State Spill Policies for State Intensive Continuous Query Rn
Evaluation

by
Mariana G. Jbantova
A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

by

April 2007

APPROVED:

Professor Elke Rundensteiner, Thesis Advisor

Professor David Finkel, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

The needs of new modern day applications such as networkonimgj systems, telecom-
munications data management, web applications, remoteeai@donitoring applications
and others for near real time results over continuous datarss have spurred the de-
velopment of new data management systems called Data Sivearagement Systems
(DSMS). Unlike traditional database systems which answertome user queries only
after the finite data has been captured on disk, DSMSs pravigbe-fly answers to user
gueries as data is arriving at various rates in the form oficaous, potentially infinite
streams of tuples. To meet the timeliness requirements gicagpions, DSMSs aim to
keep all data in main memory. Thus queries with multiplesftdtoperators pose a major
strain on memory.

Existing adaptation techniques designed to address thig iare ineffective when
faced with continuous bursts of high data rates. When sy&taohexceeds system ca-
pacity, a DSMS has three options: 1) discard some new datera2h; or 3) spill data
to disk. Only option three allows it to produce delayed, yetaate and complete query
results. However, this option involves disk access ovetlaea change in the natural or-
der of tuples flowing through the query plan tree. As not aélat operators can process
correctly out of order tuples, data spilling may have a nggampact on the quality of
the final results. Moreover, since operators in a query plamgerconnected, changes in
the order of tuple flows inevitably impact the stages of ekeawf affected downstream
operators such as for example data purging . Data purgingdessary for processing
continuous queries composed of stateful operators. Thkeatauch operators is divided

into finite non-overlapping sets of tuples called windowku§, after all the tuples for a

window have been processed and all results output, thekstagn be discarded to free
memory for new data.

To address these issues, we have redesigned the statergtroictontinuous opera-
tors into smaller, finite, non-overlapping sets of tupleshsas partitioned window groups,
which incur less disk-access overhead. Second, we prowidéd capability of continu-
ous operators to correctly process out of order tuples ysimgtuation pointers. Third,
we design methods for downstream operators to synchramiziefgrocessing stages with
those of upstream operators to achieve optimized querytplaughput. Putting these
techniques together, we have designed a consolidatethglilaptation strategy which
considers all aspects of operators’ inter-connectionsquaexy plan for making optimal
adaptation decisions.

The effectiveness of our integrated approach was emgyritzdted in a comparative
evaluation study against several alternate spilling atet strategies. We conducted
our experiments on CAPE, a DSMS developed at WPI, usingrdiftetypes of query
plans composed of multiple partitioned window join operstoOur experiments prove
that despite the higher overhead of a more synchronizedatt@papproach, our consol-
idated strategy provides better query plan performancdaiekr plan throughput during

periods of continuous bursts of high data rates.

Acknowledgements

| would like to express my great gratitude to my advisor, PEdke A. Rundensteiner for
her guidance, patience, encouragement, and support. ldeddaige as a researcher and
professor and her wisdom as a human being helped me to gggthemme very critical
times of my life while working on my degree and to finish my @i

| would like to thank my thesis advisor Prof. Finkel for hisng and support. |
would like to express my special gratitude to Prof. SelkowHis incredible support,
thoughtfulness and understanding at the times when | netbaaad most, and to Prof.
Mike Gennert for his understanding and support.

| would like also to thank other faculty and staff membersrirthe CS department
at WPI, Prof. Mike Claypool, Glynis Hamel, Sharon Demairessica Pollock, Michael
Voorhis, and Jesse Banning.

| would like to thank members of the CAPE and DCAPE team, itipalar Bin Liu,
Tim Sutherland, Yali Zhu, Luping Ding and Brad Momberger tlogir joint work on the
CAPE system and for their responsiveness and help. | wokédtb thank the whole
DSRG group and especially my officemates and friends Mage®hltéd, Larisa Orlova,
Rimma Nehme, Bin Liu, Venkatesh Raghavan, Mingzhu Wei anaigMi for making the
office a more fun place to be during the long hours of work amdHeir invaluable pieces

of advice and encouragement at times when my spirits were low

Contents

1

Introduction 1
1.1 Introduction 1
1.2 Motivation. 4
1.3 Challenges. e 6
1.4 Contributions 7
Preliminaries 9
2.1 Stateful Operatorsin StreamingContext 9
2.1.1 Query Syntax for Window-Based Operators 15
2.2 InvalidationRules 61
2.3 Invalidation Synchronization Mechanism 23
2.4 Granularityof SpillUnits 25
2.5 Partitioned Window Join Operator 27
2.6 Definitions of Spilling and Unspilling 29
2.7 Content-Based and Time-Based Interconnections in ay@ian 34
Policy Design 37
3.1 Local Policies versus Global Adaptation Policies 37
3.2 GlobalPolicies 40
3.3 SpillingPolicies 14

3.4 UnspillingPolicies 64

System Architecture 49
Experiments 51
5.1 Testbed Description 15
5.2 Setupand Methodology, 51
5.3 Empirical Parameter Tuning 54
5.4 Comparative Evaluation of the Different Adaptationi€les 64
Related Work 72
Conclusions and Future Work 80
7.1 ConcClusions 80
7.2 FutureWork 81
87

List of Figures

11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2
3.3
3.4

4.1

Areal time mobile hospital DSMS.

Example of a continuouswindow.
Example of a hoppingwindow
Example of maximum number of windows a tuple may belong ta . .
Example of a query plan with different window sizes pegragor. . . .
Example of a window witdwe=3.
A window’s state transitiondiagram.
Invalidation example with w.size=7 min and w.step=2.min.
Example of a partitioned window group.
Window map diagram.
Spillingexample.
Example of content-based dependency between operator

Example of time-based dependency between operatars....

Example of a local adaptation policy.
Example of a global adaptation policy.
Global Unsynchronized Spilling Policy.
Global Synchronized Spilling Policy.

System architecture. o oo

Vi

...03

35
36

39
41

5.1 Experimentsetup. e

5.2 Queryplansusedintheexperiments. b2

5.3 Impact of readaptation intervals on query plan through@” plan, dif-

ferentreadaptationintervals. 57

5.4 Impact of readaptation intervals on query plan throughpar graph. . . 57

5.5 Impact of readaptation intervals on unspilling. Accleed number of

unspilled tuples@* plan, different readaptation intervals. 58
5.6 Impact of readaptation intervals on spilling. Accuntetanumber of

spilled tuples@’ plan, different readaptationintervals. 58
5.7 Impact of correlation percentage on throughput. Gl&aich Policy,

QMplan. 61
5.8 Impact of correlation percentage on spilling. Accurtedanumber of

spilled tuples, Global Synch Policg™ plan. 61
5.9 Impact of correlation percentage on unspilling. Acclated number of

unspilled tuples, Global Synch Polig® plan. 62
5.10 Impact of correlation percentage on invalidationaliation rate, Global

Synch Policy@QM plan. 62
5.11 Impact of dequeue ratios on throughput. Different éeguatiosQ”. . . 66
5.12 Comparative evaluation of throughput across all adept policies. . . . 66
5.13 Throughput? plan, data rate 45/6000. All adaptation policies. 67
5.14 Invalidation rate()” plan, data rate 45/6000. All adaptation policies.. . . 67
5.15 Spill rateQ? plan, data rate 45/6000. All adaptation policies. 68
5.16 Unspill rate@? plan, data rate 45/6000. All adaptation policies. 68
5.17 ThroughputQ” plan, data set D2. All adaptation policies. 70
5.18 Invalidation rate)” plan, data set D2. All adaptation policies. 70
5.19 Spill rateQ” plan, data set D2. All adaptation policies. 71

Vii

5.20 Unspill rate” plan, data set D2. All adaptation policies 71

Al

A2

A3

A4

A5

A.6

A7

A.8

A.9

Throughput@’ plan, data set D1. All adaptation policies. 87
Invalidation rate(Q” plan, data set D1. All adaptation policies. 88
Accumulated number of spilled tupleg” plan, data set D1. All adapta-

tionpolicies. e 88

Accumulated number of unspilled tuplé€g’ plan, data set D1. All adap-

tation policies. 89
Throughput@™ plan. All adaptation policies. 89
Invalidation rate)™ plan. All adaptation policies. 90

Accumulated number of spilled tupleg? plan, data set D1. All adapta-
tionpolicies. e 90
Accumulated number of unspilled tupl€g’ plan, data set D1. All adap-

tation policies. 91
Throughput@’ plan, data set D1, 30/6000 data rate, correlation percent-

age 5%, dequeue ratio 10. All adaptation policies. 91

viii

List of Tables

2.1 Variables used in the invalidation algorithm. 33
5.1 Definitionstable.
5.2 QM plan, correlation percentage statistics. 63

Chapter 1

Introduction

1.1 Introduction

The rapid advances of technology accompanied with chamgasiiket forces stimulates
the development of new business and science-related apptis and systems. Increase
in the volumes of data available to companies and reseastituitions, the constantly in-
creasing speed of networks, the continuously increasiptpgment of sensors and wire-
less technologies in certain industries [35] and the neath&byze streams of data in real
time have spurred the development of new types of data marmagesystems called Data
Stream Management Systems (DSMS). Examples of applicaitiomeed of the services
offered by the newly developed systems include financialiegipons, network moni-
toring, telecommunications data management, web apjicgatmanufacturing, remote
medical monitoring applications, sensor networks, anerstf85, 26, 6].

Unlike traditional database systems which deal with a fiaiteount of data, and an-
swer user queries only on data that had first been capturedkntide newly developed
systems aim to answer user queries in real time as the datavis@ at various rates in

the form of continuous, potentially infinite, streams ofleg The unpredictable char-

acteristics of the arrival patterns of the data streams hadcontinuous nature of the
gueries submitted to stream processing engines, togettiethe constraints imposed on
the streaming environment by the requirements of the agupdics for real-time yet accu-
rate results necessitate the development of novel quemyiaption techniques. Methods
developed for traditional database systems may no longaplecable due to the specific
characteristics of the streaming environment. Currenflyimization methods for DSMS
include at the operator level exploiting an operator’'s celgy [3, 29] using operator’s
punctuations for state purging [5, 29]; at the schedulegllearious operators’ scheduling
techniques [29, 22, 4], and query approximation methods asdoad shedding [35]; at
the query plan level the distribution of the query plans asmultiple machines [29], dy-
namic query plan migration [36] and operators reallocafir27]. Efficiently handling
critical resources such as main memory is a major conceireidé¢sign of DSMSs. Any
system of computing devices whether a centralized onejstorgsof a single query pro-
cessor or a distributed one, consisting of multiple intarexrted processors, suffers from
the inevitable problem of limited resources. They all haveipper bound on the amount
of data they can ultimately process at a time. Thus integmnadf optimization techniques
at various levels of query plan processing becomes negefssahe optimal utilization
of the available yet limited resources.

The focus of this thesis is the development of strategietefaporarily pushing oper-
ators’ states to disk during periods of high-data arrivedsdo prevent run-time memory
overflow problems and potential system crashes; and sieatégy bringing data back
to main memory during periods of low system load or for finighthe query plan pro-
cessing. Thus a DSMS’s most critical resources such as mamany and processor’s
computing cycles can be managed and utilized in a very aftiei@y which would ul-
timately result in a better quality of service for the finapagations. Such optimization

techniques, however, face certain challenges. 1) The sngb operator’s states be-

tween disk and main memory has to be performed on demand ainenwith little
overhead. 2) The statistics on which different optimizatiechniques will be based has
to be collected at run-time, thus it has to be light-weigkt,accurate enough for making
better optimization decisions. 3) As data will be swappda/ben disk and main memory
at run time, the system has to be able to handle out of ordkr &mpvals and still produce
accurate and correct results. We define as such outputgegtiitno data tuples missed
andno extra tuples generated.

Adaptation techniques based on spilling data to disk andgkeciated with this mem-
ory management issues such as how mush data to spill and loogetoize the data spilled
to disk have been investigated in the design of join opesatoch as XJoin [32], progres-
sive merge join and hash-merge join [23] optimized for asicgsdata over distributed
networks stored in traditional database systems. [23ldises the advantages and disad-
vantages of several different flushing policies such as falspolicy, flush largest parti-
tion first,and flush smallest partition first policy.

Since even distributed data stream management systemsltimagely a finite amount
of processing resources, data spilling can help distribaystems too ro alleviate mem-
ory shortage problems incurred by spikes in data arrivaktg®0] investigates the issues
related to data spilling in a distributed environment. [R8juses on the integration of
two run-time adaptation techniques, namely, state spiis& and state relocation to an
alternate machine. The paper analyzes the tradeoffs iegately factors affecting these
two runtime operator state adaptation techniques and pespiwvo adaptation strategies:
lazy-disk and active-disk. These strategies integrath btate spill and state relocation
adaptations with different emphasis on local versus gldbaision making.

Unlike [20], we focus only on the issues associated with dating. We expand
on the memory management ideas presented in [23, 32]. Theitees proposed in

this work, however, are applicable to both centralized aisttiduted query processing

environments. The goal of the thesis is to investigate thgachof such strategies on the

performance of query plans consisting of multiple statensive operators.

1.2 Motivation

As discussed in [10], efficient processing of queries unaeying data arrival rates and
availabilities of system resources is the key to the suaaksgny applications using the
services of DSMS. However, current research of continuagsygprocessing often as-
sumes query operators with fairly-small sized operatdestdor example, small window
joins or stateless operators such as select and project 8,1%]. Despite the fact that
complex multi-join continuous queries are rather commaothendata integration and the
data warehousing environments and the fact that there are papers on parallel oper-
ators like FLUX [27], memory management for continuous ggewith such potentially

huge operator states [9] have not been carefully studied.

erous injured rushed
st help location

s

ol

=

ple Sensors

[Bee

O (Joins on [Patients’

Patients Patients Monitoring System

ig __ Analyzev
patients

X * > current
:> - condition

-
———
«-———

<

A Natural Disaster Scene
System still has limited
resources

A Data-Stream Management Syste!

Figure 1.1: A real time mobile hospital DSMS.

For example, a data integration system may be used by meadarals working in a
mobile hospital deployed to a natural disaster scene ortkefiald as illustrated on Fig-
ure 1.1. Multiple sensors per person to monitor vital lifenpgoms can be attached to
casualties as they are checked into the hospital. Additigmamote static database sys-
tems containing information on medical conditions or pasgéhealth records, assuming
ability to identify patients, can also be constantly queridssume further the ability of
sensors to increase their sampling rates upon the det@vio@f a patient’s condition.
In such situations of emergency characterized by unpididy and chaos, the neces-
sity of fast yet accurate decisions on behalf of the medicdf makes it very important
that the data stream management system does not becomettbaduk in the chain of
events. Otherwise, this may cause the preventable deattopiga Thus such a system
needs to be able to operate under potentially very heavyleamlk and still produce as
many and accurate results as fast as possible. The morésrasibroduced at run time
the more information the medical stuff will have for makingical life-saving decisions
on patients’ course of treatment. Furthermore, no appratemesults that we may be
able to generate by the employment of load shedding techgioay be acceptable to the
end-application as patients’ records ought to be accuoate fater post-disaster analysis
and inspection. In the context of such stringent conssaanid requirements it is very
important to provide an optimal main-memory managemeatessy.

A viable solution to the above scenario may be the temporasphipg of operators’
states to disk as discussed by XJoin [32, 9] and Hash-Meiigd2®, 9]. Thus no tuples
will be lost during the arrival of high bursts of data, yet th8MS will still be able to
continue to produce near real-time results regarding thretistates of patients. The em-
ployment of a content-based data-spill strategy can fuithprove the usefulness of such
a system by assigning high priority to the data of patientsritical condition and first

spilling the lower-priority data: the data of patients whie aurrently in stable condition.

1.3 Challenges

The main challenges in the design of a join operator for theasting context with the
capacity of swapping data between disk and main memory oradérand the design of
policies which would keep the operator’'s performance ainogitlevels for a particular

system load include:

1. Swapping of data between disk and main memory should festtdhe accuracy of
the results produced by the operator. This means theregbeuito missed output

tuples and there should be no duplicate tuples ever output.

