADE entities and ADE assertive sentences. Our

key contributions of this work are:

1. We designed an end-to-end joint model that leverages the mutually beneficial rela-

tionships between the word-level and sentence-level information detection tasks.

2. We introduce a novel method for generating and pooling multiple attention mecha-

nisms to produce informative sentence-level representations.

3. We compute dual-attention weighted sentence-level representations to capture both

task-specific and semantic information in a sentence, providing stronger emphasis

on key elements essential for sentence classification.

4. We further utilize our dual-attention mechanism that can assign importance weight

to the words in the input text to provide an intuitive explanation of MGADE model
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and insights on its strengths and weaknesses.

5. We introduce an augmented sentence-level representation comprised of predicted

entity labels for better capturing the word-level label distribution and word depen-

dencies within the sentence.

6. Evaluate the MGADE system using Precision, Recall and F1-score. We compare

MGADE model with state-of-art methods for the ADE entity recognition and ADE

sentence classification tasks.

1.5 Use Cases for ADE Information Extraction

In the context of the post-marketing drug safety surveillance process, we describe two

important use cases for ADE information extraction from the EHRs:

1. Signal Characterization from EHR. According to the CIOMS VIII Working Group

[60], a signal refers to “information that arises from one or multiple sources , which

suggests a new potentially causal association, or a new aspect of a known associa-

tion, between an intervention and an event or set of related events, either adverse or

beneficial, that is judged to be of sufficient likelihood to justify verificatory action” .

Safety signal detection is both an iterative and dynamic process. It is in the best inter-

est of public health to integrate and understand evidence from all possibly relevant

information sources on drug safety [61]. Once the signal is identified, a standard-

ized case definition is formulated with a set of uniformly applied criteria for deter-

mining whether a person should be identified as having a particular disease, injury,

or other health condition. In the event that a safety signal warrants further inves-

tigation, data sources such as spontaneous reporting systems, structured longitudi-

nal observational healthcare databases (such as, EHR, administrative claim systems),

unstructured/free-text sources (such as, EHR/clinical narratives, scientific literature

and patient-generated content) are used for additional characterization (prevalence

& relevance) of the signal [7, 62].
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The unstructured EHR narratives produced by healthcare professionals contain rich

documentation of clinical conditions, treatments, and patient history. However, they

are not easily accessible by computerized systems, and require manual review and

manual identification of the important information which is time-consuming and

cumbersome. The full potential of EHR data cannot be captured unless there is a

reliable stream-lined way to extract relevant information. Our machine learning and

NLP based information extraction methods could be utilized for additional charac-

terization of the signal from EHR narratives. This aids in better understanding and

analysis of the prevalence & relevance of signals (ADE) such as, identifying popu-

lations subsets, comorbid conditions, demographic characteristics of patients associ-

ated with the events, drug exposure duration, dosage, mode of drug administration,

severity of reaction and outcome, concomitant medications.

2. Evaluate vaccine safety in real-world settings. With regard to drug safety surveil-

lance, EHR databases have been commonly used to confirm or refute potential sig-

nals detected initially by SRS, including vaccine-related signals [61]. Rare but seri-

ous adverse events associated with vaccines are often nearly impossible to detect in

pre-approval studies and require monitoring after introduction of the agent in large

populations [63]. The longitudinal nature of routinely-collected EHR data may allow

identification of adverse events that have a long delay between exposure and clinical

manifestations [61].

Especially, with the emergence and ongoing crisis of the Coronavirus disease 2019

(COVID-19 global pandemic), several efforts are underway to create effective vac-

cines for immunization and controlling the spread of the virus. In the Operation

Warp Speed’s Strategy and Approach (OWS) [64] document entitled “From the Fac-

tory to the Frontlines,” 1 the Department of Health and Human Services (HHS) and

the Department of Defense (DOD) stated that, because some technologies have lim-

1https://www.hhs.gov/sites/default/files/strategy-for-distributing-covid-19-vaccine.pdf
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ited previous data on safety in humans, the long-term safety of these vaccines will be

carefully assessed using pharmacovigilance surveillance and Phase 4 (post-licensure)

clinical trials. The RCTs in the pre-approval phases cannot detect all possible/ po-

tential vaccine related adverse events. Once these vaccines are approved and ad-

ministered to larger populations, there is a need for a rapid, reliable way to better

understand the safety of the vaccines. Our machine learning and NLP based infor-

mation extraction methods method could be utilized for vaccine safety surveillance

using EHR narratives. EHR data may be able to highlight new risks associated with

the vaccine, as well as adverse events that have high incidence rates and events that

are not pharmacologically predictable [61].

1.6 Dissertation Outline

This dissertation is organized as follows.

• Chapter 2 presents our work on our ensemble learning approach for word-level ADE

information detection.

• Chapter 3 presents our work on our deep learning based sequence labeling architec-

ture for word-level ADE information detection.

• Chapter 4 presents our work on our joint modelling approach for multi-grained

(word-level and sentence-level) ADE information detection using deep learning.

• Chapter 5 concludes this dissertation and proposes future research directions.
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2 Ensemble learning approach for word-level information detec-

tion

In this chapter, we propose a balanced, under-sampled bagging strategy that is dependent

on the imbalance level to overcome the class imbalance problem. Second, we present an en-

semble of heterogeneous recognizers approach that leverages a novel ensemble combiner.

Our experimental results show that for biomedical text datasets: (i) a balanced learning

environment along with an Ensemble of Heterogeneous Classifiers constantly improves

the performance over individual base learners and, (ii) stacking-based ensemble combiner

methods outperform simple Majority Voting by 0.30 F-measure. This work was published

at HEALTHINF [35].

2.1 Introduction

2.1.1 Motivation and Background

Adverse Drug Reactions (ADRs) correspond to an unwanted and often extremely danger-

ous effect caused by the administration of drugs. ADRs unrevealed during the clinical

trials are one of the leading causes of death worldwide [5]. To oversee the safety and ef-

fectiveness of the drugs in the post marketing phase, surveillance systems such as FDA

Adverse Event Reporting System (FAERS) monitor the ADR incidences submitted by con-

sumers, healthcare professionals and drug manufacturers. These reports are reviewed by FDA

staff to identify potential drug safety concerns and, when necessary, to recommend appro-

priate actions to improve product safety.

In 2015, over 1.7 million of incidents are reported to FAERS and the number is growing

making the drug review process more challenging [11]. To effectively identify drug safety

signals in a timely manner from the exploding amount of reports with limited human

resources, the reviewing processes are enhanced by advanced data mining and visualiza-

tion technologies [12, 13, 14]. However, most of these technologies rely on information
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FDA Adverse Event Reporting System (FAERS) 

Individual Case Safety Reports (ICSRs) 
 

Event Narrative 
This spontaneous report from a patient concerns a XX-year-old Caucasian female from the United States: Local 
ID: X-XXXXXXXXXX. 
 
The patient's weight was XXX pounds and height was XX.X inches.  Concurrent conditions included abdominal 
bloating, abdominal gas, diabetic paresis and type 2 diabetes.  The patient had previously experienced 
allergy when taking mycins ( antibacterials for  systemic use  )and sulfa.  
 

The patient was treated with canagliflozin		300 mg once a day for   type 2 diabetes and domperidone  for 
diabetic  gastroparesis .    
 
In XXX-XXXX, the patient contacted her physician about the events and was prescribed an increased dosage of 
domperidone. The dose of domperidone was increased and the dose of canagliflozin was not changed. The 
patient reported the increased dose of domperidone had not relieved her worsening symptoms. The patient had 
not recovered from increased belching, worsening of abdominal pain, very gaseous, worsening of bloating, and 
not feeling well today. This report was identified by the call center as a product quality complaint.  
 

gastroparesis	diabetic	

systemic	 use	

type	 2	 diabetes	

antibacterials	

domperidone	canagliflozin	 [REASON]	[MEDICATION]	

[REASON]	
[REASON]	

[MEDICATION]	 [MEDICATION]	

Figure 2: A sample FAERS report highlighting detailed information on the ADR incident within
the narrative

organized in structured format where the unstructured text has to be first processed and

converted into structured information.

Although the original report has structured fields, the unstructured narratives in the

MedWatch form used for reporting an adverse event (Illustrated in Fig. 3) often contain

information that is left blank in the structured fields. More importantly, these narratives

are rich in detailed information regarding the adverse event as shown in Fig.2. Automati-

cally extracting information from the unstructured ADR report narratives into structured

format is critical for advanced analytics and vital for timely detection, assessment and pre-

vention of future incidents of ADRs. In this study, we focus on the Named Entity Recog-

nition (NER) – a fundamental task in this process, to classify the information categories in

the narratives.

A major hurdle with biomedical narratives especially with processing medical reports

is that the text is unstructured, comprised of different formats and styles depending upon

the report source. First, a named entity phrase could be expressed as a combination of

entity-specific medical terms as well as non-medical descriptive text. For instance, in the

named entity phrase “coronary artery disease related event prophylaxis”, the words “related”

and “event” are descriptive text while the rest are medical terms. Named entity phrases

such as these can cause ambiguity even during the manual annotation process. Second,
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the narratives are predominately composed of large chunks of texts with sparse relevant

phrases specific to the named entities.

Given above observations, it is a common protocol to engage multiple expert annota-

tors specializing in different types of biomedical text and specific types of named entity to

recognize and tag phrases and, then as a final step combine their expert opinions to come

to an inter-expert agreement for determining the final output. As shown in our experi-

ments, this problem persists when it comes to automatically recognizing entities through

computational approaches. A named entity recognizer for biomedical text is usually de-

signed for specific text type or entity type where a generic approach will almost certainly

fail the domain specific task. Recently, many biomedical NER systems [28, 65, 66, 67] and

frameworks [68] have been proposed customized for specific domain and entity type. To

the best of our knowledge, there is no study today on how to automatically adapt and in-

tegrate the strength of a relevant and yet diverse set of named entity recognizers to tackle

a new domain specific NER task.

2.2 Related Work

Existing approaches to biomedical NER can be categorized into rule-based, machine learn-

ing based and hybrid methods.

The rule-based methods leverage user-defined pattern matching rules supported with

semantic knowledge resources. MedLEE [69] and MedEx [28] are rule-based systems that

use a medical knowledge base and a linguistic approach to extract relevant medical infor-

mation from clinical text. While rule-based systems perform well on identifying known

patterns, they are limited in their ability to generalize. They thus fail to identify unknown

words and patterns.

Machine learning based methods learn from features extracted from words and thus

have a better generalization ability compared to rule-based methods. However, they re-

quire large annotated corpora for training. [70] demonstrated that machine learning ap-

proaches can outperform rule-based systems for assertion classification in clinical text. [33]
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developed a biomedical named entity tagger using Support Vector Machines (SVM) to ex-

tract medication and ADR information from FAERS narratives. [71] used Conditional Ran-

dom Fields (CRF) to label diseases and disorders in clinical sentences. [72] used a Maxi-

mum Entropy model to extract relevant medical information. [73] used Recurrent Neural

Networks to extract medical events from Electronic Health Records (EHR) and showed

that they significantly outperformed the CRF models.

Hybrid approaches that utilize both rule-based and machine learning methods have

also began to be explored. [74] developed an SVM based method that utilizes the semantic

tags of the words obtained from MedEx as features to recognize medication-related entities

from discharge summaries.

2.2.1 Challenges of Entity Recognition using Machine Learning

The focus of our research is on supervised machine learning methods for biomedical NER

and classification. In particular, we focus on a two-class, binary classification task to recog-

nize and classify named entities. Despite its value and significance, biomedical NER and

classification is a more challenging task due to the specific characteristics of the task. Two

of the most critical challenges are:

1. Lack of Positive Class Instances & Class Imbalance: One problem in classifying named

entities in biomedical text especially clinical text is that the data in the training dataset

is predominately composed of non-medical text with only a small percentage of

entity-specific medical text leading to highly skewed and imbalanced class distribu-

tions. Usually, the positive class, i.e., the class of interest that represents the named

entity, has very few instances and is in a stark minority compared to the negative

class (e.g., reason vs non-reason instances in the narratives, see Fig. 2).

Research [75, 76] has found that, learning on imbalanced training datasets can cause

a significant deterioration in the performance of the supervised machine learning

methods, particularly when classifying instances belonging to the under-represented
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U.S. Department of Health and Human Services 
Food and Drug Administration

B. ADVERSE EVENT OR PRODUCT PROBLEM

D. SUSPECT MEDICAL DEVICE

E. INITIAL REPORTER

Form Approved: OMB No. 0910-0291, Expires: 9/30/2018 
See PRA statement on reverse.

FORM FDA 3500A (10/15)

Submission of a report does not constitute an admission that medical 
personnel, user facility, importer, distributor, manufacturer or product 
caused or contributed to the event.

MEDWATCH
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importers, distributors and manufacturers 
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1.

