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Abstract

Maxwell’s vector field equations represent significant challenges for the
numerical solution of electric and magnetic fields in complex geometries.
With increasing complexity in the design of electromagnetic devices as in
automobiles, metamaterials, and optical interconnects, it becomes impera-
tive to develop compact algorithms for electrodynamic calculations that will
generate high accuracy with minimal computational time. We solve the
field equations for the example of a two-dimensional photonic crystal us-
ing the finite element method with Hermite interpolation polynomials. We
demonstrate that the Hermite interpolation polynomials, due to their deriva-
tive continuity across elements, yield accurate predictions of the fields in a
photonic crystal at a much lower computational cost than conventional ap-
proaches to this problem.
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Chapter 1

Introduction

Electrodynamic devices of ever increasing complexity are being em-
ployed in a wide variety of industries. The design of modern automobiles
includes electromagnetic components whose behavior in isolation and in com-
bination as aggregates requires a significant amount of modeling and simu-
lation. At the nanoscale, similar circumstances are faced for optical inter-
connects, quantum well laser design, and in plasmonics. Again, reliable sim-
ulations are essential to ensure that each device does not affect others near
it through electromagnetic cross-talk. The novel effects exhibited by meta-
materials containing negative refractive index components are all simulated
before being assembled in order to optimize their optical properties as desired.

Present-day computational electrodynamic modeling relies heavily on
finite element, finite difference, and spectral methodologies. Here we focus
on a scalar finite element approach in which the field components are approx-
imated as local polynomials over discrete subdomains. We show that the use
of C1-continuous Hermite interpolation polynomials on triangular elements
provide very accurate solutions with a minimal number of elements used in
the discretization.

In this report, we show that the use of Hermite interpolation polyno-
mials, which are scalar fifth-order polynomials in two dimensions, provide an
accurate means of predicting the properties of two-dimensional photonic crys-
tals at a small fraction of the computational cost of more popular techniques,
particularly plane-wave expansions. The plane-wave expansion technique is
a Fourier expansion of the real space vector fields that approximates the elec-
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tric and magnetic fields as linear combinations of a large number of plane
waves. Typical calculations require 105 to 106 plane waves to provide con-
verged results, using fully occupied matrices of such dimensions. The finite
element approach leads to sparse occupancy (less than 0.2%) of matrices due
to the local connectivity of elements, and to matrix sizes on the order of 104

to 105 for similar levels of accuracy. The photonic wavefunctions and fre-
quency dispersion surfaces are shown for several transverse electric (TE) and
transverse magnetic (TM) modes. We also present a group-theoretic analysis
of energy bands, their wavefunctions and their degeneracies.
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1.1 Fundamentals of Hermite Interpolation

We propose the use of an alternative set of polynomial basis func-
tions, the scalar fifth-order Hermite interpolation polynomials, [1–4] for the
numerical calculations of electromagnetic fields. As scalar functions, these
polynomials interpolate data which is stored in the nodes of a finite element
mesh. The defining characteristic of Hermite polynomials in general is that
they store information about a function as well as its derivatives at the nodes
of the elements. By expressing an unknown function as a linear combination
of Hermite polynomials, one may use the Finite Element Method to guar-
antee the continuity of a function and one or more of its derivatives across
interelement boundaries, ensuring that the solution is smooth and increasing
the rate at which numerical error decays with increased mesh refinement.

Recent work by Kassebaum at al. [5] has demonstrated that Hermite
interpolation polynomials can be derived for a particular finite element and
a desired order of derivative continuity using group representation theory. [6]
The interpolation polynomials generated using a group theory analysis [5]
are distinct from previous sets of Hermite polynomials which were defined
for the same type of element and the same order of derivative continuity, but
were calculated using ad hoc methods. [4] However, the approach based on
group theory has the potential to generate Cn-continuous Hermite interpo-
lation polynomials for varying dimensions and values of n, which represents
the highest derivative order which is continuous across elements. Traditional
Lagrange interpolation functions are C0, while the Hermite functions used in
this study are C1.

The choice of a set of interpolation polynomials fundamentally deter-
mines the accuracy of the FEM. By imposing the continuity of one or more
of the derivatives of the piecewise functions as well as the functions them-
selves, one may considerably improve the convergence rate of the method.
The use of C1-continuous Hermite interpolation polynomials has led to im-
pressive success in other areas of physics, such as quantum mechanics. [1]
Hermite polynomials have also been used successfully to simulate fields in
a conducting waveguide. [7, 8] These Hermite interpolation polynomials are
given in Table 1.1.

The advantage of a C1-continuous polynomial basis is that it naturally
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conforms to the smooth behavior of most physically realizable functions and
their derivatives. In addition, the allocation of separate rows and columns
of the element matrices for derivative data offers a convenient means of im-
posing Dirichlet, Neumann, or mixed boundary conditions. The basis used
throughout this work is an incomplete set of fifth-order polynomials, guar-
anteeing the continuity of a function and its gradient across interelement
boundaries. The polynomial functions are shown in Fig. 1.1.
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Figure 1.1: The Hermite interpolation polynomials are plotted on the stan-
dard right triangle. Each node has six degrees of freedom corresponding
to the function and including up to the second derivatives. Coefficients of
functions N1, N7, and N13 correspond to the function values at the nodes.
Coefficients of functions N2, N3, N8, N9, N14, and N15 correspond to the first
derivative values at the nodes. The rest are associated with second derivative
degrees of freedom.
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Table 1.1: The set of 5th-order, C1-continuous Hermite shape functions for
the triangle are tabulated. The local coordinates of the right triangle are ξ
and η, and we use σ = 1 − ξ − η to simplify the expressions for the polyno-
mials.. The shape functions are arranged so that the six functions for each
node correspond to f, fx, fy, fxx, fxy, and fyy, respectively. The functions
were obtained from Ram-Mohan [1, p.227]; the concept of an incomplete
C1-continuous, two-dimensional, fifth-order Hermite polynomial set can be
dated back to Bell [2] and Argyris. [3]

