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Abstract 

Regular ingestion of American cranberry (Vaccinium macrocarpon) has been 

traditionally utilized for its health benefits against urinary tract infections. The proanthocyanidins 

(PACs), in particular, the unique A-type double linkages of PACs present in cranberry, have 

been identified as the active components. However, A-type PACs and any other active agents 

have not yet been detected or identified in urine. Additional experiments are required to 

investigate the inhibitory effects and persistence of cranberry metabolites present in urine 

collected following CJC consumption, and to determine how these compounds act against 

uropathogenic Escherichia coli for the prevention of urinary tract infections.  

Two separate bioassays (a biofilm formation assay and a bacterial cell viability assay) 

were used to determine the in vitro effect of cranberry juice cocktail (CJC) oral consumption on 

bacterial anti-adhesion activity in a double-blind, placebo-controlled pilot clinical trial. A single 

dose of 16 oz. of CJC or a placebo beverage was given to ten healthy women, ages ranging from 

18 to 27, and urine samples were collected in the following 48 hours. A washout period of seven 

days was allowed. Bacteria (Escherichia coli B37, CFT073, BF1023, HB101, and 

Staphylococcus aureus ATCC43866) were cultured in the urine samples, supplemented with 

media, and the amount of biofilm formed was measured using a crystal violet absorbance assay 

in a 96-well plate. In the urine of volunteers who had consumed CJC, biofilm formation was 

inhibited within 24 hours after CJC consumption, and started to increase after 48 hours by 49-

67%. S. aureus showed the least biofilm formation after incubation with post-CJC urine. The 

results indicated that drinking CJC can be an effective preventive measure for bacterial adhesion 

and biofilm formation in healthy women. The anti-biofilm activity peaks between 24 and 48 

hours after drinking CJC. The viability assay showed that the colony count after culturing in 
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urine collected following consumption of CJC or placebo were not significantly different, 

implying that CJC works as an inhibitor by blocking bacterial adhesion instead of killing the 

bacteria or restraining its growth.  

Another randomized, placebo-controlled, double-blind, crossover study was conducted to 

further investigate the molecular-scale effect of cranberry juice metabolites on two P-fimbriated 

E. coli strains: B37 and CFT 073, as assessed by atomic force microscopy (AFM). Three female 

subjects were asked to consume 8 oz. CJC or water. The washout period was 7 days. The urine 

samples were collected at 2, 4 and 6 hours post-ingestion of CJC or water. Urine collected before 

consumption of CJC was used as a control. For this control urine, the average adhesion force 

between E. coli and uroepithelial cells was 13.09 ± 11.60 nN for CFT073 and 10.30 ± 5.50 nN 

for B37. For post-CJC urine treatment, the adhesion forces decreased to 2.94 ± 1.82 nN at 2 

hours after consumption then increased slightly to 5.51 ± 2.78 nN at 6 hours after ingestion for 

CFT073, while they decreased to 4.77 ± 3.33 nN after consuming for 2 hours and seemed to be 

stable in the next 4 hours following consumption (5.52 ± 4.04 nN after drinking for 4 hours; 5.05 

± 4.42 nN after drinking for 6 hours) for B37. The adhesion forces in post-water consumption 

urine were similar to those of the background for E. coli B37; meanwhile a downward trend for 

the adhesion forces in post-water consumption urine compared to the background was observed 

for E. coli CFT073. However, these adhesion forces in post-water consumption urine were still 

higher than those measured after CJC consumption at the same time intervals. The mean 

differences between the cranberry and placebo groups were statistically different according to the 

two way ANOVA procedure followed by Holm-Sidak test. Our results suggest a significant 

inhibitory interaction between the daily consumption of 8 oz. cranberry juice and bacterial 

adhesive activity.  
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These results help form the mechanistic understanding of how cranberry products can be 

used to prevent bacterial attachment to host tissue, and may lead to new therapeutic strategies to 

prevent the rising problem of bacteria antibiotic resistance.   

  



 

VI 
 

Authorship 

The contents of this thesis are a representation of the work done by the main author. 

Contributions to this project were made by Yuanyuan “Angela” Tao, a Master of Science 

graduate in Chemical Engineering at Worcester Polytechnic Institute. She did part of 

experiments for the biofilm formation assay. Paola A. Pinzón-Arango, a Ph.D. candidate in 

Bimolecular Engineering at Worcester Polytechnic Institute, also performed part of the 

experiments for the biofilm formation assay. 

Racquela Richard participated in the 2010 REU program at WPI and assisted in the 

experiments related to bacterial cell viability. Regina Roberto from Health Services, Worcester 

Polytechnic Institute, helped us with recruiting volunteers and sample collection for the clinical 

trial. Dr. Amy B. Howell from Rutgers University, NJ provided us urine samples for the AFM 

study.   

  



 

VII 
 

Contents 
Acknowledgements   ...................................................................................................... I

Abstract   .................................................................................................................... III

Authorship   ................................................................................................................ VI

Contents   ................................................................................................................... VII

List of Figures   .......................................................................................................... XI

List of Tables   ......................................................................................................... XIV

List of Equations   ................................................................................................... XVII

Chapter I: Research Motivation   .............................................................................. - 1 -

Chapter II Literature Review   ................................................................................... - 3 -

2.1 Urinary Tract Infections   .......................................................................................... - 3 -

2.1.1 Acute Cystitis and Pyelonephritis   ............................................................................................. - 4 -

2.1.2 Pathogenesis and Virulent Factors   ............................................................................................ - 4 -

2.1.3 Treatment and Problems   ........................................................................................................... - 5 -

2.2 Biofilms   ................................................................................................................... - 6 -

2.2.1 Development of Biofilms   ......................................................................................................... - 6 -

2.2.2 Biofilms and Infectious Diseases   .............................................................................................. - 7 -

2.2.3 Biofilms and UTIs   .................................................................................................................... - 8 -

2.3 Impact of Natural Products on Infections   ................................................................ - 8 -

2.3.1 Cranberry Constituents and Infections  ...................................................................................... - 8 -

2.3.2 Cranberry and UTIs   .................................................................................................................. - 9 -

2.3.3 Mechanism of Cranberry Juice Health Benefits on UTIs   ....................................................... - 10 -



 

VIII 
 

2.3.3.1 Urinary Acidification   ...................................................................................................... - 10 -

2.3.3.2 Anti-adhesion Effect on Pathogenic E. coli   ..................................................................... - 10 -

2.4 Atomic Force Microscope   ...................................................................................... - 12 -

2.4.1 Direct Force Measurements Using Atomic Force Microscopy   ............................................... - 13 -

2.5 Preliminary Studies of Bacterial Attachment in Our Lab   ...................................... - 14 -

2.5.1 Cranberry Juice on Physicochemical Surface Characteristics and Adhesion Behavior of 

Escherichia coli   ............................................................................................................................................. - 14 -

2.5.2 Anti-adhesive Effects of Cranberry Juice Cocktail vs. Isolated PACs   ................................... - 15 -

2.5.3 Atomic Force Microscopy (AFM) Studies of Bacterial-Uroepithelial Cell Interactions   ........ - 16 -

Chapter III Effects of cranberry juice metabolites on uropathogenic Escherichia coli in 

vitro biofilm formation   .................................................................................................... - 18 -

3.1 Abstract   ................................................................................................................. - 18 -

3.2 Introduction   .......................................................................................................... - 19 -

3.3 Subjects and Methods   ............................................................................................ - 20 -

3.3.1 Healthy Volunteers   ................................................................................................................. - 20 -

3.3.2 Study Protocol   ........................................................................................................................ - 21 -

3.3.3 Bacteria Cell Preparation   ........................................................................................................ - 21 -

3.3.4 Crystal Violet Biofilm Assay   .................................................................................................. - 22 -

3.3.5 Bacterial Cell Viability Assay   ................................................................................................ - 22 -

3.3.6 Statistical Analysis   ................................................................................................................. - 23 -

3.3.6.1 Crystal Violet (CV) Biofilm Formation Assay   ................................................................ - 23 -

3.3.6.2 Bacterial Cell Viability Assay   ......................................................................................... - 23 -

3.4 Results   ................................................................................................................... - 24 -

3.4.1 Effects of Cranberry Juice Metabolites on E. coli Biofilm Formation   ................................... - 24 -



 

IX 
 

3.4.2 Individual Responses to CJC   .................................................................................................. - 30 -

3.4.3 Viability Assay and Correlation with Biofilm Assay   ............................................................. - 33 -

3.5 Discussion   .............................................................................................................. - 35 -

3.5.1 Selection of Bacterial Strains   .................................................................................................. - 35 -

3.5.2 Correlating Growth in Cranberry Metabolites and Development of Biofilms   ........................ - 36 -

3.5.3 Correlating Biofilm Formation and Pili Fimbriae Expression   ................................................ - 37 -

3.6 Conclusions   ........................................................................................................... - 38 -

Chapter IV Inhibitory activity of cranberry juice metabolites on adherence of P-

fimbriated Escherichia coli to bladder epithelial cells   ....................................................... - 40 -

4.1 Abstract   ................................................................................................................. - 40 -

4.2 Introduction   .......................................................................................................... - 42 -

4.3 Materials and Methods   .......................................................................................... - 43 -

4.3.1 Subjects and Collection of Urine Samples   .............................................................................. - 43 -

4.3.2 Preparation of Bacteria Cell   .................................................................................................... - 44 -

4.3.3 Preparation of Biological Probes   ............................................................................................ - 44 -

4.3.4 Uroepithelial Cell Culture   ....................................................................................................... - 45 -

4.3.5 Preparation of Uroepithelial Cell Glass Slide for AFM Measurements   .................................. - 45 -

4.3.6 AFM Adherence Force Assays   ............................................................................................... - 45 -

4.3.7 Statistical Analysis   ................................................................................................................. - 46 -

4.4 Results   ................................................................................................................... - 47 -

4.4.1 Adhesion Forces between E. coli Bacteria and Uroepithelial Cells   ........................................ - 47 -

4.4.2 Volunteer Variability   .............................................................................................................. - 50 -

4.5 Discussion   .............................................................................................................. - 50 -



 

X 
 

4.5.1 Bacteria Coated AFM Tips Preparation   .................................................................................. - 50 -

4.5.2 Role of Cranberries in P-fimbriated E. coli Adhesion to Epithelial Cells   .............................. - 51 -

4.5.3 Time Dependence of CJC’s Inhibitory Effects   ....................................................................... - 52 -

4.6 Conclusions   ........................................................................................................... - 53 -

Chapter V Research Summary   ............................................................................... - 55 -

Chapter VI Future Work   ........................................................................................ - 57 -

References   ........................................................................................................... - 59 -

Appendices   ........................................................................................................... - 66 -

Appendix A: Support File for Chapter III   .................................................................. - 66 -

Part I: An example of relative amount of biofilm formed after bacteria strain was incubated in urine 

following consumption of CJC or placebo for an individual (volunteer 1).   .................................................. - 66 -

Part II: Individual responded to CJC in biofilm formation assay recorded in detail..   ...................... - 72 -

Part III: An example of measured absorbance at 600 nm took by a microtiter plate reader.   ........... - 83 -

Part IV: An example of colony count in bacterial cell viability assay.   ............................................ - 84 -

Appendix B: Support File for Chapter IV   ................................................................... - 85 -

Part I: Average adhesion forces between pathogenic E. coli and uroepithelial cells detected by atomic 

force microscope for each volunteer.   ............................................................................................................. - 85 -

 

  



 

XI 
 

List of Figures  

Figure 2.1 Cumulative probability of self-reported physician-diagnosed urinary tract infection by 

age among 2000 women in the United States participating in a random digit dialing survey   .................. - 3 -

Figure 2.2 Schematic of Phase of Biofilm Formation Development   ........................................... - 7 -

Figure 2.3 Molecular structure of A-type PACs   ........................................................................ - 11 -

Figure 2.4 Schematic of AFM operating principles   .................................................................. - 12 -

Figure 2.5 Forces are measured during the approach (upper, red line) and retraction (lower, purple 

line) of the probe with the sample   ........................................................................................................... - 13 -

 
Figure 3.1 Amount of biofilm formed after incubation of 0 hour at 37 °C (A) E. coli HB101; (B) 

S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023   ..................................................... - 25 -

Figure 3.2 Amount of biofilm formed after incubation of 6 hour at 37 °C (A) E. coli HB101; (B) 

S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023   ..................................................... - 26 -

Figure 3.3 Amount of biofilm formed after incubation of 24 hour at 37 °C (A) E. coli HB101; (B) 

S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023   ..................................................... - 27 -

Figure 3.4 Amount of biofilm formed after incubation of 48 hour at 37 °C (A) E. coli HB101; (B) 

S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023.   .................................................... - 28 -

 
Figure 4.1 Schematic demonstrating AFM experiments to measure cell-cell interactions   ........ - 46 -

Figure 4.2 Average adhesion forces between E. coli B37 and uroepithelial cells as a function of 

urine colleting time (hour) after consumption of CJC or water   .............................................................. - 48 -

Figure 4.3 Average adhesion forces between E. coli CFT073 and uroepithelial cells as a function 

of urine colleting time (hour) after consumption of CJC or water   .......................................................... - 49 -

 



 

XII 
 

Figure S.1 Amount of biofilm formed for S. aureus in urine of volunteer 1 collected following 

consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24 hours; (D) 48 hours

 

 ... 

