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Abstract

The velocity field in the wake of a small scale flexible parachute canopy was

measured using two-dimensional particle image velocimetry.  The experiments were

performed in a water tunnel with the Reynolds number ranging from 3.0 - 6.0 × 104.

Both a fully inflated canopy and the inflation phase were investigated in a constant

freestream (i.e. an infinite mass condition).  The fully inflated canopy experienced a

cyclic “breathing” which corresponded to the shedding of a vortex ring from the canopy.

The normalized breathing frequency had a value of 0.56 ± 0.03.  The investigation of the

canopy inflation showed that during the early stages of the inflation, the boundary layer

on the canopy surface remains attached to the canopy while the canopy diameter

increases substantially.  The boundary layer begins to separate near the apex region when

the diameter is ~68% of the fully inflated diameter.  The separation point then progresses

upstream from the canopy apex region toward the canopy skirt.  During this time period,

the force rapidly increases to its maximum value while the separation point of the

boundary layer moves upstream towards the skirt.  The force then declines rapidly and

the separated boundary layer rolls-up into a large vortex ring near the canopy skirt.  At

the same time, the canopy is drawn into an over-expanded state after which the cyclic

breathing initiates. The unsteady potential force was estimated from the rate of change of

the canopy volume.  It contributed no more than 10% of the peak opening force and was

only significant during the early stages of inflation.  The majority of the opening force

was the result of the time rate of change of the fluid impulse.  It accounts for

approximately 60% of the peak opening force.  This result shows that the formation of

the viscous wake is the primary factor in the peak drag force of the canopy.  
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1. Introduction 
1.1 Literature Review

The kinematics and dynamics of a parachute system incorporate many facets of

the engineering field from the fluid dynamics of the canopy to the structural mechanics of

the suspension lines and the devices used to attach the payload to the parachute.  The

flow physics around the canopy is perhaps one of the least understood components of the

parachute system.  For instance, the connection between the large opening force (i.e. the

opening shock) and the fluid kinematics that produce it has not been extensively

examined.  What flow field phenomena primarily contributes to the opening force?  Does

the force come primarily from the acceleration of the fluid due to increasing canopy size

(an added mass effect) or are wake effects responsible?  Similar questions can be posed

about how the flow physics affects the inflation time of the canopy or are there any

dominate shedding frequency from a fully inflated canopy.  This research attempts to add

to the understanding of the flow physics of a parachute.  

The idea of using a device to aerodynamically decelerate the fall of an object has

been around for centuries.  The first known formal depiction of such a device was done

by Leonardo Da Vinci in the late 15th century when he sketched a drawing of rigid

framed canvas pyramid from which a person was suspended below it.  Although there is

no evidence that Da Vinci ever attempted to use his design, the design he proposed was

recently shown to work when a British skydiver constructed and used a Da Vinci inspired

parachute to safely descend from a hot air balloon at 10,000 feet (Carrington, 2000).  It is

generally acknowledged that the first use of parachutes occurred in the late 18th century

where the first documented case of using a parachute to escape an exploding hot air
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balloon in a basket over Paris was by Andre-Jacques Garnerin in October 22, 1797.  After

which he made many more jumps to entertain crowds of people.  Until the early 20th

century, parachutes were mainly used as entertainment devices and had very little

practical uses.  

With the advent of modern flight, it was realized that parachutes could be put into

more practical purposes.  This eventually resulted in the need for formal studies into the

dynamics of parachutes.  G.I. Taylor performed early experiments on the use of a

parachute as a brake to shorten the landing distance of an aircraft in 1915 which

expanded into a study of the shape of a parachute canopy (Taylor, 1963).  Müller (1927)

proposed an inflation process based on the enclosed volume of the parachute using the

theory of the conservation of mass.  He concluded that the parachute inflated in a

constant distance for geometrically similar canopies (i.e. canopies that have similar

geometric construction).  This leads directly to the concept of an inflation time for a

given speed and parachute.  It was from these conclusions that many theories were

developed based on an opening or filling time (O’Hara, 1949; French, 1963; Heinrich,

1969; Heinrich & Noreen, 1970; Heinrich, 1972; Payne, 1973).  These theories did not

rely on the details of the flow around the canopies, just the time it took to inflate the

canopy based on various assumptions about the canopy shape and the inlet/outlet

conditions.  

In these theories, the force is estimated from application of Newton’s second law

(Heinrich , 1969),

m du
dt

m g C Su u dm
dt

dm
dt

m m m du
dts s D

i a
p i a= − − +F

HG
I
KJ − + +

1
2

2ρ d i 1.1
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where ms is the mass of the suspended payload, mi is the mass of the fluid enclosed or

included by the canopy, mp is the mass of the canopy, ma is the apparent mass, u is the

system velocity, CD is the drag coefficient of the canopy, S is the area of the canopy, and

ρ is the density of the fluid.  The two unsteady mass terms are the included mass and the

apparent mass.  Each of these unsteady mass terms is proportional to the enclosed volume

of the canopy, 

u dm
dt

uV∝ ρ & 1.2

where &V  is the time derivative of the enclosed volume.  For the time rate of change of

the included mass, the proportionality constant is equal to one while the proportionality

constant for the apparent mass depends on the geometry of the canopy.  The apparent

mass (or sometimes called the virtual mass) of the flow is based on the assumption of

potential flow around the canopy.  The model in Eq. 1.1 then requires any viscous effects

to be accounted for in the u2 drag coefficient term.  However, it has traditionally been

assumed that the drag coefficient (derived from experimental data) is constant.  Any

transient behavior is therefore associated with the rate of change of the unsteady mass

terms and the deceleration of the system.  The parachute can inflate under  two possible

conditions, either a finite or an infinite mass condition.  During a finite mass inflation, the

velocity of the system decays as the parachute inflates.  However during an infinite mass

inflation, the velocity does not decay and remains (nearly) constant during the inflation;

the parachute behaves as if an infinite mass is attached to the parachute.  This implies that

under an infinite mass inflation or while the parachute is in steady descent, the last term

listed in Eq. 1.1 can be neglected since du/dt → 0.  Therefore, during an infinite mass
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inflation, this model assumes any unsteadiness is associated with the time rate of change

of the mass terms (i.e. the rate of change of the enclosed canopy volume).  

Theories have been developed for estimates of the apparent mass of the flow

around the canopy during a finite mass inflation (Ibrahim, 1967; Eaton, 1983; Yavuz,

1989).  The models assume a rigid canopy and the unsteadiness in the apparent mass is

associated only with the deceleration of the canopy since the enclosed canopy volume

does not change in the models.  These models oversimplify the complex fluid dynamics

and kinematics of the parachute inflation process.  From a parachute designers

standpoint, these simplification are justified for the prediction of the parameters such as

inflation time and the maximum opening forces.  The research has primarily focused on

obtaining these parameters from analytical theories as well as experimental data (French,

1964; Knacke, 1992; Wolf, 1999).  The existing theories provide reasonable results for

well known canopy geometries and conditions but are limited in new situations.

However, from an aerodynamic view point, these simplifications and theories obscure the

flow physics that drive the canopy inflation process.  

The limitations of the inflation time theories was recognized by Müller (1927)

when he acknowledged the flow around the canopy was turbulent and separated but he

applied simplifying assumption to eliminate the difficulties introduced by these flows.

Studies and mathematical models for parachutes systems (i.e. the canopy and payload

combination) have been developed which acknowledge and account for the unsteady

flow conditions that the canopy encounters during inflation (Wolf, 1974; McVey & Wolf,

1974; Purvis, 1982) but still do not provide much insight into the details of the flow field

around the canopy itself.  
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The canopy inflation has been modeled in the past by replacing the canopy

surface with a vortex sheet (Klimas, 1972, 1977, 1979; Reddy, 1974).  Another modeling

method used a starting vortex that was placed near the canopy skirt and the flow field was

allowed to develop (Roberts, 1974).  These methods have been utilized in more recent

numerical studies as computational methods and practices have evolved with the modern

digital computer.  A review of some of the methods used for numerically calculating the

canopy inflation process and bluff body flows in general was given by Peterson et al.

(1996).  Recently, computational algorithms have been developed to solve the three-

dimensional Navier-Stokes equations with fluid-structure interaction between the canopy

and the surrounding fluid (Stein, 1999; Stein et al., 1999; Stein et al., 2000).  These

computational models are currently limited to only modeling a fully inflated parachute

canopy.  Additionally,  studies have been performed to examine and model the structural

dynamics of the canopy material in the flow field (Accorsi et al., 1999).  However,

almost no experimental data exists to verify the fidelity of either the structural or fluid

dynamic simulations.  

Few experimental studies have been performed that measure specific flow field

parameters around a parachute canopy either during inflation or once it has reached a

steady state condition.  DeSantis (1970) measured the flow entering and in the wake of an

inflating canopy using a hot-wire probe along a radial at a few cross-sectional planes.

Klimas (1973) and Klimas & Rogers (1977) measured the velocity field of an inflating

canopy using a helium bubble survey which provided mean isovelocity contours around

the canopy.  The measurement of the pressure distribution of a fully inflated parachute

canopy was conducted by Pepper & Reed (1976) in which they showed the integrated
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pressure provided a reasonable estimate of the drag force.  The only other known

measurement of the velocity field around an inflating parachute model was conducted by

Lingard (1978).  He was able to measure several tens of velocity vectors around an

inflating small scale parachute model in both a water tow tank and a wind tunnel.  The

limited resolution of the measurements however precluded computations of the vorticity

or the integrated measures of the flow such as circulation or impulse.  

A study of the flow past a slotted bluff body model in a constant freestream was

performed by Higuchi (1989) which showed the effects porosity of the body has on the

overall characteristics of the body wake.  Studies of the wakes around rigid three-

dimensional bluff bodies that at least qualitatively should behave similarly to parachutes

(i.e. disks and cups) in steady and accelerating flows have been performed to understand

the unsteady flow field around these bodies (Roberts, 1980; Higuchi, 1991; Higuchi et

al., 1996; Higuchi et al., 1996; Lamberson et al., 1999).  The rigid nature of these bodies

though limit the applicability of these flows to the flow around a flexible parachute

canopy.  

1.2 Objectives
The objectives of the research is to investigate the fluid dynamics of a flexible

parachute canopy and how these characteristics affect the behavior of the canopy.  A

review of the available literature shows that knowledge of the flow field evolution around

a canopy is limited and not well understood.  So the aim of the study is summarized as
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• measure the temporal evolution of the velocity field (and by extension

the vorticity field) in the near wake of a flexible canopy both during an

infinite mass inflation and once the canopy is fully inflated,  

• obtain simultaneous measurements of the canopy shape and drag that

are correlated with the velocity field measurements, 

• identify any features of the flow field that affect the behavior of the

canopy both during the inflation of the canopy (particularly around the time

of the peak opening force) and once it is fully inflated,  

• examine whether the primary source of the drag force is the result of an

unsteady potential flow (i.e. an apparent mass effect from the change in the

enclosed canopy volume) or the formation of a turbulent wake behind the

canopy.  

To accomplish these objectives, small scale parachute canopies were constructed for

testing in the WPI water tunnel facilities.  The particle image velocimetry technique

along with image processing routines are used to measure the evolving velocity field in

the near wake region of the inflating canopy models.  From these measurements, the

connection between the flow field and the canopy dynamics and motion are examined.  

1.3 Full Scale Parachute Inflation
The inflation of a full-scale parachute develops in a few stages.  Inflation of a

64-ft. round full-scale canopy is shown in Fig. 1.1.  Initially, the cargo is released from

the aircraft with the main parachute packed into a deployment bag.  Attached to the

deployment bag is a small parachute (usually called a drogue chute) that pulls the
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deployment bag off the main parachute canopy.  The process of the drogue chute

extracting the main parachute is photographed in the first four images of Fig. 1.1.  Once

the deployment bag has been removed, the main parachute resembles a collapsed sock or

hose.  Air begins to enter the mouth or skirt area of the parachute causing the entrance

region of the canopy to form into a cylindrical shape while the upper or crown region of

the canopy remains in a collapsed state.  The air being forced into the canopy mouth

causes the canopy material to expand into a cylindrical shape along the whole length of

the canopy with the crown region having a hemi-spherical shape.  At this point, air begins

to collect at the apex region of the canopy causing the canopy material to bulge while the

skirt region remains collapsed in a cylindrical shape.  The maximum diameter of the

inflating canopy is in the bulging region of the canopy.  The air continues to accumulate

in the apex region of the canopy further increasing the size of the bulge in both axial and

transverse directions.  The axial expansion of the bulge starts from the apex region of the

canopy and moves towards the canopy skirt.  The canopy continues to expand or inflate

until it reaches its fully inflated size (the last two images in Fig. 1.1) and the maximum

canopy diameter is realized at the skirt.  The canopy diameter however continues to grow

beyond this point into an over-expanded state (not shown in Fig. 1.1).  During the over-

expanded state, the canopy achieves its maximum diameter and the canopy apex region

becomes partially collapsed or buckled as the canopy skirt is drawn out into the over-

expanded state.  After the over-expansion, the canopy size decreases to a shape similar to

that seen in the last frame of Fig. 1.1.  By this time, the canopy has reached its steady

descent mode and the parachute system develops a few new oscillation modes which

depend on the design of the canopy and the overall parachute system.  These modes could
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include a symmetric breathing of the canopy itself and a helical oscillation of the entire

parachute system around a common axis.  The whole inflation process occurs in a time

span of a few seconds.

A graph of the opening force that a full-scale parachute experiences during the

inflation is shown in Fig. 1.2.  It should be noted that the force shown in Fig. 1.2 does not

correspond to the images in Fig. 1.1.  The force initially begins with a short sharp spike

when the drogue chute pulls the canopy from the deployment bag and the suspension

lines on the canopy are drawn taunt.  The force then drops until the canopy begins to

inflate and the force rapidly rises to its maximum value then declines to its steady descent

drag value.  The connection between the canopy shape and size and the force depends on

whether the canopy inflates in a finite or infinite mass condition (Knacke, 1992).  Recall

during a finite mass inflation, the velocity of the parachute system decays as the

parachute inflates.  In this case, the canopy achieves its fully inflated shape (but has not

yet over-expanded) at a time well after the peak opening force has occurred.  In an

infinite mass parachute inflation, the canopy diameter first becomes equal to the mean

steady state diameter at approximately the same time the peak opening force occurs.  It

should not be assumed that an infinite mass inflation is strictly a research condition, there

are many examples of an infinite mass parachute inflation used in real applications.

Parachutes are often used as a stabilizing component on payloads.  These parachutes are

opened at high speeds and help orientate the payload in a certain direction before larger

parachutes are deployed which actually decelerate the payload.  For example, planetary

probes released from orbit often have small parachutes that deploy high in the

atmosphere of the planet that act to stabilize the payload before larger parachutes are
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deployed lower in the atmosphere that decelerate the payload.  Also, often extraction

parachutes are used to pull payloads out of an aircraft.  These extraction chutes open at

the speed of the aircraft which remains constant and therefore the parachute inflates

under an infinite mass condition.  

