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Abstract

Multiple-input multiple-output (MIMO) technique in communication system has been

widely researched. Compared with single-input single-output (SISO) communication, its

properties of higher throughput, more efficient spectrum and usage make it one of the most

significant technology in modern wireless communications. In MIMO system, sphere detec-

tion is the fundamental part. The purpose of traditional sphere detection is to achieve the

maximum likelihood (ML) demodulation of the MIMO system. However, with the devel-

opment of advanced forward error correction (FEC) techniques, such as the Convolutional

code, Turbo code and LDPC code, the sphere detection algorithms that can provide soft

information for the outer decoder attract more interests recently. Considering the comput-

ing complexity of generating the soft information, it is important to develop a high-speed

VLSI architecture for MIMO detection.

The first part of this thesis is about MIMO sphere detection algorithms. Two sphere

detection algorithms are introduced. The depth first Schnorr-Euchner (SE) algorithm which

generates the ML detection solution and the width first K-BEST algorithm, which only gen-

erates the nearly-ML detection solution but more efficient in implementation are presented.

Based on these algorithms, an improved nearly-ML algorithm with lower complexity and

limited performance lose, compared with traditional K-BEST algorithms, is presented.

The second part is focused on the hardware design. A 4×4 16 QAM MIMO detection

system which can generate both soft information and hard decision solution is designed and

implemented in FPGA. With the fully pipelined and parallel structure, it can achieve a

throughput of 3.7 Gbps. In this part, the improved nearly-ML algorithm is implmented as

a detector to generat both the hard output and candidate list. Then, a soft information

calculation block is designed to succeed the detector and produce the log-likelihood ratio

(LLR) values for every bit as the soft output.
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Chapter 1

Introduction

1.1 Research Motivation

The rapid growth in mobile computing, mobile multimedia services and other mobile

applications make high-speed wireless communication be one of the fastest developing tech-

nologies in recent years. Multiple-input multiple-output (MIMO) communication technol-

ogy has been researched as it satisfies the demand for both the increased capacity and

improved link-reliability [7]. Due to these advantages, MIMO communication technology

is adopted as a part of many current wireless communication standards, such as IEEE

802.11n, and some future technologies such as WiMAX based on IEEE 802.16e and IEEE

802.20. Meanwhile, some recent extensions of the MIMO technology, such as multi-user

MIMO (MUMIMO) [21], which enlarge the communication capabilities of each individual

user, have also attracted some interests from researchers.

In MIMO communication system, the most important part is MIMO detector [10],

the function of which is to separate the spatially multiplexed signals received from the

multi antennas [4]. This process should consider the effect of unstable fading channels,

the additional environment and system noise, and the interferences among those antennas,

while keep an acceptable resource usage of both hardware and time. Therefore, the research

of MIMO detection technique is very attractive and useful. New detection algorithms and

implementations are needed to improve the whole system’s performance, including data
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throughput and spectrum efficiency, while minimize the resource usage.

1.2 Introduction to MIMO wireless communication Systems

1.2.1 MIMO System Model

Consider a symbol synchronized MIMO system with MT transmitter and MR (MR ≥

MT ) receiver antennas demonstrated in Figure 1.1. The total input data, in binary, is

divided into blocks and for each block it contains MT × Ω bits x = (x1, x2, . . . , xMT
)T

where xi = (xi1, xi2, . . . , xiΩ), as a part of the total sequence, and then each block is

mapped to a MT -dimensional transmit symbol vector s̃ = (s̃1, s̃2, . . . s̃MT
)T, in which s̃i

is the transmitted symbol of the i-th antenna and it represents Ω bits of binary data.

Those symbols are chosen from O which stands for the complex scalar constellation 2Ω-

QAM system and |O| = 2Ω. According to the definition above, the baseband input-output

relation for a MIMO system can be written as

ỹ = H̃s̃ + ñ, (1.1)

H̃ =

←−−−−−−−−−MT−−−−−−−−−→
h̃11 h̃12 · · · h̃1MT

h̃21 h̃22

...
. . .

h̃MR1 h̃MRMT


x

MRy
(1.2)

where H denotes the MR × MT channel matrix, expressed in Equation (1.2), which is

assumed to be perfectly known by the receiver. In this paper it is assumed to be a Rayleigh

fading channel so every element h̃ij ∼ CN (0, 1) with independent identical distributed (i.i.d)

complex zero-mean Gaussian variables with the normal variance, represents the complex

transfer function from the j-th transmit antenna to the i-th receive antenna. The n =

(n1, n2, . . . , nMR
) is the vector of i.i.d additive white Gaussian noise (AWGN) samples and

ni ∼ CN (0, σ2).
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Figure 1.1: MIMO system model

Although the system is discribed in the complex domain, to simplify the presentation,

it can be equivalently transformed into real domain. The complex domain Equation (1.1)

is equivalent to < (ỹ)

= (ỹ)

 =

 <(H̃
)
−=

(
H̃
)

=
(
H̃
)

<
(
H̃
)
 < (s̃)

= (s̃)

+

 < (ñ)

= (ñ)

 , (1.3)

and Equation (1.3) can be expressed as

y = Hs + n, (1.4)

in which s = (s1, s2, . . . , s2MT
) is chosen from the set of the real entries in the constellation

Λ with |Λ| = 2
Ω
2 , e.g., Λ = {−3,−1, 1, 3} in the case of 16-QAM. Notice that after the

complex to real tranformation the number of entries of the input vector y is 2MT now. For

each real symbol it represents Ω/2 bits of binary data. The discussions in the rest part of

this thesis are all based on the term after the complex to real tranformationation except

some specific examples.

Besides the MIMO transmitter and receiver atennas shown in Figure 1.1, an outer en-

coder/decoder can also be included in MIMO communication system. First, the transmitted
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binary bits are encoded by a channel encoder, which in this paper is a convolutional en-

coder of rate R = 1/2 and interleaved. An MT Ω×1 dimensional binary vector of coded bits

x = (x1, x2, . . . , xMT
)T , in which xi = (xi1, xi2, . . . , xiΩ) is obtained from the whole coded

sequence. The binary digit xij is assumed to have an independent value from {1, 0}. Then

this sequence is mapped into a MT × 1-dimensional complex vector s̃ as mentioned at the

beginning of this section. Combined with the outer encoder/decoder, the performance of

the MIMO system can be increased considerably. Details of the combined decoder detection

will be introduced in Chapter 4.

1.2.2 MIMO Detection Methods

For a MIMO communication system the objective of the detector is to get the original

information of the mapped symbols from the transmitter side. However, due to the property

of the Rayleigh fading channel, getting the maximum likelihood (ML) solution is the best

result that a detector can achieve. But an advantage is, by presenting training phase,

inserting pilot signal and applying channel estimation, the channel matrix H can be assumed

to be perfectly known by the receiver. Gaining the channel matrix information and the

received parallel signals, algorithms created to separate the original transmitted symbols

through the MIMO detecting theory can be mainly divided into the following parts.

• (1) Zero-Forcing (ZF) Algorithm. The ZF algorithm is a natural thought directly

gained from the information of channel matrix and received symbols. It finds the

pseudo inverse of channel matrix and then multiplies it by received signal symbol

vector. The results are round to the constellation system without any other disposing.

This algorithm just simply ignores the affection of noise and inference between each

antenna, so it is an suboptimal algorithm which is efficient when the SNR is high,

otherwise the performance is rather poor.

• (2) ML Solution with Exhaustive Search. The ML solution satisfies the function

sML = arg min
s∈∗2MT

‖y −Hs‖2 (1.5)

and recall in Equation (1.4) the complex system has been transformed to real domain,
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so the solution s is with 2MT dimensions instead of MT in Equation (1.1). ML solu-

tion is the optimum solution with for uncoded system. A straightforward approach

to solve Equation (1.5) is searching all the possible constellation points in the 2MT

dimension space. However the computational complexity for exhaustive search in-

creases exponentially with the number of the transmitter and receiver antennas as

well as the modulation size. In a 16-QAM modulation 4 × 4 MIMO communication

system the number of possible candidate symbols is 65536. Performing exhaustive

search consums a lot of resources both in time and hardware.

• (3) Depth First Sphere Detection [3, 11]. Sphere Detection algorithm is a reduced

complexity method that can lead to the ML solution for MIMO system, which avoid

exponentially increased detection complexity in exhaustive search. The major idea

that makes sphere detection efficient is that the number of constellation points are

found inside a hypersphere area in the 2MT dimension constellation space, which is

dramatically smaller than the exhaustive search area. The lattice in the hypersphere

can be mapped to a trellis tree and the depth first search strategy searches the tree

from root to the top. When reaches the bounder it returns backward to find another

possible candidate then searches forward again, until all the possible candidates are

searched in the hypersphere. Although compared with the exhaustive search its com-

putational complexity is decreased dramatically, it is still complex since the search

goes both forwards and backwards, which makes the time of whole detection process

uncertain. For real communication system it means that the throughput is unstable.

• (4) Breadth First Sphere Detection [13, 8]. Although it is also called sphere detection,

the solution of this method is only a nearly-ML solution. It also searches the possible

candidates in the range of a hypersphere with a certain radius, which is a subset

of the solution space. But unlike the depth first strategy it goes one-way, in the

forward direction only. The breadth first detection searches all the possible candidates

in one dimension but only keeps a certain number of them to be extended in next

dimension. The same process is repeated until the final dimension is reached. The

fixed of searching structure makes the implementation in a parallel and pipeline fashion
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with a fixed throughput. More details will be introduced in Chapter 2.