Node Shape function

N1 = σ2 (10σ − 15σ2 + 6σ3 + 30ξη (ξ + η))
N2 = ξσ2 (3− 2σ − 3ξ2 + 6ξη)

Node 1 N3 = ησ2 (3− 2σ − 3η2 + 6ξη)
(0, 0) N4 = ξ2σ2 (1− ξ + 2η) /2

N5 = ξησ2

N6 = η2σ2 (1 + 2ξ − η) /2

N7 = ξ2 (10ξ − 15ξ2 + 6ξ3 + 15η2σ)
N8 = ξ2 (−8ξ + 14ξ2 − 6ξ3 − 15η2σ) /2

Node 2 N9 = ξ2η (6− 4ξ − 3η − 3η2 + 3ξη) /2

(1, 0) N10 = ξ2
(

2ξ (1− ξ)2 + 5η2σ
)

/4

N11 = ξ2η (−2 + 2ξ + η + η2 − ξη) /2
N12 =

1
4
ξ2η2σ + 1

2
ξ3η2

N13 = η2 (10η − 15η2 + 6η3 + 15ξ2σ)
N14 = η2ξ (6− 4η − 3ξ − 3ξ2 + 3ηξ) /2

Node 3 N15 = η2 (−8η + 14η2 − 6η3 − 15ξ2σ) /2
(0, 1) N16 =

1
4
η2ξ2σ + 1

2
η3ξ2

N17 = η2ξ (−2 + 2η + ξ + ξ2 − ηξ) /2

N18 = η2
(

2η (1− η)2 + 5ξ2σ
)

/4
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Figure 1.2: The Hermite interpolation polynomials derived by Kassebaum et
al. [5] are plotted on the standard right triangle. While the polynomials are
similar in shape to those given by Bell as shown in Fig. 1.1, the polynomials
shown here have the advantage of being derived directly from continuity
requirements and group representation theory, providing a systematic means
of extending the derivation of Hermite polynomials to higher dimensions or
higher orders of continuity.
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Table 1.2: Quintic Hermite interpolation polynomials derived in the equilat-
eral triangular reference element that support C(1) continuous quartic poly-
nomials across shared sides of elements mapped into the right triangle. These
polynomials were derived using group representation theory. [5]

Node Shape function

N1 = (1−ξ−η)2(3ξ2(1−η)−6ξ3+ξ(2+3(2−η)η)+(1−η)(1+3η+6η2)).
N2 =

1
2
ξ(1−ξ−η)2(2+4η+ξ(4−6ξ−3η)).

Node 1 N3 =
1
2
η(1−ξ−η)2(ξ(4−3η)+2(1−η)(1+3η)).

(0, 0) N4 =
1
4
ξ2(1−ξ−η)2(2−2ξ−η).

N5 = ξη(1−ξ−η)2.
N6 =

1
4
η2(1−ξ−η)2(2−2η−ξ).

N7 = ξ2(ξ(10−3ξ(5−2ξ))+15(1−ξ)2η−15(1−ξ)η2).
N8 =

1
2
ξ2(1−ξ)(6ξ2−15(1−η)η−ξ(8−15η)).

Node 2 N9 =
1
2
ξ2η(ξ(3η−4)+3(2−η−η2)).

(1, 0) N10 =
1
4
ξ2(ξ−1)(2(ξ−1)ξ−5(1−ξ)η+5η2).

N11 =
1
2
ξ2η(η2+η+ξ(2− η)−2).

N12 =
1
4
ξ2(1+ξ−η)η2.

N13 = η2(15ξ2(η−1)+15ξ(1−η)2+η(10−3η(5−2η))).
N14 =

1
2
ξη2(6−3ξ(1+ξ−η)−4η).

Node 3 N15 =
1
2
η2(1−η)(15(ξ−1)ξ−(8−15ξ)η+6η2).

(0, 1) N16 =
1
4
ξ2η2(1−ξ+η).

N17 =
1
2
ξη2(ξ+ξ2+2η−ξη−2).

N18 =
1
4
η2(η−1)(5ξ2−5ξ(1−η)−2(1−η)η).
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Chapter 2

Photonic Crystal Analysis

We now consider two-dimensional photonic crystals and their band
structures. A photonic crystal is a periodic arrangement of materials of dif-
ferent dielectric properties that only permits electromagnetic waves of certain
frequencies and polarizations to propagate. Their design through the geomet-
ric placement of the dielectrics provides a level of control over the dispersion
relations satisfied by photons in the array.

The first proposals for the design of photonic crystals were indepen-
dently made by Yablonovitch [9] and by John. [10] The foundations for the
study of propagating modes in a photonic crystal, including Maxwell’s equa-
tions and Bloch’s theorem, were well in place prior to the mid-1900s. [11]
However, the first modern treatment of a periodic array of dielectric materi-
als can be traced back to Ohtaka in 1979. [12–15] Since then, rapid increases
in computing power have led to the expansion of opportunities for further
modeling of periodic dielectric arrangements. With mastery of the design
and machining of photonic crystals comes the ability to design a wide variety
of optoelectronic devices including low-loss reflecting surfaces, waveguides,
filters, flat lenses, optical inter-connects, etc., making the efficient prediction
of crystal properties a high priority for physicists and engineers. [11, 16, 17]

By assuming that the photonic crystal contains an arbitrarily large
number of unit cells, one may use Bloch’s theorem [18] (also known as Flo-
quet’s theorem), [19,20] to decompose the electric or magnetic field into the
product of a periodic function, or cell function, and a plane wave, or envelope
function. Currently the most popular means of computing the band struc-
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ture (i.e., frequency versus wavevector plot) of a photonic crystal is to rep-
resent the cell function itself as a linear combination of plane waves. [15–17]
However, the approach outlined in the following is to use the finite element
method (FEM) with Hermite interpolation polynomials. The same polyno-
mials have already been shown to exhibit high accuracy and reliable perfor-
mance when implemented to solve quantum mechanical problems. [1] The
derivation of an action integral for the magnetic field in a photonic crystal is
discussed in the next section.

