
A Practical Distributed Spectrum Sensing System

by

Devin Kelly

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

May 2011

APPROVED:

Professor Alexander M. Wyglinski, Research Advisor

Dr. Andrew P. Worthen

Professor William R. Michalson

This work was sponsored by the Department of Defense Research and Engineering under
contract number FA8721-05-C-0002. Opinions, interpretations, conclusions and

recommendations are those of the authors and are not necessarily endorsed by the United
States Government.



Abstract

As the demand for wireless communication systems grows, the need for spectrum grows

accordingly. However, a large portion of the usable spectrum has already been exclusively

licensed to various entities. This exclusive allocation method encourages spectrum to be

left unused if the licensee has no need for that spectrum. In order to better utilize spectrum

and formulate new approaches for greater spectrum use efficiency, it is imperative to possess

a thorough understanding about how wireless spectrum behaves over time, frequency, and

space. In this thesis, a practical, scalable, and low-cost wideband distributed spectrum

sensing system is designed, implemented, and tested. The proposed system is made up of

a collection of nodes that use general purpose, off-the-shelf computer hardware as well as

a collection of inexpensive software-defined radio (SDR) equipment in order to collect and

analyze spectrum data that varies across time, frequency, and space. The spectrum data

the proposed system collects is the power present at a given frequency. The tools needed

to analyze the gathered data are also created, including a periodogram and spectrogram

function, which visualize average spectrum use over a period of time and as spectrum use

varies with time, respectively. The proposed system also facilitates the testing of a spatio-

spectrum characterization method using real data. This method has only been simulated

up to this point. The characterization technique allows for spatially varying spectrum

measurements to be visualized using heat maps.
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Chapter 1

Introduction

1.1 Motivation

As demand for wireless communications increases, the strain on the availability of the

electromagnetic spectrum progresses. This growing demand for wireless communications

systems comes from various entities including: commercial, consumer, medical, public

safety, industrial, and military. All of these organizations require spectrum, resulting in

a strain on the current spectrum allocation system. With the current spectrum allocation

rules, nearly all the usable electromagnetic spectrum is allocated. However, before one can

address the problem of finding available spectrum for new communications systems the

electromagnetic spectrum must be better understood.

Spectrum is neither completely used nor inappropriately allocated; this is a reflection

of a misunderstanding of the relationship between spectrum allocation and spectrum use.

To enable more efficient use of the spectrum, the allocation rules must change. The type

and magnitude of these changes are unknown. Before one can change the rules regarding

spectrum allocation, one must first have a complete understanding of the way the spectrum

is used.

Understanding spectrum is a complex task; the spectrum is constantly changing by time

and location. The tools to gather the data needed to understand this complex entity re-

quire special knowledge to operate. If not considering the difficulty of acquiring the data,
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Figure 1.1: Concept Diagram

spectrum is still difficult to understand.

A necessity for a spectrum measurement system is a simple technique for gathering

spectrum data. This technique must build on the shortcomings of the systems created

and data that was gathered previously. Several attributes possessed by a spectrum sensing

system include:

• Practicality Currently, spectrum sensors can be prohibitively expensive for research

groups. A collection of inexpensive sensors can keep the total cost of a spectrum

sensing system down. This system should be affordable for any research group.

• Long Term Measurements Spectrum sensing involves large amounts of data col-

lected quickly, thus making long term measurements difficult. This system should

provide the capability to measure spectrum over longer periods of time, such as weeks,
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months, or years.

• Wideband The need for spectrum covers its entire usable range, thus data collection

over as much of the spectrum as possible is necessary.

• Scalable Multiple sensors provide advantages over a single sensor, so this system

should scale to as many sensors as the designer desires.

• Data Sharing Mechanism With a method to share data the spectrum sensors will

be able to cooperate to form one conclusion about the state of the spectrum.

• Consistent Data Storage Format The system shall provide data in a consistent,

compact format and provide the user with tools to analyze the data.

Such a system will enable a better understanding of the electromagnetic spectrum that

will allow researchers to associate spectrum allocation with actual spectrum use. Figure 1.1

shows a concept diagram of a distributed spectrum sensing network. In this concept diagram

there are three spectrum users, all of them operate on different bands. In the diagram there

are also three spectrum sensors measuring the spectrum. The spectrum sensors all report

their measurements to the processing center in the lower left hand corner. Finally, the

processing center creates the spectrum measurement that is shown at the bottom of the

figure.

1.2 Current State-of-the-Art

Software defined radios (SDRs), defined as the intersection between hardware radios

and computer software [4], are the technological foundation for future spectrum sensing

radios. An SDR is a radio that is software controllable, or a radio that can make decisions

based on its environment. A spectrum sensor is a special type of SDR that attempts to

characterize the radio frequency (RF) environment around it and makes decisions based

on those characterizations. Depending on the system design, a spectrum sensor does not

always need to be a coherent receiver, therefore a spectrum sensor does not necessarily need

to decode transmissions into messages. The goal of the spectrum sensor is to characterize
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the RF environment around it.

Currently, spectrum sensing is necessary for a variety of applications. These applica-

tions drive the need for spectrum sensing in the research, military, commercial and industrial

communities. The applications that rely on spectrum sensing as a fundamental technology

include dynamic spectrum access, interference avoidance, and spectrum characterization

[5].

For dynamic spectrum access systems there are primary spectrum users and secondary

spectrum users. The difference between the two is that primary users always have priority

to spectrum access over the secondary users. Secondary users may access the spectrum but

only when the primary users are idle. This limits primary user interference to accidental

interference [6]. Spectrum that is unused by primary users is called vacant spectrum or

a spectrum opportunity. A secondary user scans the spectrum looking for spectrum op-

portunities to communicate with other secondary users. Secondary users are not allowed

to interfere with primary users, so they use spectrum sensing technologies to identify the

presence or absence of primary users. Depending on the state of the primary user, the

spectrum sensing radio has two options for communications. If a primary user is present,

the communication can take place using spread spectrum technologies, where the secondary

user transmits so that the power gets spread out over a large bandwidth [6]. The primary

user will not be noticeably interfered with, since the power per unit frequency is low. The

other option, called opportunistic spectrum access [7] occurs when a secondary user com-

municates normally in the absence of a primary user. Spectrum sensing in opportunistic

spectrum access systems is necessary not only to identify unused spectrum, but also to

identify when a primary user wants to reacquire that spectrum.

As part of the research applications, the measurements taken that characterized the

RF environment were short-term and characterized a central geographical area [8, 9, 10].

The objective of the studies performed was to gain a more general understanding of how

spectrum is used and occupied. The longest work measured different bands of spectrum

over a period of several days, these studies all quantified short term spectrum use [8]. All of

the studies also used instrument grade spectrum analyzers for data capture. Additionally,

all of these studies measured spectrum at single points in space; meaning that geographic
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dependent impairments can degrade some signals resulting in data that may not represent

the nearby area well. The results of the spectrum survey studies all agree that spectrum is

under utilized. For example, these studies show that some bands have a near zero percent

occupancy rate [11].

All of the above studies measure spectrum at a single point in space. There is an-

other study which implements a wideband distributed spectrum sensing system. Microsoft

Research India has proposed a wideband distributed spectrum sensing system called Spec-

Net [12]. This system proposes a network of spectrum analyzers using Extensible Markup

Language Remote Procedure Calls (XML-RPC). The proposed architecture is one where

a master server sends out a command to slave servers (a PC networked with a spectrum

analyzer) using the XML-RPC format, then waits for the measurement from each server.

This spectrum sensing network is dependent on using instruments as a part of their net-

work. Acquisition of multiple spectrum analyzers is expensive and the authors admit any

practical system depends on volunteers.

The spectrum survey studies mentioned above had the common goal of characterizing

spectrum in their respective environments. Spectrum has two basic states, which are used

or unused. When characterizing spectrum the task of the sensor is to identify the current

state of that spectrum. There are techniques to identify the state of observed spectrum,

some of these technologies are energy detectors, matched filters, cyclostationary analysis,

and waveform analysis [13]. An energy detector simply takes the frequency domain spec-

trum data and tests frequencies against a given power level [14]. A bank of matched filters

associates the signal with one of the filters in the filter bank therefore deciding the state of

the spectrum [15]. Cyclostationary detectors analyze the statistics of the signal to identify

the state of the spectrum [16]. Waveform analysis attempts to identify certain predefined

characteristics of a signal to identify spectrum state [17]. Spectrum sensors use any of

the above methods to identify the state of the spectrum. However, matched filters, cy-

clostationary analysis, and waveform analysis can all make decisions regarding the signals

occupying the spectrum. For example, matched filters and cyclostationary detectors can

identify modulation scheme and waveform analysis can identify protocols [13].

One sensor or a collection of sensors working together can operate as a spectrum sensing
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network. A single spectrum sensor has lower costs and a more simple implementation, but

can only sense one propagation channel per transmitter. Sensing a singular propagation

channel allows fading to impact the data that each sensor collects unequally compared to

all transmitters. With distributed sensing, each sensor sees a different propagation channel.

If the propagation channels are independent, then distributed sensing can overcome the

fades that affect each propagation channel differently [18]. Distributed sensing also helps

solve the hidden terminal problem [19], where the relative position the transmitter from the

spectrum sensor.

When different spectrum sensors perform distributed sensing each sensor collects differ-

ent data. This presents the problem of drawing one conclusion from the datasets that each

node collects. One approach is gathering all data together to one centralized location and

drawing a single conclusion from all of this different data respectively. Another approach

is nodes drawing a conclusion then informing neighboring nodes of that conclusion, when

there are no neighboring nodes left, the final conclusion is made [13].

A sensor-aware control channel can solve the problem of data collection or the control

channel can be a wired data transmission medium. When using a wireless control channel,

the amount of control data becomes an issue. Too much data is impractical and too little

data will not allow the sensors to make proper conclusions about the spectrum environ-

ment. This trade-off is best illustrated by soft decisions and hard decisions respectively. A

soft decision is when a decision device utilizes raw or slightly processed data and a hard

decisions is when a decision device utilizes only a true or false statement about spectrum

use at a particular frequency.

Finally, when considering distributed spectrum sensing there is data fusion. Data fusion

a is technique in which multiple sensors combine their data to form a single conclusion. For

soft decisions the techniques include voting algorithms, weighted averaging and Bayesian

filtering. For hard decisions, AND and OR techniques have been proposed [20], which require

a unanimous and a singular consensus respectively.
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1.3 Thesis Contributions

This thesis contributes the follow to the wireless communications research community:

• A practical implementation of a distributed spectrum sensing system. This is a system

that can characterize spectrum use. The characterization is far reaching in that a

wideband of spectrum is characterized at once and that wideband is characterized for

a long duration of time. This is all done with a low cost per node.

• Analysis tools for interpreting the data collected by this spectrum sensing system,

including the periodogram, the spectrogram, and the PSD map visualizations. These

tools allow researchers to to draw conclusions about spectrum. The periodogram

allows researchers to make conclusions about spectrum based on a particular frequency

they are interested in. The spectrogram allows researchers to see how spectrum use in

that band changes with time. And finally, the PSD map allows researchers to visualize

how the band they are interested in changes as a function of location. These three

tools allow researchers to understand spectrum in three dimensions.

1.4 Thesis Organization

This thesis follows the following organization. Chapter 2 presents the background infor-

mation needed to understand the topic of distributed spectrum sensing. Chapter 3 proposes

the design of the spectrum sensing system. Chapter 4 describes the testing of the design

proposed in Chapter 3. Finally, in chapter 5 research accomplishments and future work are

discussed.
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Chapter 2

Background

This chapter explains the background topics needed to understand the remaining chap-

ters of this thesis. First, spectrum and the spectrum space are thoroughly defined. Then

there is an examination of spectrum policy. Following this is a description of the require-

ments of a spectrum sensor. Afterwards, there is an explanation of spectrum sensing and

spectrum sensing technique. Finally, there is a description of available spectrum sensing

software and hardware.

2.1 Spectrum Use

Preceding an analysis of spectrum use, spectrum itself must be thoroughly defined. A

definition of spectrum is not straightforward. The first definition of spectrum is in [21],

where the first three domains are proposed. Following this was the addition of two more

domains to the definition of spectrum [22]. These five domains, plus another, together make

up the spectrum space. The spectrum space can also be referred to as the electrospace [23].

These domains are:

1. Time

The temporal characteristics of spectrum use.

2. Frequency

The frequency bands that spectrum users occupy.
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3. Location (or geography)

The physical space that a electromagnetic radiation propagates through.

4. Angle

The beam angle (e.g. the angle of arrival) that a electromagnetic radiation propagates

through.

5. Code

The code space that a transmission occupies.

6. Antenna Polarization

Antenna polarization is either horizontal, vertical or circular, i.e. a combination of

the two.

These are the six domains of the electrospace that a spectrum user occupies. Figure 2.1

shows a digram of several signals occupying the electrospace in the frequency, time and

spatial domains. A transmitter occupies all of these spaces simultaneously. An occupation

of this space denies the use of the spectrum to other users. The domains that make up

the spectrum space are also the domains that multiple access systems exploit. If two trans-

missions are orthogonal in any one of these spaces, then two different transmitter/receiver

pairs can both access their respective transmissions without significant interference.

The Federal Communications Commission (FCC), as well as other governmental orga-

nizations around the world, have divided the spectrum space by frequency and geography.

The FCC then issues a license to the desired licensee providing exclusive use for that spec-

trum. For example, two licensees in the same geographical region may be assigned licenses

for two different frequency bands (i.e., orthogonal in frequency) if they are to use spectrum

simultaneously. Two licensees that are issued licenses to transmit at the same frequency

may be in two different geographical regions (i.e. orthogonal in space). Presently, the divi-

sion of the spectrum space is static. Spectrum space has only a single license allocated to

it at a time. A licensee wastes their assigned spectrum if the licensee decides not to use the

spectrum at that particular time. Wasted spectrum is called unused or vacant spectrum.

Spectrum is considered unused if either of the following criteria are met:
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Figure 2.1: The Electrospace.

1. A transmitter/receiver pair can operate without being interfered with.

2. A transmitter can use spectrum without interfering with an unrelated receiver.

The differences between (1) and (2) above are subtle, but they become clear when con-

sidering the receivers. In (1), spectrum is unused when the intended receiver can receive

a transmitted signal without interference. In (2), spectrum is unused when unintended

receivers can receive their signals without being interfered with.

2.1.1 Spectrum Measurement

The combination of static allocation along with the licensees exclusive rights result in an

underutilized spectrum space [8, 10, 9, 24, 25]. These studies all have similar characteristics:

they are all wideband, conducted for short periods of time, and require expensive equipment.

The spectrum captures in all but one of these studies lasted for short periods of time in that

each spectrum capture lasted from tens of microseconds to tens of milliseconds. The study

with the longest time lasted in hundreds of minutes. This measurement is a collection of
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narrowband spectrum captures.

The conclusions of these studies are also similar. They all show an underutilization of

spectrum at their respective locations. The sites where these studies were conducted include

Chicago, Illinois, Singapore, Chicago, IL, USA, Los Angeles, CA, USA, and Paris, France.

Measurements made in one study ranged from DC to 2.5 GHz. This study found that the

highest occupancy rate being 31% [9]. In another two studies, measurements ranged from

DC to 3 GHz and there was a 17.4% spectrum occupancy rate [8]. These two studies were

both conducted in Chicago, Illinois. The longest measurement was on the scale of the length

of a day, while all the other measurements lasted less than a second.

2.1.2 Increasing Spectrum Efficiency

All of these studies have concluded that the spectrum is inefficiently utilized. As a

result of this, the wireless research community has proposed many techniques to improve

spectrum efficiency. These techniques are collectively known as dynamic spectrum access

(DSA) [13]. There are two subgroups of dynamic spectrum access: the Dynamic Exclusive

Use Model and the Hierarchical Use Model. The dynamic exclusive use model involves

temporarily reassigning spectrum to a secondary user, where as the hierarchical use model

involves changing the regulations in which the secondary user may transmit in unlicensed

spectrum.