1.3 Summary of Contribution

This thesis presents the following research results of MIMO communication systems.

• (1) Modified MIMO Detection Algorithm. In this thesis a modified MIMO detection

algorithm is introduced based on the breadth first sphere detection. With a preprocess

stage the BER performance is improved with limited additional resource usage.

• (2) Group Sorting Combined with Parallel Sorting Network. As the bottleneck of

breadth first algorithm, the sorting between candidates often limits the decoding

throughput. A group sorting algorithm is proposed in Chapter 3. Combined with the

group sorting, a sorting network is also designed to make the sorting process executed

in a highly parallel structure.

• (3) LLR Soft Information Generator. Using the foward error correction (FEC) tech-

nology, the BER performance of the MIMO system can be improved with combined

detection and decoding. An LLR generator is cascaded to the MIMO detector and to

generate the soft information of each received bit.

• (4) Parallel and Pipelined Hardware Implementation. A highly parallel and fully

pipeline structure is designed for the proposed MIMO detector. Both soft information

and hard information can be generated at a data throughput of 3.7 Gbps.

1.4 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 briefly introduced K-BEST

MIMO detection and its modification with preprocess which improves the performance in

an uncoded MIMO detection. In Chapter 3, the main bottleneck of the K-BEST MIMO

detection algorithm, sorting, is replaced by an efficient parallel group sorting algorithm

combined with a sorting network. Although there is a minor decrease in its BER perfor-

mance, the sorting structure is simplified through this architecture and it also modified the
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system delay in the sorting process. Chapter 4 presents a MIMO detection which generates

a candidate list for soft-output information according to the theory of soft-output informa-

tion and LLR value calculation. Compared with the uncoded ML solution, the performance

of MIMO system with an outer decoder is significantly better. In Chapter 5 the hardware

architecture and implementation results are presented. With a fully parallel and pipelined

design this detector can work at a frequency of 230.132 MHz in Virtex6 FPGA with a

throughput of 3.7 Gbps
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Chapter 2

Sphere Detection Algorithms and

Preprocessing

MIMO communication systems have attracted the researchers attention because of their

high data throughput, increased channel capacity and improved link reliability. As the

kernel of the MIMO system, the MIMO detection process affects the performance of the

entire MIMO system. Although the exhaustive search yields the ML solution, which is the

upper bound of the BER performance in an uncoded MIMO communication system, it is

still infeasible because of the computational complexity. Consider a 16-QAM modulation

4 × 4 MIMO communication system, the number of possible candidate symbols is 65536

and the computational complexity increases exponentially with the growth of the number

of antennas and constellation points in the modulation.

Severalof algorithms have been developed to gain the ML or nearly-ML solution for the

detection process, like ZF algorithm and sphere detection. Sphere detection is considered

to be an efficient way to decrease the detection complexity while keeping an acceptable

system performance. The details of lattice theory can be found in [1]. Depth first search

and breadth first search are the two most important search strategies which are adopted in

sphere detection [5, 4, 11, 8]. This chapter provides an introduction to the proposed modified

K-BEST MIMO detection algorithm. As an improvement to the traditional breadth first

sphere detection, the proposed modified K-BEST algorithm makes the best of the parallel
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characteristic of the breadth first search architecture, while decrease the possibility of early

pruning the ML solution. Unless being declared specifically, all discussions and simulations

in this thesis are all performed on the 16-QAM modulation 4 × 4 MIMO communication

system model. MIMO systems with more sending-receiving antennas and more complex

modulation process have the similar detection process.

2.1 Sphere Detection Algorithms

The MIMO detection process can be mapped to a trail search process through a hy-

percube space. Consider the MIMO system discribed by Equation (1.4) which has been

transformed into real domain. Since the number of receiving and transmitting antennas

are both MT , after complex to real tranformation carried by Equation (1.3) the solution

space equals to a hypercube with 2MT dimensions. In each dimension, the possible result

is picked up through Λ. So the total number of possible results combination through all the

2MT dimensions is |Λ|2MT . The sphere detector is a detection process that finds the points

satisfying the Equation (1.5). Compared with the exhaustive search, the space that the

sphere detection goes through is a hypersphere, which is a subset of the original hypercube.

The Finke-Phost and Schnorr-Euchner’s research [16, 6] indicates that defining a radius

through ZF is a highly efficient way to decrease searching complexity of this detection.

d2 =
∥∥⌈H−1y

⌋
−H−1y

∥∥2 (2.1)

In Equation (2.1) the d.c denotes the operation of rounding the data in each dimension to

the nearest real constellation points in Λ.

2.1.1 Introduction to Sphere Detection

In Equation (1.3) each symbol si in dimension i of the vector s is referred to a layer, and

is constrained to a finite set Λ. Enumeration of the ML point that satisfies the Equation

(1.5) is presented in [1] as an algorithm for finding vectors with smallest norm to the

original points in a hyperspace which is composed by integer lattice. Fincke-Pohst (FP)

[6] and Schnorr-Euchner (SE) [16] algorithms are two computationally efficient means of



10

implementing the detection process and they are also the foundation of most of the existing

search algorithms.

Including FP and SE, nearly all the known sphere detection algorithms are based on the

QR decomposition of the channel matrix, the matrix H with linearly independent columns.

H̃ = Q̃

 R̃

0

 (2.2)

where Q̃ is MR ×MR and unitary matrix, R̃ is MT ×MT upper triangular and invertible

matrix, and 0 is an (MR −MT )×MT matrix with all elements 0.

Since Equation (1.5) is invariant with orthogonal transformation, the equivalent equation

can be expressed as

s̃ML = arg min
s̃∈OMT

∥∥∥∥∥∥Q̃Tỹ −

 R̃

0

 s̃

∥∥∥∥∥∥
2

(2.3)

If MT < MR, A root distance droot is separated from the Equation (2.3). and

s̃ML = arg min
s̃∈OMT

(
∥∥∥∥[Q̃Tỹ

]
MT +1,MT +2,...,MR

− R̃s̃
∥∥∥∥2

+ d2
root) (2.4)

in which the [.]MT +1,MT +2,...,MR
denotes to delete the last MR − MT elements from the

original vector so that the rest part of the vector
[
Q̃Tỹ

]
has a length of MR and d2

root is

the squared Euclidean distance of the deleted part.

Although in the application the receiver antenna array is usually larger than the trans-

mitter antenna array, in this paper the hypothesis MT = MR is set for simplicity. After

the complex to real tranformation performed by Equation (1.3), a new channel matrix H

is gained and QR decomposition is performed on it. Equation (2.3) is expressed as

sML = arg min
s∈∗2MT

‖Qy −Rs‖2 (2.5)

= arg min
s∈∗2MT

‖y −Rs‖2 (2.6)

where Q is 2MT × 2MT and orthogonal matrix while R is 2MT × 2MT upper triangular

and invertible. y = QTy denotes the 2MT orthogonally transformed symbols.
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Notice in Equation (2.6) R is an upper triangular matrix. This structure enables the

sphere detector to decompose Equation (2.6) recursively as

‖y −Rs‖2 = d2(y2MT
, r2MT ,2MT

s2MT
)

+
∥∥∥(y − r2MT

s2MT
)2MT

−R2MT ,2MT
s2MT

∥∥∥2
(2.7)

= d2(y2MT
, r2MT ,2MT

s2MT
)

+
∥∥∥y(s2MT

)−R2MT ,2MT
s
∥∥∥2

(2.8)

=
1∑

D=2MT

d2(y(sD+1)D, rD,DsD) (2.9)

where d2(.) denotes the squared Euclidean distance; (.)m and (.)m,n denotes to delete the

m-th element from the original vector and deleting the m-th row and n-th column from the

original matrix, respectively; rm,m denotes the element in the m-th row and m-th column

of matrix R and (.)m denotes the m-th column of a matrix or the m-th element of a vector:

d2(y(sD+1)D, rD,DsD) = |y(sD+1)D − rD,DsD|2 (2.10)

y(sD+1) =

 y D = 2MT

(y(sD+2)− rD+1sD+1)D+1 D = 2MT − 1, . . . , 1
(2.11)

The processes described by Equation (2.7) , Equation (2.8)and Equation (2.9) lead de-

tecting ML points process to a trail tree search with multiple stages. In Figure 2.1 a trail

tree is built and fully expanded. For simplicity this system only have two receiver and

transmitter antennas with BPSK modulation. That means the complex to real tranforma-

tion is not needed while the parameters are set as MT = MR = 2 and Ω = {−1, 1}. In a

trail tree structure nodes in the upper layer is called parent nodes for nodes in the lower

layer, and nodes in the lower layer is called child nodes which are expanded from the same

parent node. For example in Figure 2.1 the node b1 is the parent node of the nodes b3 and

b4; the node b3 and b4are the child nodes expanded from node b1. Nodes in the final layer

are called the leaf nodes. In Figure 2.1 node b3, b4, b5 and b6 are all leaf nodes.

Although the way of computing the Euclidean distance in different sphere detections are

almost the same as expressed in Equation (2.9), the strategies of searching the smallest final

Euclidean distance are varied dramatically and it decides the final computational complexity

and performance.
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Figure 2.1: Fully expanded searching trail tree of a 2× 2 MIMO system with BPSK mod-

ulation

2.1.2 Depth First Search: Precision

Consider Equation (2.7) , Equation (2.8)and Equation (2.9) which divide the hyper-

sphere space into 2MT layers. The depth first search strategy searches each layer for the

smallest final Euclidean distance in both forward and backward directions through the 2MT

layers.