2. Reading and writing data to disk are very expensive ojperain terms of system
resource consumption. Thus, such adaptations should no¢tiermed too often
by the operator, otherwise it may hurt system performartds.itportant that the

moments when these adaptations need to be performed bettoidentified.

3. Since disk access is a very expensive operation, the lgréguat which spilled
tuples are stored on disk is important. Larger files provigleléss disk access
overhead, but reduce the flexibility of unspilling policiesich may cause sub-
optimal query plan performance. On the other hand, smad fiflevide for more
flexible unspilling policies but may cause increased disteas costs by incurring

too many reads and writes.

4. To correctly detect when a DSMS experiences heavy loadenwlata arrival rates
have slowed down and the system has enough free resourcexesg any spilled
on disk tuples, statistics have to be collected and analyfzmllecting statistics
may prove to be counterproductive, as it is an expensiveatipar It is important

to decide what statistical data is sufficient and how oftecoltect it.

5. The partition level statistical data collected by opammshould be stored in a suit-

able data structure.

6. Operators in a query plan are interconnected and depeondesach other. It is
important that during a query plan execution operators syorize their work to
improve system performance. This entails the need for: @)ggating metadata
about the stages of query execution down the query planl)gmlicies for work
synchronization; and c) policies for data purging. It skioloé noted that sending
too much information down the query plan can hurt the peréoroe of the operator
in two ways: it will increase the time an operator spends twess the incoming
information instead of processing incoming data and it indkease the amount of

memory consumed by the operator.

1.4 Contributions

This thesis has made the following contributions:

1. A new partitioned window join operator with the ability $pill and unspill data to

disk on demand has been designed.

2. We further extend the semantics of punctuations embenidtéee data stream to
encode information of the processing stages completed loparator. Such infor-
mation is used for the correct processing of out of orderesipind for the design

of efficient data invalidation policies.

3. A new adaptation policy to synchronize the work of opamato a query plan has
been designed. The policy uses metadata about the stagesrgfexecution prop-
agated down the query plan tree by operators and partitia &atistical data to

make better memory management adaptation decisions.

7

4. We have designed several different adaptation policigsdifferent levels of query

plan synchronization.

5. All the policies have been implemented and integratealantiata stream manage-

ment system called CAPE.

6. Experiments on the relative performance of the diffegataptation policies have

been carried out using a real software system, not simulatio

Chapter 2

Preliminaries

2.1 Stateful Operators in Streaming Context

One of the distinguishing characteristics of continuousrgyprocessing is that the size
of the input data may be potentially infinite. Thus query planmposed of one or more
operators, which require to see the whole input before prioduany query results, would
not run in the streaming environment. Such operators atedchlocking operators. A
way of enabling queries with blocking operators to run in streaming environment is
by defining a mechanism for continuously breaking down tipaitistream into finite sub-
streams of data. This can be achieved by imposing condraimthe query output. In
the streaming context, bounds on the size of the input sséamosed by constraints on
the query output are callegdindows. Windows can be defined as limits on the maximum
distance tuples can be apart from each other in time or tuquietd¢o be considered in the
guery. Windows are characterized bgize and adliding step. In the rest of the thesis we
will denote the size of a window witiv.size, and its sliding step witkv.step. A window’s
size can be expressed in terms of time units or tuple-co@urssequently, there are two

main types of windowsti me-based windows andcount-based windows. The sliding step

of a window determines the distance between two conseontiaows. Sliding steps are

also calledpanes[17]. In [17] a window is said to be composed of panes.

| < w.size i
w1
w.step
e
w2
w3
wd

Figure 2.1: Example of a continuous window.

Based on the ratio of a window's size to its sliding step, wind can be classified as
hopping or continuousHopping windows havew.size <= w.step whereas continuous
windows havew.size > w.step. In the latter case a tuple can belong to more than one
window. Figure 2.1 shows an example of a sliding window witkize = 4 time units
andw.step = 1 time unit. Figure 2.2 shows an example of a hopping windowvh wit
w.size = 4 time units andw.step = 5 time units . In both figures we use the notation
wid whereid >= 1 to identify a particular window. As it can be seen in Figur2, 2n the
case of hopping windows a tuple belongs to at most one winflk8}.gives an extensive

list of window types that can be imposed on an operator.

w.Size oy

w1| ‘ ‘ | ‘

w.step A

Figure 2.2: Example of a hopping window

During query processing each individual window is chandogel by its beginning

10

and ending parameters. For time-based windows, these pteestare expressed in time
units and may be calculated relatively to the beginning tahthe first window. There
are different ways of determining the beginning time of tmstfivindow. It can be, for
instance, either set to the System time at the moment they dnaer been submitted for
execution, or it can be set to be equal to the timestamp of thietdiple received by the
operator. In this work we use the latter approach. We refénédeginning time of the
first window as thequery plan start time and we denote it witlgp.start. As the query
plan is being executed, the newly created windows are asdigeginning, denoted with
w.start, and ending times, denoted withend, relatively to the query plan start time. For
example, let's assume that windowWwl() from Figure 2.1 has a beginning time equal to
12:00 and ending time equal to 12:04. We assumewtsate andw.step are expressed
in minutes. In this exampley.size = 4 minutes andw.step = 1 minute. So window
2 will start at 12:01, one sliding step later than window 1d d@nwill finish at 12:05,
one sliding step later than window 1. Respectively, windowil8 start at 12:02, two
sliding steps later than window 1, and so on. When the stad@ @iperator is organized
in hopping windows, every new tuple that arrives at the irqueues of the operator for
processing will belong to at most one window at a time. On tiieiohand, when the
state of an operator is organized in continuous windowsyavew tuple that arrives for
processing will belong to at least one and possibly severadlaws simultaneously as
consecutive continuous windows have overlapping bouadatiet us look at Figure 2.1.
We again assume that the first window starts at 12:00 and ¢A@0&. Then a tuple with
a timestamp of 12:03 will belong to windows 1, 2, 3 as thesedaivs have overlapping
boundaries as it is shown in Figure 2.3. The maximum numbevindows fnaxwW) a
tuple can belong to is determined by the following formula:

Formula l: mazW = [(w.size/w.step)]

The windows a tuple belongs to are determined by the relatiger of a tuple’s ar-

11

Wl

| DO | P |
| | La] b

W2

Lorl e oy

W

= O O e

Wil

Figure 2.3: Example of maximum number of windows a tuple melpiyg to.

rival at the operator for processing in the case of counetbagndows and by a tuple’s
timestamp in the case of time-based windows. As in [36], veggasa unique identifica-
tion number to each window. The identification numbers ase@ed to be taken from a
sequence of consecutive integers starting at one. Thusdowis identification number
also indicates how many sliding steps have expired from tieeygplan start time until the
beginning time of this window, that is the number of windowsgeding this one. For ex-
ample, the very first window open at an operator during a gplkanry execution is assigned
an identification number of 1. The next window whose begigriime is a sliding step
away from the beginning time of the first window is assigneddamtification number of
2 and so forth. We use this information to calculate the idieation numbers of all win-
dows that a newly arriving tuple would belong to. Algorithmdtlines the basic steps we
use to do this. As Algorithm 1 shows, we first identify the IDtbé last window a tuple
belongs to. Then we use this information to trace back aledmier windows the tuple
belongs to. A tupléuple belongs to a windowvid if the tuple’s timestamptgple.time) is
within the window’s boundaries, which we define here as:

Formula 2: w.start < tuple.time <= w.end

Windows impose constraints on the evaluation semantickefjtiery. Only tuples
which all belong to the same window will be processed by amaipeto produce valid

guery plan output. For example, a join operator will join avtyearriving tuple only with

12

Algorithm 1 Calculating the Windows a Tuple Belongs to.
I nput: tuple.tine
Qut put: set wids={n|n>=1 or enptyset}
. long tuple.maxW=-1
. long ceiling=[(w.time — gp.start)/w.step)|
. long floor=| (tuple.time — gp.start) /w.step]
. long maxW.start=gp.start+ceiling*w.step
. long maxW.end=maxW.start+w.size
. long minW.end=qp.start+floor*w.step+w.size
Case 1: tuple belongs to no w ndows
L if((w.time <= gp.start) or ((w.size < w.step andtuple.time > minW.end andmaxW.start >= tuple.time) or
(w.size < w.step andtuple.time = minW.start or tuple.time = minW.start)) then
8: return wids = ()
Case 2: tuple belongs to first w ndow
9: if(tuple.time—qp.start <= w.size andw.size < w.step) or (tuple.time —qp.start <= w.step andw.size > w.step))
then
10: return wids.add(1)
Case 3: w.size>=w.step: tuple belongs to a wi ndow
11: if(tuple.time >= maxW.start) then
12: tuple.mazW = ceiling + 1
13: wids.add(tuple.mazW)
14: if(tuple.time <= maxW.start) then
15: tuple.mazW = floor + 1
16: wids.add(tuple.mazW)
Case 4: w.size<w. step: tuple belongs to nmore than one w ndow
17: while(tuple.time <= [(tuple.mazW — 1) * w.step + w.size] and ¢uple.maxW # 0)) then
18: wids.add(tuple.mazW)
19: tuple.maxW = tuple.mazW — 1
20: endwhile
21: return wids

COUITRWNEF

~

those tuples in its current state which belong to the samelaws that the new tuple
belongs to. It is possible that a query plan can be composeultiiple stateful operators
each having different window characteristics. Figure 2.4n example of such a query
plan. As is illustrated, while join operators 1 and 2 haverafihopping windows on
their outputs with the following characteristics: windowzes of 5 and 4 time units and
window sliding steps of 7 and 6 time units respectively, [perators 3 and 4 have defined
continuous windows with widow sizes of 8 and 7 time units, emdow sliding steps of
3 and 5 time units respectively.

In this work we assume time-based windows. However, thenigoles we propose
can easily be applied to count-based windows. We assume thgtle’s timestamp is
set at the data source and that tuples arrive at the DSMS @er.oMktwork delays and

unsynchronized data sources may cause disorder in the ingatata streams. How-

13

i Size=5
i step= 7

Stream E

W 5iZe= 8
wistep= 3

wWgiZe= 7
w.step= 5

Stream C Stream D

Stream A Stream B

Figure 2.4: Example of a query plan with different windowesiper operator.

ever, different techniques have been already proposectiliténature for resolving such
issues. One such mechanism is called heartbeats [33]. beatstare punctuations on
the timestamps of tuples which can be generated either bydbe sources or by the
DSMS. A heartbeat with a timestamp = 12 : 05 indicates that all tuples with times-
tampstuple.time <= 12 : 05 have been received and no more such tuples are expected
henceforth. Another mechanism discussed in the literasucalledSack. Sack allows
disorder in the data streams within predefined bounds [33¢ generation and propaga-
tion of heartbeats is out of the scope of this work. In our wamky the leaf operators of

a query plan assume that tuples arrive in order. Sincespidind unspilling data to disk
changes the natural order of tuples, we have implementetdanexns for handling out

of order tuples. We employ communication techniques cailedtuati on pointerswhich

14

help operators exchange information with their ancestoosithe current stage of their
data-processing. In Section 2.3 we provide an exact defimaf apunctuation pointer

and an explanation how punctuation pointers are incorpdrato our framework.

2.1.1 Query Syntax for Window-Based Operators

The sgl syntax does support the definition of queries wittetoonstraints imposed on
their output. This has prompted the development of a newyglaeguage called CQL
[25]. CQL is an SQL based language. It has a rich syntax wHlolwva for the definition
of count-based and time-based constraints. CQL, howewves, bot have a clearly defined
and flexible window semantics which would allow the expreissf different types of
windows in a query. [18] presents such a semantics. Quenat example of a multi-
join query defined using a CQL-like syntax. The query assumegxistence of a stream
processing financial system which receives financial data fvarious banks and other
financial institutions. The query joins streams over a 10ut@rperiod and outputs the

data every 3 minutes.

QUERY 1:
SELECT br oker Nane, min(price)
FROM bank1, bank2, bank3
WHERE bank1. of f er Curr ency=bank2. of f er Currency

AND bank2. of f er Cur r ency=bank3. of f er Curr ency
AND bank1l. of f er =bank2. of f er
AND bank2. of f er =bank3. of f er AND
bankl. ti mest anp>=bank2. ti nest anp+w ndow
AND bankl. ti mest anp>=bank3. ti nest anp+w ndow

GROUP BY broker Nane

The same query can be expressed also as the query below WAEI& stands for

window attribute [18]:

QUERY 1:

15

SELECT br oker Nane, min(price)
FROM bank1, bank2, bank3
WHERE bank1. of f er Curr ency=bank2. of f er Currency
AND bank2. of f er Cur r ency=bank3. of f er Curr ency
AND bank1l. of f er =bank2. of f er
AND bank2. of f er =bank3. of f er AND
bankl. ti mest anp>=bank2. ti mest anp
AND bankl. ti nmest anp>=bank3. ti nest anp
[WATTR ti mestanp RANGE 10 mi nutes SLIDE 3 mi nutes]
GROUP BY broker Nane

2.2 Invalidation Rules

As the execution of a query plan proceeds, no longer negedata accumulates in main
memory, thus limiting the availability of memory resourdesthe storing and processing
of new tuples. This necessitates the discarding of any tedddata accumulated in the
states of operators. The state of an operator consists tifeatuples which have to be
buffered so that the operator can produce complete andatectgsults. To be able to
ensure correct and complete query plan output, operated nges for detecting when
data will be no longer needed. We provide a set of rules whigrantee that only unnec-
essary, already processed data will be discarded by opgrato

Since windows have finite sizes, once an operator has recave processed all tu-
ples that belong to a given window, these tuples can be disdagranted the condition
that they do not belong to other windows the operator is gtdkcessing input for. The
deletion of no longer needed tuples reduces the overalldfilee state of an operator,
thus reducing the memory resources consumed by it. In thexioof DSMS, the process
of detecting and deleting no longer needed tuples by a wirstosam operator is called
invalidation [19]. An effective invalidation strategy can help an operaichieve better

and more efficient management of its memory resources. Ti@agtee correct and com-

16

plete query plan output, which means that no tuples are isdébefore all output results
for a given window have been produced, we define two invabdatles.

Invalidation rule 1: Tuplesin an operator’s state can be invalidated when they be-
long to only one window and all the tuples within the window's range have already been
received and processed.

The rule is correct. It needs no further conditions becausednditions are embedded
within the rule. If the following two conditions are both idiked, then rule number 1
alone is sufficient to guarantee that no longer needed tapéemvalidated at the earliest

possible moment:

e Condition 1: the window is hopping.

e Condition 2: tuples arrive in order at the operator.

However, if tuples arrive out of order, and the windows define the operator are
continuous, then rule number 1 is not sufficient to guaratitatonly outdated tuples are
deleted from an operator’s state. Before proceeding wetdgfinition of a second more
general rule, several concepts need to be defined.

As it has been already explained, in the case of continuondamis, a tuple may
belong to more than one window at a time.We define the degreenafow correlation
(dwc) to be the number of windows that a window shares tuples wittueling itself.
dwc is equal to the maximum number of windows a window can sharesuvith minus
one. The maximum number of windows can be calculated usingiéia 1.

We note that hopping windows have a degree of window coroglaif zero. As no
two hopping windows have overlapping boundaries, a hoppimglow shares no tuples
with other windows. This can be seen in Figure 2.2. As anotixample, consider a
continuous window withu.size = 7 time units andw.step = 2 time units as illustrated

in Figure 2.5. The degree of window correlation for this wonds equal to 3 as calculated

17

using Formula 1 and subtracting 1 from|i{7/2)] — 1 = 3). Thus each window for such
a query plan shares tuples with at most three other consecnindows. As shown in
Figure 2.5, wl has overlapping boundaries with w2, w3 and Wihdow 1 ends before
window 5 begins. Thus a tuple with a timestamp of 12:06:4gs$ to four windows

simultaneously: wl and the three other windows w1 shardesuwyth, namely windows:

2,3 and 4.
wWsize =7
wistep = 2
1
2
3
il
4
5
[
End of window 1 i I wlend
i)
Eeginning of window 1 | N w2.end
10
! B N N w3end.
Wi 12
" | waend
14
S R w5.end
16
17
18
19

Figure 2.5: Example of a window witlwe = 3.