2.1 Theory of Photonic Crystals

We utilize the finite element method to predict the characteristics of
a two-dimensional photonic crystal. Such a crystal consists of multiple di-
electric materials arranged periodically in two directions, with homogeneous
characteristics in the third direction. In this section, we use Maxwell’s Equa-
tions and the periodicity of the dielectric structure to construct an action
integral to be minimized using the Hermite FEM.

2.1.1 Derivation of the action integral

We seek to calculate the band structure and vector fields in a photonic
crystal by expressing the field components as piecewise-continuous Hermite
polynomials on an unstructured finite element grid and applying the principle
of stationary action [1] to an equation of motion derived from Maxwell’s
equations. We begin with Maxwell’s equations [21] expressed in MKS units,

∇ ·D = ρ, (2.1)

∇×H−
∂D

∂t
= J, (2.2)

∇× E+
∂B

∂t
= 0, (2.3)

∇ ·B = 0. (2.4)
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In the above, we express the electric displacement D and the magnetic in-
duction B in terms of the electric and magnetic fields E and H,

D = ǫE; B = µH. (2.5)

If the medium is isotropic, ǫ and µ are scalar quantities, while in general they
behave as second-rank tensors. Let us define the dimensionless quantities ǫr
and µr so that

ǫ = ǫrǫ0, µ = µrµ0 (2.6)

with ǫ0 and µ0 being the permittivity and permeability of free space, respec-
tively.

We assume that the photonic crystal is charge-free and current-free. We
also assume that the fields are time-harmonic so thatH(r, t) = H(r) exp(−iωt)
and E(r, t) = E(r) exp(−iωt), where ω = k0c is the frequency of the elec-
tromagnetic wave. With these assumptions we can use Eqs. (2.2-2.3) to
construct the double-curl form of Maxwell’s equations,

∇×

(

1

ǫr
∇×H

)

− k2
0µrH = 0, (2.7)

which only includes the spatial dependence of the H-field. Alternatively, the
double-curl form may be written in terms of the electric field,

∇×

(

1

µr

∇×E

)

− k2
0ǫrE = 0. (2.8)

We use Eq. (2.7) to construct the action integral. First, we multiply by a
variation with respect to the conjugate field, δH∗, and integrate to obtain

∫

V

d3r δH∗ ·

[

∇×

(

1

ǫr
∇×H

)

− k2
0µrH

]

= 0. (2.9)

Because the photonic crystal is two-dimensional and has homogeneous prop-
erties in the third direction, we can eliminate the integration in the direc-
tion in which the crystal has homogeneous properties. We assume that the
remaining two integrations are performed over a single unit cell of the pho-
tonic crystal, and refer to this two-dimensional domain as Ω. In this manner
Eq. (2.9) becomes

∫

Ω

d2r δH∗ ·

[

∇×

(

1

ǫr
∇×H

)

− k2
0µrH

]

= 0. (2.10)
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We now apply the principle of stationary action to Eq. (2.10). In the following
derivation we employ the vector identity

∇ · (P×R) = ǫijk (∂iPj)Rk − Pjǫjik∂iRk

= (∇×P) ·R−P · (∇×R) ,
(2.11)

where ǫijk is the Levi-Civita tensor. Now let R = ǫ−1
r ∇×H and P = δH∗.

Then from Eq. (2.11),

∇ ·

[

δH∗ ×

(

1

ǫr
∇×H

)]

= (∇× δH∗) ·

(

1

ǫr
∇×H

)

− δH∗ ·

[

∇×

(

1

ǫr
∇×H

)]

.

(2.12)

This leads to the integrals

∫

Ω

d2r∇ ·

[

δH∗ ×

(

1

ǫr
∇×H

)]

=

∫

Ω

d2r (∇× δH∗) ·

(

1

ǫr
∇×H

)

−

∫

Ω

d2rδH∗ ·

[

∇×

(

1

ǫr
∇×H

)]

.

(2.13)

The left side can be reduced to a surface integral by Gauss’s Theorem, yield-
ing a line integral about the perimeter of the unit cell. Rearrangement of
Eq. (2.13) then yields

∫

Ω

d3r δH∗ ·

[

∇×

(

1

ǫr
∇×H

)]

=

∫

Ω

d3r (∇× δH∗) ·

(

1

ǫr
∇×H

)

−

∮

Γ

ds n̂ ·

[

δH∗ ×

(

1

ǫr
∇×H

)]

.