5. Describe Event or Problem
2. Common Device Name

11. Concomitant Medical Products and Therapy Dates (Exclude treatment of event)

3. Manufacturer Name, City and State

6. If Implanted, Give Date (dd-mmm-yyyy)

2. Health 
Professional?

8. Is this a single-use device that was 
reprocessed and reused on a patient?

9. If Yes to Item 8, Enter Name and Address of Reprocessor

10. Device Available for Evaluation? (Do not send to FDA)

4. Model #

Catalog #

Serial #

6. Relevant Tests/Laboratory Data, Including Dates

1. Brand Name

7. Other Relevant History, Including Preexisting Medical Conditions (e.g., 
allergies, pregnancy, smoking and alcohol use, liver/kidney problems, etc.)

2b. Procode

Lot #

Expiration Date (dd-mmm-yyyy)

Unique Identifier (UDI) #

5. Operator of Device

7. If Explanted, Give Date (dd-mmm-yyyy)

3. Occupation (Select from list) 4. Initial Reporter Also Sent 
Report to FDA

Adverse Event      and/or Product Problem (e.g., defects/malfunctions)
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Yes
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Health 
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Other

(Continue on page 3)

(Continue on page 3)
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A. PATIENT INFORMATION
1. Patient Identifier

In Confidence

2. Age

or Date of Birth (e.g., 08 Feb 1925)

3. Sex 4. Weight

Female

Year(s) Month(s)

Days(s)Week(s)

Male
lb

kg

Note: For date prompts of  “dd-mmm-yyyy” please use 2-digit day, 3-letter month 
abbreviation, and 4-digit year; for example, 01-Jul-2015.

2. Outcome Attributed to Adverse Event (Check all that apply)

3. Date of Event (dd-mmm-yyyy) 4. Date of this Report (dd-mmm-yyyy)

Death

Life-threatening Disability or Permanent Damage

Congenital Anomaly/Birth DefectsHospitalization – initial or prolonged

Other Serious (Important Medical Events)

Required Intervention to Prevent Permanent Impairment/Damage (Devices)

C. SUSPECT PRODUCT(S)
1. Name, Manufacturer/Compounder, Strength
#1 – Name and Strength

#2 – Name and Strength

2. Concomitant Medical Products and Therapy Dates (Exclude treatment of event)
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class.

2. Lack of a Single Best Performing Classification Method: It is challenging to choose the

appropriate learning algorithm to train and classify the new instances. Conventional

approaches to biomedical NER tend to use a single machine learning method such

as Support Vector Machines (SVM), Conditional Random Fields (CRF), Maximum

Entropy (ME) [77] classify named entities in the text. Each of these methods have

some advantages over the others and differs significantly in their performances in

classifying the named entities. [66] shows that the teams that used different super-

vised machine learning methods on the same dataset obtained significantly different

results from one another. Additionally, the performances of a single system across

the various named entities is shown to differ. [66] concluded that although the state-

of-the-art NLP systems perform well in extracting some of the named entities (such

as medication, dosages), while other entities (duration, reason for administration)

have shown to be very challenging.

2.2.2 The Scope of this Work

The general problems of class imbalance and ensemble learning systems for classification

have been studied in the literature [53]. However, in the context of biomedical NER, a col-

lective approach to deal with both the class imbalance problem and the limitations of any

one individual classification method has not been studied extensively. In this paper, we

thus design a novel methodology called Tiered Ensemble Learning System with Diversity
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(TELS-D) to address the above challenges in NER. TELS-D involves four core steps: 1) To

address the class imbalance inherent in medical data used for machine learning training,

we create a balanced training environment by applying undersampling techniques. 2) We

generate an ensemble of diverse classifiers by training a set of heterogeneous learning al-

gorithms in this balanced training environment. 3) We combine the intermediate results

generated by each of the classifiers in the ensemble to create a meta-training feature set. 4)

We train a “learner-over-learners” meta-algorithm over the meta-level features to correctly

learn and classify the named entities in the narratives.

To evaluate our model, we perform comprehensive experiments on biomedical reports

datasets. Our experiments demonstrate that our proposed methodology TELS-D outper-

forms the individual learners in the ensemble. TELS-D achieves a higher accuracy of 0.52

F-measure compared to any of the individual classifiers with F-measure ranging from 0.22-

0.33, in recognizing the relevant information categories from the narratives.

2.3 Methodology

2.3.1 The Data Set

The FDA FAERS Adverse Event Report Narratives. The FDA Adverse Event Reporting

System (FAERS) is a database that contains information on adverse events and medication

errors in the form of reports submitted to the FDA from various sources such as patients,

medical professionals and drug manufacturers. A report contains both a structured sec-

tion of content followed by some free-form text. Fig. 3 depicts an example of MedWatch

report form supported by FAERS. As many studies indicate [78], the narrative can be ei-

ther supplementary material to the structured fields or in many cases reporters tend to

provide a detailed narrative in the unstructured format without taking the effort to fill in

all the structured fields. Therefore, there is a need for identifying information related to

the adverse event case from the free text in order to collect all relevant knowledge about

the case in structured and thus a easy processable format.
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Table 1: Statistics for the datasets

FAERS i2b2
#Reports 16 242
#Sentences 678 8,050
#All Words 6,116 67,074
#Reason Words NA 1,881

In this study, we aim to identify one important piece of knowledge, namely the reason

thought to be the cause of the administration of the medication as per the FAERS report

narrative. While we work with 925 FAERS reports, they are unlabeled and not redacted

and therefore not available to the general public due to patient’s privacy concerns. In

addition, we also work with 16 redacted reports provided by the FDA as briefly described

in Table 1.

Data set of Annotated Patient Discharge Summaries by Partners Healthcare. To as-

sure reproducibility, we also work with the publicly available data set from the 2009 Med-

ication Extraction Challenge from the Third i2b2 Workshop on Natural Language Process-

ing Challenges for Clinical Records [79, 66]. The data set consists of annotated patient dis-

charge summaries provided by Partners Healthcare. As part of the challenge, 696 reports

were released for training out of which 17 reports were annotated by the i2b2 organizers.

An additional 251 reports were released as the testing data set and were annotated by the

participating teams. Annotated entities include medication name, dosage, mode, frequency,

duration, and reason for administration. We work with 242 annotated reports (9 from the

annotated training set and 233 from the testing set) as described in Table 1.

In this work, we focus on identifying the reason entity for the administration of drug

from these discharge summaries. First, the reason entity has routinely been pointed out

as one of the important fields yet among the hardest to recognize and extract due to its

diversity and often not well scoped vocabulary [66, 72]. The original dataset features a

heavy class imbalance with respect to the reason type. That is, tokens labeled as belonging

to the reason class represent about 1% of all the tokens in these reports. Since the goal of

this study is to develop an information extraction strategy that successfully identifies the

reason for administration from the text, we focus on the narrative section of each report.
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2.3.2 Data Pre-Processing

Data pre-processing is vital for converting the raw textual data into a processable format

suitable for the natural language processing. We use following steps to pre-process each

report in the corpus:

1. Sentence Segmentation: Each report is split into sentences to decompose the structure.

2. Word Tokenization: Each sentence is split into tokens (words) as this is our unit of

processing.

3. Punctuation Removal: All tokens that represent punctuations are removed.

2.3.3 Feature Extraction

A rich set of features are needed for machine learning to learn the meaning of tokens.

For each word token obtained from the preprocessing module we generate the following

feature sets:

1. Word Features: The token is converted into a bag-of-words representation based on

the vocabulary of the entire corpus. To generate the vocabulary, words in the corpus

are converted to lowercase and stemmed using the NLTK Porter Stemmer [80].

2. Syntactic Features: A constituency parse tree is created using Charniak-Johnson parser

[81]. Each token is tagged with its respective parts-of-speech (POS) and lexical cate-

gories.

3. Semantic Features: Semantic categories of the word are then obtained through lexicon

lookup from medication lexicons, side effect lexicons (such as SIDER) [82] as well as

UMLS Metamap [65].

4. Context Features: Words adjacent to the token in the narrative provide the context in

which the token is actually used. This feature is helpful to differentiate when a token

falls into one of two different sections of a report and thus labeled differently. A
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context window size five words i.e,. two words before and two words after the token

are coded using bag-of-words representation. A boolean value is a binary flag that

indicates whether this token occurs before or after certain so called “trigger words”.

We identify trigger words that may indicate the presence of the named entity reason.

5. Morphological: The suffix and prefix of up to 3 characters within this word. For exam-

ple: 1) words with prefix of “dys” indicate something is abnormal, such as dyspnea,

2) words with a suffix of “ing” may indicate a condition or symptom, such as bloat-

ing.

6. Orthographic: Boolean values are used to indicate if this word contains capital letters,

digits, special characters, etc.

2.3.4 Base Machine Learning Models

After each token has been characterized by descriptive features by the above step, the

tokens in the form of feature vector along with their associated label indicating its class

type (reason or non-reason) are then used to train the models.

Different machine learning models have their own set of assumptions and way of mod-

eling the data, resulting in its pros and cons in the classification task. In our study, we

assume that different models are able to capture different aspects of the data and having

them compliment each other in an assembly fashion will achieve better accuracy than any

of them working individually. We build our base classifiers using multiple popular ma-

chine learning models, namely, Decision Tree (DT), Logistic Regression (LR) and Support

Vector Machine (SVM) [83] (Illustrated in Fig. ??).

2.3.5 Ensemble of Classifiers

Ensemble of classifiers is a group of diverse classifiers whose classification recommenda-

tions are aggregated to achieve more accurate classification [83, 84]. The goal of an ensem-

ble system is to combine the results of many diverse classifiers into a single consensus re-
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sult that outperforms any one of the individual classifiers by reducing their generalization

error and thus their misclassification rate. The generalization error of the ensemble system

tends to be lower than that of the individual classifiers when there is sufficient diversity

in the ensemble where the base learners have different prediction accuracy on different

instances. This makes the assumption that the base learners are better performing than

random guessing. They have an accuracy greater than 50% [85].

2.3.6 Ensemble Generation: Model Diversity

1. Heterogeneous Learning Methods: One approach to generating a diverse set of clas-

sifiers is to train different learning methods on the same training set. If the perfor-

mance of each of these methods varies significantly, then the results obtained are

diverse in nature. Then to overcome the limitations of each learning algorithm while

taking advantage of their respective strengths is to combine the classifiers into an

ensemble of classifiers. In this study, we thus follow this methodology and create

an ensemble of models obtained with the SVM, LR and DT learning methods. Our

experiments (see Sec.2.4.8) confirm that an ensemble of these base classifiers outper-

forms any one of them.

2. Heterogeneous Training Datasets: Another common approach to generating a diverse

set of classifiers is to create different subsets of the original training dataset and then

to train a single learning method on each of the subsets from the training data set.

Bagging [86] and Boosting [87] are examples of algorithms that tackle the generation

of collection of classifiers by sub-setting the original dataset. However, given that

our data set suffers from a heavy class imbalance problem and further the data size

in terms of relevant tokens is limited, boosting or bagging, which further reduce the

data to smaller subsets of data, are not suitable design options.
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2.3.7 Ensemble Combination: Model Assembly

The combination method that combines the results of the diverse learning methods in the

ensemble to obtain one aggregated consensus result can be achieved through different

techniques. The most commonly used technique is Majority Voting (MV), that is, selecting

as result the class that receives the highest votes from all the individual learning methods

by simple counting. It can be simple or weighted voting where base learners are given

different weights. In either case, the average is taken.

Another technique is Stacked Generalization [88] or in short Stacking, which is a learn-

ing over learners method to procure the final result. Stacking is a meta-learning algorithm

where the class predictions from the base learners are passed as input data to the meta-

algorithm to learn what the correct output is, given the prediction patterns of the base

learner. In our study, we experiment with both Majority Voting and Stacking techniques

as model combiners. Ultimately, we demonstrate that Stacking method outperforms Ma-

jority Voting and therefore is a promising strategy to adopt for combining the models into

an ensemble.

2.3.8 Strategies for Addressing the Class Imbalance Problem

In biomedical named entity recognition tasks, often the training datasets used are very

skewed, that is, they suffer from a heavy class imbalance [89]. Class imbalance occurs

when one of the two classes, usually the class of interest, the positive class is in stark mi-

nority and the negative class is in majority. The performance of machine learning methods

trained over such class-imbalanced datasets tend to be greatly affected by such class im-

balance. In particular, this tends to result in the minority class not being well learned and

hence misclassified most of the time. Class imbalance can influence the performance of

the ML method by favoring the majority negative class. Approaches to deal with class-

imbalanced datasets are described next.
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2.3.9 Balancing with Class Weights

One common method is to balance the class weights within the classifier, thereby giving

more importance (or weight) to the errors of the minority class. Higher class-weight puts

more emphasis on the minority class. That is, it penalizes the model for making classifica-

tion mistakes on instances of the minority class during training. These penalties bias the

model to pay more attention to the minority class.

Usually, in the case of balanced datasets both classes are given an equal weight of one.

In imbalanced datasets however, the class weights can be balanced by performing a grid

search with different class weight combinations to find the optimal class weights. These

weights are then passed to the learning method to bias the decision making process of the

learning method.