The degree of window correlation determines the number nflaiwvs a window may
share tuples with. Thus it implies how many consecutive wwglshould have received
and processed all the tuples that belong to them beforesie the first window can
be safely discarded by the operator and the window can bedldsote that such "in-
terleaved” windows may or may not have yet received and ggeoball the tuples that
belong to them. Thus an operator cannot safely invalidaglesufrom a window even if

all the tuples falling within the window’s range have bearatly received and processed.

18

Tuples from a processed window may be needed for the coraplefithe processing of
other windows so our goal is to determine a method to decidenvithis safe to purge
tuples.

Closing a window means discarding all meta data (record&)tained by the opera-
tor for the given window. We number windows starting from hu$ the most currently
opened window will have the largest window identificatiommhoer. If we start invali-
dating tuples from the most currently opened window, thenuse what we define as
backward window correlation to determine whether it is safe to discard tuples from this
window or not. However if we start invalidating tuples frohetearliest open window, let
us say, for example, from window 1, then we need to deternomernany windows after
the earliest opened window have received and processedubis. We define this as
forward window correlation.

Based on how many tuples for a window have been received #nua fvindow can
be in several different states. Figure 2.6 shows the two msiaites a window can be in:

open andclosed. Each of these states is characterized by two sub-states.

new tuple arrival Invalidation

Open Window Closed Window

Sub-states Sub-states

Figure 2.6: A window'’s state transition diagram.

An open window is a window for which at least one tuple has been recklwy the
operator. Yet all tuples belonging to the window have notnb@®cessed yet. Based on

whether all the tuples received thus far for the window arenain memory or not, an

19

open window can be further defined as eithetive or inactive. An active open window
is an open window for which at least one tuple is residing immnmaemory. Aninactive
open window is an open window with no tuples within its range currentlgideng in
main memory. This implies that all thus far received tuplethiw the window’s range
have been spilled to disk. Even thoughiaactive open window may currently have a size
of 0, the operator may not have produced yet all possibleubugsults for this window.
For it is possible that more tuples are expected to arrivé@toperator or that tuples
temporarily put on disk may still need processing.

We define a window to be @osed window if no more tuples will ever be received
by the operator from its children- children can be eitheeotiperators or input streams.
A closed window, however, may or may not have its tuples invalidated. Thudpsed
window can be further defined gsocessed or invalidated. A processed closed window
is a window for which all output results have been receivethioutuples within the win-
dow’s range have been invalidated yet. This may bedue tcatttatiat its tuples are still
being required for processing of other windows. A procesgediow has no fragments
of it spilled on disk. On the other hand, amvalidated closed window is defined to be
a closed window with all its tuples invalidated. If any metéormation for this window
has been maintained by the operator during query plan erpacsuch meta information
can be now safely deleted because by invalidation rule 2ubles from this window are
guaranteed to be no longer needed for any processing intine funvalidation rule 2 is
provided below.

To ensure that all requirements necessary for the safddat@n of tuples have been
met in the case of out of order tuples and continuous windexegjefine a second inval-
idation rule.

Invalidation rule 2 : A tuple can be invalidated if and only if all the windows thple

belongs to are in a closed processed state.

20

The intuition behind invalidation rule 2 is that if a tupleltwegs to processed windows
only, then all possible output tuples that involve the tupee been already produced and
output by the operator. Furthermore, no future output tesull involve this tuple as no
newly arriving tuples will belong to the windows the tuplddrggs to. Thus the tuple can

be safely discarded by the operator to release memory foidagav

Join Operator

_—

All tuples Tor window 3
already :received.

Time: 0 Time: 11

Figure 2.7: Invalidation example with w.size=7 min and egst2 min.

For example, let us again assume that the state of a jointopésalivided into con-
tinuous windows withw.step = 2 time units andw.size = 7 time units as shown in
Figure 2.7. Let’s further assume that at tim&me = 11 tuples within the time-range
tuple.time = 1totuple.time = 3 have not been received yet by the operator as indicated
by the question mark in Figure 2.7. Furthermore, the opefae no information about
whether tuples with timestamps between 1 and 3 should betegdf any tuples within
the rangetuple.time = 1 to tuple.time = 3 arrive at the operator they will belong to
w1l and w2. All tuples with a timestamp greater than 3 have laggving at the operator

in consecutive order. Thus at timgime = 11 the operator has received the last tuple

21

within w3’s range. As is illustrated in Figure 2.7, w3 staats.time = 4 and ends at
t.time = 11 and it shares tuples with wl and w2. By calculating the degfe@ndow
correlation with the help of formula 1, we can verify that wisld share tuples with
three other windows. As w3 is the third consecutive open wivydt can share tuples
with 2 other windows only- namely wl and w2. Since w1l and w2stiteexpecting new
tuples, no tuples which belong to either of these windowstana3 at the same time can
be invalidated. The last tuple which belongs simultangotesiv2 and w3 has a times-
tamp oftuple.time = 9. Given these conditions attime = 11, can we invalidate any
tuples from w3? Tuples with timestamp&iple.time = 10 andtuple.time = 11 do not
belong to any of the previous windows: w1l and w2, howevel tteebelong to w4 too,
besides w3. At time.time = 11 w4 will be in anopen, active state, therefore no tuples
which belong both to w3 and w4 can be invalidated either. Tdiusnet.time = 11 no
tuples can be invalidated.

The check if an invalidation process can start can be trageither by the expiration
of a predefined time interval (time-driven invalidation)ibcan be triggered by the final-
ization or the beginning of an expected event (event-drireaidation). One example of
a plausible invalidation check trigger would be the exparabf a sliding step period as
the end of each sliding step marks the end of an already opsstiowi and the beginning
of a new one.

The invalidation process in our system, however, is a coatlan of both triggers- it
is time- and event-driven. We use an invalidation intervggbr than a window’s sliding
step. As we assume that tuples may arrive at an operator omtdef, the end of a
sliding period would not necessarily mean that all tuplestfe just expired window
would have been already received and processed by the op@naples from this window

may have been spilled to disk either locally or upstream tireryg plan?, that is, at

1Data in a query plan flows from leaf operators to the root. Thhes direction from the leaves to the
root of a query plan tree is called downstream and vice vema the root operator to the leaf operators

22

children operators. Thus by using an invalidation timemgienthan a window’s sliding
step valuable processing resources will not be wasted lgyém invalidation checks at
the end of each sliding period, as each invalidation atterapses some overhead.

In our system we use two more event triggers: tuples areidatald before a spill
process starts and after an unspill process is finished.eThggers are independent of
the adaptation policies used. The intuition behind settigge triggers is the following.
Before an operator spills tuples to disk, the operator caclcif any tuples can be invali-
dated from its state as this could reduce the size of datgewtiv disk, therefore reducing
the cost of spilling. Moreover, the time necessary for bngghe same data back to
main memory will be also decreased. Thus, by doing an inaabd check before a spill
process, we anticipate that valuable computing resoure@gsh®a saved in the long run.
As some windows may not be invalidated because parts of theomis have been spilled
to disk locally before joining them with later arrived tuplevithin the same windows’
ranges, whenever tuples are unspilled these windows may dlhvuples within their
bounds received and processed. Thus, the tuples from thiedews can be invalidated.
By invalidating at the end of an unspill process we anti@gatachieve more efficient
memory management. As the end of an unspill process markiea ispthe memory
consumption of the operator anyway, the invalidation of anyonger needed tuples will

reduce the amount of consumed memory at that moment.

2.3 Invalidation Synchronization Mechanism

As we assume that query plans may consist of multiple staégsive operators which
may result that some tuples be out of order at non-leaf opes;athe timestamps of the

tuples alone do not provide enough information for makingect decision regarding

upstream.

23

what tuples can be safely invalidated from an operatorgest&e assume that tuples
arrive in order at leaf operators so the timestamps of thiesuppemselves can provide
enough information for the invalidation process at theserafors. Out of order tuples
downstream the query plan can be caused by spill adaptaticegses executed upstream
the query plan. Thus operators need a mechanism of syneirgrtheir invalidation
processes with the processing stages of operators locpttceam the query plan. By
synchronizing the invalidation processes we mean that ecabq@r can invalidate tuples
from its state, unless it has been explicitly notified by <® children operators that no
tuples with timestamps within the range of the tuples to alidated will be received
in the future. A simple yet elegant way to achieve such sysrbation is by using
punctuated tuples (or also called punctuated messagedgened with the data stream.
Punctuation is a way of inserting meta-data about the datarst by encoding the
information into special-purpose tuples. [19] defines puaion as "an ordered set of
patterns, each corresponding to an attribute of the tuplég.overload the punctuation
message with extra information about the stage of proogseimich has been just com-
pleted by the sending operator. In our system we use purctuaessages to inform
operators downstream about the time-ranges of tuples tvat Ibeen already processed
upstream. Thus downstream operators will know that tupidsmsuch data ranges will
never come again. This gives them information to make cormealidation decisions.
The punctuated messages used by our invalidation poliayediedinvalidation pointers.
As it was discussed, anvalidation pointer contains the time ranges of tuples that have
been already processed and invalidated upstream. To dgeare@orrect invalidation infor-
mation, an operator is allowed to send invalidation postely after it has successfully
invalidated tuples from its state. As we assume in-ordévalrof tuples at leaf operators
only, which are directly connected to the data sources,dpafators do not receive ex-

plicit punctuation pointers. Such operators thus initthiem. An implication of this is

24

that leaf operators should be able to invalidate some tuples their state at the expira-
tion of each sliding step. This may not be a very efficientteggg though if the windows

defined for an operator are large, continuous windows witi small sliding steps.

2.4 Granularity of Spill Units

In our work we consider query plans composed of multipleestatensive join operators.
The state of an operator corresponds to input tuples an topdras to keep buffered in
order to produce accurate and complete query results. lsttb@ming context the size of
the state of an operator is implied by the characteristitsefvindows imposed on it. For
example, hopping windows with smaller window sizes implyaier operators’ states. As
windows of state-intensive window operators may grow togdadue to spikes in input
which may cause strain on machine resources, adaptationitges at the state or state-
window level of an operator such as state spilling to disk legome very expensive.
To overcome the problem of potentially too costly query miation strategies, the state
of a stateful operator can be partitioned into numerousowattapping subsets of tuples.
Thus during a query optimization stage only a subset of thelevbperator’s state such
as window fragments may be potentially locally spilled tskdiln our work, we partition
each input stream into a large number of partitions per winds proposed in [11]. Every
operator partitions the data as it comes, using its owntpaniing function. Each partition
is identified by a unique partition ID, i.e., 1, 2, . . ., n (withdenoting the number of
distinct partitions). This gives us the opportunity to effeely work with partitions during
an adaptation process without even having to rehash angaisting ones at run time.
This method has first been applied in early data skew hantilergture [15] as well as in
the recent stream processing work Flux [27]. We organizeadpestates based on input

partitions. For simplicity, we may use the term partitionréber to the corresponding

25

operator state window partition if the context is clear.

For a single input query operator, as tackled in Flux [27]s ihatural to adapt par-
titions from this one input stream. However, as discussddQi for the multiple-input
operators we focus on, there are partitions from diffeneptits in the operator states with
the same partition ID. Thus, multiple ways of organizingtip@ns are possible, as dis-
cussed below. As in XJoin [32], we could choose partitionsfione input at a time and
adapt them independently. However, this strategy inceetise complexity of bringing
back to main memory any temporarily flushed to disk tupletépartitioned processing
of multi-way join queries. Namely, if partitions have beamsped to disk, the operator
will be required to keep track of extra timestamps per tuplé per partition to avoid
duplicates later when spilled data is brought back to maimorg. Thus we instead use
the [9, 10] idea of synchronized flushing of a group of pantii with the same partition
ID, but we take the same partition group per window. This edugs the smallest unit to

be adapted, as illustrated in Figure 2.8. This simplifieautipilling process.

(A4] [B.]B,] [C]S] (A8] [B]Be] [C]Co]
W T T @ N R H
HENU R ER AR 2 2] 2] I
e O I O R I S Y N] R

:M—L-J -------- Lﬂ_J__I: \4—1 :_ il :<—F'1W2

Operator state organization: Operator state organization:
partitioned widow group across all Ay B, 1| Cy _panitiun group per window per
queues input queue

o] =y

Blwln|=m
Blwlr] =0

Figure 2.8: Example of a partitioned window group.

For simplicity, we call all partitions of a window with the s& partition ID from
different inputs ongpartition group. The term partition may be used to refer to a window
partition group if the context is clear. The processes dlisgiand unspilling data to disk

will be described in more details in Section 2.6 .

26

Granularity of Adaptation. The number of partitions into which the windows of an
operator are divided determines the granularity of the &dimm level. Thus controlling
the number of partitions provides control over the costarired during a query optimiza-
tion process. More partitions would imply smaller partitigroups, therefore smaller
costs when data is written to disk or read back to main membtog. small units, how-
ever, may cause too many writings to and readings from disis, increasing the overhead

of adaptation. One has to find the balance based on the sgstbaracteristics.

2.5 Partitioned Window Join Operator

By dividing the state of an operator into smaller independelaptation units, more cost
efficient optimization strategies can be applied at theedtatel of an operator. We call
these adaptation units partition groups by windgar {itioned window group). An oper-
ator with its state split in partitioned window groups isledlPartitioned Window Oper-
ator. In this work we focus on the design of a Partitioned Windoww J@perator due to
frequent usage of joins in query plans.

The design of a Partitioned Window Join Operator has to béfkeenough to allow
the swapping of states between disk and main memory uponrakwtale still outputting
complete and accurate query results. No output tuples dhomuimissed nor should extra
data be generated during query processing. Since opevatbis a query plan affect each
other’'s work due to the nature of the query processing, thappimg of tuples between
disk and main memory by an operator at a higher |évef the query plan ultimately
affects the order in which lower level operators receivéasipT hus @artitioned Window
Operator ought to be able to process out of order tuples while stilkrgoteeing accurate

and complete results.

2In this work we start labeling the levels of operators in argjyan tree starting from the root operator.
The root operator is located at level 0, its children opesaamd level 1 and so forth.

27

As it was already described in Section 2.3, the processiraubbf order tuples re-
quires the presence of an information exchange mechanisma@operators in the query
plan. If no such information exchange technique exists peamator will have no means of
knowing when the last tuple of a window for a specific partitgroup has been received.
Thus, no longer needed tuples cannot be properly invalidateelease memory for new
data and the system processing the query plan has a very togakplity of running
out of memory. To prevent this, we employ the use of punatngtiointers as described
in Section 2.3. Thus, every partitioned window join recsiaad sends out punctuation
pointers. The information in the punctuation pointers gamiized in time ranges by par-
tition group ID. Every operator keeps track of this inforioatas it is needed during data
invalidation.

Structure of a Window Object

Window ID | Pointer to the wiD object T
w.id = 1;
wi = w.start = 12:00;
we w.end = 12:05; pointEFD
Partition | Input Queue
wn 1D Number
1 '1 Ii
S
’_../ gL/
A s/]
Tuples frugﬁueue 1 J /]7
Tuples sorted 7
by timestarnp 15t Tuple / Last Tuple /
Tuples from Queuﬁ /
18t Tuple Last Tuple

Join Operator State

Figure 2.9: Window map diagram.

Another design consideration is the per window organiradibthe tuples within the
state of an operator. As main memory is a critical resouraehhs to be managed very
efficiently in the streaming environment, having data tagleplicated across overlapping

windows is not desirable. Therefore a partitioned windowrajor needs a data structure

28

which would allow the management of window information partgion group without
the need of duplicating tuples across overlapping contisuweindows. Tuples need to
be processed on the fly and only one copy of each tuple shoudtbbed. Such design
considerations are used in the design of the aggregate wingerators using window
semantics [18].

