
 

This work is sponsored by the Department of the Air Force under Air Force contract FA8721‐05‐C‐0002. 
Opinions, interpretations, conclusions and recommendations are those of the author and are not 
necessarily endorsed by the United States Government. 

EAC, GTH 
Project Number:EXC-0901 

 

 

Time Synchronization in Acoustic Localization for Mobile Open-Source Network 

Deployment 

A Major Qualifying Project Report 
submitted to the Faculty of  

WORCESTER POLYTECHNIC INSTITUTE 
in partial fulfillment of the requirements for the 

Degree of Bachelor of Science 
by: 

Scott Almquist 

 

Date: December 22, 2009 

 

 

 

 

 

Approved: Professor Edward A. Clancy 

 Professor George T. Heineman 

 

 

Approved for public release - distribution is unlimited



 

2 
 

 

Abstract 
 

Acoustic localization is a method to determine the position of a sound source via an array of 

acoustic sensors. In an earlier project, entitled Acoustic Localization for Mobile Open-Source 

Network Deployment (ALMOND), an attempt was made to develop a system for acoustic 

localization using cell phones as acoustic sensors [ALMOND, 2009]. A prototype system was 

developed, although it was capable of performing only rudimentary estimates of localization, and 

thus was not suitable for a real world application. One of the most pressing obstacles which had 

not been overcome was the ability to precisely determine the time at which audio samples were 

recorded from each phone’s microphone. This project was able to reduce the error in determining 

when individual timestamps were recorded by modifying techniques of retrieving timestamps 

and filtering the results by applying moving medians and moving means to the differences 

between successive timestamps. Using these methods, differences between successive 

timestamps always fell within three milliseconds of expected values and fell within one 

millisecond of expected values 99 percent of the time. 



 

3 
 

 

Acknowledgements 

 Much of the code and motivation for this project was created during an earlier project 

entitled Acoustic Localization for Mobile Open Source Development [ALMOND, 2009]. The 

author would like to acknowledge the contributions of two of the authors of the ALMOND 

project: Daniel Skehan and Muhammad Saleem. 

 The author would also like to thank his advisors at Worcester Polytechnic Institute - 

Professor Edward Clancy and Professor George Heineman - and his sponsors at Lincoln 

Laboratories - Albert Reuther and Glenn Schrader. 



 

4 
 

 
Table of Contents 
 
Abstract .................................................................................................................................................. 2 

Acknowledgements ................................................................................................................................ 3 

Introduction ............................................................................................................................................ 5 

State of the Previous Acoustic Localization Project at its Conclusion .................................................. 7 

The State of Time Data Collection and Synchronization ................................................................... 9 

Retrieving Precise Timestamps from an Individual Phone ............................................................ 9 

Synchronizing the Time Between Two Phones ........................................................................... 15 

Obtaining More Precise Timestamps Through ALSA API ................................................................. 18 

Confirm All Audio Data are Being Recorded .................................................................................. 18 

Obtaining Timestamps From ALSA ................................................................................................ 22 

Methodology ................................................................................................................................ 22 

Results and Discussion ................................................................................................................. 23 

Reducing the Priority of the Phone’s Program when Using ALSA Timestamps ............................ 29 

Modifying Timestamps to Improve Precision ..................................................................................... 32 

Moving Averages ............................................................................................................................. 32 

Moving Medians .............................................................................................................................. 35 

Synchronizing Time Between Phones ............................................................................................. 37 

Methodology .................................................................................................................................... 37 

Results and Discussion ..................................................................................................................... 39 

Discussion ............................................................................................................................................ 41 

Conclusions .......................................................................................................................................... 43 

References ............................................................................................................................................ 46 

Appendix A: Program to Retrieve and Record Timestamps using ALSA API Function Calls ........... 47 



 

5 
 

1. Introduction 

Acoustic localization is a method to determine the position of a sound source via an array of 

acoustic sensors, as shown in Figure 1. In an earlier project, entitled Acoustic Localization for 

Mobile Open-Source Network Deployment (ALMOND), an attempt was made to develop a 

system for acoustic localization using cell phones as acoustic sensors [ALMOND, 2009]. The 

purpose of the project was to take advantage of the wide spread availability of cell phones and 

numerous features such as wireless communication through Wi-Fi, Global Positioning System 

receivers, and a microphone. A prototype system was developed, although it was capable of 

performing only rudimentary estimates of localization, and thus was not suitable for a real world 

application. One of the most pressing obstacles which had not been overcome was the ability to 

precisely determine the time at which audio samples were recorded from each phone’s 

microphone. 

 

Figure 1 Acoustic Localization with Two Sensors and Derived Hyperbolic Curve (Modified 
from [Birchfield and Gillmor]) 

 
In the ALMOND project, acoustic localization was based on a time difference of arrival 

approach. The prototype system was composed of two phones and a sound source that generated 

audible chirps. When two phones are used, the location of the sound cannot be uniquely 



 

6 
 

determined. Instead, when a sound was detected by both phones, the system should be able to 

compute a hyperbola of possible sound source locations. If a third phone were added, three 

hyperbolas could be drawn, one for each combination of two phones; the intersection of these 

hyperbolas would be the planar computed location of the sound source. This method is highly 

dependent on being able to precisely determine the time at which a sound reaches each phone. 

The speed of sound can be approximated as 340 meters per second at sea level. At this speed, 

with two phones one millisecond of error in the time of arrival measurement will result in a 

minimum of 1.7 meters of error in the location of the hyperbolic solution. The ALMOND project 

was able to record sound detection times with a precision of approximately ten milliseconds 

between a pair of phones, and maintain this precision for several minutes at a time. However the 

methods for querying the time were less than optimal, as they depended on running a program on 

the phones at a high priority and the resulting times were only correlated with the correct times. 

This current project extends ALMOND by investigating two specific questions: 

1.) Is it possible to improve the precision when querying the time data of the phones? 

2.) Even if the precision cannot be substantially improved, can we use multiple individual 

time queries together to estimate a more precise time for any given audio data? 

The motive behind these questions is simple: increased precision in time would lead to 

smaller errors in localization. 



 

7 
 

2. State of the Previous Acoustic Localization Project at its Conclusion 

In the Acoustic Localization for Mobile Open Source Deployment (ALMOND) project, two 

Openmoko Freerunner cellular phones were used as audio sensors. These phones ran a modified 

version of the Debian GNU/Linux operating system. The Freerunners were chosen because they 

were readily available and are open source. For this project, it was determined that implementing 

an algorithm to detect sounds on each phone would be too difficult with the Freerunners, as the 

ARM processor they have lacks floating point hardware. Therefore, the phones streamed audio 

data across an 802.11g wireless router to a Dell Inspiron laptop which served as a central 

processing point. The general hardware setup can be seen in Figure 2. 

 

Figure 2 – Illustration of Hardware Setup for Acoustic Localization Using Cell Phones as 
Sensors and implementing a Central Processing Point. The Two Phones are Used as 
Sensors to Stream Captured Audio Data Wirelessly Through a Wireless Router to a 

Central Processing PC (Modified from [Dell Inspiron], [FWG114pv2], and [Openmoko 
Image, 2009]). 

 

The processing performed for sound source localization can be divided into five distinct 

tasks: 

1) The microphones of the two cell phones listen to and record their surrounding area.  

