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Abstract

The diffusion coefficient matrix provides a direct relation between flux and concentration

gradient for almost all of the diffusion process. It is the essential quantity of predicting

the behaviors of the diffusion process. This report focuses on the ternary diffusion, which

is one of the most common diffusion processes in industry. The major approaches in this

report for solving the diffusion coefficients are based on the finite different method, Hermite

least square fitting, and the transfer matrix method. The data is provided in terms of

concentration values at a time when the diffusion couples close to their equilibrium state.

First, functions are generated for flux, concentration, and the derivative of concentration with

respect to position. From there, the assumption that the diffusion coefficient is a constant

in the small region was made. Based on this assumption, a system of equations was derived

to calculate the diagonlized diffusion coefficient matrix. As for the element that contains

an interface, special methods were introduced to overcome the discontinuity from the jump

condition.
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1 Introduction

The analytical solutions obtained from directly analyzing Fick’s equations can only be ob-

tained by making non-general assumptions for the diffusion systems and therefore, can pro-

vide limited useful results. The alternative of a numerical approach will be considered in

this report. The main goal of this report is to obtain the diffusion coefficients matrix for

the entire diffusion domain. In general, the diffusion coefficients are functions of position

and time. However, Diffusion coefficients are passive quantities which can be determined

only when the concentration gradient and flux value have been obtained. These is no theory

to tell what form these functions would be in. Therefore, it would not make any sense if

we define a form of function for the diffusion coefficient at the very beginning. However, in

order to make some progress, we note that the diffusion coefficients cannot remain the same

all the time. A better approach is to restrict the diffusion coefficient matrix to be a constant

in small regions and reassemble them later. Details of the meaning of the small region are

introduced in Sec.2.

This project uses data from experimental measurements. The data provides values of

the concentration at selected points. Therefore, some information is not obvious as the

concentration profile is not continuous. Therefore, the first challenge of this report is to

extract more information from a given data set. Sec.3 introduces a process of generate

concentration functions from the the set of discrete concentration values by applying the

Hermite least square fitting. A nice property is given by the hermite least square fitting: the

values of the concentration profile and the concentration gradient at shared boundary points

are same for both the interpolation functions in two adjacent elements. Then the continuity

condition is guaranteed. Once the concentration function is approximated, the concentration

gradient with respect to position is trivial to obtain. From there, the flux function can be

derived from the continuity equation. All the necessary data can then be calculated from

these three functions over the entire domain.

However, since the governing equation of the diffusion process, Fick’s law, is a coupled
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system. For a diffusion process which has more than two diffusion components, the flux and

the concentration will be coupled. For ternary diffusion, the diffusion coefficients can be re-

duced to four components for Fick’s equations. However, there are only two equations which

are stated from governing equations. Therefore, the information of flux and concentration

could not directly give the value for diffusion coefficients. If the Fick’s equation could be

decoupled, then the value of flux and concentration should be enough to solve for the diffu-

sion coefficients. The transfer matrix method is introduced in Sec.4 to decouple the Fick’s

equation. The diffusion coefficient matrix is assumed to be diagonalizable. The transfer

matrix method expresses the value of flux and concentration in the space formed by the

eigenvector of the diffusion coefficients matrix. In this space, the components of flux are no

longer coupled with the components of concentration. Therefore, the relation between the

flux and concentration is now in terms of the eigenvalues and eigenvectors of the diffusion

coefficient matrix. the result of the value of diffusion coefficient matrix for each element is

given in Sec. 5.

Another important phenomenon in the multiphase diffusion process is the dramatic

change of the concentration value at the interface. The interface is the boundary of two

sides dominated by different components. The location of the interface can be detected by

putting an inert marker material in and observing the position of the inert material. Due to

the jump condition, the slope of the concentration profile is too steep to be described by the

normal interpolation functions. Sec. 6 discusses the jump condition and provides alternative

methods to obtain information of elements at an interface. The first method is to connect

the two boundary points of that element by a desired function which satisfies the condition

discussed in Sec.6. This method is applicable when the size of the element is small. If the

element has a moderate size, then the information provided by the measured points in that

element will be omitted. The other method is to use special base functions to approximate

the concentration profile. Both of the method can be used to further divide the region close

to the interface.
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When the diffusion coefficients have been determined for all the elements, we should take

a look at how this quantity changes over the diffusion domain. Sec.7 provides figures to

discuss the trend of the diffusion coefficients. This is also related to the future effort which

is to include the contribution from the dimension of time.

2 Dividing the Diffusion Zone

For one experiment, a large amount of observations are essential to provide information close

to the continuous assumption of physical variables. Typically for numerical analysis, it is

ideal to keep the number of points in a manageable range. Several well-known methods are

based on this idea, such as the finite volume method and the finite element method which

will be used in this report. The first step of the finite element method is to divide the domain

of interest to small sub-domains. As the number of sub-domains can be chosen properly,

the number of observations in one sub-domain will consequently be sufficient to do a local

analysis.

This section introduces briefly two alternate methods of dividing the whole diffusion zone.

Since the idea and the methodology are not hard to apply for higher dimension, the diffusion

is assumed to process only in one direction to simplify the calculation.

Before dividing the whole diffusion zone to small elements, two more assumptions should

be considered. First, the diffusion coefficients are constant inside each element. For elements

whose concentration profile does not change dramatically, this assumption makes sense as

long as the size of the element is small. For elements which contain an interface, a finer

mesh should be applied to keep this assumption valid. The second assumption is that the

concentration profile and the concentration gradient are continuous across an element to its

adjacent element. This condition is not physically valid at interfaces as will be explained

in Sec ??. However, the assumption is true for any other position. If the continuity were

assumed, one can then set up a system of equations to interpolate or to approximate values
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for parameters.

As the above assumptions were made, one then need to make sure that each element

contains a manageable amount of points. The first consideration is to keep the number of

measurements same for every element. Another consideration is to choose the number of

elements beforehand and keep the size of each element the same. If the observations were

made equally spaced, these two dividing methods are equivalent to each other.

The major advantage of the first method is that the nodal values match the boundary

values of interpolation functions. On the other hand, the advantage of the second method is

the simplicity. Since it is not essential in our analysis to match the boundary value between

the interpolation function and the observed data, this report will choose to divide most of

the diffusion zone by equally spacing divisions.

3 Generating Functions From Data

For computational physics problems, it is common that not all the necessary information

can be directly obtained from experiments. There are two major types of missing informa-

tion that appear in the process of the diffusion coefficients’ calculation. First, the discrete

concentration profile data cannot provide the high accuracy derivative value at any arbitrary

position. The continuity condition of the gradient of concentration also cannot be satisfied.

Second, the amount of particles that flow across the area at boundaries of each element

are difficult to measure. Therefore, it is not easy to directly obtain the value of flux from

experiments. The main goal of this section is to introduce methods of extracting the flux

function and the concentration profile from given experiment data.

3.1 Non-dimensional Parameters

Equations which define the relations among physical variables should still be valid after

rescaling of the units. For analytical solutions, this is not a problem since the units of all
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variables are matched. However, when numerical approaches are applied for solving physics

problems, the units of physical quantities are not necessarily considered in interpolation

functions. Interpolation functions are usually used to give a continuous function to connect

or approximate data values. This is a purely mathematical process. Since the data values

may not remain the same after rescaling physical quantities, these interpolation functions

could no longer be valid.

To avoid the issue and make sure every quantity can be rescaled, one should nondimen-

sionlize each parameter before applying any numerical procedure. The idea of nodimen-

sionlization is to divide the unit of each parameter by a characteristic parameter which has

the same unit as the dividing parameter. The first step is to identify all the parameters in

the calculation procedure and then choose the proper characteristic parameter from given

values. Not all the parameters can find their characteristic parameter from the measured

values. One should start the nondimensionlization by dividing through by coefficients of

the highest order of derivatives or polynomial terms. Once all the parameters have been

nondimensionlized, one can then rewrite the governing equation for physics problems in a

new form of which has no SI units.