2.3.10 Balancing with Class Instances

Another approach to minimize the effect of class imbalance is to re-sample the original

training dataset to create a new modified training dataset that has a balanced class distribu-

tion. Random over-sampling and random under-sampling are both common re-sampling

techniques [90]. In both cases, the objective is to decrease the effect of the highly skewed

class distribution by creating a balance between the number of majority and minority class

instances. This then enables the classifier to give equal importance to both classes during

the training phase.

However, both techniques have limitations. While with under-sampling there is a pos-

sibility of throwing away important instances, with over-sampling we tend to increase the

size of the training dataset. In this study, since our training dataset is already large and

high dimensional, we choose to re-sample the dataset with the random under-sampling

technique.
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Figure 4: TELS-D tiered ensemble learning system with diversity

2.3.11 Balancing with Classifier Ensembles

Yet another approach to deal with class imbalance is to use ensemble methods to gener-

ate a classifier ensemble that can create a balanced learning environment for the learning

algorithm [91]. Under-Bagging [92] and Over-Bagging [93] are examples of ensemble tech-

niques, that deal with class imbalance in the learning phase through a combination of data

re-sampling and bagging approaches, known as “balanced bagging”.

To the best of our knowledge, with the above existing methods, the diversity in the

ensemble is usually generated through training one homogeneous learning algorithm on

all balanced subsets of the training data. The results from the classifier ensemble are ag-

gregated using the Majority Voting combination method. In this study, although we will

employ the basic idea of “balanced bagging”, we will also extend it to train a diverse set

of heterogeneous learning algorithms in parallel.

2.3.12 Tiered Ensemble Learning System with Diversity

In this study, to address the two challenges of (1) class imbalance and (2) the lack of a sin-

gle best performing method, we propose a novel integrated approach to create a balanced

learning environment. This strategy combines balanced resampling techniques with an

ensemble of heterogeneous classifiers into one methodology. Our approach called Tiered
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Ensemble Learning System with Diversity (TELS-D), effectively deals with the class im-

balance problem in the data through a balanced under-sampled bagging approach, while

also addressing the limitations of using a single learning method by training multiple het-

erogeneous learning methods on the under-sampled subsets in parallel.

The imbalance level in a dataset is defined as the ratio of the number of majority neg-

ative class instances to the number of minority positive class instances (Eq.1). It indicates

how many times the majority class is greater than the minority class.

Imbalance Level (IM) =
# Negative class tokens
# Positive class tokens

(1)

Based on the imbalance level of a dataset, we create multiple smaller subsets of the original

dataset that each individually exhibit a balanced class distribution. That is, each smaller

balanced subset takes all of the available positive class instances while working with only

an equal number of negative class instances, i.e., a subset of the available negative class

instances. The purpose here is to learn the features inherent in the positive class (the class

of interest) without getting overwhelmed by the majority negative class instances and their

typical characteristics. The number of subsets to form is determined by the imbalance

level in the dataset. For example, in Fig. 4, the negative class is five times larger than

the positive class. Hence, the original unbalanced training dataset (DB) is split into five

smaller balanced subsets henceforth called “balanced bags” (BB) while ensuring that we

do not discard any instances from either classes, i.e., ∩5i=1 BB 6= ∅ and ∪5i=1 BB = DB

For example, if the imbalance level in the dataset is N, then we create N (N > 1) bal-

anced training sets, BB. If we have M (M > 1) base learning methods, we train T = N ×M

base learners in the first layer of the ensemble. So, instead of creating an ensemble of just

N diverse models (Sec. 2.3.6-2) or just M diverse models (Sec. 2.3.6-1), with our proposed

TELS-D strategy we create a collection of T diverse models.

The advantage of TELS-D approach is that we generate more diversity in the ensemble

while balancing the class distribution. With more diverse base learners, each one of the
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T base classifiers will make different errors on different instances. We then combine the

results from these T diverse base learners to form an input for the second layer stacking

meta-algorithm. This gives the meta-learner an opportunity to learn the patterns to predict

the correct class - thereby reducing the total error.

2.3.13 Evaluation Criteria

We adopt the criteria commonly used for evaluating classification methods, but now adapt

them to apply to the token-granularity level. That is, we measure both the Precision and

Recall as described below to determine whether or not the learning models sufficiently

capture the classifications of the positive class.

Precision (P) =
# Correctly predicted positive tokens

# Total predicted positive tokens
(2)

Recall (R) =
# Correctly predicted positive tokens

# Total real positive tokens
(3)

Our goal is to achieve high precision (lesser false positives) and high recall (more true

positives). Thus, F-measure, defined below, gives a balance between both precision and

recall measures, thereby balancing the accuracy of both positive and negative predictions.

Hence, F-measure is a commonly accepted measure to evaluate the performance of learn-

ing methods.

F-measure (F1) =
2(P x R)

(P + R)
(4)

2.4 Experimental Results

2.4.1 Experimental Setup

Data Sets In this study, to build and evaluate our classification approaches we have used

the data set of annotated patient discharge summaries from i2b2 (Sec.2.3.1) that has been
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Figure 5: Grid search results for balancing class weight on target Reason) in i2b2 dataset

augmented with ground truth labels which are needed for supervised machine learning

strategies. Holdout test set approach is adopted with a 90/10 split. The i2b2 corpus, the

242 reports used in this study (Table 1) are split accordingly where 90% of the reports (217

reports) are randomly selected for training and building our proposed model and the re-

maining 10% (25 reports) are used as the holdout for subsequent testing to evaluate the

effectiveness of our methods. In this section we discuss our empirical results on this hold-

out test set. Additionally, we have experimented with the 16 FAERS reports as a second

test set (Table 1). Due to lack of ground truth labels for these FAERS reports, we manually

evaluated the results and present a case study as part of our results discussion.

Parameter Tuning Base learners such as SVM and LR must be tuned first and parame-

ters are used to do so. Therefore, we have used SVM with a linear kernel function and LR

with a c-value of 1.0. These values were the best parameters we obtained after testing with

c-values (0.001, 0.01, 0.1, 1, 10) using 10-fold cross-validation [94]. The c-value controls the

trade off between model complexity and misclassified instances. We have used decision

tree with best split at each node strategy and gini to measure the quality of the split [85].

For selecting the optimal class weight setting, we performed a systematic grid search with

a set of class weights for each class using 10-fold cross-validation. The effect of balancing

different class weight values on individual learning methods (SVM/LR/DT) is depicted in
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Figure 6: The precision, recall and F1-score of different classification strategies

Fig.5. This experiment shows that for the three base learners, the precision and recall are

balanced with a higher F-Measure at a class weight {C1 : 0.8, C0 : 0.2} setting, where C1

denotes the class reason and C0 denotes the class non-reason. We thus set the class weight

to {C1 : 0.8, C0 : 0.2} throughout the rest of our experiments where we balance the class

weights within the learning methods.

2.4.2 Classification with Unbalanced Class Distribution

This experiment is conducted to obtain a baseline to compare the different approaches

explained in Sec.2.3.8. The individual base learners are trained on the original training set

(DB) without balancing the class weights or instances (Fig.6 (a)) to see the effect of skewed

class distribution.

In this experiment, the precision P is much higher than the recall R for all base learners

especially for SVM (P:0.68/ R:0.33) and LR (P:0.70/ R:0.31). High precision and low recall

implies very few tokens were predicted as belonging to reason class, but most of them are

correct predictions when compared against ground truth labels. This is expected due to

the class imbalance, with the majority of the tokens being non-reason labels in the training

phase. Thus the base classifiers are biased towards the non-reason class and tend to mis-
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classify most tokens in the minority reason class.

2.4.3 Balancing with Class Weights

This experiment is conducted to evaluate the effectiveness of the strategy of balancing

class weights to address the data imbalance problem. The class weight parameter is set to

{C1 : 0.8, C0 : 0.2} in the individual base learners. The base learners are then trained on

the original training set (DB) (Fig.6 (b)).

In this experiment, the recall is now higher than the precision for two base learners,

SVM (P:0.38/ R:0.51) and LR (P:0.45/ R:0.53). High recall and low precision implies many

tokens were predicted as belonging to reason class. However, most of them are incorrect

predictions when compared against ground truth labels. This is expected because, in order

to deal with class imbalance during the training phase, we had set the class weights within

the base learners such that the minority reason class is given more weight. Hence this tips

the classifier learning bias towards the minority reason class. In contrast to the Unbalanced

experimental results (Sec.2.4.2), this now had led to more of the majority non-reason class

tokens being misclassified as reason class. The evaluation metrics of DT (P:0.44/ R:0.37/

F1:0.40) are similar to the unbalanced experimental results (Sec.2.4.2).

2.4.4 Balancing with Class Instances

The next experiment evaluates the effect of balancing class instances to address the class

imbalance problem. Balancing class instances is achieved by performing random under-

sampling on the original training dataset (DB) to create a single balanced subset of the

training data to be utilized for training. The resulting balanced subset now has an equal

number of positive reason and negative non-reason class instances (Fig.6 (c)).

In this experiment, the recall is much higher than precision for all base learners, SVM

(P:0.17/ R:0.84), LR (P:0.19/ R:0.84) and DT (P:0.16/ R:0.83). In fact, the precision is rather

low. This indicates that most of the tokens were predicted as belonging to the reason class,

when in actuality a majority of them belongs to the non-reason class. This also explains
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Figure 7: Comparison of classification strategies for class imbalance - F-measures of base classifiers

the very high recall, where most of the ground truth labels were also included in the total

predictions. This can be explained by the fact that during under-sampling only a random

subset of negative class non-reason instances were included in the balanced subset. Hence

we discarded many potentially useful instances that are important for learning the reason

class. In this scenario, the base learners cannot learn the predominant characteristics of the

negative class well and hence tend to mis-classify those instances more often.

2.4.5 Balancing with Classifier Ensembles

This experiment evaluates the effect of balancing with ensemble of homogeneous classi-

fiers. Balancing with Ensemble of Homogeneous Classifiers is achieved by performing

Under-Bagging strategy on the original training dataset (DB) to create multiple under-

sampled subsets of the training data (Sec. 2.3.11). Then we train each base learner on all of

these subsets. Lastly, we combine them with Majority Voting (Fig.6 (d)).

In this experiment, the recall is much higher than the precision for all base learners,

SVM (P:0.20/ R:0.83), LR (P:0.21/ R:0.81) and DT (P:0.18/ R:0.81). These results are similar

to the experimental results of Balancing with Class Instances (Sec.2.4.4). Although, both

approaches are similar in the creation of a balanced subset, this current approach uses

multiple balanced subsets to counter the limitations of using a single balanced subset (i.e.

eliminating potentially important negative class instances). However, the Under-Bagging

approach uses majority voting to aggregate the results obtained from training the base

classifiers on these subsets. We see (Fig.6 (c)) that the precision on a single subset is very

low. So even if we take a majority vote of N such classifiers whose individual base results

36



are erroneous, the final prediction tends to be also incorrect.

2.4.6 Balancing with TELS-D

Our proposed approach, TELS-D is a multi-layer framework (Sec. 2.3.12). The first layer in

TELS-D creates a balanced learning environment to handle class imbalance in the training

dataset.

This experiment evaluates the first layer in TELS-D. Balancing is achieved by creating

multiple balanced subsets (BB) of the original training data (DB) based on the imbalanced

level (IM) in the training set. We train each base learner on the balanced subsets (BB)

and combine them with Stacking, using another meta-algorithm (Logistic Regression). In

contrast to Under-Bagging which uses simple majority voting, TELS-D employs stacking

method to combine the results from the base learners and make the final predictions (Fig.6

(e)).

In this experiment, the recall is a little higher than precision for all base learners, SVM

(P:0.45/ R:0.60), LR (P:0.44/ R:0.60) and, DT (P:0.39/ R:0.55). That is, although we have

predicted many of the tokens correctly, some of the class predictions were incorrect when

compared against ground truth labels. This small learning bias towards the minority rea-

son class is expected because, during the training phase, we give priority to learning the

minority reason class well by training on multiple subsets that have the same minority

instances.

2.4.7 Comparing Classification Strategies for Class Imbalance

To compare our experimental results of different approaches for dealing with class imbal-

ance, we evaluate their performances on each individual base learners using the F-Measure

metric. F-Measure gives a weighted average of the precision and recall scores. An im-

provement is the F-measure indicates an equilibrium point where we increase the number

of correct class predictions thereby decreasing the number of incorrect class predictions.

Fig. 7 shows that our proposed TELS-D approach is effective in solving the class imbalance
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Figure 8: Evaluation of tiered ensemble learning system with diversity (TELS-D)

problem with higher F-Measures on all three base learners (SVM F-Measure:0.51/ LR F-

Measure:0.51/ DT F-Measure:0.46) compared to other approaches that deal with class im-

balance.

2.4.8 Ensemble Learning with TELS-D

The second layer in TELS-D is designed to create and combine an ensemble of heteroge-

neous classifiers to improve the accuracy over the individual base learners (Sec. 2.3.12).