1.4 Fluid Dynamic Forces
Lighthill (1986) has suggested that the force a body experiences in a fluid flow

can be decomposed into vortex-flow forces and potential-flow forces.  He further

hypothesized that the vortex forces are proportional to the time derivative of the flow

impulse over the wake of the body.  An exact expression for obtaining the instantaneous

force exerted on a body by the fluid was developed by Noca et al. (1999).  This

expression requires knowledge of only the velocity field (and therefore by extension the

vorticity field) in a finite region around the body.  No knowledge of the pressure field is

necessary.  This is particularly useful in this research since the PIV measurements of the

velocity field provide no knowledge of the pressure field.  The aerodynamic force per

unit mass of a body with an unsteady, arbitrary shape, using the control volume shown in

Fig. 1.3, is
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and Vf  is the volume of the control volume, Sb is the surface area of the body, and Sf is

the surface of the control volume (Noca, 1999).  In Eq. 1.3 and Eq. 1.4, the position

vector is given as rx , the velocity in the control volume is ru , the vorticity is 
r
ω , the

outward normal unit vector is $n , and N is the dimension of space (N = 3 for three

dimensional flows and N = 2 for two dimensional flows).  The velocity of the body

surface is denoted as rus , the unit tensor is I, and the traction tensor is T.  This

relationship requires detailed knowledge of the flow at and near the body surface as well

as the velocity on the body surface.  An alternative form of this expression is given when

the body contains a fluid of a known flow pattern.  It is given by Noca (1996) as
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where V is the volume of the body and we have assumed a three-dimensional flow.

Examination of each term on the right-side of Eq. 1.5 shows that this relation can be

simplified further for its use in this study.  

The first term on the right-side of Eq. 1.5 is the time derivative of the impulse of

the flow in the control volume where the impulse is defined as

r r r
I x dV

V tf

≡ − ×zzz1
2

ρ ω
( )

. 1.6
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This term shows how the vortical portions of the external flow affect the force on the

body.  If we assume a cylindrical coordinate system, as shown in Fig. 1.4, the largest

aerodynamic forces on the canopy will be those in the axial direction (i.e. the drag).

Therefore, taking only the axial component of the impulse, Eq. 1.6 simplifies to

I r drd dzz Vf

= − zzz1
2

2ρ ω θθ 1.7

where r is the radial distance from the centerline of the canopy and ωθ is the azimuthal

component of the vorticity.  Further, if we assume incompressible and axisymmetric flow

then, the axial impulse reduces to

I r drdzz = − zzπρ ωθ
2 . 1.8

Therefore, the drag force associated with the impulse of the flow around the canopy (i.e.

the vortical force) is given as

F dI
dt

d
dt

r drdzz
ω θπρ ω= = − zz 2 . 1.9

Therefore, the vortical force can be altered by either changing the amount of vorticity in

the flow or by moving the vorticity radially in the flow.  It should be noted, that in this

study, the velocity field was measured in a two-dimensional plane that was parallel to the

centerline of the canopy.  It was therefore only possible to calculate the azimuthal

component of the vorticity.  Also, forces in the radial and azimuthal directions can be

estimated from the time derivatives of the impulse in these directions.  However, it is

necessary to know the vorticity in the radial and axial directions (which are not known in

these experiments) to calculate these forces.  
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The second term on the right-side of Eq. 1.5 can be related to the unsteady

potential flow around the canopy.  The velocity in the integrand is the velocity of the

fluid interior to the body, in this case, the velocity of the fluid inside the inflating canopy.

As a limiting case, since the canopy material is nearly impermeable to flow through it,

the maximum velocity on the canopy interior is expected to be no more than the

freestream velocity, U∞.  Assuming the interior velocity remains approximately uniform

and constant, then this term reduces to

d
dt

udV U dV
dt

U Vρ ρ ρr
≤ =∞ ∞zzz & 1.10

This result is reasonable since it can be shown that the drag of a translating, expanding

sphere in an inviscid flow is proportional to the rate of change of the volume of the

sphere (Karamcheti, 1980 and Panton, 1996).  However, Eq. 1.10 is a limiting case since

the average velocity on the interior is expected to always be less than the freestream

velocity.  The flow should either stagnate on the interior of the canopy (Lamberson et al.,

1999) or at most a recirculation region may establish itself inside the canopy.  This

recirculation would introduce vorticity into the interior flow but the magnitude of the

maximum interior velocity is expected to be on the order of the freestream velocity.

Introducing a proportionality constant, kp, of order one to account for the limiting case

analysis, the force due to the unsteady potential flow would be

F k U Vp p= ∞ρ & 1.11

where kp is taken to be one in our calculations.  

The third term is related to the impulse of the interior flow.  Since measurements

of the interior flow were not possible in the experiments, we have no knowledge of the
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vorticity in this region.  Again this region of the flow would be a stagnation point, so

even if there is considerable vorticity contained in the region, it would not be expected to

change rapidly with time and the derivative of the interior impulse is expected to be

small.  Based on this assumption, this term in Eq. 1.5 will be neglected.  

Finally, the last term of Eq. 1.5, relates to the flow at the outer surface of the

control volume.  The control volume used in the calculation should be as large as possible

so as to contain the vorticity in the wake and also to place as much of the control surface

in the freestream.  However, due to the experimental setup portions of the control volume

used in the calculations (namely, the flow upstream of the canopy) are located in regions

where the velocity is not well defined.  This term can also be decomposed into viscous

terms and other terms that contain velocity and vorticity.  Since this portion of the control

volume will be far from the body, viscous effects will be small since the flow will be

inviscid in this region.  It is expected that the primary forces the body experiences will be

from the time derivative of the impulse near the body and all the other terms will be

neglected.  Therefore, the aerodynamic forces that the canopy experiences can be

estimated by

F F F k U V d
dt

r drdzp p= + ≈ −∞ zzω θρ πρ ω& 2 . 1.12

Based on this relationship, the drag can be estimated from measurements of the velocity

field in the wake of the canopy and the volume enclosed by the canopy.  This estimate

can then be compared to direct drag measurements and the significance of the various

flow field features can be established.  
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Figure 1.1.  Images of a full scale parachute inflation (Lee, 1998).  



16

Figure 1.2.  Opening force during full scale parachute inflation (adapted from Lee, 1994).

Figure 1.3.  Control volume used for calculation of aerodynamic forces.  
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Figure 1.4.  Cylindrical coordinate system for canopy.
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2. Experimental Setup 
2.1 Water Tunnel Apparatus

The experiments were conducted in the WPI free-surface water tunnel facilities.

A schematic of the experimental setup is shown in Fig. 2.1 and photographs of the

experimental setup are shown in Fig. 2.2.  The experiments were conducted in the water

tunnel to aid in the measurement of the velocity field around the canopy.  The velocity

field measurements were made using the Particle Image Velocimetry (PIV) technique.

The PIV technique is more easily implemented in water than air.  Also in water, longer

inflation times were achieved for the canopies tested than would be achieved if the tests

were performed in a wind tunnel.  The water tunnel test section has internal dimensions

of 0.6 m wide by 0.6 m deep by 2.4 m long.  The water tunnel was operated at the

nominal speeds listed in Table 2.1.  The actual speeds, U∞, were measured using a Laser

Doppler Velocimetry (LDV) system which also provided a measure of rms-value of the

velocity fluctuations, U’rms.  These measurements were taken along the tunnel centerline

approximately 0.5 m downstream of the test section entrance.  

Table 2.1.  Freestream velocities in water tunnel.

Nominal Actual
U∞ (cm/s) U∞  (cm/s)

U’rms/U∞

20 19.622 1.19%
25 24.585 1.16%
30 29.328 1.23%
35 34.452 1.05%
40 39.134 1.29%

The parachute assembly was attached to a stationary streamlined forebody in the

water tunnel (see Fig. 2.3).  This placed the parachute assembly in a horizontal

orientation.  The forebody had a diameter of 1.4 cm and a length of approximately
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17.5 cm.  By keeping the forebody streamlined and minimizing its dimensions, the wake

effects were also kept to a minimum.  Flow visualization was performed to confirm that

the forebody wake minimally affected the parachute.  The forebody was supported by

0.64 cm diameter rods in the center of the water tunnel test section and approximately

60 cm downstream of the test section entrance.  

For the canopy inflation experiments, the canopy was packed into a round

deployment tube downstream of the forebody which was pulled away to start the inflation

process.  The canopy packing process is explained in the next section.  The ratio of

deployment tube diameter to constructed canopy diameter, Do, was fixed at 7%.   The

deployment tube was pulled away by a thin nylon string which passed through a series of

pulleys and was attached to a stepper motor (see Fig. 2.4).  The stepper motor extracted

the deployment tube at a time which was synchronized with the force measurement and

the imaging systems.  The details of the synchronization and stepper motor control are

presented in Section 2.4.  The tube was pulled at a speed of approximately 65 cm/s.  

2.2 Canopy Sp ecifications
The parachute models were constructed using a solid cloth, flat circular geometry.

The canopies studied had constructed diameters of 15.2 cm and 30.5 cm.  A diagram of

the canopy geometry along with definitions of the dimensions associated with the canopy

is shown in Fig. 2.5.  The canopies tested had no vent hole.  A Reynolds number, ReDo,

based on the constructed diameter is 

Re U D
Do

o= ∞

ν
, (2.1)
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where ν is the kinematic viscosity of water (ν = 0.01 cm2/s).  Table 2.2 lists the Reynolds

numbers as well as the water tunnel solid blockage, εsb, for the canopies and velocities

tested under a steady state condition.  For blockages of 10% or less (Cockrell, 1987),

corrections for the dynamic pressure were applied for the data measured in the steady

state canopy experiments (Macha and Buffington, 1989).  The dynamic pressure, qo, was

corrected as

q q K
C S

So o M
D p

T
u

u= +
L
NM

O
QP1 2.2

where qou is the uncorrected dynamic pressure, KM is a blockage factor derived from

previous experimental data (Macha and Buffington, 1989), CDu is the uncorrected drag

coefficient of the canopy, Sp is the projected area of the canopy diameter, and ST is the

cross-sectional area of the tunnel test section.  No corrections were applied to the canopy

inflation experiments primarily due to the low blockage that occurs during most of the

inflation process.  

Table 2.2.  Reynolds number and solid blockage.

U∞ (cm/s) Do (cm) ReDo × 10-4 εsb

20 15.2 2.98 2.5%
25 15.2 3.73 2.5%
30 15.2 4.45 2.5%
35 15.2 5.23 2.5%
40 15.2 5.94 2.5%
20 30.5 5.96 9.9%

Full-scale canopies have dimensions on the order of 10-30 m, thus the canopies in

this study are on a very small geometric scale which naturally leads to the question of

Reynolds number and scale effects.  Typically full scale canopies descend at a speed of 5-
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10 m/s which would result in a Reynolds number on the order of 106-107.  These values

are very difficult to achieve in any laboratory setting especially in a water tunnel.

Knacke (1992) shows that Reynolds number has little effect on the drag of a canopy over

the range of Reynolds number 105-106.  The present research was limited to the Reynolds

number range listed in Table 2.2 due to the limitations of the experimental facilities.

Scale effects are an important characteristic of parachute modeling.  Heinrich and

Hektner (1971) and Lee (1989) showed that the canopy flexibility is an important

characteristic.  The overall performance of the canopy is affected by the stiffness of the

canopy.  However, given the proper scaling parameters, the scale effects can be

accounted for in the inflation characteristics (Johari and Desabrais, 2001).  

The significant scale difference also introduces technical difficulties in the

construction of the canopy models.  New methods were needed for constructing the

canopy models.  Traditional full-scale parachute canopies are constructed by sewing

individual panels or “gores” together to form an approximate circular geometry (Knacke,

1992).  Constructing the canopy models in this method would result in the models having

larger than necessary stiffness due to the sewing seams along the edge of each gore.  In

order to minimize the stiffness effects at these small scales, it was decided that the

canopy should be made from one solid piece of material instead of individual gores being

sewn together.  The parachutes were constructed from standard 1.1 oz/yd2 rip-stop nylon

and manufactured by cutting the material around a flat circular template at the

appropriate diameter.  The edge of the nylon material was seared, preventing it from

fraying.  An image of the canopy edge between two suspension lines in shown in Fig. 2.6.  
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The permeability of the canopy material is characterized by the mean flow across

the canopy material.  This flow velocity through the material is a function of the pressure

differential and the material pore size.  An estimate of the pressure differential can be

made based on the dynamic pressure.  A full size parachute descents at ~6 m/s in air

(ρ = 1.2 kg/m3) which results in a dynamic pressure of ~22 Pa.  The small scale models

were placed in a freestream of 20 cm/s in water (ρ = 1000 kg/m3) which results in a

dynamic pressure of ~20 Pa.  This shows that the scale models in water operate at similar

dynamic pressures regimes as full scale canopies where the permeability characteristics

of full scale canopies is well known.  It is therefore expected that the small scale model

permeability characteristic will be similar to those of the full scale canopies.  However it

should be noted that the viscosity of air and water differ by two orders of magnitude

which may effect the permeability characteristics of the material.

The suspension lines were made from 100 µm diameter nylon thread.  The length

of the suspension lines, ls, was approximately equal to the constructed diameter of the

parachute canopy, i.e. ls ≅ Do.  It was decided that the number of suspension lines on each

parachute assembly should be 24.  This number was based on early preliminary

experiments in which only 8 or 12 suspension lines were used.  The low number of

suspension lines caused significant bulging or “ballooning” of the canopy between the

suspension lines.  By increasing the suspension line count to 24, the inflated canopy

shape qualitatively matched those observed on full-scale parachutes.  Full-scale

parachutes typically have 16-28 suspensions lines (Knacke, 1992).  

The suspension lines were attached to the canopy by creating a small loop at the

end of the suspension line that was passed through a hole near the edge of the canopy
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skirt (see Fig. 2.6).  The loop in the suspension line was created using a bowline knot

(Bigon and Regazzoni, 1982).  The hole in the canopy was seared again to reduce the

potential for fraying.  The other ends of the suspension lines were attached to a parachute

mount.  The mount was designed to allow for the adjustments of the length of each

suspension line separately (see Fig. 2.3).  This ensured that all the suspension lines were

of equal length.  The parachute mount was attached to the end of the forebody, which was

also the end of a load cell used to measure the force the canopy experienced.  

Based on the measured force the canopy experiences, the maximum force occurs

during the inflation of the canopy (see Chapter 4).  The highest peak opening force was

approximately 6 N.  This results in a stress of approximately 32 MPa (4600 psi) in each

suspension line.  This results in an estimated elongation of the suspension lines (based on

stress-strain curves for nylon published in Bixby et al., 1978) of ~0.03% (0.05 mm)

which is negligible.  It is therefore reasonable to assume the suspension lines as inelastic.  

Flat circular canopy geometries are notorious for large off-axis oscillations when

fully inflated.  In order to minimize this motion, a thin (0.5 mm diameter) flexible nylon

retention line was attached to the forebody and passed through the apex of the canopy.

The end of the retention line was held rigidly far downstream of the canopy.  The

retention line applied the necessary force to restrain the canopy wandering but should not

adversely affect other aeroelastic effects.  At the apex of the canopies, a small (~5 mm

diameter) hard grommet (see Fig. 2.7) was secured to the canopy material so as to allow a

place for the retention line to pass through the material without substantially damaging or

altering the canopy.  
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The packing of the canopy into the deployment tube for the inflation experiments

consisted of drawing the canopy into a roughly cylindrical shape by hand with the water

tunnel turned off.  The canopy was then pushed into the deployment tube until the canopy

was fully encased by the tube with only the suspension lines visible.  The packed canopy

(with the deployment tube) was then pulled to a position where the suspension lines were

taunt.  The water tunnel was then turned on and the freestream velocity was established in

the test section after which the deployment tube was extracted to begin the inflation

process.  This packing process created difficulties in measuring the inflation process

(mainly inflation times) since it resulted in inconsistent folding of the canopy material.