Let us proceed to the nondimensionlization process to the calculation of a diffusion prob-

lem. The following tables list all the parameters involved in the procedure of our calculation.

Table 1: Dimensional Parameters

Parameter Description Units

J the value of diffusion flux [amount of substance per area per time]
D the diffusion coefficient matrix [area per time]
C the concentration value [amount of substance per volume]
x the distance of reference points [Length]
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Table 2: Characteristic Scales for the variables.

Scale Description Units

L the total length of diffusion zone [Length]
t the total experiment time [time]
A the area of cross section [area]
V the molar volume [volume per mole]
N the Avogadro constant [amount of substance per mole]

The nondimensionlized zero order derivative quantities are

x̂ =
x

L
, Ĉi =

Vi

N
· Ci;

D̂ij =
t

A
·Dij, Ĵi =

At

N
· Ji

Here, the subscripts i and j denotes the corresponding component of the quantity. For the

first order derivatives,

∂Ci

∂x
=

∂Ci

∂Ĉi

· ∂Ĉi

∂x̂
· ∂x̂
∂x

=
N

ViL

∂Ĉi

∂x̂

Therefore, Fick’s equation becomes

Ĵi =
N

At
· t

A
· N

ViL
·
∑

j

D̂ij

∂Ĉi

∂x̂
=

N2

A2ViL
·
∑

j

D̂ij

∂Ĉi

∂x̂
(1)

This procedure should be applied for the equations before interpolating data values.

3.2 Least Square Fitting for Concentration Profile

Least square fitting is a widely used method of finding an approximated function f based on

the condition that the summation of squared error between f and the true value of all node

is minimized. Since the experiments provide discrete values, the condition is to minimize

χ2 =
∑

i

(

fxi − fxi
e

σi

)2

. (2)
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Here, fe is the experimental value, the superscripts refer to the position of these value, and

σi is the corresponding weight for each xi.

It is clear that the value of χ2 would be zero for a large group of function f . However,

the function f has to provide information and satisfy physics conditions. Therefore, the form

of the function f is normally prescribed by using shape functions. As its name describes, the

shape function is chosen to have a desired shape. The major usage of the least square fitting

in this report is to extract the concentration gradient from given concentration value. One

can of course use the polynomial functions as the shape functions, that is, f =
∑

αix
i. Eq.2

then becomes the problem of solving for the parameters αi. In the space αi, the extreme value

of χ2 will occur at the point such that all derivatives of χ2 with respect to each parameter

equal to zero. For most of cases the extreme value is the minimum value since such functions

consists of polynomial base functions that have no upper bound. The process of solving the

system of equations from taking derivatives can be naturally processed by using the matrix

representation. As the example of using the polynomial based functions, the parameters can

be found by the following equation

A
T ·A ·α = A

T
b. (3)

Here, the superscript T denotes the transpose of the corresponding matrix, A is the matrix

containing all the values of the base function with its corresponding weight at each point:

Aij =
xj

i

σj

b is the list which contains all the experimental data value at each point with its weight:

bT i =
fe

σi

,

and matrix α is the list of all the parameters αi.
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In order to match the shape of the distribution of a large amount of data values, the

order of the polynomial can become very high and therefore cause the over fitting problem.

To avoiding this issue, one can apply the method discussed in Sec.2 which is to split the

whole region first. In each element, the number of nodal points is easy to handle. One can

then find a proper fitting function for fi in each region and the global fitting function can

be made from the summation of all the local fitting functions. However, the function value

of a shared nodal point is not necessarily the same for two adjacent elements by polynomial

interpolation. It is not acceptable since it not only violates the physics requirement, but also

make the calculation process not performable.

The method this report used to solve this issue is to use Hermite interpolation. Hermite

interpolation functions also provide another nice property which is the continuity of the first

derivative of the function. If the first derivative values were known for every nodal points,

the general Hermite interpolation of the function is given as

fe(x) =
∑

i

fe(xi)Ni(x) + fe
′(xi)Ni(x).

Here, Ni and Ni are shape functions for hermite interpolation. Similar to polynomial func-

tions, the Hermite interpolation function can be applied locally. If the process were per-

formed globally, the shape functions of hermite interpolation has to be found from element

to element. An alternative method is to transfer the interval of each element to a consistent

region. If the form of the shape function were not differ for elements, then the shape function

will maintain the same in terms of the transferred variable. Suppose the position variable

is transferred to the interval from −1 to 1 and denote the new variable as ξ. Then to make

sure the continuity conditions at boundary nodes, for each region the following properties

are desired:

• Ni(ξj) = δij ;
d
dξ
Ni(ξj) = 0;

• Ni(ξj) = 0; d
dξ
Ni(ξj) = δij .
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Where ξi are the nodal points of each element. For one dimensional case, there will have two

nodal points for each element. It is easy to check that the nodal values and the nodal deriva-

tive values are consistence across each region and therefore continuous. For one dimensional

case, the four conditions of the shape function are sufficient to determine any kind of shape

functions which contain four undetermined coefficients, such as the third order polynomials.

Once the shape function is calculated, the fitting function in each element becomes

fi(x) =
∑

i

[

f(xi)Ni(ξ) +

(

df(xi)

dx

)

dx

dξ
Ni(ξ)

]

.

An important fact is that the coefficients f(xi) and
(

df(xi)
dx

)

are not equivalent to the true

value at xi, they are determined by minimizing the error χ2 =
∑

i (fi − fei) as the weight of

all the points is assumed to be one. The positions of measured points are substituted into

the shape function to form a system of equations which can be represented in the matrix

form. As a concrete example, if there were five points in, say xi, i = 1..5, in element j. the

matrix Aj is then

Aj =

























N1(x1) N1(x1) N2(x1) N2(x1)

N1(x2) N2(x2) N2(x2) N2(x2)

N1(x3) N3(x3) N2(x3) N2(x3)

N1(x4) N1(x4) N2(x4) N2(x4)

N1(x5) N1(x5) N2(x5) N2(x5)

























.

The corresponding αj vector is

α
T
j =

[

f(x1),
df(x1)

dx
, f(x5),

df(x5)

dx
)

]

.

Where x1 and x5 are boundary positions of the jth element. Denote b
T
j as the vector which

consists all the experiment data values and αj to be the parameters of each shape function.
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Then in element j, the error from the least square fitting function is

χj
2 = (bj −Aj ·αj)

T · (bj −Aj ·αj) (4)

Equation 4 can be easily extended globally. Let α be the vector consists all the undetermined

nodal values and their derivative values, b be the vector consists all the values of measured

points. By carefully rewrite the system of equations in the matrix form, one can then

generate a global matrix A. For one dimensional, the matrix A is a block-diagonal matrix.

Each block is the matrix Aj as defined above. Geometrically the problem is still to find the

smallest χ2, which is same as to find the projection of A · α on b, then one can solve the

parameter vector α from Eq.3.

3.2.1 Concentration Profile and Flux

The first step of this project is to generate the concentration profile from the given experi-

mental data. Typically, in the process of diffusion, concentration of components is a function

of position and time. The data from experiments are usually measured when the diffusion

components are very close to their equilibrium state. Therefore, the time variable in those

data can be treated as a constant.

In our analysis, governing equations require to know the first derivative values. As the

measured concentration values are discrete, the desired information could not be provided.