The currently smallest final Euclidean distance is the radius of the hypersphere, c, which

can be set as∞. In the 2MT -th layer the detector finds and stores the first point s2MT
∈ O

that satisfies

d2(y2MT
, r2MT ,2MT

s2MT
) ≤ c2 (2.12)

where d2(y2MT
, r2MT ,2MT

s2MT
) = d2

2MT
is the partial squared Euclidean distance in the

2MT -th layer. Then the first point in the (2MT − 1)-th layer is stored with its partial

squared Euclidean distance in the (2MT − 1)-th layer, which is

d2
2MT−1 = d2(y(s2MT

)2MT−1, r2MT−1,2MT−1s2MT−1) + d2
2MT

(2.13)

The same process is repeated until the 1st layer is reached. If during this process the partial

squared Euclidean distance of the m-th layer is larger than c2, the detector first check the
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neighbor point of the stored node in that layer. If no node’s squared partial Euclidean

distance is less than c2, then the detector goes back to the (m+ 1)-th layer, finds the next

point of that layer instead of the stored one the compare and search process is executed

continously.

If the 1st layer is reached and the total Euclidean distance is smaller than the the existing

c, the radius will be replaced by the newly gained Euclidean distance and the detector goes

to the neighbor node of the one sorted in the 1st layer, until all the nodes in the 1st layer

is searched and find a smallest Euclidean distance. Then the detector goes back to the 2nd

layer, picking up the next node from the initially stored one in that layer. If this partial

Euclidean distance is smaller than the new radius c it will goes to the 1st layer, executing

the enumeration and comparing process so that the new total Euclidean distance in the 1st

layer is gained again.

Every time the search process reaches the 1st layer with a total Euclidean distance

smaller than current c, the c should be replaced. If none of the total Euclidean distance in

the 1st layer is smaller than c, it will goes upper to the 2nd layer and picks up the next

neighbor point from the one picked up in the last search. If every possible point is examined

but the total Euclidean distance in the 1st layer is still larger than radius c then the detector

will goes backward to the 3rd layer and repeats the enumeration and search again. If the

detector finally goes back to the 2MT -th layer but none nodes can satisfy Equation (2.12)

then the last stored node in each layer are combined together as the result with ML solution

that satisfies Equation (1.5). Figure 2.2 shows the initial stages of this searching.

In Equation (2.8) the y(sD+1)D depends on the chosen nodes of upper layer, and this

is the reason that every time the node in the upper layer is changed, the partial Euclidean

distance of the child nodes in the lower layers has to be changed and checked with it too.

The depth first search strategy can be summarized as follows:

A modification of this algorithm is introduced by Schnorr-Euchner’s research [16]. In

depth first search strategy the SE algorithm can decrease the number of examined nodes

and many other researchers extend this algorithm for their implementations. The SE search

strategy predefine a radius according to the Babai points gained through the ZF algorithm

and all the enumeration process is around the Babai points in each layer. Also, since the
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Figure 2.2: Depth firsts searching Strategy

Algorithm 2.1 Depth first search strategy
Input: y, R, constellation information.

1. Set the radius of the hypersphere c2 = ∞ and the initial squared partial Euclidean

distance d2
m+1 = 0;

2. Set k = 2MT , yk = y, yk is set to the k-Th element of vector yk;

3. Set bounds LB and UB and symbol increasing step according to the constellation. Set

sk = LB − step;

4. sk = sk + step. If sk ≤ UB goto 6. Else go to 5;

5. k = k + 1. If k = m+ 1 terminate the detection. Else goto 4;

6. Calculate d2
k = d2(yk, rk,ksk) + d2

k+1 and yk−1 = (yk − rksk)k. If d2
k < c2 goto 7. Else

goto 4;

7. if k = 1then c = dk+1, and goto 4. Else k = k − 1, and goto 3.
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Figure 2.3: Depth first searching strategy with SE Enumeration

partial Euclidean distance is decided by the parent nodes in the upper layers, once the

detection changes the point in the upper layer a new Babai point and partial Euclidean

distance in the lower layer has to be enumerated. This method can also be adopted in the

breadth first search for its advantage in sorting candidates in each layer. Details of this will

be introduced in Section 3.2.1.

2.1.3 Breadth First Search: Speed and Throughput

As the depth first searching strategy, the breadth first search is also based on Equation

(2.7), Equation (2.8) and Equation (2.9). But the breadth first searching strategy searches

the best nodes in the forward direction only. In each layer the detector examines all the

possible nodes, and K candidates with smallest partial Euclidean distances are kept. Then

through Equation (2.7) and Equation (2.8) the possible points in the lower layer based

on the parent candidates picked up are extended. According to their partial Euclidean

distance, a group of K points are picked up again. Following this process the detector goes

lower and lower until the 1st layer is reached. Figure 2.4 shows breadth first search in the

first 3 layers of a 4× 4 MIMO communication system with 16-QAM modulation. As in the

first and second layer the number of candidates is less than K = 16, all the nodes in these
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Figure 2.4: Breadth first searching strategy scheme

two layers are expanded and kept without sorting. In the third layer the number of the

child nodes is 4×K = 64, so after expanding and sorting only K = 16 child nodes are kept

for next layer. This expanding and sorting stage is repeated in the rest layers. The process

of breadth first strategy is outlined as below.

After picking up the nodes in 1st layer with the smallest total Euclidean distance, the

detection process is ended and the final result is combined by the group of nodes with the

smallest total Euclidean distance. Since in each layer the number of the selected nodes is

fixed, the mainly advantage of the breadth first search based on this property is that it

has a fixed data throughput. Unlike the depth first search strategy usually there does not

exit a specific radius for the hypersphere. Although adding such a radius can decrease the

number of points that the detector goes through, it also makes the number of examined

points uncertain, which has a negative affection in the stability of data throughput. However

to reach ML solution that satisfies the Equation (1.5) the breadth first search should keep

the K as large as possible to keep the optimality. But this method will lead to an exhaustive

search which will take a dramatically large sources both in time and hardware usage.

Although breadth first search is a sub-optimal detection algorithm that only achieve the

nearly-ML solution, according to the research in [19, 13], it can also be expected to achieve
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Algorithm 2.2 Breadth first searching strategy
Input: y, R, constellation information.

1. Set the initial root distance d2
m+1 = d2

root;

2. Set k = 2MT , yk = y, yk is set to the k-th element of vector yk;

3. Expand all the possible child nodes sk. Calculate the corresponding d2
k = d2(yk, rk,ksk)+

d2
k+1 and yk−1 = (yk − rksk)k;

4. If the number of the expanded candidate n(k) > K, sort the candidates by their partial

Euclidean distances.

5. Choose the K child nodes with smallest dk. If k = 1 terminate the detection else k = k−1

and goto 3.
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Figure 2.5: Simulation results: BER performance when K=6, 8, 12
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a bit-error rate (BER) performance closing to the ML algorithm with a sufficient large K.

This algorithm is also named as K-BEST algorithm by [8]. Compared with exhaustive search

a proper value of K can reduce the complexity while keep an acceptable BER performance.

Figure 2.5 shows how the value of K affects the performance of the MIMO system.

Besides the fixed data throughput, another major advantage of the breadth first detec-

tion is the easily implemented parallel architecture. Since the breadth first search strategy

keeps a fixed number of nodes in each layer, the computing process of Equation (2.7) of each

node can be executed at the same time. The only bottleneck, however, is the comparing

and sorting part. The details will be introduced in Chapter 3.

2.2 Preprocessing with Layer Reordering

It is known that the computational complexity of depth first sphere detection is highly

sensitive to the ordering of the columns of the channel matrix[18], a similar situation also

happens in the breadth first sphere detection[14, 2]. Although the structure of the breadth

first detection decides that reordering the column of channel matrix could not help decrease

its computational complexity, it increases the BER performance of the breadth first sphere

detector. Assume there are two candidate symbols sa and sb; both are 2MT -dimension vec-

tors. For the MIMO model described in Equation (1.4) the total squared Euclidean distances

are d2(sa) =
∑1

D=2MT
d2(y(sa D+1)D, rD,Dsa D) and d2(sb) =

∑1
D=2MT

d2(y(sb D+1)D, rD,Dsb D).

If sa is the ML solution then d2(sa) < d2(sb) should be satisfied. However, in the breadth

first searching, the decision is made based on the squared partial Euclidean distance, which

are ==

d2
sa

(k) =
1∑

D=k

d2(y(sa D+1)D, rD,Dsa D), k = 2MT , . . . , 1 (2.14)

and

dsb
(k) =

1∑
D=k

d2(y(sb D+1)D, rD,Dsb D), k = 2MT , . . . , 1 (2.15)

respectively. If in some un-leaf stage, which means 1 < k ≤ 2MT , the squared partial

Euclidean distance of sa is smaller than that of sb and does not belong to the K best

candidates, the decision process will discard the sa from then on. This explains that even
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the candidates with the best partial Euclidean distance in each layer is selected it still does

not necessarily mean that the ML solution will be in the candidates of final layer. This is

the source of discarded BER performance of breadth first search strategy compared with

the depth first strategy and that is also the reason that the breadth first search strategy is

called sub-optimal detection.