Figure 1  



 

8 
 

2) Recorded sound data are streamed over a wireless network. 

3) At a central processing point (the Dell laptop), the data from each phone are analyzed to 

detect events. 

4) Detected events, which were caused by the same source, are associated with one another 

at the central processing point.  

5) The central processing point calculates the location based on the time difference of the 

events. For the two phone test system, the central processing point actually calculates a 

hyperbola of possible locations as explained previously. 

An overview of this process can be seen in Figure 3. 

 

For audio events to be detected, the ALMOND project used chirps (played on a computer 

controlled speaker) which are sounds that increase in frequency over time. Chirps in a low noise 

environment were reliably detected using cross correlation with an ideal chirp. This method 

Openmoko
Cell Phones

Netgear
Wireless 
Router

Dell Inspiron 
Laptop

Microphone 
Sampling 
(Phone 1)

Microphone 
Sampling 
(Phone 2)

Calculate 
Location

Association 
of Signals

Stream Data

Stream Data

Detection

Detection

Figure 3 – Block Diagram of Acoustic Localization Method Using Cell Phones as Sensors. 



 

9 
 

provided detection time errors well under one millisecond. For further details, see [ALMOND, 

2009]. 

2.1. The State of Time Data Collection and Synchronization 

The problem of time synchronization between the two Openmoko devices in the 

ALMOND project can be defined in two ways. The first definition is the ability of an individual 

phone to report a time that corresponds with a specific audio datum. That is, if a phone hears a 

sound can the phone accurately determine the local time (the time according to that phone's 

clock) at which it occurred? The second problem is synchronization between the two phones. At 

any given moment the clock times on the individual phones should be approximately the same 

(or any differences known and accounted for). It is important to note that the two phones need to 

read time precisely when compared to one another, but not accurately to any universal time. 

2.1.1. Retrieving Precise Timestamps from an Individual Phone 

Due to time limitations, the ALMOND project implemented a less than optimal solution for 

retrieving time information on an individual phone. The basic software loop of phone operation 

can be characterized by the following four steps (for a more detailed overview of the program, 

please refer to section four of [ALMOND, 2009]): 

1.) Determine the time 

The time was queried using the gettimeofday function from the glibc libraries. The 

function call would result in a structure containing the number of seconds and microseconds 

since January 1, 1970. These data were queued to be sent over the network (the queuing process 

will be described in the second step). As noted above, this timestamp had to be associated with a 

data sample. In the ALMOND project, timestamps were associated with the first sample in a 

buffer of audio data. 



 

10 
 

2.) Queue data to be sent to the central processing point 

To avoid unnecessary system waits which would result in poor quality timestamps, both time 

and audio data were queued to be sent over the network. 

3.) Attempt to Send the Data 

The program would, attempt to send the data, but if this would result in the process being 

blocked (due to network congestion or other factors) then move on to the next step. This non-

blocking behavior can be achieved by using the glibc function send with the MSG_DONTWAIT 

flag. If the call would block, send returns an EAGAIN error. If the call would not block, it 

would send as much data as possible. The program would move to the next step when either the 

call would block or when there were no data left to be sent. 

4.) Record audio data 

Audio data were recorded using calls to the Advanced Linux Sound Architecture (ALSA) 

Application Programming Interface (API). ALSA operates by default using a ring buffer. The 

sound card on the phone will constantly sample audio data and store it in memory. When 

requested, ALSA will provide a user with a buffer of the least recently recorded audio samples 

which have not yet been provided to the user. These data were placed into a buffer which was 

put into the queue to be sent during the next iteration through the loop. 

The problem with this method has to do with how the ALSA internally recorded audio data. 

An API call to retrieve audio data will return audio data that was recorded before the call if such 

data are available due to the ring buffer. The general assumption used when retrieving the time 

was that it corresponded to the first audio sample in the next buffer and that executing the rest of 

the loop took a negligible amount of time. Unfortunately, this is not always the case.  



 

11 
 

One way to measure the precision of the timestamps is to compare subsequent timestamps on 

the same phone. If we know the sampling frequency and we know the size of each buffer of 

audio data then the time difference between timestamps would ideally be a constant (and 

predictable) value. In our tests, the sampling frequency was 44,100 hertz, and the size of the 

buffer was 1024 audio samples. Thus, the time between timestamps should be 23.22 

milliseconds. By recording the timestamps and subtracting the ith timestamp from the (i + 1)th 

timestamp, we can plot a histogram of the time differences. This test was rerun at the beginning 

of this project to verify a working system and the results are comparable to the ALMOND 

project. Histograms for both phones for this test can be seen in Figure 4. 



 

12 
 

Figure 4 – (Top) Histogram of Differences in Timestamps Recorded Before Each Audio 
Buffer of Data for Phone One. (Bottom) Histogram of Differences in Timestamps Recorded 

Before Each Audio Buffer of Data for Phone Two. The First Bin (14.72 Milliseconds) 
Corresponds to All Values Less than or Equal to 14.72 Milliseconds while the Last Bin 

Corresponds to All Values Greater than or Equal to 34.82 Milliseconds. 
 

Although the time data differences center a small amount above 23.22 milliseconds for both 

phones, there are enough outliers to cause concern. Only 57.2 percent of the time differences for 

phone one and 52.67 percent of the time differences for phone two fall within one millisecond of 



 

13 
 

the expected 23.22 milliseconds. The method was improved by increasing the priority of the 

program using the Linux command nice with a priority of -20. The results of this test can be seen 

in Figure 5. Again, this test and the results shown are from the beginning of this project, but are 

comparable to the results of the ALMOND project. 

 

 

 

 

 

 

 

 

 

 



 

14 
 

Figure 5  – (Top) Histogram of Differences in Timestamps Recorded Before Each Audio 
Buffer of Data for Phone One with Increased Priority. (Bottom) Histogram of Differences 
in Timestamps Recorded Before Each Audio Buffer of Data for Phone Two with Increased 
Priority. The First Bin (14.72 Milliseconds) Corresponds to All Values Less than or Equal 
to 14.72 Milliseconds while the Last Bin Corresponds to All Values Greater than or Equal 

to 34.82 Milliseconds. 
 

Increasing the priority of the program creates timestamps that are far more consistant with 

our expectations. 98.98 percent of the time differences for phone one and 98.97 percent of the 



 

15 
 

time differences for phone two fall within one millisecond of the expected 23.22 milliseconds. 

However, increasing the priority also has other undesirable effects. The main problem is that 

other programs will not be granted as much access to the CPU while the priority is so high. 

Furthermore, even though outliers have been reduced, they have not been eliminated, and one 

cannot completely rely on the time data without somehow correcting for them. Recall that in 

acoustic localization, even a few milliseconds of error can greatly reduce the ability to locate a 

sound source. For more information on the relationship of timing errors to positional errors, 

please refer to section 2.6.5 of [ALMOND, 2009]. 

2.1.2. Synchronizing the Time Between Two Phones 

Originally, the ALMOND project sought to use the Global Positioning System (GPS) 

receiver on the Openmokos to synchronize the clocks between the phones. GPS would have 

given the phones the ability to synchronize to a time source that is accurate to within 100 

nanoseconds 99 percent of the time [GPS datasheet, 2009]. Unfortunately, it was discovered that 

although the physical GPS chip on the phone was capable of delivering a signal with this 

precision and accuracy, the rest of the phone was not built to take advantage of this feature. 