As shown in Figure 2.9, this data structure has to contairardata about every win-
dow such as beginning and ending time of the window, stateefindow per partition
as shown in Figure 2.6, pointers to the tuples which belonpiowindow. This data
structure has to be updated every time new tuples are idsettethe operator’s state or
old tuples are invalidated, or tuples are swapped betweskadid main memory. We call

this data structure &indow map.

2.6 Definitions of Spilling and Unspilling

In this work we focus on the design of query optimization piels which swap portions
of the states of an operator between disk and main memoryeakeddased on the avail-
ability of system resources and data arrival rates. Welealptocess of flushing a portion
of the operator’s state to disgdpilling and we call the process of bringing back to main
memory data spilled to dislinspilling. By swapping data between disk and main mem-
ory based on the characteristics of the data rates of inpérsss, more efficient memory
management can be achieved. By spilling partially prockdsga to disk during periods
of high data arrival rates, we prevent the system from cragsWwhile still producing com-
plete and accurate results, though at the expense of a delaytputting the complete
qguery result.

An implication of swapping data between disk and main menmtlye need of keep-

ing extra information about the data being flushed to disks iriformation is needed to

29

Stream E

12:19-12:22
12:08-12:12

12101214

Stream A

Stream C

Figure 2.10: Spilling example.

help prevent duplicate query results. As it was alreadyrnilesd in Section 2.4, we use a
partition group as the smallest adaptation unit. Thus wéddvaving to keep concurrent
time information per spill. This reduces the complexity ahiging back this data to main
memory. We follow the rule that no tuples spilled to disk haver been joined with any
data residing in main memory. All tuples spilled to disk haeen joined with each other.
We do keep extra statistics per spilling such as number désugpilled, partition group
id from which tuples are flushed to disk, timestamps of the éingl the last tuple spilled.
This statistics is used by our unspilling policies when dewj which data to bring back

to main memory first.

Spilling and unspilling data poses many interesting qoestsuch as:
e How much data to un/spill?

e What data to un/spill first?

30

e How often to un/spill?
e When to un/spill?

In this work we look at all the question but our main focus &eefirst and the second
guestions, selecting which windows and partitions to uli/Bst while achieving max-
imized query plan throughput given the current state of ystesn. There are different
interconnections between operators and the states of tpesators in a multi-operator
guery plan. We exploit these interconnections to achieveeragnchronized query plan
processing. This will be discussed later when we describesgilling and unspilling
policies designed for our framework.

Figure 2.10 illustrates the impact of spilling on the ordewhich operators located at
lower levels of the query plan such as the root receive tupbes their children operators.
The figure illustrates what happens when an upstream operspdls data to disk. At
timet.time = 12 : 22 the root operator may have received all tuples withie.time <=
12 : 21, however the root operator still expects tuples with sueteitampsto come from
its child operator. As the figure illustrates, tuples witméistamps within the ranges of
12:03-12:06, 12:08-12:14, and 12:19-12:22 have beeredpitl disk upstream and are
still to be processed and sent down the query plan. Thus filestarrive no longer in
order at the root operator.

As illustrated on Figure 2.10 the ability to spill and unkgdta on demand affects also
the invalidation process. Tuples have to be kept in the sfe@ operator until all query
results involving these tuples have been produced. Spitliples upstream prevents the
affected windows from being invalidated solely based ontiimestamps of the tuples,
as the timestamps are no longer a valid indicator of the ardetich tuples have been
received by the DSMS.

Invalidation in the context of spilling and unspilling. Information such as the par-

31

tition ids and the timestamps of the tuples affected by ladalptation processes such as
data spillings or unspillings need to be taken into congiti@n during tuple invalidation.

If an operator has received all tuples within a window’s tiraege but a portion of this
window has been spilled to disk locally, then such an opeit#s not yet produced all
result tuples for this window. Therefore, before all tuptesiding on disk and falling
within this window’s range have been brought to main memawy processed, no tuples
can be invalidated from this window.

As it has been already explained in Section 2.1, hopping evusdhave no overlap-
ping boundaries. Thus spilling tuples from one window lgcaloes not impact other
currently open windows. This simplifies the invalidatiomgess. Once an operator has
received and processed all the tuples within a window's tiamgje, given that no tuples
have been locally spilled to disk, the operator can invédidaples and close the window,
irrespectively of whether earlier windows have been spkio because of tuples locally
spilled to disk or tuples spilled to disk upstream. Howettgs is not the case when the
state of an operator is divided into continuous windows duthé higher than O degree
of window correlation. Thus in the case of continuous windpwhen the operator has
received and processed all the tuples falling within a wiwddime range, the operator
cannot invalidate tuples from this window before makingesiiat no tuples contained by
the window are still needed by earlier, open windows. Imation punctuation pointers
received from upstream operators provide information aladat time ranges it is safe
to invalidate tuples from. Spill punctuation pointers gamformation about data spills
that have taken place at upstream operators. The informiatizoth types of punctuation
pointers is organized by partition group ID and the time emngf tuples either invali-
dated or spilled upstream. Operators also maintain datatdabe partition groups and
the time ranges of tuples locally spilled to disk. Thus, bingghese time ranges and

metadata about the windows, an operator can calculateiige & windows affected by

32

any upstream spills and further infer the timestamps ofupées that is safe to invalidate.
Given locally spilled tuples, Formula 3 can be used to cakeuthe earliest received
tuple that can be invalidated from a given window. The forauges the information from
Table 2.1.
Formula 3: tuple.time = maxSpilledW.end + [w.step — ((dwe + 1) x w.step —

w.size)|+1

Variable name Description

maxSpilledW.end This is the end time of the latest window affected by the spiir example, if tuples with timestamp
ranging from 12:04 to 12:06 have been spilled to disk and dptetwith timestamp 12:06 belongs f
windows 2 and 3. The latest window affected by the spill wédlwindow 3.

dwc+1 This is the maximum number of windows a tuple could be shayegiven a window size and a windo
sliding step. The maximum number of windows is equal to trggete of window correlationdinc) plus
1.

o O

Table 2.1: Variables used in the invalidation algorithm.

Algorithm 2 Tuple Invalidation Algorithm.

. HashtabletimeRanges = calculateSafeTolnvalidateTimeranges()
. List spilledWindows = getSpilledW indows()
. markProcessedW indows(spilledWindows,timeRanges)
. List openWindows = getOpenW indows()
. for (every wi in openWindowsjio
int dwc=([w.size/w.step] — 1)
booleancanlinvalidate=true
while (dwe >= 1) do

if (lwi.state.equals(closed)) then

canlinvalidate=false

11: endwhile
12: if (caninvalidateXhen
13: invalidateTuples(wi.start, w.step)
14: endfor

B@@ﬁqmnwmp

Algorithm 2 outlines the major steps of the invalidationgess. This process takes
into account information about windows and partitions liycapilled to disk and infor-
mation about windows and partitions already processedegst

First, the algorithm calculates what time ranges are safevaidate tuples from.
Information provided by the synchronization punctuatiampers- spill and invalidation
punctuation pointers, information kept by operators alpies locally spilled to disk, as
well as the timestamps of the latest tuples received frondaegt input streams are used

when calculating these time ranges. The second step is idigeitle windows’ bounds

33

and deciding which windows have already received and pseckall the tuples that fall
within their limits. The states of such windows are markegbragessed. The last step
of the algorithm looks at all the windows whose states haenbearked agprocessed
and based on the states of all the windows these windows sles with, the algorithm
either deletes tuples from them and changes their stateatidated so that they can be
closed later, or it leaves their status unchanged, deletniples from them. Windows
marked as invalidated can be closed. This means that anyinfetenation kept by the
operator about them can be safely deleted. The last ste @ldglorithm uses the degree
of window correlation to determine how many windows backais o look into before it

decides whether tuples can be invalidated or not.

2.7 Content-Based and Time-Based Interconnections in
a Query Plan

As described in Section 2.4, the state of each partitionediow join operator is orga-
nized by partition ids and window ids. Thus two levels of degency (correlation) can
be observed between partitioned window join operatorgéatat different heights of the

query plan tree:

e content-based dependencgonsiders the partition groups a tuple belongs to as it
moves downstream the query plan. Thus, this is the coroelamong partition

groups of operators located at consecutive levels of theyquian tree.

¢ time-based dependencygonsiders the window ids a tuple belongs to as it moves
downstream the query plan. Thus, this is the correlationrgmwandows of opera-
tors located at consecutive levels of the query plan treeer&@prs in a query plan

can have completely different window characteristics.

34

As it was investigated in [10], a many-to-many relationséists between partition
groups. As Figure 2.11 shows, many tuples from partitiondpatator one may be poten-
tially hashed to partitions 1 and 2 at operator two. Thus phiéreg of tuples to disk from
one partition group upstream may potentially affect manyifi@n groups downstream.

The same holds true for unspilling.

S R

Disk Disk
tU

Figure 2.11: Example of content-based dependency betwssators.

The same type of correlation is observed regarding the egswtof tuples to win-
dows. Since at each operator of the query plan tree a tupld®ihssociated with one
or more windows and since no window can be considered closiedsiall tuples within
the window’s range have been received and processedngpillples to disk from one
window upstream will affect the state of the correlated wiwd downstream. Thus, since
windows of operators located downstream will not be closetiavalidated unless all tu-
ples from the correlated windows upstream have been ueditst, adaptation strategies
for partitioned window join operators need to account f@sthinterdependencies among
operators in a query plan to achieve optimal query plan ming performance.

Operators need to synchronize with each other the adaptstames they complete
to achieve optimal performance since they are not complatelependent units within
the query plan. The same intuition holds for the constructb production lines in a

manufacturing plant. The work of each station along a prodadine has to be synchro-

35

- B3

Disk Disk
tU

Figure 2.12: Example of time-based dependency betweemimpsr

nized with the work of the previous stations, otherwise nefuisvork will be achieved.
In a chocolate production line, for example, unless the olate mixture has been pre-
pared, the station responsible for pouring the mixture éndfiocolate shape forms will be
blocked. Unless the chocolate has been cut and put in theat@iapes the next station
along the production line where wrapping occurs will be kkxt: Unless the chocolate
bars are properly wrapped, the station where the bars akegatpackages and prepared
for shipping out of the company will be blocked. A query plegetis similar to a produc-
tion line. Each operator can be viewed at as a separaterstatioss this production line,
since every operator provides the input queues for its pagerator and depends on the
output queues of its children operators. Thus our intuiisathat a better synchronization

in the work of operators will provide for optimal query plaarformance.

36

Chapter 3

Policy Design

3.1 Local Policies versus Global Adaptation Policies

By spilling and unspilling data on demand, a data stream gemant system can satisfy
the requirements of applications for complete and accupagey results, while preventing
a system crash during periods of high load and a waste of res®during periods of light
load. As is well known, to achieve optimal performance, gwafaptation decision needs
to be fine-tuned based on the current state of the systemteeflleg the values of collected
statistics. Based on the answers to the most important @i@pguestions such as the

ones listed below, different adaptation scenarios andigsliare possible.
1. When to start adaptation?
2. How much data to use during each adaptation step?
3. What should be the smallest data unit size we should watkAwi
4. How to select what partition groups and windows to usenguain adaptation step?

In our work, we divide the adaptation polices we have deslgni® two major groups

based on the type of statistics each policy uses. The twagpgrate:local adaptation

37

policies andglobal adaptation policies.

Local policies use statistics which reflects the status &f arsub-part of the whole
system (query plan). For example, let us assume that thegosdlof all the adaptation
processes is to achieve maximal throughput. We define asghput the number of tuples
output by the query plan for the whole time the query plan liastihus far up to time.
Let us further assume that the statistics collected by epehator is per partition group.

As shown in Figure 3.1, each operator collects data abousi#teeof each partition
group (number of input tuples) and the output rate of the gowmber of output tuples
per unit of time) so that it can keep track of the most prodectind least productive par-
tition groups. We define the productivity of a partition gpoas the ratio of the number of
tuples outputted by the partition group and the size of thiétfman group. A higher ratio
indicates higher productivity [9]. Thus, during periodsiofh data rates the operator
can spill to disk the least productive partitions while kegpin main memory the most
productive ones. This would minimize the impact of spilliog the query plan through-
put. Vice versa, during periods of low data rates and givan title system has enough
free main memory, had any data been spilled to disk, the tmecan unspill the most
productive partition groups first.

As can be seen in Figure 3.1, each operator updates the ragasus of its parti-
tion groups independently of the rest of the operators indgilnery plan. Thus, in this
example, the statistical data collected by each operatiects the productivity of each
partition group relative to the operator itself. In otherds the most productive partition
group for an operator may be the least productive one relativthe final output of the
whole query plan. This may happen, for example, if tuplemfthis partition group get
dropped at operators located downstream the query plantbeyfproduce less output
tuples at downstream operators. Thus local adaptatiogipslare completely unaware

of the overall state of the system or of any inter-correl&ithat may exist among the

38

different components (operators) of the streaming sys@me. of the advantages of local
policies is that they are simplest to implement, thus inogrlittle overhead. Local poli-
cies work best for query plans with a single stateful operatocal policies are discussed

in XJoin [32] and Hash-Merge Join [23].

Productivity:
P4=Pa=P2>P3=P1

Stream D

Productivity:
P3=P1=P4=P2=P5

Stream C

Productivity:
P1>P2>P5>P3>=P4

Stream A Stream B

Figure 3.1: Example of a local adaptation policy.

39

3.2 Global Policies

On the other hand, decisions of global polices are basedatistgtal data which reflects
the overall state of the system since it tries to capture ameddencies which may exist
between the different operators in a query plan and theiesta_et us go back to our
example and assume the same final goal for the adaptatioegzromaximal throughput,
and the same measurements collected by each operator éxcepe difference. Instead
of having each operator update the statistics it colleatallp independently of the rest
of the operators in the query plan, we have each operatotelidaneasurements only
when a tuple is outputted by the query plan. When a tuple iputtéd, every operator
updates the partition group statistics it collects for thgiion group to which the output
tuple belonged to when it was passing through this operdtbus all partition groups
to which the tuple has belonged to while passing throughaipes of the query plan
are traced back and their productivity measurements aggepsoupdated. Thus, each
operator knows which partition groups are most productative to the final output of
the query plan. So during periods of system overload, eaenatqr will spill to disk
these partitions first which are least likely to contribugettie final output of the query.
Thus global policies are more likely to achieve higher tigtgout than local policies. For
further details on the statistical data collected in outesysrefer to [9].

When comparing adaptation policies, an interesting qolessiwhether there exists a
reverse proportional relationship between the numberaptadions triggered by a policy
during query plan execution and the query plan throughpuicofding to [9] a better

policy is not necessarily the one triggering fewer adaptegior fewer 10s.

40

t3 -~

T~ updates{f/

3,/ ~. p5 stats
\\ z/

!
!

!

dat i Productivity:
updates P4>P5>P2>P3>P1
p3 stats | 7
\\ f_;
e ;
/.r_-\-..\ \\ i
) \\ \'_
t3 / .. Stream D
! .
f Productivity:
P3=P1>P4>P2>P5
lupdates 7
\ p2 stats .
'\.\ ;;;
\\ ;

Stream C

\Pruducﬁuhy:
P1=P2=P5=P3=P4

Stream A Stream B

Figure 3.2: Example of a global adaptation policy.

3.3 Spilling Policies

As it has been already explained in Section 3.1, a good atilaptzolicy is a policy which
achieves an optimal system performance while incurringmmahoverhead. In our work
we measure system performance as number of tuples outmyieedertain time. Thus
the goal of our policies is to achieve a maximal throughputeurdifferent types of load
conditions. We have designed five types of spilling policiEach spilling policy has a
complementing unspilling policy. Thus, we group in the sadaptation scenario a pair

of matching spilling and unspilling policies to achieve iaml query plan performance.