Thus, the Hermite least square fitting is considered to be applied on these measured data

values. The process of applying the Hermite least square fitting is given in the previous

section. The obtained functions are given in Fig.1 and Fig. 2
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Figure 1: Concentration profile
Number of Element = 10

0 400 800 1200

X

0.2

0.4

0.6
Y

0

This plot compares the concentration value from the Hermite least square fitting and the
data. The blue line represents the approximated function based on a 10 elements partition

and the red line is the experimental values.
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Figure 2: Concentration profile
Number of Element = 30

0 400 800 1200

X

0

0.2

0.4

0.6
Y

This plot compares the concentration value from the Hermite least square fitting and the
data. The blue line represents the approximated function based on a 30 elements partition

and the red line is the experimental values.

The total number of measured points for the above calculations is 281. Fig.1 divides the

diffusion domain to 10 sub-domain and Fig.1 has 30 sub-domains. For both figures above,

the red line is made from connecting data values directly and the blue line represents the

function obtained concentration profile by applying Hermite least square fitting.

Once the concentration profile is connected as a smooth function, the concentration

value and its derivative can be directly calculated from the fitting function and will be

known everywhere over the whole diffusion zone. The following figures gives the function of

concentration gradient
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Figure 3: Concentration gradient
Number of Element = 10
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This figure gives the concentration gradient function based on a 10 elements partition.
Since we used the first order Hermite interpolation functions, the concentration gradient

function is not a smooth function.
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Figure 4: Concentration gradient
Number of Element = 30
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This figure gives the concentration gradient function based on a 30 elements partition.
These unnecessary ossifications implies that the second order Hermite interpolation is

desired.

Figure 3 and 4 are obtained by directly taking the derivative of the approximated con-

centration profile. The overall tendency of both plots agree with the assumed answer which

is provided in next section. Although the nodal values are close between two plots, the con-

centration gradient in Fig. 4 experiences unnecessary oscillation. Roughly, when the number

of element is 30, the number of data points in each element is 8, which is small enough to

cause over-fitting.

The value of flux is another essential quantity in the procedure of deriving the diffu-

sion coefficients. However, it is not easy to measure the flux directly from the experiment.

Fortunately, if the condition of constant interface velocity were assumed, the flux and the

concentration have an inner uncoupled connection from the conservation of mass law. At a
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given time t , the Matano-plane analysis gives the relation

∂J

∂x
= −x− x0

2t

∂C

∂x
. (5)

Here, J is the flux, C is the concentration profile, and x0 is the position of Matano-plan.

Since the exact formula for concentration profile is approximated by the fitting function

f , the right hand side of Eq.5 is known function of position. Integrating both side of the

equation, the function of J is then given as

J =
1

2t

∫

Fdx+ J0. (6)

Where F = (x − x0)
∂f

∂x
and J0 is the boundary flux value which is a constant. At a given

time, if the initial conditions of the diffusion process were given, then the boundary flux

value can be calculated element by element. The approximated flux functions are given in

following figures.
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Figure 5: Flux v.s. Position
Time = 100000

Matano-Plane: X = 710

0 400 800 1200
X

N 30

N 10

Flux

-2
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1.014

1.008

1.002

F
lu
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Figure 6: This plot compares two flux equations which are based on a 10 elements partition
and a 30 elements partition.

Figure 5 displays the flux as a function of position. The blue line is function from the

partition of 30 elements and the red line is the function from the partition of 10 elements.

The initial condition for Fig. 5 is Ji = 0.01 for all i at x = 0. The initial condition usually

will only shift the function upwards or downward and have no contribution to the slope.

Notice in Eq.5, the position of Matano plane plays an important role. It does not only

shift the function, but also changes the shape and symmetry of the flux function as shown

in Fig.7.
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Figure 7: Flux function with different matano-plane position

0 400 800 1200

0 10

0 20

0 50

1

x ��
-�

F
lu

x

The Figure compares the flux function based on three different X0 value, which is the
position of the Matano plane. It is clear that a small Matano plane’s position can make a

big change of the flux function.

From Fig.7, it is clear that the flux function is very sensitive with respect to the change of

the position of Matano-plane. The Matano-plane’s position is determined from the integrated

concentration profile and it should be a constant. However, the concentration profile is

approximated by numerical methods. Hence the accuracy of the approximated flux equation

heavily depends on the accuracy of the concentration profile.

If the diffusion coefficients were constants, the concentration profile is a combination of

error functions for continuous regions. The shape functions introduced before were third

order polynomials which will make the fitting function be a third order polynomial as well.

For most of the elements from the diffusion domain, the shape of error function is similar to

the shape of the polynomial functions. Plots have also shown that the Hermite least fittings
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have high accuracy of approximating the concentration profiles.

Since the flux, concentration profile, and their first derivative with respect to position

are continuous functions, the velocity which is defined as the rate of flux change divides the

rate of the concentration change is also continuous except at where the concentration is at

equilibrium. The continuity of velocity is important as it satisfies the physical requirement

and guarantees the continuity equations to be applicable.

3.2.2 Elements Containing an Interface

Experiments show that the value of concentration profile for each component differs a lot

in a tiny interval across each interface. Physically the existence of the jump is acceptable.

However, for our calculation, the continuity of both the concentration profile and its deriva-

tive is required. Thus one should still find a continuous function for such elements. In the

former section, the shape functions for the least square fitting were third order polynomials.

The third order polynomials are not expected to have such rapid jump. Therefore, it will

make no sense to use the third order polynomial shape functions here. One group of function

which has similar shape is the Fermi-function. The general form of the Fermi-function is

F =
a

e
x−b
c + 1

+ d. (7)

There are four undetermined parameters, a, b, c, and d, for each shape function. The four

conditions of the Hermite interpolation enable us to calculate these parameter. Notice that

one should not transfer x to −1 6 ξ 6 1 because the value of the parameter b determines

the position of the sharpest derivative of the Fermi-function. Each shape function is then in

the form of a Fermi-function. The least square fitting process is same in these elements con-

taining an interface. However, the Fermi-function is not easy to deal with as the polynomial

functions. Calculating the shape functions requires too much effort. A trade off can be made

by using the fact of that these regions are very small. One can choose to connect the two
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nodes which are close enough. The detail of deriving the Fermi-function at interface is given

in Sec.6.2 and Sec.6.3. Once the concentration profile near the interface is determined, other

quantities can be obtained from the process introduced above. If a finer mesh is desired in

such a region, then one can also use the information provided by the interpolated functions

as boundary values.

4 Transfer Matrix Method

For a one-dimensional ternary diffusion system, Fick’s equation gives J̃i = −
∑2

j

∼
Dij

∂Cj

∂x
.

Here, J̃i is the inter-diffusion flux for component i,
∼
D is the inter-diffusion coefficient matrix,

and
∂Cj

∂x
is the partial derivative of the jth component’s concentration with respect to position.

The Fick’s equation illustrates that the flux of each diffusion component is related to the

concentration gradient from all components. The coupled system makes the analysis of the

diffusion process much harder than a two component system. However, this problem can be

solved by the transfer matrix method. Generally, the diffusion coefficients are functions of

the position, however, as the entire region of the diffusion zone is divided to small enough

elements, the diffusion coefficients can be assumed as constants for each element.

4.1 Background of Linear Algebra

Let A be a n × n square matrix over the real number field, the sufficient and necessary

condition for A to be diagonalizable is that the dimension of eigen-space of A is equal to n.

If this matrix has n distinct eigenvalues, one can then write the matrix as

A = PHP−1.

Here, P is the matrix composed of eigenvectors of A, P−1 is the inverse matrix of P, and

H is the diagonalized matrix which contains eigenvalues as its trace.