Dynamic Exclusive Use Model

The dynamic exclusive use model has two subgroups of its own: spectrum property

rights and dynamic spectrum allocation. The spectrum rights model would allow primary

users to trade a certain amount of spectrum for a certain duration to secondary user [26].

Dynamic spectrum allocation allows for a secondary user to exploit gaps in spectrum use.

The technique that allows for this exploitation to occur depends on the nature of the tech-

nology that the primary user uses [27]. For example, if the primary user transmits for 10

seconds once every 30 seconds, then the secondary user can reallocate that spectrum for

the remaining 20 seconds.

Hierarchical Use Model

The hierarchical use model also has two of its own subgroups: spectrum underlay and
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spectrum overlay. Spectrum underlay techniques involve using low power ultra wide-band

signals to avoid interfering with a primary user [28]. A frequency domain plot of a spec-

trum underlay system is shown in Figure 2.2. Using this technique, a secondary users

transmission remains under the primary receiver noise floor, thereby not interfering with

the primary user. There are also spectrum overlay techniques for dynamic spectrum access.

Using this technique, a secondary user scans spectrum looking for unused spectrum. When

unused spectrum is found the secondary user may transmit while intermittently scanning

the spectrum for the primary user [29]. A frequency domain plot of a spectrum overlay

system is shown in Figure 2.3.

Figure 2.2: A Frequency Domain Representation of a Spectrum Underlay System.

When spectrum is accurately measured, the secondary user can choose the most appro-

priate secondary access system. For example, measurements in Amherst, MA, USA found

that the availability of Wi-Fi and 3G networks are negatively correlated. That is, one com-

munication system tends to be available when the other is not [30]. These measurements

show that in this situation there are spectral holes that can be exploited by secondary access

systems that vary by geography.
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Figure 2.3: A Frequency Domain Representation of a Spectrum Overlay System.

2.2 Spectrum Policy

In order to increase spectrum efficiency, the proper regulations must be in effect. In the

United States there are two bodies that regulate spectrum use: the Federal Communications

Commission (FCC) and the National Telecommunications and Information Administration

(NTIA). The NTIA is responsible for spectrum that is allocated for users that are members

of the Federal government. The FCC is responsible for how the rest of the spectrum is

allocated in the United States. The FCC and NTIA have developed the following model

that applies to most allocated spectrum, which will be referred to as the traditional model

[5]:

• Spectrum is divided by frequency.

• Each frequency band has a single entity that may use it. Examples of these entities

include a wireless communications firm, public safety services, or the military.

• Generally, this entity has exclusive right to that spectrum. There are some non-

exclusive licenses, these are in the minority.
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Figure 2.4: The United States Spectrum Allocation Chart [1].
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Figure 2.5: The United Kingdom Spectrum Allocation Chart [2].
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The spectrum allocation chart for the United States is shown in Figure 2.4. The spec-

trum allocation chart for the United Kingdom is shown in Figure 2.5. As one can see both

charts show an allocation of the electromagnetic spectrum that allows spectrum use for

either single purpose or a small number of related purposes. A single purpose allocation is

one where each band is allocation for only one use. In bands that are allocated for several

purposes, they are related. Also notice that, although the entire spectrum is not allocated,

the entire band that is of interest to this project is completely allocated.

As demand for more ubiquitous and higher bandwidth wireless communications grows

the traditional model is becoming increasingly strained. As discussed in the previous sec-

tion, the source of the strain on the spectrum is not spectrum use, but outdated spectrum

allocation policies. The FCC Spectrum Policy Task Force (SPTF) found the spectrum to

be drastically underutilized [31]. The realization that the spectrum is underutilized by the

SPTF represent one of the first steps to changing the spectrum allocation system.

The FCC continues to take the steps needed in order to better utilize spectrum. These

steps resulted in creating regulations that enable new technologies but also provide primary

spectrum users with the exclusivity they are guaranteed. With the following rulings, the

FCC has shown that it is willing to continue taking these steps:

• 1985 - The FCC modifies ISM bands to allow frequency hopping wireless communi-

cations [32].

• 2002 - The FCC allows ultra wide band (UWB) underlays [33].

• 2005 - The FCC allows cognitive underlays [34].

• 2010 - The FCC allows unlicensed operations in the TV broadcast bands [35].

Despite these steps forward, there are still many possible regulations to consider that will

increase spectrum utilization. The regulations that are left to implement are significantly

more complex than filling whitespace or allowing spectrum underlay systems. One such

regulation is the prioritization of military spectrum access over commercial spectrum access.

Prioritizing military spectrum access over commercial spectrum access is needed, but the

details of the regulations that enable this prioritization are not clear. For example, the
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military may not need as much spectrum access in areas that are distant from military

bases. The military may also need expanded spectrum access during times of emergency.

There are also other regulatory challenges such as radio propagation crossing international

borders where the spectrum allocation conflicts. This means that countries with conflicting

regulations would need to be addressed individually. There is also the problem of assuring

that legacy systems can continue to operate unimpeded. The four techniques listed in above

all assure this, but this set of regulations does not enable complete spectrum utilization.

Researchers have identified techniques that, if adopted, will allow for some of these

regulatory concerns to be properly addressed [36]. These techniques are called “rules of

entry.” These techniques are all for cognitive radios (CRs), which is a radio that can make

decisions based on its surrounding RF environment. These techniques, which are listed

below, all allow for CRs to check the state of the spectrum before using it. When using

these techniques CRs can reduce interference to primary users.

1. Spectrum Sensing

The regulator must set the CR sensitivity requirement to determine if the band is

empty.

Concerns:

• Vulnerable to the hidden terminal problem.

2. Geographical Databases

The CR finds its location and compares to a database to see if it can transmit.

Concerns:

• Location accuracy.

• Updating the database.

• Database maintenance.

• Database availability.

3. Beacon Reception

A CR will find a beacon that indicates what frequencies are permissible to transmit
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on.

Concerns:

• Beacon transmitter.

• Speed of updating the beacon.

• The spectrum the beacon uses.

• Receiving the beacon out of desired range.

• Beacon failures.

Each rule of entry has its own problems and concerns, and there is no obvious choice for a

rule that allows secondary users to access spectrum.

2.3 Spectrum Sensing

Spectrum sensing is a technique used to characterize the occupancy state of the spec-

trum. Spectrum sensing is usually performed in the frequency domain, that is a spectrum

sensor will hop across multiple frequency bands in some predetermined order testing for

occupancy. Two measures of the performance of a spectrum sensor are the sensor’s ability

to locate unoccupied spectrum correctly without missing a primary user and the sensor’s

ability to not characterize noise as a user.

Spectrum sensing is needed to better utilize the electromagnetic spectrum and therefore

facilitate the emergence of new wireless technologies. Nearly all spectrum is allocated al-

ready, but utilization remains low. Emerging wireless technologies are able to utilize vacant

spectrum, but before this is possible a common set of rules regarding secondary spectrum

use must be developed.

Before delving further into spectrum sensing technology there must first be a definition

of some terms and mathematical frameworks. The goal of spectrum sensing is to deter-

mine the presence or absence of a primary user. In additive white Gaussian noise (AWGN)

channels, a signal with a primary user transmitting (i.e. an occupied channel) is modeled

as y(t) = x(t) + n(t), where x(t) is the primary users signal, n(t) is AWGN, and y(t) is
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Table 2.1: A Table of the four possible decisions from 2.1.

Statement Decision Comment

P (H0|H0) Correct Noise Identified

P (H1|H1) Correct Signal Identified

P (H1|H0) Incorrect False Alarm

P (H0|H1) Incorrect Missed Detection

signal received by the spectrum sensor. This presents the spectrum sensor with a binary

hypothesis as in Equation (2.1):

H0 : y(t) = n(t)

H1 : y(t) = n(t) + x(t)
(2.1)

Where H0 represents an unoccupied channel and H1 represents an occupied channel. This

binary hypothesis presents four possibilities, which are listed in Table 2.1. In this docu-

ment, the probability of a missed detection will be denoted as P (H0|H1) = PMD and the

probability of a false alarm will be denoted as P (H1|H0) = PFA,

2.3.1 Spectrum Sensing Architectures

Spectrum sensing can provide an understanding of spectrum in the short term and the

long term. The short term understanding of the spectrum can provide dynamic spectrum

access users with the knowledge needed to operate these systems. A dynamic spectrum

access system needs to be able to identify vacant spectrum in order to function. Once

the spectrum sensor identifies vacant spectrum, the spectrum sensor can then pass that

information on to other systems. For example, parameters such as center frequency and

bandwidth are passed from the spectrum sensor to other parts of the dynamic spectrum

access system.

A long term understanding of the spectrum can provide policy makers with the necessary

knowledge to develop new policies that enable greater spectrum utilization. Long term

spectrum survey not only helps identify spectrum that is used and unused, but also how it

is used. Spectrum utilization varies in all the domains defined as part of spectrum: space,

time, frequency, angle, polarization and code. Of these domains, time, frequency, and space
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are the domains that are easily measured and easily exploited to gain efficiency. With

long term spectrum studies that characterize these domains, policy makers can re-design

policy to exploit spectrum use as defined by these measurements. For example, spectrum

utilization could vary during different parts of the day, week, or year.

However, gathering this data on spectrum use is not straightforward, especially when

gathering long term data. This is because sensing spectrum, even for a short period of time,

requires handling large quantities of data at high processing rates. This requirement drives

up the cost for spectrum sensors as well as the complexity of implementation. To assist with

these challenges, one might consider two spectrum sensing architectures: centralized and

distributed [37]. With centralized spectrum sensing, there is only one sensor per propagation

channel whereas with distributed spectrum sensing many spectrum sensors may cooperate

together.

2.3.2 Centralized Spectrum Sensing

Centralized spectrum sensing requires only a single sensor. The quantity of data the

spectrum sensor sensed and stored is limited only by the hardware of the sensor. This

makes implementing a centralized spectrum sensor comparatively easy, as the sensor’s only

task is to sense the spectrum and then act on that data appropriately.

However, a centralized spectrum sensor does have some drawbacks. A centralized sensor

only senses a single propagation channel per transmission, so any local channel impairment

could make the data inaccurate, therefore compromising that data. The centralized spec-

trum sensing technique is vulnerable to the hidden terminal problem. For example, the

spectrum could be significantly different in two different locations (but still in the same

region) because of a localized channel impairment.

2.3.3 Distributed Spectrum Sensing

Centralized spectrum sensing systems have only a single sensor, while distributed spec-

trum sensing systems have multiple sensors. Systems with multiple sensors present inter-

esting opportunities for spectrum sensing, increasing the implementation challenges. Dis-

tributed spectrum sensing can enable the collection data that varies by location. This
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compensates for the primary disadvantage of having only a single sensor: localized impair-

ments. However, there is a disadvantage to distributed spectrum sensing as well: sensor

communication and data fusion.

With distributed sensing, the data that each sensor collects varies by geography and

may vary by time depending on the accuracy of the sensors clocks. In Figure 2.6, sensors

A and B data is only affected by the geography surrounding it, since the two sensors and

the transmitter. In Figure 2.6(a) this is of little consequence, the two sensors are roughly

equal distances away from the transmitter and there are no obstacles. However, in Figure

2.6(b) there is an obstacle between the transmitter and sensor B which causes shadowing

to occur, therefore attenuating the signal and the data from that sensor.

Distributed spectrum sensing enables spectrum to be sensed from multiple channels.

(a) Spectrum Sensors with similar paths (b) Spectrum Sensors, one with an obstacle

Figure 2.6: Environment Affecting Spectrum Sensors.

Sensing from multiple channels allows the spectrum sensors to network together to circum-

vent channel impairments that are local to one sensor. One can keep the rate of missed

detections, PMD, arbitrarily low only by adding sensors while keeping the rate of false

alarm, PFA, constant [38].

Improving performance is not always as straightforward as adding sensors. More sensors
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does not necessarily mean that spectrum sensing capabilities will increase. When additional

sensors experience correlated shadowing or fading, spectrum sensing performance does not

improve [39]. For spectrum sensing performance to improve, the channel that each sensor

senses must be independent from all the other channels. Sensors that are separated by a

greater distance are more likely to observe independent channels. Fewer sensors that are

more spread out in a geographical space are more effective than a larger number of sensors

condensed into a small space [18].

The environment that the sensor network is deployed in determines the density of the

sensor distributed. For example, in urban environments there are more obstacles between

transmitters and spectrum sensors (e.g. cars, buildings) than rural environments. The

number of obstacles affects the independence of a channel when the position of two sensors

remains constant. One can see this in Figure 2.7(a), where the spectrum sensors experience

the same shadowing effect. The signals these sensors received have correlated shadowing.

This means that the channel for each sensor, with respect to the transmitter, are dependent

and therefore having multiple sensors provides no significant advantage. In Figure 2.7(b),

sensor A is shadowed and sensor B has a direct path to the transmitter. In this scenario,

the channel for each sensor is independent and having multiple sensors provides a significant

advantage for the spectrum sensing system.

Adding sensors to a distributed spectrum sensing network can improve performance

by increasing sensitivity as well as negating the effects of shadowing and fading. As dis-

cussed above, spectrum sensors must be more sensitive than primary users. In order to

avoid the hidden terminal problem, spectrum sensors must be able to detect primary user

transmissions from a distance further than a primary receiver is able to receive. However,

in distributed spectrum sensing networks, individual spectrum sensors do not necessarily

need to have better sensitivity than a primary receiver. As spectrum sensors are added to a

network, the sensitivity requirements of individual spectrum sensors becomes increasingly

relaxed [38].

Distributed spectrum sensing systems present challenges that centralized systems do not.

The foremost of these additional challenges is combining all the data that these spectrum

sensors receive into one conclusion. One can break down this problem into two categories:
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(a) Each sensor experiencing similar shadowing (b) Only one sensor experiencing shadowing

Figure 2.7: Two Different Spectrum Sensing Environments.

the first being how to share the data collected and the second being how to combine the

data such that the correct conclusion is made about the spectrum.

Data Sharing

Any distributed system can have a variety of architectures:

1. A Single Master Node:

All spectrum sensors report their data directly to this node.

2. Several Master Nodes:

Each master node receives a copy of all the data.

3. All Nodes Equal:

Every node receives a copy the data from every other node at some processing stage.

The data may have some or all the processing done before it is shared.

Each one of these data sharing architectures provides different advantages and disadvan-

tages. These system architectures are of increasing robustness, that is, systems with fewer

points of failure are more robust. These systems also require increasing volume of data
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sharing. That is, these systems require more communication overhead.

Each data sharing technique requires an overhead channel. An overhead channel is any

channel in which spectrum sensors can communicate with one another. There are several

basic overhead channels: offline, wired and wireless channels. An offline overhead channel

is when each sensor stores the data it collects locally and then the data is collected after

the experiment takes place. A wired overhead channel uses an existing wired network to

share data. A wireless overhead channel is when the nodes share data using wireless net-

works. When offline or wired channels are available, they are ideal as they do not interfere

with spectrum sensing and they allow sensors to share more information. Wireless channels

present some additional challenges, mainly that of handling the spectrum sensors transmit-

ting. This can be handled in several ways: first, the system designer can assume that the

spectrum sensors are as much part of the environment as all the other receivers and count

them all the same. The system designer can also decide that spectrum sensor overhead

should not count as part of the spectrum measurement and somehow avoid including the

overhead. This becomes complicated because data needs to be exchanged between sensors

while avoiding interference with the spectrum users that are being sensed. If the spectrum

sensors are synchronized, they can avoid interfering by sensing other parts of the spectrum

when overhead communications take place.

When one examines the data that is shared between nodes, this trade-off becomes less

straightforward. The data that nodes share can be data ranges in complexity from directly

sampled spectrum to conclusions about a particularly bands occupancy. Overhead channel

capacity is usually limited, so sharing directly sampled spectrum is unrealistic: the data

must be first be processed before it can be shared. There are two types of decisions that

a spectrum sensor can render: soft decisions and hard decisions. Soft decisions are inter-

mediate data, such as samples of an FFT, that a sensor will pass on to a decision making

device. Hard decisions are the conclusion of that spectrum sensor, e.g. “occupied” or “not

occupied”. There is another trade-off with hard and soft decisions: soft decisions lead to

more accurate conclusions, but require more overhead channel capacity, and hard decisions

lead to less accurate conclusions, but require less overhead channel capacity [40].