41

The five policies we have designed are:
1. Random Policy
2. Local Policy

3. Global Unsynchronized Policy

N

. Global Synchronized Policy
5. Semantic Policy

The most expensive part of our adaptation policies is theehctading and writing of
data to disk. As is well known, access to secondary storagjewsand tends to consume
a lot of system resources. In fact, most policies discussdtie literature like flush-
largest patrtition first or flush-all-policy [23], which flugrartitions to disk as a way of
handling periods of high system aim at minimizing the nundféfOs as this reduces the
policy’s overhead. However, as discussed in [23], a mingahimumber of 1/0Os does not
necessarily guarantee maximal query plan throughput. \&iheera partition is flushed to
disk, outputting result tuples for this partition is deldyés new tuples arrive there will
be fewer tuples in main memory. This decreases the probabfla join between tuples.
Thus in our policies we do consider the number of potent@slivhen deciding what
partition groups to spill to disk first, however, this is nleétmajor factor in selecting these
partition groups. As discussed in Section 3.1, the steéibtlata collected by our system
which we define aproductivity per partition group reflects both the size of the partition
group and the probability of this partition to produce joesults. Furthermore, in an
attempt to minimize the impact of our optimization policesthe query plan throughput,
in our synchronized policies we try to exploit the conteaséd interdependencies among

the operators in a query plan.

42

The Random Spilling Policywas designed to help us compare the effectiveness of
our policies and the overhead they incur. The Random Sgialicy randomly selects
partition groups for spilling, thus ignoring the size ané froductivity of the partition
groups and ignoring any time- and content-based operaterdi@pendencies. As com-
pared to other policies, this policy is the cheapest to imgliet since it incurs no sta-
tistical overhead and very low computation overhead. Harneas the Random Spilling
Policy is blind to the number of I/Os it incurs and the proditt of the partition groups
it spills, it is expected to perform worse than the rest offibkcies.

The Local Spilling Policy we have designed makes decisions regarding what partition
groups to spill based on the localized statistics collebyedach operator. To maximize
throughput, the policy spills first the least productivetians. Thus as new tuples arrive
they have higher probability of being joined with tuplesidésg in main memory. This
increases the probability of achieving higher throughptit has been already explained,
though, a problem with this policy is that the collectedistats does not accurately reflect
the productivity of the partition groups on a query plan leWiée policy also ignores any
interdependencies existing between operators and thes sthoperators in a query plan.

The Global Unsynchronized Spilling Policyin our system takes into consideration
globally collected statistics regarding the productivafythe operator’s partition groups
and the size of intermediate results produced by the gartgroups. The Global Un-
synchronized Spilling Policy selects the least produgbagitions and spills to disk the
whole state of these partitions. We use the same formulalséte Global policy with
penalty in [9] to calculate the productivity of an operatéis shown in Figure 3.3, this
policy, however, does not exploit the existing inter-cactitns among operators and the
states of operators in a query plan tree. Thus, tuples intétessof downstream located
operators which belong to partition groups and windowdespilpstream cannot be inval-

idated until all tuples have been unspilled and processsttegm. Thus, main memory

43

is not managed in the most efficient way.

CAPE Query Engine

Step 1: Request query
plan statistics

Local Adaptation _ > Local Stafistics

Manager " Step 2 Compute System Collector
Load. If overload detected,
compute partitions to spill.

Step 3: Order the operators with the least productive partitions
1o =pill them to disk.

Strearn A

Stream B
TEANE

TP TP
Stream C -

Stream D
LU N

Stream E -
TEANE e

Figure 3.3: Global Unsynchronized Spilling Policy.

The Global Synchronized Spilling Policyis designed to provide for more efficient
memory management than the Global Unsynchronized Spifalicy and the Local
Spilling Policy as it is more aware of the intricate connaas which exist within a query
plan tree. This optimally synchronized global policy uses same globally collected
statistical data as the Global Unsynchronized SpillingdyoHowever, as shown in Fig-
ure 3.4, the spilling of partitions at operators is done iryacironized way across the
whole query plan. Whenever partition groups for certaindeins are spilled to disk at
an operator, operators at the next level will spill to dis& gartition groups affected by
the upstream spilling process.

The spill punctuation pointers carry information about wbetition groups and time-
ranges of tuples have been spilled upstream. Statistical)yacollected by each operator,
keeps track of the correlation existing between its partigroups and the partition groups
of its children operators. The locally collected statsaod the data provided by the spill

punctuation pointers provide the necessary informatioo@arator needs to decide on

44

the partition groups that will be most likely affected by theptream spill process. Thus
such partition groups are also spilled to disk. In this wagrators do not have to keep
in main memory tuples that first cannot be invalidated besadfisiependency on spills
which have occurred upstream and second have smaller chfibbemg joined in the near

terms, ie, with newly arriving tuples.

To achieve such a level of adaptation synchronization, \@ghespunctuation pointers
described in Section 2.3 to inform parent operators abaup#rtition groups that have
been spilled to disk upstream. The beginning of the spilpnacess will be controlled
by a Local Adaptation Manager, located at each query proce$sie Local Adaptation
Manager will decide which partition groups should be sgilfiest and by which opera-
tor. After this, the spilling processes at parent operatolie triggered by the spilling
pointers sent by children operators. Thus a whole chainitbhfspcesses will be spawned
which will stop at the root operator. The initially selectgattition groups will be the least
productive ones across the whole query plan. The initigictieln is based on the partition
group productivity statistics collected by each operaeriescribed in Section 3.2.

The Semantic Spilling Policyassigns a different weight per partition group based
on information provided by the query plan administratore Pine-assigned weights indi-
cate the relative importance of the results produced byethagtition groups for the final
application. Partition groups with less important valuel me assigned lower weights.
During periods of high data rates and high system load thalLAdaptation Manager
will select for spilling to disk first the least productivergion groups which have been
assigned lower weights. Thus the more important partitimugs remain in main mem-
ory and keep producing results. This increases the utifith® streaming system for the

final application. A modified formula is used to measure tiglqaut for these policies.

45

CAPE Query Engine

Step 1: Request guery

plan statistics
L ocal Adaptation _] L ocal Statistics
Manager " Step 2 Compute System Collector
Load. If overoad detected,
compute pattitions to spill.
Spill[...] Spill [..] Step 3: Order the aperatars with the least praductive partitions
to spill thern to disk.
Execution Engine
Stregm A

mA,
Streg E_._ﬂ::::r Bspir 1.
i

Stregm C

Stregm D _— -
plaki L

Stream_.__E - Step 4 If not a root operator, send a spill punctuation pointer

downstream.

Figure 3.4: Global Synchronized Spilling Policy.

3.4 Unspilling Policies

The unspilling policies discussed in this work use the sapmeepts as defined in Section
3.3. However, as each policy aims to keep on disk the leaslugtve partitions, during
periods of low system load and low data arrival rates the illmgppolicies choose to
unspill first the most productive partitions. Thus the lgastuctive partitions are always
kept on disk if the system cannot process all tuples it hasived so far.

The Random Unspilling Policyis similar to the Random Spilling Policy. It randomly
selects partition groups for unspilling, thus ignoring #iee and the productivity of the
partition groups and ignoring any time- and content-bageerator interdependencies.
All partitions currently spilled to disk have an equal charaf being selected for un-
spilling. Thus the currently most productive partitionsloe biggest partitions spilled to
disk, which if unspilled first will incur the least number okt reads, are not necessarily

the ones brought to main memory first.

46

The Local Unspilling Policy uses the same localized statistical data as the Local
Spilling Policy. However, instead of selecting the leasidurctive partitions first, the
policy selects the most productive partitions, as the go&b bring to main memory the
partition groups which are expected to produce most outplés. Thus we still aim to
achieve maximal query plan throughput at all times.

The Global Unsynchronized Unspilling Policyuses no content- or time-based syn-
chronization information during the decision process éé&ng which partition groups
to unspill from disk first as this policy is similar to the GlldJnsynchronized Spilling
Policy. This unspilling policy uses the same globally cotésl statistics to decide on the
most productive partitions currently spilled on disk whaan be unspilled first.

The Global Synchronized Unspilling Policyuses global statistics and considers the
content-based interdependencies which exist among apg@td the states of operators
in a query plan when selecting partitions for unspillingmgar to the Global Synchro-
nized Spilling Policy the unspilling of partitions at optes is done in a synchronized
way across the whole query plan. Whenever partition groopsdrtain windows are
brought to main memory by an operator, punctuation poirgersent downstream. Upon
receiving such pointers, operators at the next level stapilling from disk the partition
groups and windows affected by the upstream spilling pmcé&tatistics, locally col-
lected by each operator, helps an operator to keep track af pdrtition groups need
to be unspilled when such punctuation pointers are receildais the processing and
invalidation of windows can be optimized.

Unspilling does not have to start at leaf operators only. 8pgrator of the query plan
can be selected initially.

The Semantic Unspilling Policysimilar to the Semantic Spilling Policy, uses the
weights assigned to the partition groups to decide on whatitns to bring to main

memory first. Partition groups with higher weights and highreductivity have a priority

47

during the unspilling processes. Thus the least produetidkleast important partition
groups remain on disk providing an opportunity for procegsnore important and more
productive partition groups first. As already explaineds ithcreases the utility of the
streaming system for the final application. The unspillimdiqy uses global statistics

when calculating the productivity of the different paditigroups.

48

Chapter 4

System Architecture

Our experiments have been conducted on a stream procegsitggnswritten in Java,
which we call CAPE- Continuously Adapting Processing EBdRB]. As shown in Fig-
ure 4.1, a CAPE query engine consists of several modulesxecuion Engine, a Local
Statistics Gatherer, a Local Adaptation Controller, a@trdreceiver, a Stream Distrib-
utor and a Stream Sender. The core of the system i&xtbeution Engine which is in
charge of the query plan execution. It schedules operatorgyols the statistics collec-
tion and calls the Local Adaptation Controller during quprgcessing so that adaptation
decisions can be taken to prevent system crash. The Exedtrigine uses information
obtained from the other modules. TB&tistics Gatherer calculates and sorts statistics
about any part of a query plan, such as operators, queuegndingl plan. We use only
light-weight statistics to reduce any statistics overh&aua Local Adaptation Controller

is in charge of monitoring the load of the system and decidihgther adaptation should
start. If the system is overloaded, the Local Adaptationtxier will tell operators to
spill data to disk to prevent memory overflow. Vice versa,néoming data rates are
low and the system has ample memory, the Local Adaptatiotr@igar will unspill data

previously pushed to disk. Thus the query engine produceplste query results, even

49

though the results may be delayed depending on the chasticteof the incoming data.

The Stream Receiver, the Stream Distributor and the Sream Sender are in charge of re-

ceiving data from the input streams, placing the newly argwuples in the correct queues

of the operators and outputting the final results to the epticgiion.

CAPE Query Engine

Local

Adaptation Controller

Statistics Gatherer

Local

T~

/

Execution Engine

Sender

Stream

Strearm ‘

Repository Feeder Receiver
5
/[l\ —
/N Streaming

End User

Data

Figure 4.1: System architecture.

To integrate our approach in the existing CAPE frameworkheae extendethe Lo-

cal Adaptation Controller with two additional sub-components: spilling policies @sp

tory and unspilling policies repository. The exact politgsses are configurable parame-

ters in CAPE’s initialization file. In theory, any spillingopicy can be matched with any

unspilling policy, however, we do not recommend this as Hatambinations of policies

will provide for efficient query plan processing. We havetfigr extended CAPE’s query

plan xml schema to allow for the definition of windowed operatwith different types of

window constraints specified on their output.

50

Chapter 5

Experiments

5.1 Testbed Description

For our experiments we have used two Linux servers with 2 BHz CPUs and 1 G
main memory each. Figure 5.1 shows the structure of ourddstbne of the servers was
dedicated to query processing. It had installed on it our EARery engine. The second

server was running both the Stream Generator and the finatafpn.

5.2 Setup and Methodology

Metrics. To compare the performance and effectiveness of the adapgatlices outlined
in this thesis, we ran one hour long experiments. The maihajdle adaptation policies
is to achieve maximum throughput. We define throughput asatisemulated number
of tuples output over time by the query plan. Thus a betteicpad a policy achieving
higher throughput. Statistical data on throughput as webther query processing and
system load parameters is collected once a minute.

Data sets.Two different types of data sets were used in our experimé&atsclarity,

51

2PNl 1G CPUs +

Gluery Output
ek 2PI1G CPUs

15 Memory

Stream A

15 Mermory

MO

-

Stream B

Application and Stream Generator

OO

-

CAPE Query Engine

Figure 5.1: Experiment setup.

Stream

Semi-Bushy Query Plan (QM)

Streams

Streams Streams
Stream
Bushy Query Plan (QF)
Stream
Streams
Streams Streams Streams Streams

Linear Guery Plan (QY)

Figure 5.2: Query plans used in the experiments.

52

Variable name Notation Definition
throughput © Accumulated number of tuples output over time by the queappl
join ratio T The number of tuples a tuple will be joined with per partigdrwindow group.

Table 5.1: Definitions table.

we call them D1 and D2D1 had approximately the following characteristics per wiwdo
one third of the data and thus data partitions had a join ddtilg the second third of the
data had a join ratio of 2, and the last third of the data hadrargtio of 3. D2 had
approximately the following characteristics: one thirdloé data and thus data partitions
had a join ratio of 1, the second third of the data had a joio @t2, and the last third of
the data had a join ratio of 4. The definition of join ratio ahd totation used to refer to
it in the rest of the paper is defined in Table 5.1. The dataveets streamed to the query
engine in the form of different data streams at data rategn@gifrom slow to fast tuple
arrival using our own stream generator. Tuples were strdamsmg poisson distribution.
The range of data values in each stream varied from 1 to appadely 150,000.

All adaptation policies were tested on three different gysans. The structure of the
guery plans used in our experiments is shown in Figure 5.Zafdsbe seen, every query
plan is composed of partitioned window join operators offilye data at each operator is
partitioned in at least 30 partitions and at most 40 partgio

Every operator has a window constraint defined on its outfpiuttr simplicity, the
windows defined on the different operators of the same qulary Ipad uniform charac-
teristics. Unless otherwise stated, they were: a windoe gf60,000 ms and a window
sliding step of 80,000 ms. We set the memory threshold at tieeygprocessor to 200
MB. Thus, whenever the memory consumption by the query gsmrareaches this limit,
the Local Adaptation Controller will initiate data spilrnto prevent memory overflow
and potential system crash. If memory consumption at theyqu®cessor falls to 170
MB or lower, the Local Adaptation Controller will bring priewsly spilled to disk data

back to main memory. Thus available system resources acéeeffy utilized. During

53

data unspilling, only up to 96% of main memory will be filledtivituples. The goal is
to prevent the system from being accidentally overloadedlloyving some room for an
unexpected spurge of new data. The same principle is apjoliedtwork servers whose
load is always kept below a certain threshold limit, lowearti00% server utilization.
How much data will be unspilled during an adaptation prosesisdepend on the
load of the system at the time the adaptation has been éedtiatnlike unspilling, during
a spilling process we spill approximately 30% of all operststates. If the system’s
load is in between the spilling and unspilling thresholdsdoe or more readaptation
periods so that neither spilling nor unspilling of data ascand there are tuples residing
on disk, the Local Adaptation Controller will try to unspds many tuples as possible.
This may happen during periods of idle system times wheretiseavailable memory.

The reasoning is to fully utilize all available free resasc

5.3 Empirical Parameter Tuning

Prior to running experiments assessing the relative padace of the different policies,
we ran experiments to determine appropriate values foaiceining parameters such as
the correlation percentage for the Global Synchronize@tor the readaptation period
length for the Local Adaptation Controller. Since theseapagters were not the main
focus of this thesis, the goal was to find reasonable settorgeem and keep them fixed.
Below is a discussion of these experiments.

Local Adaptation Controller Readaptation Time. Since data spilling and data un-
spilling have opposite effects on the memory usage of theyquecessor, if after each
adaptation process the system is not given enough time tstatthiere is a risk that the
system may start oscillating between spilling and unsgllivith each data spilling trig-

gering an unspilling process and vice versa. This would lzamegative impact on the

54

processing of data and ultimately on the final query planughput. New data will be
processed very slowly, if processed at all. On the other hiitlis system’s adjustment
time, which we call readaptation time, is too long, a suddekesin the data arrival may
crash the system. Thus, it is important to find a reasonafle tange such that the Lo-
cal Adaptation Controller can correctly evaluate the éffeness of its decision and take
corrective steps in time if this is necessary without jedfaing the system’s performance
by waiting too long for its previous decision to take effect.