(2.14)

By Eq. (2.14) we see that the integral of the double curl can be expressed in
an alternative form which does not have second derivative terms. Limiting
the action to first-derivative terms is a desirable outcome because the interpo-
lation polynomials used to calculate the eigenvalues are only C1-continuous.
In the following section we introduce the Bloch-Floquet theorem, apply it to
the fields in a photonic crystal, and use it to prove that the surface term in
Eq. (2.14) equals zero.
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2.1.2 Application of Bloch’s Theorem

By the Bloch-Floquet Theorem, [18–20], we can decompose the mag-
netic field into two terms,

H(r) = U(r) eiq·r. (2.15)

We refer to the first term, U, as the cell function. We call the exponential
term the envelope function. In the examples treated in this report, in
which the unit cell is a rectangle of dimensions dx × dy, the vector q can be
expressed as

q =
πqx
dx

î+
πqy
dy

ĵ+ 0k̂, (2.16)

in which the range of qx and qy values which comprise the Brillouin zone [22]
are

−1 < qx ≤ 1, − 1 < qy ≤ 1. (2.17)

Values of qx and qy outside of the ranges defined in Eq. (2.17) are redundant.
The cell function obeys periodic boundary conditions over a single unit cell.
By applying the decomposition in Eq. (2.15) to the surface term in Eq. (2.14),
we express the line integral as

∮

Γ

ds n̂ ·

[

δH∗ ×

(

1

ǫr
∇×H

)]

= δ

∮

Γ

ds n̂ ·

[

H∗ ×

(

1

ǫr
∇×H

)]

=δ

∮

Γ

dsn̂·

[

(

U∗e−iq·r
)

×

(

1

ǫr
∇×

(

Ueiq·r
)

)]

.

(2.18)

We expand the curl term in Eq. (2.18) as

∇×
(

Ueiq·r
)

= eiq·r (∇×U) +
(

∇eiq·r
)

×U

= eiq·r (∇×U) + eiq·r (iq×U) .
(2.19)

The factors of exp(iq · r) and exp(−iq · r) in Eq. (2.18) cancel each other,
reducing the surface integral to

δ

∮

Γ

ds n̂ ·

[

U∗ ×
1

ǫr
(∇×U+ iq×U)

]

. (2.20)

Because U and ǫr are both periodic, for every point on the boundary of the
unit cell there will be a point on the opposite side of the cell with the same
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values of U and ǫr, but with n̂ pointing in the opposite direction. Therefore
it is clear that the line integral given in Eq. (2.20) is exactly zero. We now
apply this conclusion and Eq. (2.14) to Eq. (2.10) to obtain a new expression
for the action integral:

∫

Ω

d2r

[

(∇× δH∗) ·
1

ǫr
· (∇×H)− δH∗ · k2

0µr ·H

]

= 0, (2.21)

which may be expressed as

δA = δ

∫

Ω

d2r

[

(∇×H∗) ·
1

ǫr
· (∇×H)−H∗ · k2

0µr ·H

]

= 0. (2.22)

In Eq. (2.22) we see the principle of least action applied to Maxwell’s vector
equations. We conclude that the action integral is defined as

A =

∫

Ω

d2r

[

(∇×H∗) ·
1

ǫr
· (∇×H)−H∗ · k2

0µr ·H

]

, (2.23)

in which the integration is performed over one unit cell of the two-dimensional
photonic crystal. Alternatively we may begin the derivation of the action
integral by using the electric field instead of the magnetic field. In this case
we again use the Bloch-Floquet Theorem to separate the field into a cell
function U and an envelope function, and see that the surface term arising
from Gauss’s Theorem is still zero. The resulting action is

A =

∫

Ω

d2r

[

(∇× E∗) ·
1

µr

· (∇× E)−E∗ · k2
0ǫr · E

]

. (2.24)

In the following section we use the Bloch-Floquet theorem to simplify the
action by classifying all possible solutions into two distinct types of modes.

2.1.3 Classification of TE- and TM-modes

We begin by decomposing each term of Eq. (2.23) into cell functions and
envelope functions. The second term of the integral simply reduces to

H∗ · k2
0µr ·H = e−iq·rU∗ · k2

0µr · e
iq·rU = U∗ · k2

0µr ·U. (2.25)
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In Eq. (2.19) we have already shown how the curl of H can be expressed in
terms of the cell function and envelope function. Writing this explicitly in
matrix form, we obtain

∇×H = eiq·r









∂yUz − ∂zUy

∂zUx − ∂xUz

∂xUy − ∂yUx



 + i





2πqyUz/dy
−2πqxUz/dx

2πqxUy/dx − 2πqyUx/dy







 . (2.26)

Eq. (2.26) may be simplified by classifying all possible solutions into two
distinct cases:

Transverse electric (TE) modes: Ez = 0, Hx = Hy = 0, and all other
vector components are nonzero.

Transverse magnetic (TM) modes: Ex = Ey = 0, Hz = 0, and all other
vector components are nonzero.

Any possible field in the two-dimensional photonic crystal may be ex-
pressed as a combination of TE- and TM-modes. Therefore, if certain
frequencies of electromagnetic waves are absent from the band structures
of both TE- and TM-modes, then those frequencies are not transmitted
by the photonic crystal.

In a transverse electric (TE) mode, the periodic cell function U only
has a nonzero component in the z-direction, Uz (x, y), so the magnetic field
H is polarized in the z-direction. Then Eq. (2.26) may be reduced to

∇×H = eiq·r





∂yUz + πiqyUz/dy
−∂xUz − πiqxUz/dx

0



 , (2.27)

and the complex conjugate yields

∇×H∗ = e−iq·r





∂yUz − πiqyUz/dy
−∂xUz + πiqxUz/dx

0



 . (2.28)

Assuming the dielectric is isotropic, we may treat the relative permittivity
and permeability as scalar quantities and express the product of two curls as

(∇×H∗) ·
1

ǫr
· (∇×H) =

(

U∗

z

)

A
1

ǫr
B
(

Uz

)

, (2.29)
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where

A =

(

←−
∂y −

πiqy
dy

, −
←−
∂x +

πiqx
dx

)