The canopy packing had to be performed underwater to prevent air bubbles from being

trapped inside the canopy.  This reduced the ability to observe the packing process to a

viewing plane above the canopy (i.e. the test section access point).  The water also

significantly reduced the ability to manipulate the canopy material into desired positions.

The geometric scale of the canopies also prevented development of a method to fold the

canopy in a repeatable and prescribed manner.  However, preliminary experiments

showed that the final packing method utilized, resulted in an overall inflation process that

was symmetric and, given a large enough sample, statistically repeatable.  

2.3 Imaging System
The experiments were recorded using a CCD camera to observe the development

of the canopy geometry and the flow field surrounding the canopy.  Sample images

obtained from the experiments are shown in Fig. 2.8.  The camera was mounted at a right

angle to the parachute assembly so as to view it from the side.  Also the camera was
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mounted on its side so that in the images, the parachute assembly had a vertical

orientation with the fluid flow from the bottom to the top of the image and gravity was

directed to the right of the image.  The camera used (a Pulnix model no. TM-1040) was a

progressive scan 8-bit monochrome CCD camera with a 1k × 1k pixel resolution and a

30 Hz frame rate.  A 24 mm lens was mounted on the camera with the f-number and the

shutter speed set depending on the experiments to be recorded.  The images were

digitally transferred (in real-time) from the camera to the system memory of a PC through

a video capture card (µTech model no. MV-1000/1100).  The computer had 512 MB of

RAM which allowed for approximately 450 frames (or ~15 s) to be recorded at the

maximum camera resolution.  Each recorded frame was then stored on the hard disk of

the computer as a separate image file and subsequently transferred to compact discs for

archival purposes.  

The imaging of the experiments can be separated into two groups, one group in

which only the canopy geometry was imaged and another group where the velocity field

around the canopy was imaged.  Each case required significantly different lighting

requirements.  For the former case, the water tunnel test section was back lit by a

floodlight through a white diffuser screen mounted on the back of the water tunnel wall.

This arrangement allowed for a clean white background behind the dark gray image of

the canopy which creates a clear contrast between the background and foreground for use

in image processing (see Fig. 2.8a).  The f-number of the lens was set to a half-click less

than the 5.6 setting and the shutter speed of the camera was set to 1/250 s.  An image

processing routine was developed to extract the temporal evolution of the maximum

projected diameter, Dm, the canopy height, H, and an estimate of the volume enclosed by



26

the canopy, V, from each sequence of images.  The uncertainty in the maximum projected

diameter and the canopy height was ±5 pixels ≈ 0.005 Do and the volume has an

uncertainty of 15% estimated from the uncertainty of the diameter and height.  The

details of the image processing routine are given in Appendix A.  

For the case of imaging the canopy and the velocity field around the canopy, the

overall lighting requirements were dictated by the requirements of the Digital Particle

Image Velocimetry (DPIV) system.  In this case, the laser used in the DPIV system

provided the illumination for the region of interest in the water tunnel.  The overall

details of the DPIV system are presented below; details of the laser orientation are

presented here.  The DPIV system uses a laser sheet to illuminate the flow field.  The

sheet originates in the upper right corner of the images towards the lower left corner and

is parallel to the centerline of the canopy.  The intersection of the laser sheet with the

canopy caused part of the upper surface of the canopy to be brightly lit, providing a sharp

contrast between the canopy edge and the dark background.  However, the laser light did

not completely penetrate through the material of the canopy which caused a shadow to be

formed where the canopy blocked the laser sheet.  The shadow can be seen directly below

and in the lower left corner of the image in Fig. 2.8b.  The f-number of the lens was set to

2.5 and no external shutter was used.  The CCD was readout at a time of 1/60 s.  The

geometry of the canopy was extracted manually from these images.  A simple closed

polygon was manually selected to estimate the shape of the canopy at each instant of time

throughout the sequence.  An example of this is shown in Fig. 2.9.  Also, the maximum

projected diameter was manually measured from these image sequences.  The uncertainty

in the maximum projected diameter, measured by this method, was ±10 pixels ≈ 0.01Do.  
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2.4 Force Measurements
The force, F, measurements were made with a strain gage based load cell

mounted in the stationary forebody (see Fig. 2.3).  The load cell was mounted such that

the only forces it measured were those being directly applied to the canopy through the

suspension lines.  The load cell was powered by two 9V batteries and the output voltage

of the load cell was passed through a custom designed low noise amplifier.  A wiring

diagram of the amplifier is shown in Appendix B.  The amplifier provided a gain of 200.

The output voltage of the amplifier was measured by a 12-bit A/D data acquisition

system (Data Translation model no. DT2805).  The data was sampled at a rate of 150 Hz

with no gain applied at the data acquisition card.  The uncertainty of the force

measurement system was 0.4% at full scale of the load cell or 0.027 N.  This corresponds

to approximately 10% of the smallest steady state drag force measured.  The load cell

was calibrated using static loads with the load cell mounted in place.  The calibration was

performed prior to and after a set of experiments was executed.  Also, a measurement of

the load cell output with zero applied load was performed prior to each sequence.  

A body in front of a canopy tends to reduce the force a canopy experiences due to

the wake from the body.  Knacke (1992) suggests a linear correction (for a given

downstream location of the canopy from the body) for these wake effects which were

applied to the steady state canopy,

C
C

D
D

fb

u=
α

, 2.3
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where CD is the drag coefficient and αfb is the forebody wake correction factor which was

set to 1.05 for the conditions tested in this research.  

The force measurement system was synchronized with imaging system and the

deployment tube extraction.  A schematic of the synchronization system is shown in

Fig. 2.10.  The timing sequences of the various events during the deployment are shown

in the upper left corner of Fig. 2.10.  The deployment process began by pushing a one-

shot button that simultaneously activated a small LED, positioned in the field of view of

the camera (the LED can be seen in the upper left corner of the image in Fig. 2.8b), while

at the same time sending a triggering signal to the data acquisition card, directing it to

start recording data.  This method allows for a synchronization uncertainty of ±½ frame

or ±17 ms between the imaging system and the force measurement system.  After a fixed

delay of 1.0 s from when the data acquisition was activated, a signal was sent to the

stepper motor controller causing it to pull the deployment tube away.  The frequency

generator connected to the stepper motor controller set the speed at which the stepper

motor rotated.  The details of the timing circuit for this synchronization and the

specification of the other components are presented in Appendix B.  

2.5 PIV System
The velocity field in the near wake of the canopy was measured using a DPIV

system.  The particulars of the DPIV method are described by Willert & Gharib (1991)

and Raffel et al. (1998).  A dual pulsed Nd:YAG laser was utilized in the experiments.

The laser pulses were synchronized with the CCD camera frame rate, and the time

separation, ∆t, between successive pulses was established by a counter/timer board in a
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PC.  The time separation between pulses was set depending on the freestream velocity.

Table 2.3 lists the pulse separations used at each speed as well as the area imaged, Ai, for

each canopy.  

Table 2.3.  Laser pulse separation and imaging areas.

U∞ (cm/s) Do (cm) ∆t (ms) Ai (cm2)
20 15.2 6.00 20.0 × 20.0
30 15.2 4.56 20.0 × 20.0
40 15.2 3.00 20.0 × 20.0
20 30.5 6.00 23.9 × 23.9

Each laser pulse had a duration of 5 ns and an energy output of approximately 15 mJ.

The laser was pulsed at a frequency of 30 Hz that generated velocity fields at a rate of

15 Hz, due to the frame straddling method used in DPIV measurements.  The laser pulses

were directed through a negative cylindrical lens (focal length of - 6.35 mm) to create a

laser sheet for illumination of the flow field directly behind the canopy.  The laser sheet

had a thickness of 4-5 mm and was oriented parallel with the freestream velocity.  The

flow field was seeded with neutrally buoyant silver-coated particles that had a mean

particle diameter of 45 µm.  Figures 2.8b and 2.9 provide good examples of the seeding

density in the flow fields.  

The DPIV vector processing algorithm used interrogation windows of

32 × 32 pixels with an overlap step of 8 pixels in each direction.  This produces a discrete

array of approximately 13700 velocity vectors per field.  The spatial resolution of the

velocity vectors was 1.7 mm for the experiments with the 15 cm canopy and 2.0 mm with

the 30 cm canopy.  The vector processing algorithm is outlined in Willert & Gharib

(1991).  The area of the velocity field measured was approximately 1.5 diameters
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downstream of the canopy apex (refer to Table. 2.3).  The origin of the coordinate system

was defined as the bottom of the field of view along the centerline of the canopy.  The

uncertainty of the velocity vector is approximately 3% which is comparable to estimates

made Willert & Gharib (1991).  

The existence of a boundary in the images of the flow field (i.e. the canopy)

causes the velocity vectors near the boundary to be calculated improperly.  This is due to

a deficiency of particles in the interrogation windows that contain a large portion of the

imaged boundary with only a small region of the flow field itself imaged.  A moving

boundary only compounds the issue since the PIV processing algorithm may estimate a

particle displacement that was corrupted by the motion of the boundary.  In the images in

this research, the canopy (i.e. the moving boundary) appears as a continuously varying

gray-scale region that changes appearance in the image pair that is used to calculate the

displacement vectors by the PIV processing algorithm.  The processing algorithm

calculates a corrupted displacement vector in and near the canopy region due to the

changing pixel values of the canopy region in the image pair.  In order to minimize this

corruption effect, the pixel gray-scale level in the canopy region was set to black (the

background color) in both images in the pair.  Therefore, the only pixel motion seen in

each interrogation window was that associated with the motion of the imaged particles.

The region of the image where the canopy was located was selected by the process

described in Section 2.3.  It should be noted that this method of canopy region blackout

does not necessarily establish the correct boundary condition at the canopy surface.  The

correct boundary condition would have to be imposed either pre- or post- processing of

the images or velocity field.  This would require knowledge of the boundary condition at
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the canopy surface.  However, the boundary condition at the canopy surface is not well

known or established.  It was therefore decided that no boundary condition would be

imposed on the calculated velocity field at the canopy surface.  It should also be stated

that the flow field in the interior of the canopy is not measured.  

The azimuthal vorticity, ωθ, of the flow field was calculated from the velocity

field using a method suggested in Raffel et al. (1998).  The method estimates the average

vorticity at a grid point in the field by evaluating the circulation around the eight

neighboring points and dividing by the area enclosed by the eight points.  The uncertainty

of the vorticity calculations is 8%.  

The circulation, Γ, around any closed path can be found from the velocity and

vorticity fields.  The circulation of the boundary layer formed on the canopy surface was

estimated by integrating the velocity along a contour of constant vorticity.  An example

of the integration path used to calculate the circulation is shown in Fig. 2.11. 

The impulse of the flow was calculated using a discrete form of Eq. 1.8.  The

region used in the integration was a rectangular area that enclosed all the vorticity in the

plane to the right of the canopy centerline (i.e. r ≥ 0).  The edges of the integration region

were located five vector grid points from the sides of the full vector field.  A sample of

the integration path is shown in Fig. 2.12. 

The parachute canopy shed a series of vortex rings after it had fully inflated and

achieved a steady state condition.  In order to assess the shedding frequency of these

vortices, the position of the vortex ring was tracked in each vorticity field.  This results in

a temporal evolution of the vortex position as well as the celerity of the vortex.  
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Figure 2.1.  Schematic of experimental setup.

a) b)

Figure 2.2.  Photographs of experimental setup, a) imaging computer, camera, and
parachute model in water tunnel; b) data acquisition computer and lasers used in DPIV

system.
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a)

b)

Figure 2.3.  Details of forebody, a) image of forebody and an inflated canopy; b) cross-
sectional view of forebody, load cell, and parachute mount.  
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Figure 2.4.  Image of deployment tube pulley system and stepper motor.

Figure 2.5.  Schematic of parachute geometry and associated dimensions.  
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Figure 2.6.  Image of the canopy edge and suspension line attachment.

Figure 2.7.  Close-up image of hard grommet at apex of canopy.  
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a)

b)

Figure 2.8.  Sample images from a) a geometry experiment and b) a velocity field
experiment.
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Figure 2.9.  Sample image of canopy contour selected from original image.
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Figure 2.10.  Schematic of the measurement synchronization system.  
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Figure 2.11.  Sample contour along which circulation was calculated.  The green line is a
representation of the canopy edge.  

Figure 2.12. Sample region in which impulse was calculated from the vorticity field.  The
white line represents the enclosed region and the colored lines are vorticity contours.
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3. Canopy in a Steady Flow 
3.1 Mean Cano py Diameter

A canopy in steady flow (i.e. steady descent or steady state) exhibits a “breathing”

phenomenon in which the diameter of the canopy grows and shrinks.  This quasi-periodic

motion of the canopy was observed for all canopy sizes examined and identified in

measurements of the maximum projected diameter, Dm and the canopy force, F.  This

behavior is also observed in full-scale parachute canopies.  A typical time history of the

force and the maximum diameter from the experiments is shown in Fig. 3.1.  The mean

behavior of the canopy diameter and force will be examined initially.  

Since the edge of the canopy is not a smooth surface but has a scalloped geometry

(see Fig. 2.5), the mean projected diameter, Dp, was estimated by from the side-view of

the images through

D Dp m≈ ⋅0 935. 3.1

at each Reynolds number.  The projected diameter is the equivalent diameter of a circle

with the same area.  Defining the projected diameter in this manner allows for a direct

comparison with fundamental wake studies of disks and spheres.  

The mean projected diameter was calculated from the temporal measurements of

the maximum diameter and is shown in Fig. 3.2 for the range of Reynolds numbers and

canopy sizes studied.  The mean projected diameter remained constant over this range of

Reynolds numbers (ReDo = 3.0-6.0 × 104) at Dp/Do ≈ 0.71.  Full-scale, solid cloth

canopies maintain mean projected diameters of Dp/Do ≈ 0.67-0.70 (Knacke, 1992), which

shows good correspondence with our scale model results.  The rms-value of the

amplitude of the oscillation is D’rms/Dp = 2.5-5.0%.  
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The automated image processing routines used to extract the canopy diameter also

measured the mean canopy height, H.  Normalizing the mean canopy height with the

mean projected diameter shows that this ratio remains constant at H Dp/ .≈ 0 41 over the

range of Reynolds numbers examined (see Fig. 3.2).  A sense of how the height varies

with the diameter can be ascertained by calculating the correlation coefficient, defined as

(Taylor, 1997)

ρ
µ µ

σ σx y

i x i y
i

n

x y

n
x y

, ≡
− −

⋅
=
∑1

1
b gd i

3.2

where x and y represent the two variables to be correlated (in this case H and Dp), µ is the

mean values of each variable, σ is the standard deviation of the variables, and the range

of the correlation coefficient is − ≤ ≤ +1 1ρ x y, .  If ρx,y = 0, then the variables are

uncorrelated while a correlation coefficient of +1 means they are perfectly correlated (i.e.

when one variable increases the other variable also increases) and conversely, if ρx,y = -1,

the variables are perfectly anti-correlated (i.e. when one variable increases the other

variable decreases).  The correlation coefficient between the canopy diameter and height

is shown in Fig. 3.3.  The canopy height and diameter are negatively correlated, i.e. the

canopy height shrinks while the diameter increases and vice versa.  This behavior is

expected since the stresses in the canopy fabric restrict the expansion of the canopy in

each direction.  The correlation of the diameter and height is reduced at higher Reynolds

numbers.  The correlation coefficient is reduced from –0.9 to –0.5 as the Reynolds

number is increased from 3.0 × 104 to 6.0 × 104.  Visual observations of the canopy

indicate that an additional oscillation mode becomes apparent at the higher Reynolds
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numbers.  An asymmetric oscillation of the canopy fabric traverses from one side of the

canopy to the other.  It appears as a moving wave through the canopy fabric.  This mode

reduces the correlation between the diameter and height.  