 ................................................................................................................................................................ - 67 -

Figure S.2 Amount of biofilm formed for E. coli CFT073 in urine of volunteer 1 collected 

following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24 hours; (D) 

48 hours.   .................................................................................................................................................. - 68 -

Figure S.3 Amount of biofilm formed for E. coli B37 in urine of volunteer 1 collected following 

consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  hours; (D) 48 hours .. 

  ................................................................................................................................................................ - 69 -

Figure S.4 Amount of biofilm formed for E. coli HB101 in urine of volunteer 1 collected 

following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  hours; (D) 

48 hours.   .................................................................................................................................................. - 70 -

Figure S.5 Amount of biofilm formed for E. coli BF1023 in urine of volunteer 1 collected 

following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  hours; (D) 

48 hours.   .................................................................................................................................................. - 71 -

Figure S.6 An example of measured absorbance at 600 nm took by a microtiter plate reader ..  - 83 -

Figure S.7 A photograph of a representative example of colony count of E. coli CFT073 after 

incubated in urine collected following consumption of CJC or placebo for 24 hours.   ........................... - 84 -

Figure S.8 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 

colleting time (hour) after consumption of CJC or water for volunteer 1   ............................................... - 86 -

Figure S.9 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of urine 

colleting time (hour) after consumption of CJC or water for volunteer 1   ............................................... - 87 -

Figure S.10 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 

colleting time (hour) after consumption of CJC or water for volunteer 2.   .............................................. - 88 -



 

XIII 
 

Figure S.11 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of 

urine colleting time (hour) after consumption of CJC or water for volunteer 2   ..................................... - 89 -

Figure S.12 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 

colleting time (hour) after consumption of CJC or water for volunteer 3   ............................................... - 90 -

Figure S.13 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of 

urine colleting time (hour) after consumption of CJC or water for volunteer 3   ..................................... - 91 -

  



 

XIV 
 

List of Tables 

Table 3.1 Amount of biofilm formed after culturing in urine samples collected from volunteers 

drinking CJC or placebo for 6 hours.   ...................................................................................................... - 29 -

Table 3.2 Number of volunteers that showed a significantly lower biofilm formation in urine 

following consumption of CJC (total number of volunteers is 10) after incubation for 0 hour at 37 °C

 

 ........ 

 ................................................................................................................................................................ - 31 -

Table 3.3 Number of volunteers that showed a significantly lower biofilm formation in urine 

following consumption of CJC (total number of volunteers is 10) after incubation for 6 hours at 37 °C.

 

 ..... 

 ................................................................................................................................................................ - 31 -

Table 3.4 Number of volunteers that showed a significantly lower biofilm formation in urine 

following consumption of CJC (total number of volunteers is 10) after incubation for 24 hours at 37 °C.

 

 ... 

 ................................................................................................................................................................ - 32 -

Table 3.5 Number of volunteers that showed a significantly lower biofilm formation in urine 

following consumption of CJC (total number of volunteers is 10) after incubation for 48 hours at 37 °C.

 

 ... 

 ................................................................................................................................................................ - 32 -

Table 3.6 Colony count of bacteria strains after 24 hours incubation in post-CJC urine or post-

Placebo urine.   .......................................................................................................................................... - 34 -

Table 3.7 Summary of properties and sources of five E. coli strains studied   ............................ - 35 -

 
Table 4.1 Number of volunteers (total number of volunteers involved is 3) that showed a 

significantly lower adhesion forces between E. coli and uroepithelial cells in the presence of post-CJC 

consumption urine.   .................................................................................................................................. - 50 -

 
Table S.1 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

S. aureus incubated for 0 hours.   .............................................................................................................. - 73 -



 

XV 
 

Table S.2 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

S. aureus incubated for 6 hours.   .............................................................................................................. - 73 -

Table S.3 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

S. aureus incubated for 24 hours.   ............................................................................................................ - 74 -

Table S.4 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

S. aureus incubated for 48 hours.   ............................................................................................................ - 74 -

Table S.5 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

E.coli CFT073 incubated for 0 hours.   ..................................................................................................... - 75 -

Table S.6 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

E.coli CFT073 incubated for 6 hours.   ..................................................................................................... - 75 -

Table S.7 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

E.coli CFT073 incubated for 24 hours.   ................................................................................................... - 76 -

Table S.8 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

E.coli CFT073 incubated for 48 hours.   ................................................................................................... - 76 -

Table S.9 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for 

E.coli B37 incubated for 0 hours.   ........................................................................................................... - 77 -

Table S.10 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli B37 incubated 6 hours.   ........................................................................................................... - 77 -

Table S.11 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli B37 incubated for 24 hours.   .................................................................................................... - 78 -

Table S.12 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli B37 incubated for 48 hours.   .................................................................................................... - 78 -

Table S.13 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli HB101 incubated for 0 hours.   ................................................................................................. - 79 -



 

XVI 
 

Table S.14 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli HB101 incubated for 6 hours.   ................................................................................................. - 79 -

Table S.15 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli HB101 incubated for 24 hours.   ............................................................................................... - 80 -

Table S.16 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli HB101 incubated for 48 hours.   ............................................................................................... - 80 -

Table S.17 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli BF1023 incubated for 0 hours.   ................................................................................................ - 81 -

Table S.18 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli BF1023 incubated for 6 hours.   ................................................................................................ - 81 -

Table S.19 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli BF1023 incubated for 24 hours.   .............................................................................................. - 82 -

Table S.20 Individual volunteer responded to CJC in biofilm formation assay recorded in detail 

for E.coli BF1023 incubated for 48 hours.   .............................................................................................. - 82 -

 

  



 

XVII 
 

 List of Equations 

Equation 2.1  Hooke’s Law ...................................................................................................... - 14 -



 

- 1 - 
 

Chapter I: Research Motivation 
Urinary Tract Infections (UTIs) are among one of the most common bacterial infections 

affecting humans. It has been estimated that one out of three women experience a UTI at least 

once in her lifetime [1]. The cost of direct and indirect treatment exceeds two billion dollars per 

year [2]. Bacteria, especially gram-negative Escherichia coli (E. coli), are the most predominant 

cause of UTIs [3]. Due to the lack of knowledge of effective dose for the antibiotics to treat UTIs 

and the increasing concern of antibiotic-resistant bacteria [4], alternative therapies to prevent and 

treat UTIs are needed.  

American cranberry (Vaccinium macrocarpon), a native fruit to North America, has a 

long history of use to prevent UTIs [5-9] and is utilized widely to maintain urinary tract health. 

However, the active components and molecular mechanism of cranberry’s actions are still not 

well documented. Its natural high acid content was thought to be responsible for its health 

benefits for generations [10-12]. However, this theory was disproved by later studies [13, 14]. 

Researchers today focus on the anti-adhesion mechanism, with the predominant theory being that 

cranberry juice inhibits bacteria from attaching to uroepithelial cells, interfering with the 

important initial step in the development of an infection [15, 16]. Recently, A-type 

proanthocyanidins (PACs) present in cranberry were identified as the agents that cause this anti-

adhesive effect [17, 18]. However, there are few reported studies addressing whether the active 

compounds can survive in the digestive system. Furthermore, whether A-type PACs eliminate 

the colonization of uropathogenic E. coli known as biofilm or whether they act on uroepithelium 

directly remains unclear. This study was designed to address these questions. We believe that 

these results could help understand how cranberry products can be used to prevent bacterial 
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attachment to host tissue, and may lead to the development of better therapies for the prevention 

of UTIs. 
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Chapter II Literature Review 
2.1 Urinary Tract Infections 

The function of the urinary system, including the urethra, bladder, ureters, and kidney, is 

to maintain proper water and salt balance throughout the body. Healthy urine is generally sterile 

even though it contains a variety of fluids, salts, and waste products. When a bacterium invades 

one or more parts of the urinary system, grows and multiplies, the infections develop. UTI is 

defined as the presence of bacteria in the urinary tract system [19]. 

 

Figure 2.1 Cumulative probability of self-reported physician-diagnosed urinary tract infection by age 
among 2000 women in the United States participating in a random digit dialing survey [1] 

UTIs account for 80% of all bacterial infections affecting humans today, and are 

especially prevalent in females since they have shortened urethra [8] compared to males. It is 

estimated that about 60% of healthy women suffer symptoms of UTI [2] at sometime in their life 
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and many will experience them several times, with a significant incidence increase (Figure 2.1) 

related to age [1, 9, 20]. The management of UTIs accounts for over 9.6 million office visits to 

physicians annually, with the cost per visit nearly $100 [21].  

2.1.1 Acute Cystitis and Pyelonephritis 

A UTI can occur either from the bottom of the urinary tract systems or from the upper 

part. If bacteria multiply at the opening of the urethra and travel up to the bladder, acute cystitis 

(bladder infection) can develop, which is the most common type of UTI. A more serious 

condition is pyelonephritis (kidney infection), caused by bacteria spreading from the bloodstream 

to the kidney. Cystitis has a high recurrence rate [22]. Urine is generally a good culture medium 

for bacteria, and this can trigger a recurrent infection [23]. 

2.1.2 Pathogenesis and Virulent Factors 

Since a healthy urinary system is generally sterile, bacterial entry and proliferation is a 

must for UTIs to occur [7]. They can be caused by any number of bacteria but are most often 

brought on gram-negative bacteria, especially Escherichia coli (E. coli). 

3

Uropathogenic strains of 

E. coli account for 85-95% of cystitis cases and 90% of acute pyelonephritis infections [ , 8], 

while Staphylococcus saprophyticus is the cause in 5-10%. 

Bacterial adherence to mucosal cells has been considered as a critical step in the 

development of infection. 

E. coli is normally present in the 

intestines and can spread by, entering through the opening of the urethra where urine is excreted. 

Most of the time, the immune system eliminates E. coli that colonizes in the wrong areas of the 

body. However, when this mechanism fails, E. coli can grow, multiply, travel up the urinary 

system, and cause infection in the form of cystisis, and possibly reaching your kidneys. 

E.coli adhesins, the fimbrial structures, which aid bacteria to adhere to 

http://www.ehow.com/travel/�
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the surface of the urinary epithelium [6] have been studied, especially type I pili [24] and P 

fimbriae [25]. Type I pili mediate bacteria to adhere to mannose-specific receptors on urinary 

epithelium and are expressed in almost every uropathogenic E. coli isolate [26]. Their presence 

at the bacterial surface between isolates causing cystitis or pyelonephritis is the same [27]. 

2.1.3 Treatment and Problems 

P 

fimbriae, which have a terminal receptor for the ‘P’ antigen [8] (a blood group marker), not only 

binds to red cells, but also helps bacterial adhesion to the disaccharide alpha-D-Gal(1-4)-beta-D-

Gal specific receptors [28], resulting in a biofilm on the surface of the urinary epithelium and 

catheter [26].  

Although UTI is considered a minor illness, it may cause severe discomfort [8]. If the 

bacteria have inflamed the kidneys and bladder, the patient may feel pain in the lower back or 

pelvis. However, they are also easy to treat and prevent with a course of antibiotics which are 

commonly used.  

Although antibiotics are used routinely for treatment of UTIs, knowledge of the dose is 

still not well documented. Hence, these agents are not always effective. Overtreatment can cause 

such side effects sometimes as nausea, diarrhea, Candidal infections or even poses a threat of 

complications. Certain groups, especially women, are more prone to repeated infections. 

Recurrences frustrate the patient and may contribute to the development of bacterial antibiotic 

resistance. It has been suggested that uropathogens (e.g. 15-20 % or more of E. coli strains) are 

continuously resistant to antibiotics in the United States [4] and worldwide. In the case of kidney 

infection, the patient may require a hospital stay and intravenous antibiotics to treat. Due to the 

need to supplement bactericidal therapeutic strategies, alternative therapies that inhibit bacterial 

adhesion processes are increasingly important. Consumption of American cranberry (Vaccinium 
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macrocarpon) has been utilized for prevention of urinary tract infections for decades [7, 8, 15, 21, 

29, 30].  

2.2 Biofilms 

A biofilm is defined as a matrix-enclosed bacterial population adherent to a surface or 

interface [31]. Biofilms are common in nature and they can be regarded as a crucial survival 

mechanism that hinders the eradication of bacteria [32] from the environment.  

2.2.1 Development of Biofilms 

A biofilm is a complex polymer aggregate of microorganisms growing on surface (Figure 

2.2). Initially the free-floating microorganisms attach to the surface by weak van der Waals 

forces, which are reversible. The attached microorganism could be easily separated from the 

surface and immediately washed away by fluids. If it does not, the microorganism can use its 

specific cell adhesion molecules such as pili to anchor themselves to the surface permanently. 