The diffusion coefficient matrix,
∼
D, is a two-by-two matrix. Let the assumption that
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the matrix has two distinct eigenvalues be made, then the diffusion coefficient matrix can

be decomposed in the above form. In order to obtain the explicit diagonalized matrix, one

need to know the eigenvalues and eigenvector of
∼
D. It is equivalent to solving the following

equation
∼
D ∗Ψ = d IΨ. (8)

Here, I is the identity matrix, d is the vector contains the two possible eigenvalues, and

Ψ is the corresponding eigenvector. The eigenvalues can be determined by the solving the

characteristic polynomial and the result is

d1 =
1

2

[

( ∼
D11 +

∼
D22

)

+

√

( ∼
D11 −

∼
D2

)2

+ 4
∼

D12

∼
D21

]

d2 =
1

2

[

( ∼
D11 +

∼
D22

)

−
√

( ∼
D11 −

∼
D2

)2

+ 4
∼

D12

∼
D21

]

Let the corresponding eigenvectors are Ψi =







αi

βi






for i = 1, 2. Based on the assumption

made before, one will be able to re-scale the eigenvectors and normalize α1 in Ψ1 . Then

the corresponding β1 will be

β1 = −
∼

D11 − d1
∼

D12

similarly, by normalizing β2, one can obtain

α2 = −
∼

D22 − d2
∼

D21

.

Let P be a 2× 2 matrix whose columns are consisting of two eigenvectors from above, i.e.

P =







1 α2

β1 1






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The inverse matrix of P is then obtained as

P−1 =
1

1− α2β1







1 −α2

2 −β1






.

Then every term of the diagonalized diffusion coefficient matrix is explicitly expressed by

the components of the matrix and it is denoted as

∼
D = P∆P−1 (9)

Here ∆ is the diagonalized matrix:

∆ =







d1 0

0 d2






.

4.2 Transfer Matrix for the Flux

Substituting the decomposed diffusion coefficient matrix into Fick’s equation, one can di-

rectly obtain

J̃ = P∆P−1 · ∂C
∂x

. (10)

Multiplying by P−1 on both sides of Eq.10, one has

P−1J̃ = −∆P−1 · ∂C
∂x

. (11)

Let Ĵ denote P−1J̃ and Ĉ denote P−1 ·C. Eq.11 then becomes

Ĵ = −∆
∂Ĉ

∂x
, (12)
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or explicitly,

Ĵ =
1

1− α2β1







J̃1 − α2J̃2

−β1J̃1 + J̃2







∂Ĉ

∂x
=

1

1− α2β1







∂C1

∂x
− α2

∂C2

∂x

−β1
∂C1

∂x
+ ∂C2

∂x







Substituting Ĵ, ∂xĈ, and ∆, Eq.12 becomes







J̃1 − α2J̃2

−β1J̃1 + J̃2






= −







d1 (
∂C1

∂x
− α2

∂C2

∂x
)

d2 (−β1
∂C1

∂x
+ ∂C2

∂x
)






(13)

Notice that the Fick’s equation for ternary diffusion becomes an uncoupled function of the

concentration gradient in the coordinate system which has the diffusion coefficient matrix

diagonalized, i.e, the base vector rotated from
(

∂C1

∂x
, ∂C2

∂x

)

to
(

∂Ĉ1

∂x
, ∂Ĉ2

∂x

)

.

Under the assumption of conservation of total mass, one can show ∂J̃i
∂x

= −∂Ci

∂t
. One can

further hold the time as a constant and derive the continuity equation

∂J

∂x
= v · ∂C

∂x

Where v is the velocity of the propagating of concentration level and

v =
x− x0

2t
,

where x0 is the position of the Matano-plane. Notice that the continuity equation is not

coupled by its definition. Substituting the relation J̃i = −∑2
j

∼
Dij

∂Cj

∂x
one can obtain

∂J̃i

∂x
= −x− x0

2t
[(

∼
D)−1]ijJ̃i (14)
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Or in a more compact expression

∂J̃

∂x
= −x− x0

2t
(
∼
D)−1J̃ (15)

Substituting the decomposed form of flux and ∆, one can replace Eq.15 and obtain

∂Ĵ

∂x
= −x− x0

2t
(∆)−1Ĵ. (16)

Equation.16 is in the form of

ẋ = Ax+ b.

The general solution is given in Appendix 1 For the diffusion process, the solution can be

expressed in the form of an exponential matrix

eA =
∑ 1

k!
Ak.

Then, the solution of Eq.16 can be obtained as

J̃(x, t) = exp

(

−(x− x0)
2 − (xs − x0)

2

4t
((

∼
D)−1)

)

· J̃(xs, t). (17)

The solution is valid in the region of xs 6 x 6 xs+1. J̃(xs, t). is the initial flux value at

position x = xs. To simplify the writing, let T be a function of x, xs, t,
∼
D, and set T to be

T = exp

(

−(x− x0)
2 − (xs − x0)

2

4t
((

∼
D)−1)

)

. (18)

Then the solution in that element can be expressed as

J̃(x, t) = T(x,xs, t,
∼
D) · J̃(xs, t). (19)

Furthermore, the solution of flux contains the inverse of diffusion coefficient matrix terms. If
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one plug the diagonal transformation (
∼
D)−1 = P·∆·P−1 and expand the matrix exponential

back to the Peano-Baker series, all the middle terms ofP·P−1 in the series will be normalized.

Then one has

T = P · τ ·P−1. (20)

Here τ is the diagonal matrix



























. 0

.

exp
(

− (x−x0)2−(xs−x0)2

4t
((

∼
di)

−1)
)

.

0 .



























An al-

ternate way to write the solution of flux inside the element is to substitute Fick’s equation

to replace the flux value at nodal points:

J̃(x, t) = T(x,xs, t,
∼
D) · ∂C(xs, t)

∂x
. (21)

This section has shown that the inter-diffusion flux can be obtained everywhere inside any

given element by providing either the nodal concentration gradient value or the nodal flux

value. Notice that one can also choose xs+1 as the nodal value and calculate backwards by

choosing the corresponding value in transfer matrix.

4.3 Concentration Profiles

The Fick’s equation gives a direct relation between concentration gradient and the inter-

diffusion flux. In Sec.4.2, a method is generated to describe the inter-diffusion flux for

each element in terms of diffusion coefficients and the boundary nodal values of either the

concentration gradient or the flux. If the concentration is of interested, one can start the

analysis by rearrange the Flux’s first law as

∂

∂x
C = −(

∼
D)−1 · J̃.
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By replacing the flux function in above equation by the relation obtain in Eq.21 and integrate

both sides of the equation, the concentration profile can be expressed as

C(x, t) = C(xs, t)−(
∼
D)−1 ·

∫

x

xs

exp

(

−(x− x0)
2 − (xs − x0)

2

4t
((

∼
D)−1)

)

dx′ · J(xs, t). (22)

For solving the concentration profile, let us take a close look of the exponential term, which

is the parameter defined in Eq.18. Rewriting T in the form of

T =
exp

(

− (x−x0)2

4t
((

∼
D)−1)

)

exp
(

− (xs−x0)2

4t
((

∼
D)−1)

)

With the assumption of that the diffusion coefficient matrix is constant in each element,

the denominator of T is also a constant. Then the only variable appears in the integral is

the numerator term. The integrated function of such form is the error function. Following

the decoupling process introduced before, the remaining work is similar of deriving the flux

equation.

Until now, both the concentration profile and the flux function are prescribed with only

one of the boundary nodal values. Unlike the flux value which is hard to observe everywhere,

the concentration values can be obtained or interpolated at least at both ends of any element.

Intuitively, more information should be able to be derived if the both nodal value of the

concentration were provided. Similar to defining the parameter T, the integrated value of

T, denoted as ε, is defined to simplify the later equations as

ε(x, xs, t,∆) =

∫ x

xs

exp

(

−(x− x0)
2 − (xs − x0)

2

4t
((

∼
D)−1)

)

dx′.
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In a more explicit form,

ε =



























. 0

.