Figure 5.3 shows the results of our experiments using eiffereadaptation periods.
The experiments were conducted using the Linear query plawrs in Figure 5.2 and
data set D1 described in Section 5.2. Every experiment wanone hour. We started
the experiments with a data rate of 1 tuple every 30 ms, amoeeslowed down the data
to 1 tuple every 6000 ms. The tuples’ arrival rates were cedmyery 15 min alternating
between the fast and slow speed described above. Thus tieensigad to operate under
fluctuating load conditions allowing us to test both typesdéptation decisions: data
spilling and data unspilling.

As it can be seen from Figures 5.3 and 5.4 adapting less oftaracterized by a
longer readaptation period does not necessarily guardngber throughput, that is we
did not notice a significant trend in the impact of the readtpb time on query plan
performance. Within a certain time range, the performari¢keeoquery plan seems to be
kept at the same level. At the same time a readaptation tirh@@000 ms or more would
result in too few adaptation decisions which may not be thst behavior under certain
load conditions. A readaptation time of 30,000 ms or lesseatioo much system oscil-
lation as shown in Figures 5.6 and 5.5. Lets look at Figure B/é can infer how many
times the system spilled data to disk by the total number dlesptuples or unspilled
tuples and the slope of the line. During periods of time whenlata spilling occurs, the

slope of the line is 0, the line is flat parallel to the horiadraxis. Each segment of the

55

line with slope bigger than 0 indicates a data spilling pssckas occurred. The same
logic applies to the analysis of Figure 5.5. Thus, unlessmiltse stated, we used in our
experiments a readaptation time of 120,000 ms.

Global Synchronized Policy Correlation Percentage Expements. As described
in Section 3.3 the Global Synchronized Policy aims to prewvigore efficient memory
management by trying to keep partition groups in main mersagh that 1) new data is
most likely to arrive for these groups and 2) new data haslaenighance of being joined
with data already received prior by the operator. To achibig the policy uses punctu-
ation pointers to inform operators located downstream therygplan of the timestamps
and partition ids of partition groups that have been spitlednspilled upstream. Details
of this process can be found in Sections 2.3, 3.4 and 3.3. ,[daygnstream operators
can spill or unspill the tuples which would be most likelyeadffed by upstream adaptation
actions. Since a tuple can belong to one partition group ataperator and to another
one at the next operator, operators need to keep track obtinelation bond which ex-
ists between their partition groups and the partition gsoaitheir children. We call this
statisticscorrelation percentage. The higher the correlation percentage between two par-
tition groups is, the more tuples partition group one sermedtream to partition group
two. Therefore, if we spill partition group one upstreanerttpartition group two at the
next operator will most likely keep receiving less tuplesfome period of time after the
data spill at operator one. Tuples from partition group oaeelto start arriving again at
operator one and producing join results before more tuptes this partition group can
reach operator two.

The Global Synchronized Policies utilize correlation petage statistics to assert that
in their adaptation decisions only partition groups witheaist a certain level of correla-
tion percentage are used. For example, if the correlatiocepgage for the Synchronized

Policies is set at 0.1 (10%), then only partition groups wibhrelation percentage of 0.1

56

700,000
600,000
R -4
g2y
500,000 e
S s
£ 400.000 Jw‘ﬁf*
= o .‘.-°'
£ 300,000 diiteynn
£
200,000
100,000
? -
13 5 7 911131517 192123 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
Time (min)
Readaptation Time 30000 ms —=— Readaptation Time 60000 ms —— Readaptation Time 30000 m=
—+— Readaptation Time 120000 m= . Readaptation Time 150000 ms. —=— Readaptation Time 180000 ms

Figure 5.3: Impact of readaptation intervals on query phaoughput-Q” plan, different
readaptation intervals.

700,000 4

598,304

£00,000 -
561,683 575,670 576,295

500,000 1

ghput
g
g

200,000

Throu

200,000 4

100,000

Readaptstion Readsptation Readsptstion Readsptation Readsptstion Readsptation
Tirme 20000 ms Time 80000 ms Time 20000 ms Time 120000 ms Time 150000 ms Time 180000 ms

Policy Name

Figure 5.4: Impact of readaptation intervals on query pfeiaughput. Bar graph.

57

1,000,000

500,000 /,_z*
800,000 /
=
= 70000 /
& 800,000
w
= Pl
£ 500,000 ﬂ/
E
=
E 400,000 =
g ,—f'"”/ e
o 300,000 —
A A

200,000 2

100,000 ¥ ‘
0+ *1#&&#%«*?#4&1*#@41

5 79 M131817 1921 2325 27 20 A1 333‘ 37 39 41 43 45 47 49 51 33 55 &7 ‘:961

Time (min)

—— Readaptaton Time 30000 ms
—— Readaptation Time 90000 ms
— — ~Feadaptation Time 150000 ms

—Readaptation Time 60000 ms
—— Readaptation Time 120000 ms
——Readaptation Time 180000 ms

Figure 5.5: Impact of readaptation intervals on unspillidgcumulated number of un-
spilled tuples@’ plan, different readaptation intervals.

1,200,000

1,000,000

&00,000

600,000

400,000

Accumulated Spill Rat¢

200,000

0 (R L s L e e

13 5 7 % 11131517 15 21 23 25 27 25 31 33 35 37 35 41 43 45 47 45 51 53 55 57 58 61

Time (min)

—+— Readaptation Time 30000 ms
memmennne Read aptation Tirme 90000 ms
Readaptation Time 150000 ms

—#— Readaptation Time 60000 ms

-+

—— Readaptation Time 180000 ms

Readaptation Time 120000 ms

Figure 5.6: Impact of readaptation intervals on spillingccAmulated number of spilled

tuples,Q” plan, different readaptation intervals.

58

or higher will be considered for spilling or unspilling byettoperators which have re-
ceived punctuation pointers. Thus smaller values of theetaiion percentage entails the
spilling and unspilling of more data during query plan exexy and vice versa. A cor-

relation percentage of 1 (100%) means that there is a paséectlation bond between

two partition groups of operators located at two conseeusvels of the query plan. This
means that a tuple assigned to partition 1 at operator lalmillys be assigned to partition
1, for example, at the next operator.

In the experiments described below we tried to determineftieet of different corre-
lation percentages on the query plan throughput, invatidaaite, spillling and unspilling.
In these experiments we used the Semi Bushy query plan simdigure 5.2 and data set
D1 as described in Section 5.2. The window characterister®@was described in Section
5.2, namely the window size was set to 60000 ms and the wintiding step was set to
80000 ms.

To reduce the overhead of collecting correlation percentdgtistics, statistics were
collected by each operator with 10% probability. This metiag an operator would
update its correlation statistics data structure only fog out of ten tuples. The statistical
data for the Semi Bushy Query Plan experiments are providd@ble 5.2. The table
displays summarized information across all partition gouWe calculate correlation
percentage between two partition groups by counting firatimany tuples with partition
ID n at a child operator map to partition grolpat a parent operator and second the
total number of tuples with partition ID = n received at thegrda operator. Then we
divide the first counter over the second counter. The "Operat’ column of Table
5.2 stores id of the operator which has collected correlgbercentage statistics. The
"Correlation Percentage” column contains a particularedation percentage value. The
"Frequency as Percentage” column shows what percentagpe piirtition groups at that

operator have a correlation percentage with the value Bpect the same row in the

59

"Correlation Percentage” column. As the table shows, dpesaconnected to streams
only have a correlation percentage of 1 across all parstimtause 1) tuples received by
a leaf operator will be always joined on the same column ange€jlo not repartition
data dynamically.

Table 5.2 shows that approximately 30% of the partition geobave a correlation
percentage of 0.02 or less, more than 70% of the partitionpggdiave a correlation
percentage of 0.05 or less. As the table shows very few artiroups, only about 10%
of all sampled partitions have a correlation percentagelob®more. In the experiments
we varied the correlation percentage values from 0.02 t6.AR values are provided in
Table 5.2.

Figures 5.7, 5.8, 5.9 and 5.10 show the results of these iexpets. As expected,
higher values of correlation percentage cause less gpdim unspilling than lower val-
ues. Thus due to the overhead of the increased number of diskses, the experiments
during which the correlation percentage was set to 0.02 abisl €how lower through-
put. At the same time there is not a clear trend that incregasia correlation percentage
values for the Synchronized Policies guarantees higheugfinput. As can be seen in
Figure 5.7, highest throughput was achieved when the etiwal percentage was set to
0.07. Throughput was 1,044,382 tuples for one hour as oppos@94,263 tuples when
the correlation percentage was set to 0.25. As Figure 5.@@shhigher levels of cor-
relation percentage account for more tuples being inviitlas tuples are moved faster
through the query plan. Since experimental results showtligacorrelation percentage
statistics collected by our operators has on average thesahown in Table 5.2, unless
otherwise stated in our experiments we have used an aveahgeof 10% for the Global
Synchronized Experiments.

Linear Query Plan Dequeue Ratio.We define as dequeue ratio the number of tuples

an operator dequeues from a queue connected to anothetarpéefore dequeuing a

60

1080000 -

1,044 382

1040000

1020000

1000000

955 212

Thr oug hput

935,837
923,687

200000 -
200000 -
830000 -
820000 +
Global Synch 2% Global Synch 5% Global Synch T% Global Synch 10% Global Synch 25%
Policy Name

Figure 5.7: Impact of correlation percentage on throughg@lbbal Synch PolicyQ™
plan.

1,400,000 -

1,200,000 f&g,;
E 1,000,000 ﬁ—
— -
= el
@ 200,000 S -
g ﬁ .;fgr._r
2

L3
% 600,000 e
E st
= e
B e — e oo == _/,(‘-H/
LT
o _ﬂ‘

LI e e e e]
13 5 7 8 1 1315 17 19 21 23 25 27 29 31 33 35 37 39 &1 43 45 47 49 51 53 55 57 58

Time (min)
—=— Global Synch 2% —=— Global Synch 5% —— Qobal Synch 7%
— Global Synch 10% —— Global Synch 25%

Figure 5.8: Impact of correlation percentage on spillingcémulated number of spilled
tuples, Global Synch Policy plan.

61

1,400,000

1,200,000

1,000,000

800,000

600,000

400,000

Accumulated Unspill Rate

200,000

0_

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61
Time (min)

—+— Global Synch 2% —=— Global Synch 5% —— Global Synch 7%
—— Global Synch 10% —— (Global Synch 26%

Figure 5.9: Impact of correlation percentage on unspillihAgcumulated number of un-
spilled tuples, Global Synch Policg) plan.

00,000 7

500,000

400,000

300,000

Invalidation rate

200,000

100,000

13 5 7 % 11131517 19 21 23 25 27 25 31 33 35 37 35 41 43 45 47 45 51 53 55 57 55 61

Time (min)
—*— Global Synch 2% —=— Global Synch 5% —*— Global Synch 7%
—— Global Synch 10% —*— Global Synch 25%

Figure 5.10: Impact of correlation percentage on invaiaat Invalidation rate, Global
Synch PolicyQ™ plan.

62

Operator Id Correlation Percentage Frequency as Percentage
Operator 1 0.02 0.33
0.05 0.83
0.07 0.89
0.10 0.91
0.25 0.95
0.40 0.97
1 1
Mode 0.03
Operator 2 0.02 0.38
0.05 0.74
0.07 0.86
0.10 0.92
0.25 1
0.40 1
1 1
Mode 0.01
Operators 3,4 and 5 are connected directly to streams. Thpesrgtion groups have a correlation percentage of 1.

Table 5.2:Q" plan, correlation percentage statistics.

tuple from a queue connected directly to a stream. For ex@nifpbperator 1 has two

input queues. Input queue one is connected to Operator Zhantdqueue 2 is connected
to Stream A. A dequeue ratio of five means that Operator 1 wijuttue 5 tuples from

queue 1 before dequeuing a tuple from queue 2. By assigniigharhweight to operator

propagated tuples we try to move punctuation pointersifisteugh the query plan. This
is achievable since punctuation pointers are actuallyegipiterleaved in the stream of
output results of an operator. A skewed dequeue ratio wiklean impact only on query

plans which are composed mostly of operators with mixedgygenput queues, that is
at least one input queue of such operators comes from angpleeator and at least one
input queue comes directly from a stream.

In the next set of experiments we investigated the effecastiefr punctuation pointers
propagation on the query plan throughput of the differeticpes. The experiments were
conducted using the Linear Query Plan and data set D1. Diaawere changed every 15
min from fast to slow and vice versa. By fast data rate we defituple sent every 30 ms,
a slow data rate is a tuple sent every 6000 ms. The result® @&dberiments are shown
in Figure 5.11. We did not see a significant trend in the impédifferent dequeue ratios

on the throughput of different policies. This may be the casafter one hour we stop

63

the experiment leaving any data on disk and in the queue®oegsed, thus to a certain

extent the subsets of the input data stream set processbd Quéry plan varies.

5.4 Comparative Evaluation of the Different Adaptation
Policies

In these sets of experiments we studied how the differengtatian policies affect query
plan throughput and memory management. Every set of expatgwas done by keeping
most parameters such as readaptation time, query plandgifzerates and data sets fixed.
Across experiments from the same set we changed only theadideppolices. Across
different experiment sets we changed the query plans andataesets used, as well as
the data rates. Unless otherwise stated, we kept the redidayantyerval fixed at 120000
ms.

We studied four different adaptation policies since eadlirsgp policy was paired up
with its counterpart unspilling policy to form one adapbatpolicy. The four polices are:
Random Adaptation Policy, Local Adaptation Policy, Globalsynchronized Adaptation
Policy and Global Synchronized Adaptation Policy. For esetrof experiments we ran an
experiment without imposing any memory constraints on tinery processor. The goal
was to see the optimal query plan throughput for the giveonfggarameters: query plan,
data set and data rates. Experimental results shown indsgui2 and 5.7 indicate that
Global Adaptation Policies consistently achieve higheergulan throughput than the
others. On average the Global Synch Policy performed 3% tddfer than the Global
Unsynch Policy, around 8% better than the Local Policy in samase more than 20%
better than the Random Policy. The Random Policy scoredtwotnly on query plan
throughput but also on data invalidation.

Figure 5.12 shows a summary of the results for some of therempets we have

64

conducted. Other experiments show similar results. As thedishows, Global Policies
perform consistently better than the Local and the Randdmis. The figure also shows
that Global Synch Policy consistently performs better ttenGlobal Unsynch Policy.

Figures 5.13, 5.14, 5.15 and 5.16 show the throughput, idat#n rate, the spill
and the unspill rate of a set of experiments using the Bushgr@Blan. In this set of
experiments the readaptation interval was set to 12000 thiha correlation percentage
for the Global Synch Policy was set at 10%. Data rates weregihg every 15 minutes
from fast to slow. The fast data rate was set to 1 tuple eveimpgand the slow data rate
was set to 1 tuple every 6000 ms. The data had an approximateajm per window of
1 for one third of the partitions, 2 for the second third of gatitions and 3 for the last
third of the partition groups. The window characteristi€swndow per operator were:
window size of 60000 ms and window sliding step of 80000. AguFé 5.13 shows the
Global Synch Policy performed 2% better than the Global WokyPolicy. The overhead
of the Global Synch Policy in comparison to other policieesloot seem to be much.
Even though as Figure 5.15 indicates that all policiesepiélquivalent amounts of data,
the Global Synch Policy output was approximately 10000dasiphore than that of the
Global Unsynch Policy and 30000 tuples more than that of theal Policy, which is
equivalent to a 5% improvement. The Random Policy produe¥d less tuples than
the Global Synch Policy. The Random Policy also performedsivim terms of tuple
invalidation as shown in Figure 5.14 .