This experiment evaluates the second layer of TELS-D built on the output from the first

layer. The predictions of the three base learners trained over all balanced subsets in the

first layer are combined with Stacking using a meta-algorithm, in our case a simple linear

algorithm like Logistic Regression (LR), in the second layer.

Fig. 8 shows F-Measure of: 1) Individual base classifiers generated by training the

three base learners on all balanced subsets, 2) Ensemble combined with majority voting

(for comparison only) and, 3) Ensemble combined with Stacking. The F-measures of indi-

vidual base classifiers were ranging from 0.28-0.33, Ensemble with Majority voting is 0.22

whereas the F-measure of the ensemble with stacking is 0.52. This experiment demon-

strates the power of an ensemble learning system with a learning-over-learners combiner

called meta-algorithm in the final step. The meta-algorithm learns from the errors gener-

ated by the base classifiers to output the correct result. Majority voting on the other hand

is under performing due to the fact that, with simple counting of votes, the errors of the
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Table 2: FAERS Examples of Reason class labels predicted by TELS-D

Example Sentence from the FAERS Narrative 
True Positive 

(TP) 
False Positive 

(FP) 
False Negative 

(FN) 

1) 
The patient was treated with canagliflozin for type 2 
diabetes and domperidone for diabetic gastroparesis 

type, diabetes, 
diabetic, 

gastroparesis 
  2 

2) 
The patient had previously experienced allergy when 

taking mycins (antibacterials for systemic use)  
systemic   use 

3) Concurrent conditions abdominal pain, diabetic paresis.   
abdominal,  

pain, diabetic 
  

base classifiers only add up and thus make the final result more erroneous.

We have compared our results with an existing study [74] conducted on the same i2b2

test dataset. [74] demonstrated with MedEx only and SVM-based NER including MedEx.

The results showed that for recognizing the reason entity from the narratives, the rule-

based MedEx system achieved a F-measure of 0.43 while the SVM combined with MedEx

achieved 0.48. Our results from TELS-D approach show an improvement over both MedEx

and SVM including MedEx with the F-measure of 0.52.

2.4.9 Analysis of TELS-D Results on FAERS Reports:

Due to lack of ground truth labels for FAERS reports, we manually reviewed and evaluated

the TELS-D results on few of the 16 FAERS reports. An analysis of errors on one of the

FAERS narrative is discussed below (See Table 2).

• True Positives: True Positives (TP) are the correctly predicted tokens. In the Table

2, we can observe that for examples 1 and 2 all the tokens labeled as reason class

have been accurately predicted as true positives by our TELS-D. Most of the ground

truth labeled words in these sentences are purely medical text and follow a certain

sentence structure.

• False Positives: False positives (FP), i.e., incorrectly predicted as reason class, mostly

occurred when the token was not associated with a medication. For instance, exam-

ple 3 shows that although the incorrectly predicted token is all medical text, it was

not associated with a medication name in the same sentence. Hence it cannot be an
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indication for taking a medication and is not predicted as reason. Cases such as these

are very difficult to classify and indicate a need for additional features to learn such

patterns in the text.

• False Negatives: Our evaluation showed that false negatives, i.e., incorrectly pre-

dicted as non-reason class, occurred primarily due to the mixture of medical and

non-medical words. Most of the time, we have noticed that these false negative

tokens are embedded or were a part of the true positive tokens. For instance, in

examples 1 and 2, the words “2”, “use” are all commonly used regular text.

2.5 Discussion

Lack of annotated FAERS dataset. First, FAERS narratives cannot be published without

data redaction because of privacy concerns. Redaction of these reports requires a huge

amount of cautious efforts to make sure no privacy threatening information remains in

the publishable text. Since the redaction process requires perfect recall with utmost preci-

sion, it is almost impossible to be accomplished automatically without significant manual

intervention. Therefore, creating a large corpus of redacted FAERS narratives is challeng-

ing in itself. Second, annotating FAERS narrative requires deep domain knowledge and

reviewing experiences. Deployable supervised machine learning models used for such

task must be trained on larger datasets annotated by FDA’s own safety reviewers whose

annotating strategy reflects the reviewing guidelines. However, due to limited resources,

annotating a large set of FAERS narratives is not trivial as it requires extra effort and time

in addition to the routine drug review tasks. Given the above challenges, there are no

publishable FAERS reports annotated by FDA that can be used in this study for training

and testing purposes. Therefore, to prove the concept and for the reproducibility of this

study, we trained our model and evaluated our methodology using the public benchmark

dataset (i2b2 2009 discharge summaries). In addition, we tested the trained model on a

few redacted FAERS narratives that have been annotated. Since discharge summaries do
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not necessarily share the same vocabulary as the FAERS narratives, we expect this switch

in data sets to be reflected in the results as well.

Practical application of this study for FDA. Automatically identifying high value infor-

mation from the biomedical text has been recognized by FDA as one of the important

steps in its regulatory and supervisory tasks. FDA has been partnering with research insti-

tutes and technology companies to develop text mining and natural language processing

tools for various types of biomedical text collected by FDA such as vaccine ADR reports

(VAERS), FAERS reports, and others. Due to the different nature of these texts, the tools

and methodologies are highly customized to work with a particular text type. Moreover,

among these text types, FAERS narratives have relatively complex structure in terms of

size, vocabulary and style of writing. To cope with this complexity, we propose a machine

learning framework that can combine some of these internally available existing tools to

extract information from FAERS narratives in an ensemble fashion. These extracted results

can be further utilized by advanced data mining or visualization techniques to enhance the

drug review process.

2.6 Summary

This research work describes a novel approach called Tiered Ensemble Learning System

with Diversity (TELS-D) for biomedical NER from Adverse Event Reports. Our proposed

approach uses an ensemble of diverse heterogeneous classification methods to recognize

named entities in the text while also dealing with the critical problem of skewed class

distribution of the named entities in the training datasets. Our results are promising and

indicate that, in the context of binary classification an ensemble approach would be a better

choice for NER especially for class imbalanced datasets.
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3 Sequence labeling for word-level information detection

In this chapter, we propose a three-layer deep learning architecture for the NER subtask,

consisting of a BiLSTM layer for character-level encoding, a BiLSTM layer for word-level

encoding, and a CRF layer for structured prediction. Our system was ranked first for

NER task in the MADE1.0, NLP Challenge for Detecting Medication and Adverse Drug

Events from Electronic Health Records hosted by University of Massachusetts at Lowell,

Worcester, and Amherst. This work was published in Drug Safety, The Official journal of

the International Society of Pharmacovigilance [39]

3.1 Introduction

Drug-related adverse events (ADEs) are known to be a leading cause of death in the United

States [2]. Early detection of the ADE incidents aids in the timely assessment, mitiga-

tion and prevention of future occurrences of severe, potentially fatal ADEs. Natural Lan-

guage Processing (NLP) techniques towards recognizing ADEs and related information

from spontaneous reports, clinical reports, electronic health records (EHR) provides an

effective way of drug safety monitoring and pharmacovigilance.

A major challenge with processing EHR records is that EHR notes, while containing

valuable knowledge correspond to unstructured text. Numerous challenges arise when

extracting entities from such narratives. Often the notes contain medical and non-medical

abbreviations, acronyms, numbers and misspelled words which make it difficult to rec-

ognize the critical information in the notes. In other words, certain types of information

such as ADEs, indications, signs & symptoms are harder to detect than others such as drug

names. This can be explained by the following. First, these entities can span across multi-

ple words, about one to seven words per entity. Also, some entities could be expressed as

a combination of entity-specific medical terms as well as non-medical descriptive text [35].

For instance, in the phrase “coronary artery disease related event prophylaxis”, the words

“related” and “event” are descriptive text while the rest are medical terms. Moreover,
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Table 3: Examples showing key challenges of biomedical text.

Challenges Example text

Multiple words Lymphoplasmacytoid lymphoma involving bone marrow and spleen
Medical and non-medical words cervix again is significantly stenotic
Abbreviations IgG kappa monoclonal protein
Ambiguous Named Entities Headaches - Indication or ADE or Sign or Symptom

there is a lot of ambiguity among relevant named entities. Depending upon the context,

the same exact phrase can be either an ADE, indication or a sign & symptom (SSLIF). Ta-

ble 3 states key challenges of textual notes. The example text is taken from a de-identified

dataset of EHR notes of 21 cancer patients from the University of Massachusetts Medical

School.

To tackle the above challenges, an ADE detection system should: 1) capture both syn-

tactic and semantic features of the words to best distinguish between ADE related terms

and non-medical words, 2) model the dependencies among words within a sentence so

that ADR related phrases consisting of multiple strongly associated words (including non-

medical words) can be identified, and 3) master plan the ADE detection by considering

the possibly labeling outcomes for each word so that the detected ADE words or phrases

as a whole in a sentence make sense. Following this principle, we propose our Dual-Level

Embedding for Adverse Drug Event Detection framework, DLADE in short – a three lay-

ered deep learning architecture that solves the above three challenges jointly within one

model. In addition, due to the noisy nature of the EHR text data, we design a rule-based

EHR text preprocessor for providing clean tokenized text input essential for the success of

the subsequently applied computational detection method.

3.2 Related Work

Rule-based Method. Rule-based extraction techniques are user-created pattern matching

rules that require human expertise. In [95, 28] a rule-based approach that combines rules

with semantic lexicons is used to extract drugs and related information such as dosage,
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duration and signs or symptoms from clinical records.

Machine Learning Method. In [95, 32] statistical and machine learning techniques such as

Hidden Markov Models (HMM) and Conditional Random Fields (CRF) are used to extract

information from biomedical text. [33] developed a machine learning based biomedical

named entity tagger using Support Vector Machines (SVM), to extract medication and ADE

information from medical narratives.

In recent years, deep learning models especially Recurrent Neural Network (RNN)

models have been shown to be promising techniques for sequence tagging and Named

Entity Recognition (NER) tasks due to their ability to learn from the context surrounding

the words in a sequence [58]. Long Short-Term Memory (LSTM) [59] is a type of RNN that

is effective at learning the long-term dependencies between words in a sequence. CRFs [96]

are probabilistic graphical models that have been used for sequence labeling tasks due to

their ability to model the dependencies in the outputs of a sequence. A combination of

RNN and CRF models have also been explored and found to be effective for sequence

tagging [36, 97, 98]. Most of the deep learning models developed for NER task use word

embeddings as input to the models. Word embeddings are vector representations of words

in the text. These word embeddings can either be trained on domain specific text such as

biomedical texts, EHR notes, PubMed articles [99, 100], or they can be trained on wide

variety of general text such as Wikipedia articles [101].

3.3 The MADE1.0 NLP Challenge

This section provides a brief introduction to the MADE1.0 NLP Challenges for Detecting

Medication and Adverse Drug Events from Electronic Health Records hosted by Univer-

sity of Massachusetts at Lowell, Worcester, and Amherst . The main objective of the chal-

lenge is to advance ADE detection techniques to improve patient safety and health care

quality. The challenge consists of the following three tasks: 1) Named entity recognition

(NER), 2) Relation identification (RI) and, 3) Integrated task (IT).
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3.3.1 The Task

We have developed our system, DLADE (Dual-Level Embedding for Adverse Drug Event

Detection) [57], specifically for Task 1, the Named Entity Recognition (NER) problem of

the challenge. The task is to develop a system capable of automatically detecting any

mentions of medication names and their attributes (dosage, frequency, route, duration) as

well as mentions of ADEs, indications, other signs & symptoms. Tasks 2 & 3 (RI & IT) are

beyond the scope of this paper.

3.3.2 Data Set

The MADE1.0 challenge used a total of 1089 de-identified EHR notes from 21 cancer pa-

tients. The notes are annotated with medication information (such as medication name,

dosage, route, frequency, duration), adverse drug events (ADEs), indications and other

signs and symptoms. The annotated notes were released in the BioC format [102]. 876 of

these reports were released to participants of the competition for developing their learning

system along with the gold standard annotation.

3.3.3 Resources

This challenge restricted the usage of existing NLP tools such as NLTK [103], Stanford

NLP [104], cTakes [67] which should only be used for text preprocessing, in order to assure

fairness among competition participants who included both university as well as com-

pany contributors with diverse resource access. The term standard resources refer to the

training data released to the participating teams, the pre-trained word embedding trained

using wiki, and de-identified Pittsburgh EHR and PubMed articles [73, 36] and Unified

Medical Language System (UMLS) [65]. The term extended resources refers to publicly

available tools designed to work with medical concepts and medical relations as well as

any ancillary corpus in addition to the standard resources. Our system, DLADE, is devel-

oped using only the standard resources released as part of the challenge – the training data
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and the pre-trained word embedding.