There is another complication to this set of trade-offs, where hard decisions can provide
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conclusions with equal confidence of soft decisions. For hard decisions to be as accurate

as soft decisions, the right conditions must exist. First, the sensors must be spaced far

enough apart so that they sense independent channels. Second, the more sensors that work

together, the more reliable a conclusion based on hard decisions becomes for sensors in the

similar locations [41].

In order to develop the most appropriate spectrum sensing system the system designer

must know the overhead channel capacity, the needed system robustness and level of system

accuracy. Only with all of these specifications set can data be shared effectively.

Data Fusion

Data fusion is an approach used by the decision device to combine the decisions of the

spectrum sensors into one conclusion. The specific method used to combine information

varies depending on whether hard decision or soft decisions are being combined. For hard

decisions there are two decision rules, which are measured by the probability of detection

and the probability of false alarm. These probabilities correspond to PMD = P (H0|H1) and

PFA = P (H1|H0) from Table 2.1. The two rules are:

1. AND Rule:

The decision device concludes that a primary user is present if all the spectrum sensors

make that decision. The probability of detection for the AND Rule is:

PD =

N
∏

n=1

PD,n (2.2)

The probability of false alarm is:

PFA =
N
∏

n=1

PFA,n (2.3)

2. OR Rule:

The decision device concludes that a primary user is present if any of the spectrum

sensors make that decision. The probability of detection for the OR Rule is:

PD = 1−

N
∏

n=1

1− Pd,n (2.4)
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The probability of false alarm is:

PFA = 1−
N
∏

n=1

1− PFA,n (2.5)

Here, PD is the probability of detection, PFA is the probability of false alarm, n is each

individual sensor, N is the total number of sensors, PD,n is the probability of detection for

each sensor, and the PFA,n is the probability of false alarm for an individual spectrum sensor.

In all cases, the probability of missed detection is PMD = 1−PD. The AND Rule provides

better performance when measuring by the false alarm rate and the OR Rule provides better

performance when measuring by detection rate [42]. The data fusion algorithms for soft

decisions are more complex and depend upon the specific detection algorithm implemented.

Hard decisions yield a binary conclusion, where one hypothesis is correct and the other

is incorrect. However, soft decisions do not come to a binary conclusion. A common soft

decision test is the likelihood ratio test, where the ratio of the probability densities of each

hypothesis are compared. For example, if one wishes to test the distribution of a random

variable one may use the likelihood ratio test as shown in Equation (2.6) [43]. A central

node may collect the likelihood ratio, L(y), from all nodes then combine then, by finding

the mean for example, and then comparing to a threshold to find a final decision.

H0 : Y ∼ fy1(y)

H1 : Y ∼ fy2(y)

L(y) =
fy1(y)
fy2(y)

(2.6)

2.3.4 A Comparison of Distributed and Centralized Spectrum Sensing

Centralized and distributed spectrum sensing have a set of trade-offs that will be com-

pared in this section. In Table 2.2, the trade-offs between centralized and distributed

spectrum sensing are listed.

A distributed spectrum sensing system can detect and correct environments with fading

or shadowing. Each sensor senses a different channel if the sensors are placed correctly

in the environment. However, there is an increased complexity of implementation with a

distributed spectrum sensing network. An overhead channel is needed to coordinate all the
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Table 2.2: A comparison of centralized and distributed spectrum sensing techniques.

Topic Centralized Decentralized

Fading and Shadowing Cannot detect or correct Can detect or correct

Implementation Complexity Low High

Overhead Channel Unneeded Needed

Sensitivity Requirements High Low

Scalability None Can Scale

sensors, thus adding complexity to an implementation. Additionally, a data fusion system

must be implemented with a distributed spectrum sensing system. Another advantage of a

distributed spectrum sensing system is that when multiple sensors are used together, the

sensitivity needed for each sensor is reduced. Finally, with a distributed spectrum sensing

system researchers can add as many sensors as they like.

The only trade-off not addressed in preceding sections is the scalability trade-off. For

a centralized spectrum sensing system, the system inherently cannot scale as there is only

one node by definition. Distributed systems are scalable as they can be made up of as many

nodes as the overhead channel allows.

2.4 Spectrum Sensor Requirements

In order to detect primary users transmitting at particular frequencies at particular times

a spectrum sensor must meet certain requirements. Detecting users also means finding any

user that is receiving a transmission as well. Detecting spectrum users in the primary goal

of the spectrum sensor. Classification of spectrum users is a secondary goal of spectrum

sensors. Classification of spectrum users means to identify a particular characteristic beyond

what is given by detection. For example, identifying physical layer parameters, such as

modulation scheme, is classification.

In order for any spectrum sensing system to properly detect and classify primary users,

the system must meet certain requirements. These requirements are dictated by the FCC

and must be met in order to ensure that a primary user is detected and classified. In

dynamic spectrum access scenarios, this is especially important as a missed detection of
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a primary user and resulting transmission by a secondary user could lead to interference.

The heightened motivation to detect and classify primary users in dynamic spectrum access

systems displays the requirements needed to confidently identify primary users without

missed detection for any spectrum sensing system.

The difficulty in identifying primary users is explained by the hidden terminal problem.

Figure 2.8: The Hidden Terminal Problem.

As shown in Figure 2.8, the hidden terminal problem is when a receiver is out of the range

of a transmitter. In Figure 2.8, Radio A is transmitting to Radio B. Both Radios A and

B are primary users. The circle of radius R indicates the area in which a primary receiver

that meets the sensitivity specification can successfully receive the transmission from Radio

A. Radio C is a spectrum sensor that, if it only meets the sensitivity requirements for the

primary user, cannot detect the transmission. In dynamic spectrum access systems, the

spectrum sensor can determine that the spectrum is vacant and then transmit. If this were

to happen, then the reception from Radio B would be interfered with. This is the hidden

terminal problem, when a spectrum sensor falsely comes to the conclusion that the spectrum

is vacant when the spectrum is occupied [44].
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In order for a spectrum sensing system to be effective, it must account for the hidden

terminal problem. If a spectrum sensing system is made more sensitive than a primary

receiver it will be more effective at detecting and classifying primary transmitters. In

Figure 2.8, increasing the sensitivity of the spectrum sensor (Radio C) increases the radius

R from the perspective of Radio C.

2.5 Spectrum Sensing Techniques

This section will discuss the RF and signal processing techniques used to perform spec-

trum sensing. RF and signal processing techniques are a collection of subsystems and

algorithms that facilitate data gathering.

The RF subsystem in any software defined radio is static, such that once it is constructed

it remains in a static state. A generic RF subsystem is shown in Figure 2.9 [45]. In this

figure there are several components, the first of which is the antenna. The band pass filter

is used to attenuate undesired frequencies and prevent the low noise amplifier (LNA) from

saturating. The LNA is then used to amplify the signal so it above the noise floor. Then

there is a mixer which is used to downconvert the signal from passband directly to baseband.

The automatic gain control is then used to utilize the full dynamic range of the analog to

digital converter. The analog to digital converter samples and quantizes the signal.

Following the RF subsystem is the signal processing chain, which can be implemented

Figure 2.9: A Generic RF Receive Chain.

in software. Since the signal processing chain can be implemented in software, there are

a variety of spectrum sensing techniques that can easily be implemented and tested. The
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function of the signal processing chain is to detect and sometimes identify signals. The

three most popular techniques are energy detection, matched filtering, and cyclostationary

analysis.

These three algorithms are measured by several metrics. The first metric is the infor-

mation needed to detect and/or classify a signal, as some algorithms need prior information

about a signal before it can be detected or classified. There are also the metrics of probabil-

ity of missed detection, PMD, and probability of false alarm PFA. These two probabilities

compliment one another and can be graphed against one another to form a receiver operat-

ing characteristic (ROC). Another metric is computational complexity, or how efficient the

algorithm is. Finally, there is implementation complexity, or how difficult it is to understand

and implement the algorithm.

2.5.1 Spectral Estimation Techniques

Before performing spectrum sensing, one must find the spectrum of a signal. To find

the spectrum of a signal the power spectral density (PSD) is needed. The power spectral

density is a representation of a signal that shows the signal power present as a function of

the frequency of the signal. For stochastic signals, the PSD is a purely theoretical entity.

In other words one cannot calculate the PSD of a stochastic signal that is measured. To

calculate the PSD of a signal one must have a complete representation of the time domain

information of that signal, that is one must have knowledge of the signal for all time [15].

Since one cannot record any signal for infinite time one cannot find the PSD. However, one

can estimate the PSD using a finite record of a signal, called the periodogram.

Periodogram

To estimate the PSD of a signal, one shall use the Khintchine-Weiner Theorem (or the

sometimes Einstein-Khintchine-Weiner Theorem) as shown in Equation (2.7) [15].

Sxx(f) =

∞
∑

k=−∞

rxx(k) · e
−j2πkf (2.7)

The Khintchine-Weiner theorem states that the Fourier Transform of the autocorrelation

function, rxx(k), equals the PSD, Sxx(f). Note that the autocorrelation function, rxx(k),

only depends on the delay, k, between the signal with itself. When the autocorrelation
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function only depends on a delay, k, the signal x[n] must be wide sense stationary. Wide

sense stationarity occurs when the mean and variance are constant with respect to time.

The autocorrelation function is also an infinite length sequence. As a result, one must find

an estimate of the autocorrelation function, as shown in Equation (2.8). In Equation (2.8),

r̂xx(m) is the autocorrelation estimate, N is the signal length (in samples), and ∗ is the

complex conjugate operator:

r̂xx(m) =
1

N

N−m−1
∑

n=0

x∗(n) · x(n+m) (2.8)

Using Equations (2.8) and (2.7) one is now ready to estimate the PSD of a finite length

signal of length N , with an autocorrelation function of length 2N−1. This estimate, Pxx(f)

is called the periodogram [15]:

Pxx(f) =

N−1
∑

k=−(N−1)

r̂xx(k) · e
−j2πkf (2.9)

=

N−1
∑

k=−(N−1)

(

1

N

N−k−1
∑

n=0

x∗(n)x(n+ k)

)

e−j2πkf (2.10)

The periodogram is a flawed estimate of the PSD for several reasons:

• The periodogram does not approach the PSD as the number of samples approach

infinity [46].

• The periodogram misrepresents the PSD by ‘leaking’ signal energy from one frequency

into neighboring frequencies.

The misrepresentation of the PSD by leaking energy into neighboring bins is called ‘spectral

leakage,’ and is the result of windowing a signal. A window is a function in which a

signal is multiplied by that has a non-zero value for the duration of the signal and zero

valued everywhere else. Thus, when the PSD is estimated using a finite length signal it is

equivalent to multiplying that finite length signal by a rectangular window. A rectangular

window is a window that equals one for the signal duration and zero everywhere else as

shown in Equation (2.11). The frequency domain representation of the rectangular window

is infinite in length as shown in Equation (2.12). Since the window function is multiplied
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(a) An Example Periodogram of a Cosine Signal with a Rectangular Window
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(b) An Example Periodogram of a Cosine Signal with a Blackman-Harris

Window

Figure 2.10: Periodogram Examples.
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by the signal in the time domain, the two representations of the signals are convolved

in the frequency domain. This convolution is responsible for smearing the spectrum into

neighboring frequencies, which results in spectral leakage. Two example periodograms of a

200 Hz cosine wave are shown in Figure 2.10. In Figure 2.10(a) a rectangular window was

applied to the signal. In Figure 2.10(b) a Blackman-Harris window is applied to the signal.

Observe that in Figure 2.10(a) the cosine signal is more narrow than in Figure 2.10(b), but

the side-lobes are much greater.

w(n) =











1 0 ≤ n ≤ N-1

0 Otherwise

(2.11)

W (ω) =
sin((ω/2)N)

ω/2
e−jω(N−1)/2 (2.12)

The rectangular window, as defined in Equations (2.11) and (2.12), is not the only

window one can choose for their spectral analysis. There are several other windows designed

to reduce spectral leakage. However, the windows that reduce spectral leakage often also

reduce spectral resolution, resulting in less distinct spectra. For example, two separate

signals that are close to each other in frequency can be merged together into one signal if

the window has large side lobes, such as the rectangular window.

Spectrogram

The spectrogram is a representation of the frequency content of a signal changing with

time. The spectrogram is a function of both frequency and time; so therefore it is simply

a collection of periodograms that are arranged to form an image. For spectrograms, the

horizontal axis is for frequency, the vertical axis is for time, and the color represents the

power of the signal for that duration of time and frequency. An example spectrogram of

a linear chirp signal is shown in Figure 2.11. A linear chirp signal is a sine wave that

increases its frequency linearly as a function of time, for example x(t) = sin(2π(f0+ t)t). It

is important to note that the spectrogram shows the power of a signal at a certain frequency

for a certain duration of time, that is the spectrogram cannot be used to find signal power

at a given time instant. The spectrogram is useful for observing how spectrum changes as

a function of time.
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Figure 2.11: An Example Spectrogram of a Chirp Signal.

2.5.2 Energy Detection

An energy detector is a signal processing algorithm that detects spectrum use by mea-

suring energy of a signal for a certain period of time. An energy detector needs no prior

information above the signal it tries to find. The strategy of an energy detector is to develop

a test statistic and compare the test statistic to a threshold. If the statistic is greater than

the threshold, it is concluded that a signal is present. If the test statistic is less than the

threshold, then it is concluded that a signal is not present.

Energy detectors use a three step process to find the test statistic. First, there is a band

pass filter to eliminate the uninteresting frequencies. Second, there is a square law device,

to make the entire signal positive. Third there is an integrator, to sum the signal for a pre-

determined period of time, T . Figure 2.12 shows the signal processing chain for an energy

detector. There are several factors that influence the performance of an energy detector

the bandwidth of the band pass filter, the threshold that the test statistic is compared to,

and the time of integration, T . Manipulating the bandwidth introduces the trade-off that
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Figure 2.12: An Energy Detector.

a larger pass band makes the energy detector more susceptible to fading, but a smaller

passband allows for smaller bandwidth signals to be detected. Manipulating the threshold

changes the false alarm and missed detection rates. A threshold too low increases the false

alarm rate and decreases the missed detection rate. A threshold too high decreases the false

alarm rate and increases the missed detection rate. Manipulating the time of integration

also effects the false alarm and missed detection rates. A longer time of integration yields

a lower false alarm and lower missed detection rates.

Energy detectors are most effective at detecting signals in AWGN channels with only

flat fading across the band of interest. If there is frequency selective fading on the band of

interest, the effects are similar to having the band pass filters bandwidth being too large. In

these channels PMD and PFA are lowest. Energy detectors can also be effective in environ-

ments with Rayleigh and Rician fading [47], although environments with this type of fading

are not ideal. Energy detectors do not need to have knowledge of the symbol timing of

transmitted signals and thus are noncoherent detectors. A noncoherent detector allows for

low implementation and computational complexities. The trade-off for this is that energy

detectors can only detect signals, they cannot classify signals.

2.5.3 Matched Filter

The matched filtering technique involves creating a bank of matched filters and then

choosing the best filter from the filter bank. Matched filters require prior information

about the signal that is being tested. This information includes modulation scheme and

symbol timing, thus a matched filter detector is a coherent detector. A matched filter bank

is a collection of receivers where the signal is passed through every receiver. Every signal is

filtered, decoded, and demodulated as if the signal belongs to each filter. Since the signal

only belongs to one filter, each filter develops a test statistic. Each test statistic is then
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compared to find which filter can correctly receive the signal. The test statistic, zk, is

described by Equation (2.13). Each matched filter generates its own test statistic, so if

there are k filters then there are k test statistics. In Equation (2.13), h is the unknown

gain of channel, s(n) is a known pilot sequence, n(n) is additive white Gaussian noise,

y(n) = h · s(n) + n(n) is received signal, and n is the index [36]. In Equation (2.13), ∗ is

the complex conjugate operator:

zk =
1

N

N
∑

n=1

y(n) · s∗(n) (2.13)

When this information is known, matched filtering is the optimal technique for receiving

signals in AWGN channels [15]. If the information is not known, then the matched filter

may not be able to detect or classify the signal at all. If the matched filter has prior

information about the signal it can detect and classify that signal. Due to the need for

coherency, matched filters require full reception of the received signals for each filter chain

thus increasing the computational and implementation complexities.