, B =











−→
∂y +

πiqy
dy

−
−→
∂x −

πiqx
dx











. (2.30)

The action then simplifies to

A =

∫

Ω

d2r

[

U∗

zA
1

ǫr
BUz − U∗

z k
2
0µrUz

]

. (2.31)

In the other special case, the TM mode, the polarization of the mag-
netic field is confined to the xy-plane, and the electric field is oriented only
in the z-direction. To reduce the finite element problem to a scalar problem,
it is convenient to express the Lagrangian density in terms of the electric
displacement, D. The electric displacement is a better choice than the elec-
tric field, E, due to the continuity of the former across interfaces between
dielectric materials. The in-plane components of the magnetic field may also
be used to construct an action integral, but this would require a coupled set
of equations involving two vector components instead of one. Recall that the
action can be expressed in terms of the electric field,

A =

∫

Ω

d2r

[

(∇× E∗) ·
1

µr

· (∇× E)−E∗ · k2
0ǫr · E

]

. (2.24)

Because the electric displacement is D=ǫ0ǫrE, Eq. (2.24) can be expressed
as

A =

∫

Ω

d2r

[(

∇×

(

1

ǫr
D∗

))

·
1

µr

·

(

∇×

(

1

ǫr
D

))

−
1

ǫr
D∗ · k2

0D

]

. (2.32)

The curl operation can be rewritten as

∇×

(

1

ǫr
D

)

= ∇

(

1

ǫr

)

×D+
1

ǫr
(∇×D) . (2.33)

We then decompose D into a periodic cell function and an enveloping plane
wave, as we have done for H. Furthermore, since only TM modes are being
considered, the cell function only has a z-component. We express D as

D = eiq·rŪ = eiq·r
(

0̂i+ 0̂j+ Ūzk̂
)

. (2.34)
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We can then express Eq. (2.33) as

∇×

(

1

ǫr
D

)

=

(

∇
1

ǫr

)

×eiq·rŪ+iq×

(

1

ǫr
eiq·rŪ

)

+
1

ǫr
eiq·r

(

∇× Ū
)

. (2.35)

Since Ū = Ūzk̂, we may expand the curl operators in Eq. (2.35) to obtain

∇×

(

1

ǫr
D

)

=























∂y

(

1

ǫr

)

eiq·rŪz +
πiqy
dyǫr

eiq·rŪz +
1

ǫr
eiq·r∂yŪz

−∂x

(

1

ǫr

)

eiq·rŪz −
πiqx
dxǫr

eiq·rŪz −
1

ǫr
eiq·r∂xŪz

0























, (2.36)

and, similarly,

∇×

(

1

ǫr
D∗

)

=























∂y

(

1

ǫr

)

eiq·rŪ∗

z −
πiqy
dyǫr

eiq·rŪ∗

z +
1

ǫr
eiq·r∂yŪ

∗

z

−∂x

(

1

ǫr

)

eiq·rŪ∗

z +
πiqx
dxǫr

eiq·rŪ∗

z −
1

ǫr
eiq·r∂xŪ

∗

z

0























. (2.37)

When we take the product of Eqs. (2.36) and (2.37), the exponential terms
are cancelled, leaving

[

∇×

(

1

ǫr
D∗

)]

·
1

µr

·

[

∇×

(

1

ǫr
D

)]

= Ū∗

z Ā
1

µr

B̄Ūz, (2.38)

where

Ā=











[∂y(ǫ
−1
r )] +

←−
∂y

1

ǫr
−

πiqy
dyǫr

− [∂x(ǫ
−1
r )]−

←−
∂x

1

ǫr
+

πiqx
dxǫr











T

,

B̄=











[∂y(ǫ
−1
r )] +

1

ǫr

−→
∂y +

πiqy
dyǫr

− [∂x(ǫ
−1
r )]−

1

ǫr

−→
∂x −

πiqx
dxǫr











.

(2.39)
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The action integral can then be expressed as

A =

∫

Ω

d2r

[

Ū∗

z Ā
1

µr

B̄Ūz −
1

ǫr
Ū∗

z Ūz

]

. (2.40)

The action integrals defined in Eqs. (2.31) and (2.40) can be used to calculate
the band structures for TE- and TM-modes, respectively.

2.1.4 The Brillouin Zone

As shown in Eq. (2.17), it is only necessary to consider the eigenvalues
over a finite range of q. This range of q values is the first Brillouin zone;
outside this zone the eigenvalues will behave periodically. Furthermore, due
to reflection symmetries, it is possible to further reduce the Brillouin zone
further to obtain a greater density of sampling points for the same compu-
tational cost. In the first example considered, a square array of cylindrical
dielectric posts, the Brillouin zone only needs to be treated over the region
marked in Fig. 2.2.

The band gaps of the photonic crystal may be determined by choosing
a large number of ordered pairs (qx, qy) from within the irreducible Brillouin
zone to determine which eigenvalues will propagate. Then the band struc-
ture in the remainder of the Brillouin zone may be determined via reflection
symmetry. The entire first Brillouin zone may then be translated to adjacent
zones due to the periodicity of the cell function.

In the following, we consider two examples of photonic crystals. The
first is a square lattice of dielectric posts, for which we obtain the photonic
band structure as previously reported in Joannopoulos. [22] We also identify
the symmetries at various points in the dispersion relations to discuss band
anti-crossing and level degeneracies at special points. The eigenvector fields
at various points of the bands are shown, and frequency bands over the full
Brillouin zone are displayed.

The second example is that of a checker-board lattice of dielectric re-
gions. Here again we provide the group theoretic analysis, the band structure,
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the band surfaces over the Brillouin zone, and the eigenvector fields.