Bacteria living in the biofilm can exhibit significantly different properties from free-floating 

bacteria due to the different patterns of gene expression [33]. At a higher level of organization, 

the dense extracellular matrix and the outer layer of cells could help protect the bacteria inside 

the film to withstand phagocytic cells and host immune responses. Also, the bacteria within 

biofilms have increased resistance to detergents and antibiotics compared to the non-attached 

planktonic ones. For this reason, the antimicrobial may only kill the bacteria in the outer layers 

of the biofilm, allowing the healthy bacteria within it to regrow rapidly. Beyond that, repeated 

use of antimicrobial agents can cause bacteria to develop resistance [4].  
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2.2.2 Biofilms and Infectious Diseases 

Biofilms are very commonly found on most wet surfaces in nature and can cause severe 

environmental problems. Humans have suffered from acute bacterial infections for many 

centuries; various ways are developed to treat the microbial infections. However, infection 

threats due to organisms present in biofilms remain an issue.  

Biofilms are associated with a wide variety of microbial infections in the body, including 

UTIs [23, 34], catheter infections [35], formation of dental plaque [36], gingivitis [37] and 

infections on contact lenses [38]. Biofilms can also be found on the inert surfaces of implanted 

devices such as catheters, prosthetic cardiac valves, and intrauterine devices [39].  

1. initial attachment  
2. irreversible attachment  
3. maturation I  
4. maturation II  
5. dispersion 

 

Figure 2.2 Schematic of Phase of Biofilm Formation Development 
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2.2.3 Biofilms and UTIs 

During cystitis, uropathogenic E. coli invade the healthy epithelial cells and rapidly 

increase in numbers to form biofilms. Under the protection of biofilm, the bacteria are more 

resistant to immune-system attacks and antibiotic treatments, and are more firmly anchored in 

infected cells. This is often the cause of chronic UTIs [23]. 

Protective mechanisms that interfere with bacterial adhesion in the urinary tract have not 

been completely elucidated. However, it has been proposed that ingestion of an adhesion-

interfering substance may impair bacterial infection capability [16, 21, 40]. 

2.3 Impact of Natural Products on Infections 

Numerous studies have indicated that dietary consumption of fruits and vegetables 

reduces the risk of many chronic diseases such as cardiovascular disease and cancers [41-43]. 

They are rich in micronutrients such as carotenoids, vitamins C and E, folic acid, flavonoids, 

phenols, isothiocyanates, and fiber, which might be a potential reason for the health effects. 

Hence, extracts of vegetables and fruits are often used as a compound of functional foods, 

dietary foods or dietary supplements. As a part of human diet all over the world, the beneficial 

effects of berries have attracted a great attention for research interests, especially cranberry 

(Vaccinium fruit).  

2.3.1 Cranberry Constituents and Infections 

The American cranberry (Vaccinium macrocarpon), a native member of the North 

American fruit family, is composed of water (80-88%) and carbohydrates (10%) [44]. The 

remaining 10% is made up of flavonoids, anthocyanins, catechin, triterpenoids, organic acids and 

ascorbic acid [30].  Because this fruit is rich in vitamin C, dietary fiber and the essential dietary 
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mineral, manganese, it has been widely used in a variety of food products including juices and 

sauces. Cranberry was ranked the fifth highest selling herb in the US and sales of cranberry have 

shown continued growth for years, exceeding $15 million in 2005 [45]. The fresh cranberry has a 

high content of acid and is astringent for consuming directly. A sweetened drink, cranberry juice 

cocktail which contains ~27% cranberry juice, sweetener, water and added vitamin C was 

introduced.  

The health benefits of the American cranberry (fruits and leaves) have been of interest for 

generations. Some researchers are exploring the cranberry’s effects on heart disease [46, 47], 

yeast infections and other conditions, and other researchers are investigating its potential against 

cancer [46, 48]. No major adverse effects or interactions were reported or identified in recent 

studies [49, 50]. Drinking cranberry juice regularly is a promising method to reduce or eliminate 

UTIs. 

2.3.2 Cranberry and UTIs 

Clinical studies showed a significant role of cranberry in maintaining urinary tract health, 

but the molecular mechanism is still unclear. It has been proposed that cranberry contains two 

components, fructose and a specific A-type PACs [16], both of them could inhibit the pathogenic 

bacteria from binding to the uroepithelium cells, which is the first step of the infection. Further 

research is required to clarify unanswered questions regarding the role of cranberries in 

protecting against UTI in general.  
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2.3.3 Mechanism of Cranberry Juice Health Benefits on UTIs 

2.3.3.1 Urinary Acidification 

Factors that do not favor bacterial growth include a low pH (5.5 or less) and a high urea 

concentration [8]. The latter varies due to individual conditions and dietary habits. In 1923, 

Blatherwick and Long [10] proposed that the cranberries’ naturally high acid content could 

enhance acidification of the urine, producing an antibacterial effect in the body. Furthermore, 

Kinney et al. [11] and in Jackson et al. [12] showed that cranberry juice can lower urinary pH. 

However, the quantities of cranberry juice required to cause a pH change were much higher than 

that generally consumed. Later, Nickey [13] and Avorn et al. [14] demonstrated that regular 

consumption of cranberry juice reduced the presence of bacteria in the urine, but this effect was 

not related to more acidic urine, indicating that increased urinary acidification does not appear to 

have a significant role in cranberry’s effect in maintaining urinary tract health.  

2.3.3.2 Anti-adhesion Effect on Pathogenic E. coli  

Recent research [13, 14] suggested that acidification of urine was not the reason for the 

anti-bacterial properties of cranberry juice.  In 1984, Sobota [15] proposed a more likely 

potential mechanism, which is that the preventative effect is achieved by inhibiting bacteria from 

adhering to uroepithelial cells. Later, Zafriri et al. [16] found that this benefit is due to two 

components in cranberry. Fructose, a constituent of many fruit juices including cranberry juice, 

orange juice, and pineapple juice, has been implicated as an important indicator of type I pili 

(mannose-sensitive) mediated adherence [16]. Proanthocyanidins (PACs), uniquely present in 

cranberries, have been demonstrated to inhibit type P pili (mannose-resistant) mediated 

adherence irreversibly [16, 51].  
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Figure 2.3 Molecular structure of A-type PACs [17] 

Foo et al. and Howell et al. [17, 18] identified that the unique PACs with special A-type 

double linkages, which refer to the double bonds between the epicatehin/catechin units in PACs 

molecules (Figure 2.3), may be responsible for the anti-adhesion process. Ofek et al. [52] 

supported this hypothesis by showing that no anti-adhesion activities were observed after 

consuming other food sources of PACs that only contain common B-type linkages which are 

single bonds, including chocolate, grape, apple and green tea.  
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2.4 Atomic Force Microscope   

Biofilm assay is an effective way to demonstrate bacterial adhesion activity, but other 

techniques are needed to directly and quantitatively detect cranberry juice cocktail’s anti-

adhesive ability.  

 

 

Figure 2.4 Schematic of AFM operating principles [53] 

The atomic force microscopy (AFM) is a sensitive tool for measuring forces (in the pico- 

to nano-Newton range) as a function of separation distance. A flexible cantilever with a sharp tip, 

which may either be an inert material such as silicon or silicon nitride or can be functionalized 

with a bacterial cell, is operated as a probe of a sample surface and bends in response to surface 

forces. These deflections are detected by monitoring the position of a laser focused on the tip, 

through a four-quadrant photodiode detector (Figure 2.4). This signal is recorded and used to 

adjust the feedback loop. The adjusted voltage then applied to a piezo to control the movement 

of the tip further in order to bring it alternately into contact with the sample surface. 
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2.4.1 Direct Force Measurements Using Atomic Force Microscopy 

 

Figure 2.5 Forces are measured during the approach (upper, red line) and retraction (lower, purple line) 
of the probe with the sample. The “approach” curve describes the interfacial forces acting between the 
bacterial probe and uroepithelial cells. The “retraction” curve represents the adhesive forces that hold the 
two together after contact has been made.  

 

Using AFM, forces can be easily measured both during the approach of the probe to the 

sample (red arrow in Figure 2.5), as well as during the retraction of the probe from the sample 

after contact has been made (purple arrow in Figure 2.5). The approach of the AFM profiles 

reflect the interaction forces between the probe and sample, which is generally repulsive (red 

curve showing F>0 in Figure 2.5). Retraction profiles provide information on adhesion forces 

(purple peak showing F<0 in Figure 2.5) between the probe and tip. By directly detecting such 

interactions, we can determine the mechanism controlling the adhesion of E. coli to uroepithelial 

cells in occurrences of UTIs. The adhesion between a biological functionalized probe, where an 
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E. coli bacterium is coated to the probe and uroepithelial cell surfaces will be therefore 

quantified in this study. This technique represents a more rapid way to quickly screen among 

different treatments, such as comparing the behavior of multiple solutions or various bacterial 

isolates. 

The tip used for the force measurements is calibrated individually before use in order to 

obtain the cantilever spring constant (k). Once the spring constant is known, the force (F) as a 

function of separation distance between the sample and tip (x) can be calculated from Hooke’s 

Law for linear and elastic springs, which states that  

F = kx                Equation 2.1 

2.5 Preliminary Studies of Bacterial Attachment in Our Lab 

Using biofilm assay and AFM technique, the preventive effects of cranberry on urinary 

tract infections has been clinically evaluated in many products, including cranberry juice 

concentrate [54], cranberry juice cocktail [14] and  cranberry capsules [55]. Cranberry products 

that have been studied in our lab were mainly cranberry juice cocktail [56-59] or isolated 

proanthocyanidins (PACs) [60] in previous studies.  

2.5.1 Cranberry Juice on Physicochemical Surface Characteristics and Adhesion 

Behavior of Escherichia coli  

In order to better understand the mechanism associated with the molecular-scale effects 

of cranberry juice cocktail on physicochemical surface properties of E. coli, experiments [57] 

were conducted to investigate both bacterial surface characteristics and adhesion forces between 

a probe surface (silicon nitride) and the bacteria after a short exposure period (<3 h) via AFM. 

Two E. coli strains: HB101, which has no fimbriae, and the mutant HB101pDC1 which 
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expresses P-fimbriae were tested. The results showed that cranberry juice could affect the P-

fimbriated bacteria by altering the conformation of the surface macromolecules on E. coli 

HB101pDC1, which decreased the adhesion forces between the treated bacterium and the AFM 

tip.  

Furthermore, a thermodynamic approach was used in our lab [59] to calculate the 

changes in the Gibbs free energy change of adhesion changes (ΔGadh) for bacteria-uroepithelial 

cell (UC) interactions. E. coli HB101pDC1 (P-fimbriated) and HB101 (non-fimbriated) were 

exposed to cranberry juice at different concentrations (0–27 wt %). For HB101 interacting with 

UC, ΔGadh was always negative and the values were insensitive to cranberry juice concentration. 

For the HB101pDC1-UC system, which could form strong bonds with the Gal–Gal disaccharide 

receptor on uroepithelial cells, ΔGadh

2.5.2 Anti-adhesive Effects of Cranberry Juice Cocktail vs. Isolated PACs 

 became positive at 27 wt % cranberry juice, indicating that 

adhesion was unfavorable. The results suggested that cranberry juice may disrupt bacterial 

ligand-UC receptor binding. 

In order to better answer questions regarding whether PACs are the main or the only 

active components in CJC, our lab measured the adhesion forces between an AFM probe (silicon 

nitride) and individual E. coli cells grown in cranberry products [60]. P-fimbriated bacterial 

strain E. coli HB101pDC1, and the non-fimbriated E. coli HB101, were used. Bacteria were 

cultured in tryptic soy broth (TSB) supplemented with neutralized, light cranberry juice cocktail 

(L-CJC) from Ocean Spray Cranberries, Inc. or a solution of isolated cranberry juice 

proanthocyanidins (PACs) provided by Ocean Spray. The results showed that growth of E. coli 

HB101pDC1 and HB101 in L-CJC or PACs resulted in a decrease in adhesion forces with an 

increasing number of cultures, and the behavior was dose-dependent fashion. When the bacteria 
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were exposed to increasing concentrations of L-CJC treatment (27% by weight) and PACs 

treatment (345.8 µg/mL), the adhesion forces further decreased. This effect was reversible.  

When bacteria were regrown in cranberry-free medium, they could regain their ability to attach 

to uroepithelial cells, and the adhesion forces reverted to the values of the control case.  

In addition, a biofilm formation assay was used to detect in vitro anti-adhesion activity of 

cranberry products such as CJC and isolated PACs. Briefly, bacteria were cultured in Luria-

Bertani media and mixed with CJC or PACs in PVC 96 well plates for 48 hrs. After incubation 

for 0, 6, 24, and 48 hrs at 37 °C, the amount of biofilm was measured. The results showed that 

CJC completely eliminates biofilm formation for all cultures. However, the isolated PACs 

reduced biofilm formation compared to the control, but did not eliminate biofilm formation. This 

may be related to the fact that PACs become unstable when they are removed from the juice 

environment or that PACs are not the only active components. These results revealed the need to 

further study non-PACs components.  