2.5.4 Cyclostationary Detector

Cyclostationary detectors analyze certain statistical properties of signals in order to

detect and classify them. The signal processing techniques used to make communications

signals (such as sampling, modulation, and coding) introduce periodicities into these signals,

making the statistics of these signals (such as the mean or variance) periodic. A signal with

periodic statistics is defined as a cyclostationary signal. Noise is a stationary random

process, where the mean and variance are constant.

A signal is considered cyclostationary in the strict sense if the Nth order distribution

function is periodic with period T , as shown in Equation (2.14). A signal is cyclostationary

in the wide sense if only the mean and autocorrelation are periodic with period T , as in

Equation (2.15). Where E[·] is the expectation operator and Rx(·) is the autocorrelation of

x(·) [48].

Fx(t+τ1+T )...x(t+τN−1+T )(ξ1, . . . , ξN ) = Fx(t+τ1)...x(t+τN−1)(ξ1, . . . , ξN ) (2.14)

∀t ∈ R,∀(τ1, . . . , τN ) ∈ R
N−1,∀(ξ1, . . . , ξN )RN
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E[x(t)] = E[x(t+ T )] (2.15)

Rx(τ) = Rx(τ + T )∀t, T

Cyclostationary detectors exploit these differences in statistical properties by developing

the Spectral Correlation Function (SCF) [16]:

Sα
x (f) =

∫

∞

−∞

Rα
x(τ)e

−j2πfτdτ (2.16)

Where Sα
x (f) is the SCF, α is the cyclic frequency, f is the frequency, and Rα

x is the cyclic

autocorrelation defined as:

Rα
x(τ) =

1

T0

∫ T0/2

−T0/2
Rx(τ)e

−2jπαtdτ (2.17)

The cyclic coherence function (SOF) is given as in Equation (2.18) [49].

Cα
X(f0) =

Sα
X(f)

[(S0
X(f + α

2 ))
∗(S0

X(f − α
2 ))]

(1/2)
(2.18)

Where Rx(τ) is the received signal autocorrelation and T0 is the period.

Cyclostationary detectors detect and classify signals first by using the cyclic autocorre-

lation function to develop an estimate for the SCF. The SOF for multiple values of α is then

computed resulting a three dimensional plot. When data is modulated with different mod-

ulation schemes the characteristics of the SOF changes as well. Each modulation scheme

has a distinct SOF which is the property that cyclic detectors exploit. However, since the

SOF must be computed for multiple values of α, resulting in large amount of computation.

In addition, a secondary system that classifies the signal is needed as well further increasing

the computational complexity.

Cyclostationary detectors can detect and classify signals, however some information re-

garding the signal such as modulation scheme but not symbol timing, is needed prior to

classifying the signal. Cyclostationary detectors have high implementation and computa-

tional complexities but do not need to coherently receive signals.



2.6. SPECTRUM SENSING HARDWARE AND SOFTWARE 38

Table 2.3: A Comparison of the USRP1 and USRP2 [3].

USRP1 USRP2

Data Bus USB 2.0 Gigabit Ethernet
FPGA Altera Cyclone EP1C 12 Xilinx Spartan III 2000

Sampling Rate 64 MS/s 100 MS/s
RF Bandwidth 8 MHz 25 MHz

Daughterboard Capacity 2 1

2.6 Spectrum Sensing Hardware and Software

Just as critical to spectrum sensing as the algorithms is the hardware and software.

This section will provide the background for the hardware and software that will be used

for spectrum sensing in this project.

2.6.1 The USRP1 and USRP2

The USRP1 and USRP2 are both designed by Ettus Research LLC [50]. The hardware

design, including schematics and Verilog code, is all open source. Both the USRP1 and

USRP2 share the same basic architecture. In both architectures the USRP is the radio

frontend, the only responsibility of the USRP is to capture RF data, downconvert, and

package the data. Once packaged the data is transferred to a host via a USB 2.0 bus for the

USRP1 or a gigabit Ethernet interface for the USRP2. Further processing is then performed

on a host machine, typically a PC with x86 architecture. Both the USRP1 and USRP2 have

a permanent motherboard and a removable daughterboard. The motherboard houses all

the common hardware such as the FPGA, ADCs, DACs, and the Ethernet controller. The

removable daughterboard (or interchangeably, the daughtercard) houses the hardware that

is needed to change frequency bands, such as the RF frontends.

As far as the user is concerned the system architecture for the USRP1 and USRP2 are

similar but their specifications vary as listed in Table 2.3.
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2.6.2 GNU Radio

The signal processing that is performed on the host is done within the GNU Radio

software framework. GNU Radio provides the reconfigurable signal processing blocks that

are necessary for software defined radios. GNU Radio is an open source project allowing

for SDR developers to develop unique signal processing blocks and SDR systems. The

architecture of GNU Radio is that the signal processing block are written in C++ and they

are then connected together in Python using a SWIG [51] interface, as shown in Figure

2.13.

This software architecture allows the speed of C++ to be exploited while keeping the

Figure 2.13: A Trivial GNU Radio Signal Processing Chain.

simplicity of implementation by using Python to tie the blocks together.

2.7 Chapter Summary

This chapter explains what spectrum is, how it is used, and what it means for spectrum

to be used. Spectrum use is when a transmitter transmits a signal that can interfere with

other transmissions in any one of the five domains that make up spectrum. This chapter

also explains what spectrum sensing is, what characteristics a spectrum sensor needs, and

how to form a spectrum sensing network. Spectrum sensing is when any one of the five

domains that makes up spectrum is characterized. A spectrum sensor needs a combination

of hardware and software to allow for that data to be collected. Finally, a spectrum sensing

network, composed of multiple spectrum sensors, needs some type of communication channel
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and technique for fusing data together.
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Chapter 3

Proposed Design of Spectrum

Sensors and the Spectrum Sensor

Network

In this chapter, the design of a low cost distributed spectrum sensing network is pro-

posed. The chapter begins with an overview of current spectrum sensing technology. Dis-

cussion then moves on to the requirements for a spectrum sensor, a distributed spectrum

sensing network and then how this work meets those requirements in a novel way. This

chapter then proceeds with a spectrum sensor design proposal that includes the design of

the hardware and software systems. The hardware design focuses on the software radio,

the daughtercard and the antenna. The software section shows the design of the software

radio system, the data storage format, the command and control system and the data fusion

system.

3.1 Spectrum Sensor Overview

This section outlines a list of requirement for a spectrum sensor and spectrum sensing

network. Following this is a description of the objectives of this work and then compares

those objectives with the current state of the art. The system described in this work pos-
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sesses the following abilities. The system should be able to make measurements that are

wideband, spatially varying, and time varying. The system should also have the following

attributes practicality and ease of use. The spectrum sensing network proposed as a part

of this system possesses the following abilities data sharing and data fusion.

Various current works possess a subset of these abilities or attributes. For example,

some studies conducted perform wideband and time varying measurements [8, 9, 10]. An-

other study outlines the design of a wideband distributed spectrum sensing network, but

the design may be difficult to realize in practice [12]. In this design, the spectrum sensing

system is dependent on a network on spectrum analyzers. This system can easily exceed a

cost of hundreds of thousands of dollars, depending on the number of sensors. The authors

of this spectrum sensing network architecture even admit that any practical implementation

of this network would depend on a collection of volunteers. Consequently, this system can

be prohibitively expensive for a single research group to realize. Additionally, there are

obvious problems with depending on volunteers. One problem may be that the volunteer

spectrum analyzer may not be available for a specific duration. Other problems with volun-

teer spectrum analyzers is data verification, where a volunteer spectrum analyzer could be

calibrated incorrectly. Another problem is that the spectrum analyzer configuration may

not be able to be employed uniformly across all sensors.

This project puts an emphasis on practicality by assigning an estimated node cost of

$ 2000 USD. With a lower cost, a single research group may afford to purchase multiple

sensors and configure them to a specific scenario. This spectrum sensing design allows one

to design their own spectrum sensing experiments without depending on other research

groups.

3.2 Spectrum Sensor Design

This section details the design of each individual sensor, from the sensor hardware to

the sensor software. The selection, configuration and design of the hardware and software

components is determined by the following feature set:

• Each individual sensor must have a low cost. The target price is $ 2000 USD.
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• Each sensor must have wideband sensing capabilities, from 50 MHz to 2.2 GHz.

• Adding sensors to the spectrum sensing network must be simple.

• The sensor should be mostly independent, that is the sensor should not need outside

assistance after the initial setup or before the end of the scan. Each sensor should be

able to function for an extended period of time on its own.

• The system should provide a mechanism for the sensors to share data, whether via a

computer network or off-line.

• Tools for collecting and analyzing the data should be provided.

All of these features are flexible. For example, the cost feature may be over $2000 USD as

long as the price remains low enough for a research group to afford multiple sensors.

3.2.1 Sensor Hardware

This subsection discusses the selected sensor hardware. Topics include motivation for

selecting each piece of hardware, the function that hardware performs and a brief discussion

on how the hardware component works.

The USRP2

The USRP2 is the main hardware component for this system, which is shown in Figure

3.1. The basic function of the USRP2 is to capture samples at high (passband) frequencies

and convert them into a form (baseband) where they can be processed on the host Linux

PC. The USRP2 does this by interfacing with an RF daughtercard, then preparing the

samples to be transferred from the USRP2 to the host Linux PC via a gigabit Ethernet

interface. The USRP2 to Linux PC interface is shown in Figure 3.2.

The USRP2 was selected as a hardware platform for several reasons. The first reason is

the known low cost of $ 1400 USD [52]. The second is that the USRP2 can meet performance

requirements in that it is capable of performing wide-band scans. Third, since the USRP2

requires a host Linux PC, the system as a whole is capable of networking with other sensors

using already existing network infrastructure to form a spectrum sensing network.
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Figure 3.1: The USRP2.

Figure 3.2: A Block Diagram of the Hardware System.
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The USRP2 is part of a family of software defined radio products that Ettus Research

sells. Of the other products the USRP E100 is particularly interesting to this project. The

E100, the embedded software defined radio platform offered by Ettus Research, sells for

$1300 USD [52]. The USRP E100 is also a stand-alone system, that is no host Linux PC

is needed. This lowers the cost further. A host Linux PC is not needed because the USRP

E100 comes with a 720 MHz OMAP3 (ARM Cortex A8 processor & TI C64x+ DSP) and

a Xilinx Spartan 3A-DSP1800 FPGA [50]. The USRP E100 is capable of running a full

Linux distribution, so any development that is done for the USRP2 can be ported to the

USRP E100 easily provided that the deployed system is not too computationally complex.

The USRP2 houses the daughtercard, which is responsible for receiving signals and

mixing them from passband directly to baseband. The daughtercard then passes the data

to the USRP2 motherboard. Upon receiving the baseband signal from the daughtercard

the USRP2 first samples the signal with two analog to digital converters that sample at a

rate of 100 Msps at 14 bits per sample. The two ADCs perform quadrature sampling. One

ADC samples the inphase component of the signal while the other samples the quadrature

component of the signal. Next, the samples go to the FPGA, a Xilinx Spartan III. The

FPGA is responsible for filtering and decimating the sampled baseband signal. This is done

on the FPGA with a digital down converter (DDC). The DDC is made up of three filters: a

cascaded integrated comb (CIC) filter, a high rate half band filter, and a low rate half band

filter. All three filters are used for decimation. The CIC can decimate at a rate from 1 to

128 and each of the half band filters can decimate with a rate of 2 [53]. Using a combination

of the CIC and half band filters the USRP2 can decimate the signal with a rate from 4 to

512.

The USRP2 requires a minimum decimation rate of 4. This is due to the maximum

throughput of the gigabit Ethernet interface, which is the bottleneck in this system. The

USRP2 can provide data at a higher throughput than gigabit Ethernet can provide. A

gigabit Ethernet interface can handle a sustained throughput of 1 gigabit per second. The

USRP2 however can produce a sustained throughput nearly three times greater than this.

The USRP2 performs quadrature sampling, meaning that the USRP2 has two ADCs

that sample 90◦ out of phase, both at 100 Msps. With 14 bit samples the total bit rate
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needed 2.8 gigabits per second, as shown in Equation (3.1). Equation (3.2) shows that with

a decimation rate of 4, only 700 megabits per second is needed throughput.

(2) ·

(

100
megasamples

second

)

·

(

14
bits

sample

)

= 2.8
gigabits

second
(3.1)

(2) ·

(

1

4

)

·

(

100
megasamples

second

)

·

(

14
bits

sample

)

= 700
megabits

second
(3.2)

When the decimation rate is set to 4, there is throughput left for network overhead, which

is also required. In Equations (3.1) and (3.2), the required throughput is the product of the

number of ADCs, the decimation rate, the sampling rate, and number of bits per sample.

Equation (3.1) has a decimation rate set to 1 and Equation (3.2) has a decimation rate set

to 1
4 .

After decimating the signal the FPGA in the USRP2 then encapsulates the data such

that it can be transmitted to the host Linux PC. The USRP2 uses the UDP over IP so

the IP address and port must be assigned. There are also headers for network and data

link layers of the network stack. The data encapsulation and protocol implementation for

the data link, network (IP), transport (UDP), and application layers, all performed on

the FPGA, while the physical layer (Ethernet) is performed on a National Semiconductor

DP83865 [54].

The WBX Daughtercard

The daughtercard is responsible for all the signal processing before the signal is sampled.

That is, the daughterboard must be able to tune to a specific frequency, amplify, separate the

in-phase and quadrature components and mix the signal down to baseband. The first item

in the receiver on the WBX is a digitally controlled attenuator, which is used to properly

set the gain for the system. Next, is a low noise amplifier. Then, there is the quadrature

demodulator, which mixes the signals down to baseband and separates the in-phase (real

valued) and quadrature (complex valued) signal components. Following the quadrature

demodulator is a low pass Chebyshev filter that is used for anti-aliasing. After the filter is

the ADC driver, the purpose of the ADC driver is to amplify the signal so the signal voltage

matches that of the ADC. When the voltage levels match, the full dynamic range of the

ADC can be utilized [55]. The last component in the WBX before handing the signal off

to the USRP2 motherboard is a low pass Butterworth filter. This signal processing chain
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is shown in Figure 3.3.

The WBX board has one more feature that makes it particularly flexible. The WBX

board has a granddaughterboard that rests on top of it. The WBX is the only daughtercard

that currently has this feature. The granddaughterboard is there so users can easily add

other components to their systems, such as power amplifiers for transmitters. The WBX

transceiver is the daughtercard selected for the spectrum sensor. The selection of the WBX

is due to it being a wideband transceiver. The WBX covers from 50 MHz to 2.2 GHz, most

of the desired range. The noise figure for the WBX ranges from 5 to 7 dB, depending on the

operating frequency. In keeping with the low cost feature, the cost of the WBX daughter

card is $ 450 USD [52].

Antenna Selection

The antenna is an important part of any communications system, this system is no

different. The most important feature of this system from the perspective of the antenna,

is the wideband feature. Since the WBX daughtercard can tune from 50 MHz to 2.2 GHz,

an antenna that covers as much as the corresponding frequency response is necessary. A

class of antennas with this wideband characteristic is the discone antenna. The wire discone

antennas are ideal for this application since they are wideband, low cost and omnidirectional.

A suitable antenna for this spectrum sensing system is the Diamond D220 wire discone

antenna, which has frequency coverage from 100 MHz to 1.6 GHz [56]. The antenna use in

this project is located on the roof of the Atwater Kent Electrical and Computer Engineering

building, 42◦ 16.511 N, 71◦ 48.427 W with an elevation of 164 meters above sea level.