3.2 Mean Drag Force
The mean force experienced by the canopy model was calculated from the

temporal measurements of the force provided by the load cell.  A force coefficient, CF,

was defined as

C F
q SF

o o

= 3.3

where qo is the dynamic pressure (corrected for blockage effects in the water tunnel) and

So is the constructed surface area of the canopy. The mean CF values are plotted in

Fig. 3.4 as a function of the Reynolds number.  A Reynolds number dependence is clearly

seen as well as a geometric dependence.  The drag coefficient for full-scale canopies with

similar geometries (flat circular canopies with low material permeability) is in the range

of 0.75-0.8 but these canopies generally operate at Reynolds numbers two orders of

magnitude larger than those seen in these experiments.  The larger canopy (Do = 30 cm)

has a drag coefficient that is approximately equal to that seen in full scale canopies even

at this lower value of the Reynolds number.  However, the behavior of the larger canopy

cannot be completely characterized based on measurements at a single Reynolds number.

The discrepancy between the two canopies suggests that a transition might occur in the

drag near this Reynolds number range.  

Calculating the correlation coefficient between the diameter and the force shows

the connection between the drag force and the reaction of the canopy geometry to it.  The
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correlation coefficient is plotted in Fig. 3.5.  A mild anti-correlation (i.e. a negative

correlation) exists between the force and the diameter at lower Reynolds numbers.  This

suggests that as the canopy diameter shrinks from its maximum value, the force is

increasing.  It will be shown in a later section that the periodic nature of the diameter and

the force is caused by the shedding of a vortex from the canopy.  Therefore, its suggested

that the peak force in a single cycle may be related to the shedding of the vortex ring

from the canopy.  However, almost no correlation exists at the higher Reynolds number.

At these higher Reynolds numbers, the shedding of the vortices becomes less organized

resulting in a reduction of the correlation between the canopy diameter (which is closely

related to the vortex shedding) and the force.  

As discussed in Section 1.4, the force the canopy experiences from the fluid can

be related to two primary sources, namely a force associated with the unsteady potential

flow and a force associated with the vorticity containing portion of the wake.  The

unsteady potential force component will be examined first.  

The unsteady potential flow comes about due to the oscillations of the canopy

geometry (i.e. the diameter and height) and the associated changes in the enclosed fluid

volume in the canopy.  This is true as long as the canopy is not decelerating (du/dt → 0).

For the case of a fully inflated canopy, it is expected that the acceleration of the canopy

would be small since the canopy is descending at a constant speed.  Therefore, the

potential flow force should only be a function of the enclosed volume.  It was shown in

Eq. 1.11 that the unsteady potential flow generates a force proportional to the rate of

change of the canopy volume, i.e.

F k U Vp p= ∞ρ & 3.4
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where kp is a proportionality constant, ρ is the density of the fluid, and &V  is the time rate

of change of the canopy volume.  Since the volume of the canopy is cyclic in nature, the

volume can be further decomposed into a mean volume, V , and a fluctuating portion, V’, 

V V V= + ' 3.5

Due to the periodic nature of the geometry oscillations, the mean volume is a constant.

Therefore, any force generated by this unsteady behavior comes strictly from the

fluctuating portion of the volume; more specifically, the time derivative of the fluctuating

volume.  The time derivative of the volume fluctuations are both positive and negative in

amplitude with a zero mean value.  So in order to quantify the contribution that unsteady

potential force has on the canopy dynamics, the rms-value of the time derivative of the

volume fluctuations was calculated, ( & ' )V rms .  Therefore, the force due to the unsteady

potential flow was calculated as

( ) & 'F k U Vp rms p rms= ∞ρ ( ) . 3.6

The volume of the canopy was estimated from the cross-sectional area and shape of the

canopy in the images (see Section 2.3 and Appendix A for details of the image processing

algorithm).  The time derivative of the volume was calculated by using a central

differencing scheme from which the rms-value of the fluctuations was determined.  The

unsteady potential force as a function of the Reynolds number is plotted in Fig. 3.6

assuming a value of unity for the proportionality constant in Eq. 3.6 (i.e. kp = 1).  As is

evident in Fig. 3.6, the unsteady potential flow amounts to only a small (~5-10%) fraction

of the net mean force, F .  Additionally, the unsteady potential flow is responsible for a
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larger portion (10-20%) of the measured force fluctuations, F’rms.  These results show

that the majority of the force exerted on the canopy is caused by the viscous wake.  The

assumption generally made that the “added mass” term is the driving factor in the

unsteady drag of the canopy has been shown to be inadequate.  The contributions from

the unsteady momentum deficit in the wake must be accounted for in any analysis.  

The vortical force is produced due to the separation of the flow from the canopy

and the formation of vorticity in the wake region which causes an adverse pressure

gradient across the canopy.  However, having no knowledge of the pressure field around

the canopy, it was shown in Section 1.4 that the force associated with the wake was

connected to the rate of change of the impulse of the flow.  Namely, the axial force (i.e.

the drag) can be calculated from the time derivative of azimuthal vorticity through the

relationship in Eq. 1.9, which is repeated here

F dI
dt

d
dt

r drdzz
ω θπρ ω= = − zz 2 . 3.7

The integration area used in these calculations was shown in Fig. 2.12.  The viscous

forces on the canopy, as in any bluff body, should be small in magnitude when compared

to the drag forces produced by the pressure differential across the body.  

A sample of the force calculated using Eq. 1.9 is shown in Fig. 3.7 where the

horizontal line represents the mean vortical force.  The highly fluctuating vortical force is

the result of vorticity entering and leaving the control volume used in the calculation.

The control volume has a finite size, namely, the region imaged in the experiments which

imposes spatial limitations on the computation.  Vorticity is being convected out of the

control volume through its surfaces.  The volume in which the vorticity integration occurs
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should include all of the vorticity in the canopy wake, which suggests that the control

volume would need to be nearly infinite in size.  However, a finite integration area could

be utilized provided that the vorticity that exits the volume has decayed to a sufficiently

low level that it would be reasonable to ignore its contribution to the force.  As is evident

by the zero mean force in Fig. 3.7, this condition does not apply to the vorticity fields

measured in the canopy wake which shows that the integration region used was too small

for these calculations.  

Additionally, utilization of Eq. 1.9 requires detailed knowledge of the vorticity in

the integration area.  The primary source of vorticity in the wake comes from the shear

layers originating at the canopy skirt.  However, the thickness of the shear layers is on the

order of the spacing between the velocity vectors (a few millimeters) measured in the

experiments which are used to calculate the vorticity.  This situation would result in an

under-estimation of the vorticity which in turn would tend to under-predict the axial

impulse and the resulting force.  

3.3 Canopy Dynamic Behavior
The mean behavior of the canopy now having been established, the unsteady

characteristics (i.e. the breathing) of the canopy behavior will be examined.  The

breathing of the canopy is due to the flow field in the near wake of the canopy provided

that canopy is flexible enough to respond to the flow (i.e. the canopy is non-rigid).  The

velocity and vorticity fields show that the breathing corresponds with the shedding of

vortical structures from the canopy.  Figure 3.8 shows the vorticity field in the canopy

wake over one shedding cycle.  It is clear that the flow is separated at the canopy skirt. 
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When the canopy reaches its minimum diameter (Fig. 3.8a), a distorted vortex ring is

seen to have just shed from the canopy.  This vortex is conveyed downstream into the

turbulent wake.  In the wake it becomes even more disorganized and distorted as the

vortex decays.  At the canopy skirt, a shear layer rolls-up into another vortex ring over

the next few image sequences (Fig. 3.8b-d).  While this vortex ring is forming, the

canopy diameter also increases until the canopy reaches its maximum diameter

(Fig. 3.8d).  The process of forming the vortex generates a low pressure region near the

canopy skirt which draws the canopy out to its maximum diameter.  With the new vortex

ring formed, the shear layer from the canopy skirt feeds the vortex with additional

vorticity until the vortex separates from the shear layer and canopy and is convected

downstream (Fig. 3.8e-f).  The convection of the vortex ring also removes the low

pressure region at the canopy skirt and moves it farther downstream of the canopy which

results in the canopy diameter shrinking back to its minimum diameter (Fig. 3.8f).  

A phased average vorticity field was calculated from the primary shedding

frequency of the canopy (the shedding frequency is established in the next section).  A

sample of the phase averaging is shown in Fig. 3.9 for a 15 cm canopy at a freestream

velocity of 20 cm/s.  It is clear from these images that a vortical structure is seen to shed

from the canopy and is conveyed downstream with the shedding cycle repeating at a

frequency of 1 Hz.  A qualitative verification of the shedding frequency can be made by

observing that vortex ring is located in the same downstream position in both Figs. 3.9a

and 3.9h which have a time separation of 1 s.  

A parachute canopy in steady flow also exhibits behavior in some aspects

analogous to those traditionally seen with rigid bluff bodies (such as disks or spheres). 
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The time-averaged velocity and vorticity field in the wake of the canopy, averaged over a

1000 (~67 s) instantaneous measurements of the fields (Fig. 3.10), shows a momentum

deficit exists in the wake which is characteristic of turbulent three-dimensional wakes of

axisymmetric bluff bodies.  The profile of the axial velocity, uz, and the radial velocity,

ur, at three different downstream locations is shown in Fig. 3.11a and the vorticity is

shown in Fig. 3.11b.  The variation of the time-averaged axial velocity across the wake of

the canopy is clearly seen, with some back flow along the centerline of the wake.  This

velocity profile results in a momentum deficit in the wake which contributes to the drag

of the canopy.  The radial velocity indicates entrainment of the freestream velocity in the

shear layers into the wake region from both sides of the canopy at the two farthest

downstream locations.  The majority of the vorticity is confined to the shear layers near

the canopy skirt and decays rapidly at farther downstream distances.  These

characteristics are seen in rigid bluff bodies, however, the flexible nature of the canopy

introduces some unique behavior not seen in rigid bluff bodies.  

3.4 Breathing Frequency
The periodic nature of the canopy motions (see Fig. 3.1) suggests that a spectral

analysis of the data would allow for the identification of the dominant breathing

frequencies.  The spectral content of the data was uncovered by the application of the

Fast Fourier Transform (FFT).  The plots in Fig. 3.12 show the maximum canopy

diameter and the frequency content of the diameter measurement for a 15 cm canopy at a

freestream velocity of 30 cm/s.  The spectrum shows a single dominant frequency at
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f = 1.5 Hz.  We define a non-dimensional breathing frequency based on the mean

projected diameter and the freestream velocity as

f D
U

p⋅

∞

. 3.8

Observations of the spectrum for all the different canopies and range of freestream

velocities, show that a single dominant frequency exists.  The non-dimensional frequency

remains very nearly constant at a value of 0.56 ± 0.03 across the Reynolds numbers and

geometries examined (see Fig. 3.13).  This is the dominant canopy breathing frequency

described in section 3.3.  The breathing (or the aeroelasticitic response) of the canopy is

contingent upon the canopy material being flexible enough to respond to the flow field.

If the canopy was rigid, then the shedding characteristics would be probably different and

the canopy breathing would not occur.  The canopy breathing results in the flow

separation point (i.e. the canopy skirt) moving in the flow field.  

The spectral analysis of the force measurements made with the load cell generates

a complex spectrum (as shown in Fig. 3.14).  However, a frequency corresponding to the

dominant frequency observed in the diameter measurements was also seen in the

frequency spectrum of the force (Fig. 3.15).  Non-dimensionalizing this frequency also

results in a 0.56 ± 0.03 value.  As will be shown below, this frequency corresponds to the

periodic shedding of vortices at the edge of the canopy skirt.  

The DPIV measurements create an array of regularly spaced velocity vectors

throughout the flow field.  By extracting or “probing” these measured velocity vectors at

various points in the wake, a means for relating the fluid mechanics of the canopy wake

to the canopy geometry and force can be established.  Table 3.1 lists the probe locations
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utilized in the velocity fields.  At these points, the radial velocity, ur, was extracted.  A

sample of the radial velocity at points A for the 15.2 cm canopy is shown in Fig. 3.16.  

Table 3.1.  Velocity probe locations.

Do (cm) Location r/Dp z/Dp

15.2 A ±0.69 0.25
15.2 B ±0.81 1.0
15.2 C 0.81 1.59
30.5 A 0.69 0.25
30.5 B 0.97 0.97

The large fluctuation in the radial velocities appear to be quasi-periodic.  A sample of the

spectral analysis of the radial velocities is shown in Fig. 3.17.  By defining a Strouhal

number as,

St
f D
U

p≡
⋅

∞

3.9

a dominant frequency at St = 0.54 ± 0.04 occurs across the range of Reynolds numbers

examined, Fig. 3.18.  However, another frequency seems to appear around a Strouhal

number of 0.3 – 0.4 at points further downstream of the canopy (Figs 3.17b-c).  Neither

of these frequencies have been observed in the past studies of disks or spheres (Balligand

& Higuchi, 1993; Berger et al., 1990; Fuchs et al., 1979). Three dominant frequencies are

classically associated with a stationary disk.  The primary frequency is associated with a

helical mode for the vortex structure.  This mode has a Strouhal number of 0.134 but has

been observed beyond ~3-4 diameters downstream (Berger et al., 1990).  Our studies

focused on a region 1.5 diameters downstream but we see evidence that this mode started

to form in our experiments (Fig. 3.17c) at the farthest downstream locations.  Another

mode of the disk has a Strouhal number of 0.05 which corresponds to the axisymmetric
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oscillation of the recirculation region immediately behind the disk.  We see no evidence

of this from our velocity probe data.  And finally, a high frequency shear layer instability

was also seen in the disk studies of Berger et al. (1990) at St = 1.62.  Again, we did not

find any evidence of these structures.  This is possibly due to the spatial resolution of our

velocity field being too small.  

A qualitative observation of the vortex formation in the PIV data fields shows that

vortex rings form symmetrically around the canopy at lower Reynolds numbers.  Once

the vortex is shed from the canopy and is conveyed downstream, the symmetry of the

vortex begins to degrade.  The vortex ring becomes twisted and disorganized in the wake

of the canopy.  The initial symmetry can be quantified by analyzing the radial velocity of

the wake flow in the immediate vicinity of the canopy and at positions farther

downstream.  Calculating the correlation coefficient, between the two symmetric probe

points listed in Table 3.1 quantifies the symmetry of the vortex.  The results of the

correlation coefficient calculations (Fig. 3.19) suggests that the vortex is initially

symmetric immediately downstream of the canopy (i.e. points A) at the lower Reynolds

number.  As the vortex is conveyed farther downstream (i.e. points B), the correlation

coefficient is reduced indicating that the vortex is becoming disorganized.  This behavior

confirms our qualitative observations of the wake behavior.  At a Reynolds number of

6.0 × 104, the behavior of the vortex is different.  Qualitative observations of the vortex

shedding, shows that the vortex formation occurs symmetrically but once shed from the

canopy, the vortex quickly becomes distorted.  This is reflected in the fact that almost no

correlation exists between the symmetric probe points at either location.  
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The vortex core location was measured in the vorticity field by locating the center

of the vortex.  The position of a series of shed vortex rings is plotted in Fig. 3.20.  The

position of the vortex ring was measured separately on each side of the canopy.  The

vortex ring is confined to a region on the outer extreme of the canopy initially at which

point the vortex ring diameter slightly grows and becomes more disorganized as the

vortex ring moves farther downstream.  The growth is evident by the increase in the

width of the mean vortex position at the locations further downstream.  And the

disorganization is apparent by observing the increased scatter of the vortex position again

at the locations farther downstream.  