Because the program to collect audio data had to run at such a high priority, the options available 

for synchronizing time between phones was limited. The most successful method for 

synchronizing the phones involved sending User Datagram Protocol (UDP) broadcast messages. 

Before starting to collect audio data, a UDP broadcast message was sent to both phones from the 

same computer which was playing chirps. When the phones received the broadcast message, 

they immediately reset their clocks to a known time. The message would be received at both 

phones at approximately the same time, which should have resulted in a high amount of 

precision of the clock times between the two phones. 



 

16 
 

To test the precision of times between the two phones, the ALMOND project physically 

positioned the phones as shown in Figure 6. The microphones of both Openmoko devices were 

positioned so that they were both equidistant from the center of the speaker. A sound played by 

the speaker should be heard by both phones at the same time.  

 

Figure 6 – Physical Setup to Test Time Synchronization Using a User Datagram Protocol 
Broadcast Message 

 

We could test the synchronization between the two phones by playing sounds, and recording 

the time at which each phone detected it. If the phones were perfectly synchronized, then they 

both would detect the sound at the same time. Assuming the worst-case difference in the path 

length from the sound source to each microphone (due to errors in manual alignment/placement 

of the phones) of one centimeter, the maximum error (due to misalignment) in time arrival of the 

speaker-generated sound would be 29.4 microseconds. The resulting errors beyond this time can 

be attributed to errors in our methods of collecting time data from each phone, errors in 

detection, or differences in the times reported by each phone. A plot of the results of this test can 

be seen in Figure 7. Again, this test and the results shown are from the beginning of this project, 

but are comparable to the results of the ALMOND project. 



 

17 
 

Figure 7 – Time Synchronization Between Two Phones Using an Initial UDP Broadcast 
Message Method of Synchronization. Each Point Represents an Audio Sample That was 

Detected. 
 

The graph in Figure 7 reveals two challenges that must be overcome in order to synchronize 

the time between the two phones. The first challenge is the drift of the clocks away from each 

other over time at a rate of approximately 50 microseconds per second (potentially due to slight 

differences in the frequencies of the clocks on both phones). The second challenge is the initial 

synchronization. The drift appears to be fairly linearly, if a best fit line is drawn, the initial 

synchronization for this test would be -4.77 milliseconds. Due to time limitations, no extensive 

tests were done in the initial ALMOND project to attempt to characterize the initial 

synchronization values. 



 

18 
 

3. Obtaining More Precise Timestamps Through ALSA API 

The tests that were run as part of the ALMOND project gave a starting point for this project. 

The two main goals were based on the problems faced: 

1.) Increase the precision of the timestamps which an individual phone reports.  

2.) Even if the precision cannot be substantially improved, use multiple individual 

timestamps to improve the overall precision. 

This following sections will detail tests done for this project to address the first goal of 

improving the precision of retrieving timestamps. 

Ideally, instead of retrieving the timestamps on the phones through the glibc 

gettimeofday function call, we would like to abstract the method for collecting time data and 

instead simply retrieve the timestamp associated with a particular sample when we retrieve the 

sample. That is to say, we would like to let the ALSA libraries associate timestamps with audio 

samples while it is sampling. 

3.1. Confirm All Audio Data are Being Recorded 

It was important to confirm that we were indeed receiving all of the audio data that we would 

expect. If, for some reason, we do not record every sample over a given period of time, then we 

cannot be sure if an incorrect timestamp is because of errors in retrieving the timestamp or if we 

simply missed audio data.  

To test whether we were receiving all of the audio data stream, we connected our two 

Openmoko Freerunners to our central processing point through an 802.11g wireless network. 

The Openmoko devices were set up to run the same program used to measure the time in 

between reading each audio buffer as described in section 5 of the ALMOND project (Read and 

Queue Execution Time Test). Briefly, the phones would read and queue blocks of 1024 audio 



 

19 
 

data samples and stream these data over the network to the central processing point. 

Additionally, each phone would record the timestamps (one associated with each block) that they 

retrieved to a file on its disk. Both Freerunners contain hardware version A6 and run Debian 

GNU/Linux with version 2.6.29 of the kernel. The phones were set to sample audio data at a rate 

of 44,100 hertz.  

The central processing point was a Dell Inspiron 700m laptop. This computer has a dual core 

2.10 gigahertz Pentium M processor and 2.0 gigabytes of RAM. The laptop was running 

Microsoft Windows XP 32-Bit Edition Version 5.1 (Build 2006.xpsp_2_gdr.090206-1233: 

Service Pack 2). The audio and time data were processed on this computer in MATLAB version 

7.8.0.347 (R2009a). For this experiment, MATLAB established a connection to the phones, 

received audio data, and reported the number of samples received over the duration of the test. 

The wireless network between the phones was set up using a Netgear FWG 114P wireless router 

with firmware version 2 using WPA2 certification.  

The test was ended by a manual command entered to MATLAB and then relayed to the 

phones. The test was run for 549.04 seconds as measured independently by the difference 

between the first timestamp and last timestamp of both phones. During this period of time, 

MATLAB reported receiving 24215552 samples from one phone and 24217600 samples from 

the other. The difference between the two reported values is 2048 samples. The phones could 

have sampled different amounts for a variety of reasons. When MATLAB sends the command to 

start the test, it will send one phone the message before the other. Furthermore there could have 

been a slight difference in the rate at which the phones sample audio data. Also, the phones only 

send data when they have a full buffer to send, meaning the actual difference in samples could be 

different than reported. Finally, the phones will not send the audio data if the function call to 



 

20 
 

send the data would block; therefore, one phone may have not been able to send the last samples. 

The number of samples over the given period of times corresponds to sampling rates of 44,105 

and 44,108 hertz respectively. These sampling frequencies are actually larger than the set 

sampling frequency of the test which was 44,100 hertz. This test showed that we were receiving 

more samples than we would expect. It should be noted that, while this test does not provide 

definitive proof that the correct number of samples is being provided, the results are consistent 

with our expectations of receiving the correct number of samples when factors such as clock 

differences and start up times are considered. 

We also want to know that not only are we receiving the right amount of samples, but we are 

receiving the correct samples. To test the sample's correctness, we modified the program on the 

central processing point to record the audio samples that were being sent. We then used the 

central processing point to play a 500 hertz sine wave through a single Altec Lansing Computer 

Speaker ACS90. The speaker was set at a volume such that the sound at the microphone was 82 

dB. The ambient noise of the room was 56 dB. After the test completed, a manual inspection of 

approximately ten seconds of the data was conducted. A sample of the recorded audio data can 



 

21 
 

be seen in Figure 8. 

0 100 200 300 400 500 600 700 800 900 1000
-6000

-4000

-2000

0

2000

4000

6000

Samples

A
D

C
 V

al
u
es

Sample of Recorded 500 Hertz Sine Wave Recorded by Phone One

 

Figure 8 - A Sample of Recorded Audio Data when Playing a 500 Hertz Sine Wave. The 
Recorded Data Shows No Obvious Discontinuities or Phase Shifts Except at the Peaks of 

the Sine Waves. 
 

The recorded audio data seems to fluctuate near the peaks of each period of the sine wave. 