Another antenna is the VERT 900 sold by Ettus Research LLC. The VERT 900

is inexpensive at $ 35 USD [57] and is a wideband antenna as shown by the antenna

characterization in Figure 3.4. Figure 3.4 shows the S Parameters as measured by the

author. The measurement was conducted by attaching the VERT 900 antenna to a network

analyzer and then sweeping a signal from 50 MHz to 3 GHz. The S Parameters of an antenna

is the fraction of power lost for each frequency in dB. The horizontal red lines in Figure 3.4

shows the -3 dB of loss and the vertical lines shows where the S Parameter and -3 dB of loss

lines intersect. The frequency in between the vertical red lines is the operating frequency

of the antenna.
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Figure 3.3: A Block Diagram of the WBX Signal Processing Chain.
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Figure 3.4: The S Parameters of the VERT 900 Antenna.

3.2.2 Sensor Software

This section describes the design of the various software modules that make up the dis-

tributed spectrum sensing system. Since this is a distributed system, the software operates

on various machines. Throughout this section, the software described operates on either

a spectrum sensor on the master node, which is the system where data is collected and

processed such that a decision is made regarding the state of the spectrum.

The Universal Hardware Driver

The first software module that is discussed is the universal hardware driver (UHD), the

software that resides on the host PC and is responsible for the communications with the

USRP2. The UHD is written in C++ and is distributed by Ettus Research, LLC. It is
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possible to use the UHD independently (that is, without GNU Radio) if one wishes to use

another signal processing software framework.

The UHD was created by Ettus Research for several reasons:

1. To simplify the process of porting GNU Radio applications for different radio hard-

ware.

2. To make a software driver that can communicate with USRP hardware family that

is not licensed under the GPL. This makes the creation of propriety software radio

applications more simple from a licensing point of view. GNU Radio provides a GPL

licensed driver.

3. To make a driver that supports a full network stack. Previously, the GNU Radio

driver used only the physical and data link layers of the network stack. With the

previous configuration, only root users could communicate with the USRP2 on Unix

systems and using Microsoft Windows systems there are no methods to communicate

with the USRP2.

The software modules in this project exploit these benefits, especially the simplification of

porting GNU Radio applications. Before the UHD switching from the USRP1 to the USRP2

was tedious. With the UHD, the application programming interface (API) to communicate

with the USRP device became simple. To switch from one USRP product to another, all

that is needed is a change in the initial call to the UHD software.

GNU Radio Signal Processing Chain

The UHD fetches the data from the USRP2 and then provides the data to GNU Radio.

Once the data is provided by the UHD, it is passed to the stream to vector signal processing

block. The UHD produces samples serially, where they are produced one at a time. Due

to the use of the FFT in this system, vectors of samples must be formed. The length of

the vector is the FFT size. For example, if the desired FFT size is 512, then the stream to

vector converter will accumulate 512 samples, then package them into a single vector and

pass that vector to the next signal processing block.



3.2. SPECTRUM SENSOR DESIGN 51

The next signal processing block is the FFT block. The FFT block is responsible for

taking a vector of time domain samples and finding the frequency domain information of

those samples. The FFT block uses a fast Fourier transform (FFT) technique implemented

in the Fastest Fourier Transform in the West (FFTW) 1 C library. The GNU Radio FFT

block also uses windowing to reduce the affects of spectral leakage. Spectral leakage occurs

when power from a signal “leaks” into neighboring frequency bins in an FFT. Spectral

leakage occurs because every signal is multiplied by a window in the time domain. The

window is always equal to the duration of the signal, making it finite length. All windows

are finite length in the time domain, the window is wide in the frequency domain. Since the

window and signal are multiplied in the time domain, they are convolved in the frequency

domain. This convolution produces spectral leakage. The window used in this project is a

Blackman-Harris window.

After the FFT block there is a block for finding the magnitude of the FFT output. The

output of the FFT is complex valued, and the magnitude response is what is desired. So

what is needed is a block to convert from complex to magnitude, which is next block in

the signal processing chain. The complex to magnitude converter takes the square root of

the sum of the squares of the real and imaginary parts of each element in the vector passed

from the FFT block. The next step in this signal processing chain is to record each one of

these magnitude vectors.

The block that performs this recording is the bin statistics block. This block performs

several important functions. The first and most obvious of these function is to take the

output of the complex to magnitude block and direct that data to the recording software.

The bin statistics block does this by considering two delays, a tune delay and a dwell delay.

The tune delay, in quantity of FFT vectors, is the amount of vectors that the block will

discard before trusting the accuracy of the vectors. This system is constantly re-tuning

itself because it is a wideband system that observes many narrow bands at a time. Each

time the system re-tunes various sub-systems, such as phase locked loops, time is needed

to settle. If the system is not given enough time to settle, the data measured will not be

accurate. The second delay is the dwell delay, which is also a quantity of FFT vectors. The

1http://www.fftw.org/

http://www.fftw.org/
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dwell delay directs the bin statistics block to keep that number of FFT vectors before the

system re-tunes. When it is time for the system to re-tune, it is the bin statistics block

that issues the callback for the re-tune. This callback will check the current frequency and

then call for the system to re-tune to next frequency. If the current frequency is not the

maximum frequency, then the next frequency is simply the sum of the current frequency

plus a step frequency. If the current frequency is maximum frequency, then the system will

re-tune to the minimum frequency. This process repeats until the number of sweeps is met.

The entire GNU Radio signal processing chain is shown in Figure 3.5. The flow chart

for re-tuning are shown in Figure 3.6.

Figure 3.5: The GNU Radio Signal Processing Chain.

The HDF5 File Format

The hierarchical data format version 5 (HDF5) is the data storage format chosen for

this project. HDF5 is a binary file format designed for storing scientific data. The HDF5

file format was chosen for a variety of reasons:

• HDF5 is a binary file format meaning that it is efficient in terms of storage space than

non-binary file formats such as comma separated values (CSV).

• There is an official HDF5 library in C/C++ [58] and an unofficial Python wrapper

for the C/C++ library [59]. MATLAB also supports reading and writing to HDF5
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Figure 3.6: The Re-Tuning Flow Chart.
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files.

• HDF5 is capable of storing all the datatypes needed for this project.

• HDF5 is free to use [60].

In HDF5 sets of data are grouped into datasets, which are organized in groups. Datasets

may be any grouping of data such as strings, scalar number, vectors or matrices. The model

in which HDF5 organizes datasets and groups is analogous to the model that Unix-style

file systems organizes files and directories. As in Unix file systems there is a root directory,

“/,” in which every directory or file is a member. In HDF5 there is a root group in which

every group or dataset is a member. The root group contains all datasets or groups below.

The data generated using this project takes advantage of the hierarchical features of

HDF5. In the root directory there are two datasets that make up the meta-data from the

sweeps and a group of datasets where each dataset is a sweep. The first dataset of meta-

data is “Time,” which is a 7 by 2 matrix of strings that describe the start of the scan. The

second dataset, which is called “Scan Info,” is a 13 by 2 matrix of strings that describe

the items such sampling frequency, FFT size, and other scan characteristics. The group in

the root directory contains the datasets for each sweep. The group is called “scans” and

contains a dataset for each sweep named “sweep-000001”. Each sweep dataset is an N by 2

matrix, where N is the number of scans per sweep. The first column is frequency and the

second column is power. This format is visualized in Figure 3.7 and an example data set is

shown in Figure 3.8.

Figure 3.7: The HDF5 Format Used in This Project.



3.2. SPECTRUM SENSOR DESIGN 55

Figure 3.8: An Example of HDF5 File Used This Project.
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System Usage

This spectrum sensing system is intended to be used as a single or multisensor system.

However, when one chooses to use a single sensor or a set of distributed sensors, the process

varies only slightly. For each sensor there is a text file, called sensor info.txt, that is

easily modified to change the characteristics about that particular sensor. Before a scan

occurs, the file must be modified accordingly. In this file the following fields are kept:

• Sensor Number.

• Total Number of Sensors.

• Sensor Longitude.

• Sensor Latitude.

• Sensor Name.

The purpose of this file is to keep track of where the sensor is physically as well as establish

a unique name or number for each sensor. The fields are copied into the HDF5 file for

storage and are then used when analyzing the data.

Once the sensor info.txt file is set up properly the scan parameters need to be de-

termined. Examples of these parameters are the FFT size, sampling rate, or gain. The

parameters take the form of command line arguments and are given by the help command

as shown in Appendix A.

3.2.3 Sensor Control System

The control system is the software package or collection of packages that is used to

control all the nodes. The two responsibilities for the control system is to start the all the

scans simultaneously and then to manage all the data that the sensors collect. A number

of control systems were considered:

• CORBA2 - A remote procedure call (RPC) software framework.

2Common Object Request Broker Architecture
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• XMPP3 - A protocol for sharing data, mainly used for Internet chat clients.

• NTP4, SSH5, RSync, Cron and standard Unix tools - A collection of small tools that

specialize in establishing secure connections and efficient file transfer respectively.

CORBA and XMPP are flexible, full featured software packages that go beyond the need

for the control system for this project. The control system for this project needs only to

be reliable, secure, efficient and simple to work with. The standard Unix tools provide all

of this functionality without being overbearing. The tools listed, NTP, SSH and RSync

provide that basic means of synchronizing, controlling and transferring files the sensors

respectively.

The sensor network architecture using these tools is shown in Figure 3.9. The method

used to control all the sensors has multiple steps:

1. All sensors synchronize to a common time server using NTP.

2. The master sensor establishes a secure connection using SSH and delivers scan in-

structions, such as start time and other scan parameters.

3. The sensors now wait for the correct time to begin their scans.

4. Once the scans have completed the master sensor retrieves the scans from each sensor.

3.3 Analysis Software

This section describes the software developed for analyzing the collected spectrum data.

The tools developed for analyzing the data fall into three categories: utilities, the MATLAB

GUI, and Google Earth visualizations. The utilities are for preparing the data for use with

either the MATLAB GUI or Google Earth. The MATLAB GUI is used to visualize the data

directly. Google Earth is used for visualizing the spatial elements to the data collected.

3Extensible Messaging and Presence Protocol
4Network Time Protocol
5Secure Shell
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Figure 3.9: The Sensor Network Architecture.

3.3.1 Analysis Utilities

The data analysis utilities developed are for preparing the data for use with either

MATLAB or Google Earth. The first utility combineSweeps.py is for combining each

HDF5 file collected from separate sensors into one HDF5 file. This utility first creates a

combined HDF5 file. All the datasets in the HDF5 files that the individual sensors produce

have two columns; for example each sweep dataset has a frequency and power column. In

the combined HDF5 file, columns are appended for each sensor. For example, a system

with four sensors will have 5 columns for each sweep, one column for frequency and four

columns for each sensors measurement. This utility is show in Appendix C.

The second utility, makeKML.py, is for generating a Keyhole Markup Language (KML)

file. This utility takes the combined HDF5 file generated by the utility described in the

preceeding paragraph and produces a KML file that is used by Google Earth to produce

show the sensor positions on a map. A sample spectrum sensing system is shown in Figure

3.11(a). This utility is shown in Appendix B.
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3.3.2 MATLAB Graphical User Interface

A wideband spectrum sensing network gathers a very large quantity of data. The

datasets that are gathered are all multi-dimensional, as seen by the following variation:

• Spatial.

• Frequency.

• Time.

Data that is multi-dimensional must be analyzed in every dimension. That is, the data

gathered should be analyzed by the sensor, by the frequency band, and by the time in

which the sensing took place.

The need for multi-dimensional analysis leads to a need for several different analysis

tools. The two most frequently used tools are the periodogram and the spectrogram. The

periodogram is an estimate of the power spectral density (PSD) of a signal using a finite

collection of samples [15]. The spectrogram is a set of periodograms taken one after the other

in time that show how the estimate of the PSD changes with time [61]. The periodogram

and spectrogram allow for the data collected to be analyzed by frequency and by time.

This leaves the spatial dimension, which is not considered by either the periodogram or

spectrogram.

In Figure 3.10 the MATLAB GUI with a spectrogram of an ATSC television signal

loaded is shown. Starting in the upper left hand corner is the drop down menu, File

Name, that selects the file to view, the list of files is generated automatically. Proceeding

downwards is the Sweep Number and Sensor Number which are used to select the sweep and

sensor to analyze respectively. Underneath that is the Turn On Averaging radio button,

for multi-sweep scans this will shown an average of the periodogram for all the sweeps. After

that is the Turn On Spectrogram radio button, when selected this radio button shows the

spectrogram. This is followed by the Show Distribution radio button that will show the

user the power distribution histogram for the frequency bands that the user selects with the

two text boxes below. Then there is the Update button which, when pressed, updates the

graph on the right. Underneath the update button is the Scan Information text box, this
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Figure 3.10: The MATLAB GUI Displaying Television Spectrogram.
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box displays all the information relevant to this scan. Items such as sampling frequency,

scan start time, scan end time, and estimated scan end time are shown. In the bottom left

corner is the box labeled Note:, in this box any notes that the user leaves when starting

the scan are shown.

3.3.3 Google Earth and Spatial Analysis

Analyzing spectrum data in the spatial dimension is new, with techniques beginning to

be developed in only the past several years. Since this analysis is new there are a variety of

techniques proposed for analyzing spatially distributed spectrum data. The technique most

applicable to this system is the PSD map [62]. The PSD map is a visualization that uses

the measurements from different spatially varying sensors to make a map of the distribution

of power in space when a particular frequency is held constant.

The PSD map can only be created using the measurements from the several sensors.

What is desired is that the map shows how power varies over continuous space. However,

it is assumed that spectrum sensors cannot be placed with the resolution required to make

useful PSD maps. The density of spectrum sensors (e.g. sensors per square meter) cannot

be high enough to create useful maps with the data alone. This is especially true when the

number of sensors in low. To fill the in the unmeasured areas, the measurements that the

sensors make is interpolated so spectrum use as it varies in space can be better analyzed.

The need for a high sensor density is shown in [63], where in simulations 2400 spectrum

sensors were used to detect three transmitters. For the system proposed in this work, 2400

spectrum sensors is unrealistic from two perspectives: implementation complexity and cost.

To deploy a 2400 node spectrum sensing network would mean that all 2400 spectrum sen-

sors would need to be separately powered and connected to a network. Additionally, this

spectrum sensing system is intended for low cost applications. Using the $ 2000 USD cost

per node estimate, a 2400 node spectrum sensing network would cost $ 4.8 million USD.

The PSD map is useful for analyzing how spectrum use varies in space. The natural

extension of this is to compare the PSD map that this spectrum sensing network generates

to the environment around the spectrum sensing network. Overlaying the PSD map onto a

geographic map allows for geographic features to taken into the analysis. An ideal software
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platform to do this is Google Earth. Google Earth accepts the KML files that the utilities

generate and can display sensor locations along with the PSD maps overlaid on top of the

surrounding environments. A sample of this is shown in Figure 3.10(b), where one can see

four spectrum sensors distributed over the WPI campus as well as a PSD map that was

generated using hypothetical data.

(a) A Map on its Own
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(b) A Map with a PSD Map Overlaid on Top

(c) The Key for the PSD Map

Figure 3.10: Two Maps of the WPI Campus.

3.4 Chapter Summary

This chapter discusses the proposed design of this system. The chapter starts with an

overview of some of the features a spectrum sensor should provide and then addresses how

this project addresses those features. Then, there is a discussion on the proposed hardware

and software packages that are used. Following this, there is a discussion on the utilities

that were created to help with the analysis of the measurements.
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Chapter 4

Experimental Results

This chapter discusses several experiments performed using the distributed spectrum

sensing system described in Chapter 3. Two major experiments were conducted: the first

tests the performance of a single sensor compared to an instrument and the second tests

the performance of a distributed spectrum sensing system with multiple sensors.

4.1 Hardware and Software Testing Configuration

This section describes the software and hardware configuration for the sensors that were

tested. The tools used as part of the testing are also described in this section.