2.5.3 Atomic Force Microscopy (AFM) Studies of Bacterial-Uroepithelial Cell 

Interactions 

Our lab was the first to measure the adhesion forces between uropathogenic P-fimbrated 

E. coli and uroepithelial cells exposed to cranberry juice (0 2.5, 5, 10, and 27 wt%) directly by 

use of AFM [56]. In the presence of CJC, a decrease in adhesion forces between E. coli and the 

uroepithelial cells was observed and the adhesion forces were dose-dependent. Adhesion forces 

between E. coli HB101 (non-fimbriae bacteria served as a control) were relatively low and did 

not change significantly in CJC. 
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Further, our lab investigated the effects of cranberry metabolites in urine collected from a 

volunteer who had consumed CJC on several strains of uropathogenic E. coli [58], including P-

fimbriated strains (CFT073, B37, J96, and BF1023) and non-fimbriated but mannose-resistant 

hemagglutination demonstrating strains (B73 and B78). AFM results showed that within 2 hours 

after CJC consumption, bacteria of the clinical strains treated with the corresponding urine 

sample demonstrated lower adhesion forces than those treated with urine collected before CJC 

consumption. The adhesion forces continued decreasing with time after CJC consumption over 

the 8-hour measurement period, while the adhesion forces of bacteria after exposure to urine 

collected following water consumption did not change. But this research only used a single 

volunteer. Since different individuals might respond to CJC in various ways, more volunteers 

need to be involved to elucidate CJC’s effectiveness of control and treatment for UTIs. 

Previous studies in our lab have showed that for some cases, PACs alone do not have as 

great an anti-adhesion effect against E. coli as CJC [60]. The weaker performance of isolated 

PACs lead us to shift our research approach from studying the in vitro effects of cranberry juice 

or isolated PACs in our AFM adhesion assays to studying the metabolites in urine directly. In 

working with the urine samples, we believe it could remove uncertainties about whether the 

material is stable, and about how relevant these solutions are compared to what occurs in the 

body when a person consumes cranberry juice. The purpose of this study is to get a more detailed 

picture of when the anti-adhesive activity of urine peaks, to explore how long the anti-adhesion 

effect persists in the urine, and to understand the differences in how individual volunteers 

respond to CJC consumption.  
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Chapter III Effects of cranberry juice 
metabolites on uropathogenic 
Escherichia coli in vitro biofilm formation 

3.1 Abstract 

A double-blind, placebo-controlled pilot clinical trial of the effect of cranberry juice 

cocktail (CJC) consumption on biofilm formation was conducted in ten healthy women between 

the ages of 18 and 27. A single dose of 16 oz. of CJC or a placebo beverage was given to the 

volunteers, and urine samples were collected in the following 48 hours. A washout period of 

seven days was allowed. Bacteria (E. coli B37, CFT073, BF1023, HB101, and S. aureus 

ATCC43866) were cultured in the urine samples supplemented with media and the amount of 

biofilm formed was measured using a crystal violet absorbance assay in a 96-well plate. In the 

urine of volunteers who had consumed CJC, biofilm formation was inhibited within 24 hours 

after CJC consumption, and biofilm formation started to increase after 48 hours by 49-67%. S. 

aureus showed the least biofilm formation after incubation with post-CJC urine. The results 

indicated that drinking CJC can be an effective preventive measure for bacterial adhesion and 

biofilm formation in healthy women. The anti-biofilm activity peaks between 24 and 48 hours 

after drinking CJC. In addition, the viability assay results showed that the colony count after 

culturing in urine collected following consumption of CJC or placebo were not significantly 

different, implying that CJC works as an inhibitor by blocking bacterial adhesion instead of 

killing the bacteria or restraining its growth.  
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3.2 Introduction 

Escherichia coli (E. coli) strains have been considered as the most predominant cause of 

urinary tract infections (UTIs). As the first step of bacterial infection, biofilm formation, which 

hinders the eradication of bacteria [32] from the environment, is of significant interest to 

researchers [61]. Biofilms allow bacteria to persist a long time in the genitourinary tract and 

create more favorable conditions for colonization and infection. In addition, biofilm help the 

bacteria within it avoid immune system attacks and antibiotic treatments, which increase the 

difficulty of treating UTIs.  

Native American cranberry (Vaccinium macrocarpon) has been long known for its 

preventive benefits on UTIs. E. coli adhesins, mainly fimbrial in nature, promote bacterial 

adhesion to uroepithelial cells or urinary catheters, which is the first step in the development of 

biofilm formation and UTIs. The unique A-type linkages proanthocyanidins (PACs) in cranberry 

have been implicated as important inhibitors of primarily P-fimbriated E. coli attachment to 

uroepithelial cells. However, the activity of the post-ingested cranberry metabolites has not been 

greatly studied. The mechanisms of the anti-adherence effect and the nature of the anti-adherence 

compounds are still poorly understood. 

 Although cranberry products have been consumed by many healthy women as a 

preventive measure, further research is needed to elucidate how oral consumption of cranberry 

affects the activity of uropathogenic bacteria. Previous studies demonstrated that the active 

compounds are not destroyed in the body by the digestive system after intaking cranberry juice 

[58, 62]. However, no studies have identified the molecular structure of the effective components 

in urine. Additional experiments are required to investigate its persistence in urine samples over 

a broader time period, and to determine if the urinary anti-adhesion effect following cranberry is 
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detected within volunteers of different origins. By using human urine, this model could represent 

in vivo conditions. 

A limited number of studies have examined the role of cranberry on biofilm formation. 

DiMartino et al showed that cranberry juice consumption decreased biofilm development of 

uropathogenic E. coli on inert surfaces [63]. They used samples from two volunteers and tested 

the urine at a single time point. Another placebo-controlled clinical trial showed that UTIs were 

prevented in elderly women who had received cranberry juice therapy [14], but there have been 

few studies in younger age groups. We built upon prior research in several important ways, by 

examining more volunteers, testing the urine over a longer time (up to 48 hrs), and examining a 

wider range of uropathogenic strains. Therefore, the present study used a biofilm formation assay 

to determine the efficacy of cranberry juice cocktail (CJC) to reduce biofilm formation in the 

urine of ten healthy women, for 48 hours following CJC consumption. 

3.3 Subjects and Methods 

3.3.1 Healthy Volunteers 

Ten healthy female volunteers with a normal diet, ranging in age from 18 to 27 years, 

from the student population of Worcester Polytechnic Institute (Massachusetts) were recruited. 

The study was a double-blind, randomized, placebo-controlled and cross-over study. Exclusion 

criteria included confirmation that the ten volunteers had no history of urinary tract infections 

and the urine had a normal urine composition by a dipstick test. During this trial, the volunteers 

maintained their usual unrestricted diet but were asked to not consume any other berries or juices 

in order to exclude the intervention of metabolites possibly similar to cranberry metabolites. All 

volunteers were asked to sign their informed consent.  
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3.3.2 Study Protocol 

The double-blind study was carried out using commercially available cranberry juice 

cocktail (CJC; Ocean Spray Cranberries, Inc., USA) and placebo beverage. Ingredients include 

filtered water, cranberry juice concentrate (~27%), sucrose, aspartame, and ascorbic acid. The 

placebo beverage mimics the flavor and color of the cranberry beverage but has no cranberry 

ingredients or proanthocyanidins.  

Each volunteer received 16 oz (480 ml) of CJC or placebo. A wash-out period of at least 

one week was allowed. Urine samples were collected at 2, 8, 24, and 48 hours after CJC or 

placebo consumption. Baseline urine samples (indicated as 0 hour later) were taken before 

ingesting cranberry juice or placebo on the day of the study. All specimens and data were 

confidentially coded. In order to remove epithelial cells, bacteria, or other particles from the 

urine, the urine samples were centrifuged at 7000 RPM for 10 min, sterilized by filtration using 

polyethersulfone syringe filters (VWR International TM, West Chester, PA) with 0.8 μm and 0.2 

μm membranes sequentially, and stored at -20 °C for future use.  

3.3.3 Bacteria Cell Preparation  

Three clinical uropathogenic P-fimbriaed E. coli isolates (CFT073, B37, and BF1023) 

and a Staphylococcus aureus (S. aureus) strain (ATCC 43866) were used in this study. E. coli 

HB101, a non-pathogenic lab strain with no fimbriae that does not adhere to epithelial cells, 

served as a control. Pure cultures were maintained at -80 °C in colonizing factor antigen (CFA) 

media composed of 1% (w/v) casamino acids, 0.078% (w/v) yeast extract, 0.4 mM MgSO4, 0.04 

mM MnCl2, in ultrapure water, at a pH of 7.4. Cultures were streaked onto Tryptic Soy Agar 

(40g/L, Sigma-Aldrich, St. Louis, MO) plates that were then incubated at 37 °C for 24 h. The 

strains were cultured in Luria-Bertani broth (20g/L, Sigma-Aldrich, St. Louis, MO) at 37 °C with 
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gently shaking to enhance expression of P-fimbriae and then harvested at late exponential phase 

(corresponding to 0.9-1.0 optical density (OD) units at 600 nm).  

3.3.4 Crystal Violet Biofilm Assay 

The inhibitory effect of cranberry metabolites on the biofilm formation of E. coli CFT073, 

E. coli B37, E. coli BF1023, S. aureus ATCC 43866, E. coli HB101 on the bottom of 96-well 

PVC microtiter plates (BD Falcon, Durham, NC) was examined. Briefly, the harvested bacteria 

were mixed with urine samples at a ratio of 1: 1 (v/v %). The mixed suspension was transferred 

into a 96-well PVC microtiter plate and incubated at 37 ºC. After 0, 6, 24, 48 hours of incubation, 

media and unattached bacterial cells were decanted from the wells. 20 μL of crystal violet 

solution (Becton, Dickinson and Company, Sparks, MD) was added to stain bacteria cells for 15 

minutes. The microtitre plates were then washed three times with 200 μL of deionized water each 

time to remove the remaining planktonic or loosely bound bacteria cells. Bacteria cell-bound 

crystal violet was released by the addition of 150 μL of extracting agent (20% acetone in ethanol 

v/v) for 15 min at room temperature. The concentration of crystal violet, as the indicator of the 

amount of biofilm, was then quantified by measuring the absorbance of the solution at 600 nm 

with a microtiter plate reader. Each isolate was assayed in four replicate wells. 

3.3.5 Bacterial Cell Viability Assay 

Plate counts were used to verify loss of cell viability when suspended in urine collected 

after CJC or placebo consumption. Harvested bacterial cell suspensions were diluted in the same 

pre-warmed medium (Luria-Bertani broth) from 10 to 106 and mixed with the urine samples with 

a ratio of 1:1 (v/v %). Mixture with equal quantity of growth media was used as a control. The 

mixture was spread to Luria-Bertani argar (35g/L, Sigma-Aldrich, St. Louis, MO) plate and 

incubated at 37 °C for 24 h. The numbers of bacterial colony were counted. These measurements 
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were repeated using three different samples (prepared from separate cultures) of each bacterial 

dilution.  

3.3.6 Statistical Analysis 

3.3.6.1 Crystal Violet (CV) Biofilm Formation Assay 

For each volunteer, comparisons of the biofilm amount after post-CJC and post-placebo 

urine sample treatment were evaluated using one-way analysis of variance (abbreviated one-way 

ANOVA) method, following the variance examination with Tukey's test. For all the ten 

volunteers, the difference of biofilm formation in urine following consumption of cranberry juice 

cocktail or placebo was also examined by one-way ANOVA procedure, following with Tukey's 

Test. A value of P < 0.05 was considered statistically significant and the time point zero samples 

served as a baseline control. Results were reported as means ± standard deviation (SD) for all 

experiments. 

3.3.6.2 Bacterial Cell Viability Assay  

The statistical significance of differences was evaluated with Student’s t test for paired 

values. P values below 0.05 were considered significant. All experiments were performed in 

triplicate. 
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3.4 Results  

3.4.1 Effects of Cranberry Juice Metabolites on E. coli Biofilm Formation 

To determine cranberry juice metabolites’ anti-adhesive ability to clinical UTI isolates, 

biofilm formation assay (which represents a rapid screening method for bacterial adhesion 

abilities in 96-well microtitre plates) was conducted in this study.  

The inhibitory effects of cranberry juice metabolites on the five strains after 0, 6, 24, and 

48 hours incubation are presented in Figures 3.1 - 3.4, respectively. The adherence rates of the 

tested bacteria differed from strain to strain. For non-pathogenic E. coli HB101 (served as a 

control), the amount of biofilm formed after culturing in post-CJC urine stayed unchanged over 

48 hours and did not show a difference from the biofilm amount formed with post-placebo urine 

treatment for all incubation time points (0, 6, 24, and 48 hours). Before they had been put into 

the 37 °C incubator (Figure 3.1, 0 hour), E. coli B37, BF1023 did not show any difference in 

biofilm formation between the post-CJC and post-Placebo urine treatment. Only S. aureus and E. 

coli CFT073 exhibited a significant lower biofilm formation after drinking CJC for 24 hours and 

48 hours compared to placebo.  
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Figure 3.1 Amount of biofilm formed after incubation of 0 hour at 37 °C (A) E. coli HB101; 
(B) S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023.  indicates that 
biofilms formed in urine following ingestion of CJC or placebo were significantly different. 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Stas_BF1023_h0

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Stas_HB101_h0

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Stas_B37_h0

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Stas_CFT073_h0

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Stas_S.aureus_h0

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

(A) 

(B) (C) 

(D) 
(E) 



Chapter III: Biofilm Formation Assay 

- 26 - 
 

  

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Stas_S.aureus_h6

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Stas_CFT073_h6

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
Stas_B37_h6

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Stas_HB101_h6

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

0 10 20 30 40 50
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 Stas_BF1023_h6

Ab
so

rb
an

ce
 @

 6
00

 n
m

Urine Collecting Time/hr

 CJC
 Placebo

 

Figure 3.2 Amount of biofilm formed after incubation of 6 hour at 37 °C (A) E. coli HB101; 
(B) S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023.  indicates that 
biofilms formed in urine following ingestion of CJC or placebo were significantly different. 