2.1.5 Group Representation Theory and Photonic

Crystals

The eigenvector fields can be organized according to their symmetries
with respect to the symmetry group of the crystal and to the group of the
wavevector. An excellent exposition on the application of group representa-
tion theory to physics is provided by Dresselhaus. [6]

In the following, we follow the group-theoretic analysis of Sakoda. [13–
15] The point group of the cylindrical post unit cell is C4v, or the symmetry
of the square. The character table of this group is shown in Table 2.1. The
wavevector at the Γ-point has the full symmetry of C4v. The symmetry of the
Γ-point modes can be deduced by inspecting the transformation properties of
the eigenvectors that are transverse to the extrusion direction of the crystal.
For a one-dimensional irreducible representation Di, operation Rj in class
j with character χi(Rj), and eigenvector field v, the eigenvector field will
transform according to

Di(Rj) v = χi(Rj) v. (2.41)

By inspecting the transformation of v by several Di(Rj), the character table
can be used to deduce which irreducible representation the eigenvector field
belongs to. As an example, consider the Γ-point mode in Fig. 2.7(a). The
transverse vector field satisfies

Di(C2)v = v, Di(2C4)v = v, Di(2σv)v = −v. (2.42)

This mode must therefore belong to the irreducible representation with char-
acters

χi(C2) = 1, χi(2C4) = 1, χi(2σv) = −1, (2.43)

which corresponds to the Γ2 representation.

For modes with wavevector away from the Γ-point, the symmetry of the
wavevector itself must also be taken into account, as explained in Fig. 2.3.
The M-point has the full symmetry of C4v. The X-point has the reduced
symmetry group C2v (the symmetry of the rectangle) with the character ta-
ble given in table 2.2. Points along ∆, Z, and Σ have the still further reduced
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symmetry of C1h (bilateral symmetry) with the character table given in Ta-
ble 2.3. Points along Z have C1h symmetry due to the fact that a mirror
through the line orthogonal to the qx direction brings Z to Z + Q, where Q
is a reciprocal lattice translation vector.

The dispersion relations for the lowest few modes of the cylindrical post
labeled by their irreducible representations are shown in Fig.2.5. Notice that
in Fig. 2.6 there is an anticrossing site in the TE modes along Z. Since the
irreducible representations form an orthogonal basis, anitcrossings can only
occur between modes within the same irreducible representation. Indeed,
this is the case here, as the two anticrossing modes are in the Z2 irreducible
representation.
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Table 2.1: The character table for the group C4v, the symmetry group of the
square, is given. For the cylindrical dielectric post structure, this symmetry
is exhibited at the Γ- and M-points in the Brillouin zone.

C4v E C2 2C4 2σv 2σd

x2 + y2, z2 z Γ1 1 1 1 1 1
Rz Γ2 1 1 1 -1 -1

x2 − y2 Γ′

1 1 1 -1 1 -1
xy Γ′

2 1 1 -1 -1 1
(xz, yz) (x, y), (Rx, Ry) Γ′

12 2 -2 0 0 0

Table 2.2: The character table for the group C2v, the symmetry group of
the rectangle, is shown. For the cylindrical dielectric post structure, this
symmetry is exhibited at the X point of the Brillouin zone.

C2v E C2 σv σ′

v

x2, y2, z2 z X1 1 1 1 1
xy Rz X2 1 1 -1 -1
xz Ry, x X ′

1 1 -1 1 -1
yz Rx, y X ′

2 1 -1 -1 1

Table 2.3: The character table for the group C1h, which is the bilateral
symmetry group, is given. For the cylindrical dielectric post structure, this
group is exhibited along the ∆ and Σ lines of symmetry in the Brillouin zone.

C1h E σv

x2, y2, z2, xy Rz, x, y ∆1 1 1
xz, yz Rx, Ry, z ∆2 1 -1
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2.2 Eigenstates for periodic dielectric posts

The band structure for the lattice of dielectric posts was computed
using a mesh of 4420 nodes, yielding a matrix size of 26520 × 26520. The
mesh was refined in the region surrounding the edge of the cylindrical post.
The curves shown in Fig. 2.5 give the behavior of the propagating frequen-
cies of radiation at various points along the edge of the irreducible part of
the Brillouin zone. The finite element method reproduces a band gap in the
TM modes which is also predicted by the planewave method. Using finite
elements, it is also possible to increase the resolution close to the anticross-
ing site marked in Fig. 2.5. This is a location at which multiple eigenvalues
of the same polarization (i.e. both TM or both TE) appear to touch. The
close-up view of this point on the edge of the Brillouin zone is given in Fig. 2.6.

The eigenfunctions for the arrangement of cylindrical dielectric posts
are shown in Figs. 2.7-2.9. Note that the point symmetries of each mode at
the high symmetry points of Γ, X and M can be used, along with Fig. 2.3
and Tables 2.1-2.3, to verify the symmetry groups shown in Fig. 2.5 by direct
observation of the eigenvector fields.