3.3.4 Evaluation Process for MADE1.0 Challenge

The developed system was then evaluated by the MADE1.0 organizers on two different

tracks: 1) Standard track using only the standard MADE1.0 resources and, 2) Extended

track using customized resources available publicly. The top teams for the AMIA 2018

Informatics Summit panel presentation were selected based only on the performance of

each team for the Standard track. The evaluation is based on the strict matching in F1-score

using exact phrase-level evaluation. Relaxed matching using word-level evaluation is not

considered. The metrics used for evaluating the systems are Precision, Recall, F1-score and

the Micro-averaged score which sums up the individual true positives, false positives, and

false negatives of the system for different sets and the apply them to get the statistics. The

best score is determined by the Micro-averaged F1-score for the Standard track using an

exact phrase-level evaluation. This simplified way selected a winner for this task of the

competition.

3.4 Methodology

3.4.1 Preprocessing

As we will explain in Section 3.5.2, our model considers the EHR notes as a set of sen-

tences where each individual sentence in turn consists of a sequence of words. Therefore,

we first tokenize the EHR notes into sentences and then tokenize the words within each

sentence. MADE1.0 EHR notes contain noise (Figure 9), e.g., section headings with re-

peating punctuations and abnormal text formatting, e.g., unexpected line breaks where

existing off the-shelf tokenizers such as NLTK [80] fail to produce promising results which

we show in the result section. For this reason, we instead built a rule-based tokenizer that

processes the EHR note character by character for sentence and word chunking while con-

currently recording the character offsets w.r.t the original text file. The rule-based process

the text narrative character by character. It decides the sentence boundary by considering
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Figure 9: Noise in the EHR text.

Figure 10: Algorithm 1 Rule-based Sentence Tokenizer.

the period sign with additional conditions to avoid false alarm such as “Dr.”, “Mr.”, “1.23”

etc. The sentences (except the first one which usually consists of encrypted headings) are

then passed to a rule-based word tokenizer which decides the word boundary by consid-

ering the spacing among the words. The tokenizers also record the boundary offsets for

evaluation purpose. The source code of the preprocessor is released.

Some named entities correspond to multiple words. Hence we use the IOB [105] tag-

ging scheme to distinguish between the beginning of an entity (tag B-named entity), or the

inside of an entity (tag I-named entity). The no-entity tag is O.

3.4.2 Word Embedding

Word embeddings are dense representations of words that encode both syntactic and se-

mantic features of the words into a vector. Each word is mapped to a real-valued vector of

a low dimensional space, the dimensionality typically ranging between 50 to few hundreds

(such as 200, 300). This is much smaller compared to the one-hot vector representations of
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the words whose dimension is usually in thousands with sparse vectors.

Word embeddings have shown to improve the performance of sequence tagging tasks

[106] and are an integral part of the deep learning models. Word embeddings can be

learned from the training data if the training corpus is large enough and has a good vo-

cabulary size. In this case, the vectors are randomly initialized and passed to the neural

network in order to learn and further tune the random vectors to provide a good mean-

ingful representation of the words. Alternatively, there are publicly available pre-trained

word embeddings which can be readily passed as input to the deep learning models. Some

of these pre-trained word embeddings are trained specifically for a domain or task such

as biomedical text [99, 100] while others are more general purpose and are trained on

Wikipedia articles [101]. The pre-trained embeddings can either be fixed while training

the network or can be further tuned to make them better representations specific to the

task.

Word embeddings can also be learned from the characters in the word. Character-

level representations of the word capture the morphological features such the prefix or the

suffix of a word, words starting with upper case letters and abbreviations which can be

encoded into a dense representation [107]. The character-level embeddings can be used

to supplement the learned or pre-trained word-level embeddings to train a deep learning

model.

In the context of ADE detection task, one of the challenges with EHR text (as shown in

Table 3) is that it comprises of various medical terms and abbreviations. The pre-trained

word embedding for such words and phrases might not be available especially if they

occur not too frequently in the corpus on which the word embeddings are learned from.

In such cases where a pre-trained word embedding is unavailable, the learned character

level representation of the word will enable us to extract the meaning of words. Neural

network models such as Convolutional Neural Networks (CNN) or RNNs can be used to

run over the sequence of characters in a word to learn the character-level representation of

the word.
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3.4.3 Methods

In this section, we describe the methods used in our system: Bi-LSTM, CRF, and Bi-LSTM-

CRF.

Bi-LSTM. Recurrent Neural Network (RNN) models are designed to capture the long-

term dependencies in a sequence. They have an input layer, hidden layer and output layer.

The input layer takes the word features in the form of word embeddings. The hidden layer

maintains information on previous outputs enabling it to predict the current output based

on the past information and previous word in the sequence. The output layer produces

the probability distribution for each label. However, RNNs are less effective with longer

sequences due to the problem with vanishing or exploding gradient [108, 109] and thus

result in a network that cannot learn well from the longer training sequences.

Long Short-Term Memory (LSTM) neural network [32] is a type of RNN that are de-

signed to overcome the gradient vanishing/exploding problem and thus efficiently learn-

ing the long-term dependencies in a sequence [110]. They have a built-in memory cell

within the hidden layer which is responsible for controlling the flow of previous outputs

to the current output without exploding the gradient. However, a LSTM network only

captures information about the previous context and does not take into account the future

context of the current output.

Bi-LSTM networks [111] have proven to be very useful to capture the entire context by

processing the sequence in both forward and backward directions with two hidden layers,

one for each direction. The output from both directions is concatenated to form the final

output. In the context of ADE detection task, the sentences in the EHRs are often long

sequences comprising of named entities that often span across multiple words within the

sequence. The named entities are also heavily dependent upon the context they occur in

and more often the same word or phrase can be tagged as two different named entities

depending upon the context.

CRF. CRF models [96] are widely used for sequence labeling tasks. Given a sequence,
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the model uses contextual information from preceding and succeeding information in the

sequence to predict the current label. The models predict the label sequence jointly instead

of predicting each label individually. These models can predict sequences where multiple

words depend on each other. In the context of ADE detection, one of the challenges with

EHR text is that the named entities can occur as a combination of medical and non-medical

words. For instance, in the named entity phrase “cervix again is significantly stenotic” the

label for each of the words in the phrase is greatly dependent on the label of the previous

word.

Bi-LSTM and CRF. LSTM and CRF have their own advantages and disadvantages.

LSTM is better for modeling long sequences of words, but the label for each word is pre-

dicted independently and not as a part of the sequence. CRF is better for modeling the

entire sequence jointly, but need hand crafted features to obtain significantly good results.

A combination of Bi-LSTM and CRF models [58] have been used for sequence tagging

where each one of the models contributes to the combine model while complementing

each other. In the sequence tagging task, Bi-LSTM is used to capture the contextual rep-

resentation of the words from the input features. The output from the Bi-LSTM are fed to

the CRF layer to jointly predict the best label sequence.

DLADE Model. Given the success of deep learning models for NLP tasks [36, 112],

we have developed a deep learning based system that utilizes the combined effectiveness

of RNNs, more precisely Bi-directional long short-term memory (Bi-LSTM) [111] models

and CRF by integrating them into one deep network architecture. The Bi-LSTM networks

have been widely used for NLP tasks to learn the context representation of a word in a

sequence by traversing through the sequence in both forward and backward (i.e. reverse

order) directions.

In a nutshell, our model is composed of a Bi-LSTM neural network for an input layer

responsible for character embedding, a second Bi-LSTM for word embedding followed

by a linear-chain CRF output layer. We have used the pre-trained medical word embed-

ding provided by the MADE1.0 challenge [73, 36]. More precisely, first at the bottom,
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Character-level 
representation

Figure 11: DLADE System Architecture

character-level representations which capture the morphology of a word are computed

by running a bidirectional-LSTM over the sequence of characters in the input words. A

consolidated dense embedding, comprised of pre-trained medical word embedding con-

catenated with a learned character-level representation, is used to represent a word. Figure

11 shows our system architecture. Although for the MADE1.0 challenge, we have used the

MADE1.0 pre-trained word embedding, our system is designed to plug-and-play with any

pre-trained word embedding.

We feed this dense embedding of each word into a second bidirectional-LSTM. This

second Bi-LSTM then extracts the contextual representation of each word in the sentence

that captures information from the meaning of the word, its characters and its context. The

output from the bidirectional-LSTM is used as input to a feed-forward neural network to

compute a vector of scores, where each entry corresponds to a score for each tag. Tags are

the individual named entities. To make the final prediction, the output of the feed-forward

network is passed to a liner-chain CRF. The overall model is trained by minimizing the

negative log-likelihood.
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Table 4: Evaluation Results on the Final MADE1.0 Holdout Test Set.

ADE Dose Drug Duration Frequency Indication Route Severity SSLIF Micro-Avg
Precision 0.7261 0.8721 0.9066 0.7143 0.8438 0.6587 0.9100 0.7798 0.8309 0.8373
Recall 0.5644 0.8874 0.9019 0.8271 0.8412 0.6216 0.9381 0.8362 0.8570 0.8454
F1-Score 0.6351 0.8797 0.9042 0.7666 0.8425 0.6396 0.9239 0.8070 0.8438 0.8413

Table 5: Evaluation Results on the Final MADE1.0 Holdout Test Set with NTLK Tokenizer.

ADE Dose Drug Duration Frequency Indication Route Severity SSLIF Micro-Avg
Precision 0.7081 0.8451 0.9066 0.8889 0.8398 0.7024 0.9073 0.7649 0.8206 0.8337
Recall 0.5236 0.8811 0.8988 0.782 0.8563 0.6006 0.9330 0.8723 0.8654 0.8474
F1-Score 0.6020 0.8627 0.9027 0.8320 0.8480 0.6475 0.9200 0.8151 0.8424 0.8405

3.5 Experimental Results

3.5.1 Hyperparameter Settings

The named entities are Drug, Indication, Frequency, Severity, Dose, Duration, Route, ADE,

SSLIF (other sign, symptom or disease). The model operates on the tokenized sentences.

We used a batch size of 20 sentences. We did not make any restrictions on the sentence

length. Rather, we used the maximum length of the sentences in a batch. All shorter sen-

tences in that batch are padded with masks. As input, the pre-trained word embedding

are 200 dimensional vectors and the learned character-level embedding are 100 dimen-

sional vectors. The hidden state is set to 100 dimensions for running Bi-LSTM for learning

character embedding. The hidden state is set to 300 dimensions for running Bi-LSTM with

dense word embedding. To avoid overfitting, we apply a dropout strategy [112, 113] of 0.5

for our model. All the models were trained with learning rate of 0.001 using Adam [114].

Our models are trained on Intel(R) Xeon(R) 2.10GHz with a total memory of 251GB. They

are implemented using the Tensorflow framework [115].

3.5.2 Methodology

Our system DLADE is trained on the 876 EHR notes from MADE1.0. From the training set

of sentences, 10% of the sentences are held out as validation set. This allows us to evaluate

the model in the training phase by determining the best F1-score for early stopping. If there

is no improvement in the F1-score within the last three consecutive epochs, the system
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performs an early stopping.

3.5.3 Results on MADE1.0 Test Data Set

On the evaluation test set consisting of 213 EHR notes, our deep network achieves a micro-

averaged Precision, Recall and F1-score of 0.8373, 0.8454, and 0.8413, respectively for the

exact phrase-level evaluation. Table 4 shows our evaluation results on the MADE1.0 eval-

uation test set for each of the entities. Our system has been selected as one of the top three

performers and, is ranked first in the MADE1.0 challenge for the Standard NER task.

To demonstrate the effectiveness of our rule-based tokenizer, we compare the predic-

tion results from DLADE which uses our proposed rule-based tokenizer with a baseline

system that uses NLTK tokenizer. Table 5 shows that the baseline system achieves higher

Micro-averaged recall however gets lower Micro-averaged F1-score. To demonstrate the

effectiveness of utilizing dual-level embedding, we compare the prediction results from

DLADE, which uses both the learned character-level representations of a word and the

pre-trained word-level embedding with a baseline system that utilizes only the pre-trained

word-level embedding.

Table 6 compares the F1-scores of individual entities as well as the overall micro-

averaged F1-score of all entities combined. It shows the percentage improvement with

DLADE using dual-level embedding over the baseline system using only word embed-

ding. We use the pairwise t-test to examine the statistical significance of the differences

in performance scores obtained from the two systems on the same test set. F1-scores of

individual named entity types as well as the overall (micro-averaged) from both systems

are paired. The improvement in F1-score for DLADE as compared to our baseline is statis-

tically significant (p-value <0.05 and p-value <0.01). Of all the entities, Duration showed

a large improvement (11.4%) from utilizing the dual-level embedding. Duration labels are

challenging to detect because they often are comprised of phrases that contain non-medical

text and contain numbers such as, “four cycles”, “14 days”, “day 1 through 14”, “over 15

minutes”, “two weeks”. They can be easily misclassified and treated as the Outside or
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Table 6: Improvement for MADE1.0 in F1-score when using Dual-Level Embedding.

Word Embedding Dual-Level (Character + Word)Embedding Improvement
ADE 0.5848 0.6351 8.6%
Dose 0.8172 0.8797 7.6%
Drug 0.8780 0.9042 3.0%
Duration 0.6879 0.7666 11.4%
Frequency 0.7964 0.8425 5.8%
Indication 0.6151 0.6396 4.0%
Route 0.8705 0.9239 6.1%
Severity 0.7648 0.8070 5.5%
SSLIF 0.8290 0.8438 1.8%
Micro-averaged 0.8147 0.8413 3.3%

Table 7: Percentage change in F1-scores.