 

 

(A) 

(B) (C) 
 

(D) (E) 



Chapter III: Biofilm Formation Assay 

- 27 - 
 

  

Figure 3.3 Amount of biofilm formed after incubation of 24 hour at 37 °C (A) E. coli 
HB101; (B) S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023.  indicates 
that biofilms formed in urine following ingestion of CJC or placebo were significantly 
different. 
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Figure 3.4 Amount of biofilm formed after incubation of 48 hour at 37 °C (A) E. coli 
HB101; (B) S. aureus; (C) E. coli CFT073; (D) E. coli B37; (E) E. coli BF1023.  indicates 
that biofilms formed in urine following ingestion of CJC or placebo were significantly 
different. 
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Table 3.1 Amount of biofilm formed after culturing in urine samples collected from volunteers drinking CJC or placebo for 6 hours. Biofilm 
amount at hour 0 serves as baseline. 

Strain Urine Sample Treatment 
Mean Absorbance at 600 nm ± SD  

0hr 2hr 8hr 24hr 48hr 

E. coli B37 Placebo 0.000 
0.000 

0.021±0.193 0.030±0.170 0.157±0.410 0.213±0.427 
CJC -0.090±0.207 -0.121±0.136 -0.214±0.175* -0.090±0.254* 

E. coli CFT073 Placebo 0.000 
0.000 

0.028±0.268 0.063±0.305 0.082±0.321 0.087±0.214 
CJC 0.000±0.216 -0.123±-0.182* -0.148±0.205* 0.041±0.227 

E. coli BF1023 Placebo 0.000 
0.000 

0.011±0.058 -0.019±0.073 0.023±0.067 0.051±0.073 
CJC -0.020±0.067 -0.042±0.077 -0.045±0.058* -0.023±0.105* 

S.aureus 
(ATCC43866) 

Placebo 0.000 
0.000 

0.245±0.398 0.263±0.363 0.256±0.375 0.428±0.307 
CJC -0.057±0.222* -0.080±0.256* -0.274±0.212* -0.090±0.262* 

E. coli HB101 Placebo 0.000 
0.000 

0.026±0.028 0.005±0.027 0.087±0.026 0.089±0.023 
CJC 0.142±0.033 -0.006±0.040 0.014±0.040 0.091±0.021 

* Statistically significant difference compared to the placebo group (p<0.05). 
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After incubation for 6 hours at 37 °C (Figure 3.2), for all the strains except E. coli HB101, 

the amount of biofilm decreased within 24 hours after CJC consumption and slightly increased 

between 24 and 48 hours after CJC consumption (Table 3.1). The trend for the quantity of 

biofilm formed after 24 hours of incubation (Figure 3.3) is similar to those incubated for 6 hours 

for all strains except E. coli CFT073, where the biofilm amount for the sample treated with 48 

hours post-CJC urine is a little higher than the one treated with 48 hours post-placebo urine. 

After 48 hours of incubation (Figure 3.4), the 24 hours post-CJC urine treatment reduced biofilm 

formation ability in all strains except E. coli HB101. However, only S. aureus and E. coli B37 

showed a significant decrease of biofilm formation in urine following consumption of CJC 

compared to that in urine collected after drinking placebo at the same time point. The 48 hours 

post-CJC urine treatment formed the same amount of biofilm as 48 hours post-placebo urine 

treatment, except for S. aureus. 

3.4.2 Individual Responses to CJC 

The inhibitors to prevent biofilm formation against E. coli may be transitory and can be 

affected by a number of factors, dietary (on salt and water balance) and environmental. For a 

given strain of bacteria, an individual was considered to be responsive to CJC if the biofilm 

amount after culturing in post-CJC urine was significant lower than that in post-placebo urine (P 

< 0.05).   

The number of volunteers who responded to CJC is summarized in Tables 3.2 - 3.5. The 

results demonstrated that the urine before drinking either CJC or placebo did not show any anti-

adhesive effects for all strains, at all incubation time points.   
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Table 3.2 Number of volunteers that showed a significantly lower biofilm formation in urine following 
consumption of CJC (total number of volunteers is 10) after incubation for 0 hour at 37 °C. 

Strain 
# of volunteers showing difference between CJC and placebo 

0hr 2hr 8hr 24hr 48hr 
E. coli B37 0 0 1 1 3 

E. coli CFT073 0 1 2 4 2 
E. coli BF1023 0 3 4 4 3 

S.aureus (ATCC43866) 0 2 1 6 6 
E. coli HB101 0 1 2 1 2 

 

After being incubated for 0 hours (Table 3.2), the number of volunteers who responded to 

CJC differed from strain to strain and there is no obvious trend among the treatment with urine 

collected before drinking CJC or placebo. 

 

Table 3.3 Number of volunteers that showed a significantly lower biofilm formation in urine following 
consumption of CJC (total number of volunteers is 10) after incubation for 6 hours at 37 °C. 

Strain 
# of volunteers showing difference between CJC and placebo 

0hr 2hr 8hr 24hr 48hr 
E. coli B37 0 4 4 8 6 

E. coli CFT073 0 3 5 5 5 
E. coli BF1023 0 1 2 3 4 

S.aureus (ATCC43866) 0 5 6 6 9 
E. coli HB101 0 1 3 4 2 

 

After incubation for 6 hours at 37 °C (Table 3.3), the results showed that within 24 hours 

after drinking CJC, the number of volunteers who showed a reduced biofilm formation increased, 

and this trend was similar in all the strains tested. The response at 48 hours after drinking CJC 

differed among the strains. E. coli BF1023 and S. aureus showed an increased number of 

responding volunteers at 48 hours compared to 24 hours, whereas for the other strains, the 
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number of volunteers who responded to CJC stayed unchanged or decreased, possibly because 

CJC has been washed out of the volunteer’s body. The degree of biofilm reduction also varied 

with bacterial strain; S. aureus had the most significant biofilm decrease, whereas E. coli 

BF1023 showed very little change after treatment with post-CJC urine. These variations may 

result from the different susceptibility of each strain to CJC treatment, and variant surface 

properties such as adhesin type and density. 

 

Table 3.4 Number of volunteers that showed a significantly lower biofilm formation in urine following 
consumption of CJC (total number of volunteers is 10) after incubation for 24 hours at 37 °C. 

Strain 
# of volunteers showing difference between CJC and placebo 

0hr 2hr 8hr 24hr 48hr 
E. coli B37 0 2 4 4 4 

E. coli CFT073 0 3 4 4 2 
E. coli BF1023 0 3 4 4 3 

S.aureus (ATCC43866) 0 4 4 5 6 
E. coli HB101 0 5 3 5 3 

 

The trend after 24 hours incubation (Table 3.4) is the same compared to that with 6 hours 

incubation but had decreased number of volunteers who responded to CJC except E. coli BF1023. 

 

Table 3.5 Number of volunteers that showed a significantly lower biofilm formation in urine following 
consumption of CJC (total number of volunteers is 10) after incubation for 48 hours at 37 °C. 

Strain 
# of volunteers showing difference between CJC and placebo 

0hr 2hr 8hr 24hr 48hr 
E. coli B37 0 3 5 4 5 

E. coli CFT073 0 3 3 3 3 
E. coli BF1023 0 1 2 3 3 

S.aureus (ATCC43866) 0 1 2 6 0 
E. coli HB101 0 1 2 3 1 
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After 48 hours incubation (Table 3.5), the number of responded volunteers further 

decreased compared to 24 hours incubation except E. coli B37. That is probably because the 

formed biofilm has already begun to decompose. 

3.4.3 Viability Assay and Correlation with Biofilm Assay 

To clarify whether cranberry juice metabolites behaved as anti-adhesive or anti-microbial 

agents, cell viability assay was measured.  

The effects of post-CJC consumption urine on bacterial colony number are summarized 

in Table 3.6. Cell viability also differed from strain to strain, and no significant drop in the 

number of colonies was observed for all strains after ingestion of cranberry (P < 0.5). For 

example, for E. coli CFT073, volunteer 7, the plate count after 24 hours of incubation in post-

CJC urine was 44.93 ± 32.63, in comparison to 47.47 ± 35.50 when suspended in post-placebo 

urine for 24 hours. Similarly, E. coli HB101, a strain lacking fimbriae structure that served as a 

control, showed no difference in colony counts (post-CJC urine was 7.20 ± 3.76, in comparison 

to 6.93 ± 3.10 in post-placebo urine, both for 24 hours). This indicates that the consumption of 

cranberry juice cocktail inhibits biofilm formation by possibly hindering bacterial adhesion 

activities rather than by killing the bacteria. 

E. coli CFT073 had the most colonies after culturing in post-consumption urine; S. 

aureus had a high colony count as well. These results were consistent with the results of the 

biofilm formation assay, in that E. coli CFT073 and S. aureus formed relatively more biofilm in 

post-placebo urine among all the clinical strains.  
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Table 3.6 Colony count of bacteria strains after 24 hours incubation in post-CJC urine or post-Placebo urine. 

Volunteer ID Urine Sample Treatment 
Strain 

E. coli B37 E. coli BF1023 E. coli CFT073 S. aureus E. coli HB101 

1 CJC 8.73 ± 4.62 13.93 ± 7.65 44.93 ± 32.63 23.87 ± 10.88 7.20 ± 3.76 
Placebo 11.60 ± 4.24 14.53 ± 8.50 47.47 ± 35.50 25.07 ± 6.50 6.93 ± 3.10 

2 CJC 18.27 ± 8.28 8.67 ± 5.68 32.13 ± 11.26 20.00 ± 11.18 7.07 ± 2.71 
Placebo 20.13 ± 8.85 9.25 ± 5.63 32.33 ± 8.82 23.33 ± 9.38 7.73 ± 2.69 

3 CJC 3.67 ± 2.02 12.73 ± 8.47 18.47 ± 3.34 21.13 ± 7.12 4.87 ± 1.85 
Placebo 4.40 ± 2.78 13.20 ± 6.76 18.40 ± 4.50 19.80 ± 6.94 6.13 ± 2.80 

4 CJC 23.00 ± 4.92 17.42 ± 8.87 21.25 ± 8.81 22.83 ± 9.52 5.08 ± 1.78 
Placebo 20.00 ± 3.02 17.92 ± 7.10 23.25 ± 10.97 22.00 ± 8.10 4.92 ± 1.68 

5 CJC 8.93 ± 8.41 11.47 ± 2.88 26.87 ± 17.18 30.60 ± 6.19 6.40 ± 5.29 
Placebo 17.73 ± 29.00 11.33 ± 2.89 29.93 ± 26.55 29.20 ± 5.83 6.33 ± 3.77 

6 CJC 18.33 ± 7.87 12.73 ± 5.01 36.00 ± 14.88 19.67 ± 7.07 5.40 ± 3.85 
Placebo 15.20 ± 6.73 13.27 ± 8.00 30.27 ± 10.82 23.93 ± 6.79 4.47 ± 2.85 

7 CJC 12.07 ± 8.42 7.80 ± 5.61 18.80 ± 6.01 21.47 ± 10.52 2.60 ± 1.59 
Placebo 12.07 ± 4.70 11.67 ± 4.86 18.33 ± 4.39 19.60 ± 6.77 3.47 ± 2.36 

8 CJC 7.47 ± 4.66 2.87 ± 1.19 76.40 ± 36.67 18.80 ± 6.98 5.73 ± 1.79 
Placebo 5.40 ± 4.91 4.60 ± 3.96 82.33 ± 36.73 19.47 ± 5.04 4.53 ± 2.26 

9 CJC 14.33 ± 8.87 12.93 ± 8.92 nt 13.92 ± 7.63 4.93 ± 2.09 
Placebo 15.67 ± 8.23 9.87 ± 10.49 nt 15.50 ± 8.45 4.87 ± 2.36 

10 
CJC 12.67 ± 3.92 10.80 ± 4.48 126.93 ± 61.57 25.40 ± 6.52 5.20 ± 2.73 

Placebo 15.20 ± 4.52 12.07 ± 3.24 104.80 ± 23.21 29.67 ± 7.64 4.33 ± 2.77 
All results are statistically non-significant (P < 0.05). nt=not tested
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3.5 Discussion 

3.5.1 Selection of Bacterial Strains 

To determine the efficacy of the consumption of cranberry juice versus placebo 

with regard to the presence of in vitro bacterial anti-adherence activity, several clinical 

strains of E. coli were cultured in the urine of healthy volunteers and tested for their 

ability to form biofilm in this study. Since our focus is on the type of adhesion that can be 

affected by PACs, we concentrated primarily on P-fimbriated E. coli strains.  