Although keeping the K with a sufficient large value can improve the performance,

apparently this method also makes the breadth first detection more complex, especially

consider that the sphere detection algorithm is involved in a lot of sorting process. Keeping

the K in a reasonable limit while increasing the BER performance as much as possible is

important for the MIMO detection. Since the sphere detection algorithms, no matter depth

first or breadth first search strategies, are all based on the QR decomposition performed

on the channel matrix, a proper preprocess performed on the channel matrix will help

to increase the system performance either in decrease its complexity or increase the BER

performance. According to the analysis above to increase the BER performance of the

breadth first search strategy with a small K, it is necessary to decrease the possibility of

discarding the ML in the search process. One of the widely used approach is reorder the

searching layer, which is permuting the channel matrix H. Then the order of the elements

in s is changed respectively, while keeping the total partial Euclidean distance the same.

If the reordering scheme can enlarge the differences between those partial Euclidean

distances of different s at early levels, which means that the partial Euclidean distance

increases in a decreasing way, then this scheme can be claimed that it would help to increase

the performance. Notice in Equation (2.14) and Equation (2.15) if the differences of partial

Euclidean distances between each layer decreases, it would make the candidates with larger

partial Euclidean distance in the early stage much less possible to be the ML solution after

accumulating all these differences in the final layer because the partial Euclidean distances

of the candidates with smaller partial Euclidean distances at early layer increas=e slower

than those of the candidates with larger partial Euclidean distances at early layer. Thus

the performance of the breadth first search strategy will be improved.

However, since the squared partial Euclidean distance of each candidate is determined

by Equation (2.14) and Equation (2.15) once every new level is reached by the detection
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process, both the element of the candidate sD itself and the rD,D in that level will affect

the partial Euclidean distance. Hence if reorder the layer the rD,D with larger value used

in early layers, which means the matrix R is reordered to make the rD,D in a increasing

way, the difference of the partial Euclidean distances between each layer would have a large

possibility to be decreased.

To achieve the purpose of reordering the rD,D in a increased order with D increasing,

many different preprocess algorithms are researched. At first they are used to decrease

the computational complexity of depth first search strategy. However with the increasing

interests in researching the breadth first search strategy because of its advantages in fixed

data throughput, adopting the preprocess the preprocess in breadth first search also attract

many researchers focuses. One of the widely used reordering algorithm is reordering the

channel matrix H based on the norm of each column. Another possible solution is proposed

by [20]. Those reordering preprocesses are all used in the depth first searching strategy at

first to minimize the computational complexity. Although reordering the channel matrix

H based on the norm of each column is quit a straight forward solution, it is not the

optimal solution with the perfectly increased rD,D sequential. Since compared to the data

throughput and signal frequency, the channel matrix changes in a quit slow frequency in

most of the MIMO standards and models. There is enough time to perform the more

complex reordering solution and QR decomposition in the outer co-processors. Simulation

results of the preprocess adopting these two different reorder algorithms are shown.

2.3 Conclusion

In this chapter, the principle of K-BEST algorithm is introduced with details. A proper

K is chosen to achieve the near-ML detection result. Figure 2.6 shows that when K = 16 it

only has a minor decrease in the BER performance compared with the optimal depth first

search strategy. As the kernel part of the detection, the channel matrix also make a strong

impact on the performance. Two different reprocess methods performed on the channel

matrix are adopted in the detection and their performances are evaluated. Simulation

results in Figure 2.6 shows that the modified K-BEST detection algorithm with a combined
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Figure 2.6: Simulation results: BER performance with and without preprocessing

preprocess can achieve the best performance while keeping the parallel architecture of the

breadth first search strategy. In Figure 2.6 “Ascend” means to reorder the channel matrix

H from the norm of each column in an ascending way, “Descend” denotes that the reoder

process is performed by sortign the norm of each column in an descending order, while

“Reorder” denotes the reoder process proposed in [20].
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Chapter 3

Group Sorting Algorithm and

Implementation

Although a sufficient large value of K increases the BER performance in the breadth first

sphere detection, it also increases the computational complexity dramatically, due to not

only the computing performed in Equation (2.7) but also the sorting process: the breadth

first detection needs to find the K candidates with shortest partial Euclidean distance in

each layer.

Let |∗| denotes the number of the possible points in the constellation system, i.e., after

the complex to real tranformation the possible nodes corresponding to 16-QAM modulation

becomes ∗ = {−3,−1, 1, 3}, and so |∗| = 4. In each layer the breadth first sphere detector

should find out the K best points from the |Λ| ×K extended points. By adopting bubble

sorting in this process, the complexity in the worst case will be O((|Λ| × K)2). Another

disadvantage in the bubble sorting algorithm exists in its sequential process. Even the

computing process in Equation (2.7) of the upper layer can be executed concurrently in a

parallel structure, it still have to wait for the sorting process to be finished in the complexity

of O((|Λ| ×K)2).

Since the sorting process becomes the major bottleneck that takes a long time in the

K-BEST detection algorithm, many efforts have been made to reduce the computational

complexity and execution time. In this chapter a group sorting algorithm implemented by
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sorting network is introduced. Compared with other sorting algorithms like bubble sort

that is performed on the whole candidates, the group sorting provides a lower complexity

with a minor BER performance decrease while taking the best advantage of the parallel

architecture of K-BEST MIMMO detection.

3.1 Improved Group Sorting Algorithm

In K-BEST MIMO detection, child nodes of K parent nodes are explored in every

layer and K child nodes with the minimal partial Euclidean distance are chosen to be

further explored in the next layer. In a 2Ω-constellation system, after the complex to real

tranformation the number of explored child nodes per parent node is n = |Λ|. The main

idea of group sorting is that it divides child nodes in each layer into groups, and instead of

being sorted in the whole layer by the traditional sorting process in the K-BEST algorithm,

the child nodes are only sorted inside group. If the nodes are split into m groups then

nK/m child nodes with the smallest partial Euclidean distances in each group are selected

for the searching process in the next layer. The total computational complexity per layer

becomes O(m× (nK/m)2) if bubble sort is obtained in each group. Notice that m should

be chosen carefully so that the number of nodes in each group, K/m, is an integer.

The architecture of group sorting in each layer is shown in Figure 3.1. The metrics

in Equation (2.7) is obtained through the expanding unit (EU). After being epanded the

candidates are split through the division module. Then a group of sorting modules execute

the sorting process inside each group and choose best ones as their outputs.

Although group sorting is advantageous for its highly parallel architecture, its BER

performance decreases compared with sorting nodes in the whole layer since sorting process

inside group makes their outputs not globally optimal. Consider the example in Figure 3.2.

In this example K = 2 and n = 2, while the number inside each node denotes its partial

Euclidean distance. The candidate nodes are divided into 2 groups and each parent nodes

generates 2 child candidates. In Figure 3.2a a skew happens in the second layer, meaning

that a candidate with good child nodes is discarded during the group sorting. In this

example, an erroneous node with partial Euclidean distance 7 in the second group survives
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Figure 3.1: Group sorting structure

instead of the nodes with partial Euclidean distance 6 in the first group. In a complex

MIMO system with a large number of antennae, this error could be accumulated during

multiple stages of layered detection. However, this erroneous behavior would not occur if

the distribution is even, which is shown in Figure 3.2b.

With the preprocessing part mentioned in Chapter 2, it is noticed that a parent node

with small partial Euclidean distance has a large possibility to generate child nodes with

small Euclidean distance [12]. If parent nodes with larger partial Euclidean distances are

divided into different groups, the possibility of skew happening in group sorting could be

reduced, compared with the original group sorting without distributing the parent nodes.

To implement this modified group sorting the outpus of original group are interleaved to

distribut those nodes with larger partial Euclidean distances into different groups, and

then another group sorting is performed again. Although there are a large number of

reports about the interleaving patterns, a direct approach is obtained in this part that can

lead to an efficient interleaving and comparing results. This pattern is first introduced in
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Figure 3.2: Skewed group sorting
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Figure 3.4: Interleaving process in sorting 16 candidates

[12]. Let G denotes the number of groups, l denotes the number of candidates in each

group. For the general cases, if l ≥ G, the sorted nodes in the w-th group are rotated by

w+((G−(wl)%G)%G), and the i-th node in the w-th group is assigned to the ((i+wl)%G)-

th group, where % and / represent the modulo operation and integer division, respectively.

Figure 3.4 is an example of interleaved sorting process performed in a list of 16 candidates

divided into 4 groups. Figure 3.3 shows the results of the simulation performed in a 4× 4

MIMO communication system with 16-QAM modulation. In this simulation 8 groups with

K = 16 is obtained.

3.2 Parallel Sorting Network Architecture

As discussed at the beginning of this chapter, the computational complexity of sorting

K candidates is O(K2) with bubble sorting algorithm. Although the group sorting with
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interleaving dramatically decreases the computational time since the sorting process in each

group can be executed in parallel, it still limits the efficiency of the whole system because

the sequential property of bubble sorting. Although many different sorting algorithms are

developed in computer science and mathematics, most of them only focuses on computa-

tional complexity and could not match the requirement of hardware implementation. In

hardware design the property of parallel and pipelined architecture is as important as the

computational complexity.