∫ s

xs
dx′exp

(

− (x−x0)2−(xs−x0)2

4t
((

∼
di)

−1)
)

.

0 .



























=



























. 0

.

∫ x

xs
dx′exp

(

− (x−x0)2

4tdi

)

· exp
(

(xs−x0)2

4tdi

)

.

0 .



























=



























. 0

.

√
πtdi

(

erf( x−x0

2
√
tdi

)− erf(xs−x0

2
√
tdi

)
)

.

0 .



























·



























. 0

.

exp
(

(xs−x0)2

4tdi

)

.

0 .



























Here, erf is the error function. By the definition of error function, erf(x) = 2√
π

∫ x

0
e−t2dt.

Therefore, a normalization
√
πtdi is desired to be multiplied. Convert the explicit form back

to the matrix form, and one has

ε =
√
πt(∆)

1

2 ·
(

erf(
x− x0

2
√
tdi

)− erf(
xs − x0

2
√
tdi

)

)

· exp
(

(xs − x0)
2

4tdi

)

(23)

As the error functions can be expanded by power series, one can perform similar trans-

formation on ε and obtain

E(x, xs, t,
∼
D) = P · ε ·P−1 (24)
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As before, the inter-terms of P ·P−1 are canceled as the exponential matrix E is expanded

explicitly.

Substituting the parameter E in Eq.22, the concentration profile can be prescribed as

C(x, t) = C(xs, t)− (
∼
D)−1 · E · J(xs, t). (25)

Equation 25 gives the general expression for the concentration profile in the element

whose domain ranges from xs to xs+1. Therefore, this equation is also valid for the other

nodal point which has the coordinate xs+1. Thus one has

C(xs+1, t) = C(xs, t)− (
∼
D)−1 · E(xs+1,xs, t,

∼
D) · J(xs, t). (26)

Since the concentration values at two nodal points are assumed to be known, the flux value

at xs can be expressed in terms of the two nodal concentration values

J(xs, t) = −(C(xs+1, t)−C(xs, t)) · (
∼
D) · E(xs+1,xs, t,

∼
D)−1. (27)

Then Eq.25 becomes

C(x, t) = C(xs, t) + (
∼
D)−1 ·E× [(C(xs+1, t)−C(xs, t)) · (

∼
D) ·E(xs+1,xs, t,

∼
D)−1]. (28)

Consequently, the concentration profile in any element can be expressed in terms of the

diffusion coefficient matrix and two nodal concentration values. Notice that the diagonal

terms in the diffusion coefficient matrix can be simplified. The result is given as, by keeping

t as a constant,

C = C(xs) +P ·Φ ·P−1 · [C(xs+1)−C(xs)] (29)
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Where Φ is the diagonal matrix whose diagonal terms

Φii =

(

erf
(

x−x0

2
√
tdi

)

− erf
(

xs−x0

2
√
tdi

))

(

erf
(

xs+1−x0

2
√
tdi

)

− erf
(

xs−x0

2
√
tdi

))

Thus, for any region which has constant diffusion coefficients, the transfer matrix method is

efficient to describe the concentration profile and the flux everywhere.

4.4 System of Equations

The former sections have introduced the procedure of deriving the concentration profile and

flux. Although these two quantities are important to analyze the diffusion process, the main

goal of the report is to calculate the diffusion coefficient matrix. The flux and concentration

profile in a single element are given in Eq.19 and Eq.29. However, it has to be emphasized

that these two equations are written in terms in the boundary values and the diffusion

coefficients. Therefore, from the purely analytically perspective, the diffusion coefficient

matrix has to be calculated first.

Recall that Sec 3 introduced a procedure of extracting information from raw experimental

data. Thus, for every diffusion component in each element, the value of the concentration,

the concentration gradient, and the flux are approximated for two end points. It is clear that

for a ternary diffusion system, the diffusion coefficient contains four unknown functions of

position and time. With the assumption that the diffusion coefficients are constant in each

small element, there will be four unknown constants for each element to be determined to

form the diffusion coefficient matrix.

The diagnolized diffusion coefficient matrix is given by Eq.9. The four unknown compo-

nents in the matrix then could be calculated if its eigenvalues and eigenvectors were known.

Notice that since the eigenvectors were normalized, so that α1 = β2 = 1. It still requires a

system of four equation to have a unique solution.

The first two equations come from Fick’s first law. The flux of the first diffusion compo-
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nent has the relation

J1 = −
∑

j

D1j
∂Cj

∂x
(30)

Apply the procedure of transfer matrix method for the above equation, and the flux for the

first component can be expressed as

J1 − α2J2 = −d1
∂

∂x
(C1 − α2C2). (31)

Here, the two unknowns are d1 and α2.

Similarly, the flux equation for the second component is

J2 − β1J1 = −d2
∂

∂x
(C2 − β2C1). (32)

Again, the two unknowns are d2 and β1.

For the remaining two equations, the transfer matrix method provides several choices as

the boundary conditions can come from either the flux values or the gradient concentration

values. For example, the flux equation given by Eq.19 can be used to determine the coefficient

matrix by substituting two boundary values of the flux. In short, the equations can be chosen

from among any transferred flux or concentration equations given in the former sections.

However, these choices are not the same since the values are approximated instead of the

realistic value. The accuracy then becomes the primary concern here. There are two major

sources of the error terms. The first kind is the error from the original approximation.

Another source is from the numerical calculation process since the analytical solution is

hard to obtain. Here we will briefly talk about reason of the choices this report uses. The

error bound and the order of the accuracy will not be carefully analyzed.

For the first kind of error source, recall that the experiment supplies the discrete con-

centration values and the dividing method in this report is chosen to be equally spaced.

The flux equation is derived based on the approximated concentration profile function by
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integration. Thus the error of concentration profile could be potentially accumulated into

the error of flux in each element. Consequently, the error in flux values is assumed to be

larger than the error of the concentration values.

For the second kind of error, the error terms are assumed to be directly related to the

complex relations of the equations. The complicity of the equations is defined as the how

much different the undetermined parameters are from the linear equation. Therefore, the

simplest equation is the flux equation, the most complicated equation is the equation of

concentration based on two boundary values.

From above, it is not clear which equation is the best to choose since the lower the first

kind error is, the higher the second kind error will be. One can of course calculate the order

of error by expanding these equations and analyzing which equation has lowest error bound.

The detail will not be provided in this report and the equation used here is Eq.27. After

diagonalization, one has

(J1 − α2J2)xs
=

[C1 − α2C2]xs+1
− [C1 − α2C2]xs

√

πt
d1

·
[

erf
(

xs+1−x0

2
√
d1t

)

− erf
(

xs−x0

2
√
d1t

)] . (33)

and

(J2 − β1J1)xs
=

[C2 − β1C1]xs+1
− [C2 − β1C1]xs

√

πt
d2

·
[

erf
(

xs+1−x0

2
√
d2t

)

− erf
(

xs−x0

2
√
d2t

)] . (34)

A system of equations of determining diffusion coefficients is formed by combining Eq.31, Eq.32 Eq.33, and

Eq.34.

5 Solving for Diffusion Coefficients

A formalism of calculating the diffusion coefficients is established from Sec.3 and Sec.4. The

next object is to calculate the diffusion coefficients for each element based on the system

of equations derived in Sec.4.4. The value of α2 and d1 can be calculated from Eq.31 and

Eq.33. Similary, β1 and d2 can be calculated from Eq.32 and Eq.34. The analogical solution
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is extremely hard to find for most of the case. Therefore, numerical approach will be chosen.

From the physics perspective, it worth nothing to discuss the process of solving these param-

eters. However, several issues which were encountered during the solving process deserve to

be discussed.