A sample of the axial vortex position is shown in Fig. 3.21.  The plot shows the

periodic shedding of a vortex.  A saw tooth pattern in the vortex downstream position is

seen.  This comes about since an individual vortex was only tracked until a new vortex

formed near the canopy skirt at which point the new vortex was tracked.  The linear

portion of the saw tooth pattern shows that the vortex is conveyed downstream at a nearly

constant celerity.  The celerity of the vortex was calculated from the average slope of the

linear portions of the position plot.  The average celerity utilized the slope calculated

from both sides of the canopy and from all shedding cycles.  The celerity of the vortex

rings (normalized by the freestream velocity) over the range of Reynolds numbers

examined is plotted in Fig. 3.22 where the error bars represent the standard deviation of

the measurements.  The normalized celerity remains constant at a value of

uc/U∞ = 0.41 ± 0.02 across the range of geometries and Reynolds numbers studied.  

A spectral analysis of the vortex downstream position was performed and a

sample of that analysis is shown in Fig. 3.23.  Again a dominant frequency was identified
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that corresponded to the vortex shedding frequency.  The Strouhal number from this

analysis is plotted in Fig. 3.24 with a mean value of St = 0.54 ± 0.04 which corresponds

very well with our previous results.  Calculating the correlation coefficient between the

vortex location on the right and left sides of the canopy shows how symmetric the vortex

is shed from the canopy.  The correlation coefficient is plotted in Fig. 3.25.  The vortex is

initially shed symmetrically from the canopy at the lower Reynolds number but as the

Reynolds number increases the symmetry of the shedding vortex decreases.  This

behavior was also seen in the velocity probe measurements shown in Fig. 3.19.  

In conclusion, it has been shown that the breathing phenomena a canopy

experiences while in steady descent is associated with vortex shedding.  The shedding

frequency corresponds to a Strouhal number of St = 0.54 ± 0.04 while the non-

dimensional breathing frequency of the canopy is 0.56 ± 0.03.  Also, it was shown that

the unsteady potential flow, as identified by the apparent mass is inadequate for

predicting the fluctuating forces.  The unsteady wake effects should be included in any

model used to predict canopy performance and characteristics.  
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Figure 3.1.  Maximum diameter and force measurements for a Do = 15.2 cm canopy with
U∞ = 20 cm/s.  

Figure 3.2.  Normalized mean canopy projected diameter (hollow symbols) and mean
canopy height (solid symbols).  The round symbols represent the 15 cm canopy and the

square symbol represents the 30 cm canopy.  
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Figure 3.3.  Correlation coefficient between the canopy diameter and height.  The round
symbols represent the 15 cm canopy and the square symbol represents the 30 cm canopy.

Figure 3.4.  Force coefficient for canopy. The round symbols represent the 15 cm canopy
and the square symbol represents the 30 cm canopy.  
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Figure 3.5.   Correlation coefficient between the canopy diameter and force.  The round
symbols represent the 15 cm canopy and the square symbol represents the 30 cm canopy.

Figure 3.6.  Force associated with the unsteady potential flow; (Fp)rms/ F  (hollow
symbols); (Fp)rms/F’rms (solid symbols).  The round symbols represent the 15 cm canopy

and the square symbol represents the 30 cm canopy.  
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Figure 3.7.  A sample of the force caused by the vorticity in the wake for a 15 cm canopy
at a freestream velocity of 20 cm/s.  
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a) t = 0 ms (minimum canopy diameter) b) t = 200 ms

c) t = 400 ms d) t = 533 ms (maximum canopy diameter)

e) t = 800 ms f) t = 1067 ms (minimum canopy diameter)

Figure 3.8.  Vorticity field showing vortex formation during canopy breathing (image of
canopy has been superimposed over the vorticity field).



59

a) t = 0.00 s b) t = 0.13 s

c) t = 0.27 s d) t = 0.40 s

e) t = 0.53 s f) t = 0.67 s

Figure 3.9.  Phased average vorticity field for a 15 cm canopy at a freestream velocity of
20 cm/s.  The average field was calculated from 14 instantaneous field measurements.  
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g) t = 0.80 s h) t = 0.93 s
Figure 3.9.  continued.
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a)

b)

Figure 3.10.  a) Mean velocity field and b) mean vorticity field in the wake of a canopy in
a steady flow, Do = 15.2 cm and ReDo = 3.0 × 104.  An image of the canopy at its mean

diameter has been super-imposed over the velocity field.  
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a)

b) 

Figure 3.11.  a) Mean axial (solid lines) and radial (dotted lines) velocity profiles and b)
mean vorticity profiles at three downstream locations.
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a) 

b)

Figure 3.12.  a) The maximum projected canopy diameter and b) spectral content of the
diameter for a 15 cm canopy at a freestream velocity of 30 cm/s.
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Figure 3.13.  Dominant frequency of the canopy motions as a function of Reynolds
number.  The round symbols represent the 15 cm canopy and the square symbol

represents the 30 cm canopy.

Figure 3.14.  The spectral content of the force for a 15 cm canopy at a freestream velocity
of 30 cm/s.
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Figure 3.15.  Frequency in the force measurements corresponding to the dominant
frequency in the diameter measurements.  The round symbols represent the 15 cm canopy

and the square symbol represents the 30 cm canopy.

Figure 3.16.  Radial velocities at points A (z/Dp = 0.25; r/Dp = 0.69 for the solid line and
r/Dp = -0.69 for the dashed line) for the 15.2 cm canopy at ReDo = 3.0 × 104.  
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a) 

b) 

c) 

Figure 3.17.  Frequency spectrum of radial velocity at a) points A, b) points B, and c)
point C for the 15 cm canopy at ReDo = 3.0 × 104.
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a)

b)

c)

Figure 3.18.  Strouhal number of the radial velocity at a) points A, b) points B, c)
points C listed in Table 3.1.  The solid symbols represent the positive radial distances and

the hollow symbols represent the negative radial distances.
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Figure 3.19.  Correlation between symmetric radial velocity probe points for the 15.2 cm
canopy.  

Figure 3.20.  The vortex ring location over 14 shedding cycles.  The round symbol is the
location of the vortex on the right side of the canopy and the “+” symbol is the location

on the left side of the canopy.  
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Figure 3.21.  Downstream location of the vortex ring.  The filled symbol represents the
vortex shed from the right side of the canopy and the hollow symbol represents the vortex

shed from the left side of the canopy.  

Figure 3.22.  The celerity of the shed vortex over the range of Reynolds numbers
examined.  The round symbol represents the 15 cm canopy and the square symbol

represents the 30 cm canopy.  

t (s)

0 1 2 3 4 5

z 
/ D

o

0.2

0.4

0.6

0.8

ReDo x 10-3

30 40 50 60

u c /
 U

∞

0.2

0.3

0.4

0.5

0.6



70

a) 

b) 

Figure 3.23.  The frequency spectrum of the shed vortex ring measured from the vortex
tracking data; a) right side and b) left side of canopy.  
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Figure 3.24.  The Strouhal number of the shed vortex based on the vortex tracking
measurements.  The round symbols represent the 15 cm canopy and the square symbol

represents the 30 cm canopy.  

Figure 3.25.  The correlation coefficient between the vortex location on the right and left
side of the canopy.  
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4. Inflation of a Canopy 
4.1 Dynamics o f Canopy Evolution

The inflation of the parachute was conducted under an infinite-mass condition

(i.e. the freestream velocity remained constant during the inflation).  A typical inflation is

shown in Fig. 4.1, where Do = 15.2 cm and U∞ = 20 cm/s which results in a Reynolds

number of 3.0 × 104.  The force the canopy experiences during the inflation and the

diameter of the canopy are plotted in Fig. 4.2, where the labeled points correspond with

the images in Fig. 4.1.  Initially the canopy was packed into the deployment tube and the

canopy was positioned such that the suspension lines were taut.  At time t = 0.0 s, the

deployment tube was pulled away (Fig. 4.1a) as indicated by the small bump in the force

at that time.  Once the deployment tube had cleared the canopy, it initially forms into a

cylindrical shape (Fig. 4.1b) which then transitions into a conical or umbrella shape

(Fig. 4.1c).  Over this time period, the canopy diameter has grown to half its fully inflated

diameter yet the force on the canopy has increased minimally.  The fluid then proceeds to

fill the canopy from the skirt towards the top of the canopy creating a nearly hemi-

spherical canopy shape (Fig. 4.1d).  At this point, the force has begun to increase towards

its maximum value.  With the upper regions of the canopy filled, the inflation of the

canopy proceeded towards the skirt until the canopy diameter reached its steady state

diameter (Fig. 4.1e).  The maximum force the canopy experiences occurs after the canopy

has become hemi-spherical in shape but before it achieves its maximum diameter.  The

peak force occurs over a small time duration in relation to the overall inflation time.  The

canopy then over-expands beyond its steady state diameter, achieving its maximum

diameter in Fig. 4.1f.  The force rapidly declines after achieving its maximum value.  The
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canopy diameter continues to increase towards its peak value while the force declines.

The maximum diameter occurs approximately at the same time the force attains a

minimum value.  Afterwards, the force goes through a few oscillation in its amplitude

before it approaches a mean value seen for a canopy in a steady flow.  Similarly, after the

maximum projected diameter was achieved, the canopy diameter shrinks and the canopy

geometry begins to approach the behavior seen in a steady flow.  During the inflation

process, the canopy inflated nearly symmetrically and remained centered on the main

axis.  Only when the canopy had reached the over-expanded state did the canopy require

the retention line (see Sec. 2.2) to restrain the off-axis motion.  

Two characteristics of the small scale parachutes that differ from larger scale (i.e.

quarter and half-scale models) and full scale parachutes should be noted.  First, the initial

conical shape that the small scale parachute exhibited is different from that of larger

parachutes.  Larger parachutes typically form a more cylindrical shape during this stage

of inflation (see Fig. 1.1).  The conical shape may be attributed to the material stiffness.

At these small scales, the material stiffness becomes more apparent in terms of canopy

flexibility (Heinrich & Hektner, 1971).  The larger the parachute, the more flexible the

canopy for a given material.  Secondly, the maximum diameter of the small scale

parachute typically occurred at the canopy skirt throughout the entire inflation process.

While for full scale parachutes, the maximum diameter is not necessarily at the canopy

skirt.  During the inflation process of full scale parachutes, the canopy inflates from the

top towards the skirt.  During this time, the maximum diameter occurs at a point between

the top and the skirt.  Again, the stiffness of the small scale parachute affects the

flexibility of the canopy restricting its motion more readily than a full scale parachute.
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The inflation of canopies at a higher Reynolds number with two different canopy

diameters was also conducted.  The 15.2 cm canopy was also tested at a freestream

velocity of 40 cm/s which results in a Reynolds number of 5.9 × 104 and a 30.5 cm

canopy was tested at a freestream velocity of 20 cm/s (ReDo = 6.0 × 104).  The tests at the

larger Reynolds number showed an inflation process that more closely resembles larger

canopy models or full scale canopies.  The largest parachute model (Do = 30.5 cm) most

closely exhibited this behavior.  This inflation sequence is shown in the images of

Fig. 4.3 with the corresponding force and diameter traces in Fig. 4.4.  The first two

images (Figs. 4.3a-b) shows a canopy in a conical form, typical behavior for small scale

parachutes during early inflation.  The shape of the canopy then starts to transition into a

more cylindrical shape (Figs. 4.3c-d).  Through these phases the maximum diameter

occurs at the canopy skirt.  However, beginning with the fourth image (Fig. 4.3d), the

canopy geometry resembles the shape of a full scale parachute where the maximum

diameter occurs not at the skirt but closer to the top of the canopy while the skirt remains

in a semi-collapsed state; the canopy forms a “mushroom” shape.  The parachute then

proceeds to fill, achieving its steady state diameter (Figs. 4.3f) and over-expanding to its

maximum diameter (Figs. 4.3g).  The size of the large canopy allows for greater

flexibility of the canopy, and with the higher inertia of the water at the higher Reynolds

number, the canopy more closely resembles the inflation of a full scale parachute.

Three specific times can be defined from the canopy force and diameter

measurements to characterize the evolution of the canopy inflation.  These characteristic

times are the opening time, to, the filling time, tf, and the maximum diameter time, tmax.

In each of these definitions, the initial time (i.e. t = 0) is defined to be the time when the
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deployment tube is first pulled away.  Based on this, the opening time, to, is defined as the

time at which the peak opening force is attained during the canopy inflation.  The filling

time, tf, is the first time at which the diameter of the canopy first reaches its mean steady

state diameter (Knacke, 1992).  For an infinite mass inflation, experience has shown that

the opening and filling times are approximately equal (to ≈ tf) while for a finite mass

inflation the opening time is less than the filling time, to < tf (Knacke, 1992).  And the

time at maximum diameter, tmax, is defined as the time when the canopy diameter

achieves its maximum diameter during the inflation.  The maximum diameter time occurs

after the filling time, during the over-expansion of the canopy.  The opening time will be

used as the benchmark for comparison with other defined times due to the ease of

determining its value and since the force measurements were sampled at a higher rate

than the other measures.  A schematic of the characteristic times is shown in Fig. 4.5.

The average values for these characteristic times are listed in Table 4.1 with rms-values

(i.e. the standard deviation) of the measurements.

Table 4.1.  Characteristic times of canopy inflation.

Do (cm) ReDo to (s) tf  (s) tmax (s) to* tf* tmax*
15.2 3.0 × 104 1.47 ± 0.12 1.51 ± 0.19 1.78 ± 0.19 1.89 1.94 2.29
15.2 5.9 × 104 0.85 ± 0.17 0.81 ± 0.16 0.93 ± 0.15 2.18 2.07 2.40
30.5 6.0 × 104 2.71 ± 0.11 2.67 ± 0.12 3.22 ± 0.18 1.74 1.72 2.07

The uncertainty in these measures is directly related to the sampling frequency of the

force and the image acquisition.  The force was sampled at 150 Hz therefore the

uncertainty in each opening time was ±3.3 ms (half the sampling period) while the

imaging was performed at a rate of 30 Hz which results in an uncertainty of ±16.7 ms for

each of the filling and maximum diameter times.  Since for each condition the
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experiments were performed multiple times, a variation in the measurement of the these

times occurred.  This results in a standard deviation of the times of 0.1-0.2 s, which is

considerably higher than the uncertainty in each individual measurement.  Therefore, the

standard deviation was used to quantify the uncertainty of the characteristic times.  The

higher values for the standard deviations was a direct result of the inconsistencies in

packing and folding of the canopy in the deployment tube.  

It has been shown that the filling distance, the product of the freestream velocity

and the filling time, should remain constant for a given parachute canopy (Knacke, 1992).

This filling distance can be normalized with the constructed diameter to create a non-

dimensional filling time,

t
t U
Df
f

o

* = ∞ . 4.1

Similar non-dimensional opening (to*) and maximum diameter (tmax*) times can be

defined using the convective time scale of Do/U∞.  The normalized characteristic times

are plotted in Fig. 4.6 and also listed in Table 4.1.  The plots show that the characteristic

times remain nearly constant at least within the uncertainty of the measurements.  The

mean normalized filling time (over all Reynolds numbers and geometries) is 1.9 which is

on the order of filling times found on full size parachutes and model tests at finite mass

conditions.  Heinrich & Noreen (1970) report normalized filling times on the order of 3.5

for a 3 ft. scale model with flat circular geometry.  Lee (1989) states for finite mass ¼-

scale flat circular canopies, the normalized filling times have a range of 2.25 – 3, and for

full scale canopies the filling times are approximately 4.  Additionally, Knacke (1992)

reports normalized filling times of 2.9 for low porosity canopies and up to 4.7 for high
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porosity canopies.  The canopy in the present study would be classified as low porosity.