The hardware testing configuration is homogeneous for the software and software radios.

The configuration for host PCs are all heterogeneous. The configuration for the software

radios, the USRP2s, is homogeneous for all the radios used in all the tests as part of this

project. All the software radios that were used were USRP2s equipped with the WBX

daughtercards. All the USRP2s used the same firmware and FPGA image that was burned

onto the SD card. The firmware and FPGA images were built on March 17th, 2011 by

Ettus Research, LLC [64]. The host PC testing configuration was heterogeneous, that is

several different PCs were used to conduct the testing, brief descriptions of these PCs are

listed in Table 4.1.

The software configuration is completely homogeneous for all sensors. This homogeneity

was accomplished by using the same software versions for all the sensors. Using the same
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Table 4.1: A Listing of the Different PCs Used for Testing.

Hostname Host 1 & 2 Host 3 Host 4

Make Dell Dell Lenovo

Model XPS XPS 420 x61

Processor Speed 1.87 GHz 2.4 GHz 2 GHz

Processor Cores 4 4 2

Memory 8 GB 4 GB 2 GB

Ethernet Interface Realtek RTL-8111 Realtek RTL-8169 Intel 82566M

software version allows for everything from the operating system to the spectrum sensing

script to be configured once and then re-installed on each machine.

In this project, the software for each sensor is Ubuntu Linux version 10.10, the latest

version at the time of this research project. Each system was updated with all the most

recent software. The version of GNU Radio used was pulled Wednesday March 23rd, 2011

and has commit ID 34313eace681a82e230c38a8cd26c0001ee823ea, dated Monday, March

23rd, 2011. The version of the UHD used was pulled Wednesday March 23rd, 2011, the

commit ID is 95b966a599c0030921dc6b530ca8c94633d905f6, dated March 23rd, 2011.

4.2 Mean Squared Error Calculation

As one will see in the remaining sections, there is a clear difference in the spectrum

produced by the spectrum analyzer and the spectrum sensor. To measure the difference

quantitatively, one should find the mean squared error. The mean squared error is found

first by finding the difference between the two signals, then squaring each sample of the

difference signal and finally finding the mean of the resulting vector of samples. Before

finding the minimum mean squared error, the signals must be adjusted so that they can be

compared properly. There are three parameters of the signals that must be adjusted before

finding the mean squared error, they are:

• Sampling rate - the two signals may be sampled at slightly different rates.

• Offset - the two signals must have any constant offsets removed.



4.2. MEAN SQUARED ERROR CALCULATION 66

• Scaling - one signal may be scaled by a constant multiplicative factor.

The first item, the sampling rate, is simple to correct. A rational resampler is used for this.

A rational resampler is a three stage device that changes the sampling rate of a signal by an

arbitrary rational number [15]. The first stage of the rational resampler is an interpolator

which increases the sampling rate by an integer, I. The second stage is a low pass filter,

which is used for anti-aliasing. The third stage is a decimator, which decreases the sampling

rate by an integer number, D. The output signal of the rational resampler is a signal that

has a sampling rate changed by a factor I
D . For example, if an input signal has a sampling

rate, fs = 400 Hz, and the resampler has an interpolation rate, I = 3, and a decimation

rate, D = 4, the sampling rate of the output signal will be 300 Hz. A block diagram of

a rational resampler is shown in Figure 4.1. In this figure x(n) is the input, y(n) is the

output, I is the interpolation rate and D is the decimation rate.

After the signal is resampled it must be scaled and offset. The scaling factor, a, and the

Figure 4.1: A Rational Resampler Block Diagram.

offset, b, are chosen to find the minimum mean squared error. Equation (4.1) is the equation

for mean squared error and Equation (4.2) is the equation that will be used to find the min-

imum squared error. In this equation Ai is the ith sample from the spectrum analyzer and

Si is the i
th sample from the spectrum sensor. The approach to finding the minimum mean

squared error is to find the partial derivative of Equation (4.2) with respect to a and b sepa-

rately. Then, since the a and b that minimize Equation (4.2) are needed, both equations are

set to zero. The system of equations is then solved. A derivation is available in Appendix E.

MSE =
1

N

N−1
∑

i=0

(Ai − Si)
2 (4.1)

1

N

N−1
∑

i=0

(Ai − (a · Si + b))2 (4.2)
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4.3 Single Sensor Measurements

This section details the tests conducted on a signal spectrum sensor. These tests are

mainly conducted using an instrument grade spectrum analyzer as a reference. The first

test conducted compares the periodograms from the spectrum analyzer to those from the

spectrum sensor of a known television signal. The second test compares the FM radio

spectrum as measured by the spectrum analyzer and spectrum sensor. Television and FM

radio signals were chosen since they are well documented technologies and are predictable.

Also, they both have a duty cycle at or close to 100 percent.

The same equipment and equipment configuration was used for both experiments. The

equipment used was:

• Agilent CSA N1996A Spectrum Analyzer.

– Rated for 100 kHz - 3 GHz.

• Mini-Circuits ZFRSC-42 Two-Way-0◦ Power Splitter [65].

– Rated for DC - 4.2 GHz.

– 50 Ω impedance.

– 0.1 dB insertion loss (typical).

• Diamond D220 Wire Discone Antenna [56].

– Receive Frequency: 100 MHz to 1.6 GHz.

– Impedance: 50 Ω

• USRP2 with WBX Daughterboard.

– See Chapter 3.2.1.

• Host 4.

– See Table 4.1.
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The configuration of the equipment used is as follows. The discone antenna, located on

the roof of Atwater Kent Laboratories, is connected to the power splitter using an SMA

cable. The first output of the power splitter is connected directly to the spectrum analyzer

using an SMA cable. The second port from the splitter is connected to a USRP2 with

the daughtercard WBX, this connection is also via an SMA cable. Finally, the USRP2

is connected to the laptop using an Ethernet cable. This configuration photographed in

Figure 4.2(a) and diagrammed in Figure 4.2(b).

4.3.1 Television Signal Comparison

The first test conducted was a measurement of the periodogram by the spectrum ana-

lyzer and spectrum sensor from television station 29. Television station 29 has the callsign

WUNI, transmits from 560 MHz - 566 MHz and is located in Boylston, Massachusetts.

WUNI transmits at 270 kW and is approximately 6.4 miles away from the Atwater Kent

Laboratories building [66]. The location of the WUNI transmitter is shown in Figure 4.3

and is labeled ‘WUNI Transmitter,’ the receive antenna is located at Atwater Kent Lab-

oratories building and is labeled ‘AK Discone.’ WUNI is a digital TV station, meaning

that the signal it transmits adheres to the Advanced Television System Committee (ATSC)

standard. Two notable features of the ATSC signal that are discussed here are the 6 MHz

bandwidth and a narrowband pilot signal that is added 310 kHz from the nominal lower

edge [67].

For this test, the spectrum sensor and spectrum analyzer were configured as follows.

The spectrum analyzer was tuned to a center frequency of 562 MHz with a span of 11 MHz,

from 556.5 MHz to 567.5 MHz. The reference level was set to 0 dBm with the preamp set

to ‘On.’ The video and resolution bandwidths were set to 1 kHz to provide a high level

of detail. For a 1 kHz resolution bandwidth the speed for a 401 point sweep was slowed

down to 628.26 ms, but a low resolution bandwidth allowed for the carrier that is part

of the ATSC signal to be easily seen in the periodogram. Finally, found using 100 point

exponentially weighed average [68].

The spectrum sensor was configured in a similar manner. Starting with the frequency

of interest, which was set from 558 MHz to 572.5 MHz. The number of sweeps was set to
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(a) A Photograph of Equipment for Testing a Single

Sensor.

(b) A Block Diagram of Equipment for Testing a Single Sensor.

Figure 4.2: The Experimental Setup for the TV Spectrum Comparison.
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Figure 4.3: The Discone Antenna Located on top of Atwater Kent Laboratories (AK Discone) and the WUNI TV Transmitter

(WUNI Transmitter).
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(a) The Original Single Sweep Periodogram of TV Channel 29 WUNI from

the Spectrum Sensor (Blue) along with the Spectrum Analyzer Measure-

ment (Red).
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(b) The Original 5000 Sweep Average of a Periodogram of TV Channel 29

WUNI from the Spectrum Sensor (Blue) along with the Spectrum Analyzer

Measurement (Red).

Figure 4.4: The Original Sweeps from the Spectrum Sensor.
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5000, which took approximately 52 minutes, 30 seconds. For a discussion on the selection of

5000 for the number of sweeps see appendix F. The decimation rate was set to 16 resulting

in a sampling rate of 6.25 million samples per second. The FFT size was set to 256 points

and the gain was set to 5. The receive buffer was set to 60 MB. The tune delay was set to

approximately 200 ms and the dwell delay was set to approximately 10 ms.

The original sweeps from the spectrum sensor and spectrum analyzer are shown in Fig-

ure 4.4. Figure 4.4(a) shows a single sweep from the spectrum sensor (in blue) and an

averaged sweep from the spectrum analyzer (in red). Figure 4.4(b) shows an average of

5000 sweeps from the spectrum sensor (in blue) and an averaged sweep from the spectrum

analyzer (in red). In both figures the spectrum sensor periodogram is offset and scaled

from the spectrum analyzer. Since the spectrum sensor only measures relative power, it

will be readjusted to fit the spectrum analyzes measurements. It is also important to note

that since one signal is being readjusted to fit another that this comparison can only mea-

surement the relative difference in each signal and does not represent the absolute error.

The adjustments for these measurements are all made and then applied to the spectra on

a logarithmic (dB)scale.

The adjusted signals are shown in Figures 4.5 and 4.6. A single sweep comparison is

shown in Figure 4.5 and a comparison of a 5000 sweep average is shown in Figure 4.6.

The two plots in Figure 4.5 are the sweeps from the spectrum sensor and spectrum an-

alyzer overlaid on top of one another and the squared error between the two. Figure 4.5(a)

shows the spectrum sensor measurement in blue and the spectrum analyzer measurement

in red. The spectrum sensor measurement in this figure has been adjusted to find the min-

imum mean squared error magnitude which is 2.864. The region with the most error is the

location of the carrier at 560.31 MHz. This region of large error is shown more clearly in

Figure 4.5(b).

The plots in Figure 4.6 are the same measurements as in Figure 4.5 except instead of a

single sweep from the spectrum sensor there is an average of 5000 sweeps from the spectrum

sensor. Figure 4.6(a) shows the two signals overlaid on top of each other and Figure 4.6(b)

plots the difference between the two signals. The mean squared error magnitude here is

1.803, which is 37% lower than the single sweep error.
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(a) The Spectrum Analyzer and a Single Sweep Spectrum Sensor Measure-

ments Overlaid on Top of Each Other. The Spectrum Analyzer is in Red,

the Spectrum Sensor in Blue.
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(b) The Squared Difference Between the Two Periodograms.

Figure 4.5: Periodogram Comparison.
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(a) The Spectrum Analyzer and the Averaged Spectrum Sensor Measure-

ments Overlaid on Top of Each Other. The Spectrum Analyzer is in Red,

the Spectrum Sensor in Blue.
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(b) The Squared Difference Between the Two Periodograms.

Figure 4.6: Periodogram Comparison.
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4.3.2 FM Radio Signal Comparison

This subsection compares the performance of a spectrum sensor to the spectrum ana-

lyzer in the FM radio band, 88 MHz to 108 MHz. The objective of this test is to compare

the signals that the spectrum analyzer can distinguish from noise to the signals that the

spectrum sensor can distinguish from noise. The FM radio band was chosen because it has

a large collection of signals over a narrow band where the averaged received power varies.

For this test the spectrum analyzer was configured in the same way as the previous test

but with the exceptions of center frequency and span. In this, the center frequency was set

to 98 MHz and the span was set to 20 MHz. The total band recorded was from 88 MHz to

108 MHz.

The spectrum sensor was also configured in a similar way the to the previous test. The

first difference was the frequency range that was set was from 83 MHz to 116 MHz. The

second difference was that the FFT size was set to 2048 points. Every other parameter was

the same. The scan took approximately 2 hours, 20 minutes, 29 seconds.

Figure 4.7 shows two plots. Figure 4.7(a) shows the FM Radio spectrum as measured

by the spectrum sensor (blue) and the spectrum analyzer (red). Figure 4.7(b) shows the

squared error between the two measurements in the previous plot. The goal of this exper-

iment was to compare the signals that the spectrum analyzer and spectrum sensor found.

The spectrum sensor found all of the stations the spectrum analyzer found, so test was

a success. However, as shown in the previous experiment, the spectrum sensor has large

error values at the peaks or signals. The peaks in the squared error plot, Figure 4.7(b),

all correspond to the center frequency of each radio station. Due to all the different FM

radio stations over the 20 MHz band, the mean squared error is much higher for this scan

in comparison to the TV scan. The squared error for the single sweep FM radio scan is

23.737. Finally, observe that some of the radio stations in Figure 4.7(a) are radiating out

of band, one of them is labeled ‘WAAF.’
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(a) One Sweep of the Adjusted Periodogram of the FM Radio Spectrum
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(b) The Squared Difference Between the Spectrum Sensor and Spectrum

Analyzer FM Radio Periodograms.

Figure 4.7: The FM Radio Spectrum.
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4.3.3 Errors at Peaks

After conducting both the television signal comparison test and the FM radio signal

comparison test it is clear that the spectrum sensor has large error values at peaks. The

spectrum sensor records peaks that are significantly attenuated compared to the measure-

ments made by the spectrum analyzer. There are several possible explanations for this.

The first possibility is that the spectrum sensor does not have as large a dynamic range

as the spectrum analyzer. The dynamic range for the spectrum sensor is 84 dB [69] and

the dynamic range for the spectrum analyzer is 158 dB [70] with configuration that the

measurements were made with. The spectrum analyzer has a much larger dynamic range,

which allows it to capture signals that have a larger range. It is possible that the spectrum

sensor experiences clipping that the spectrum analyzer does not experience.

There are two more factors that can attenuate peaks: the window used and the FFT size.

The window can affect the peak by smearing the peak into neighboring bins, so a window

with a wider main lobe will smear the peak more. In these experiments a Blackman-Harris

window was used. Blackman-Harris windows have a wide main lobe so the peak was smeared

substantially. The FFT size can also affect the perceived magnitude of the peak. Since there

are fewer bins, a lower FFT size is more likely to miss the peak than a larger FFT size.

Experiments confirm that both the window and FFT size affect the magnitude of the

peak. Six additional tests were performed that show that the magnitude of the pilot tone

from a television signal increases when the FFT increases and when a window with a nar-

row main lobe was used. Three FFT sizes were used for two different windows. The FFT

sizes were 256, 1024 and 2048. The windows used were a Blackman-Harris window and a

rectangular window. The Blackman-Harris window has a wide main lobe, so the peaks get

smeared more. The rectangular window has a narrow main lobe so the peaks get smeared

less. The results from these experiments are shown in Figure 4.8, where the rectangular

window is shown in 4.8(a) and the Blackman-Harris window is used in 4.8(b). Each plot

shows the three FFT sizes being used: 256 (blue), 1024 (red) and 2048 (red).

Table 4.2 shows the values at each peak for each FFT size and window type. The

magnitude increases with the FFT size, which is what is expected. The magnitude is also
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(a) The Pilot Tone of a Television Signal with a Rectangular Window.
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(b) The Pilot Tone of a Television Signal with a Blackman-Harris Win-

dow.

Figure 4.8: Periodograms of a Television Signal Pilot Tone.
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Table 4.2: Magnitude of the Pilot Tones from a Television Signal.

FFT Size Magnitude (dB) Magnitude (dB)

Blackman-Harris Rectangular

256 -49.017063 -41.899799

1024 -45.261200 -38.189610

2048 -44.680538 -36.845665

greater for rectangular window than the Blackman-Harris window for each FFT size.