Uropathogenic E. coli strains typically demonstrate mannose-resistant adhesion in 

mannose-resistant hemagglutination (MRHA) experiments [64-66], but only cranberry 

can inhibit mannose-resistant adhesion [67, 68]. It is therefore important to investigate 

CJC’s anti-adhesive activity against uropathogenic E. coli strains that demonstrate 

MRHA. Several MRHA strains (P-fimbriated E. coli B37, CFT073 and BF1023) [58] 

were selected in this study.   

Table 3.7 Summary of properties and sources of five E. coli strains studied. All isolates also 
express type I fimbriae except S. aureus and HB101.  

Strain Fimbriae/Info Source 

B37 P-fimbriae from class II, 
ampicillin/sulfamethoxazole 
intermediate resistance 

Dr. James Johnson, VA Medical Ctr, 
Minneapolis, MN; isolated from female with 
cystitis [69] 

CFT073[WAM 
2267] 

Type P-fimbriae from class II  ATCC 700928; isolated from blood and urine 
of a woman with AP 

BF1023 P-fimbriae, class I and class III ATCC 700414; isolated  from a female 
patient with cystitis [70] 

S. aureus Surface protein [71] ATCC 43866  

HB101 Non-fimbriated, lab strain (non-
pathogenic control) 

ATCC 33694 
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The strains chosen cover a variety of surface properties and types of fimbriae 

(Table 3.7). For comparison, a strain that does not have P-fimbriae structure but is known 

to cause cystitis (S. aureus) and a control that does not cause infections (non-fimbriated E. 

coli HB101) were included. To represent different types of adhesins, a strain that 

expresses P-fimbriae from class II (E. coli CFT073) and a strain that expresses P-fimbriae 

from class I and class III (E. coli BF1023) were selected. While there is no direct 

connection between antibiotic susceptibility and sensitivity to cranberry compounds as an 

anti-adhesive therapy, it may be helpful in getting these therapies adopted if their health 

effects against pathogens which cannot be treated with common antibiotics can be 

demonstrated. Therefore, a clinical E. coli strain with known antibiotic resistance (E. coli 

B37) was also included in this study.  

3.5.2 Correlating Growth in Cranberry Metabolites and Development of 

Biofilms 

According to the results of the biofilm formation assay, after the volunteers drank 

CJC, their urine reduced biofilm formation in bacteria strains that have P-fimbriae (E. 

coli B37, CFT073, and BF1023), and surface protein (S. aureus [71]), whereas the strain 

that does not have adhesins, E. coli HB101, was not affected (Table 3.1). These results 

indicated that drinking CJC prevents biofilm formation. The extent to which biofilm 

formation was inhibited could differ based on the adhesin density and type. 

The duration of CJC’s effects on biofilm formation after oral consumption was 

also investigated. A previous study using human cell agglutination assay showed anti-

adhesion activity of urine lasted for 10 hours after CJC consumption [72]. In this study, 

the number of volunteers whose urine showed an inhibitory effect on biofilm formation 
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peaked between 8 and 24 hours after CJC consumption, and decreased in some strains 

after 48 hours. This phenomenon could be a result of cranberry components or 

metabolites’ washing out from the body. This may explain why the amount of biofilm 

increased 48 hours after consumption of CJC. 

3.5.3 Correlating Biofilm Formation and Pili Fimbriae Expression 

In the natural environment, bacteria are often found as communities in the form of 

biofilms. The attachment of individual cells to an available solid surface in the aqueous 

phase is the first step which could lead to the formation of mature biofilms. But the 

bacterium has to overcome the physical forces that repel bacteria from binding. In this 

case, pili structure on bacterium aid it to anchor to the surfaces firmly and mediate stable 

attachment further.  

E.coli CFT073 and B37 showed the most significant effects on biofilm formation, 

which is in a good agreement with the fact that majority of acute pyelonephritis cases 

(66%) are caused by P-fimbriated bacteria that contain Class II adhesins [73]. In addition, 

the bacterial cell viability assay demonstrated that for the amount of cranberry juice (16 

oz.) used in this study, the cranberry juice metabolites in collected urine following 

consumption do not have antibiotic effects, thereby reducing selective pressures for 

antibiotic resistant bacteria. Instead, they worked as an inhibitor to block bacterial 

adhesive activity. 

Although P-fimbriae with Class III adhesins are associated with 12% of cystitis 

cases in adult women [73], 37% of cystitis cases in children [74], and 13% of acute 
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pyelonephritis incidents [73], our results showed that cranberry juice does not work well 

with E. coli BF1023 which contains Class III adhesins besides Class I adhesins. 

S. aureus is one of the major causes of numerous hospital- and community-

acquired infections, including UTIs [71]. The widespread use of methicillin and other 

semisynthetic penicillins to treat it resulted in the emergence of methicillin resistant S. 

aureus [75]. Currently, greater than 60% of S. aureus isolates are resistant to methicillin 

[76]. S. aureus [75, 77] is therefore a growing public health problem in hospitals, nursing 

homes, and other institutions. This reinforced the critical need for new methods of control 

and treatment. Our results showed that there is essentially no biofilm formed in the S. 

aureus samples. This may suggest that oral consumption of CJC can be exploited as a 

treatment for Staphylococcal infections.

3.6 Conclusions 

  

In this study, two experimental assays were optimized successfully to demonstrate 

bacterial anti-adhesion activity of cranberry metabolites in human urine following 

cranberry juice cocktail consumption. The inhibitory effects for preventing biofilm 

formation in the urine of healthy young women could persist for at least 24 hours after 

CJC ingestion. The anti-adhesive ability differed based on the type of bacteria, suggesting 

biofilm formation is closely associated with the kind of P-fimbriae. Furthermore, the 

viability test results indicated that the cranberry metabolites in post-CJC urine behaved as 

an inhibitor to lower adhesive abilities rather than a bactericide to kill the bacteria. In 

other words, cranberry products do not impair bacterial growth and will not sterilize the 

urinary tract, although they prevent bacterial adhesive ability, thus reducing the 
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development of UTI. Since bacterial adhesion is the primary step in initiation of UTI, 

consumption of cranberry may be useful to help prevent infections. 
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Chapter IV Inhibitory activity of 
cranberry juice metabolites on 
adherence of P-fimbriated Escherichia 
coli to bladder epithelial cells  

4.1 Abstract 

Research suggests that cranberry may interfere with bacterial adhesion to 

uroepithelial cells, thus preventing UTIs. To date, few research studies have been 

conducted to examine the potential interaction of E. coli and uroepithelial cells in the 

presence of post-cranberry consumption urine. The current study is a randomized, 

placebo-controlled, double-blind, crossover study to investigate the molecular-scale 

effect of cranberry juice metabolites on two P-fimbriated E.coli strains: B37 and CFT073 

as assessed by atomic force microscopy (AFM). Three female subjects were asked to 

consume 8 oz cranberry juice cocktail or water. The washout period was 7 days. The 

urine samples were then collected at intervals of 2, 4, 6 hours post-ingestion of CJC or 

water. Additional urine before consumption of CJC was collected as a baseline control. 

The baseline average adhesion force between E. coli and uroepithelial cells was 13.09 ± 

11.60 nN for CFT073 and 10.30 ± 5.50 nN for B37. For post-CJC urine treatment, the 

adhesion forces decreased to 2.94 ± 1.82 nN at 2 hours after consumption then increased 

slightly to 5.51 ± 2.78 nN at 6 hours after ingestion for CFT073, while it decreased to 

4.77 ± 3.33 nN after consuming for 2 hours and seemed to be stable in the next 4 hours 

following consumption (5.52 ± 4.04 nN after drinking for 4 hours; 5.05 ± 4.42 nN after 

drinking for 6 hours) for B37. The adhesion forces in post-water consumption urine were 
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similar to that of the background for E. coli B37; meanwhile a downward trend for the 

adhesion forces in post-water consumption compared to the background was observed for 

E. coli CFT073. However, those adhesion forces in post-water consumption urine were 

still higher than those measured after CJC consumption at the same time intervals. The 

mean differences between the cranberry and placebo groups were statistically different 

according to two way ANOVA method followed by Holm-Sidak test. Our results suggest 

a significant inhibitory interaction between the daily consumption of 8 oz cranberry juice 

and bacteria adhesive activity.  
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4.2 Introduction  

Urinary tract infection has been considered one of the most significant infections 

affecting humans today. It is usually caused by the presence of bacteria in the urinary 

tract system [19], especially Escherichia coli (E. coli) [3, 8]. Cranberry (Vaccinium 

macrocarpon) has been utilized to protect against UTIs for generatons [6, 15, 16, 29]. 

The unique A-type proanthocyanidins (PACs) present uniquely in cranberry have been 

identified as the active agent to prevent P-fimbriated E. coli to attach to uroepithelial cells 

[17, 18]. However, the activity of cranberry metabolites in urine following ingestion of 

cranberry juice cocktail is still unclear and the active compounds remain unidentified. 

Due to the limited molecular knowledge of its inhibitory effect, cranberry products have 

not been integrated into established medical care regimes successfully. 

As the first step in the development of infection, bacterial adhesion is of great 

research interest. In this study, a biofilm assay (Chapter III) was used to detect bacterial 

anti-adhesion activity of metabolites in urine following consumption of cranberry juice 

cocktail. Although interesting results were obtained, the biofilm assay does not describe 

adhesion at the molecular level. The lack of quantitative data on the adhesive interactions 

between bacterial cells and uroepithelial cells in the presence of urine which contains 

post-consumption cranberry metabolites limits its current use for UTI treatment. 

Understanding of how cranberry affects the interaction between bacteria and epithelial 

cells lining the urinary tract is important and helpful to provide the mechanisms by which 

cranberry metabolites inhibit the adhesion of E. coli to uroepithelial cells.  

AFM is a sensitive tool and can be used to directly measure the nano-scale forces 

of attraction or repulsion between virtually any two surfaces. A technique to 
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quantitatively measure the adhesive interactions between a bacterium and a surface or 

between two biological surfaces is developed by our lab [78] using AFM. By directly 

quantifying such interactions between P-fimbriated E. coli and human uroepithelial cells 

exposed to post-CJC consumption urine, the molecular mechanisms by which cranberry 

juice cocktail (CJC) affects bacterial adhesion could be revealed and mechanistic 

understanding will allow for the development of the best therapies and measures to 

prevent infections.  

In order to elucidate time-dependence of these mechanisms and variability for 

different volunteers, the adhesive interactions between P-fimbriated E. coli and 

uroepithelial cells will be directly and quantitatively characterized in this study. Two 

clinical Class II P-fimbriated E. coli strains (B37 and CFT073) that showed the most 

significant decreases in biofilm formation in Chapter III were chosen. The effect of the 

time to which a peak in anti-adhesive activity is reached will be quantified.  

4.3 Materials and Methods 

4.3.1 Subjects and Collection of Urine Samples  

Female subjects were recruited by Dr. Amy Howell at Rutgers University (New 

Jersey). Although the present application is not a clinical study and does not involve 

human subjects, information is provided about the participants for information purposes. 

Volunteers were not allowed to eat or drink any cranberry products for at least three days 

prior to and on the day of urine collection. Volunteers were provided and asked to 

consume 8 oz. (240 mL) of commercial cranberry juice cocktail (CJC), or water. A 

washout period for at least seven days was used. On the day of the study, the urine before 
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consumption of CJC was collected as a baseline control. Additional urine samples were 

then collected at intervals of 2, 4, 6 hours post-ingestion of CJC or water. Samples were 

frozen immediately and sent to Dr. Terri Camesano’s laboratory at Worcester Polytechnic 

Institute (WPI, MA) with a code number only for de-identified purposes. At WPI, 

samples were sterilized by filtering by polyethersulfone syringe filters (VWR 

International TM, West Chester, PA) with 0.8 μm and 0.2 μm membranes sequentially, 

and stored at -20 °C for future use.  

4.3.2 Preparation of Bacteria Cell  

Bacterial samples tested in this study were two clinical P-fimbriaed E. coli 

isolates (B37 and CFT073), The strains were cultured in Luria-Bertani broth (35g/L, 

Sigma-Aldrich, St. Louis, MO) at 37 °C with gentle shaking and harvested at late 

exponential phase (optical density = 0.9-1.0 at 600 nm), which allowed them to express P 

fimbriae. Harvested bacteria were washed to remove components of the growth media by 

centrifugation at 7000 RPM for 10 min.  