The first issue is due to the denominator in Eq.33 and Eq.34. If the size of the element

were too large or too small, there will be an element whose two ends points xs and xs+1

have very similar value in the error function term due to the symmetry property of the error

function. In this case, the system of equations contains a singular point and consequently,

there will be no answer for the diffusion coefficients in this element. The remedy for this case

is simple. This situation happens only when the size of element is too large or too small. If

the size of element were too large, one should apply a finer mesh on this element. If the size

were too small, one can choose to simply ignore the diffusion coefficients in this element.

The second issue is related to the nature of the diffusion process. The areas close to

boundaries of the diffusion domain have very similar concentration value and the flux value.

Therefore, the solution of the above equations can be trivial or not unique. It still satisfies

the physical condition because the flux value is very close to zero. If both the diffusion

components had consistent concentration gradient, then the diffusion coefficients can be

any number, or simply equal to zero. In other wards, the assumption that the diffusion

coefficients matrix is diagonalizable is violated. This situation happens in a certain range of

region. There is no point to force ourselves to find a solution to such area. To avoid this

issue, one should omit certain amount of elements in calculation and the number of elements

ignored should depend on the size of elements.

For now, we will only provide the results of the calculated diffusion coefficient matrices

from one data set with different partition. The discussion of these results will be given in

Sec.7.
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Table 3: Diffusion Coefficient Matrix I

Total Element Number = 10
Excluded Element Number = 0

Measured points = 281

Element I Element II Element III Element IV
N/A N/A 0.6547 -0.6540 0.0763 -0.0758 0.0192 -0.0188
N/A N/A 0.6546 -0.6539 0.0762 -0.0757 0.0191 -0.0187
Element V Element VI Element VII Element VIII

0.0058 -0.0001 0.0028 0.0087 -0.0095 0.0803 -0.0088 0.4529
0.0017 0.0044 -0.00976 0.0307 -0.0093 0.0797 -0.0084 0.4521
Element IX Element X

0.8541 0.7311 0.0064 2.8795
0.0009 2.2645 0.0059 2.8796

Table 4: Diffusion Coefficient Matrix II

Total Element Number = 20
Excluded Element Number = 3

Measured points = 281

Element I Element II Element III Element IV
0 0 1.2433 -1.2432 0.2936 -0.2935 0.0719 -0.0718
0 0 1.2433 -1.2432 0.2936 -0.2935 0.0719 -0.0718

Element V Element VI Element VII Element VIII
0.0201 -0.0200 0.0068 -0.0067 0.0029 -0.0027 0.0011 -0.0005
0.0201 -0.0200 0.0068 -0.0067 0.0029 -0.0027 0.0011 -0.0004

Element IX Element X Element XI Element XII
0.0004 0.0002 0.0003 0.0002 0.0000 0.0011 0.0001 0.0021
0.0004 0.0003 0.0002 0.0003 0.0000 0.0011 -0.0000 0.0023
Element XIII Element XIV Element XV Element XVI

-0.0002 0.0057 -0.0002 0.0151 -0.0003 0.0495 0.1151 -0.0562
-0.0000 0.0053 -0.0000 0.0148 -0.0000 0.0489 0.0000 0.1866
Element XVII
0.0003 0.8233
0.0001 0.8235
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Here, the total element number is the number of divided sub-domains, the Excluded

element number are the total of elements which are not considered because of the issue

mentioned above, the measured points are the number of observation from the data sheet.

For ternary diffusion system, the diffusion coefficient matrices have dimension of 2×2. Then

for each element, there are four components which represent the four components of the

diffusion coefficient matrix in that element.
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6 Jump Condition

An important phenomenon in the diffusion process is that the concentration profile expe-

riences a drastic drop or increase at interfaces. Mathematically, the value of concentration

is not continuous at the position of interfaces. This section gives a brief explanation and

introduces proper methods of deriving the flux and concentration functions for the element

containing an interface.

6.1 Trivial explanation

Let two components be annealed and allowed to diffuse through each other. At the beginning

of the diffusion process, the interface is located at the position of annealing. At anywhere

else on the left side of the interface, the concentrations of two components will be 0% and

100%. Similarly, at the right side of the interface, concentrations should be 100% and 0%.

Therefore, there is a jump for both components at t = 0 at the interface. The concentration

is a function of time and position. If the position were fixed, then the change of the value

concentration with respect time has to be continuous. However, if the time were fixed, the

concentration profile does not have to be continuous, such as at t = 0. As the interface

changes its position, this condition should still hold. For a two components diffusion system,

the concentration value for each component approaches its final value at the interface from

0% and 100%. Therefore, mathematically the jump naturally exists. From the physical

perspective, the jump condition has no meaning since the concentration does not describe the

movement of particles. As the system goes towards its equilibrium state, the concentration

value of each component will converge to its final value for each side and the two values do

not necessarily to be same.

However, the jump condition will make numerical analysis much more complicated. With-

out the discontinuity, the concentration profile is a smooth function. Thus one can use stan-

dard finite element to obtain the approximate solution. But the jump condition will create
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a considerable oscillation which starts from the interface and will not smooth out for a large

size spatial interval. To conquer the issue from the jump condition, one can either adjust

the numerical approach by using other methods such as discontinuous Galerkin’s method or

generate a smooth function to approximate the original situation.

6.2 Connecting the Jump

Based on Sec. 9.3, one approach of smoothing the jump condition around interfaces is to

predefine the form of a function and to solve its parameters. The main idea here is to first

find a function whose first derivative is continuous but experiences a purge rapidly increase

or decrease in a small region. Fermi-function indeed satisfies this requirement. The form of

the function is then chosen to be

f(x) =
a

exp(x−b
c
) + 1

+ d (35)

Where the undetermined parameters are a, b, c and d. The derivative of function f is

df(x)

dx
= − a · exp(x−b

c
)

c · (exp(x−b
c
) + 1)2

(36)

In the diffusion problem, the value of the function f will be the concentration value at

the corresponding position. The boundary nodal concentration and concentration gradient

values of the element across a interface are determined from the previous section. Therefore,

these four values play roles analogous the conditions to provide a solution for the parameters

in function f .

Suppose the element ranges from x1 to x2. The concentration values at each points are

Y1 and Y2 and the concentration gradient values are Y ′
1 and Y ′

2 . The system of equations is
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then formed as

Y1 =
a

exp(x1−b
c

) + 1
+ d; (37)

Y2 =
a

exp(x2−b
c

) + 1
+ d; (38)

Y ′
1 = − a · exp(x1−b

c
)

c · (exp(x1−b
c

) + 1)2
; (39)

Y ′
2 = − a · exp(x2−b

c
)

c · (exp(x2−b
c

) + 1)2
. (40)

It is clear that the system of equations has no singularity issue. Then theoretically, these

four equations should give a unique solution for these four parameters. However, it is not

easy to have an analytical solution for such complex equations. Numerical methods would

be the proper approach here.

The error and the difficulty of calculation should be considered at same time. The error

can come from both the form of the function itself and the numerical calculation. Although

the Fermi-function fits the requirements to a considerable extent, there is no theory to

support the Fermi-function is the right choice. On the other hand, the more non-linear the

parameters are in the system of equation, the more likely the error has a lower order of

accuracy. Then we conclude here that reducing the difficulty of calculating these parameters

by making reasonable assumptions may not increase the error.

The idea of reducing the difficulty here is to use the symmetry property of the Fermi-

function. The location of interface can be detected from the experiment. However, not only

that the interface does not necessarily locate at the middle of the element, but also the

derivative values at two ends do not usually match. Consequently, the symmetry property

cannot be applied to a single Fermi function here.