4.4 Multi-Sensor Tests

This section characterizes tests conducted using multiple sensors. There are two cat-

egories of tests performed: the first is multi-sensor verification, and the second test is a

demonstration of a distributed spectrum sensing system. The goal of the first test is to

characterise the variation of the spectrum sensed between two independent sensors with the

same input signal. The goal of the second test is to demonstrate a functional distributed

spectrum sensing system using the system described in Chapter 3.

4.4.1 Multi Sensor Verification

This test is designed to characterize the variation in spectrum that two independent

spectrum sensors measure. This is done in two steps, the first is to hold as many variables

constant between the two sensors, the second step is to then use a more realistic configu-

ration of spectrum sensors. In the first step the variables that are held constant are the

antennas, the two spectrum sensors share the same antenna, where in the second step the

two spectrum sensors use different antennas in order to create a realistic spectrum sensing

system.

Both experiments were configured in the same manner other than the antenna configura-

tion. The experiments were both performed using two USRP2s with WBX daughtercards,

one host PC was Host 3, the other host PC was Host 4 with, both PCs are listed in Table

4.1. The transmitter was a USRP1 with the Flex 900 daughtercard. All the radios in these
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experiment used the Vert 900 antenna, described in Section 3.2.1. The transmissions were

a random stream of data that was modulated using a 16-QAM modulator and then filtered

using a root-raised cosine filter, the transmission were centered at 940 MHz. There were two

samples per symbol. The GNU Radio transmitter was created with GNU Radio Companion

(GRC), a block a diagram of the transmitter is shown in Figure 4.9. Shared Antenna

Figure 4.9: A GRC Block Diagram of the Transmitter.

In this experiment, two independent spectrum sensors shared a single single antenna via

a Mini-Circuits ZFRSC-42 Power Splitter described in Section 4.3. The experimental setup

is shown in Figure 4.10. The spectrum sensors were tuned from 937 MHz to 943 MHz, the

decimation rate was set to 16, the FFT size was set to 256, the tune delay was set to 200

ms, the sensors took 5000 sweeps.

Figure 4.11 shows two measurements from a single sweep overlaid on top of each other

as well as the squared error between the two. Also observe that a majority of the error

comes from where there is a signal present. The blue periodogram, from Host 3, peaks at

-7.253 dB and the red periodogram, from Host 4, peaks at -5.927 dB a difference of 1.326

dB. The mean squared error magnitude is 0.01021.

Figure 4.12 contains two plots. In the first plot, Figure 4.12(a), the average of 5000

sweeps from each sensor are shown overlaid on top of each other. Figure 4.12(b) shows the

squared error between the two periodograms. The peak from Host 3, in blue, is -7.968 dB,

the peak from Host 4 is, in red, is -7.030 dB, a difference of .938 dB. The mean squared
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error magnitude is 0.009023.

Figure 4.10: A Block Diagram of the Shared Antenna Experiment.

Different Antennas

This section details the same experiment performed as the previous section, but now

with two separate antennas. The goal of this experiment is to characterize the difference

in spectrum measured by two completely independent spectrum sensors while receiving

approximately the same signal. This experiment was conducted in exactly the same fashion

as the previous experiment with the exception of the sharing of antennas and use of the

splitter. In this experiment two Vert 900 antennas were used. A block diagram of the

configuration of this experiment is shown in 4.13. Note that the two antennas are separated

by approximately 10 cm.
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(a) A Single Sweep from the Two Sensors Sharing an Antenna overlaid on Top
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(b) The Squared Difference of the Two Periodograms.

Figure 4.11: A Comparison of the Two Spectrum Sensors Sharing the Same Antenna.
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(a) An Average of 5000 Sweeps of Spectrum Sensed from the Two Sensors

Overlaid on Top of Each Other.

968.5 969 969.5 970 970.5 971 971.5
0

1

2

3

4

5

6

Frequency (MHz)

E
rr

o
r

M
a
g
n
it
u
d
e

(b) The Squared Difference of the Two Averaged Periodograms.

Figure 4.12: A Comparison of the 5000 Sweep Average from the Two Spectrum Sensors

Sharing the Same Antenna.
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Figure 4.14 shows two plots. The first a single sweep from each sensor overlaid on

Figure 4.13: A Block Diagram of the Independent Antenna Experiment.

top of each other, the second is the squared error between the two. Also observe that a

majority of the error comes from where there is a signal present. The blue periodogram,

from Host 3, peaks at -5.172 dB and the red periodogram, from Host 4, peaks at -5.098 dB,

a difference of 0.074 dB. The mean squared error magnitude is 0.0141.

Figure 4.15 shows the overlay of the 5000 sweep average from the two sensors as well as

the squared error between the two periodograms. These plots show the same characteristics

of the single sweep measurements, except that the error is greater. The peak from Host 3,

in blue, is -5.742 dB, the peak from Host 4, in red, is -7.968 dB, a difference of 2.226 dB.

The mean squared error magnitude is 0.01358. The mean squared error for the averaged

sweeps is greater than the mean squared error for the single sweep, an unexpected result.
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Upon further examination one can see that there appears to be an offset between the two

periodograms, as shown in Figure 4.15. One can also see this offset in plot of the squared

error, Figure 4.15(b), in this plot there is an offset for almost the entire 3 MHz band. Also,

observe that in the squared error plot for Figure 4.11(b), the plot for the shared antenna,

there is no offset. The source of the offset is likely to be from the different antennas. This

offset could explain the why the error for the single sweep is less than the error for the

averaged sweeps.
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(a) A Single Sweep from the Two Sensors Using Different Antennas Overlaid
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(b) The Squared Difference of the Two Periodograms.

Figure 4.14: A Comparison of the Two Spectrum Sensors Sharing the Same Antenna.
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(b) The Squared Difference of the Two Averaged Periodograms.

Figure 4.15: A Comparison of the 5000 Sweep Average from the Two Spectrum Sensors

Sharing the Same Antenna.
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4.4.2 PSD Maps

This subsection discusses the creation of PSD maps generated using the spectrum sens-

ing system. Included is a description of the experiment configuration and results, the PSD

map.

This experiment took place in Olin Hall, a large lecture hall at WPI. Olin Hall was

chosen because it is a large room with power supplies and it was available. The experiment

consisted of three spectrum sensors and a transmitter. The spectrum sensors and trans-

mitter were configured in exactly the same way as the previous experiment. The single

exception to this is the change in the positions and number of the radios.

In this experiment the sensors were located at spatially varying positions as shown in

Table 4.3. The measurement was setup so that the transmitter and Host 1 were approxi-

mately one foot apart. The transmitter and Host 1 were located at the front of the lecture

hall. The two remaining spectrum sensors, Host 4 and Host 2, were located at the back of

lecture hall on opposite sides of the room. The path from the transmitter to all three spec-

trum sensors was line of sight. The signal transmitter from the transmitter was centered

at 970 MHz. The PSD map requires that only one frequency be observed at a time; the

chosen frequency here is the 970 MHz. The PSD map in Figure 4.16(b) is a representation

of how the power at a single frequency changes as a function of space.

Figure 4.16(b) shows that Host 1, the closest spectrum sensor to the transmitter,

recorded the highest power. This figure also shows that two other spectrum sensors, which

are located further way from the transmitter, recorded a lower measurement. In this exper-

iment all the sensors were located indoors, that is, they were located inside the lecture hall.

This result is expected: since Host 2 and Host 4 are further away from the transmitter they

experience more path loss than Host 1. As a result of this path loss the two sensors record

a lower power signal.
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Table 4.3: The Spectrum Sensor Coordinates.

Radio Longitude Latitude

Transmitter -71.808027 42.274764

Host 1 -71.808026 42.274764

Host 2 -71.808026 42.274801

Host 4 -71.807919 42.274675

Figure 4.16 contains two maps. Figure 4.16(a) shows a map of Olin Hall with each sensor

labeled. Figure 4.16(b) shows the same image but with the PSD map overlaid on top. The

PSD map was created using the three measurements from the spectrum sensors. The power

values for the remaining space were interpolated using the measurements from the spectrum

sensor data. The data was interpolated using the MATLAB function TriScatteredInterp

using linear interpolation. The MATLAB function TriScatteredInterp is used for inter-

polating data that is randomly scattered over a two dimensional surface [71].

Interpolating with this function has a clear problem: linear interpolation is used when

free space path loss models are nonlinear. Free space path loss is the amount of loss, in dB,

a receiver incurs in an environment with no impairments. This measure of loss does not

include any fading or interference. An idealized free space path loss model for a 970 MHz

signal is defined in Equation (4.3) [72]. This model is also idealized since it assumes both

the transmitters had isotropic antennas. An isotropic antenna is an ideal antenna where

power is radiated equally in all directions. In Equation (4.3) L(d) is the free space path

loss, in dB, and d is the distance between the transmitter and receiver, in kilometers. The

amount of loss depends on the base 10 logarithm of the distance between the two radios.

Linear interpolation is not the ideal interpolation method, however it is a first step in cre-

ating PSD maps from randomly scattered measured data.

L(d) = 92.135 + 20 log10 d (4.3)
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(a) A Map of Olin Hall with the Spectrum Sensors Displayed.

(b) A Map of Olin Hall with the PSD Map Overlaid on Top.

(c) The Key for the PSD Map.

Figure 4.16: A Plain Map of Olin Hall and a PSD Map of Olin Hall.
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4.5 Chapter Summary

This chapter focused on displaying the results and capabilities of the spectrum sensing

system proposed in this document. The chapter starts with a description of the testing

environment and then proceeds to develop a metric so these different tests can be compared

to one another directly. Then the discussion moves on to the tests that were performed.

The first test compares a single sensor to an instrument for verification. The next test

compares the sensor to an instrument again and demonstrates a weakness in the sensor,

which is inability to capture full peaks. Next, a test is performed that compares an identical

input to two different sensors. Finally, in the last test a distributed measurement is made

and the PSD map is generated.
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Chapter 5

Conclusions

This chapter summarizes the work performed as part of this project and then suggests

related research that can be performed in the future. The research achievements includes

a description of the system developed, the capabilities of the system and the results it

produced. The future work section includes a list of improvements that can be made to the

system and some ideas that can start future research projects.

5.1 Research Achievements

As part of this work the following was achieved:

• A wideband spectrum sensing system was developed. This spectrum sensing system

can operate over frequencies from 50 MHz to 2.2 GHz.

• A distributed spectrum sensing system was developed. This spectrum sensing system

can scale to as many nodes as the user wishes to use. The system can also collect the

measurements from each spatially varying sensor and create a PSD map.

• A practical spectrum sensing system was created. This spectrum sensing system is

affordable, each node costs approximately $ 2000 USD.

• Tools for analyzer the spectrum sensing data were developed. Users may use individual

periodograms, averaged periodograms to observer how spectrum changes as a function
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of frequency. Users may also use spectrograms to observe how spectrum changes with

time.

5.2 Future Work

Future research activities that are related to this work are discussed in this section.

• Re-implement this system such that realtime measurements can be observed. An

implementation that allows for realtime measurements to be made will allow users to

observe each individual sweep as they are completed. Currently, the user must wait

for all the sweeps to finish before observing the data.

• Implement a system without a master node, that is a decentralized system. A de-

centralized system is a more robust system since all measurements no longer need to

report all their data to the master node. A decentralized system is more difficult to

implement since nodes must locate each other and the volume of data that must be

shared increases dramatically if every node is to have a copy of every other nodes

data.

• Redeploy this system on the USRP E100. The USRP E100 is less expensive and more

compact since it combines the host PC and the software radio into one package. The

USRP E100 fits this project very well since it is easier to deploy (less components),

has a smaller package, and is less expensive.

• Implement a system that can share data using wireless data sharing service. Sensors

sharing data using a wireless data service is advantageous since this eliminates the

need for a preexisting network. The challenge of this is system is that any wireless

data sharing occupies spectrum the author must then decide to measure this spectrum

or attempt to avoid those transmissions.

• Implement other multi-sensor architectures. In this project the technology that is

used to observe the spatially varying data is the PSD map. Future work may in-

vestigate other techniques to utilize spatially diverse spectrum measurements. For
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example, researchers may attempt to use an energy detector that sensors uncertain

measurements.

• Test with a large number of nodes. This work used only four nodes for testing, other

works that may want to observe how the data changes with a large number of nodes.

• Measure the effects of sensor network size and arrangement. Future researchers can

find what the returns are to adding sensors to the sensor network and when adding

sensors stops adding to the quality of the data gathered. Researchers may also wish

to see how sensor arrangement affects the gathered data.

• How the needs of the sensor network changes with the environment. Future researchers

may wish to find how the number and arrangement of sensors changes in differing

environments while attaining the same quality of data. That is, researchers can find

how the number of sensors that are needed to measure spectrum use changes in a

suburb compared to a city.

• Create PSD maps using accurate interpolation methods. The interpolation methods

used to create PSD maps in this project do not match real models for RF propagation.

A future work could implement a interpolation algorithm that applies already existing

RF propagation models, such as Longley-Rice or Egli models, to the algorithm to get

more accurate results.
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Appendix A

USRP Spectrum Sense Options

Usage: usrp_spectrum_sense.py [options] min_freq max_freq

Options:

-h, --help show this help message and exit

-g GAIN, --gain=GAIN set gain in dB (default is midpoint)

--tune-delay=SECS time to delay (in seconds) after changing frequency

[default=0.02]

--dwell-delay=SECS time to dwell (in seconds) at a given frequncy

[default=0.01]

-F FFT_SIZE, --fft-size=FFT_SIZE

specify number of FFT bins [default=256]

-d DECIM, --decim=DECIM

set decimation to DECIM [default=-1]

-s SAMPLE_RATE, --sample-rate=SAMPLE_RATE

set sample rate [default=1000000.0]

--real-time Attempt to enable real-time scheduling,

[default=False]

-n NSWEEPS, --nSweeps=NSWEEPS

Number of sweeps, [default=none]

-a, --recordMax Record Max values of FFTs, [default=False]

-c NCHANNELS, --nChannels=NCHANNELS
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Sets the number of channels, [default=1]

-D DURATION, --duration=DURATION

Set the duration of the scan in seconds, minutes,

hours, days, or weeks, [default=none]

-N NOTE, --note=NOTE A note about the particular scan, [default=none]

--daughter-card=DAUGHTER_CARD

Set the daughtercard, [default=wbx]

--ref If connected to a 10 MHz reference, enable this option

to synchronize to the reference clock

-v, --verbose Verbose, [default=False]

--antenna=ANTENNA Select the antenna port on the USRP Daughtercard,

[default=TX/RX]
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Appendix B

makeKML.py

#1/usr/bin/python

import h5py

from optparse import OptionParser

from os import listdir, getcwd

from sys import exit

import subprocess as sp

class kml():

def __init__(self, hdf5file=None):

self.kml_start = u’<?xml version="1.0" encoding="UTF-8"?>\n’+\

’<kml xmlns="http://www.opengis.net/kml/2.2">\n<Folder>’

self.kml_end = ’</Folder>\n</kml>\n’

self.endLen = len(self.kml_end)

self.kml = self.kml_start + self.kml_end

self.nSensors = None

self.hdf5file = hdf5file

if self.hdf5file is not None:

self.f = h5py.File(self.hdf5file)

self.sensor_info = self.f.get(’Sensor Info’)
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self.__findNSensors__()

self.addAllSensors()

def addAllSensors(self):

props = map(None, self.sensor_info[:,0])

for kk in xrange(self.nSensors):

# make list from np array

values = map(None, self.sensor_info[:,kk+1])