These fluctuations could be due to the microphones not providing a steady voltage for the analog 

to digital converter. Still, the periods for each sine wave are consistent. During the manual 

inspection there were no noticeable discontinuities (other than near the peaks of each period, as 

described above), and there were no noticeable phase shifts. It should be said that this test does 

not prove that no audio data are being lost. More tests will have to be done to show that every 

sample is captured which cannot be performed here due to time constraints. The results indicate 

that it is not unreasonable to assume that no audio samples are being lost and audio is being 

sampled at a constant rate. For the rest of this paper, it will be assumed that no audio samples are 

being lost. 



 

22 
 

3.2. Obtaining Timestamps From ALSA 

The Advanced Linux Sound Architecture (ALSA) Application Programming Interface (API) 

provides functions to generate timestamps in between every audio buffer. By using the ALSA 

libraries to collect timestamps, we were able to lower the priority of the program, and with some 

manipulation, increase the precision of the obtained timestamps. Unfortunately, it is not clear 

whether the timestamps ALSA provides correspond to the end of one audio buffer or the start of 

the next. For this project, this distinction is not important since we are most concerned with 

comparing the time between timestamps (which would be consistent in either case). 

3.2.1. Methodology 

The method for obtaining timestamps starts with the program described in section five of the 

ALMOND project (Read and Queue Execution Time Test). It was modified to collect the 

timestamps from ALSA. The first step to modify the program was to allocate a structure for 

software parameters using the snd_pcm_sw_params_malloc function. The timestamp 

mode can then be set using the snd_pcm_sw_params_set_tstamp_mode and passing it 

a value of SND_PCM_TSTAMP_MMAP. The software parameters can then be enabled by using 

the snd_pcm_sw_params function. It is important to note that the snd_pcm_sw_params 

function must be called after all of the hardware parameters (sampling rate, buffer size, et cetera) 

are set or ALSA will not enable timestamps, although this sequence requirement  is never clearly 

stated in the ALSA API. After timestamps have been enabled, one can query the timestamps 

simply by calling the snd_pcm_htimestamp function. This call will return the audio sample 

associated with the boundary of the last audio buffer read. The complete, modified program is 

presented in Appendix A. The program needs to be compiled using the default libraries provided 

by the Debian Openmoko operating system rather than the libraries provided by the toolchain on 



 

23 
 

Openmoko’s Wiki. To satisfy the library requirements one must copy the libasound libraries 

from /lib/ folder on the Openmoko into the toolchain’s library directory on the compiling 

machine. [Kysela et al., 2009] 

The program ran with high priority (using the Linux  nice command and the highest priority 

of -20) and recorded the timestamps to a file located on the phone. Audio and these timestamp 

data were sent to the central processing computer, but ignored for this test since we are 

investigating the consistency of the timestamps on the phones. 

3.2.2. Results and Discussion 

We must assess the consistency of time interval between the timestamps (with the size of the 

buffer being 1024 samples the time would ideally be 23.22 milliseconds). We took the (i + 1)th 

timestamp and subtracted the ith timestamp to create a histogram of consistency for each phone. 

The histograms can be seen in Figure 9. 

 

 

 



 

24 
 

Figure 9 – Histograms Showing the Time Difference Repored by ALSA Between Audio 
Buffers in Phone One (Top) and Phone Two (Bottom). The Expected Value for the Audio 

Buffer Size and Sampling Rate is 23.22 milliseconds. The First Bin (One Millisecond) 
Corresponds to All Values Less than or Equal to One Millisecond while the Last Bin 

Corresponds to All Values Greater than or Equal to 47 Milliseconds. 
 

Surprisingly, far less than one percent of the time differences are within one millisecond of 

the expected time difference. It is not clear why these groupings occur. However, the data seem 



 

25 
 

to be clustering around forty three milliseconds and four milliseconds, which, when averaged, is 

23.5 milliseconds, close to our expected 23.22 milliseconds.  

In Figure 10, we show an x-y scatter chart of the time differences reported between audio 

buffers. For each point, the x value represents a time difference, while the y value represents the 

time difference which immediately followed. We apply this process to the first 250 time 

differences to show a specific behavioral pattern. 

Figure 10 – Comparing Consecutive Timestamp Differences. The X-Axis Represents a 
Timestamp Difference, While the Y-Axis Represents the Timestamp Difference which 

Immediately Followed. 
 

Figure 10 shows  two distinct groups to the timestamps. In the upper left of the graph in 

Figure 10, there are timestamp differences which are approximately forty to forty-five 

milliseconds which were immediately preceded by timestamps of duration four to six 

milliseconds. The bottom right shows timestamp differences which are four to six milliseconds 

and were immediately preceded by timestamp differences which were forty to forty-five 

milliseconds. This graph suggests that the timestamp differences are alternating between the two 

ranges (i.e. four, forty two, four, forty two, and so on).  



 

26 
 

Figure 11 shows the timestamp difference histogram for each phone when each difference is 

averaged with its previous difference (a moving average of two). 

Figure 11 – Histogram of Timestamp Differences Using ALSA Timestamps and a Moving 
Average of Two. The Starting Transient (First Time Difference) was Discarded for Each Phone. 

The First Bin (14.72 Milliseconds) Corresponds to All Values Less than or Equal to 14.72 
Milliseconds while the Last Bin Corresponds to All Values Greater than or Equal to 34.82 

Milliseconds. 
 



 

27 
 

These results are encouraging. There are fewer outliers than in the previous ALMOND tests 

and the extent of the outliers is less as well. When creating timestamps using the 

gettimeofday function, the maximum difference between two timestamps could be well over 

400 milliseconds. With this test — retrieving timestamps from the ALSA API — the maximum 

time differences were 57.5 milliseconds for phone one and 125.6 milliseconds for the other.  

It was still not known why the timestamps from ALSA seem to alternate, and if they alternate 

in any consistent way. To find out, the size of the audio buffer was changed from 1024 to 2048 

samples and the test was rerun. With no running averages, the result from the test illustrated a 

bimodal distribution similar to the ALSA test with a buffer of 1024 audio samples, except that 

the modes were centered around eight milliseconds and eighty milliseconds. Figure 12 shows the 

resulting histograms when using a moving average of two. 



 

28 
 

 
Figure 12 – Histograms of Time Differences Provided by ALSA Timestamps Using a 
Moving Average of Two and an Audio Buffer of 2048 Samples in Order to Display 

Consistency in Timestamp Reports. The Starting Transient (First Time Difference) was 
Discarded for Each Phone. The First Bin (29.44 Milliseconds) Corresponds to All Values 
Less than or Equal to 29.44 Milliseconds while the Last Bin Corresponds to All Values 

Greater than or Equal to 73.44 Milliseconds. 
 

The results from the moving average with a buffer size of 2048 samples is expected. For 

2048 samples at a 44,100 hertz sampling rate, the time difference between timestamps should be 



 

29 
 

46.44 milliseconds which is where we see the vast majority of the averaged differences clustered. 

Figure 12 suggests that, despite the fact there is an unknown factor which creates bimodal time 

differences when reading ALSA timestamps, a unimodal distribution can be made by producing 

a moving average of two time difference values. Furthermore, this unimodal distribution is more 

consistent than the approach taken in the ALMOND project (using using gettimeofday to 

retrieve timestamps). 