The alternate method is to create the symmetrical situation for the element across the

interface by using two Fermi-functions. Since the domain and size of the element contains

the interface is free for us to choose, one can then choose the interface location at the middle
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of the element. This condition is not necessary to have, but it will make the explanation

of our process simpler since it can be used as a reference point for which a Fermi function

symmetrical is about.

Let us start to build a symmetrical situation for our calculation. First, comparing the

absolute values of the concentration gradient value of two end points and finding the one

with the lower value. For example, if the element ranges from x1 = 1 to x2 = 2 and the

values of concentration gradient are Y ′
1 = −1 and Y ′

2 = −1.2, then the nodal point would

be chosen to be x1. From here, assume the that the value of concentration gradient at x2

matches the value at x1. Under this assumption, one can obtain two relations

b =
x1 + x2

2
= L; (41)

d = −a− (Y1 + Y2)

2
. (42)

where Yi is the value of concentration at xi and L is the location of the interface. Substituting

these relations in to the system of equations above, one can obtain

Y1 =
a

e−
B
c + 1

− a− (Y1 + Y2)

2
; (43)

Y ′
1 = − a · e−B

c

c · (e−B
c ) + 1)2

(44)

Where B = L− x1 is a constant. It is clear that the parameters a and C are much easier to

be solved from these two equations.

After solving the parameters a and c, the first Fermi-function is then formed. The next

step is to find the point at the same side of x1 and whose value of concentration derivative

is equal to Y ′
2 . Suppose this point has coordinate (x3, Y3), then one can define another

symmetrical point (x3+x2

2
, Y3+Y2

2
). Following same procedure, the second Fermi function will

be generated.

It is trivial to check that both the Fermi functions and their concentration gradient
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functions intersect at (x3, Y3). Therefore, for the element across the interface, one can use

two Fermi-functions for the concentration profile. The first function has the domain from x1

to x3 and the second one has the domain from x3 to x2.

As a concrete example, let us assume that the boundary values of the element are

x1 = 2.98; x2 = 3.02

Y1 = 82; Y2 = 70

Y ′
1 = −5; Y ′

1 = −7.5.

Since the absolute value of Y ′
1 is smaller, the system of equation for the first Fermi function

is

a

e−
0.02
c + 1

− a− 152

2
= 82;

− a · e− 0.02
c

c · (e− 0.02
c ) + 1)2

= −5.

The calculated value is

a = 12.0299427;

c = 0.00299053.

Therefore, the first Fermi function is

f1(x) =
12.02994

exp( x−3
0.00299

) + 1
+ 69.98505 (45)

The plot of the first function is
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Figure 8: The First Fermi-Function

x

Next step is to determine the point which has same concentration gradient value as the

value at x = 3.02. The point is found to be p = (2.9812, 81.9926). Thus the new symmetrical

point is ps = (3.0006, 75.9963). Following same procedure, the second Fermi function is

f2(x) =
12.0393

exp(x−3.0006
0.0031

) + 1
+ 69.9766 (46)

The plot of the second function is

Figure 9: The Second Fermi-Function

x

Combine the two functions and assign proper domain for each function, the concentration
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profile in the interval of (2.98, 3.02) will be

F (x) =
12.02994

exp( x−3
0.00299

) + 1
+ 69.98505, x ∈ (2.98, 2.9812);

=
12.0393

exp(x−3.0006
0.0031

) + 1
+ 69.9766, x ∈ (2.9812, 3.02).

The plot of this piecewise function is

Figure 10: Example of Concentration Profile

x

The plot of its first position derivative is

Figure 11: Example of Concentration gradient

x

y
'

It should be emphasised that the domain of the first Fermi function is supposed to

be small compared to the size of element as the gradient value changes rapidly towards the

interface. This section has shown one way to connect the jump condition with a combination
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of Fermi-functions. In principle, any function satisfying the condition introduced in Sec.6.2

can be potentially used to connect the jump.

6.3 Least Square Fitting by using Fermi-function

For an element which is very close to the interface and contains a limited number of experi-

mental data, the connecting method introduced in previous section makes sense. However,

the drawback of directly connecting the jump condition is that this method only uses the

information from the two end points of the element. If a moderate amount of observation

were made in the element at an interface, the information from the data are ignored besides

the two nodal points. The other potential problem is that the symmetry is not guaranteed

for the two sides of the interface. Most of time, different dominant diffusion components

occupy each side of the interface. They do not necessarily have similar behavior in their rate

of change with respect to the position.

If there were enough observation in the element, one can choose to use interpolation

functions to connect the jump. This method uses all the information from measured points

and the shape of the function is not constrained before hand. Recall Sec.3.2.2, Fermi-

function has the property similar to the jump condition. Let us take a close look at Eq 7.

Mathemtically, the attributions of each parameters are

• a: the range of function value

• b: the symmetrical position

• c: the rate of change

• d: the shift of function value

The Fermi function cannot be used along as the shape function since it is an odd function

about its symmetrical point and therefore the derivative would be an even function. Whereas

the condition for Hermite interpolation requires different values for derivative values of two
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boundary points. Therefore, some supplemental work has to be considered. For any ad-

ditional shape function, there must be at least one undetermined parameter. Then some

parameters from the Fermi function have to be dropped. Fortunately in a diffusion process,

although the values of certain parameters are not precisely defined, they can be guessed with

small error. Since we wish to get rid of the non-linearity of the Fermi-function, one could

consider the following shape function

f1 =
a

e−kx + 1
+ bx2 + cx+ d (47)

Here the undetermined parameters are a, b, c, and d. k is an assigned constant based on the

width of the element. If the value of k were assigned to 5, The plot of the shape functions

is given in Fig.12

Figure 12: Shape function of the 1st form
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There are other kinds two shape functions based on similar idea given by

f1 =
a

10−kx + 1
+ bx2 + cx+ d (48)
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f3 =
a

(x+ 1)−k + 1
+ bx2 + cx+ d (49)

The plot of these two kinds of shape functions are given in following figures

Figure 13: Base function of the 2nd form
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Figure 14: Base function of the 3rd form
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If the value of k changes, these shape functions will also change. The following figure

compares between the three kinds of shape functions with k = 15,

Figure 15: Comparison
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In the figure above, the red lines are the function of N1, the green lines are the function

of N1, the blue lines are the function of N2, the black lines are the function of N2. The solid

line represents the first kind, the dash line represents the second kind, and the dot represents

the third kind of shape function.

7 Trend of Diffusion Coefficients

As mentioned before, the diffusion coefficients should be a function of position for any given

time. The result of diffusion coefficients’ value is given in Sec.5. However, we have not

discussed anything about the result yet. This section will first analyze the values for diffusion

coefficients.

The first notable attribution of the diffusion coefficient matrix is that the values of D11

and D21, D12 and D22 are close to each other in most of the region. As shown in Fig.16, the
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two pairs of components have a big portion of overlapping.

Figure 16: Diffusion Coefficient versus Position
Element number = 30(21)

200 500 00 1100
-1.0

11

12

21

22

C
o
m

p
o
n
e
n
ts

' 
v
a
lu

e
s

X

0

1.0

2.0
x 103

The above figure used 30 elements partition and omitted first 4 elements from each ends.

From a overall view, recall that the concentration profile varies to a good extend from about

x = 400 to x = 1000. The absolute diffusion coefficients’ values and its changed values in

this region are very small compared to the elements towards either end. This is agreed with

that the shape of concentration gradient plots and the flux plots are similar in this range.

It would be pointless to discuss the behaviors of the diffusion coefficient matrix in general

from one case. However, it still worth it to find relations from the plots of diffusion coefficients

and the diffusion process itself.