F1-score with using word embedding Percentage change in F1-scores
1. MADE1.0 2. GloVE 3. PubMed 4. MADE1.0 over GloVe (%) 5. MADE1.0 over PubMed (%) 6. GloVe over PubMed (%)

ADE 0.6351 0.6197 0.6055 2.48% 4.88% 2.34%
Dose 0.8797 0.8787 0.8575 0.11% 2.58% 2.47%
Drug 0.9042 0.9100 0.8838 -0.63% 2.31% 2.96%
Duration 0.7666 0.8015 0.7943 -4.36% -3.50% 0.90%
Frequency 0.8425 0.8529 0.8580 -1.22% -1.81% -0.59%
Indication 0.6396 0.6512 0.6429 -1.78% -0.52% 1.28%
Route 0.9239 0.9133 0.9221 1.16% 0.19% -0.96%
Severity 0.8070 0.8209 0.8098 -1.70% -0.35% 1.37%
SSLIF 0.8438 0.8453 0.8454 -0.18% -0.19% -0.01%
Micro-averaged 0.8413 0.8451 0.8372 -0.45% 0.49% 0.94%

no-entity tag O.

3.5.4 Impact of Pre-trained Word Embedding

We demonstrate the effect of using different pre-trained word embedding in the input

layer, we compare the results from DLADE, which uses domain and task specific MADE1.0

word embedding trained using wiki, and Pittsburgh EHR and PubMed articles (1,352,550

word vectors) [36, 73], with two systems that use: 1) general purpose GloVe Common

Crawl 840B, 300 dimensional word embedding [101] (4,087,447 word vectors) and, 2) the

domain-specific PubMed, 200 dimensional word embedding induced from a combination

of PubMed and PMC texts using the word2vec tool for biomedical data purposes [116]

(2,196,016 word vectors).

Table 7 shows the F1-scores with using different pre-trained word embedding (columns:

1, 2, 3) and the percentage change in F1-scores with each type of word embedding over the
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others (columns: 4, 5, 6). We use the pairwise t-test on the F1-score of the individual entity

types as well as the overall (micro-averaged) to determine if these differences are statisti-

cally significant. Our results indicate that for detecting some of the entity types there is a

minor improvement in the F1-scores with using MADE1.0 word embedding over GloVe

(ADE, Dose, Route) or PubMed (ADE, Dose, Drug, Route). However, these improvements

are not statistically significant (p p-value >0.05). Although, there is a 0.49% improvement

in the overall micro-averaged F1-score with using MADE1.0 over PubMed, it is not sta-

tistically significant (p >0.05). However, the 0.94% improvement with using GloVe over

PubMed is statistically significant (p <0.05) for this EHR dataset and ADE detection task.

3.5.5 Error Analysis of DLADE System

An error analysis was performed to understand the source of errors generated by the NER

system. We inspected and evaluated instances for which the system incorrectly predicted

the phrases, considering both false positive and false negative cases.

• One of the challenges as shown in Table 3 is that the entity can span across multiple

words. In this case, it is critical to extract the phrase in its entirety to retain the true

meaning of the phrase. For this example, our system was able to correctly extract

the entire phrase “nodular sclerosing Hodgkin disease involving the mediastinum

and both necks”. This contains 10 words. However, the phrase was misclassified as

Indication when it actually is an SSLIF.

• Another challenge is the mixture of medical and non-medical text in the entity phrase.

This makes it difficult to detect the entity as a whole. For instance, the phrase “in-

flammation of your liver or gallbladder or your pancreas” was annotated as SSLIF.

Although our system detected the phrase correctly as SSLIF, it missed the last two

words “your pancreas” of the phrase. This meant that our result was labeled as Other

entity-O wrongly even though it mostly was correct.

• The occurrence of medical abbreviations text is rare in the training set. Although our
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system was able to correctly detect certain entities that contain abbreviations such as

“stage IIA” (Severity), “HPV” (SSLIF), there are few other entities with abbreviations

such as “SIL cytology” (SSLIF) where our system failed to recognize the phrase and

categorized it as a no-entity label O.

• Due to the ambiguous nature of Indication, ADE, and SSLIF entity words and phrases,

it is very challenging to differentiate between these two types of labels. For exam-

ple, in the two sentences: 1) “the back pain (Indication) started about 10 o’clock last

night” and, 2) “reports weight gain (ADE) and increased (ADE) appetite from corti-

costeroid therapy”, our system misclassified the Indication and ADE labels as SSLIF.

3.6 Discussion

In this paper, we report our experience with MADE1.0 competition and describe our sys-

tem which is ranked first in the NER task. We study the problem of detecting ADE related

terms and phrases from the EHRs. Unlike other research domain such as computer vision

where billions of labeled images are made publicly available for research purpose, making

large scale labeled medical corpus publicly available is an open challenge as it is a human

resource intensive task and it involves many legal issues. We appreciate the effort of the

MADE organizers who provides annotated EHRs. However, the size of the corpus is still

considerably small. The generality of our method could not be validated even with the

great results we have shown in the experiments.

For this competition, we use the same methodology for all entity types. However,

the challenge of detecting each individual entity type varies. For example, the ability to

capture morphological features is important to the entity types if they often consist of

special representation as compared to common words whereas the ability to capture the

context information is crucial to differentiate “Indication” and “ADE” as they may share

the same vocabulary but are expressed differently in the text narrative.

Overall, our system achieved excellent detection accuracy with a micro-averaged Preci-
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sion: 0.8373, Recall: 0.8454 and, F1-score: 0.8413. However, the detection accuracy among

the nine individual entity types varied with, some entity types achieving better F1-scores

such as Route (0.92), Drug (0.90), Dose (0.88), SSLIF (0.84), Frequency (0.84), Severity (0.81),

Duration (0.77) over other entity types ADE (0.64) and Indication (0.64). Given that ADE

and related information detection from EHR is a challenging task, our system showed an

incremental improvement in the scores compared to the benchmark studies [36, 73]. Yet

ADE and Indication have proved to be the most challenging of the entity types to detect

with a lower recall (0.56 and 0.62 respectively). These challenging entity types might re-

quire customized models that are able to tackle the issues with ambiguity that is often

encountered while detecting these entities.

3.7 Summary

We have shown that the integration of two widely used sequence labeling techniques that

complement each other along with dual-level embedding (character-level and word-level)

to represent words in the input layer results in a deep learning architecture that achieves

excellent information extraction accuracy for EHR notes. Our system was ranked first in

MADE1.0 competition for the NER task. Additional work must be done to improve the

accuracy in detecting the challenging entity types such as ADE and Indication. In the

future, we will further analyze the results for these entity type and design customized

models to improve the detection performance of each individual entity type as well as the

overall performance for all entity types.
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4 Multi-grained joint model for word and sentence-level infor-

mation detection

In this chapter, we propose a dual-attention based multi-grained joint deep network model

to concurrently solve both ADE entity recognition (fine-grained) and ADE sentence clas-

sification (coarse-grained) tasks. Our model improves state-of-art F1-score for both tasks:

(i) entity recognition of ADE words (12.5% increase) and (ii) ADE sentence classification

(13.6% increase) on MADE 1.0 benchmark of EHR notes. This work was published in [50]

4.1 Introduction

Background. Adverse drug events (ADEs), injuries resulting from medical intervention,

are a leading cause of death in the United States and cost around $30˜$130 billion ev-

ery year [2]. Early detection of ADE incidents aids in the timely assessment, mitigation

and prevention of future occurrences of ADEs. Natural Language Processing techniques

have been recognized as instrumental in identifying ADEs and related information from

unstructured text fields of spontaneous reports and electronic health records (EHRs) and

thus in improving drug safety monitoring and pharmacovigilance [78].

Fine-grained ADE detection identifies named ADE entities at the word-level, while coarse-

grained ADE detection (also ADE assertive text classification) identifies complete sentences

describing drug-related adverse effects. [43]’s system for identification of ADE assertive

sentences in medical case reports targets the important application of detecting under-

reported and under-documented adverse drug effects. Lastly, multi-grained ADE detection

identifies ADE information at multiple levels of granularity, namely, both entity and sen-

tence level.

As example, Figure 12 displays ADE and non-ADE sentences. The first is an ADE

sentence where the mentions of Drugname and ADE entities have the appropriate rela-

tionship with each other. Second and third sentences show that the mention of an ADE

entity by itself is not sufficient to assert a drug-related adverse side effect.
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Figure 12: Each sentence is classified as ADE sentence (binary yes/no). Each word is labeled using
beginning of an entity (B-...) vs inside an entity (I-...) for ADE related named entities (multiple
classes). O denotes no entity tag.

Recently, deep learning-based sequence approaches have shown some promise in ex-

tracting fine-grained ADEs and related named entities from text [52]. However, the preva-

lence of entity-type ambiguity remains a major hurdle, such as, distinguishing between In-

dication entities as the reason for taking a drug versus ADE entities as unintended outcomes of

taking a drug. Coarse-grained sentence-level detection performs well in identifying ADE

descriptive sentences, but is not equipped to detect fine-grained information such as words

associated with ADE related named entities. Unfortunately, when the interaction between

these two extraction tasks is ignored, we miss the opportunity of the transfer of knowledge

between the ADE entity and sentence prediction tasks.

Attention-based neural network models have been shown to be effective for text clas-

sification tasks [117, 17] from alignment attention in translation [118] to supervising atten-

tion in binary text classification [119]. Previous approaches typically apply only a single

round of attention focusing on simple semantic information In our ADE detection task,

instead, key elements of the sentence can be linked to multiple categories of task-specific

semantic information of the named entities (ADE, Drug, Indication, Severity, Dose etc.).

Thus, single attention is insufficient in exploring this multi-aspect information and conse-

quently risks losing important cues.

Proposed Approach. In our work, we tackle the above shortcomings by designing a dual-

attention based neural network model for multi-grained joint learning, called MGADE,

that jointly identifies both ADE entities and ADE assertive sentences. The design of MGADE

is inspired by multi-task Recurrent Neural Network architectures for jointly learning to la-
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bel tokens and sentences in a binary classification setting [119]. In addition, our model

makes use of a supervised self-attention mechanism based on entity-level predictions to

guide the attention function – aiding it in tackling the above entity-type ambiguity prob-

lem. We also introduce novel strategies of constructing multiple complementary sentence-

level representations to enhance the performance of sentence classification.

Our key contributions include:

1. Joint Model. We jointly model ADE entity recognition as a multi-class sequence

tagging problem and ADE assertive text classification as binary classification. Our

model leverages the mutually beneficial relationships between these two tasks, e.g.,

ADE sentence classification can influence ADE entity recognition by identifying clues

that contribute to ADE assertiveness of the sentence and match them to ADE entities.

2. Dual-Attention. Our novel method for generating and pooling multiple attention

mechanisms produces informative sentence-level representations. Our dual-attention

mechanisms based on word-level entity predictions construct multiple representa-

tions of the same sentence. The dual-attention weighted sentence-level representa-

tions capture both task-specific and semantic information in a sentence, providing

stronger emphasis on key elements essential for sentence classification.

3. Label-Awareness. We introduce an augmented sentence-level representation com-

prised of predicted entity labels which adds label-context to the proposed dual-

attention sentence-level representation for better capturing the word-level label dis-

tribution and word dependencies within the sentence. This further boosts the per-

formance of the sentence classification task.

4. Model Evaluation. We compare our joint model with state-of-art methods for the ADE

entity recognition and ADE sentence classification tasks. Experiments on MADE1.0

benchmark of EHR notes [120] demonstrate that our MGADE model drives up the

F1-score for both tasks significantly: (i) entity recognition of ADE words by 12.5%

and by 23.5% and (ii) ADE sentence classification by 13.6% and by 23.0%, compared

to state-of-art single task and joint-task models, respectively.
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4.2 Related Work

Fine-grained ADE Detection. Jagannatha and Yu [36] have employed a bidirectional

LSTM-CRF model to label named entities from electronic health records of cancer patients.

Pandey et al. [19] proposed a bidirectional recurrent neural network with attention to ex-

tract ADRs and classify the relationship between entities from Medline abstracts and EHR

datasets. Wunnava et al. [39] presented a three-layer deep learning architecture for identi-

fying named entities from EHRs, consisting of a Bi-LSTM layer for character-level encod-

ing, a Bi-LSTM layer for word-level encoding, and a CRF layer for structured prediction.

Coarse-grained ADE Detection. Huynh et al. [46] applies Convolutional Neural Networks

using pre-trained word embeddings to detect sentences describing ADEs. Tafti et al. [47]

utilized a feed-forward ANN to discover ADE sentences on PubMed Central data and so-

cial media. Dev et al. [24] developed a binary document classifier using logistic regression,

random forests and LSTMs to classify an AE case as serious vs. non-serious.