3.3. Reducing the Priority of the Phone’s Program when Using ALSA Timestamps 

One of the potential benefits of using ALSA is the ability to reduce the process priority of the 

program on the phones. The API collects the timestamps after each buffer, so as long as the 

program and network can keep up with streaming and processing the data, our program should 

not need to be run in high priority (unlike previous tests in this section). To illustrate this, the 

program to collect ALSA timestamps was used with the buffer size of to 1024 samples and the 

program was run without any change in priority (without the Linux nice command). Figure 13 

shows the resulting histograms of time differences. 



 

30 
 

Figure 13 – Histograms of Time Differences Between Audio Buffers Using Normal Priority 
and a Moving Average of Two Time Differences. The Starting Transient (First Time 

Difference) was Discarded for Each Phone. The First Bin (14.72 Milliseconds) Corresponds 
to All Values Less than or Equal to 14.72 Milliseconds while the Last Bin Corresponds to 

All Values Greater than or Equal to 34.82 Milliseconds. 
 

Although outliers still exist, the vast majority of cases are still centered at 23 milliseconds. 

The maximum time differences have also not increased (92.70 milliseconds for phone one and 

123.01 milliseconds for phone two). Thus, a higher priority does not seem to alter these results. 



 

31 
 

With these tests, we have achieved the first goal of this project: to improve the precision of 

the timestamps. Nearly 99 percent of timestamp differences are within one millisecond of the 

expected values. These tests have also demonstrated the useful benefit of being able to lower the 

priority of the program to read audio data and timestamps. In the future, lower priority makes it 

easier to incorporate other programs into the design of a system by allowing more access to the 

CPU. However, approximately one percent of timestamp differences differ from the expected 

difference by more than one millisecond. The maximum time difference is nearly one hundred 

milliseconds greater than the expected value. We cannot rely on these outliers for acoustic 

localization and must, therefore, investigate ways to filter out outlier timestamp differences. 

 



 

32 
 

4. Modifying Timestamps to Improve Precision 

In the previous section it was determined that although the accuracy of the timestamps 

collected can be improved, there are still a significant number of timestamp differences which 

are outliers. Recall that these outliers are problematic for source localization. Given the hardware 

and software platform, it would not be reasonable to assume that one would ever achieve 

“perfect” timestamps. However, using methods to correct for errors in timestamps may result in 

more precision than is possible by simply using individual timestamps. 

4.1. Moving Averages 

Perhaps the simplest model that comes to mind when considering correcting for erroneous 

timestamps is to perform a moving average of the differences between timestamps. If individual 

timestamps include a random error component, then averaging would reduce this error. We have 

already seen that the ALSA timestamps depend on a moving average of at least two values, but 

what happens when more timestamps are included in calculating the result? 

For this question, we will use the same time data from the previous test using ALSA 

timestamps, a 1024 sample buffer, and normal priority. These settings are the best choice for our 

analysis because they could be used in a real world application and because we can easily 

compare new results to previous results.  

Figure 14 shows a histogram of the moving average of ten timestamps after discarding the 

first nine transient values for the test. Note that the moving average must incorporate an even 

valued number of timestamp differences due to the bimodal distribution of the timestamps.  



 

33 
 

Figure 14 – Using a Moving Average of Ten Differences Between ALSA Timestamps to 
Improve Consistency and Precision The Starting Transient (First Nine Time Differences) 

were Discarded for Each Phone. The First Bin (14.72 Milliseconds) Corresponds to All 
Values Less than or Equal to 14.72 Milliseconds while the Last Bin Corresponds to All 

Values Greater than or Equal to 34.82 Milliseconds. 
 

The results of the moving average are not completely expected. While the maximum 

differences between timestamps has been successfully reduced in both cases (30.10 milliseconds 

for phone one and 43.68 milliseconds for phone two), for phone two there has been no reduction 



 

34 
 

in the number of time differences greater than thirty-five milliseconds. This phenomenon occurs 

because there are a few time stamps which create such great outliers that they cannot be easily 

corrected for with averages of ten values. However, timestamps are acquired at a rapid rate. If 

one were to use 100 timestamp differences in a moving average, for example, it would take less 

than 2.4 seconds before the system could be operational. With higher averages, any individual 

timestamp difference's effect can be reduced. To demonstrate this, a moving average of 100 was 

performed on phone two's timestamp differences using ALSA timestamps. The results are shown 

in a histogram in Figure 15. Phone two was used because with a moving average of 10 there 

were more outliers of greater magnitude than phone one. 

Figure 15 - Using a Moving Average of 100 Differences Between ALSA Timestamps to 
Improve Consistency and Precision The Starting Transient (First 99 Time Differences) 

were Discarded. The First Bin (14.72 Milliseconds) Corresponds to All Values Less than or 
Equal to 14.72 Milliseconds while the Last Bin Corresponds to All Values Greater than or 

Equal to 34.82 Milliseconds. 
 

Using a moving average of 100 on phone two's time data from ALSA timestamps, all time 

differences are now within 3 milliseconds of the expected time difference, while 99.9 percent are 

within one millisecond. This is a large step forward from the ALMOND project. 



 

35 
 

4.2. Moving Medians 

Instead of using a moving average approach, it may be beneficial to consider taking 

advantage of the fact that the vast majority of time differences are the values we wish to have. To 

do this, we first start with a moving average of two because without the moving average of two, 

it would be likely that the median would fall somewhere around four milliseconds or forty 

milliseconds due to the bimodal distribution of the ALSA timestamp differences. We then do a 

moving median of ten values of the moving average. The resulting histogram of the time 

differences is shown in Figure 16. 

 

 

 

 



 

36 
 

Figure 16 – Histograms of a Ten Sample Moving Median Applied To Time Differences 
Created from Applying a Moving Average of Two to ALSA Timestamps. The Starting 
Transient (First Nine Time Differences) were Discarded for Each Phone. The First Bin 

(14.72 Milliseconds) Corresponds to All Values Less than or Equal to 14.72 Milliseconds 
while the Last Bin Corresponds to All Values Greater than or Equal to 34.82 Milliseconds. 
 

These results show a huge improvement in consistency over the last results. In all of the data 

collected there are only eight values which were not within a millisecond of 23.22 milliseconds 

expected. The test discards the first nine values (since this is a moving median of ten values, the 



 

37 
 

transient values should not be included). This indicates that the outliers are a long string of 

timestamp differences that occur. It is unknown what causes these strings. 

It may, however, not be prudent to use moving medians in application. Although the vast 

majority of timestamp differences fall within a millisecond of the expected values, small errors 

in individual differences may accumulate over a long period of time to produce undesired drift. 

More work will have to be done to know whether moving medians can be effectively utilized. 

4.3. Synchronizing Time Between Phones 

Using moving medians and moving averages along with timestamps retrieved through the 

ALSA API, we can retrieve the time differences in a consistent and precise manner, we need to 

examine the second issue of time synchronization: the ability of the phones to synchronize their 

clock times with each other. The data collected during the ALMOND project seemed to indicate 

that the phones would drift away from one another at a linear rate of approximately fifty 

microseconds per second. Due to time constraints, it was unclear how closely they could be 

synchronized initially. For this project tests were performed to measure the extent of this initial 

synchronization. 