Figures 5.17, 5.18, 5.19 and 5.20 show the throughput,idat&bn rate, the spill and
the unspill rate of another set of experiments using. In $kisof experiments we used
the Linear Query Plan. The readaptation time was set to X26@0and the correlation
percentage for the Global Synch Policy was set at 10%. D&ta veere changing every
15 minutes from fast to slow. The fast data rate was set to I& eyery 45 ms and the

slow data rate was set to 1 tuple every 6000 ms. The data hgopaoxamate join ratio

65

TO0000 4

E00000 T

500000 1— —

200000 1—| — —

200000 1— — ——

Throughput

200000 1 - ——

100000 1— - ——

D T T T T 1
Mo Spilling Random Local Global Unsynch Global Synch
Policy Names

|EI Deq Ratio 5 B Deg Ratio 10 O Deg Ratio 15 B Deq Ratio 2IJ|

Figure 5.11: Impact of dequeue ratios on throughput. Defiedequeue ratio§)”.

1,800,000

1,400,000

1,200,000

Throughput

Bushy Query Plan Set 1 Bushy Query Plan Set2 Semi Bushy Query Plan Linear Query Plan Data Set 1

Policy Name

|E| Mo Spiling B Random Policy O Local Policy B Global Unsynch Policy ® dobal Synch Palicy |

Figure 5.12: Comparative evaluation of throughput acrtssdaptation policies.

66

700,000

..............

600,000

500,000

400,000

300,000

Throughput

200,000

e

100,000

fo Lol I I I B

1T 2 57 911315171921 23 252725 31 33 356373941 43454748 5153 5557 59

Time (min)

—— Mo Spilling —=— Local Palicy —— Random Palicy
—— Global Synch Paolicy —*— Global Unsynch Policy

Figure 5.13:

450,000 7

Throughpu@)? plan, data rate 45/6000. All adaptation policies.

400,000

350,000

T erpemrereees

300,000

Vad

250,000

M

200,000

Invalidation rate

o

150,000

f'/

100,000

A

50,000

0

1 3 5 7 9 113151719 21 23 25 27 29 31 33 35 37 35 41 43 45 47 49 51 53 55 57 59 61

Time (min)

|+ Lecal Policy —— Random Policy —— Glebal Synch Policy —— Glokal Unsynch Pulicy|

Figure 5.14: Invalidation rate)” plan, data rate 45/6000. All adaptation policies.

67

140,000 A

120,000

100,000 7/ ! I
20,000 ;

60,000 #}1

40,000

Spill Rate

20,000 LA

U -
1 3 5 7 9 MAA3151719 21 2325 27 2931 33 35 37 3941 43 45 47 40 51 53 55 57 59

Time { min)

|+ Local Policy —®— Random Policy —*— Global Synch Policy —— Global Unsynch F'D|iC‘\,-f|

Figure 5.15: Spill rate)® plan, data rate 45/6000. All adaptation policies.

70,000

- AT
Isi
gl

40,000

- I
[/

10,000
0 _me

13 5 7 9 M13151718 21 23 25 27 29 31 33 35 37 35 41 43 4547 45 51 53 5557 5861

Unspill Rate

Time (min)

|—*— Lecal Policy —=— Randem P olicy —— Glokal Synch Policy —— Global Unsynch Pulicyl

Figure 5.16: Unspill rate)? plan, data rate 45/6000. All adaptation policies.

68

per window of 1 for one third of the partitions, 2 for the seddhird of the partitions
and 4 for the last third of the partition groups. The window@tteristics of window per
operator were changed: window size was set to 40000 ms amdridew sliding step was
set to 90000. As Figure 5.17 shows the Global Synch Policiopeed 4% better than
the Global Unsynch Policy by outputting 50000 tuples moneerithough as Figure 5.19
all policies spilled equivalent amounts of data, the GldBahch Policy performed 8%
better than the Local Policy and 18% better than the RanddityRehich was equivalent
to more than 200000 more throughput. As Figure 5.20, eveungtndhe Local Spill
Policy unspilled more data during the query plan executiatili produced less output
tuples. Figure 5.18 shows that the Random Policy still hadatbrst invalidation rate in
comparison to the other policies. The Global Synch Policyagad to invalidate most
tuples.

Results from additional experiments are included in AppeAdf the thesis.

69

1,400,000 -

1,200,000

1,000,000

800,000

600,000

Throughput

400,000

200,000
D'*jl||

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 45 4% 52 55 58

Time (min)

—— Mo Spilling —=— | ocal Policy —— Randem Policy
—— Global Synch Policy —=— Global Unsynch Policy

Figure 5.17: Throughpu” plan, data set D2. All adaptation policies.

400,000 1

250,000 W
200,000 ’ff /:'/ﬁc‘:ﬁ
250,000 //’_’x“jf'ﬂ—-

200,000 1

150,000

Invalidation rate

100,000

50,000

D-
1357 911315171921 2325272931 33365373941 43 4547 49 51 53 5557 59
Time (min)
—— Mo Spilling —a— Local Policy —i— Random Policy

—+— Global Synch Policy —=— Global Unsynch Paolicy

Figure 5.18: Invalidation rate&)” plan, data set D2. All adaptation policies.

70

500,000 A

450,000 :-..,....
400,000 sk
350,000 ﬁt} ;
300,000 f—-{r{:‘/ﬂ
250,000 ﬂ/"ﬁn
200,000 j_,_g “/ﬁ#‘
150,000 ~+
100,000 =i

50,000 ’ﬂ

i

[o

13 58 7 9 113151718 21 2325 27 28 31 33 35 37 35 41 43 45 47 45 51 53 55 57 58

Spill Rate

Time (min)

|+ Local Policy —* Random Policy —— Global Synch Policy —— GQobal Unsynch F'u:ulicv|

Figure 5.19: Spill rate)” plan, data set D2. All adaptation policies.

250,000 -
‘_._-,d—HH—H

200,000

] /

+= 150,000 4 /

o=

i

g

S 100,000 A
50,000 Fu

1 2 57 911131517 1921 23 23527 29 31 33 35 37 30 41 43 456 47 40 51 63 56 67 B89

Time (min)

|+ Local Policy —*— Random Policy —*— Global Synch Policy —— Global Unsynch F'Ulicvl

Figure 5.20: Unspill ratep)” plan, data set D2. All adaptation policies

71

Chapter 6

Related Work

This thesis is based on research on the processing of consmueries and data partition-
ing in the context of streaming environment. The systemigded to process continuous
gueries are called data stream management systems. Asvis kdata stream manage-
ment systems operate under requirements and constrdfetedt than those imposed on
traditional database systems. Unlike traditional datalsystems, data stream manage-
ment systems do not deal with finite amount of data, do not angweries on data that
has been already stored on disk and possibly analyzed, andtdeturn as query results
exact, finite sets of tuples. The workload a data stream neamant system has to handle
depends not only on the type and number of queries in has tegsdut also on the
arrival rates of the incoming data which can be quite ungtaflie. Since DSMS and tra-
ditional database systems have to operate under diffeoewlittons, adaptation methods
developed for traditional database systems may no longappkcable to the streaming
environment. Currently, optimization methods for DSMSluge at the operator level
exploiting an operator’s selectivity [3, 29], using opera punctuations for state purging
[5, 29]; at the scheduler level various operators’ schedulechniques [29, 22, 4], and

guery approximation methods such as load shedding [35eagtery plan level the dis-

72

tribution of the query plans across multiple machines [@9hamic query plan migration
[36] and operators reallocation [9, 27].

Efficiently handling critical resources such as main menisrg major concern in
the design of DSMSs. One way of reducing system load is Higirig query processing
over multiple machines. Since the DSMS research field has deecloping rapidly for
the past few years many centralized and distributed quegessing prototype engines
such as Stream [30], Telegraph [22], Aurora [2, 14], CAPH,[BBCAPE [28, 21], Au-
rora* and Medusa [35], Borealis [1, 12, 34] and others usiffgrént query optimization
techniques have been developed.

STanford stREam datA Manager (STREAM) [30] is a generappse system for
processing continuous queries over multiple continuote steeams and stored relations,
which has been designed to handle high-volume and burstystiams. Telegraph [22]
is a continuously adaptive, continuous query system basdtieeddy query process-
ing framework which uses crossquery sharing of system resswsuch as computation
and storage. Telegraph uses very fine-grained tuple-lelagitation techniques which al-
lows tuples to be dynamically rerouted through operatosetd@n recent operators’ cost
and selectivity statistics. CAPE [36] is a general-purppSMS with a heterogeneous-
grained adaptivity that exploits dynamic metadata at &klein continuous query pro-
cessing, including the query operator execution, memaogation, operator scheduling,
guery plan structuring. Our operator and adaptation peditiave been incorporated and
tested using the CAPE framework. D-CAPE [28] is the distieoversion of CAPE. It
has a central distributed architecture with a dedicatedbligion manager managing a set
of query processors installed on a local cluster of machinesected with a high speed
network. Unlike D-CAPE, Aurora*/Medusa [35, 2] focus oneasch issues related to
the processing of continuous queries over a large netwoukord* is designed as a dis-

tributed system without a centralized controller to monits performance. In Aurora*

73

every processor communicates with its neighbors. Durimgpge of high load a proces-
sor tries to offload some of its processing tasks to a lesetbadighbor [13, 35]. Medusa
describes an agoric model [7] for the cooperation of diffiecestributed DSMS operating
under different administrative domains [35]. Borealis][ik2he successor of the Aurora*
and Medusa projects aimed at incorporating features suéhilase-detection and fail-
ure recovery [26], dynamic revision of query results [13indmic query modification
and others [12] and QoS-based optimization [12]. Like Magltise Borealis system can
operate in federated mode stretching over different adstrative domains.

Queries supported by our framework can be written in CQL.[ZBQL is an SQL-
based continuous query language for the expression of glep@rpose continuous queries
over streams and updatable relations. It incorporatesamingkmantics. CQL authors
aim at exploiting well researched relational semanticegipies. [25] discusses the se-
mantics of CQL, presents a comparison analysis of CQL toratbetinuous like query
languages and presents the implementation of CQL in STREHA&HS].also presents the
idea ofheartbeats. Heartbeats are an additional meta-input to the systeny fepgesent
timestamps with the semantics that after the arrival of atheatr the system will re-
ceive no more tuples with timestamp obr lower [25]. Heartbeats can be generated in
different ways. They are needed as CQL semantics "assunissrate, ordered time do-
main T” [25] and network transmission over remote sourcesumpredictable character
which does not guarantee in-order data transmission. bisstd are discussed in more
details in [33]. In our work we assume that tuples arrive ideorfrom the data sources
either using source synchronization or heartbeats- théxaméem which ensures in-order
tuple arrival is irrelevant to us as it is outside the scopisfthesis. The Partitioned Win-
dow Operator we have designed can handle out of order tupl@lansing punctuation
messages.

CQL is based on "two data types: streams and relations, atittea classes of opera-

74

tors over these types: operators that produce a relatiomdrstream (stream-to-relation),
operators that produce a relation from other relationsji@t-to-relation), and operators
that produce a stream from a relation (stream-to-reldtig@p] defines a stream S "as a
(possibly infinite) bag (multiset) of elementss, 7 >, where s is a tuple belonging to the
schema of S andeT is the timestamp of the element”, and a relation (R) as: "apmap
from T to a finite but unbounded bag of tuples belonging to tiema of R”.

Unlike CQL which assumes slide-by-tuple semantics and apesdefined timestamp
or tuple order number, [18] introduces new user definedoaties: SLIDE and WATTR,
which can be used to express windows with different slidbegs based on different tuple
attributes.

[18] propose a framework for defining window semantics witiah be used to express
many window types and a framework which uses their windowas#its to evaluate
different types of window aggregate queries. The advastafeheir approach is that
each tuple is processed only once as it arrives and at mogooel copy of each tuple
is stored if the tuple needs to be buffered. This is similaodo implementation. We
also process each tuple on the fly and we store only one copyraf matter how many
windows a tuple belongs to. Unlike [18] who focus on statebggregate operators such
as min and mayx, in this work we focus on the implementation sthéeful window join
operator. In our work we use a tuple’s timestamp as the winalisbute, however, this
can be easily changed and other models can be plugged inséssdied by [18] disorder
in tuples’ arrival can be handled by using punctuations.

[17] further discusses the implementation of window aggtegperators using the
window semantics described in [18].

The design of our Partitioned Window Join Operator is baseprimr research on the
implementation of join operators optimized for the stre@gnénvironment such as Flux

[27] and Eddy [3]. We have also looked at the implementatibjoion operators which

75

use data spilling and other techniques to handle burstyldatasuch as XJoin [32].

Flux [27], Fault-tolerant Load-balancing eXchange, is tatlaw operator that en-
capsulates adaptive state partitioning and dataflow rgutilux is inserted between a
partitioned producer-consumer pair in a parallel dataflgvelme. [27] provides adaptive
repartitioning while the pipeline is still executing. Fluses a buffering and reordering
mechanism to handle short-term load imbalances as well aschanism for detecting
across cluster imbalances and online repartitioning @ stecumulated in lookup-based
operators. Unlike [27], our Partitioned Windowed Join Gyper partitions the data at
the beginning of the query plan execution and this partitigns kept static throughout
the query plan processing. Similar to Flux, however, we ug#ipbe mini-partitions to
reduce the overhead of our state-spilling adaptation igaden

Eddy [3] is a query processing mechanism which allows forpdetlevel query plan
adaptation. As eddy encapsulates the scheduling of itjpating operators, tuples en-
tering the eddy can flow through operators in a variety of erdéowing for a continuous
run-time operator reordering. Each operator particigaitinthe eddy has one or two in-
puts that are fed tuples by the eddy, and an output streametiuahs tuples to the eddy.
Each tuple entering an eddy carries its own execution hyistoplemented as bitmaps of
ready and done bits which encode what operators a tuple easdbeady processed by
and what operators the tuple has to be sent to. An eddy roatésteple to the next op-
erator based on the tuples execution history and statistéstained by eddy [31]. [31]
focuses on the design, implementation, and performancelistidbuted eddies in which
operators themselves decide on where next a tuple shouldsgulon the execution his-
tory of the tuple and statistics maintained at the oper§®df. discusses different routing
policies. Despite allowing for the implementation of vergxible tuple-level adaptation
polices, Eddies seem to incur too much memory and computatierhead per tuple.

Our adaptation approach is completely different than Edglit & at the state level of

76

operators. We do not do dynamic rerouting of tuples.

XJoin [32] is a non-blocking join operator optimized to puoe initial results quickly
and to hide intermittent delays in data arrival by reactivaheduling background pro-
cessing. XJoin is based on symmetric hash join. It is desigodnandle data access to
traditional database systems over wide-area networksinXalfoceeds in three stages.
Stage 1 proceeds as long as both inputs to the operator kedmgealata. Stage 2 is
activated when when the first stage is timed out on both ohjisiis. Based on different
cost estimates, then data stored on disk is brought to mamameand processed using
memory resident data from the other queue. Stage 3 is thecleeh-up stage which is
activated when all data has been received from both sourchsn is designed to work
over traditional database tables accessed across disttibatworks.

Similar to XJoin [32] and progressive merge join, the hasdrga join algorithm pre-
sented in [23] focuses on processing join results over foltasets accessed across re-
mote networks. The algorithm, which is based on a two-way ggerator, aims at out-
putting join results as early as possible. [23] consistsnaf phases a hashing and a
merging phase. During the hashing phase incoming tuplestared in in-memory hash
buckets and join results are produced from these in-menupigs. When the memory
becomes full, hash buckets are sorted and flushed to disk.résgling tuples are joined
during the second merging phase of the algorithm. Unlikg {8ich pushes to disk
the largest partition of one of the data sources only, [28swEn Adaptive Flushing Pol-
icy which simultaneously pushes to disk hash buckets froth bources. The Adaptive
Flushing Policy aims at keeping the memory balanced betieztwo remote sources,
that is the ratio of tuples from the two data sources residingemory has to be within
some predefined limits. [23] discusses the advantages aadwdintages of several differ-
ent flushing policies such as flush-all policy, flush largestipon first,and flush smallest

partition first policy. While the main drawback of the flushahast partition first policy

77

is the greater number of 1/0Os incurred during the mergingsplance a bigger number
of small data blocks have to be read from disk, the flush langasition first policy in-
creases the amount of time it takes to output join resultsiduhe hashing phase after a
flush—to-disk operation has taken place since there aréupkes in main memory which
reduces the probability of a join result when a new tuplesagi The same line of reason-
ing can be applied in the analysis of the impact of spillingligk policies applied to the
context of continuous query processing.