The lower normalized filling time achieved in this study is due to the higher stiffness of

the canopy (Johari & Desabrais, 2001).  

An average opening force history was created by shifting each individual force

measurement trial (at a given Reynolds number and scale) in time such that the peak

opening forces were aligned and then an ensemble average of the force traces was

performed.  The resulting average force was normalized as a force coefficient, CF, using

Eq. 3.3 and the time was normalized using the opening time as,

τ =
t
to

. 4.2

The normalized opening force is plotted in Fig. 4.7.  All the inflations show similar trends

in that during inflation the force remains quite small initially.  At τ ~ 0.6-0.7, the force

begins to rise until at τ = 0.9 it exhibits a rapid increase to its maximum value (at τ = 1.0

by definition) after which the force decreases sharply where it begins to transition to a

behavior seen in steady flow.  The largest forces are confined to a short time duration

centered around the peak value.  Furthermore, the mechanisms causing this localized

peak force are also confined to a small interval in time.  This suggests that the dynamics

of the canopy and the transient fluid mechanics are key to understanding the inflation

process as whole.  

The peak opening force coefficient is listed in Table 4.2.  The values obtained in

this study compare well to values obtained in inflation experiments conducted with

similar scaled canopies (also listed in Table 4.2).  
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Table 4.2.  Peak force and canopy diameter values.

Do (cm) ReDo (CF)max (Dm/Do)max fluid medium reference
15.2 3.0 × 104 3.5 0.89 water -
15.2 5.9 × 104 2.9 0.86 water -
30.5 6.0 × 104 3.6 0.86 water -
40 7.2 × 104 3.4 0.80 water Lingard, 1978
80 4.8 × 105 2.0 0.75 air Lingard, 1978

The canopy diameter measurements can also be ensemble averaged in a similar

fashion as the force measurements.  For comparison with the averaged force

measurements, the diameter measurements were shifted in time such that the alignment

point was again the time when the peak opening force occurred.  The diameter

measurements were sampled at a rate considerably less than the force measurements (i.e.

30 Hz as opposed to 150 Hz).  Therefore, its was necessary to identify the image frame

where that the peak force occurred in each run.  These points were then used as the

alignment points and an ensemble average was calculated for the three cases studied.

The results of these calculations are shown in Fig. 4.8, where the diameter has been

normalized with the constructed diameter, Do, and the time has been normalized with the

opening time.  Heinrich (1969) and Heinrich & Noreen (1968) have experimentally

shown that the normalized canopy diameter varies linearly with the normalized time

initially before transitioning to a quadratic behavior.  Their experiments were performed

with a 91 cm parachute model tested in a wind tunnel, under both infinite and finite-mass

conditions.  For a normalized time greater than one, the diameter varies with the square

root of the normalized time squared.  Heinrich (1969) noted that the results obtained for

the finite mass case could be applied to the infinite mass case at least over the range

0 ≤ τ ≤ 1.0 excluding the amplitude of the peak maximum projected diameter.  Since all
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the canopies examined in this study are geometrically similar and the averaged diameter

data seems to collapses on to a single curve (see Fig. 4.8), a function of the form

suggested by Heinrich and Noreen (1968) was fitted to the averaged canopy data.  The

results of the least-squares curve fitting is shown in Fig. 4.8 and Eq. 4.3.  
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The Heinrich & Noreen (1968) relation is also plotted in Fig. 4.8.  The numerical

coefficients in Eq. 4.3 are different than those given by Heinrich & Noreen; however, the

functional form of the relations are validated by the quality of the curve fit to the data.

Berndt & DeWeese (1966) imaged the inflation of full-scale canopies and derived an

empirical relationship for the canopy diameter.  This relationship is also plotted in

Fig. 4.8.  It is evident that there are deviations between full-scale and small-scale models.

Heinrich & Noreen (1968) also observed this and stated, 

“It is possible that the relatively higher stiffness of the parachute model

causes this deviation during the early phase and it would probably be

necessary to investigate this region in more detail when an attempt is made

to utilize the results of the model experiments for calculation of filling

processes of large parachutes.”

It should be noted that in the Berndt & DeWeese (1966) and the Heinrich & Noreen

(1968) studies, the time was normalized with the filling time instead of the opening time.

Since the opening time is approximately equal to the filling time for an infinite mass

inflation, this would at most cause a change in the coefficients.  
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The results obtained in the current study achieved a higher normalized diameter

than that obtained by Heinrich & Noreen (1968).  This behavior is exhibited by larger

slopes of the curves and the higher peak projected diameters achieved.  The peak

maximum normalized projected diameters, (Dm/Do)max, achieved are shown in Table 4.2.

Heinrich (1969) reports a maximum projected diameter ratio of (Dm/Do)max ≈ 0.7 for an

infinite mass inflation of a 91 cm model in a wind tunnel at Re ~ 106 and Lingard (1978)

reports values of (Dm/Do)max ≈ 0.75-0.80 for a constant velocity inflation in air and water

(see Table 4.2).  It is expected that the higher stiffness of the small canopy models

resulted in the higher values of the maximum projected diameters.  

The volume that the canopy enclosed, V, was estimated from the images of the

canopy inflation assuming that the canopy was axisymmetric during the inflation.  The

details of the volume estimation method are given in Section 2.3.  A sample of the

transient enclosed volume for a 15 cm canopy at ReDo = 3.0 × 104 is shown in Fig. 4.9.

An average enclosed volume was calculated by alignment of the peak force, using the

same method explained in the averaging of the canopy diameter.  The average enclosed

canopy volume is shown in Fig. 4.10, where the enclosed volume was normalized by the

mean enclosed volume, Vsteady, when the canopy is under steady flow conditions.  All the

inflations show a continual increase in the volume enclosed by the canopy until just after

the time that the peak opening force occurs (τ = 1.0).  The canopy then over-expands and

rapidly approaches the steady state volume.  From the enclosed canopy volume, estimates

of the unsteady potential flow are possible using the expressions employed in Section 3.2.

Details of these calculations are presented in Section 4.4.  
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4.2 Flow Field Evolution
The canopy geometry and the forces that the canopy experiences during inflation

are directly related to the evolution of the flow field surrounding the canopy.  The

velocity field in a plane was measured in the near wake of the canopy and the azimuthal

vorticity field in that plane was calculated.  From observations of these fields during the

inflation process, it was possible to characterize the inflation process into three distinct

stages, with each stage defined by the state of the boundary layer around the canopy.  The

stages are as follows: I. the initial canopy inflation where the boundary layer stays

completely attached to the canopy; II. the point at which boundary layer separates from

the canopy surface near the apex and the separation point moves upstream along the

canopy surface; and III. the point where the boundary layer completely separates from the

canopy at its skirt and transitions to a fully inflated canopy in steady flow.  It should be

noted that these results can only be drawn for an infinite mass case at this time since no

data was collected for finite mass inflations.  

A sample of the evolution of the vorticity field around a 15 cm canopy with a

freestream velocity of 20 cm/s is shown in Fig. 4.11.  The thick green line in each of the

plots is an approximation of the canopy outline in the measurement plane.  The measured

force and diameter for this specific inflation is plotted in Fig. 4.12 with the labeled points

corresponding to the images in Fig. 4.11.  

Initially the canopy was packed into the deployment tube and the canopy was

positioned such that the suspension lines were taut.  At time t = 0 s, the deployment tube

is pulled away.  Once the deployment tube clears the canopy, the canopy begins inflating

immediately into a conical, umbrella shape, (Figs. 4.11a-b) with the projected frontal area
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increasing.  During this initial inflation stage, the force has remained essentially constant

(Fig. 4.12).  The vorticity fields show that the boundary layer along the canopy surface is

fully attached to the canopy with the possible exception of the area very near the canopy

apex where minor vortex shedding is occurring.  At this point in time (Fig. 4.12, points

c-d), the force starts to increase in value even while the canopy geometry has retained a

shape similar to its previous form.  Over this same interval (points c-d), the canopy

diameter has grown by approximately 50%, yet the general characteristics of the vorticity

field have remained unchanged.  The boundary layer was still attached to the canopy

surface (Figs. 4.11c-d).  This sequence represents stage I of the inflation process.  

The essence of the canopy behavior and the surrounding flow field begins to

transition into another stage from this point forward.  The general shape of the canopy

has begun to transform from a conical shape to a more hemi-spherical shape

(Figs. 4.11d-e).  The boundary layer also changes its behavior at this point.  The end of

the boundary layer starts to separate from the surface of the canopy near the apex

(Figs. 4.11e-f).  This initiates the beginning of stage II of the inflation process.  The

separated region of the boundary layer becomes highly disorganized while the rest of the

boundary layer remains attached to the canopy surface farther upstream (i.e. the region

closer to the canopy skirt).  The point where the vorticity contours separate from the

canopy surface (Figs. 4.11f-i) begins to travel upstream towards the canopy skirt while

the canopy diameter progresses through its steady state shape (i.e. the filling time,

Figs. 4.11g-h) and then to an over-expanded condition.  With the upstream movement of

the separation point, the force passes through its maximum value (Fig. 4.12, point h) and

then falls off sharply.  Following the time when the maximum force occurs, the boundary
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layer separates completely from the canopy lip (Fig. 4.11i) and rolls-up into a vortex ring

near the skirt.  This initiates stage III of the inflation process.  The separated flow can be

confirmed by the existence of opposite signed vorticity between the canopy surface and

the boundary layer (Figs. 4.11i-j).  The vortex ring formed from the roll-up of the

boundary layer has been dubbed the unloading vortex since it occurs during the rapid

reduction of the force or the “unloading” of the canopy.  Subsequent to the separation of

the boundary layer from the canopy skirt, the maximum diameter was achieved

(Figs. 4.11j).  

The separated boundary layer becomes similar to a conventional shear layer

attached at the canopy skirt.  The shear layer remains separated at the canopy edge and

eventually the formation of the vortex is completed (Figs.  4.11k-n).  This vortex ring

eventually separates from the feeding shear layer and is conveyed downstream, initiating

the process of wake formation behind the canopy as seen in canopies exposed to a steady

flow.  The canopy diameter and force also begin to change to the behavior seen with a

canopy in steady flow (Figs. 4.12k-n).  

Similar flow field characteristics were observed at the other two conditions

examined in the study.  An inflation of a 30 cm canopy at ReDo = 6.0 × 104 is shown in

Fig. 4.13, with the corresponding force and diameter measurements in Fig. 4.14.  The

same trends can be identified in the inflation where the force only rises minimally during

stage I of the inflation (i.e. the boundary layer remains attached to the canopy surface,

Figs. 4.13a-d).  Then, the boundary layer separates (the beginning of stage II) from the

surface (Fig. 4.13d) near the apex region while the remainder of the boundary layer stays

attached to the canopy.  The separated portion of the boundary layer became highly



84

disorganized and the separation point traversed towards the canopy skirt (Figs. 4.13d-k)

during which time the peak opening force occurred (Fig. 4.13i-j).  The separation point

reached the canopy skirt (stage III, Fig. 4.13k) and the unloading vortex began to form.

The maximum diameter was achieved (Fig. 4.13l) shortly after the time the peak opening

force occurs.  The unloading vortex was fed vorticity from the separated boundary layer

until it separates from the canopy and was conveyed downstream (Figs 4.13l-n).  

The general characteristics of each stage of the inflation process can be

summarized as follows.  During stage I of the inflation, the boundary layer remains

attached to the canopy surface as the volume enclosed by the canopy increases as a result

of the increase in the diameter of the canopy.  The shape of the canopy during this stage

of inflation is a conical shape, at least on the small scale model canopies studied.  The

boundary layer sheds only small weak vortices near the apex, forming a narrow wake

region confined to an area directly behind the canopy.  However, over the majority of the

canopy surface, the boundary layer remains attached.  A rigid, static bluff body with a

similar shape in a constant freestream would not be able to sustain this attached boundary

layer.  The flow would separate from the rigid body at the leading edge.  The motion of

the canopy surface, due to its flexible nature, allows for the boundary layer to remain

attached to the canopy.  While the boundary layer remains attached to the canopy, the

drag of the canopy rises minutely even as the canopy diameter substantially grows at a

steady rate. 

The stage II initiates with the local separation of the boundary layer from the apex

region of the canopy surface.  This stage sees the most drastic changes in the flow field

and the canopy behavior.  The separated ends of the boundary layer become disorganized
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and cause the wake of the canopy to grow in a significant manner.  The separation

location along the canopy surface moves from the apex region towards the canopy skirt.

This causes the size of the wake to increase to the order of the canopy diameter.  During

this stage, the force rapidly rises to its peak value with an almost equally sever decline in

the force afterward.  The shape of the canopy also transforms from its conical shape to

the hemi-spherical cross-section seen previously in Section 4.1.  However, the canopy

diameter continues to grow during this stage.

The final inflation stage begins with the separation of the boundary layer from the

canopy skirt.  A large unloading vortex ring is formed at the outer edges of the canopy

from the fully separated boundary layer.  The canopy diameter is drawn out to its

maximum value during this formation process.  The vortex formation creates a low

pressure region at the canopy edge, causing the canopy diameter to increase to its

maximum diameter.  The separated boundary layer should be more properly called a

shear layer at this point since it is now similar to the shear layers seen in typical bluff

body flows.  The complete shedding of the unloading vortex ring initiates the

development of the wake typically seen in a fully inflated canopy in a steady freestream.

The shear layer continually sheds vortices in a periodic manner from this point forward.

The canopy begins the cyclic breathing phenomena described in Chapter 3.  

The beginning of each inflation stage can be defined with a time, for example

stage II inflation starts at t ≡ t2  and similarly stage III begins at t ≡ t3.  The separation

times are listed in Table 4.3 for each condition studied.  
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Table 4.3.  Boundary layer separation times.  

Do (cm) ReDo t2 (s) t3 (s) τ2 τ3

15.2 3.0 × 104 1.08 ± 0.19 1.52 ± 0.21 0.79 1.10
15.2 5.9 × 104 0.59 ± 0.11 0.88 ± 0.17 0.71 1.05
30.5 6.0 × 104 2.33 ± 0.43 3.63 ± 0.54 0.66 1.02

The uncertainty in these times is ±0.033 s for 15 cm canopy and ±0.067 s for the 30 cm

canopy which is half the sampling period of the velocity field measurements for the

15 cm canopy and a full period for the 30 cm canopy.  However, these values are

significantly less than the standard deviations of the measurements so the standard

deviations were used as an estimate for the uncertainty in the separation times.  The

selection of the separation times is a somewhat arbitrary process since in the strictest

sense the point of separation is defined as the point where the wall shear stress becomes

zero.  However due to the spatial as well as the temporal resolution of the velocity field

measurements made in these experiments, it was not possible to apply this criteria for

selecting the point in time when the boundary layer separated from the canopy surface.  It

is quite clear though that a dramatic change occurs in the behavior of the vorticity fields

at the time the flow separates.  It is from these observations that the separation times are

estimated.  

Normalizing the separation times with the opening time shows the relationship

between the opening shock and the flow field behavior.  The normalized separation

times, τ2 ≡ t2/to and τ3 ≡ t3/to, are plotted in Fig. 4.15 and listed in Table 4.3.  A small

Reynolds number dependence is apparent from the data.  But it is quite clear that the

onset of the boundary layer separation happens prior to the opening shock.  The

formation of the unloading vortex begins after the boundary layer has completely
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separated from the canopy skirt.  Therefore, since this separation begins after the opening

shock has already occurred, the unloading vortex is not the cause of the opening shock.