The dispersion relations are calculated for the irreducible Brillouin
zone, which is only one eighth of the full Brillouin zone as shown in Fig. 2.2,
and then their full reconstruction over the entire zone is performed. This
can reduce computation time by a factor of 8. The lowest few TE and TM
dispersion relations are shown in Figs. 2.10-2.11. These three-dimensional
dispersion surfaces also provide another means of visualizing band gaps in
the TE and TM modes, which are of great interest in photonic crystal appli-
cations.
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a

ε1

ε2

r

Figure 2.1: An array of cylindrical dielectric posts of dielectric constant ǫ2
arranged periodically in a medium with a dielectric constant ǫ1 is shown.
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Γ X

M

qx

qy

Δ

Z
Σ

Figure 2.2: The Brillouin zone for a two-dimensional photonic crystal is
shown. The maximum and minimum values of the components of q are
given by Eq. (2.9). The irreducible component of the Brillouin zone has been
highlighted. The dashed lines are symmetry lines within the first Brillouin
zone.
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(a) (b) (c)

(f)(e)(d)

Figure 2.3: Cases when the wavevector is within the Brillouin zone and has
(a) only the trivial symmetry of the crystal, (b,c) the symmetry of a subgroup
of the crystal, as compared to when the wavevector is on the zone edge (d–f)
where some wavevectors are equivalent modulo a reciprocal lattice translation
vector, shown as a dashed arrow in (d). The crystal is assumed to have the
point group symmetry of the square.
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Figure 2.4: A sample mesh is given for the unit cell of a lattice of cylindrical
dielectric posts. Significant mesh refinement occurs close to the boundary of
the post, where the dielectric changes.
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Figure 2.5: Eigenvalues for the transverse electric and transverse magnetic
modes as calculated using the finite element method with quintic Hermite
interpolation polynomials. The point labeled as A is the location of an anti-
crossing site between the lowest and second-lowest TE modes. This location
is shown in higher resolution in Fig. 2.6.
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Figure 2.6: Close-up view of the anticrossing site shown at point A in Fig. 2.5.
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(a) TE mode 2 (b) TE mode 3

(c) TM mode 2 (d) TM mode 3

Figure 2.7: The electric and magnetic fields of the second and third modes
corresponding to the Γ-point in the lattice of cylindrical posts are shown. For
TE-modes, the in-plane electric field is represented by vectors and the out-
of-plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field. Note that the first
mode is not shown because the corresponding eigenvalue is zero, resulting in
a trivial solution.
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(a) TE mode 1 (b) TE mode 2

(c) TE mode 3 (d) TM mode 1

(e) TM mode 2 (f) TM mode 3

Figure 2.8: The electric and magnetic fields of the first three modes corre-
sponding to the X-point in the lattice of cylindrical posts are shown. For
TE-modes, the in-plane electric field is represented by vectors and the out-
of-plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field.
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(a) TE mode 1 (b) TE mode 2

(c) TE mode 3 (d) TM mode 1

(e) TM mode 2 (f) TM mode 3

Figure 2.9: The electric and magnetic fields of the first three modes corre-
sponding to the M-point in the lattice of cylindrical posts are shown. For
TE-modes, the in-plane electric field is represented by vectors and the out-
of-plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field.
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Figure 2.10: The eigenvalues of the transverse electric modes of the periodic
lattice of dielectric posts are plotted as surfaces in the first Brillouin zone.
On the left, the first ten eigenvalues are shown in the irreducible part of the
Brillouin zone. On the right, each eigenvalue has been separated from the
rest and extended to the full Brillouin zone through symmetry operations.
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Figure 2.11: The eigenvalues of the transverse magnetic modes of the periodic
lattice of dielectric posts are plotted as surfaces in the first Brillouin zone.
On the left, the first ten eigenvalues are shown in the irreducible part of the
Brillouin zone. On the right, each eigenvalue has been separated from the
rest and extended to the full Brillouin zone through symmetry operations.
When the eigenvalues are plotted together, a band gap can be seen between
the first and second eigenvalue surfaces, as shown on the left.
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2.3 Eigenstates for a checkerboard lattice

The band structure for a checkerboard lattice was computed using a
mesh of 12355 nodes, yielding a matrix size of 74130× 74130. The mesh was
refined in the region surrounding the edges within the checkerboard. Since
the checkerboard lattice has more internal boundaries per unit cell than the
cylindrical post geometry, a greater degree of mesh refinement was required,
resulting in a larger global matrix than that of the lattice of cylindrical posts.

The eigenvalues are plotted over a triangular path between the Γ, X
and S points. Compared to the dielectric posts, the checkerboard shows
much more activity and a denser band structure at low frequencies, but it
has a smaller band gap in the TM modes. Like the cylindrical posts, this
checkerboard has no TE band gap. The corresponding eigenfunctions for the
lowest modes at the high-symmetry points are plotted in Figs. 2.15(a)-2.18(f).

The vectors represent the electric field in TE modes and the magnetic
field in TM modes, while the shading of the background represents the inten-
sity of the magnetic field in TE modes and the electric field in TM modes,
with lighter shades corresponding to regions of greater field magnitude. Note
that the eigenfunction for the lowest eigenvalue is omitted for the Γ-point
for both modes of propagation. This is because those lowest eigenvalues ap-
proach zero at the Γ-point, causing the corresponding eigenfunctions to be
trivial (zero everywhere).

The dispersion relations calculated for the irreducible Brillouin zone
and then their full reconstruction over the entire zone is performed. The
lowest few TE and TM dispersions are shown in Figs. 2.19-2.20.

In conclusion, we anticipate that the use of Hermite FEM will allow
the treatment of multiscale problems associated with photonic crystals with
embedded quantum dots, defects, and the like. The spatial representation
of the fields using Hermite triangular interpolation is much more economical
than employing plane-wave methods for such structures allowing the deploy-
ment of more finite elements strategically in specific regions as needed. The
resulting global matrices are still sparse and banded due to the local connec-
tivity, which leads to far more compact matrices than in other schemes with
the concomitant reduction in compute-time.
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a

a

ε2

ε1

Figure 2.12: A periodic checkerboard pattern with two alternating dielectric
materials is shown. Note that the sizes of adjacent checkers within a single
unit cell do not necessarily match.
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Figure 2.13: A sample finite element mesh is given for the unit cell of a
checkerboard lattice. Mesh refinement occurs at all of the checker boundaries.
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Figure 2.14: Eigenvalues for the transverse electric and transverse magnetic
modes for the checkerboard arrangement.