The value of componentD11 over the most diffusion domain from three different partitions

is shown in the following figure
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Figure 17: Diffusion Coefficient Component Plot 1
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Here, the blue line represents the value of D11 from a 10 elements partition( 9 elements

are included), the red line represents the 20 elements partition( 17 elements are included),

and the yellow line represents the 30 elements partition(21 elements included)

The value of componentD12 over the most diffusion domain from three different partitions

is shown in the following figure
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Figure 18: Diffusion Coefficient Component Plot 2
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Here, the blue line represents the value of D12 from a 10 elements partition( 9 elements

are included), the red line represents the 20 elements partition( 17 elements are included),

and the yellow line represents the 30 elements partition(21 elements included).

Recall from the governing equation of diffusion process,

Ji = −D11
∂C1

∂x
−D12

∂C2

∂x

In this specific case, it is clear that the first component of diffusion coefficient has a

similar shape of the e−x and the second component diverges out towards the boundary. The

more interested topic is to find the relation between these two coefficients. For most of the

region, these two coefficients seems to balance each other. Recall that the scale for both

concentration and flux are 10−4 which is relatively small compare to the value of diffusion

coefficients’ values. For the region of which the coefficients’ values become flatter, it would

be more clear by checking the value from the tables given in Sec.5.

One important fact is that the parameters are not nondimensionlized. Therefore, the
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units of each parameter cannot be changed. The concentration values are given in percentage

in the original data sheet and the length is given in micrometer. If these values were re-scaled

or given in other units, the shape of diffusion coefficients might not hold the same.
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8 Conclusion

In this report, the flux function, the concentration profile, and the concentration gradients

have been derived from the experimental data of concentration values for each component.

These functions can be used to obtain values at any points in the diffusion domain. The

derived values provide necessary information of calculating the diffusion coefficients in the

ternary diffusion system. A system of equations which is derived from the transfer matrix

method has been developed to calculate the eigenvalues and eigenvectors of the diffusion co-

efficient matrix. These eigenvalues and eigenvectors are used to form the diffusion coefficient

matrix for each element.

The jump condition of the concentration profile has also been discussed in this report. A

brief explanation is given and two proper methods of extracting information of concentration

and flux in these special elements are introduced. Based on the procedure shown in this

report, one can then obtain the value of flux, the concentration, and the concentration

gradient everywhere in the diffusion domain. From there, a complete formalism has been

developed to calculate the diffusion coefficients in all the elements.

Following by this report, future effort can be made towards either developing higher

dimensional diffusion phenomena or including the contribution of time.
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9 Appendix

9.1 Picard Iteration

The unique solution of this differential equation of the for ẋ = Ax+ b. is

x(t) =

(

exp

∫

t

t0

A(τ)dτ

)(

x0 +

∫ t

t0

exp

(

−
∫ τ

t0

A(σ)dσ

)

b(τ)dτ

)

. (50)

Here A denotes a family of matrices and b is a vector valued function. Let ΦA denote the

homogeneous part of the differential equation and from Volterra integral equation,

ΦA = I+

∫

t

t0

A(τ)ΦA(τ, t0)dτ, Φ(t0, t0) = 0.

Here, I is the identity matrix. Applying the mean of formal Picard iteration, one can show

ΦA = I+

∫

t

t0

A(τ)dτ +

∫

t

t0

∫ τ1

t0

A(τ1)A(τ2)dτ1dτ2 ... (51)

Here, for each integral, A(τi) is independent of τj for i 6= j .Let In be

In =

∫

t

t0

∫ τ1

t0

...

∫ τn−1

t0

A(τ1)A(τ2) ...A(τn)dτ1dτ2 ...dτn.

If I0 equal to I, Then for all n the following relation will be satisfied:

In+1 =

∫

t

t0

A(τ)In(τ)dτ.

Thus Eq.51 can be write in a compact form as ΦA = I +
∑

In . If A is continuous and

differentiable on a interval, one can get

In =
1

n!

(
∫

t

t0

A(τ)dτ

)n

.
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Extend the above analysis to the non-homogeneous case, one can obtain, for both A and b

continuous,

x = ΦA ∗
(

x0 +

∫

t

t0

ΦAb(τ)dτ

)

(52)

Since the flux function and its first derivative has to be continuous, with the assumption of

that the diffusion coefficients are constant, the solution of the flux function in Sec4 can be

written in the desired form.

9.2 Marker plane

Kirkendall’s experiment gives the evidence that the intrinsic diffusions between a diffusion

couple do not usually equal to each other. If a marker has no diffusivity with both of the

diffusion couple and is put at the conjunct plane of two materials at t = 0. Then the

Kirkendall’s effect makes the marker moves towards the sides of higher diffusivity due to

the interchange of vacancies. The interface jump happens at the marker plane. The marker

plane can be detected directly at any time. In the case of two component diffusion system,

the difference between the diffusivity of two components and the concentration gradient

developed in the interdiffusion zone give the velocity of marker which can be expressed as

vm = −(VBJB + VAJA) = VB(DB −DA)
∂CB

∂x
. (53)

Here, vm is the velocity of the marker, Vi is the partial molar volume of component i, Di

is the diffusion coefficient of component i, and Ji is the intrinsic diffusion of component i.

Another well-known expression of the velocity of marker is basic on the displacement of the

marker and it gives

vm =
∂x

∂t
=

xm − x0

2t
(54)

Here,xm is the position of the marker plane, x0 is the position of the Matano plane, and t is

the total experiment time.
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Since these two relations both give the velocity of the marker, therefore one should be

able to find the location of marker plane by finding the common point of two velocity curves

versus 2t
x
. Notice that the number of intersection of two curve can be more than one which

reflects the case of multiple marker planes.

Let us then consider the continuity of the flux. The continuity condition is given by

˜JA+
− ˜JA

−

= vm · (CA+
− CA

−

) (55)

Here, vm is the velocity of the interface, ˜JA+
and ˜JA

−

are the intrinsic flux of the component

A of limit value from left and right side to the interface, that is

J+ = J |x, x → xm+
;

J− = J |x, x → xm
−

.

Similarly, the CA+
and CA

−

are defined as

C+ = C |x, x → xm+
;

C− = C |x, x → xm
−

.

Then, by applying the Fick’s equation, one obtains

˜DA+

∂CA

∂x
− ˜DA

−

∂CA

∂x
= −vm · (CA+

− CA
−

) (56)

One can modify the usual Matano-Boltzmann parameter with

ξ =
x− x0

2
√
Dt

.

WhereD is the value of D̃ and it is a number, and x0 is the Matano plane position. Substitute
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this in to Eq.56 one can obtain a dimensionless expression

−ξ
∂Ĉ

∂ξ
=

∂

∂ξ
(D̂

∂Ĉ

∂ξ
) (57)

Here, D̂ = D̃

D
,with this transformation, the boundary condition becomes

Ĉ+ = Ĉ |ξ, ξ → ξ0+

Ĉ− = Ĉ |ξ, ξ → ξ0−

Then the continuity flux condition gives

(D̂A |CA+
)
∂ ˆCA+

∂ξ
− (D̂A |CA

−

)
∂ ˆCA

−

∂ξ
= −ξ ∗ (CA+

− CA
−

). (58)

One can expand the analysis to write down the expression of velocity of the marker plane

and the displacement field, and obtain the singularity at x = xm−x0

2t
which is exactly one of

the expression of the position of marker plane.

9.3 More constraints about connecting jump condition

During the diffusion process, there should be no particle lose for each component. If the

shape and volume of the diffusion material remain same, then the number of particles can

be represented by the concentration values. Mathematically, the total area under a concen-

tration function should be a constant. Suppose the concentration profile has been calculated

for all the elements except those contain an interface. The integrated concentration can then

be calculated for the region outside the interface.

Suppose we are looking for a function F to represent the concentration profile in an ele-

ment contains an interface. The besides the four constraints which come from the continuity

condition, there is another constraints for F of which its integrated value over the interval

should to be a desired number.
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