The opening shock takes place between these two points.  It is clear that the boundary

layer separation process is responsible for the opening shock.  A detailed analysis of the

canopy kinetics is presented in Section 4.4 below.  

The diameter of the canopy, Dt2 and Dt3, at the two separation times are listed in

Table 4.4.  The mean steady state diameter, Dp, was used to normalize the separation

diameters.  The uncertainty values listed is based on the standard deviation of the

measurements which was higher than any uncertainty in the measurement of the canopy

diameter or the vorticity field timing.  The boundary layer first separates once the canopy

reaches approximately two-thirds of its mean steady state diameter.  It should be

reminded that this separation point is not at the leading edge of the body (i.e. the canopy

skirt) but near the apex region of the canopy.  For a rigid and static bluff body with a

shape similar to the canopy at the first separation time, the flow would separate at the

leading edge.  The boundary layer only separates from the canopy skirt when the canopy

diameter has over-expanded to ~10% of its steady state value.  This shows that the

dynamic nature of the flexible canopy material is an important characteristic of the

overall flow field behavior.  

Table 4.4.  Boundary layer separation diameters.  

Do (cm) ReDo Dt2 (cm) Dt3 (cm) Dt2 / Dp Dt3 / Dp

15.2 3.0 × 104 8.3 ± 1.9 13.1 ± 0.5 0.71 1.14
15.2 5.9 × 104 7.3 ± 0.9 12.6 ± 0.7 0.65 1.12
30.5 6.0 × 104 15.8 ± 2.7 25.1 ± 1.1 0.68 1.08
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4.3 Integral Measures of the Wake
The circulation, Γ, of the boundary/shear layer was calculated from the velocity

field using the definition of the circulation, namely,

Γ ≡ ⋅z r ru ds
s

4.4

where ru  is the velocity along the path s.  The path of integration selected was one along

a constant value of positive vorticity that surrounded the maximum value of vorticity in

the neighborhood of the canopy.  The value of the vorticity contour used in the

calculation is listed in Table 4.5. 

Table 4.5.  Vorticity level of integration path.

Do (cm) U∞ (cm/s) ReDo
r
ω  contour-level (s-1)

15.2 20 3.0 × 104 5.0
15.2 40 5.9 × 104 15.0
30.5 20 6.0 × 104 5.0

An example of the temporal evolution of the circulation for a 15 cm canopy at

ReDo = 3.0 × 104 is shown in Fig. 4.16.  An ensemble average of the circulation was

calculated by time shifting the individual temporal circulation plots such that the time the

peak force occurred were aligned (the same method described in Section 4.1).  The

average temporal evolution of the circulation for each condition tested is plotted in

Fig. 4.17.  The solid line in the plots is a 5-point moving window average of the data and

the vertical dotted lines represent the separation and opening times as labeled.  

The evolution of the circulation behaves much as expected.  Initially the

circulation is at a minimum, nearly constant level up until the boundary layer starts to

separate at t = t2.  The circulation then begins to increase in value as the boundary layer

separation point moves along the canopy surface, increasing the amount of vorticity in
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the flow field.  The separated boundary layer produces large amounts of vorticity.  Once

the boundary layer completely separates from the canopy at the skirt (t = t3), the quantity

of vorticity begins to level out.  This is the point where the unloading vortex is taking

shape.  The amount of vorticity contained in the unloading vortex will continue to

increase as long as it remains attached to the shear layer.  However once it separates from

the shear layer, the vorticity contained will remain constant and therefore its circulation

will also remain constant until it begins to decay or the vorticity is canceled by opposite

signed vorticity.  The method used to calculate the circulation only examines a single

signed vorticity above the values listed in Table 4.5 so the plots in Fig. 4.17 will level out

to a constant value after t ~ t3.  Only the unloading vortex was tracked for its circulation

and not the shear layer that occurs after the unloading vortex is shed from the canopy.  So

even though additional vorticity is being introduced into the flow field from the shear

layer, the circulation values plotted in Fig. 4.17 only reflects the circulation of the

unloading vortex.  

Normalizing the circulation with the freestream velocity and the constructed

diameter (i.e. Γ/(U∞Do)) shows that, during the inflation of the canopy (when t2 ≤ t ≤ t3),

the time history of the circulation in the separating boundary layer remains the same

across the range of Reynolds numbers and geometry studied.  The normalized circulation

is plotted in Fig. 4.18.  The normalized circulation of the unloading vortex levels out to a

value of approximately unity after the canopy inflation is complete (i.e. t ≥ t3).  The time

it takes for the vortex circulation to approach this value is t⋅U∞ /Dp ≈ 3-4.  This

normalized vortex formation time is on the same order as that seen for the formation of
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impulsively started vortex ring.  Gharib et al. (1998) showed that the vortex ring

formation time of an impulsively started jet was in the range 3.6-4.5.  

The fluid impulse of the wake region is a measure of the momentum contained in

the wake.  In Section 1.4, it was shown that the rate of change of the fluid impulse

provides an estimate of the amount of force the fluid imposed on the canopy due to the

vorticity contained in the wake.  During the inflation of the canopy, the vorticity is

primarily confined to the boundary layer on the canopy surface and the unloading vortex

that results from the separation of the flow.  The impulse for each inflation was calculated

using Eq. 1.8 where the area of integration used was a rectangular region which enclosed

the vorticity from the centerline of the canopy radially outward and axially from the

canopy skirt in a downstream direction (see Section 2.5 for a more complete description).

In order to minimize the noise introduced to the impulse calculations from the

background vorticity, any vorticity values less than those listed in Table 4.5 were set to

zero during the calculation.  An example of the result of the impulse calculation is shown

in Fig. 4.19.  

An ensemble average of the impulse was performed at each test condition, using

the method of time shifting described earlier.  The results of this analysis is shown in

Fig. 4.20 where the solid line is a 5-point moving window average of the data and the

vertical dotted lines represent the separation and opening times as labeled.  The averaged

data show that initially the flow impulse has a minimum value with only a small increase

during the stage I inflation phase.  Once the flow begins to separate (at the onset of stage

II inflation), the impulse starts to rapidly increase, suggesting that the amount of

momentum contained in the wake has also increased.  To accommodate this change in
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momentum, a larger force is need to restrain the canopy in the fluid (i.e. the fluid exerts a

larger force on the canopy).  After the flow has completely separated at t = t3, the rate of

the impulse increase appears to approaches a constant value (i.e. the impulse becomes

linear).  The impulse can be normalized as

I
q S t

z

o o o

. 4.5

The normalized average impulse is shown in Fig. 4.21.  This normalization shows that

under each inflation condition, similar amounts of fluid impulse are generated.  From the

impulse calculation, estimates of the vortical force are made.  

4.4 Composition of Fluid Dynamic Forces on the Canopy
A relationship for calculating the force that the canopy experiences based only on

measurements of the flow field was derived in Section 1.4.  The force the canopy

experiences from the flow field is attributable to two primary sources; the unsteady

potential flow associated with the change in the volume of the canopy (i.e. the apparent

mass of the flow) and that associated with the production of vorticity in the wake (i.e. the

rate of impulse production).  

The unsteady potential flow around the canopy produces a force which is related

to the enclosed volume of the canopy.  It was shown in Eq. 1.11, (and repeated here for

clarity)

F k U Vp p= ∞ρ & , 4.6

that the potential force is proportional to the time rate of change of the enclosed volume.

This is true as long as the canopy is not decelerating.  For the cases examined in this
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study, the freestream velocity was maintained at a constant value (i.e. the infinite mass

condition).  The enclosed volume of the canopy was estimated from the images of the

canopy as described in Section 4.1.  From these measurements, the derivative of the

volume was estimated using a central differencing scheme and assuming the

proportionality constant kp as unity.  The potential flow force history plotted against the

ensemble-averaged force peak is shown in Fig. 4.22.  The potential force grows in a

nearly linear fashion from an initially zero value until just prior to the opening time when

the potential force reaches its maximum value.  After achieving its peak value, the

potential force drops precipitously to values that oscillate around a zero mean value.  The

peak value of the potential force is small in relation to the total peak force during the

inflation.  Typically, the peak potential force achieved during the inflation was 7-9% of

the peak opening force under the assumption that kp = 1.  

The potential force was normalized to a potential force coefficient as

C
F

q SF
p

o o
p

= 4.7

which is plotted in Fig. 4.23.  The data collapses to a single curve with some scatter

around τ ~ 0.7.  The solid line in Fig. 4.23 is the average of all three conditions.  The

peak value occurs at τ ~ 0.95, nearly aligned with the opening shock at τ = 1.  

The forces associated with the vorticity containing regions of the flow (i.e. the

vortical force) are calculated from the time derivative of the flow impulse.  The relation

for this calculation was given in Eq. 1.9 as

F dI
dt

d
dt

r drdzz
ω θπρ ω= = − zz 2 . 4.8
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The axial impulse was calculated for each test condition and then an ensemble average of

the data was generated with the results presented in Section 4.2.  The impulse was

smoothed using a 5-point moving window average then the time derivative of the

smoothed data was taken using a central differencing scheme.  The results of the

differentiation for each test condition is shown in Fig. 4.24.  These plots show that before

the flow separation (at t = t2), the vortical force rises slowly from a near zero value.

Upon approaching the first separation point, the vortical force rapidly rises before

reaching a maximum value at or near the opening time (t = to).  Afterward, the vortical

force declines from the maximum to a lower value.  The peak vortical forces was 50-60%

of the total peak opening force.  This clearly demonstrates that a large portion of the total

opening force is directly attributable to the production of vorticity along the canopy

surface and the radial expansion of the canopy wake.  As was discussed in section 1.4,

the vortical force can be increased by moving the vorticity radially outward with time.

Therefore, the force the canopy experiences is caused by the rapid movement of vorticity

away from the centerline of the canopy while the separation point of the boundary layer

moves upstream along the canopy surface.  The amount of vorticity in the boundary layer

does continue to increase as seen in the increase of the circulation during the inflation.

However, the bulk motion of the vorticity away from the canopy centerline is expected to

be the primary factor in the increase of the force.  Once the boundary is separated from

the canopy at the skirt, the vorticity no longer moves rapidly outward from the canopy

centerline, so the force decreases as the bulk of the vorticity stabilize at a particular

location.  The value of the vorticity still might change and its general location might also
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move but only in a relatively small sense when compared to the bulk motion of it during

the inflation process.  

It is expected that this estimate of the vortical force inadequately predicts the

actual value.  The reason for this is two fold, i) it was assumed that the flow was strictly

axisymmetric which ignores any three-dimensional effects, and ii) the PIV measurements

of the velocity fields (and therefore the vorticity fields) was done on a fixed grid

resolution which would under-resolve the boundary layer vorticity at the canopy surface.

By assuming an axisymmetric flow, any azimuthal variations in the flow around the

canopy caused by the three-dimensional effects are disregarded.  The axisymmetric

assumption is not entirely deficient given that observations of the canopy inflations

shows that the flow appears reasonably symmetric across the centerline of the canopy in

the measurement plane.  The boundary layer of the canopy is confined to a very small

region along the canopy surface.  In order to properly resolve the boundary layer, it

would require the measurements to focus in on a very small portion of the canopy surface

which would preclude measuring the near wake region of the canopy and estimating the

fluid impulse.  However, it is felt that the measurements of the canopy wake performed

are a reasonable estimate for the over all behavior of the inflating canopy.  If the

boundary layer vorticity is under-resolved, this would tend to under predict the fluid

impulse and therefore the vortical force as well.  The velocity field resolution becomes

less problematic with the larger canopy (the 30 cm canopy) since the boundary layer

itself is larger.  The flow must move along a longer distance across the canopy surface

which in turn results in the boundary layer being thicker.  The thicker boundary layer is
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easier to measure which will result in a better estimate of all flow quantities including the

fluid impulse.  

The vortical force was normalized to a vortical force coefficient using

C F
q SF

o o
ω

ω= 4.9

which is plotted in Fig. 4.25.  The solid line in the figure represents the average of all

three test conditions.  It is clear that under each condition the inflation process follows

similar trends.  However, there does seem to be considerable scatter between the three

conditions for τ ≥ 1.0.  

The potential force and the vortical force were combined to obtain an estimate of

the total aerodynamic force the canopy experiences during the inflation.  The combined

force estimate is plotted in Figs. 4.26- 4.28 for each test condition.  Also plotted in the

figures is the individual potential and vortical forces with the total measured force.  The

combined force estimate exhibits a similar trend to that seen in the measured force.  The

force gradually rises during the early inflation stage and then transitions into a sharp rise

near the opening time.  After which the force declines rapidly until it approaches a steady

state value.  In each case, the combined force estimate predicts approximately 50-60% of

the peak opening force.  The combined force calculation over-estimates the opening force

prior to the opening shock.  The combined force estimates made with the smaller canopy

tend to over-estimate the breadth of the opening shock as well.  While the estimates for

the larger canopy match the measured force well in terms of the breadth of the estimate of

the opening shock.  This is a result of the better resolution of the velocity field

measurements for the larger canopy.  The other prediction deficiencies are attributable to



96

the three-dimensional effects and vorticity resolution issues as well as neglecting the

other terms in Eq. 1.5 developed in section 1.4 especially the term associated with the

internal flow of the canopy.  

As seen in the combined force figures, the potential force only plays an important

role during the early stages of inflation (up to τ ~ 0.5) when the boundary layer remains

attached to the canopy surface.  This is not surprising since the wake of the canopy is

small at this stage so no large pressure gradient would exist across the canopy to create a

larger drag force.  Once the boundary layer begins to separate, the wake region directly

behind the canopy grows and significantly more vorticity is introduced into the wake near

the canopy surface.  This would cause the pressure drop across the canopy to increase and

therefore increase the drag the canopy experiences.  The maximum rate of momentum

transfer between the flow and the canopy occurs during the opening shock of the canopy.

The flow then separates from the canopy skirt just after the peak opening force and the

momentum transfer declines.  From this point onward, the canopy approaches the

behavior seen for a canopy in a steady flow.  

In conclusion, it was shown that the opening force an inflating canopy

experiences is primarily caused by the formation of a wake behind the canopy.

Traditional methods of modeling the opening force using a combination of an added mass

term (i.e. the unsteady potential force) and a constant drag coefficient term, to account for

the wake effects, are inadequate.  The added mass accounts for less than 10% of the peak

opening force and only during the early inflation phase, before the opening shock force

occurs, does the added mass contribute in a significant amount.  Afterwards, the primary

force the canopy experiences comes from the formation of the wake.  The behavior of the
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boundary layer during the inflation is the driving factor in the wake formation.  During

the early inflation stage, the boundary layer remains attached to the canopy surface

resulting in a very small wake.  As the canopy grows in size, the boundary layer separates

from the canopy with a corresponding growth in the wake.  It is during this wake growth

interval that the opening shock force occurs.  After the opening shock, the boundary layer

separates from the canopy skirt and the size of the wake stabilizes resulting in a drag

force that settles into values seen for a canopy in steady descent.  
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a) t = 0.00 s b) t = 0.23 s

c) t = 1.00 s d) t = 1.23 s

e) t = 1.43 s f) t = 1.70 s

g) t = 2.00 s h) t = 2.27 s

Figure 4.1.  Images of a canopy inflation for a 15 cm canopy at a freestream velocity of
20 cm/s.  Images correspond with labeled points in Fig. 4.2.
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Figure 4.2.  The opening force and diameter for a 15 cm canopy at a freestream velocity
of 20 cm/s.  Labeled points correspond with the images in Fig. 4.1.
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a) t = 0.50 s b) t = 1.50 s 

c) t = 1.70 s d) t = 2.10 s 

e) t = 2.40 s f) t = 2.63 s 

g) t = 3.10 s h) t = 4.10 s 

Figure 4.3.  Images of a canopy inflation for a 30 cm canopy at a freestream velocity of
20 cm/s.  Images correspond with labeled points in Fig. 4.4.
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Figure 4.4.   The opening force and diameter for a 30 cm canopy at a freestream velocity
of 20 cm/s.  Labeled points correspond with the images in Fig. 4.3. 