3.2.1 SE Enumeration

An important characteristic of child nodes enumerating process with the algorithm

adopted by [20] is that the partial Euclidean distances of the child nodes are naturally

ordered, because of the applying of Schnorr-Euchner (SE) searching strategy in the enu-

meration process. The principle of SE strategy is discribed in [16]. In Chapter 2 the steps

of K-BEST sphere detection are introduced. For each parent node the enumeration process

examines the child nodes in the constellation system and the major ideal for enumeration

process in Chapter 2 is examining each nodes of the constellation from the bottom to the

upper bound. Although the original enumeration is easy in implementation by software, it

is not efficient enough. The SE algorithm is designed to enumerate those nodes in a differ-

ent method. It is able to enumerate the candidate symbols in an ascending order according

to their Euclidean distance from the Babai point. The enumerating details of step 3 in

Algorithm 2.2 is shwon in Algorithm 3.1.

Figure 3.5 shows the scheme of SE enumeration performed in a 16-QAM modulation

MIMO communication system. After the complex to real tranformation, candidate symbols

are chosen from ∗ = {−3,−1, 1, 3}, which are enumerated in different orders decided by the

position of the Babai point in that layer. Although the pseudo code description is complex,

for hardware implementation the SE enumeration can be simplified using a specific method-

a look up table (LUT) . Gaining the Babai point information, the LUT would generate the

child nodes in a decreasing order from their partial Euclidean distances. Then the expanding

unit (EU) generates relevant metric for each nodes.

Recall Equation (2.7). It is obvious that the additive squared partial Euclidean distance
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Algorithm 3.1 SE enumeration algorithm
3.a: Find the Babai point of layer k: Bk = y(s2 D+1)D/rD,D, set i = 1;

3.b: Round the Babai point to the nearest constellation point: ski = dBkc;

3.c: If ski ≥ Bk goto 3.f

3.d: If i = |Λ|terminate the enumeration. Else i = i+ 1, ski = sk(i−1) + (i+ 1)step.

3.e: If ski < UB then i = i− 1

3.f: If i = |Λ|terminate the enumeration. Else i = i+ 1, ski = sk(i−1) − (i− 1)step.

3.g: If ski < LB then i = i− 1

3.h: Goto 3.g.

in each layer is decided by d2(y(sD+1)D, rD,DsD), D = 1, 2, . . . .2MT . The SE enumeration

is applied to enumerate the child nodes in a decreasing order from their partial Euclidean

distance. This equals to picking up the child nodes according to their distances among the

possible constellation nodes and the received node, which is sD = y(s2MT
D+1)D/rD,D, D =

1, 2, . . . .2MT . Exploring such an enumeration process in an infinite integer set can also

uses the SE enumeration but the efficiency is poor because a large size of table is required

to include all the possible information. Since the candidate nodes are all in a finite set

decided by the modulation constellation in MIMO, a small table is designed for the LUT

implementation of SE enumeration. In a 16-QAM modulation system the constellation is

Λ = {−3,−1, 1, 3}, and the best order will be the i-th row of the table Φ:

i = φ(s̄D) =


1 sD ≤ −2

8 sD ≥ 2

dsDe+ 3 otherwise

(3.1)

where d.e denotes rounding the value towards to the celling and
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Figure 3.5: SE enumeration

Φ =



−3 −1 1 3

−1 −3 1 3

−1 1 −3 3

1 −1 3 −3

1 3 −1 −3

3 1 −1 −3


(3.2)

3.2.2 Sorting Network Analysis

The traditional bubble sorting algorithm has a computational complexity of O((4K)2)

when performed in the whole candidate list with a length of 4×K. This sorting algorithm,

although is straight forward, is low efficient when is obtained in MIMO detection, consid-

ering the length of the candidate list, the number of layers in which the sorting process is

performed, and its sequential property in time domain. There are many different sorting

algorithms with dramatically low computational complexity compared with bubble sorting.

The basic element of the sorting network is the comparator. Two numbers, A and B

are received over the inputs of the comparator. If A ≤ B the outputs keep the same as
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Figure 3.6: Odd-even merge sort

the input, otherwise the comparator exchange positions of A and B and get the outputs.

Although sharing the same basic elements, the sorting network have different computational

complexity and depth-which is also the delay in hardware design . With the partially ordered

candidate list generated by the SE enumeration strategy, an odd-even merging networks is

presented in this section.

Merging means the process of aligning two ordered list of candidates into one ordered

sequence. Figure 3.6 shows a merge network in which the numbers of one ascending-

ordered candidates, a1, a2, a3, . . . , at are presented over t inputs simultaneously with an-

other ascending-ordered candidates b1, b2, b3, . . . , bt over another t inputs. The 2t outputs

of the merging network present the 2t candidates of the merged result in ascending order,

c1, c2, c3, . . . , c2t. This is a t by t merging network. A 1 by 1 merging network is simply one

comparator as the basic element. Larger networks are built by using this element iteratively

and row of comparators across the outputs of smaller merging networks.

An odd-even merging network is applied in the first stage of group sorting introduced

in Section 3.1 before the interleaving part, with partially ordered input candidates. A

t by t merging network can be build by presenting the inputs to two smaller merging
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Figure 3.7: 4× 4 odd-even merge sorting network
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networks. The odd-indexed numbers of the two input lists is transmitted to one small

merging networks, which is the odd merge, while presenting the even indexed number

to another small merging network, which is the even merge. Then the outputs of these

small merges are compared by a row of comparator across them. Both the even merging

network and the odd merging network have the ability of sorting t/2 inputs, and are also

obtained by smaller odd and even merging networks, which process t/4 inputs with rows

of comparators. Figure shows the structure of a 4 by 4 odd-even merging network. With

the partially ordered inputs the 4 by 4 odd even merging network contains 25 comparators

with a delay of 4 cycles.

After the interleaving process of group sorting, another sorting process is needed for

obtaining the final candidates on each layer. Since the candidates are not partially ordered,

a sorting network with more complexity, based on the 4 × 4 odd-even merging network, is

applied. The architecture of this sorting network is shown in Figure 3.8. For an 8-input

sorting network in each group the total cost is 28 comparators with a delay of 9 cycles. This

architecture takes 28 × 8 = 224 comparators with 9 cycles delay. In Figure 3.8 an 8-input

sorting network is added after the interleaving process. Since K = 16 candidates are chosen

in each layer, only first 4 candidates are needed in each group. The comparators which are

relevant to the last 4 outputs are not needed in each layer for the MIMO detection.

3.3 Conclusion

In this chapter the main bottleneck of sphere detection, the sorting process, is invest-

gated. To avoid the conflict between the detection performance and a limited K value of

the candidates number, the group sorting with interleaving is introduced. While keeping a

limited descent in BER performance it dramatically mitigates the delay and decreases com-

putational complexity, compared with the traditional sorting method which is performed

on the whole candidates. A highly efficient SE numeration method is also introduced using

the LUT. Compared with original Zig-Zag method with complex status, the LUT only need

to maintain a table whose complexity is decided by the chosen modulation system. Two

sorting network implementations are also applied before and after the interleaving process.
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2×2 odd-even merging 
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2×2 odd-even merging 
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4×4 odd-even 

merging sort element 

4×4 odd-even 

merging sort element 

Figure 3.8: 8 input sorting network behind the interleaver

With the help of SE enumeration the odd even merging network can dramatically decrease

the complexity and delay of sorting process.
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Chapter 4

Soft-Output MIMO Detection

A MIMO detector can make decisions on those detected uncoded information bits either

by nulling/ZF or ML detection algorithms. However, in most cases these detected bits are

coded by an outer encoder/interleaver component. Consider an MT Ω×1 dimensional binary

vector x = (x1, x2, . . . , xMT
)T in which xi = (xi1, xi2, . . . , xiΩ), which is obtained from a

large sequence. It could be a sequence of channel code with rate R ≤ 1 that introduces

redundancy and correlation among its data entries. The transmitted information contains

RMT Ω data bits. The MIMO model in Equation (1.1) is used iteratively to transmit a

continuous stream of data bits which are separated into blocks. For any given block x symbol

s is obtained by using a modulation function s = map(x). To decode the original sequence

optimally, the signal detection and channel decoding process should be operated jointly on

all data blocks because of the correlation information between these blocks introduced by an

outer encoder. With the soft information of all the blocks obtained by the signal detector,

the channel decoder should decode the information data through an iterative method.

4.1 Introduction to Soft Information

The channel code and MIMO channel can be regarded as a serially concatenated scheme,

with an outer channel encoder, bit interleaver and inner space-time constellation mapping.

Its result is then transmitted through channel matrix H. Figure 4.1 shows a standard

flowchart of an iterative MIMO detector with an outer encoder/decoder system. To decode
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Figure 4.1: Combined detection/decoding MIMO system

the binary data x optimally, the joint detector/decoder system should compute the like-

lihood value of each bit given all the received complex data y. An exchange/incorporate

scheme is adopted to solve this problem.

In Figure 4.1 the MIMO detector incorporate soft reliability information provided by

the channel decoder, and the channel decoder incorporate soft information provided by

the MIMO detector. Information between the detector and decoder is then exchanged in

an iterative fashion until desired performance is achieved. A soft-output MIMO detector

receives the channel observations y as well as a priori information La(x) by decoding the

inner coded bits, and then extrinsic information Le(x) is calculated for each of the coded

bits. After that through a deinterleaver a priori input La(x′) for the outer soft-in/soft-out

decoder is gained. The out decoder calculates the extrinsic information Le(x′) on the outer

coded bits and then Le(x′) is reinterleaved and fed back as a priori information La(x) to

the inner decoder, thus completing an iteration. After some iterations the outer decoder

makes decisions û about the information bits by a posteriori information L(u) [11].