4.4. Methodology 

The hardware setup for this experiment is exactly the same as from the previous experiments 

to test UDP synchronization (see section 7 of [ALMOND, 2009]). Briefly, the two Openmoko 

devices are placed such that their microphones are equidistant from a speaker and the line 

passing through the microphones was perpendicular to the midpoint of the speaker 0.5 meters 

away (see Figure 6). The distance was measured using a tape measure which has labels for 

centimeters. Assuming placement errors of less than one centimeter the maximum time 

difference of arrival caused by errors in measurement will be less than thirty microseconds. The 



 

38 
 

speaker, Altec Lansing Computer Speaker System ACS90, was set to a volume such that a five 

kilohertz sine wave played at a distance of one half meter produced 87 dB Sound Pressure Level 

(SPL) as measured by Radio Shack Digital-Display Sound-Level Meter (model 33-2055). The 

ambient noise of the room was measured to be 57 dB SPL. 

The program used on the phones was the same program as described in section seven of the 

ALMOND project (Time Synchronization Using User Datagram Protocol Method). This 

program was used due to convenience. Briefly, the phones would stream sound and audio data 

over the network to the central processing point. At the central processing point, the sound data 

would be analyzed looking for a 100 millisecond chirp which varied in frequency from 100 to 

20,000 hertz. The program was run at the highest priority using the Linux nice command. All 

sounds and the UDP broadcast messages were sent from a Dell desktop running Fedora 10 Linux 

with kernel version 2.26.27 with a 2.8 gigahertz Pentium IV processor and 512 megabytes of 

RAM.  

At the beginning of the test, the phones would start listening for a UDP broadcast message 

from the Fedora computer. When the phones received the message, they would reset their clocks 

to a known time. Thereafter, the phones would start to record and send audio and time data to the 

MATLAB computer. A chirp sound was then manually initiated, and the time of occurrence was 

noted for each phone. All of these steps took place within ten seconds of each other. Given the 

previously discovered drift rate of approximately 50 microseconds per second, the values 

recorded could have a bias of up to .5 milliseconds, a small enough error for a rudimentary 

comparison. This bias could be reduced in the future by creating an automated method of 

performing the test. The test was stopped after the first chirp and the entire procedure (listening 



 

39 
 

and playing a UDP broadcast message, resetting of the phone's clocks, recording audio data, 

playing a chirp, and noting the time difference) was repeated 50 times. 

4.5. Results and Discussion 

Under ideal conditions, the difference of arrival times of the chirp at each of the phones 

should be zero. The UDP broadcast would get to each phone at the same time, both phones 

would take the same amount of time to reset their clocks, there would be no drift, and the time 

values would be read correctly for all audio. 

Figure 17 shows the results of the time differences between detection of the chirp between 

the two phones for this UDP test when run fifty times. 

Figure 17 – Initial Differences in Time Synchronization when using a UDP Broadcast 
Message for Synchronization 

 

These results indicate that it would indeed be possible to get a high amount of precision when 

synchronizing phones using UDP broadcast messages, however, combined information from 

several messages sent for synchronization would be required. The average value for the initial 

synchronization was -0.0733 milliseconds (meaning phone one was .0733 milliseconds behind 



 

40 
 

phone two) with a standard deviation of 4.38 milliseconds. The average value is in opposition to 

the drift, as in the test to synchronize the phones using a UDP broadcast signal (see section seven 

of [ALMOND 2009]) it was found that phone two’s clock would run faster than phone one. 

These results seem to indicate that the initial synchronization is approximately zero centered, so 

simple averaging of the times should suffice to improve synchronization. 



 

41 
 

5. Discussion 

This project was successful in achieving its two main goals. Firstly, we were able to retrieve 

more precise timestamps at a lower priority by using the ALSA API. Secondly, we were able to 

take the timestamps and manipulate them with moving averages and moving medians to be able 

to achieve even more precise results. 

There are still several problems facing acoustic localization using phones, however. One of 

most pressing issues is to determine if ALSA is recording all the necessary audio data. Our intial 

tests in section 3.1 indicate that it is not unreasonable to assume that all data is being recorded, 

but it has not been proven. One way of performing this test would be to remove the microphone 

from an Openmoko and replace it with a function generator to generate a consistent sine wave. It 

would then be easier to search recorded audio data for discontinuities or phase shifts. 

To date, no method has been implemented to continuously synchronize the time between two 

phones. In section four of this project, it was postulated that UDP broadcast messages could be 

used for this purpose. In such a system, the central processing point would send out periodic 

UDP messages, when the phones received the messages, they would retrieve a timestamp and 

then send the time data back to the central processing point. The central processing point would 

determine how to correct the offset of the phones while accounting for the drift. If this method 

were implemented, it may even be possible to eliminate ALSA timestamps. If the central 

processing point can determine the initial time offset and can account for the drift of the phone’s 

clocks, then theoretically the time can be determined based on the number of audio samples 

received. Of course, this is only one possible method of using UDP broadcast messages. One 

could postulate others. The important point to take away is that with the average initial 

synchronization achieved by UDP messages described in section 4.3 being close to zero (.0733 



 

42 
 

milliseconds off), it should be possible to synchronize between the phones (using averaging) to 

within a millisecond of error.  

Other possible methods of achieving time synchronization between phones were discussed in 

[ALMOND, 2009]. Briefly, one could use GPS to synchronize the clocks of the phones. GPS 

receivers are able to determine the time precise to within a few hundred nanoseconds, which 

should be more than enough for acoustic localization. Unfortunately, GPS is not available in all 

locations where acoustic localization may be useful, for example, indoors or in urban areas with 

many tall buildings. In addition, this work has shown that even if precise time is available on a 

phone, time can not necessarily be associated with audio data samples with the same amount of 

precision. Another method would be to use NTP, which works by having the phones query a 

reference time base using UDP messages. From many of these messages, the phone will slowly 

correct its clock drift until it is synchronized with the time base.  

 



 

43 
 

6. Conclusions 

The first goal of this project was to obtain more precise timestamps from the hardware. The 

first step towards achieving this goal was fetching timestamps from the ALSA API. Using this 

method outright, resulted in less than one percent of differences between successive timestamps 

being within one millisecond of the expected values. However, it was discovered that the 

resulting ALSA timestamps had a bimodal distribution, with timestamp differences alternating 

between the two nodes. Using this information, a moving average of two was applied to the 

timestamp differences resulting in over 99 percent of the timestamp differences falling within 

one millisecond of the expected values. Using ALSA timestamps provided the added benefit of 

being able to reduce the priority to normal levels and still have over 98 percent of the timestamp 

differences fall within one millisecond of the expected values.  

The second goal of this project was related to reducing the number of outliers present even 

when using ALSA timestamps. To reduce the number of outlying timestamp differences, the 

differences were filtered using both moving averages and moving medians. With a moving 

average of 100, all timestamp differences fell within three milliseconds of the expected value, 

while 99 percent were within one millisecond of the expected value. A moving median of ten 

timestamp differences provided 99 percent of values within one millisecond, however it is still 

unclear whether a median can be applied in practice due to the potential for small errors in 

individual differences accumulating over time causing drift. Moving medians also revealed long 

strings of timestamp differences that were much shorter than expected (over ten milliseconds less 

than the expected values). The causes of these short timestamp differences is still unexplained. 

This project also further characterized the errors in synchronization between phones by 

investigating the initial synchronization using a UDP broadcast message. The average initial 



 

44 
 

synchronization between two phones had a mean of 0.0733 milliseconds. This indicates that one 

could use multiple UDP messages in order to synchronize the phones to less than a millisecond, 

even given the bias of up to .5 milliseconds of the test. 