Figure 4.5.  Definitions of characteristic times during canopy inflation.  
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a) 

b) 

c) 

Figure 4.6.  Normalized characteristic times; a) opening time, b) filling time, c)
maximum diameter time.  
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Figure 4.7.  Ensemble-averaged force coefficient during canopy inflation of the three
cases studied.  

Figure 4.8.  Normalized canopy diameter for the three cases studied and several empirical
curve fits. 
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Figure 4.9.  A sample of the volume enclosed by an inflating canopy with Do = 15.2 cm
and ReDo = 3.0 × 104.  

Figure 4.10.  Ensemble-averaged enclosed canopy volume for the three cases studied.  
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a) b)

c) d)

e) f)

Figure 4.11.  Vorticity field of an inflating 15 cm canopy at ReDo = 3.0 × 104.  The
positive vorticity levels are at 

r
ω  = 10 – 125 s-1 with steps of 5 s-1.  The time for each

image is a) t = 0.40 s, b) t = 0.73 s, c) t = 0.93 s, d) t = 1.00 s, e) t = 1.07 s, and
f) t = 1.13 s.  Stage II inflation (t2 = 1.10 s) begins between images e and f.  
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g) h)

i) j)

k) l)

Figure 4.11,  continued.  The time for each image is g) t = tf = 1.27 s, h) t = to = 1.33 s,
i) t = t3 = 1.40 s, j) t = tmax = 1.53 s, k) t = 1.67 s, and l) t = 1.80 s.  
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m) n)

Figure 4.11,  continued.  The time for each image is m) t = 1.93 s and n) t = 2.07 s.

Figure 4.12.  Force and diameter of canopy shown in Fig. 4.11.  The letters correspond to
the individual images in Fig. 4.11.  
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a) b)

c) d)

e) f)

Figure 4.13.  Vorticity field of an inflating 30 cm canopy at ReDo = 6.0 × 104.  The
positive vorticity levels are at 

r
ω  = 10 – 125 s-1 with steps of 5 s-1.  The time for each

image is a) t = 0.40 s, b) t = 1.40 s, c) t = 2.13 s, d) t = t2 = 2.27 s, e) t = 2.80 s, and
f) t = 3.00 s.  
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g) h)

i) j)

k) l)

Figure 4.13,  continued.  The time for each image is g) t = 3.33 s, h) t = 3.40 s,
i) t = 3.53 s, j) t = 3.60 s, k) t = t3 = 3.67 s, and l) t = tmax = 3.73 s.  The filling time
(tf = 3.36 s) occurs between images g and h.  The opening time (to = 3.55 s) occurs

between images i and j.  
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m) n)

Figure 4.13,  continued.  The time for each image is m) t = 4.00 s and n) t = 4.60 s.

Figure 4.14.  Force and diameter of canopy shown in Fig. 4.13.  The letters correspond to
the individual images in Fig. 4.13.
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Figure 4.15.  Normalized separation times.  The solid symbols represent the stage II
inflation time, τ2, and the open symbols represent the stage III inflation time, τ3.  

Figure 4.16.  A sample of the circulation 15 cm canopy at ReDo = 3.0 × 104.
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a)

b)

c)

Figure 4.17.  Average circulation of the canopy wake, a) 15 cm canopy at
ReDo = 3.0 × 104; b) 15 cm canopy at ReDo = 5.9 × 104; c) 30 cm canopy at

ReDo = 6.0 × 104.  The solid line is a 5-point moving window average of the data and the
vertical dotted lines are the noted times.  
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Figure 4.18.  Normalized average circulation.  

Figure 4.19.   A sample of the impulse for a 15 cm canopy at ReDo = 3.0 × 104.
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a) 

b) 

c) 

Figure 4.20.  Average impulse of the canopy wake, a) 15 cm canopy at ReDo = 3.0 × 104;
b) 15 cm canopy at ReDo = 5.9 × 104; c) 30 cm canopy at ReDo = 6.0 × 104.  The solid line
is a 5-point moving window average of the data and the vertical dotted lines are the noted

times.
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Figure 4.21.  Normalized average impulse. 
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a) 

b) 

c) 

Figure 4.22.  Average unsteady potential force, a) 15 cm canopy at ReDo = 3.0 × 104; b)
15 cm canopy at ReDo = 5.9 × 104; c) 30 cm canopy at ReDo = 6.0 × 104.
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Figure 4.23.  Unsteady potential force coefficient.  
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a) 

b) 

c) 

Figure 4.24.  Average force due to wake vorticity, a) 15 cm canopy at ReDo = 3.0 × 104;
b) 15 cm canopy at ReDo = 5.9 × 104; c) 30 cm canopy at ReDo = 6.0 × 104.  
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Figure 4.25.  Force coefficient due to the impulse in the canopy wake.  

Figure 4.26.  Force coefficient estimates from the summation of the unsteady potential
force and the force due to the vorticity in the wake for a 15 cm canopy at

ReDo = 3.0 × 104.  
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Figure 4.27.  Force coefficient estimates from the summation of the unsteady potential
force and the force due to the vorticity in the wake for a 15 cm canopy at

ReDo = 5.9 × 104.

Figure 4.28.  Force coefficient estimates from the summation of the unsteady potential
force and the force due to the vorticity in the wake for a 30 cm canopy at

ReDo = 6.0 × 104.

τ

0.00 0.25 0.50 0.75 1.00 1.25

C
F

0.0

1.0

2.0

3.0

4.0

measured force
CFp

CFω

CFp + CFω

τ

0.00 0.25 0.50 0.75 1.00 1.25

C
F

0.0

1.0

2.0

3.0

4.0

5.0

measured force
CFp

CFω

CFp + CFω



121

5. Conclusions 
The flow field in the wake of a small scale flexible generic round parachute

canopy was investigated.  The research focused on the inflation of a canopy in a constant

freestream velocity under an infinite mass condition and a fully inflated canopy.  The

canopy wake was measured by the PIV method in a two-dimensional plane that was

parallel to the freestream.  The vorticity field was computed from the velocity field

measurements.  Simultaneous measurements of the drag force and the overall canopy

geometry allowed for the correlation between the canopy dynamics and the near wake

flow field.  

The experiments were performed in a water tunnel to allow for longer canopy

inflation times than would be present in a wind tunnel.  The effects of Reynolds number

and canopy size were examined by testing at three freestream velocities, which ranged

from a nominal 20 cm/s to 40 cm/s, and selecting two different canopy diameters

(15.2 cm and 30.5 cm).  The Reynolds number ranged from 3.0 - 6.0 × 104.  A qualitative

assessment of the overall canopy dynamics of the small scale canopies showed

characteristics similar to those seen in full scale canopies (with the possible exception of

the canopy behavior during the early stages of inflation).  These characteristics included a

cyclic breathing of the canopy diameter for a fully inflated canopy, a large opening shock

during the canopy inflation, and the over-expansion of the canopy diameter during the

inflation process.  The geometric characteristics of the model in the early stage of the

inflation process showed a marked difference with a full scale inflation, a result of the

higher stiffness of the canopy models.  
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Analysis of the shedding characteristics of the fully inflated canopy in a constant

freestream flow identified the source of the canopy “breathing” cycle.  The cyclic

expansion and contraction of the diameter of a flexible parachute canopy corresponds to

the shedding of successive vortex rings into the wake.  This “breathing” motion

corresponded to a normalized breathing frequency of 0.56 ± 0.03.  A similar vortex

shedding frequency was found to exist that remained at a constant Strouhal number of

0.54 ± 0.04 over the studied Reynolds number range.  The normalized shedding

frequency was confirmed by two methods, namely by i.) spectral analysis of the radial

velocity field in the near wake, and ii.) by tracking the position of the shed vortices in the

wake.  This shedding frequency has not been reported in past studies of disks or spheres.

The non-rigid nature of the canopy structure may lend to the formation of this shedding

frequency.  It was also observed that the vortex rings form symmetrically around the

canopy at lower Reynolds numbers, and the formation becomes asymmetric with the

vortex rings becoming twisted and distorted immediately as the Reynolds number

approaches 6.0 × 104, the limit of our experiments.  

Examination of the flow field surrounding the inflating canopy revealed that the

kinematics of the flow field is an important element of the canopy inflation process.

During the early stages of the inflation, the boundary layer on the canopy surface remains

attached to the canopy material and the wake of the canopy has minimal extent.  This

results in the canopy only experiencing a small amount of force from the fluid even

though the canopy diameter has grown a substantial amount.  Once the curvature of the

canopy can no longer support an attached boundary layer, it begins to separate from the

canopy surface near the apex region and the wake of the canopy increases in size with a
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corresponding increase in the force.  At this point the force rapidly increases to its

maximum value as the separation point of the boundary layer moves upstream from the

canopy apex region towards the canopy skirt.  The force then plunges precipitously to

levels seen for a fully inflated canopy in a steady flow.  Once the boundary layer

becomes separated from the canopy at the skirt, it commences to roll-up into a large

vortex ring (termed the unloading vortex) near the outer edges of the canopy.  The

canopy diameter is drawn out to its over-expanded state at this point and then proceeds to

the cyclic breathing seen in a steady state canopy.  The unloading vortex is eventually

shed from the canopy and is convected downstream where it begins to form the wake of

the steady state canopy.  

The force the canopy experiences from the fluid was estimated from an unsteady

potential flow force and a force associated with the rate of change of the fluid impulse.

For a canopy in a constant freestream (i.e. the canopy does not decelerate) the unsteady

potential flow force can be estimated from the rate of change of the volume enclosed by

the canopy.  While the fluid impulse is a consequence of the vorticity containing portions

of the flow.  It was shown that the unsteady potential force contributed to no more than

10% of the total peak opening force and only provided a significant portion of the

opening force during the early stages of the inflation process.  It should also be noted that

the rms-value of the fluctuating unsteady potential force of the fully inflated canopy is

less than 10% of the total drag force and 20% of the rms-value of the force.  A large

portion of the total opening force was the result of the time rate of change of the fluid

impulse. The formation of the wake behind the canopy during inflation results in the

production of vorticity, and the bulk displacement of this vorticity in the flow causes the
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large opening shock force.  Once the large amplitude displacement of the vorticity stops,

the force approaches levels seen for a canopy in a steady flow (i.e. steady descent).  

These conclusions show that the temporal evolution of the inflation process

should not be exclusively modeled with just an apparent mass term.  Consideration of the

temporal evolution of the vorticity generated during the inflation needs to be included in

the modeling efforts.  Also the data and knowledge obtained from this research should

aid in the validation of the computational models now being developed.  
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6. Recommendations for Future Research
Flow field measurements in the near wake of a canopy, in a finite mass condition,

should be performed in order to examine and understand the flow physics of a

decelerating canopy.  It is known that during a finite mass inflation, the peak opening

force occurs before the canopy is fully inflated (at the filling time).  The question arises,

how does this flow field differ from that seen in an infinite mass inflation?  It is expected

that the when the boundary layer separates from the canopy, the force will rapidly

increase forming the opening shock; similar to what is seen in the infinite mass case.

However, in the finite mass case, the boundary layer is expected to separate sooner in the

inflation process than that seen in the infinite mass case.  This would result in the opening

shock occurring earlier in the inflation process.  However to verify this hypothesis, it is

necessary to measure and study the flow field around a canopy inflating in a decelerating

flow.  

The apparent and included masses of a canopy (under a finite mass condition)

should be estimated from measurements of the enclosed canopy volume and the

deceleration of the freestream velocity.  Based on these estimates, the unsteady potential

flow forces could be calculated and compared with estimates of the force associated with

the rate of change of the fluid impulse.  This would show how the unsteady potential flow

force contributes to the total force the canopy experiences from the fluid.  It is also

desirable to obtain higher spatial and temporal resolution of the velocity field in order to

obtain a better estimate of the fluid impulse and how it changes with time.  It would also

be beneficial to measure the flow field in the interior of the canopy to obtain improved

estimates of the force exerted on the canopy by the fluid.  
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In addition, experiments with the same level of detail should be performed at

higher Reynolds numbers.  This way the flow field would be examined over a larger

Reynolds number range and it can be seen whether the conclusions drawn in this research

could be applicable to higher Reynolds numbers.  It is also expected that at higher

Reynolds numbers, the geometric behavior of the canopy would more closely match that

seen in a full scale canopy inflation.  The higher Reynolds number can be achieved by

increasing the freestream velocity and by using larger canopy models.  In the testing

facilities utilized in this research, the freestream velocity could be increased up to

approximately 60 cm/s which would result in a Reynolds number for the 30 cm canopy of

1.8 × 105.  The experiments could also be conducted in a wind tunnel which would allow

for a larger freestream velocity and therefore a larger Reynolds number.  However,

performing PIV experiments in air introduces new technical difficulties and the relative

stiffness of the canopy would higher in air than in water.  

Finally, the results presented here should be used to verify computational fluid

dynamic (CFD) models being developed for parachute inflation.  This research provides a

database of detailed flow field measurements which can be used to verify the results of

the CFD models.  The fluid-structure interaction models being developed show great

promise for being able to predict the flow around a highly flexible body but to date no

data has been available for verification purposes.  
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Appendix A:  Image Processing Routine

The basic canopy geometry was extracted in an automated fashion from the

images of the canopy recorded in the experiments.  The basic canopy geometry including

the canopy diameter, height, cross-sectional area, and estimates of the volume enclosed

by the canopy.  The image processing routine is shown graphically in Figure A.1.  The

image process was done using the graphical programming language WiT.  The routine

shown in Fig. A.1 is the actual program used to process the data in this research.

The processing procedure consisted of thresholding the image into a binary

format, then performing a blob detection on the binary image to select the largest blob

which represented the image of the canopy.  The extents of the blob were then extracted

as measures of the canopy diameter and height.  The cross-sectional area of the canopy

was estimated by counting the number of pixels in the canopy blob.  The volume was

estimated assuming each column of pixels from the centerline outward in the canopy blob

was revolved around the centerline to form a ring.  Then the volume of all these rings was

summed to estimate the total volume of the canopy.  Since this calculation used only half

of the canopy in the volume estimate (columns from the centerline of the canopy out), the

volume was estimated twice from each side of the canopy centerline.  Then the average

of these two volume estimates was calculated to give a final best estimate for the volume

enclosed by the canopy.  
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Figure A.1.  The image processing routine used to calculate the canopy geometry.
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Appendix B:  Electrical Wire Diagrams 

The output of the load cell was amplified before being measured by a data

acquisition system in a computer.  The wiring diagram of the amplifier is shown in

Fig. B.1.  The canopy deployment was controlled by a circuit which synchronized the

force measurements with the camera and the stepper motor which pulled the deployment

tube.  Figure B.2 shows the wiring schematic of the deployment control circuit.

Figure B.1.  Wiring diagram of the load cell amplifier.  
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Figure B.2.  Wiring diagram of deployment control circuit.  
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