# make the two lists into a dict

sensor_props = dict(zip(props, values))

self.addPlace(sensor_props)

def addPlace(self, sensor_props, desc=’’):

if len(desc) > 0:

desc = ’, ’ + desc

# this is hard to read, but this has to fit

# on a 8.5 x 11 page...

newPlace = \

u’ <Placemark>\n’+\

’ <name>’ +\

str(sensor_props[’NAME’]) +\

’</name>\n’+\

’ <description>Sensor ’ +\

str(sensor_props[’NUMBER’]) +\

’ of ’ + str(sensor_props[’TOTAL’]) +\

str(desc) + ’</description>\n’+\

’ <Point>\n’+\

’ <coordinates>’ +\

str(sensor_props[’LNG’]) + ’,’ +\

str(sensor_props[’LAT’]) +\

’,0</coordinates>\n’+\

’ </Point>\n’+\

’ </Placemark>\n’
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end = len(self.kml)

self.kml = self.kml[0:end-self.endLen] +\

newPlace +\

self.kml[end-self.endLen:end]

def write(self, kmlFilename=None):

if kmlFilename is None:

kmlFilename = self.hdf5file.replace(’.hdf5’,’.kml’)

self.kmlFilename = kmlFilename

self.kmlfile = file(self.kmlFilename, ’w’)

self.kmlfile.write(self.kml)

self.kmlfile.close()

def file(self, hdf5file):

self.hdf5file = hdf5file

self.f = h5py.File(self.hdf5file)

def addImage(self,\

image,\

name=’’,\

desc=’’,\

north=’’,\

south=’’,\

east=’’,\

west=’’):

# find a point in the kml string that we can enter

imageStr = u’<GroundOverlay> \n’+\

’ <name>’+ name + ’</name>\n’+\

’ <description>’ + desc + ’</description>\n’+\

’ <color>90ffffff</color>\n’+\

’ <Icon>\n’+\

’ <href>’ + image + ’</href>\n’+\

’ </Icon>\n’+\
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’ <LatLonBox>\n’+\

’ <north>’ + str(north) + ’</north>\n’+\

’ <south>’ + str(south) + ’</south>\n’+\

’ <east>’ + str(east) + ’</east>\n’+\

’ <west>’ + str(west) + ’</west>\n’+\

’ <rotation>0</rotation>\n’+\

’ </LatLonBox>\n’+\

’</GroundOverlay>\n’

insertPoint = self.kml.find(’</Folder>’)

self.kml = self.kml[0:insertPoint] + imageStr + ’</Folder>\n</kml>’

def close(self):

self.f.close()

def __findNSensors__(self):

if self.hdf5file is None:

self.nSensors = None

return

si = self.f.get(’Sensor Info’)

print si

for kk in range(si.shape[0]):

if si[kk, 0]==’TOTAL’:

try:

self.nSensors = int(si[kk,1])

return

except:

print ’HDF5 File Damanaged’

exit(-1)

def __del__(self):

self.f.close()
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def isHDF5(s):

end=len(s)

if s[end-4:end] == ’hdf5’:

return True

else:

return False

if __name__ == "__main__":

sweepsDir = ’test_sweeps’

cwd = getcwd()

end = len(cwd)

if cwd[end-5:end] == ’utils’:

sweepsDir = ’../’ + sweepsDir

files = listdir(sweepsDir)

files = filter(isHDF5, files)

files.sort()

for ii in files:

if ii.find(’combined’) > -1:

default_file = ii

parser = OptionParser()

parser.add_option(’-f’,\

’--filename’,\

type=’str’,\

default=default_file,\

help=’Select the file to generate’+\

’ KML for, [default=%default]’)

(options, args) = parser.parse_args()

k = kml(sweepsDir + ’/’ + options.filename)
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# make the psd map

print ’Using MATLAB to make the PSD map’

matlab_string=(’/opt/r2010b/bin/matlab’,\

’-nosplash’,\

’-nodesktop’,\

’-r makeMap’)

matlab = sp.Popen(matlab_string, stdout=sp.PIPE)

matlab.wait()

msg = matlab.communicate()[0].split()

msg_len = len(msg)

print msg

print ’MATLAB done’

for ii in xrange(msg_len):

if msg[ii].find(’Latitudes’) >= 0:

lats = (msg[ii+1], msg[ii+2])

elif msg[ii].find(’Longitudes’) >= 0:

lngs = (msg[ii+1], msg[ii+2])

elif msg[ii].find(’Filename:’) >= 0:

mapname = msg[ii+1] + ’.png’

print lats[0], lats[1]

print lngs[0], lngs[1]

print mapname

k.addImage(mapname,\

’PSD Map’,\

’PSD Map Overlayed on My Sensor Network’,\

lats[0], lats[1], lngs[0], lngs[1])

k.write()
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Appendix C

HDF5 Combiner

#!/usr/bin/python

import h5py, os

from string import letters

from optparse import OptionParser

hdf5_str = h5py.new_vlen(str)

def isHDF5(s):

l = len(s)

s=s.lower()

if s[l-5:l] == ’.hdf5’:

return True

else:

return False

def isFirstSensor(s):

if s.find(’-combined.’) >= 0:

return False

# read the HDF5 file method

#f = h5py.File(s)

#for ii in f.items():
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# if ii[0] == ’Sensor Info’:

# for kk in ii[1]:

# if kk[0] == ’NUMBER’:

# if kk[1] == ’1’:

# f.close()

# return True

#f.close()

# read the filename way

if s.find(’-a.hdf5’) >= 0:

return True

else:

return False

if __name__ == "__main__":

parser = OptionParser()

parser.add_option(’-d’,

’--directory’,

type=’string’,

default=’test_sweeps’,

help=’Directory to search for HDF5 ’+\

’files to combine [default=%default]’)

(options, args) = parser.parse_args()

sweepsDir = options.directory

sensorInfo = ’Sensor Info’

scanInfo = ’Scan Info’

times = ’Times’

filelist = os.listdir(sweepsDir)
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# first, delete all items in filelist

# that are not HDF5 files

filelist = filter(isHDF5, filelist)

filelist_full = []

for ii in filelist:

filelist_full.append(sweepsDir+’/’+ii)

# now remove HDF5 files that aren’t the sensor number 1

filelist_full = filter(isFirstSensor, filelist_full)

for files in filelist_full:

# just get the number of sensors

try:

f = h5py.File(files, ’r’)

except:

print files + ’ failed to open’

break

try:

info = f.get(sensorInfo)

except:

print ’Cannot Find Dataset \’Sensor Info\’’

break

try:

scans_group = f.get(’scans’)

except:

print ’Cannot Find Group \’scans\’’

break

totalSensors = int(info[2,1])

sweepsPerScan = int(scans_group.items()[0][1].shape[0])
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totalScans = len(scans_group.keys())

combinedFilename = files.replace(’-a.’, ’-combined.’)

cf=h5py.File(combinedFilename , ’w’) # combined file

nStartTime = 7

nEndTime = 7

nEstTime = 7

nScanInfo = 13

nSensorInfo = 5

startTime = cf.create_dataset(’Time’,

(nStartTime, totalSensors+1),

dtype=hdf5_str)

endTime = cf.create_dataset(’End Time’,

(nEndTime, totalSensors+1),

dtype=hdf5_str)

estEndTime = cf.create_dataset(’Estimated End Time’,

(nEstTime, totalSensors+1),

dtype=hdf5_str)

scanInfo = cf.create_dataset(’Scan Info’,

(nScanInfo,totalSensors+1),

dtype=hdf5_str)

sensorInfo = cf.create_dataset(’Sensor Info’,

(nSensorInfo,totalSensors+1),

dtype = hdf5_str)

note = cf.create_dataset(’Note’,

(1,totalSensors),

dtype = hdf5_str)

scans = cf.create_group(’scans’)

for ii in xrange(totalScans):

scans.create_dataset(’sweep-’ + str(ii).zfill(6),

(sweepsPerScan,totalSensors+1),

dtype=float)



107

startTime[0,0] = ’Day’

startTime[1,0] = ’Month’

startTime[2,0] = ’Year’

startTime[3,0] = ’Day of Week’

startTime[4,0] = ’Hour’

startTime[5,0] = ’Minute’

startTime[6,0] = ’Second’

endTime[0,0] = ’Day’

endTime[1,0] = ’Month’

endTime[2,0] = ’Year’

endTime[3,0] = ’Day of Week’

endTime[4,0] = ’Hour’

endTime[5,0] = ’Minute’

endTime[6,0] = ’Second’

estEndTime[0,0] = ’Day’

estEndTime[1,0] = ’Month’

estEndTime[2,0] = ’Year’

estEndTime[3,0] = ’Day of Week’

estEndTime[4,0] = ’Hour’

estEndTime[5,0] = ’Minute’

estEndTime[6,0] = ’Second’

scanInfo[0,0] = ’Minimum Frequency’

scanInfo[1,0] = ’Maximum Frequency’

scanInfo[2,0] = ’Antenna’

scanInfo[3,0] = ’Name’

scanInfo[4,0] = ’ADC Rate’

scanInfo[5,0] = ’Decimation Rate’

scanInfo[6,0] = ’Sampling Rate’

scanInfo[7,0] = ’IP Address’

scanInfo[8,0] = ’Receive Buffer Size’

scanInfo[9,0] = ’FFT Size’

scanInfo[10,0] = ’Minimum Allowable Frequency’

scanInfo[11,0] = ’Maximum Allowable Frequency’

scanInfo[12,0] = ’Initially Set Gain’
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sensorInfo[0,0] = ’LAT’

sensorInfo[1,0] = ’LNG’

sensorInfo[2,0] = ’TOTAL’

sensorInfo[3,0] = ’NAME’

sensorInfo[4,0] = ’NUMBER’

newStr = ’-a.hdf5’

oldStr = ’-a.hdf5’

for ii in range(totalSensors):

try:

filename = files.replace(oldStr, newStr)

print ’Copying File: ’ + filename

f = h5py.File(filename, ’r’)

newStr = ’-’ + letters[ii+1] + ’.hdf5’

except:

print files + ’ failed to open’

break

# find all the datasets and associate

# them with their order or appearance

startTime_old = f.get(’Time’)

endTime_old = f.get(’Actual End Time’)

estEndTime_old = f.get(’Estimated End Time’)

scanInfo_old = f.get(’Scan Info’)

sensorInfo_old = f.get(’Sensor Info’)

note_old = f.get(’Note’)

# There might be a more sophisticated way to

# copy all this data. h5py.File.copy doesn’t

# provide exactly what I need

for kk in xrange(nStartTime):

startTime[kk,ii+1] = startTime_old[kk,1]

for kk in xrange(nEndTime):

endTime[kk,ii+1] = endTime_old[kk,1]
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for kk in xrange(nScanInfo):

scanInfo[kk,ii+1] = scanInfo_old[kk,1]

for kk in xrange(nSensorInfo):

sensorInfo[kk,ii+1] = sensorInfo_old[kk,1]

for kk in xrange(nEndTime):

estEndTime[kk,ii+1] = estEndTime_old[kk,1]

note[0,ii] = note_old[0]

# grp => group, ds => dataset

scan_grp_old = f.get(’scans’)

# FIXME change the way that the frequencies col is copied,

# this is redundant

# if we’re on the first file copy the frequencies column

#if ii == 0:

# for kk in xrange(sweepsPerScan):

# sweep_str = ’sweep-’ + str(ii).zfill(6)

# scan_ds_old = scan_grp_old.get(sweep_str)

# scan_ds_tmp = scans.get(sweep_str)

# scan_ds_tmp[:,0] = scan_ds_old[:,0]

for kk in xrange(totalScans):

sweep_str = ’sweep-’ + str(kk).zfill(6)

scan_ds_old = scan_grp_old.get(sweep_str)

scan_ds_tmp = scans.get(sweep_str)

scan_ds_tmp[:,0] = scan_ds_old[:,0]

scan_ds_tmp[:,ii+1] = scan_ds_old[:,1]

f.close()

# Used to filter out unwanted files this way,

# but I like the new way better

#
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# remove all the duplicate scans, ie if we have

# sweep_2010-11-02_11-48-20_01.hdf5

# sweep_2010-11-02_11-48-20b.hdf5

# sweep_2010-11-02_11-48-20c.hdf5

# sweep_2010-11-02_11-48-20d.hdf5

# then remove the first three from the list

# this is so we combine these scans four times

#filelist.sort()

#last = filelist[-1]

#for i in range(len(filelist)-2, -1, -1):

# if last[0:25] == filelist[i][0:25]:

# del filelist[i]

# else:

# last = filelist[i]
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Appendix D

Frequency Resolution Derivation

The Spectrum Sensor

• The sampling rate is set to 400 kHz, fs = 400 kHz.

• The USRP2 performs quadrature sampling.

• Only 3
4 of the frequency domain data is used, the lowest 1

8 and highest 1
8 of the

frequency domain samples are discarded.

• The Nyquist Rate is 1
2 , fN = 1

2 .

Considering these four items one may calculate the frequency resolution, fr:

fr = 2 · fs ·
3

4
· fN Hz (D.1)

= 2 · 400, 000 ·
3

4
·
1

2
Hz (D.2)

= 300kHz (D.3)

The Spectrum Analyzer

• The span was set to 20 MHz.

• The number of points in the trace was 401.
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The frequency resolution, fr, is simply:

fr =
20 MHz

401
(D.4)

= 49.875 kHz (D.5)

≈ 50 kHz (D.6)
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Appendix E

Minimum Squared Error

Derivation

In this derivation Si the vector from the spectrum sensor and Ai is the vector from the

spectrum analyzer. The mean squared error is being minimized with respect to a and b.

1. Equation (E.1), the equation to be minimized.

MSE =
1

N

N−1
∑

i=0

(Ai − (a · Si + b))2 (E.1)

=
1

N

N−1
∑

i=0

A2
i + a2S2

i + b2 +−2aAiSi +−2bAi + 2abSi (E.2)

2. Equation (E.3), the partial derivative of Equation (E.1) with respect to a.

∂MSE

∂a
=

1

N

N−1
∑

i=0

2aS2
i +−2AiSi + 2bSi (E.3)

(a) Equation (E.4), the second order partial derivative of Equation (E.1) with respect

to a. Equation (E.4) is always positive making this a minimization of Equation

(E.1).

∂2MSE

∂b2
=

1

N

N−1
∑

i=0

2S2
i > 0 (E.4)
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3. Equation (E.5), the partial derivative of Equation (E.1) with respect to b

∂MSE

∂b
=

1

N

N−1
∑

i=0

2b+−2Ai + 2aSi (E.5)

(a) Equation (E.6), the second order partial derivative of Equation (E.1) with respect

to b. Equation (E.6) is always positive making this a minimization of Equation

(E.1).

∂2MSE

∂b2
=

1

N

N−1
∑

i=0

2 > 0 (E.6)

4. Set Equation (E.3) and Equation (E.5) to zero and then rearrange.

N−1
∑

i=0

2AiSi =

N−1
∑

i=0

2aSi +

N−1
∑

i=0

2bSi (E.7)

N−1
∑

i=0

2Ai =

N−1
∑

i=0

2b+

N−1
∑

i=0

2aSi (E.8)

5. Put Equation (E.3) and Equation (E.5) into matrix form and solve for a and b:









N−1
∑

i=0
2S2

i

N−1
∑

i=0
2Si

N−1
∑

i=0
2Si

N−1
∑

i=0
2









·





a

b



 =









N−1
∑

i=0
2AiSi

N−1
∑

i=0
2Ai









(E.9)
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Appendix F

Sweep Selection

This appendix will discuss the selection of 5000 for a sufficient number of sweeps. The

technique used to verify that 5000 sweeps is sufficient is to plot the variance as a function

of the number of sweeps at a particular frequency.

For example, call this function g(f, n) where g(f, n) is the variance for n sweeps at

frequency f . When g(f, n) converges as n increases with f held constant, the number of

sweeps is sufficient.

To show that 5000 sweeps is sufficient three frequencies were chosen from the spectrum

sensor measurement from the TV periodogram in Figure 4.4(a). The three selections are

from noise, the pilot tone, and a from the signal. These frequencies are 558.7 MHz, 560.31

MHz, and 563.5 MHz respectively.

A plot is shown for each of frequency bin starting with the noise variance plot in Figure

F.1(a). Next is the variance plot of from the carrier in Figure F.1(b). Finally the variance

plot for the TV signal is shown in Figure F.0(c). In all three plots the variance converges

to one value meaning that adding sweeps does not change the variance periodogram.
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(b) The Variance Plot for the Pilot Tone
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(c) The Variance Plot from the TV Signal

Figure F.0: The Variance Plot for Several Signals
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