4.3.3 Preparation of Biological Probes  

A single E. coli bacterium was immobilized onto an AFM tip using a technique 

developed in our lab [5, 78]. Briefly, the probe was coated with ply-L-lysine (PLL) by 

immersing in 0.1% PLL for 30 min and air dried for 10 min. The probe was then 

immersed in a concentrated bacteria suspension for 10 min to allow bacteria to bind on 

the probe. After air drying for 10 min, the biologically functionalized tip was ready for 

future use to measure the adhesion forces between E. coli and a lawn of uroepithelial 

cells. 
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4.3.4 Uroepithelial Cell Culture 

Human bladder uroepithelial cells were used in this study. SV-HUC-1 cell line 

was purchased from the American Type Culture Collection (ATCC) and maintained in 

liquid nitrogen vapor phase. The cells were grown in F-12K Medium (Kaighn’s 

modification of Ham’s F12 medium with L-glutamine, ATCC) supplemented with 10% 

fetal bovine serum (ATCC). Culture flasks were placed in a humidified atmosphere of 5% 

CO2

79

 in air at 37°C for seven days, and growth medium was replaced every two days. 

Trypsin-EDTA solution (0.25% Trypsin / 0.53 mM EDTA, ATCC) was added to harvest 

the uroepithelial cells as the low concentration of trypsin allowed us to detach the cells 

from the culture flasks without compromising their viability or surface properties [ ]. 

The cells were kept in trypsin-EDTA for no more than 10 min in an incubator (5% CO2

4.3.5 Preparation of Uroepithelial Cell Glass Slide for AFM Measurements 

, 

37 ℃), washed, centrifuged at 1200 RPM for 6 min, and resuspended in pre-warmed 

growth medium gently.   

For bacterial adherence assay, early passage cells (passage < 50) were seeded to a 

sterilized glass slide (Corning Incorporated, Corning, NY) and grown to 90% confluence. 

Briefly, the resuspended cells were cultured in the 35 mm Tissue Culture Treated Dish 

(Sarstedt, Inc. Newton, NC) containing a glass slide with growth media. The culture dish 

was placed in an incubator (5% CO2, 37 ℃) to allow the cells to attach the surface of the 

glass slide. After two days incubation, the glass slide with a cell-layer lawn was obtained. 

4.3.6 AFM Adherence Force Assays  

Adhesion forces were measured with AFM (Asylum Research, Santa Barbara, 

CA), with all measurements performed in the presence of urine following consumption of 
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CJC or water (Figure 4.1). Silicon nitride AFM tips on a triangular cantilever (DNPS, 

Veeco Metrology) were used to acquire images in fluid in tapping mode. Before force 

measurements were made, the spring constant of the cantilever was measured using the 

thermal calibration method.  The average spring constant was 513.3 ± 94.4 pN/nm. A 

human uroepithelial cell culture was maintained, and the adhesion force measurements 

between epithelial cells and bacteria were carried out in urine samples, and at least three 

individual cells were probed, where at least ten force cycles were recorded per bacterium 

per condition.  

 

Figure 4.1 Schematic demonstrating AFM experiments to measure cell-cell interactions. An E. 
coli cell is binded to an AFM cantilever (silicon or silicon nitride have been used successfully in 
our lab). Interaction forces are measured between the biological functionalized probe and a lawn 
of epithelial cells, grown and attached on a glass slide.  

 

4.3.7 Statistical Analysis 

A two way ANOVA test was performed to compare the two groups that were 

treated with urine samples collected after CJC or water consumption. Background 

(bacteria treated with urine samples that were collected before drinking CJC) adhesion 

forces were also compared with adhesion forces measured on the bacteria treated with 



Chapter IV: AFM Assay 

- 47 - 
 

urine samples that were collected after consumption of CJC or water. The statistical test 

used was Holm-Sidak method. 

4.4 Results 

4.4.1 Adhesion Forces between E. coli Bacteria and Uroepithelial Cells  

For two bacterial strains, the P-fimbriated E. coli B37 and E. coli CFT073, 

adhesion forces to the bladder epithelial cells using bacterial probe were measured. The 

average adhesion forces between both of the P-fimbriated bacteria (E. coli B37 and 

CFT073) and uroepithelial cells were decreased in post-CJC consumption urine 

compared to the background (pre-CJC consumption urine) and the post-water 

consumption urine at the same time intervals as well.  

In the absence of any treatment, the average adhesion force between E. coli 

CFT073 and uroepithelial cells was 13.09 ± 11.60 nN (Figure 4.3), while it was 10.30 ± 

5.50 nN between E. coli B37 and uroepithelial cells (Figure 4.2). After CJC treatment, 

the adhesion forces between E. coli CFT 073 and uroepithelial cells decreased to 2.94 ± 

1.82 nN at 2 hours after consumption, and then it increased slightly to 5.51 ± 2.78 nN at 6 

hours after ingestion. The adhesion forces between E. coli B37 and uroepithelial cells 

decreased to 4.77 ± 3.33 nN after consuming for 2 hours and seemed to be stable in the 

next 4 hours following consumption (5.52 ± 4.04 nN after drinking for 4 hours; 5.05 ± 

4.42 nN after drinking for 6 hours). The adhesion forces in post-water consumption urine 

were similar to that of the background for E. coli B37 (Figure 4.2); meanwhile a 

downward trend for the adhesion forces was observed for E. coli CFT073 (Figure 4.3), 
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especially at 4 hours. However, those adhesion forces in post-water consumption urine 

were still higher than those measured after CJC consumption at the same time intervals.  
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Figure 4.2 Average adhesion forces between E. coli B37 and uroepithelial cells as a function 
of urine colleting time (hour) after consumption of CJC or water. Data are mean ± SD 
values. *Adhesion forces detected in urine following ingestion of CJC or placebo were 
significantly different. **The difference compared to background (pre-consumption urine) 
was significant.  
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Figure 4.3 Average adhesion forces between E. coli CFT073 and uroepithelial cells as a function 
of urine colleting time (hour) after consumption of CJC or water. Data are mean ± SD values. 
*Adhesion forces detected in urine following ingestion of CJC or placebo were significantly 
different. **The difference compared to background (pre-consumption urine) was significant. 

When we compared each condition at same time point with one another, adhesion 

forces in all post-CJC urine treatment were significantly lower than that of post-water 

urine treatment for both the clinical strains. Only the adhesion forces between E. coli 

CFT073 and uroepithelial cells in post-water consumption urine were significantly 

different compared with background adhesion force levels.  
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4.4.2 Volunteer Variability 

The inhibitory effects of cranberry juice metabolites on the two E. coli strains 

(B37 and CFT073) for individual volunteer are summarized in Figure 4.4. The anti-

adhesive of ability on the tested bacteria differed from volunteer to volunteer. Adhesion 

reduction was found to be dependent on the time treatment of cranberry juice as well.  

Table 4.1 Number of volunteers (total number of volunteers involved is 3) that showed a 
significantly lower adhesion forces between E. coli and uroepithelial cells in the presence of post-
CJC consumption urine. 

Strain 
# of volunteers showing difference between CJC and placebo 

2hr 4hr 6hr 
E. coli B37 3 2 2 

E. coli CFT073 3 2 1 
 

All volunteers’ urine (100%) had a significant anti-adhesive effect on E. coli 

strains at 2 hours following consumption, while at 4 hours, only 67% of volunteers 

responded to CJC. At 6 hours, E. coli B37 still works as it was on 4 hours, but E. coli 

CFT073 fell down to 33%. 

4.5 Discussion 

4.5.1 Bacteria Coated AFM Tips Preparation 

To verify that the AFM tip was successfully coated with bacteria, adhesion forces 

between a bare silicon nitride probe and a clean glass slide were measured. The 

interactions detected between bare silicon nitride and glass was minimal compared to the 

force profile between the E. coli biological probe and the glass, which were generally in 

the nano-Newton (nN) range, indicating that bacteria were binded to AFM tip 

successfully using the method developed in our lab. 
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4.5.2 Role of Cranberries in P-fimbriated E. coli Adhesion to Epithelial Cells 

Daily consumption of cranberry juice cocktail has been recommended to prevent 

urinary tract infections mainly caused by E. coli, and P-fimbriae is considered to play a 

significant role among virulence factors [80]. Therefore, this study focused on cranberry 

metabolites’ ability to inhibit the binding of P-fimbriae on pathogenic E. coli to the gal-

gal receptor on the epithelial cell, which is a very strong bond [18, 57].  

It has been known that most kidney infections arise from bladder infections 

through an ascending route [81]. Therefore, the initial adhesion of the pathogen may 

occur to bladder epithelial cells, and then P-fimbriated uropathogens can migrate to the 

kidney, causing acute pyelonephritis [82]. That is the reason why bladder uroepithelial 

cell line rather than kidney uroepithelial cell line is chosen in this study. 

Our AFM results showed that urine from subjects who drank CJC experienced a 

significant reduction in bacterial adherence to uroepithelial cells compared to when the 

same volunteer drank water. For E. coli B37 particularly, the antibiotic resistant strain, 

water consumption did not affect the adhesion forces compared to a significant decrease 

after CJC consumption, and adhesion was also insensitive to time after consumption 

(Figure 4.2). This is in a good agreement with one earlier study by Tao et al. from our 

laboratory [58]. These experiments demonstrated that the protocol and methodology 

developed in our lab can be used to detect molecular level differences in adhesion forces 

that are caused by consumption of CJC. The reduced anti-adhesive activity may be the 

result of some components in cranberry juice interacting with P-fimbriae directly, causing 

P-fimbriae to become compressed and less adhesive immediately. In addition, a 
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significant time-dependent decrease in bacterial in vitro adherence was encountered after 

cranberry consumption.  

Although previous study showed that the presence of cranberry juice could 

change the surface characterization of bacteria significantly [57] and PACs in cranberry 

could block bacterial swarming motility completely [83], whether PACs are the only 

compounds responsible for preventing and treating UTIs remain unknown. It has been 

demonstrated the effects of PAC on bacterial adhesion to and invasion of kidney 

epithelial cells [84]. Furthermore, our study showed that cranberry metabolites could 

block bacterial adhesive ability and invasion of bladder epithelial cells. However, the role 

of PAC metabolites to this phenomena are still not clear, further studies are needed to be 

conducted to investigate whether the metabolites in urine are from uniquely PACs or 

non-PAC compounds. As invasion of uroepithelial cells is a key step in the development 

of a UTI, our results exhibited that active agents could survive from the digestive system 

and held the promising future to treat UTIs.  

4.5.3 Time Dependence of CJC’s Inhibitory Effects  

In recent studies [85, 86], a significant bacterial anti-adhesion activity was 

observed in urine samples collected from volunteers that consumed cranberry powder 

compared to placebo. And it was dose-dependent [85, 86] and still working until 24 hours 

after consuming 72 mg of PAC [85]. Howell et al. [18] demonstrated that 0-6 hour 

following CJC consumption responded to the most important elimination period of PACs 

(which is recognized as the active agents in cranberry) in urines, that is why 0-6 hour (at 

intervals of every two hours) after CJC ingestion  were chosen to collect the urine in this 

study. 
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This randomized, double-blind versus placebo study revealed a time dependent 

effect in in vitro model of E. coli adherence to bladder epithelial cells. We demonstrated 

a peak of urinary anti-adhesion activity 2 hours after consumption of 8 oz. commercial 

cranberry juice cocktail. One previous study in our lab also showed that anti-adhesive 

ability of post-consumption urine on E. coli strains peaked at 6 h after 16 oz. CJC 

ingestion and were still working after drinking 8 hours [58]. When it comes to 8 oz. in 

this study, most significant difference was observed at 2 hours following consumption, 

which is most probable because this effect has a dose-dependent relationship. In other 

words, the more CJC the volunteer received, the longer this anti-adhesive effect last.  

For the experiments designed to test the effect of time after consumption, urine 

samples were collected at intervals of 0, 2, 4, and 6 hours after consumption of cranberry 

juice. The AFM results showed that cranberry juice has an immediate effect (after 

consuming CJC for 2 hours) on the P-fimbriated E. coli bacteria. When cultured with 

urine samples collected at different time intervals following CJC consumption, both of 

the clinical E. coli strains demonstrated decreased adhesion forces after initial CJC 

consumption but increased slightly with time (Figures 4.2-4.3). Although this is an in 

vitro model, our work suggests that continuous exposure to cranberry juice will be 

needed in order for E. coli to maintain an anti-adhesive behavior in the body. 

4.6 Conclusions 

UTIs are infections caused by invading of bacteria and the adhesive ability of 

these microorganisms seems to be an important pathogenic factor. Cranberry metabolites 

present in urine collected following consumption of CJC were examined for their 

potential to reduce the initial adhesion of uropathogenic bacteria to bladder epithelial 
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cells. For both of E. coli B37 and CFT073, two strains expressing P-fimbriae Class II, 

most significant inhibition of bacterial adhesion was observed for the condition where 

cranberry juice cocktail was taken after 2 hours and it was still working over 6 hours 

following consumption. The results of this study are promising for cranberry juice 

cocktail as a proposed dietary treatment which is independent of antibacterial 

mechanisms that may give rise to resistant strains.  
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Chapter V Research Summary 
Although cranberry has been known for its health benefits to prevent urinary tract 

infections for quite a long time, the mechanisms are still not clear. The initial adhesion of 

pathogens to host tissue cells may be the first in a series of steps leading to the infection. 

In order to elucidate the anti-adhesive activity at molecular scale, this study investigated 

the inhibitory effects of cranberry metabolites in post-CJC consumption urine on 

pathogenic E. coli.  