Although the overall flow described in Figure 4.1 is generally accepted and standard,

the structures and process within each of these sub blocks determine BER performance,
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complexity and feasibility of the joint detection/decoding algorithm. Since the convolutional

code is used in this thesis, the outer encoder and decoder are also relatively standard. To

obtain soft information for outer decoder, the detection part should be modified, compared

with the detector introduced in Chapter 2, so that the destination of computationally

efficient, BER performance and the data throughput can be achieved.

4.1.1 APP Detection in MIMO system

In a iterative MIMO receiver, the MIMO detector needs to generate a posteriori proba-

bility (APP) about the inner coded bits x. Maximizing the APP for a given bit minimizes

the probability of making an error on it. The APP is usually expressed as a log-likelihood

ratio value (LLR), which provides a convenient notation for describing the operation of

iterative decoding algorithms. As shown in Figure 4.1 simple add/subtract operations are

sufficient to separate a priori from extrinsic information during the APP detection/decoding

cycle. Usually only extrinsic information is exchanged in processing cycles. A decision is

made from an LLR by using its sign to tell whether the bit is a ’1’ or ’0’ and the magnitude

of the LLR indicates the reliability of this decision. In this model MT Ω× 1 coded bits are

processed at one time and the LLR is defined as:

L(xi) = (L(xi1), L(xi2), . . . L(xiΩ)) (4.1)

L(xij) = ln
P (xij = +1)
P (xij = −1)

(4.2)

and notice that the logic 0 is expressed as amplitude level −1. Conditioned on the received

vector y, the LLR of bit xmn is defined in the following way:

L(xmn|y) = ln
P (xmn = +1|y)
P (xmn = −1|y)

(4.3)

Since the coded bits are interleaved before constellation mapper/modulation, bits in

x are statistically independent of one another. With standard manipulation according to



38

Bayes’ rule, this can be modified as:

L(xmn|y) = ln
p(y|xmn = +1) · P (xmn = +1)/p(y)
p(y|xmn = −1) · P (xmn = −1)/p(y)

(4.4)

= ln
P (xmn = +1)
P (xmn = −1)

+ ln
p(y|xmn = +1)
p(y|xmn = −1)

(4.5)

By definition the first term of Equation (4.5) represents the a priori LLR of bit xmn, and

the second term is the extrinsic LLR that can be modified by taking the expectation of

p(y|x) over Xmn,±1 = {x|xmn = ±1}, which means the set of MT × Ω bits vector x has

xmn = ±1, m = 1, 2, . . .MT and n = 1, 2, . . .Ω:

L(xmn|y) = La,mn + ln

∑
Xmn,+1

p(y|x) · P (x|xmn)∑
Xmn,−1

p(y|x) · P (x|xmn)
(4.6)

A standard simplification in the calculation of a posteriori LLR is the assumption that

ln
∑
aj ≈ max{lnaj} and then Equation (4.6) is further simplified as:

L(xmn|y) ≈ La,mn + max
Xmn,+1

{lnp(y|x)+lnP (x|xmn)}− max
Xmn,−1

{lnp(y|x)+lnP (x|xmn)} (4.7)

4.1.2 The Iterative LLR Decoding

With the definition of a priori LLR and the independence of the bits x,

P (x|xmn) =
∏

(ij)6=(mn)

P (xij) (4.8)

=
∏

(ij)6=(mn)

exp(xijLa(xij)/2)

exp(La(xij)
2 ) + exp(−La(xij)

2 )
(4.9)

and

lnP (x|xmn) =

∑
ij

lnP (xij)

− lnP (xmn), (4.10)

lnP (xij) =
1
2
xijLa(xij)− ln(exp(

1
2
La(xij)) + exp(−1

2
La(xij))) (4.11)

≈ 1
2
xijLa(xij)−

1
2
|La(xij)| (4.12)

= |La(xij)/2| (xijsign(La(xij))− 1) (4.13)

In [11] it is introduced that due to the matrix structure of the MIMO channel, interfer-

ence between the transmitted symbols is applied at the receiver, and the probability of a
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particular realization of the received vector, conditioned on the transmitted vector, is given

by a multi-dimensional Gaussian distribution

p(y|x) =
1

(πN0)MT
exp(− 1

N0
‖y −Hs‖2) (4.14)

lnp(y|x) = −MT

2
ln(πN0)− 1

N0
‖y −Hs‖2 (4.15)

Applying Equation (4.15) and Equation (4.10) to the extrinsic part of Equation (4.6),

the extrinsic LLR can be expressed as follows:

Le(xmn|y) = max
Xmn,+1

{Λ(x, y, L(x))} − max
Xmn,−1

{Λ(x, y, L(x))} (4.16)

Λ(x, y, L(x)) = − 1
N0
‖y −Hs‖2 +

∑
ij

lnP (xij) (4.17)

where lnP (xij) can be calculated from the a priori LLR La(xij).

4.2 Soft Information Generation Algorithms

The first term of Equation (4.17) can be implemented using the detection algorithms

introduced in Chapter 2 by searching all the possible points in the multi-dimensional lattice.

However to avoid exhaustive search, [9] proposed an algorithm to search in a limited set of

candidates, which is a subset of the whole lattice. A candidate list is generated once for

each block by the MIMO detector but the a priori LLR La and APP value L(xmn|y) has

to be updated in every iteration. In an uncoded MIMO detection system the detector in

Figure 4.1 actually is a candidate list generation block combined with a soft information

calculating block.

4.2.1 Candidate List with Distance Information Generating

In [11] the depth first searching strategy is applied to limit the searching list for Equation

(4.16). Inspired by this the breadth first searchig strategy is also able to be adopted in

obtaining a similar candidate list. Recall the modified K-BEST algorithm introduced in

Chapter 2. As a modification of original breadth first sphere detection, for each layer it

keeps K candidates which are expanded for the next layer. In the last layer, after the sorting
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Figure 4.2: MIMO iterative detection/decoding model

network K final candidates are kept, which means that the proposed detection algorithm

support both soft-output as well as hard-outputs. The K best candidates retained at the

last layer can be used as the candidates list, in which the candidate with the best total

Euclidean distance is the hard-output. Since the outer decoder makes decision based on

the LLR by using its sign to decide whether the bit is a ’1’ or ’0’ while the magnitude

of the LLR indicates the reliability of this decision, ML point is not a necessary part for

LLR calculation but only helps to increase BER performance. Consequently the modified

K-BEST algorithm only need a “small” expanded list to gain the LLR value for the outer

decoder. In other words a detector with the capability of generating a candidates list is

simply a soft MIMO detector.

Although [11] introduced an important soft information detection algorithm based on

the depth first searching strategy, compared with the breadth first searching strategy, the

iterative two-direction search process makes its data throughput unstable and so there are

many limitations on its application, like large IO buffers that maybe an extra overhead in the

real practical system. The proposed modified K-BEST detection, however, has advantages

in hardware implementations because of its one-direction searching strategy and parallel

property. Moreover, due to the layered single direction search process, the modified K-

BEST detection is able to be implemented in a pipelined architecture. Each pipeline stage

corresponds to one layer in the algorithm. The fixed high detection throughput, thus, is
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possible in this detection.

Although in each detection cycle the detector with the modified K-BEST algorithm is

able to generate a candidate list, the soft information calculating part, however, as implied

in Equation (4.16), requires a iterative decoder process. The a priori LLR La should be

updated iterativly in each iteration. Although the performance could be improved with

the growing of the number of iterations, the computational complexity is also significantly

increased compared with the case in which the second term of Equation (4.17) is ignored.

In this thesis only the first part of Equation (4.17) is taken into account. So the extrinsic

LLR is modified to:

Le(xmn|y) = max
Xmn,+1

{Λ(x, y, L(x))} − max
Xmn,−1

{Λ(x, y, L(x))}

≈ max
Xmn,+1

{− 1
N0
‖y −Hs‖2} − max

Xmn,−1

{− 1
N0
‖y −Hs‖2}

= min
Xmn,+1

{ 1
N0
‖y −Hs‖2} − min

Xmn,−1

{ 1
N0
‖y −Hs‖2} (4.18)

4.2.2 Computing LLR Value

In Equation (4.18), when the modified K-BEST detection is adopted, the possible can-

didate set, X, is replaced by the detected candidate list, L. Instead of searching all the

possible nodes in the solution domain, the search is limited inside the small candidate listed

in L. The LLR value calculating process, so, is to perform Equation (4.19) for each bit.

Le(xmn|y) = min
Lmn,+1

{ 1
N0
‖y −Hs‖2} − min

Lmn,−1

{ 1
N0
‖y −Hs‖2} (4.19)

After the detection process in the last layer, all the candidates are ordered from their

total Euclidean distance. Those candidates, which are represented by symbols in the con-

stellation, are mapped into binary bits. Notice that the binary 0 should be transformed

into −1, i.e. every MT Ω bits correspond to one distance and there are K groups of

these bits corresponding with K distance in an ascending order. So for Equation (4.19)

L = {L1, L2, . . . LK} and Li = (li11, l
i
12, . . . l

i
1Ω, . . . l

i
MT 1, l

i
MT 2, . . . l

i
MT Ω); m = 1, 2, . . .MT

and n = 1, 2, . . .Ω.
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For the first group of candidates no matter whether each bit of it is −1 or +1, this

group of bits satisfies either the first term or the second term of Equation (4.19) since all

bits in this group are corresponding the minimal Euclidean distance. The problem now, is

to find the minimal Euclidean distance in other groups with a bit having opposite value of

the bit at the corresponding position in the first group so that the other unknown term of

the Equation (4.19) could be matched.