Given the ability of UDP broadcast messages to synchronize the time between the phones to 

less than a millisecond, and the ability to retrieve timestamps from a phone with precisions of 

less than three milliseconds, it should be possible to detect when audio samples occurred precise 

to within four milliseconds. Of course, four milliseconds would be a worst case scenario. We 

have shown that over 99 percent of timestamp differences are within one millisecond, and would 

therefore conservatively expect to be able to determine the time at which an audio sample was 

taken precise to within 2 millisecond the vast majority of the time. These results are far better 

than the initial ALMOND project which could achieve synchronization to within ten 

milliseconds but only for two to three minutes at a time. 

Although this project and the ALMOND project made significant progress towards acoustic 

localization using cellular phones, there are still a number of hurdles that must be overcome 

before a viable system can be implemented. Although using moving averages and moving 

medians has been shown to increase the performance of the system, no method for actually 

performing these calculations in real time has been implemented. Furthermore, a method will 

need to be implemented to synchronize the clocks between the phones, taking into account the 

differences in initial synchronization by sending out multiple UPD broadcast messages and 

taking into account the drift rate which is relatively constant between the two phones. Time 

synchronization could be custom built, or (since the priority on the main program was reduced) 

one may take advantage of an already implemented method of synchronization such as NTP. An 



 

45 
 

even better option for future phones if the hardware supports it would be to directly use GPS as a 

time base for synchronization. 

These two projects have shown some of the limitations and many of the capabilities of cell 

phones as a platform for development. Although there are many challenges ahead, the viability 

of using cellular phones as mobile sensors is apparent. 

 



 

46 
 

7. References 

Almquist, S., Skehan, D., & Saleem, M. (2009). Acoustic localization for mobile open-source 

network deployment (ALMOND). Major Qualifying Project Report, Worcester 

Polytechnic Institute. 

Birchfield, S., & Gillmor, D. Acoustic localization by accumulated correlation. Retrieved 

September 7, 2009, from http://www.ces.clemson.edu/~stb/research/acousticloc/  

ATR0630, ATR0635 ANTARIS 4 GPS single chips. Retrieved September 4, 2009, from 

http://web.archive.org/web/20071010080226/www.u-

blox.com/products/Data_Sheets/ATR0630_35_SglChip_Data_Sheet(GPS.G4-X-

06009).pdf.  

Dell inspiron image. Retrieved October 13, 2009, from 

http://images.bilsimser.com/dell_inspiron.jpg.  

FWG114pv2 image. Retrieved October 13, 2009, from 

http://kbserver.netgear.com/images/fwg114pv2.gif. 

Kysela, J., Bagnara, A., Iwai, T. & Pol, F. v. d. (2009). PCM (digital audio) interface. Retrieved 

December 3, 2009, from http://www.alsa-project.org/alsa-doc/alsa-lib/pcm.html  

Openmoko freerunner image. (2008). Retrieved October 13, 2009, from 

http://www.gadgetarena.com/gadget-content/uploads/2008/07/openmoko-neo-

freerunner.jpg. 



 

47 
 

Appendix A: Program to Retrieve and Record Timestamps using ALSA API Function 
Calls 

 
/* Use the newer ALSA API */ 
#define ALSA_PCM_NEW_HW_PARAMS_API 
#include <stdio.h> 
#include <sys/types.h>  
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <sys/time.h> 
#include <time.h> 
#include <string.h> 
#include <sched.h> 
#include <alsa/asoundlib.h> 
#include <alsa/pcm.h> 
 
 
typedef struct node{ 
  int size; 
  char * data; 
  struct node * next; 
}sdata; 
 
sdata * head = NULL;  
sdata * tail = NULL; 
 
void enqueue (sdata * addto) { 
  addto->next = NULL; 
  if(head == NULL) { 
    head = addto; 
    tail = addto; 
  } else { 
    tail->next = addto; 
    tail = addto; 
  }   
} 
 
int dequeue(int sock ) { 
   
  if(head == NULL) { 
    return 0; 
  }  
 
  sdata * savesdata = head; 
  int err; 
  err = send(sock,head->data, head->size, MSG_DONTWAIT); 
  if(err < 0) { 
    if(errno == EAGAIN) { 
      printf("EAGAIN\n"); 
      return -1; 
    } else { 
      return -2; 
    } 
  } else { 



 

48 
 

    if(err == head->size) { 
      head = head->next; 
      free(savesdata->data); 
      free(savesdata); 
    } else { //Didn't send everything 
      sdata * incompsnd = malloc(sizeof(sdata)); 
      if(incompsnd == NULL) return -3; 
      incompsnd->next = head->next; 
      incompsnd->data = malloc(head->size-err); 
      if(incompsnd->data == NULL) return -3; 
      incompsnd->size = head->size-err; 
      memcpy(incompsnd->data,head->data+err,head->size-err); 
      if(head == tail) tail = incompsnd; 
      free(head->data); 
      free(head); 
      head = incompsnd; 
    } 
  } 
  return 1; 
 
} 
 
int main(int argc, char *argv[]) { 
  FILE *file; 
  file=fopen("gettimes.txt", "a+");   
 
  /****************internet*******************/ 
     int sockfd, newsockfd, portno; 
     socklen_t clilen; 
     struct sockaddr_in serv_addr, cli_addr; 
           
     if (argc < 2) { 
         fprintf(stderr,"ERROR, no port provided\n"); 
         return 1; 
     } 
 //This is the cromulent way to do TCP/IP internet 
     sockfd = socket(AF_INET, SOCK_STREAM, 0); 
     if (sockfd < 0) {  
        printf("ERROR opening socket\n"); 
 return 1; 
     } 
     bzero((char *) &serv_addr, sizeof(serv_addr)); 
     portno = atoi(argv[1]); 
     //printf("%d\n",portno); 
     serv_addr.sin_family = AF_INET; 
     serv_addr.sin_addr.s_addr = INADDR_ANY; 
     serv_addr.sin_port = htons(portno); 
     if (bind(sockfd, (struct sockaddr *) &serv_addr,sizeof(serv_addr)) < 0) 
{ 
       printf("ERROR on binding\n"); 
       return 1; 
     } 
     listen(sockfd,5); 
     clilen = sizeof(cli_addr); 
     newsockfd = accept(sockfd, (struct sockaddr *) &cli_addr, &clilen); 
     if (newsockfd < 0) { 
       printf("ERROR on accept\n"); 



 

49 
 

       return 1; 
     } 
     //printf("connection accepted\n"); 
 
  /****************sound***********************/ 
   
     int rc; 
     int size; 
     snd_pcm_t *handle; 
     snd_pcm_hw_params_t *params; 
     snd_pcm_sw_params_t *swparams; 
      
     unsigned int val; 
     int dir=0; 
     snd_pcm_uframes_t frames; 
     char *buffer; 
     unsigned int seconds; 
     unsigned int micro; 
     unsigned int bufread = 0; 
     unsigned int savbufread; 
     int samp; 
 
     int ret; 
 
     snd_pcm_uframes_t avail; 
     snd_htimestamp_t tstamp; 
      
 
     //printf("starting sound stuff\n"); 
      