Accuracy of the received query results is not always as totabme final applications
as is the requirement of receiving constant results. Whersingesuch applications, dur-
ing periods when incoming data exceeds the capacity of tid®® process it, a DSMS
may decide to discard a certain portion of its load to preggatem crash. As defined in
[24], the process of dropping excess load is called datadshgd[24] implements data-
shedding as drop operators dynamically inserted or remmtedifferent levels of the
guery plan. The paper discusses two types of drop operatsrdom drops which simply
drop a dynamically calculated portion of the tuples, andrass#ic drop which discards
tuples with the lowest utility. Our semantic policy uses slaene idea of assigning differ-
ent levels of importance to tuples based on their values.ddewinstead of permanently
discarding the tuples with lowest utility we simply delagthprocessing by temporarily
spilling them to disk. [24] presents also the idea of QoS ljguaf service) associated
with each application served by the DSMS. In [24] is modelked &set of functions that
relate a parameter of the output to its utility”. In Aurora,which this framework has
been implemented, QoS is expressed in three functionsitéads graph, a value-based
graph, and a loss-tolerance graph” [24].

Similar to [19] we use punctuations to optimize the progessif the partitioned win-
dow operator presented in this thesis. However, the putictummessages which we use

have a broader meaning. [19] defines punctuation as "an extdsat of patterns, each

78

corresponding to an attribute of the tuple”. We overloadpgbactuation message with
extra information about the stage of processing which has lpgst completed by the
sending operator. We use punctuation pointers not onlyvaliolate no longer needed
tuples from an operator’s state but also to spill or unspgiftiioned windows across op-
erators in a synchronized way. Unlike [19] which focuseshengrocessing of continuous
sliding windows, we focus on the processing of hopping wimsld19] presents join opti-
mization techniques for the processing of data "with twoetypf constraints imposed on
it: time-based constraints (sliding windows) and valusdshconstraints (punctuations)”.
The partitioned window join operator proposed in this taéscuses on the processing of
data with time-based constraints only imposed on it.

Dynamic plan migration is another technique for optimizthg processing of con-
tinuous queries. Unlike the techniques proposed in thisishghich work at an operator
level, dynamic plan migration is applied at query plan leJ86] defines dynamic plan
migration as "the on-the-fly transition from one continuou®ry plan to a semantically
equivalent yet more efficient plan”. [36] presents two altgive strategies, called the
moving state strategy and the parallel track strategy, astimodels to analytically com-
pare them. The parallel track strategy continuously keepgutting results even while
plan migration takes place. The moving state strategy, enother hand pauses plan

execution during the migration phase.

79

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Query plans with state-intensive operators may consumed kystem resources when
faced with spikes in the arrival patterns of new data. Thusta dtream management
system needs efficient adaptation policies with minimaklogad so that all data can be
processed and none dropped even during periods of higmsisael. The requirement for
complete and accurate query results is presented by matigatmms such as financial
analysis systems, mobile hospital applications and etfici&fit adaptation policies can
be designed by utilizing the different dependencies whixisteamong operators in a
query plan.

In this work we have identified two types of such dependenciasiely content- and

time-based dependencies. We have also done the follonskg:ta

1. A new partitioned window join operator with the ability $pill and unspill data to

disk on demand has been designed.

2. We further extend the semantics of punctuations embenidtéee data stream to

encode information of the processing stages completed lopearator. Such infor-

80

mation is used for the correct processing of out-of-ordpletsiand for the design

of efficient data invalidation policies.

. A new adaptation policy to synchronize the work of operain a query plan has
been designed. The policy uses metadata about the stagesrgfexecution prop-
agated down the query plan tree by operators and partitia $atistical data to

make better memory management adaptation decisions.

. We have designed several different adaptation policiérsdifferent levels of query

plan synchronization.

. All the policies have been implemented and integratemlandata stream manage-

ment system called CAPE.

. Experiments on the relative performance of the diffesstdgptation policies have

been carried out using a real software system, not simulatio

Our experiments prove that despite the higher overhead afra synchronized adap-

tation approach, our consolidate strategy provides faebguery plan performance and

higher plan throughput during periods of continuous buwttggh data rates. Such an in-

tegrated policy proves to be more efficient at memory managébmased on invalidation

rates than a Random Adaptation Policy with very little comagional overhead.

7.2 Future Work

Future work may include testing different cost models wigehn be easily plugged in

our framework. Experiments are necessary on the Semanéiptation Policy which has

not been tested yet. The experiments in this thesis covgrquery plans with hopping

windows imposed on their output. It will be interesting te séhat the performance of the

81

adaptation policies described in this work will be on qudang with continuous windows
imposed on them. New "processor overload” strategies dsawelew adaptation policies
and other operators besides joins can be also developedwgged into our framework.
An interesting future task to do will be the integration of adaptation techniques on
a distributed stream management system. In a distributatbeament work can be kept
evenly distributed among processors. During spikes in theah of data an overloaded
processor’s work can be offloaded to another less loaded/ quecessor. In such an
environment, a query processor can either spill data orawfflwork to a different query
processor. How does a processor decide what adaptatiomqeehto apply? Such and
other problems have been already discussed in [9]. It wilhberesting to combine both

[9]'s work and this thesis.

82

Bibliography

[1]

[2]

[3]

[4]

[5]

D. Abadi, Y. Ahmad, and et. al. The design of the borealisam processing engine.

In CIDR, pages 277-289, 2005.

D. Abadi, D. Carney, and etl. Aurora: a new model and asedture for for data

stream management. \W.DB Journal, pages 120-139, 2003.

R. Avnur and J. Hellerstein. Eddies: continuously adagptuery processing. In

SGMOD, pages 261-272, 2000.

B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: eper scheduling for

memory minimization in data stream systemsSI6MOD, pages 253-264, 2003.

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. ddls and issues in

data stream systems. RODS, pages 1-16, 2002.

[6] S. Babu, L. Subramanian, and J. Widom. A data stream neaneagt system for

[7]

[8]

network traffic management. MRDM, 2001.

M. Balazinska, H. Balakrishnan, and M. Stonebraker. €aot-based load manage-

ment in federated distributed systemsN#&DI, pages 197-210, 2004.

B.Babcock, R. S.Babu, and M.Datar. Chain: operator daheg for memory mini-

mization in data stream systems.AGM SGMOD, pages 253—-264, 2003.

83

[9] B.Liu. Scalable integration view computation and mamdnce with parallel, adap-

tive and grouping techniques. Bh.d. Dissertation, 2005.

[10] B.Liu and E. Rundensteiner. Revisiting pipelined flafsm in multi-join query

processing. IVVLDB, pages 829-840, 2005.

[11] B.Liu, Y.Zhu, and E. Rundensteiner. Run-time operatate spilling for memory

intensive long-running queries. BBIGMOD, pages 347-358, 2006.

[12] Borealis Team. The design of the borealis stream psaeg®ngine. InTechnical

Report, October 3, 2004.

[13] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Catrg. Cetintemel, Y. Xing,
and S. B. Zdonik. Scalable distributed stream processm@IDR, 2003.

[14] M. D. Abadi, U. Cetintemel and etc. Aurora: a data streaamagement system. In

S GMOD, pages 666—666, 2003.

[15] D.J.Dewitt, J.F.Naughton, D.A.Schneider, and S.8dsh Practical skew handling
in parallel joins. INVLDB, pages 27—-40, 1992.

[16] J.Kang, J. Naughton, and S.Viglas. Evaluating windemg over unbounded

streams. INCDE, pages 341-352, 2003.

[17] J.Li, D. Maier, K.Tufte, V.Papadimos, and P. Tucker. Nane, no gain: effi-
cient evaluation of sliding-window aggregates over dateshs.S GMOD Record,

34(1):39-44, 2005.

[18] J.Li, D. Maier, K.Tufte, V.Papadimos, and P. Tucker. nfaatics and evaluation
techniques for window aggregates in data streamsSGMOD, pages 311-322,
2005.

84

[19] L.Ding and E. Rundensteiner. Evaluating window joingiopunctuated streams. In

CIKM, pages 98-107, 2004.

[20] B. Liu, M. Jbantova, and E. A. Rundensteiner. Optimigstate-intensive non-
bocking queries using run-time adaptation. S8PS07, Workshop co-located with
ICDE, 2007.

[21] B. Liu, Y. Zhu, and et. al. A dynamically adaptive digtited system for processing
complex continuous queries. YW.DB Demo, pages 1338-1341, 2005.

[22] S. Madden, M. Shah, and J. Hellerstein. Continuousapéide queries over streams.
In ACM SGMOD, pages 49-60, 2002.

[23] M.Mokbel, M.Lu, and W.Aref. Hash-merge join: a non-bking join algorithm for
producing fast and early join results. IBDE, pages 251-263, 2004.

[24] N.Tatbul, U. Cetintemel, S. Zdonik, M.Cherniack, and $onebraker. Load shed-

ding in a data stream manager.VhDB, pages 309-320, 2003.

[25] S.Babu and J.Widom. The cgl continuous query languagenantic foundations
and query executiorVLDB Journal, 15(2):121-142, 2006.

[26] M. Shah, J. Hellerstein, and E. Brewer. Highly avaiiglfault tolerant dataflows. In
SIGMOD, pages 827-838, 2004.

[27] M. Shah, J. Hellerstein, S. Chandrasekaran, and M.KiranFlux: an adaptive
partitioning operator for continuous query systems. Diata Engineering, pages

25-36, 2003.

[28] T. Sutherland, B. Liu, M. Jbantova, and E. Rundensteibecape: distributed and

self-tuned continuous query processing CiiKM Poster, pages 217-218, 2005.

85

[29] T. Sutherland and E. Rundensteiner. D-cape: a selfiuoontinuous query plan

distribution architecture. Ifiechincal Report, WPI-CS- TR-04-18, April, 2004.

[30] The STREAM Group. Stream: the stanford stream data gemdulletin of the
IEEE Computer Society Technical Committee on Data Engineering, 26(1):19-26,
March, 2003.

[31] F. Tian and D. DeWitt. Tuple routing strategies for disited eddies. IWVLDB,
pages 333—344, 2003.

[32] T. Urhan and M. Franklin. Xjoin: a reactively-scheddilg@pelined join operator. In

|EEE Data Engineering Bulletin, pages 27—-33, 2000.

[33] U.Srivastava and J. Widom. Flexible time managemeumnfaita stream systems. In

PODS, pages 263-274, June, 2004.

[34] Y. Xing, S. Zdonik, and J.-H. Hwang. Dynamic load dibtrtion in the borealis

stream processor. ICDE, pages 791-802, 2005.

[35] S. Zdonik, M. Stonebraker, and M. Cherniack. The aumlmd medusa projects.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,
pages 3-10, 2003.

[36] Y.Zhu, E. Rundensteiner, and G. Heineman. Dynamic plggration for continuous

queries over data streams. #GMOD, pages 431-442, 2004.

86

Appendix A

700,000 4

-

500,000
w
=2 N ol
5 f
8, 400,000 2 i

ragrEerrerd

E ama .
B
E 200,000
=
™

200,000

133.353./
I e e L o e ELJLE I o i o o o o o E

13 65 791113151719 21 23267 293133 36 37394143 46 4740 51 53 65 657 BB &1

Time (rrin)

—+— No Spilling —=— Local Policy —— Random Policy —— Global Synch P olicy —— Glokal Un=synch Pu:llic5r|

Figure A.1: Throughpui” plan, data set D1. All adaptation policies.

87

700,000

500,000

500,000

400,000

200,000

Imvalidation Rate

200,000

100,000

1wV T T
1257 911215171921 22 26272031 22 3B 720 41 424547 40 51 B EE 67 88 &1

Tlme (min)
—+— o Spiling —=— Local Policy —+— Handom Policy
—— Global Synch Policy —=— Gobal Unsynch Policy

Figure A.2: Invalidation ratep” plan, data set D1. All adaptation policies.

800,000 -

500,000

"
400,000 "JJ E,r‘-‘
r/
200,000 Fﬁzﬂ
200,000 r/
100,000 -ﬁﬁ:m
A T T T

13 5 79 1M1215171921 22 2527 2031 3235370414245 4740 51 52 55 57 59 &1

Spill Rate

Tlme {min)

|—0— Local Policy —=— Random P olicy —&— Global Synch Policy —— Global Ungynch F‘cllicyl

Figure A.3: Accumulated number of spilled tupl€®; plan, data set D1. All adaptation
policies.

88

300,000 A

250,000 I'
200,000 [
150,000 ?

100,000

[
/

Unspil Rate

vas T

0 Lo el il i e N O N N N N O o

1 35 7 111315171821 23 25272931 3335373541 4345474851 533 535 5758 61

Time {min)

|—0—LocaIP0Iicy —#— Random Folicy —— Global Synch Policy —— Global Unsynch Folicy |

Figure A.4: Accumulated number of unspilled tupl€¥; plan, data set D1. All adapta-
tion policies.

1,800,000 7
1,600,000

1,400,000 ""/

1,200,000

1,000,000 f“ﬁ fikid
. prevesessreattoy gt ——

Throughput

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 45 45 52 55 58

Time (min)
—é— No Spilling ——— Local Policy Random Policy ‘
—%— Global Swnch Policy —*%— Global Unzwnch Policy

Figure A.5: Throughput? plan. All adaptation policies.

89

700,000 q

o e
Y s enRandeocaceas

400,000 W e
300,000 g

200,000 e

100,000 .‘fgg;‘m‘/

a
123 687 211318171922 2627T 2231333637 204143 4647 485163 5567 B9

Invalidation Rate

Time (min)

—+— Mo Spilling —=— Local P olicy —a— Randoem P olicy
—s=— Glokal Synch Policy —=— Global Unsynch Policy

Figure A.6: Invalidation ratep™ plan. All adaptation policies.

700,000 4

E00,000 f‘—f‘z

500,000

400,000
200,000 /
200,000 “7/7:’-}#
100,000 Wfﬁ f

1 2 8 7 9 M 131517 19 21 23 25 27 20 31 32 25 27 28 41 42 45 47 49 81 53 55 &7 50

Spill Rate

Time (min)

|+ Lecal Policy —=— Random P olicy —— Global Synch Paolicy 20% —— Global Unsynch Pulicy|

Figure A.7: Accumulated number of spilled tupl€s! plan, data set D1. All adaptation
policies.

90

400,000

350,000 ‘—‘—‘—f‘
300,000 J“‘J
ﬁ 250,000 ‘/j,._._.m—o—v—o—v—f
=|:|. 20000 Tt e ety /,
1]
=4
: /]

150,000 " sssrereereerereeaahk kb ke

e [7
L

L1ttt ettt ittt e

13 5 7 % 11131517 19 21 23 25 27 28 31 33 35 37 38 41 43 45 47 45 51 53 55 57 58 &1

Time {min)

|+ Local Policy —=— Random Policy —— Global Synch Policy —— Global Unsynch Policy |

Figure A.8: Accumulated number of unspilled tupl€g? plan, data set D1. All adapta-
tion policies.

B80000 -

gapppp { 836933

626626

620000 -

600000 A

580000 -

Throughput

550000 A

540000 1

520000

500000 7

430000 -
No Spilling Random Local Glokal Synch Global Unzynch

Adaptation Policy

Figure A.9: ThroughputQ* plan, data set D1, 30/6000 data rate, correlation percentag
5%, dequeue ratio 10. All adaptation policies.

91

700000 A

600000

500000

400000

300000

Invalidation rate

200000

100000

e T T I o e o e

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 5 58
Time (min)
[—#— Mo Spiling —= Random Local — Global Synch —*— Global Unsynch |

Figure A.10: Invalidation ratep)” plan, data set D1, 30/6000 data rate, correlation per-
centage 5%, dequeue ratio 10. All adaptation policies.

92