Suppose the LLR of the k-th bit needs to be found with k = 1, 2, . . .MT Ω. In the first

group L1 the k-th bit a, a ∈ {1,−1}, is found as well as the minimal Euclidean distance

d1. From the 2nd to the K-th group each candidate’s k-th bit lik, i = 1, 2, . . .K is checked.

If lik = −a then the target one with smallest Euclidean distance di as well as an opposite

k-th bit value is obtained. As each bit is independent from others in every candidate the

checking process for the whole MT Ω bits can be executed at the same time.

4.3 Conclusion

In this chapter, the soft information decoding process is introduced and obtained with

the modified K-BEST detection. Combined with outer decoder, like Turbo decoder or

Viterbi decoder the performance of the MIMO communication system can be increased

dramatically. To obtain soft information the definition of log-likelihood value (LLR) is

introduced as well as the algorithm of LLR calculating process. With modification over K-

BEST detection the candidate list generation and LLR computing parts are added with the

detection module. Figure 4.3 shows the simulation results of a coded MIMO system which

generates both the soft and hard outputs. The group sorting algorithm decreasse BER

performance of MIMO detection but the soft-output with proper preprocessing helps to

decrease the difference between these two sorting strategies. As mentioned at the beginning

this system has a 4× 4 antenna array and 16-QAM modulation is adopted with a rate 1/2

convolutional code.
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Chapter 5

Modified MIMO Detector

Hardware Architecture

This chapter is focused on the hardware implementation and architecture design. Details

of implementation for each part based on the principles of the modified K-BEST MIMO

detection and soft information generation introduced before is represented. To make the

best use of the parallel property of proposed algorithm, different hardware implementation

techniques, including the finite state machine (FSM), look-up-table (LUT), etc.

5.1 Architecture Design

The whole modified K-BEST MIMO detection algorithm is built based on the QR de-

composition which transfers the complex channel matrix into upper triangle matrix. This

makes the received signals divisible into layers so that a trail tree searching model can be

applied in the detection as shown in Figure 2.1. Although many researchers proposed their

results in implementing the QR decomposition algorithm into hardware structure [15], it is

not necessarily required, since in the application the channel model is considered to keep

the same value for a long time, compared to the transmitted data that is changing at a

high rate, around Gbps. In this thesis the QR decomposition is supposed to be carried out

by a co-processor, which can use the mature algorithms implemented in C or other high
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Figure 5.1: The block diagram of MIMO detection system

level languages and then is complied into machine code and executed. Although compared

with the FPGA or ASIC the speed of the general processor is slow, there is still enough

time for it to solve the decomposition results and transmit them to the detector. The main

structure of the proposed modified K-BEST detection is shown in Figure 5.1.

In Figure 5.1 the complex to real tranformation is performed first on the channel matrix

and the received signals, according to Equation (1.3). Then the channel matrix is reordered

and the QR decomposition is obtained through the QR decomposition block. both of these

two processes are performed in the preprocessing part. This preprocessing is also performed

on an outer co-processor. The re-indexed block reorder the received signals y according to

the index information supplied by the reorder block. The detection/decoding block is the

kernel part of the implementation proposed by this thesis.
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5.2 Layer Detection Part

For a 4× 4 MIMO communication system with 16-QAM modulation, after the complex

to real tranformation, the detection process, as introduced in Equation (2.7), (2.8) and (2.9),

can be divided into 8 layers. At the beginning layer, Layer 8, as introduced in Figure 2.1,

4 different child nodes are expanded in an order from their partial Euclidean distances to

the Babai point of that layer by SE enumeration. The order information is gained through

the LUT structure.

The EU block, as shown in Figure 5.2, is designed to calculate the value of y(sD+1)

and the partial Euclidean distance, which are introduced in Equation (2.11), (2.12), and

(2.13), respectively. The partial Euclidean distance and y(sD+1) , according to the analysis

in Chapter 3, is a function of the selected points in all the layers before the current one. So

the examined candidate nodes information should be kept in each layer and transmitted to

next layer for the further use in the EU block.

In a MIMO detection system which obtains breadth first search strategy, in Layer D,

with K ≤ |Λ|D, the number of candidate nodes is larger than the required candidate list

length. Then a sorting unit is required to choose the K candidates with the best partial

Euclidean distance from all the |Λ| ×K possible child nodes. And as analyzed before, the

sorting unit should be able to transmit the candidate information as well as the partial

Euclidean distance value of each selected candidate to the next level.

The designed structure of the layer detection is shown in Figure 5.2. The LUT, as

introduced in Section 3.2.1, is designed for generating the child nodes with SE enumeration

algorithm and so that the their partial Euclidean distance is aligned in a descending order.

Equation (2.11) is implemented by multiple steps of substraction combined with an EU

block, whose inputs are the value of sD+1 and y(sD+2) from the LUT and buffer of last

layer, respectively. As the EU module takes multiple cycles to finish the expanding process,

a serial of buffers are obtained between each layer so that the detection process can work

with a fully pipelined structure.
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5.2.1 Matrix Elements Control

The modified K-BEST MIMO detection algorithm, as implied in Chapter 2, is decided by

two iteratively changed elements, the partial Euclidean distance and its parameter y(sD+1).

Given the input information of the decomposed channel matrix and the received signals,

the EU module is designed to generate the renewed partial Euclidean distance as well

as the parameter y(sD+1) for the sorting and expanding process of the next layer. The

structure of the EU module in Layer 8 is shown in Figure 5.3. According to Equation

2.13 d2
8 = d2(y8, r8,8s8). Since the candidates have 4 different possible results, the partial

Euclidean distances also have 4 different values. The outputs of LUT are a group of values

that are used for computing the partial Euclidean distance and are transmitted to the next

stage for generating the new y, so in the next layer 4 EU modules is required for the parallel

computing structure, as shown in Figure 5.4. As introduced by [17] there is a significant

simplification for computing the squared partial Euclidean distance, which use the absolute

value of the partial Euclidean distance instead of the squared value. This method decreases

the complexity a lot for saving the resources consumed by multiplier.

In Figure 5.3 the EU block is composed by 2 parts, the distance computing unit (DCU)

and the parameter computing unit (PCU). The inputs of the DCU block are y = QTy ,

R8, the 8th column of the upper triangle matrix, as well as the ordered candidate nodes
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candidate sD implementation object simplified implementation
-3 rDD × sD −(rDD + rDD � 1)
-1 rDD × sD −rDD

1 rDD × sD rDD

3 rDD × sD rDD + rDD � 1

Table 5.1: Multiplier implementation for 16-QAM modulation

generated through the LUT block. The function of DCU block is to calculate the increased

Euclidean distance. which is described in Equation (2.9) for each layer. Since for the 8th

layer with MT = MR, there is no root distance, the increased Euclidean distance is also the

partial Euclidean distance. Equation (2.10) describes the details of the calculating process,

performed by multiplication and subtraction. Since for a specific modulation system the

candidate is chosen from a fixed set, i.e. in 16-QAM modulation the possible candidates

after complex to real tranformation it is Λ = {−3,−1, 1, 3}, multiplication can be replaced

by a carefully designed shift-accumulate process. The multiplication in the proposed 16-

QAM system is implemented as follows:

The PCU module, which implements the operation of Equation (2.11), is designed to

compute the new y(s8) that is used in the next Layer. The same way of simplified imple-

mentation is also obtained in the PCU module as in DCU. To make the PCU and DCU

work in a pipelined structure, the outputs required in detection of the next layer should be

buffered.

For Layer 7, as it accepts the expanded information from Layer 8, to make the structure

fully parallel, for each possible expanded trail a DCU and PCU module is designed. It

makes the complexity of the detection in Layer 7 become 4 times of that in Layer 8, as

implied in Figure 5.4. Another additional part is the accumulation of the partial Euclidean

distance.

After Layer 7, with the number of expanded nodes reaching the designed width K, a

sorting module is added to sort the candidates according to their partial Euclidean distances.

Every candidate involved in the sorting actually contains 3 parts: the expanded node, the

partial Euclidean distance and the parameters generated with it which would be used for

the further expanding in next layer. The sorting process should change all these three parts
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Figure 5.4: EU structure in Layer 7

at the same time to the corresponding positions in each of their new sequence.

5.2.2 Candidates Sorting and Selection

As introduced in Chapter 3, sorting process is the main bottleneck of the modified

K-BEST MIMO detection. Figure 5.2 shows that in those layers where the number of

candidates is larger than the designed width K, a sorting network is attached to choose

the candidates that could match partial Euclidean distance requirement and be further

expanded for next layer. Although the original ideal of sorting process is sorting all the

expanded candidates globally, in Chapter 3 a group sorting algorithm is obtained to decrease

the time consuming. Although this sorting algorithm decreases the BER performance as well

compared with the system which obtain a full sorting algorithm, it dramatically increases

the data throughput.

With K = 16 after Layer 8 and Layer 7 the sorting process is implemented. The group

sorting algorithm divides the child nodes into different groups. As introduced in Section

3.2.1, the SE enumeration process, which is implemented by the LUT in Figure 5.3, 5.4 and

5.5, generates the child nodes for each of the parent nodes with a descending order from

their partial Euclidean distance. In this design the length of the candidate list is K = 16.