Multi-grained ADE Detection. Zhang et al. [49] developed a multi-task learning model

that combines entity recognition with document classification to extract the adverse event

from a case narrative and classify the case as serious or non-serious. However, they fall

short in tackling our problem. Not only do their targeted labels not fall into the drug-

related adverse side effects category in which a causal relationship is suspected and re-

quired, but their attention model is only simple self-attention. As consequence, MGADE

outperforms their model by 23.5% in F1 score for entity recognition and 23.0% for assertive

text classification as seen in Section 4.4.

4.3 Methodology

4.3.1 Task Definition

In the ADE and medication related information detection task, the entities are ADE, Drug-

name, Dose, Duration, Frequency, Indication, Route, Severity and Other Signs & Symptoms. The

no-entity tag is O. Because some entities (like weight gain) can have multiple words, we
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Figure 13: The architecture of the proposed Multi-Grained ADE Detection Network (MGADE)

work with a BIO tagging scheme to distinguish between beginning (tag B-...) versus inside

of an entity (tag I-...). The notation we use is given in Fig 13. Given a sentence (a sequence

of words), task one is the multi-class classification of ADE and medication related named

entities in the text sequence, i.e., entity recognition. Task two is the binary classification

of a sentence as ADE assertive text. The overall goal is to minimize the weighted sum of

entity recognition loss and sentence classification loss.

4.3.2 Input Embedding Layer

The input of this layer is a sentence represented by a sequence of words S = 〈w1, w2, ..., wN 〉,

where N is sentence length. The words are first broken into individual characters and

character-level representations which capture the morphology of a word computed with a

bidirectional-LSTM over the sequence of characters in the input words. We employ the pre-

trained word vector, GloVe (Pennington et al., 2014), to obtain a fixed word embedding of

each word. A consolidated dense embedding, comprised of pre-trained word embedding
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concatenated with a learned character-level representation, is used to represent a word.

The output of this layer is X = [x1, x2, ..., xN ].

4.3.3 Contextual Layer

LSTM is a type of recurrent neural network that effectively captures long-distance se-

quence information and the interaction between adjacent words [59]. The word repre-

sentations xt are given as input to two separate LSTM networks (Bi-LSTM) that scan the

sequence forward and backward, respectively. The hidden states learned by the forward

and backward LSTMs are denoted as
−→
h t and

←−
h t, respectively.

−→
h t = LSTM

(
xt,
−→
h t−1

)
(5)

←−
h t = LSTM

(
xt,
←−
h t+1

)
(6)

The output of this layer is a sequence of hidden states H = [h1, h2, ..., hN ], where ht is a

concatenation of
−→
h t and

←−
h t. This way, the hidden state ht of a word encodes information

about the tth word and its context:

ht =
[−→
h t;
←−
h t

]
(7)

4.3.4 Word-level (NER) Output Layer

The hidden states ht are passed through a non-linear layer and then with the softmax

activation function to k output nodes, where k denotes the number of entity-types (classes).

Entity-type labels are the named entities in the BIO format. Each output node belongs

to some entity-type and outputs a score for that entity-type. The output of the softmax

function is a categorical probability distribution, where output probabilities of each class
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is between 0 and 1, and the total sum of all output probabilities is equal to 1.

a
(i)
t =

exp
(
e
(i)
t

)
∑k

j=1 exp
(
e
(j)
t

) (8)

Data is classified into a entity-type that has the highest probability value.

ât = max
i∈{1,2,...,k}

a
(i)
t (9)

4.3.5 Dual-Attention Layer

The purpose of the attention mechanism in the sentence classification task is to select im-

portant words in different contexts to build informative sentence representations. Differ-

ent words have different importance for ADE sentence classification task. For instance, key

elements (words/phrases) in the ADE detection task are linked to multiple aspects of se-

mantic information associated with the named entity categories - ADE, Drugname, Severity,

Dose, Duration, Indication. . . etc. It is necessary to assign the weight for each word according

to its contribution to the ADE sentence classification task.

Moreover, certain named entities are task-specific and are considered essential for ADE

sentence classification. There exists a direct correspondence between such task-specific

named entities and the sentence. Hence, we anticipate that there would be at least one

word of the same label as the sentence-level label. For instance, a sentence that is labeled

as an ADE sentence has a corresponding ADE entity word. Although other named entity

words detect important information and contribute to the ADE sentence-level classifica-

tion task, a stronger focus should be on task-specific ADE words indicative of the ADE

sentence core message. A single attention distribution tends to be insufficient to explore

the multi-aspect information and consequently may risk losing important cues [121].

We address this challenge by generating and using multiple attention distributions that

offer additional opportunities to extract relevant semantic information. This way, we focus

on different aspects of an ADE sentence to create a more informative representation. For
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this, we introduce a novel dual-attention mechanism, which in addition to selecting the

important semantic areas in the sentence (henceforth referred as supervised self-attention

[17, 122, 119]), it also provides stronger emphasis on task-specific semantic aspect areas

(henceforth referred as task-specific attention). The task-specific attention promotes the

words important to the ADE sentence-classification task and reduces the noise introduced

by words which are less important for the task.

Similar to [119, 122], we use a self-attention mechanism where, based on softmax prob-

abilities and normalization, attention-weights are extracted from word-level prediction

scores. The difference between the two attention mechanism is that the supervised self-

attention recognizes word-level prediction scores of all named entities while the task-

specific attention recognizes word-level prediction scores w.r.t only selective named enti-

ties (one which correspond to the ADE sentence and ignores other named entities). Specif-

ically, the weights of the supervised self-attention and task-specific attention are calculated

as follows:

Word-level prediction w.r.t the task-specific named entity (i.e.,) ADE:

a
(ADEentity)
t =

exp
(
e
(ADEentity)
t

)
∑k

j=1 exp
(
e
(j)
t

) (10)

Task-specific Attention Weight, normalized to sum up to 1 over all values in the sen-

tence, is:

αt =
a
(ADEentity)
t∑N

n=1

(
a
(ADEentity)
n

) (11)

Supervised Self-Attention Weight, normalized to sum up to 1 over all values in the

sentence:

βt =
ât∑N
n=1 ân

(12)

Fig 14 shows the examples of the supervised self-attention and task-specific attention

distributions generated from our attention layer. The color depth expresses the degree
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(a) Task-specific Attention (b) Supervised Self-attention

(c) Distribution of attention weights.

Figure 14: Attention Visualizations: Highlighted words indicate attended words. Stronger color
denotes higher focus of attention. (a) Task-specific attention: Recognizes task-specific semantic
aspect areas of sentence, with focus on ADE entity words essential for ADE sentence classification
task. (b) Supervised Self-attention: Recognizes all important areas in the sentence. (c) Distribution
of Task-specific attention and Supervised Self-attention weights.

of importance of the weight in attention vector. As depicted in Fig. 14, the task-specific

attention emphasizes more on the parts relevant to the ADE sentence classification task.

Attention-based Sentence Representations. To generate informative and more accu-

rate sentence representations, we construct two different sentence representations as a

weighted sum of the context-conditioned hidden states using the task-specific attention

weight αt and supervised self-attention weight βt, respectively.

1. Task-specific attention weighted sentence rep.:

TSS =
N∑
t=1

αtht (13)

2. Supervised self-attention weighted sentence rep.:

SSS =
N∑
t=1

βtht (14)

Attention Pooling A combination of multiple sentence representations obtained from fo-

cusing on different aspects captures the overall contextual semantic information about

a sentence. The two attention-based representations are concatenated to form a dual-

attention contextual sentence representation:
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CS = [TSS ;SSS ] (15)

4.3.6 Entity Prediction Embedding Layer

ADE detection is a challenging task. Understanding the co-occurrence of named entities

(labels) is essential for ADE sentence classification. Although we implicitly capture long-

range label dependencies with Bi-LSTM in the contextual layer, and make even more infor-

mative sentence-level representations with the help of the dual-attention layer, explicitly

integrating information on the label-distribution in a sentence is further helpful to un-

derstand the label co-occurrence structure and dependencies in the sentence. The idea is

to further improve the performance of ADE sentence classification task by learning the

output word-level label knowledge. For a better representing of the word-level label dis-

tribution and to capture potential label dependencies within each sentence, we propose

Entity Prediction Embedding (EPE), a sentence-level vector representation of entity labels

predicted at the word-level output layer (Sec. 4.3.4).

l̂t = argmax
i∈{0,1,2,...,k}

a
(i)
t (16)

LS = [v0, v1, v2, ..., vk] ; vi ∈ {0, 1} (17)

4.3.7 Sentence Encoding Layer

A final sentence representation that captures the overall contextual semantic information

and label dependencies within the sentence is constructed by combining the dual-attention

weighted sentence representation and Entity Prediction Embedding, respectively.

S = [CS ;LS ] (18)
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4.3.8 Sentence Classification Output Layer

Finally, we apply a fully connected function and use sigmoid activation to output the sen-

tence prediction score.

ŷsentence = p
(
y(j=1) | S

)
(19)

4.3.9 Optimization objective

The objective is to minimize the mean squared error between the predicted sentence-level

score ŷ(sentence) and the gold-standard sentence label y(sentence) across all m sentences:

Lsentence =
∑
m

(
y(m) − ŷ(m)

)2
(20)

The objective is to minimize the cross-entropy loss between the predicted word-level

probability score ŷ(entity) and the gold-standard sentence label y(entity) across all N words

in the sentence:

Lword = −
∑
m

N∑
t=1

k∑
i=1

[
a
(m)
ti log

(
â
(m)
ti

)]
(21)

Similar to [119], we also add another loss function for joining the sentence-level and

word-level objectives that encourages the model to optimize for two conditions on the

ADE sentence (i) an ADE sentence must have at least one ADE entity word, and (ii) ADE

sentence must have at least one word that is either non-ADE entity or a no-entity word.

Lattn =
∑
m

(
min

(
â
(m)
t,ADE

)
− 0
)2
+∑

m

(
max

(
â
(m)
t,ADE

)
− y(m)

)2 (22)

We combine different objective functions using weighting parameters to allow us to

control the importance of each objective. The final objective that we minimize during
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(a) Single Task-specific Attention (b) Dual Task-specific attention

(c) Single Supervised Self-attention (d) Dual Supervised Self-attention

(e) Distribution of attention weights (f) Sentence prediction scores

Figure 15: Single v.s. dual attention distribution. The color intensity corresponds to the weight
given to each word. Attention weight of each word are given in the parenthesis. Single attention-
based models (a) and (c) fail to capture sufficient attention weight on the key semantic areas of
the sentence. The dual-attention based model where the two attention distributions are combined,
accurate weights are assigned (b) and (d).

training is then:

L = λsent · Lsent + λword · Lword + λattn · Lattn (23)

By using word-level entity predictions as attention weights for composing sentence-level

representations, we explicitly connect the predictions at both levels of granularity. When

both objectives work in tandem, they help improve the performance of one another. In our

joint model, we give equal importance to both tasks and set λword = λsentence = 1.

4.4 Experimental Results

4.4.1 Data Set

MADE1.0 NLP challenge for detecting medication and ADE related information from EHR

[73] used 1089 de-identified EHR notes from 21 cancer patients (Training: 876 notes, Test-

ing: 213 notes). The annotation statistics of the corpus are provided [120].

Named Entity Labels. The notes are annotated with several categories of medication in-
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formation. Adverse Drug Event (ADE), Drugname, Indication and Other Sign Symptom and

Diseases (OtherSSD) are specified as medical events that contribute to a change in a pa-

tient’s medical status. Severity, Route, Frequency, Duration and Dosage specified as attributes

describe important properties about the medical events. Severity denotes the severity of a

disease or symptom. Route, Frequency, Duration and Dosage as attributes of Drugname label

the medication method, frequency of dosage, duration of dosage, and the dosage quantity,

respectively.

Sentence Labels. MADE 1.0 text has each word manually annotated with ADE or med-

ication related entity types. For words that belong to the ADE entity type, an additional

relation annotation denotes if the ADE entity is an adverse side effect of the prescription

of the Drugname entity. Since MADE 1.0 dataset does not have sentence-level annotations,

we use the relation annotation with the word annotation to assign each sentence a label

as ADE or nonADE. In this work, the relation labels are used only to assign the sentence

labels, but they are not used in the supervised learning process.

4.4.2 Hyper-parameter Settings

The model operates on tokenized sentences. Tokens were lower-cased, while the character-

level component receives input with the original capitalization to learn the morphological

features of each word. As input, the pre-trained publicly available Glove word embed-

dings of size 300 [101]. The size of the learned character-level embedding are 100 dimen-

sional vectors. The size of LSTM hidden layers for word-level and char-level LSTM are

size 300 and 100 respectively. The hidden combined representation ht was set to size 200;

the attention weight layer et was set to size 100. The attention-weighted sentence represen-

tations TSS and SSS , are 200 dimensional vectors and therefore their combination context

vector CS is 400 dimensional. The Entity Prediction Embedding (EPE) LS is of size k en-

tities that are in BIO format. Hence EPE is a size 19 dimensional binary vector (eighteen

entities plus the no entity tag). The final concatenated sentence-level S vector is thus size

419. To avoid over-fitting, we apply a dropout strategy [112, 113] of 0.5 for our model. All
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Table 8: ADE sentence classification: F1 scores.