In Chapter III, we evaluated the persistence of cranberry metabolites in urine and 

its effects on biofilm formation and bacterial cell viability. The results demonstrated that 

biofilm formation was inhibited significantly for S. aureus and E. coli containing Class II 

P fimbrie, suggesting bacterial adhesive ability is closely associated with the expression 

of pili fimbriae. In addition, the viability test results confirmed that the cranberry 

metabolites in post-CJC urine behaved as an inhibitor to block the expression of pili 

fimbriae rather than a bactericide to kill the bacteria or restrain its growth. 

In Chapter IV, we measured the adhesion forces directly between E. coli and 

uroepithelial cells in the presence of urine following consumption of CJC or water though 

atomic force microscopy. We determined that exposure to urine collected after drinking 

CJC reduced the adhesion forces significantly for both of our E. coli strains (P-fimbriated 

B37 and CFT073). This indicated that cranberry constituents could survive from the 

digestive system in our body and cranberry metabolites exhibited a significant bacterial 

anti-adhesive ability and this inhibition was clearly time-dependent.  
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Through these analyses, information on the dose of cranberry juice needed to 

provide an anti-adhesion benefit, the time of exposure acquired between E. coli and the 

cranberry metabolite in urine, and the variability in response due to different clinical 

strains of E. coli and the behavior of different volunteers was obtained. This work can 

help establish conditions that should be used in subsequent clinical trials. 
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Chapter VI Future Work 
American cranberry has long been recognized for its preventive benefits to 

maintain urinary tract health; however, it is too acidic and astringent at full strength and 

may not be acceptable to many patients as a prophylactic therapy over a long period. 

Cranberry juice cocktail and cranberry tablets have been introduced in this context. 

However, few dose-response studies have been done to determine the optimal volume of 

juice or number of tablets needed to prevent infection. We will further detect the 

adhesion forces between uropathogenic E. coli and uroepithelial cells in presence of post-

16 oz CJC urine through AFM and compare the results with adhesion forces obtained in 

the treatment of post-8 oz CJC urine. We might also extent the E. coli strains to cover 

more kind of adhesions. 

Our results showed that urine collected after administration of cranberry juice can 

prevent biofilm formation by E. coli but the nature of the metabolites is unknown. To our 

knowledge, the identity of such metabolites has not been explored, nor their role in 

bacterial susceptibility. It therefore may be of interest to examine possible contributions 

by any of the compounds present in cranberry fruit as well as their metabolites found in 

the human body.  

Although A-PACs are identified and widely recognized as the potential effective 

components in cranberry that reduce bacterial adhesion, it remains a question whether 

PACs are the only or major anti-adhesion components in cranberry, since some studies 

showed that cranberry juice had a higher anti-adhesion activity than A-PACs alone [60].
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In addition, new research has suggested that bacteria that do not express P fimbriae, 

including other strains of E. coli as well as different species of bacteria, can also express 

anti-adhesive activity in the presence of cranberry juice [40, 60, 87]. These results 

suggest that compounds in cranberry, in addition to PACs, also have anti-adhesion 

activity. Further, PACs have not been detected in urine. Therefore, further experiments 

needed to determine the relative anti-biofilm efficacy of the CJC, cranberry PACs, and 

non-PAC components of cranberry juice.  

The kinetic information of binding between cranberry compounds and pathogenic 

bacteria and/or the uroepithelial cell is still lacking, even though direct measurements of 

adhesion forces between uropothogenic E. coli and uroepithelial cells are made. To 

understand the dynamics and efficacy of cranberry compounds as an anti-adhesive 

therapy, the kinetic information is particularly of importance. Therefore, we will quantify 

the binding affinity and monitoring the kinetics of bacterial binding with epithelial cells, 

using Quartz crystal microbalance with dissipation monitoring (QCM-D).  
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Appendices 
Appendix A: Support File for Chapter III  

 

 

Part I: An example of relative amount of biofilm formed after bacteria strain 

was incubated in urine following consumption of CJC or placebo for an individual 

(volunteer 1). Biofilm amount at hour 0 serves as baseline. 
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Figure S.1 Amount of biofilm formed for S. aureus in urine of volunteer 1 collected following 
consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24 hours; (D) 
48 hours 

(A) (B) 

(c) (D) 
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(A) (B) 

(c) (D) 

Figure S.2 Amount of biofilm formed for E. coli CFT073 in urine of volunteer 1 collected 
following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24 
hours; (D) 48 hours. 
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(A) (B) 

(c) 
(D) 

Figure S.3 Amount of biofilm formed for E. coli B37 in urine of volunteer 1 collected 
following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  
hours; (D) 48 hours. 
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(A) (B) 

(c) (D) 

Figure S.4 Amount of biofilm formed for E. coli HB101 in urine of volunteer 1 collected 
following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  
hours; (D) 48 hours. 
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(A) (B) 

(c) (D) 

Figure S.5 Amount of biofilm formed for E. coli BF1023 in urine of volunteer 1 collected 
following consumption of CJC or placebo after incubation for (A) 0 hour; (B) 6 hours; (C) 24  
hours; (D) 48 hours. 
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Part II: Individual responded to CJC in biofilm formation assay recorded in 

detail. 1 (in black) indicates biofilm formation in post-CJC urine was significantly lower 

than that in post-Placebo urine. 1 (in grey) indicates biofilm formation in post-CJC urine 

was significantly higher than that in post-Placebo urine. 0 indicates biofilm formation 

after culturing in urine collected following consumption of CJC or placebo are non-

significant (P <0.5). 
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Table S.1 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for S. aureus incubated for 0 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 0 0 0 1 0 1 0 
8 0 0 0 0 0 1 0 0 1 1 0 

24 0 1 1 1 0 0 1 1 0 1 1 
48 0 1 1 1 0 0 1 1 0 1 1 

 

 

 

Table S.2 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for S. aureus incubated for 6 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 1 1 1 0 0 1 
8 1 1 1 0 0 1 1 1 1 0 1 

24 1 1 0 0 0 1 1 1 1 0 1 
48 1 1 1 1 0 1 1 1 1 1 1 
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Table S.3 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for S. aureus incubated for 24 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 1 0 1 0 0 1 
8 1 0 0 1 0 1 1 1 0 0 1 

24 1 0 1 0 0 1 0 1 0 1 1 
48 1 1 0 0 0 1 1 1 0 1 1 

 

 

 
Table S.4 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for S. aureus incubated for 48 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 0 1 0 0 0 0 0 1 0 
8 0 0 1 1 0 0 1 0 1 1 0 

24 1 0 0 1 1 1 0 1 1 1 1 
48 0 0 1 1 1 0 0 0 0 1 0 
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Table S.5 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli CFT073 incubated for 0 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 1 0 0 0 0 0 0 0 
8 0 0 0 0 1 0 0 1 1 1 0 

24 1 0 0 1 1 0 0 0 0 1 1 
48 0 0 0 1 0 0 0 0 0 1 1 

 
 

 

Table S.6 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli CFT073 incubated for 6 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 1 0 0 0 0 1 1 0 
8 1 1 0 1 1 1 0 1 0 1 1 

24 1 1 0 0 1 0 1 1 1 0 1 
48 1 1 0 1 1 1 1 0 1 0 0 
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Table S.7 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli CFT073 incubated for 24 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 1 0 0 0 1 1 1 0 
8 1 1 0 1 1 0 0 1 1 1 0 

24 1 1 0 1 1 0 0 1 1 0 0 
48 0 1 0 1 1 0 0 1 1 0 0 

 

 

 

Table S.8 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli CFT073 incubated for 48 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 0 0 0 1 0 1 0 0 
8 1 1 0 0 0 0 0 1 1 0 0 

24 1 1 0 1 0 0 0 1 1 1 0 
48 1 1 0 0 1 0 0 1 1 0 0 
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Table S.9 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli B37 incubated for 0 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 1 1 1 0 
8 0 0 1 1 0 0 0 1 0 1 0 

24 0 0 0 1 0 0 0 1 1 0 0 
48 0 1 0 0 0 1 0 1 1 1 0 

 
 

 

Table S.10 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli B37 incubated 6 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 1 1 0 1 0 0 0 0 0 
8 1 0 1 1 1 0 0 0 0 0 0 

24 1 1 1 1 1 1 0 0 1 1 1 
48 1 1 1 1 0 1 0 0 0 1 1 
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Table S.11 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli B37 incubated for 24 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 0 0 0 0 0 1 0 0 
8 1 0 0 0 0 1 0 1 0 1 1 

24 1 0 0 0 0 1 0 1 0 1 1 
48 0 1 1 1 0 0 0 0 0 1 1 

 
 

 

Table S.12 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli B37 incubated for 48 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 1 0 0 0 0 0 0 1 0 
8 1 1 1 0 0 1 0 0 0 1 1 

24 1 1 1 0 0 0 0 0 0 1 1 
48 0 1 1 0 1 0 0 0 1 1 0 
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Table S.13 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli HB101 incubated for 0 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 0 0 0 1 0 0 0 0 0 
8 1 0 0 1 1 0 1 0 0 1 0 

24 1 0 0 0 0 1 1 0 0 0 0 
48 0 1 0 0 0 0 1 0 1 0 0 

 
 

 

Table S.14 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli HB101 incubated for 6 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 1 0 0 0 0 1 0 
8 1 0 1 1 1 0 0 1 0 0 0 

24 1 0 1 1 0 0 0 1 1 0 0 
48 1 0 0 1 0 0 0 0 1 0 0 
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Table S.15 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli HB101 incubated for 24 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 1 1 0 0 1 1 1 1 0 
8 1 1 1 0 0 0 0 0 0 1 0 

24 1 1 1 0 0 0 0 1 1 0 0 
48 1 1 0 0 0 0 1 0 1 0 0 

 
 

 

Table S.16 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli HB101 incubated for 48 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 1 1 0 0 0 0 0 0 1 0 
8 0 0 1 0 0 0 0 1 0 0 0 

24 1 0 1 0 0 0 1 1 0 0 0 
48 0 1 0 0 0 0 1 0 0 0 0 
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Table S.17 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli BF1023 incubated for 0 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 0 0 1 1 1 0 1 0 0 0 
8 1 1 0 1 1 0 0 1 0 1 0 

24 0 1 0 0 1 0 1 1 1 0 0 
48 0 1 0 0 1 0 1 1 0 0 0 

 
 

 

Table S.18 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli BF1023 incubated for 6 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 1 0 0 
8 1 0 0 0 0 0 0 0 1 0 0 

24 1 0 0 0 0 0 0 1 1 0 1 
48 1 0 1 0 0 0 0 1 1 0 1 
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Table S.19 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli BF1023 incubated for 24 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 1 1 1 1 0 0 0 0 0 0 0 
8 1 1 0 1 0 0 1 0 1 0 0 

24 1 1 1 1 1 0 0 0 1 0 1 
48 0 1 1 1 0 1 0 0 1 0 1 

 

 
 

Table S.20 Individual volunteer responded to CJC in biofilm formation assay recorded in detail for E.coli BF1023 incubated for 48 hours. 

Urine collecting time Volunteer ID 
(hours) 1 2 3 4 5 6 7 8 9 10 ALL 

0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 1 1 0 0 0 0 0 0 0 
8 0 1 1 1 0 0 0 0 0 0 0 

24 0 1 1 1 0 0 1 0 1 0 0 
48 0 1 1 1 0 0 0 0 1 0 0 
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Part III: An example of measured absorbance at 600 nm took by a microtiter 

plate reader.  

 

 

Figure S.6 An example of measured absorbance at 600 nm took by a microtiter plate reader. 1-5 
indicate biofilm formation of E. coli CFT073 after culturing in urine collected following 
consumption of CJC for 0, 2, 8, 24 and 48 hours, respectively. 7-11 represent biofilm formation 
of E. coli CFT073 after incubating in culturing collected following ingestion of placebo for 0, 2, 8, 
24 and 48 hours, respectively. 6 and 12 are blank.  
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Part IV: An example of colony count in bacterial cell viability assay. 

 

 

Figure S.7 A photograph of a representative example of colony count of E. coli CFT073 after 
incubated in urine collected following consumption of CJC (left) or placebo (right) for 24 hours. 
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Appendix B: Support File for Chapter IV 

 

Part I: Average adhesion forces between pathogenic E. coli and uroepithelial 

cells detected by atomic force microscope for each volunteer.   
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Figure S.8 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 
colleting time (hour) after consumption of CJC or water for volunteer 1. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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Figure S.9 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of urine 
colleting time (hour) after consumption of CJC or water for volunteer 1. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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Figure S.10 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 
colleting time (hour) after consumption of CJC or water for volunteer 2. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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Figure S.11 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of 
urine colleting time (hour) after consumption of CJC or water for volunteer 2. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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Figure S.12 Adhesion forces between E. coli B37 and uroepithelial cells as a function of urine 
colleting time (hour) after consumption of CJC or water for volunteer 3. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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Figure S.13 Adhesion forces between E. coli CFT073 and uroepithelial cells as a function of 
urine colleting time (hour) after consumption of CJC or water for volunteer 3. *Adhesion forces 
detected in urine following ingestion of CJC or placebo were significantly different. **The 
difference compared to background (pre-consumption urine) was significant.  
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