In layers where the detection has K parent nodes, |Λ| ×K = 64 child nodes are expanded,

and using the group sorting theory they are divided into 8 groups. Within each group the
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Figure 5.6: Pipelined merge sorting before interleaving
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Figure 5.7: Pipelined sorting structure before interleaving

candidatesA1, A2, A3, A4 and B1, B2, B3, B4 are child nodes which are generated using SE

enumeration by LUT. The sorting unit in the detection is composed by 3 parts: the odd-even

merge sorting structure before interleaving, the interleaver and the sorting network after

interleaving, as shown in Figure 5.6 and 5.7. The odd-even merge sorting, with a pipelined

architecture, finishes the sorting process from two groups of sorted candidates as inputs

and generates one group of sorted candidates as outputs in 3 clock cycles. The interleaving

part, in hardware design, is composed by wires connecting the two sorting networks so there

is no hardware resource consuming in this part. The sorting network after interleaving is

modified from the odd-even sorting structure, since after interleaving the candidates in each

group are all mixed up without any orders. Three stages are added to the odd-even merge

sorting structure and the total sorting part consumes 3 + 9 clock cycles in one layer.

An additional sorting network is required in the last layer after the normal sorting. After

the normal sorting process which is the same as the one executed in the layers before it,

a candidate list is generated, which is the L in Equation (4.19). For generating the hard-

output, candidate in L with the smallest total Euclidean distance, and also for generating

the soft-output (LLR) which is implemented according to Equation (4.19), a fully sorted

candidate list is required. Since after the group sorting 2 ordered candidates are gained
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Figure 5.8: Pipelined sorting network for candidate list generation

inside each group, the additional sorting network is more complex than the 4× 4 odd-even

merge sorting network. Many computer science researchers have proposed relevant results

and a pipelined sorting network is implemented in this thesis. The final sorting process

requires 9 clock cycles to finish the whole sorting algorithm, as shown in Figure 5.8

After the additional sorting network in the final stage all the candidates in the list

are in a descending order from their total Euclidean distance. The first one with the

smallest distance is used as the hard input for outer decoder, or the final output in an

uncoded system. However the LLR value is required for a soft-in soft-out decoder after the

detection. The details of implementing LLR calculating algorithm as shown in Section 4.2,

is introduced in the next section.
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5.3 LLR Calculation Block

The research proposed in [8] shows that the extrinsic probability, which can be expressed

in LLR value, as shown in Equation (4.19), is the most important soft input information for

outer decoder. After the MIMO detection process, a candidate list is generated, as shown

in Figure 5.1. In this section the LLR calculation proposed in Section 4.2 is implemented.

In Section 4.2, the candidate list generated by the MIMO detector contains 2 parts

of information: 16 candidates in binary, each of which has 16 bits, and 16 candidates’

Euclidean distances. After passing the sorting network proposed in Figure 5.8, all those

candidates are sorted. According to the LLR value of the extrinsic probability expressed

in Equation (4.19), the implementation is complex because the 2 candidates, each of which

has a value of 0 and 1, respectively, in the specific bit with the smallest Euclidean distance,

need to be obtained and totally 16 LLR values are required. This process can be obtained

by performing exhaustive search in the candidate list for every bit. However since the

candidates are all sorted the first candidate contains half of the information of those 16

LLR values expressed in Equation (4.19), either the ’1’ part-Lmn,+1-or the ’−1’ part (’0’

part)-Lmn,+1.

The LLR computing architecture is designed to find the rest half information of those

LLR values. Since the value of each bit of the sorted candidates can not be predicted,

to make the computing process parallel, 15 status finite state machine is applied in this

process:

The XOR and computing process is expressed in Figure 5.9. A pipelined structure is

applied to the LLR value computing module and the structure is shown in Figure 5.10. For

each clock cycle the detector generates the candidate list and transmits it to one block of

the structure. After 15 clock cycle the first LLR block finishes the computing process and a

LLR value for the first 16 bits is gained, while a new group of candidate list is transmitted

into that block and new cycle begins.
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Algorithm 5.1 LLR value computing process
Input: 16 candidates cand[0] ∼ cand[15] and 16 Euclidean distance d[0] ∼ d[15], SNR.

STATE 0. XOR each bit of cand[1] and the respective bit of cand[0]. If the result is 1 and

the LLR of that bit is not set then set the LLR value according to the Equation 4.19, goto

next state. Else goto next set directly.

... ...

STATE n. XOR each bit of cand[n+ 1] and the respective bit of cand[0]. If the result is 1

and the LLR of that bit is not set then set the LLR value according to the Equation 4.19,

goto next state. Else goto next set directly.

... ...

STATE 14. XOR each bit of cand[15] and the respective bit of cand[0]. If the result is 1

and the LLR of that bit is not set then set the LLR value according to the Equation 4.19,

goto next state. Else set a fixed value to the LLR of that bit according to the respective

bit of cand[0].

x_0_0

x_1_0

x_14_0

1 2

1 2 15

15

1 2 15

x_0_1 

x_1_0

x_14_0

x_0_15 

x_1_15 

x_14_15

Figure 5.10: Pipelined LLR structure
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5.4 Resource and Delay Analysis

The 4 × 4 MIMO detection process with 16-QAM modulation is divided into 8 layers.

The channel matrix H changes much slower, compared with the speed of the transmitted

data. That means the QR decomposition, as well as the related parameters like r−1
DD and

the SNR for the LLR computing part, could be processed by an outer processor. With a

specific modulation all the parameters involved in the multiplication and division are fixed

and so those operation could be designed and implemented to be finished in one clock cycle

by shifting and accumulation.

With K = 16 after Layer 8 and Layer 7 the sorting process is required. For Layer 8

and Layer 7, parallel structures are designed for EU and LUT, as introduced in Section

5.2. The LUT, as well as its input which is involved with a multiplication, takes one clock

cycle, and the EU, which contains the DCU and PCU takes two clock cycles to get the

final result. So 3 clock cycles are needed for each layer of Layer 8 and Layer 7. After

that a sorting process is added. As introduced in Section 5.2.2 3 + 6 = 9 clock cycles are

needed for the interleaving-sorting process, which leads 9 + 3 = 12 clock cycles for every

layer from Layer 6 to Layer 2. In Layer 1 since the hard-output as well as the input for

soft information computing part is implemented, an additional sorting process is designed

to make its output fully sorted from the Euclidean distances. As shown in Figure 5.8, 9

clock cycles are needed for this additional sorting. For the LLR computing unit 15 clock

cycles are required to compute LLR values. In conclusion, the proposed structure uses

3×2 + (3 + 3 + 6)×5 + (3 + 3 + 6 + 9) + 15 = 102 clock cycles to obtain the soft information

of 16 bits data. Although the delay is long, with the pipelined structure introduced in

this chapter the proposed MIMO detection system is able to generate the hard-output and

soft-output continuously.

The whole system is implemented into Xilinx 6 FPGA. Table 5.2 shows the hardware re-

source usage of the implementation result. The directly implementation that use distributed

registers and large amount of buffers makes the hardware consuming large. A modification

that use the embedded memory block should be able to minimize the hardware resources.

The detection and soft information generation system implemented into Xilinx 6 is able
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Number of Slice Registers 178245
Number of Slice LUTs 225566
Number of fully used LUT-FF pairs 136120
Number of bonded IOs 747
Number of BUFG/BUFGCTRLs 2

Table 5.2: Implementation result on Xilinx Virtex6 FPGA

to run at a frequency of 230.132 MHz. Since after the initial delay introduced before the

detection results are generated continuously, the data throughput of the designed system

can achieve at 3.7 Gbps. It is the fastest MIMO detection so far as the thesis is composed

due to its highly parallel and pipelined architecture.

5.5 Conclusion

In this chapter the detailed hardware structure of the proposed MIMO detection algo-

rithm that can generate both the hard-output and soft-output for outer decoder is intro-

duced. The parallel architecture, like the parallel sorting network and expanding/computing

process with a pipelined design consumes a large amount of hardware resources. However a

high data throughput, around 3.7 Gbps, is also achieved. This makes the proposed MIMO

detection system the fastest one so far as the thesis is composed.
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Chapter 6

Conclusions and Future work

This thesis introduced a MIMO detection method which is able to generate both the

hard and soft-output at a data throughput of 3.7 Gbps, which is the fastest MIMO detection

implementation so far as the thesis is composed. This method is modified from a parallel

MIMO detection method which obtains the breadth first search as its principle searching

strategy. Based on this strategy, a parallel group sorting structure is introduced with

interleaving which decreases the possibility of a skew process that might happen inside each

group and also minimizes the decrease of the BER performance of this system.

In this design a preprocessing stage is performed every time the channel and the noise

level changes. This preprocess is designed to be performed by an outer processor, which has

a lower speed compared with the specific designed parallel detection part. However since

the data throughput is relatively higher than the frequency of the channel and noise level

changing, the outer processor should still be able to cooperate with the detection process

properly.

6.1 Future Work

So far only convolutional code is tested with the proposed detection system. The soft-

output is generated in a detection without any iterative process. However, with a priori

probability information, iteratively detection can also be achieved. In the future some other

channel code with different outer decoder, like Turbo code decoder and LDPC decoder
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can be integrated into the detection system. The soft information can be generated by an

iterative detection process combined with the decoder to achieve a better BER performance.

Another future modification is about the hardware resources. With the pipelined struc-

ture the distributed buffers make the detection system complex and occupied a large area.

Since the frequency of the detection is around 200Mhz an integrated memory block should

be able to handle all the datas stored in the buffers. Much more future work should be fin-

ished in the hardware implementation stage to optimize the chip area and energy consuming

of the detection system.
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