37



(a) TE mode 2 (b) TE mode 3

(c) TM mode 2 (d) TM mode 3

Figure 2.15: The electric and magnetic fields of the second and third modes
corresponding to the Γ-point in the checkerboard lattice are shown. For
TE-modes, the in-plane electric field is represented by vectors and the out-
of-plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field. Note that the first
mode is not shown because the corresponding eigenvalue is zero, resulting in
a trivial solution.
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(a) TE mode 1 (b) TE mode 2

(c) TE mode 3 (d) TM mode 1

(e) TM mode 2 (f) TM mode 3

Figure 2.16: The electric and magnetic fields of the first three modes cor-
responding to the X-point in the checkerboard lattice are shown. For TE-
modes, the in-plane electric field is represented by vectors and the out-of-
plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field.
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(a) TE mode 1 (b) TE mode 2

(c) TE mode 3 (d) TM mode 1

(e) TM mode 2 (f) TM mode 3

Figure 2.17: The electric and magnetic fields of the first three modes cor-
responding to the S-point in the checkerboard lattice are shown. For TE-
modes, the in-plane electric field is represented by vectors and the out-of-
plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field.
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(a) TE mode 1 (b) TE mode 2

(c) TE mode 3 (d) TM mode 1

(e) TM mode 2 (f) TM mode 3

Figure 2.18: The electric and magnetic fields of the first three modes cor-
responding to the Y -point in the checkerboard lattice are shown. For TE-
modes, the in-plane electric field is represented by vectors and the out-of-
plane magnetic field is represented by the gradient background. For TM-
modes, the vectors represent the in-plane magnetic field and the background
represents the strength of the out-of-plane electric field.
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Figure 2.19: The eigenvalues of the transverse electric modes of the checker-
board lattice are plotted as surfaces in the first Brillouin zone. On the left,
the first ten eigenvalues are shown in the irreducible part of the Brillouin
zone. On the right, each eigenvalue has been separated from the rest and
extended to the full Brillouin zone through symmetry operations.
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Figure 2.20: The eigenvalues of the transverse magnetic modes of the checker-
board lattice are plotted as surfaces in the first Brillouin zone. On the left,
the first ten eigenvalues are shown in the irreducible part of the Brillouin
zone. On the right, each eigenvalue has been separated from the rest and
extended to the full Brillouin zone through symmetry operations. The only
observable band gap for this geometry is a small gap between the fourth and
fifth TM modes.
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Chapter 3

Concluding remarks

Despite a decades-long history of being overshadowed by plane wave
expansion methods, the finite element method offers a flexible, robust means
of computing the eigenstates of a photonic crystal. In our calculations, we
note that the typical matrix dimensions for the photonic crystal with square
geometry containing cylindrical posts are on the order of 26× 103; however,
the local connectivity leads to a banded matrix with 0.158% occupancy. For
the checker-board lattice, the discontinuities in the dielectric function re-
quired matrices of dimensions 74 × 103, with just 0.056% occupancy. This
sparsity is clearly a genuine advantage over the plane-wave method. The
ability to construct the field distributions from the nodal eigenvectors with
no discontinuities in the reconstructed function and its derivative is an ad-
ditional benefit. Furthermore, the plane-waves are global functions, and the
eigenfunctions constructed using these functions have the usual errors on the
order of the square root of the errors in the eigenvalues. However, in the finite
element method, this error can be distributed nonuniformly by emphasizing
areas (or volumes) of interest through the redistribution of elements, putting
more elements in those areas that are of particular interest. This remarkable
flexibility is yet another advantage in using FEM. The detailed agreement
with the published results for the square lattice of dielectric posts shows that
the FEM provides accurate, reliable results that are derivable with banded,
sparse matrices. We have included the group-theoretic analysis of the band
structure, showing the degeneracies associated with the special points in the
Brillouin zone. The anti-crossing of the first and second TE dispersions be-
tween the X and M points has been highlighted, and the degeneracies at
the special points have been indicated in the displayed wavefunctions. The
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reconstructed energy band surfaces over the full Brillouin zone have been
presented here for the first time.

We have also included results on the photonic band structure for the
checkerboard superlattice of dielectrics. Again, the ease with which the band
structure and the wavefunctions are obtained within an FEM framework
shows that FEM with Hermite finite elements holds great promise as the
method of choice for such calculations.

The finite element approach can tackle multiscale problems such as
defects in photonic crystals, quantum dots embedded in waveguides or in
photonic crystals, and so on. The plane-wave and spectral methods would
be prohibitively expensive computationally to provide high accuracy simula-
tions of such structures.

It is by now evident that the finite element method helps “unlock the
magic of Maxwell’s equations,” to quote Cendes. [23] The remarkable aspects
of composite media in which both (or either) the permittivity and the per-
meability are negative can also be explored within our methodology. [24–26]

If the finite element method is to supplant the plane wave expansion
method as the future of photonic crystal modeling, it will be necessary to
demonstrate its applicability in three dimensions. The development of a
practical, C1-continuous set of Hermite interpolating polynomials in three
dimensions will make this method a feasible option for engineering applica-
tions. Indeed, we have already begun such efforts by using group represen-
tation theory to establish a routine procedure for the derivation of Hermite
interpolation polynomials for arbitrary dimensionality and derivative order
of continuity. [5] A final feature that would be required in this context is
the exploration of the time-domain evolution of solutions. The finite element
time-domain (FETD) techniques that are already prevalent in modeling such
structures can readily incorporate the new developments we are offering in
this article. We are actively pursuing such issues in our current research.
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