     /* Open PCM device for recording (capture). */ 
     rc = snd_pcm_open(&handle, "default", SND_PCM_STREAM_CAPTURE, 0); 
     if (rc < 0) { 
       fprintf(stderr, "unable to open pcm device: %s\n", snd_strerror(rc)); 
       exit(1); 
     } 
 
     /* Allocate a hardware parameters object. */ 
     snd_pcm_hw_params_alloca(&params); 
     snd_pcm_sw_params_alloca(&swparams); 
      
     /* Fill it in with default values. */ 
     snd_pcm_hw_params_any(handle, params); 
 
     /* Set the desired hardware parameters. */ 
      
     /* Interleaved mode */ 
     snd_pcm_hw_params_set_access(handle, 
params,SND_PCM_ACCESS_MMAP_INTERLEAVED); 
 
     /* Signed 16-bit little-endian format */ 
     snd_pcm_hw_params_set_format(handle, params,SND_PCM_FORMAT_S16_BE); 
 
     /* One channel */ 
     snd_pcm_hw_params_set_channels(handle, params, 1); 
      
     /* 44100 bits/second sampling rate (CD quality) */ 



 

50 
 

     val = 44100; 
     snd_pcm_hw_params_set_rate_near(handle, params, &val, &dir); 
 
     /* Set period size to 32 frames. */ 
     frames = 32; 
     snd_pcm_hw_params_set_period_size_near(handle, params, &frames, &dir); 
 
 
     /* Write the parameters to the driver */ 
     rc = snd_pcm_hw_params(handle, params); 
     if (rc < 0) { 
       fprintf(stderr, "unable to set hw parameters: %s\n", 
snd_strerror(rc)); 
       exit(1); 
     } 
 
     //Software Parameters 
     rc = snd_pcm_sw_params_current(handle, swparams); 
     if(rc < 0) { 
       printf("unable to determine software params %s\n", snd_strerror(rc)); 
     } 
      
     /* Enable Timestamps. */ 
     rc = snd_pcm_sw_params_set_tstamp_mode(handle, swparams, 
SND_PCM_TSTAMP_MMAP); 
     if(rc < 0) { 
       printf("Can't set timestamps\n"); 
       exit(1); 
     } 
 
     rc = snd_pcm_sw_params(handle, swparams); 
     if (rc < 0) { 
       fprintf(stderr, "unable to set sw parameters: %s\n", 
snd_strerror(rc)); 
       //       exit(1); 
     } 
      
 
 
      
     /* Use a buffer large enough to hold one period */ 
     snd_pcm_hw_params_get_period_size(params, &frames, &dir); 
     size = frames * 2; /* 2 bytes/sample, 1 channels */ 
     samp = size/2; 
 
     /*********main loop**********************************/ 
 
     snd_pcm_hw_params_get_period_time(params, &val, &dir); 
   
     rc = read(newsockfd, &savbufread, sizeof(int)); 
     //endianness... 
     savbufread = (savbufread >> 24) |  
       (( savbufread << 8) & 0x00FF0000) |  
       ((savbufread >> 8 ) & 0x0000FF00) | 
       (savbufread << 24); 
     
     if(rc < 0) { 



 

51 
 

       printf("Read error\n"); 
       return 1; 
     } 
 
     printf("Buffer Size: %d\n", savbufread); 
   
     while (1) { 
 
       sdata * audiodata = malloc(sizeof(sdata)); 
       if(audiodata == NULL) { 
  printf("Data Struct Not Allocated\n"); 
  return 1; 
       } 
       audiodata->data = malloc(size); 
       if(audiodata->data == NULL) { 
  printf("Data Not Allocated\n"); 
  return 1; 
       } 
 
       rc = snd_pcm_mmap_readi(handle, audiodata->data, frames);     
        
       if (rc == -EPIPE) { 
  /* EPIPE means overrun */ 
  fprintf(stderr, "overrun occurred\n"); 
  snd_pcm_prepare(handle); 
       } else if (rc < 0) { 
  fprintf(stderr,"error from read: %s\n",snd_strerror(rc)); 
  printf("fail at 1"); 
       } else if (rc != (int)frames) { 
  fprintf(stderr, "short read, read %d frames\n", rc); 
  printf("fail at 2"); 
       } 
       //Read timestamp 
       rc = snd_pcm_htimestamp(handle, &avail, &tstamp); 
       if(rc < 0) { 
  printf("Timestamp Error: %d\n", rc);  
  return 1; 
       } 
 
       seconds = tstamp.tv_sec; 
       micro = tstamp.tv_nsec / 1000; 
       fprintf(file,"%d,%ld,%lu,",seconds,tstamp.tv_nsec,(unsigned 
long)avail); 
        
       if(bufread < samp) { 
 
  //First Part of Audio Data 
  audiodata->size = 2*bufread; 
  enqueue(audiodata); 
 
  //Time Data 
  sdata * timedata = malloc(sizeof(sdata)); 
  if(timedata == NULL) { 
    printf("Time Struct Not Allocated\n"); 
    return 1; 
  } 
  timedata->size = 2*sizeof(int); 



 

52 
 

  timedata->data = malloc(2*sizeof(int)); 
  if(timedata->data == NULL) { 
    printf("Time Data Not Allocated\n"); 
    return 1; 
  } 
 
  micro = micro + 23*bufread; //An approximation, .3242630 us off per 
samp 
  while(micro > 1000000) { 
    micro = micro - 1000000;  
    seconds++; 
  } 
  seconds = (seconds >> 24) |  
    (( seconds << 8) & 0x00FF0000) |  
    ((seconds >> 8 ) & 0x0000FF00) | 
    (seconds << 24); 
  micro = (micro >> 24) |  
    ((micro << 8) & 0x00FF0000) |  
    ((micro >> 8 ) & 0x0000FF00) | 
    (micro << 24); 
  memcpy(timedata->data, &seconds, sizeof(unsigned int)); 
  memcpy(timedata->data + sizeof(unsigned int), &micro, sizeof(unsigned 
int)); 
   
  enqueue(timedata); 
 
  sdata * secondaudiodata = malloc(sizeof(sdata)); 
  if(secondaudiodata == NULL) { 
    printf("Second Audio Struct Not Allocated\n"); 
    return 1; 
  } 
  secondaudiodata->size = size-2*bufread; 
  secondaudiodata->data = malloc(size-2*bufread); 
  if(secondaudiodata->data == NULL) { 
    printf("Second Audio Data Not Allocated\n"); 
    return 1; 
  } 
 
  memcpy(secondaudiodata->data, audiodata->data+2*bufread, size-
2*bufread); 
 
  enqueue(secondaudiodata); 
  bufread = savbufread - frames + bufread; 
   
       } else { //No time data this buffer 
  audiodata->size = size;   
  enqueue(audiodata); 
 
  bufread = bufread - frames; 
       } 
 
       do { 
  ret = dequeue(newsockfd); 
  if(ret < -1) { 
    printf("Catastrophic Error in Send or Malloc\n"); 
    return 1; 
  } 



 

53 
 

       } while(ret > 0); 
        
     } //while(1) 
 
     snd_pcm_drain(handle); 
     snd_pcm_close(handle); 
     free(buffer); 
     return 0; 
} 
 
 
/*****************************************/ 
//bzero function 
 
extern void *memset(void *, int, size_t); 
 
void bzero (void *to, size_t count) 
{ 
  memset (to, 0, count); 
} 