Model F1
Baseline Individual Models
LAST [123] 0.66
ATTN [122] 0.63
Baseline Joint Model
[49] 0.61
MGADE 0.75

models were trained with a learning rate of 0.001 using Adam [114].

4.4.3 Results

4.4.4 ADE Assertive Sentence Classification

Table 8 compares our model against two baselines of individual ADE sentence classifica-

tion models. (i) Similar to [123], LAST is a Bi-LSTM based sentence classification model

that uses the last hidden states for sentence composition; (ii) Similar to [122], ATTN is a B-

LSTM model that used simple attention weights for sentence composition. Our full model,

MGADE succeeds to improve the F1 scores by 13.6% over the LAST baseline in testing.

We also compare with a model similar to [49] joint-task model based on self-attention.

MGADE outperforms their model by 23.0% for sentence classification.

Table 9: ADE entity recognition: F1 scores.

Model F1

Baseline Individual Models

Bi-LSTM [39] 0.56

Bi-LSTM + CRF [39] 0.63

Baseline Joint Model

[49] 0.51

MGADE 0.63
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Table 10: Effect of dual-attention layer. † denotes models with single-attention with Task-specific
attention removed from Supervised Self-attention model, and vice versa.

ADE Entity Recognition ADE Sentence Classification
Model P R F1 P R F1
MGADE-SelfA † 0.58 0.52 0.55 0.84 0.55 0.67
MGADE-TaskA † 0.62 0.50 0.55 0.82 0.64 0.72
MGADE-DualA 0.68 0.55 0.61 0.87 0.65 0.74
MGADE 0.70 0.57 0.63 0.86 0.67 0.75

4.4.5 ADE Named Entity Recognition

Table 9 compares our model against the best performing models on MADE1.0 benchmark

in the literature [39] for ADE entity recognition. The entity recognition component of our

MGADE is similar to their Bi-LSTM model. MGADE improves the F1 score by 12.5% over

their Bi-LSTM only model. Our model achieved comparable results with their Bi-LSTM

+ CRF combination model. The models with CRF layer predict the label sequence jointly

instead of predicting each label individually which is helpful to predict sequences where

the label for each word in a sequence depends on the label of the previous word. Adding

an CRF component to our model might further improve the performance of the entity

recognition task. We also compare with a model similar to [49] joint-task model based on

self-attention. MGADE outperforms their model by 23.5% for entity recognition.

4.4.6 Ablation Analysis

To evaluate the effect of each part in our model, we remove core sub-components and

quantify the performance drop in F1 score.

Types of Attention. Table 10 studies the two types of attention we generate: Supervised

self-attention (β) and Task-specific attention (α) for composing sentence-level representa-

tions. † denotes the models with single-attention. As shown in the table, models that used

only a single attention component, be it Supervised Self-Attention based (SSS) or Task-

specific attention based sentence representation (TSS) achieved the same F1-score for the

entity recognition task. However, their sentence classification task performance varies,

demonstrating that the two attentions capture different aspects of information in the sen-
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tence. The type of attention captured plays a critical role in composing an informative

sentence representation. Both single-attention models performed better than the baseline

individual sentence-classification models LAST and ATTN (see Table 8). TSS achieved su-

perior sentence classification performance over SSS . Intuitively, stronger focus should be

placed on the words indicative of the sentence type, and TSS which emphasizes more on

the parts relevant to the ADE sentence classification task is more accurate in identifying

ADE sentences.

Single Attention v.s. Dual-Attention. Table 10 studies impact of dual-attention compo-

nent. As seen, the model with dual-attention sentence representation which combines

two attention-weighted sentence representations CS outperforms the models with single-

attention (denoted by †) in both entity recognition and sentence classification tasks.

Label-Awareness. Table 10 studies the effect of adding the label-awareness component in

improving the sentence representation. Our full model MGADE, with both dual-attention

and label-aware components further improves the performance of sentence classification

and entity recognition tasks by 1.0% and 2.0% respectively compared to MGADE-DualA,

the model with only dual-attention component.

Case Study. Dual-attention is not only effective in capturing multiple aspects of semantic

information in the sentence, but also in reducing the risk of capturing incorrect or insuf-

ficient attention when only one of the single attentions (either task-specific or supervised

self-attention) is used. Fig 15 shows such an example where single attention, either task-

specific or supervised self-attention, fails to capture sufficient attention weight on the key

semantic areas of the sentence necessary to make a correct prediction on the sentence. The

incorrect distribution of attention weights assigned in the single task-specific and single

supervised self-attention (Figures 15a and 15c) is addressed by the dual-attention mecha-

nism. The later corrects the distribution and assigns appropriate weights to the relevant

semantic words as in Figures 15b and 15d. In Figures 15e and 15f, we demonstrate the

effectiveness of the dual-attention mechanism by plotting attention weight distributions

and the sentence prediction scores when specific type of attention is composed into the
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sentence representation. The bar chart depicts the ADE sentence-level classification con-

fidence scores w.r.t single-attention and dual-attention models and confirms the utility of

dual-attention.

4.5 Discussion

The primary focus for this work is on detecting ADE entity word, and ADE assertive sen-

tences from the text. There are two reasons for focusing on the ADE entity – (i) ADEs are

one of the critical information categories in the text whose detection is crucial to effective

pharmacovigilance, and (ii) they are most challenging to detect due to the entity-type am-

biguity problem. Moreover, the presence of ADE entity words in the sentence is a key

indicator of an ADE sentence and hence required in the identification of ADE assertive

sentence.

A critical problem with medical narratives is that the data for the ADE entity is highly

skewed, that is, less than 2.5% of the words in the narratives are ADE entity words leading

to a class imbalanced dataset. In such situations, the under-represented ADE entity being

the minority class but still the class of primary interest is not well learned and hence often

mis-classified. For that reason, our training process involves using other named entity la-

bels linked with medication and its attributes as they provide supplementary information

in the ADE sentence-level detection task. Our dual-attention component is specifically de-

signed to capture relevant task-specific semantic areas of the sentence which, in the ADE

detection task accounts for providing stronger emphasis on words that are indicative of

the ADE entity type.

4.6 Summary

We propose a dual-attention network for multi-grained ADE detection to jointly iden-

tify ADE entities and ADE assertive sentences from medical narratives. Our model ef-

fectively supports knowledge sharing between the two levels of granularity, i.e., words

and sentences, improving the overall quality of prediction on both tasks. Our solution
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features significant performance improvements over state-of-the-art models on both tasks.

Our MGADE architecture is pluggable, in that other sequential learning models including

BERT [124] or other models for sequence labelling and text classification could be sub-

stituted in place of the Bi-LSTM sequential representation learning model. We leave this

enhancement of our model and its study to future work.
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5 Conclusions

5.1 Contributions

In this dissertation, we propose ADE information detection methodology that enables au-

tomatic identification and extraction of high value ADE related information from unstruc-

tured medical narratives. This functionality is useful in a wide range of applications in the

healthcare domain. For example, our ML-NLP based information extraction methods can

be utilized for (i) additional characterization of the signal from EHR narratives which aids

in better understanding and analysis of the prevalence relevance of ADE signals, and (ii)

vaccine safety surveillance using EHR narratives where such data may be able to highlight

new risks associated with vaccine, as well as adverse events that have high background

incidence rates and events that are not pharmacologically predictable. The extracted in-

formation can be further utilized by advanced data mining or visualization techniques for

making the clinical review process more productive and effective. The key contributions

of this dissertation can be summarized as follows.

First, we propose the Tiered Ensemble Learning System with Diversity (TELS-D) ap-

proach - a collective approach to deal with highly skewed and class imbalanced data, and

the limitations of any one individual classification method . We create a balanced training

environment by applying undersampling techniques. We generate an ensemble of het-

erogeneous classifiers in this balanced training environment leveraging an novel ensem-

ble combiner. We train a “learner-over-learners” meta-algorithm over the class predictions

from the heterogeneous classifiers to correctly learn and classify the named entities in the

narratives. Our results are promising and indicate that, in the context of binary classi-

fication an ensemble learning approach would be a better choice for NER especially for

class imbalanced datasets. Our experimental results show that : (i) a balanced learning

environment along with an Ensemble of Heterogeneous Classifiers constantly improves

the performance over individual base learners and, (ii) stacking-based ensemble combiner

methods outperform simple Majority Voting by 0.30 F-measure.
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Second, we propose Dual-Level Embedding for Adverse Drug Event Detection frame-

work (DLADE) that is able to learn long-term dependencies from the context surrounding

the words in a sequence for and NER task. The framework is developed by adapting a

three-layered, deep learning RNN architecture of (1) Bi-LSTM for character-level word rep-

resentation to encode the morphological features of the medical terminology, (2) Bi-LSTM

for capturing the contextual information of each word within a sentence, and (3) Con-

ditional Random Fields for the final label prediction by also considering the surrounding

words. We developed a rule-based EHR text preprocessor to tackle the noisy nature of EHR

narratives. Our results indicate that the integration of two widely used sequence labeling

techniques that complement each other along with dual-level embedding (character-level

and word-level) to represent words in the input layer results in a deep learning architec-

ture that achieves excellent information extraction accuracy for EHR notes. Our system

was ranked first for the NER task in the MADE1.0 NLP challenge with a micro-averaged

F1-score of 0.8290 (Official Score).

Third, we propose the Multi-Grained ADE detection network (MGADE), a dual-attention

based neural network model for jointly learning to detect ADE information from narra-

tives at different levels of granularity (word-level and sentence-level). We designed an

end-to-end joint model that leverages the inter-dependencies among these two granulari-

ties. We introduce two novel strategies of constructing multiple complementary sentence-

level representations to enhance the performance of sentence classification. We utilize the

dual-attention aspect of the model to provide an intuitive explanation of the model and

insights on its strengths and weaknesses. Our model effectively supports knowledge shar-

ing between the two levels of granularity, i.e., words and sentences, improving the overall

quality of prediction on both tasks. Our experiments on benchmark dataset of EHR notes

[120] demonstrate that our MGADE model drives up the F1-score for both tasks signifi-

cantly: (i) entity recognition of ADE words by 12.5% and by 23.5% and (ii) ADE sentence

classification by 13.6% and by 23.0%, compared to state-of-art single task and joint-task

models, respectively.
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5.2 Future Research Directions

We briefly summarize interesting research directions towards more advanced ADE infor-

mation extraction.

Sequential Sentence Classification. Explore extending the sentence-level ADE detec-

tion model which classifies sentences in isolation to incorporate sequential sentence classi-

fication that utilizes the contextual information within surrounding sentences to help clas-

sify the current sentence. The structured prediction of sentences might prove to be help-

ful in improving the overall classification performance of ADE entity and assertive sen-

tence classification tasks. Interesting research directions might include identifying differ-

ent types of important sentences from narratives, and extending the binary-classification

of sentences to a multi-class and/or multi-label sentence-level classification approach de-

pending upon the annotated labels of interest in the dataset. We leave this enhancement

of our model and its study to future work.

Focal loss. A common challenge between word-level and sentence-level ADE detec-

tion is the highly skewed training datasets leading to a class imbalance.

Figure 16: Focal Loss (Lin et al. 2017). CE: Standard Cross Entropy Loss. FL: Focal Loss

Explore addressing the ADE class imbalance and enhance the training process with

a new loss function, “Focal Loss“ (FL) as proposed by Lin et al. [125], by reshaping the
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standard cross entropy loss such that it down-weights the loss assigned to well-classified

easy training examples and thus focus training on hard negatives. While, adjusting class

weights balances the importance of positive/negative examples, it does not differentiate

between easy/hard examples. They demonstrated that FL acts as a more effective alterna-

tive to previous approaches for dealing with class imbalance. As illustrated in Figure 16,

FL adds a factor (1− pt)γ to the standard cross entropy criterion. Setting γ > 0 reduces

the relative loss for well-classified examples (pt > .5), putting more focus on hard, mis-

classified examples. The original paper demonstrated the utility of FL in the context of a

binary classification problem. The complex nature of ADE information detection problem

with multi-class classification approach for both word-level entity detection and sentence-

level classification tasks, calls for an more elaborate study of adapting FL to ADE detection

problem setting. We leave this enhancement of our model and its study to future work.

Advanced sequential models. Recently, Transformer [126] based approaches such as

BERT [124], GPT-2 [127] type of language models are achieving performance improvement

over the state-of-the-art RNN based architectures on several NLP tasks. Fine tuning and

using these more advanced models for ADE detection, for both ADE entity recognition (se-

quence tagging) and ADE assertive sentence classification in place of our Bi-LSTM sequen-

tial representation learning model is worth exploring to drive performance improvements.

We leave this enhancement of our model and its study to future work.
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