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1 Abstract

While the exact prevalence of thyroid nodules in the wider population is not known,

studies have shown them to be prevalent in between 2% and 65% of the the human popu-

lation. The vast majority of these tumors are benign. However, the rate of thyroid cancer

has at least doubled since 1980 while a corresponding increase in mortality has not occurred,

leading researchers to conclude the rise is a measure of how many cancerous nodules are

being found. Physicians have turned to ultrasonography as a relatively low-cost method of

imaging thyroid nodules in a non-invasive way. These exams, when conducted by physicians

and trained ultrasound technicians, are prone to human error which can cause inconsistent

results between exams. This thesis proposes a novel robotic system for assisting physicians in

conducting thyroid ultrasound exams. The proposed system uses a seven degree of freedom

robotic manipulator mounted with a wireless ultrasound scanner to capture ultrasound im-

ages at known locations and a two-stage image segmentation framework to track the region

of interest identified within the ultrasound image. The first stage is a real-time, non-machine

learning image segmentation algorithm, initialized by the physician, that tracks the region

of interest throughout the examination assisted by a force, scanner orientation, and posi-

tion control framework. The second stage of the framework is a non-real time, non-machine

learning image segmentation algorithm which, combined with the positional data from the

robot, generates an approximation of the region of interest as a volume and displays a 3D

representation of this volume. Testing completed on a training phantom demonstrated the

ability of the system to track the patient profile accurately and in real-time. From the

experimental data, a volume was repeatedly generated and visualized properly.
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3 The Thyroid Gland

The thyroid is a gland of the endocrine system in the neck straddling the trachea. Figure

1 illustrates how the two distinct lobes of the thyroid are connected by an isthmus of tissue

creating a butterfly shape [3]. Hormones produced by the thyroid regulate the function of

several major organ systems, such as the central nervous system, the cardiac system, and

the skeletal system [4]. The exact size of the thyroid varies significantly based on the age,

sex, weight, and iodine intake of any given person. However, it was found that in healthy

adults without an iodine deficiency, the gland is approximately 4.4 x 1.4 x 1.2 centimeters

in size, or between 7 and 10 milliliters in volume when measured by ultrasound [5].

3.1 Nodules in the Thyroid

A thyroid nodule is a clump of abnormal tissue found within the thyroid. While the exact

prevalence of thyroid nodules in the wider population is not known, studies have shown them

to be prevalent in between 2% and 65% of the human population [6]. Notably, women are

found to have nodules at a rate four times greater than men. The leading factors affecting

the incidence of thyroid nodules are sufficient iodine intake [7], followed by age and body

mass index [8].

While the general incidence rate for thyroid nodules is high, the vast majority of these

tumors are benign [9]. The rate of thyroid cancer has at least doubled since 1980 but this

has not corresponded to an increase in mortality, leading researchers to conclude the rise is a

measure of how many cancerous nodules are being found [10]. As the use of medical imaging

technology has increased, so has the incidence of thyroid nodules found during radiologic

examinations conducted for other reasons [11].
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Figure 1: The anatomy of the thyroid gland [1].

3.2 Motivation for Completing Thyroid Ultrasound Examinations

Physicians have turned to ultrasonography as a non-invasive, relatively low-cost method

of imaging the thyroid gland and any nodules found within it. Ultrasonographic exami-

nations are more accurate than traditional physical examinations and allow the detection

of smaller nodules [12], [6]. These examinations, in conjunction with measurements of the

patient’s thyroid stimulating hormone, are the first diagnostic step when a thyroid nodule

has been found [8]. According to the American Thyroid Association, ultrasound examina-

tions should gather quantitative and qualitative data about the gland as well as information
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about any nodules found within the gland. For the gland, the examination should deter-

mine the homogeneity of the functional thyroid tissue and the overall size of the gland. For

each nodule, the size in three dimensions, overall shape, sonographic characteristics such

as echogenicity, composition, and vascularity, and the nodules position within the thyroid

should be captured. Based on the size of each nodule and its sonographic characteristics,

physicians can categorize the risk of malignancy and determine if a fine needle aspiration

biopsy should be completed [13].

3.3 The Thyroid Examination Procedure and Calculating Thryoid

Volumes

In addition to nodules that were discovered incidentally by other imaging methods, pa-

tients receiving an ultrasound examination of the thyroid will have been identified as at risk

for having a thyroid condition either due to a previously recognized thyroid issue, a new

symptom plausibly related to a thyroid issue, or a standard screening exam [9].

Regardless of the reason for the examination, the steps in the procedure remain consistent.

Patients lay down in a supine position or sitting upright in a chair with their head tilted back.

The key for either position is that the head is tilted back so that the neck is fully extended

and exposed [14]. Ultrasound gel is applied to the neck to improve the quality of the image

and the ultrasound scanner is then placed in the center of the neck to locate the thyroid

gland. Once each lobe of the gland is visible, the scanner is moved to each lobe to measure

their respective diameter and overall length. The scanner is moved along the length of each

thyroid lobe to find any nodules that may exist [12]. Figure 2 demonstrates how a nodule

may appear within a thyroid gland using a thyroid phantom. From the measurements taken,

the volume of the lobe can be calculated by assuming its shape as a rotational ellipsoid and

then using Equation 1 to estimate the volume [15].

V =
π

6
∗ hieght ∗ width ∗ length ≈ 0.524 ∗ height ∗ width ∗ length (1)
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Figure 2: An ultrasound image of a thyroid with a nodule.

However, through experimentation conducted on cadavers where the volume of the gland

was measured with both ultrasound imaging and water displacement, Equation 2 was devel-

oped as the accepted method of calculating volume [16].

V = 0.479 ∗ height ∗ width ∗ length (2)

Researchers have conducted further work using CT imaging techniques to determine if a

more accurate correction factor should be used resulting in the proposal of a new correction

factor of 0.529 [17].

Depending on the results of the patient’s ultrasound examination or biopsy, their physi-

cian may recommend that they return for another ultrasound examination between 6 and 24

months later [8]. At each subsequent examination, the size of the gland and any individual

nodules will be compared with previous examinations. Significant changes in size of the

nodules are an indication that the further testing should be completed [13]
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3.4 Shortcomings of the Current Ultrasound Examination Proce-

dure

While ultrasound examinations have been shown to be effective at screening for nodules

in the thyroid gland, the current procedure has several areas where it could be improved.

Foremost, the procedure requires a trained sonographer or physician to conduct the exami-

nation limiting its availability from the start [18]. One study found that in the United States,

while 88.56% of metropolitan counties had access to point-of-care ultrasound, only 38.84%

of rural counties had access to point-of-care ultrasound. Furthermore, while ultrasounds

are not harmful to the patient, sonographers who conduct these examinations are likely to

develop long-term musculoskeletal issues from their work [19].

Since a key reason for conducting these examinations is monitoring the thyroid and any

nodules found within it over time, it is critical that the results of any singular examination

are consistent with the results from any other examination. However, the examination

results depend on the skill and repeatability of the sonographer, two studies that examined

the growth of nodules overtime found a variation of 14.6% and 11.7% respectively between

the sonographers [20], [21]. This known issue has directly caused the American Thyroid

Association to select a higher volume change cutoff to ensure statistically accurate results

[13].
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4 Previous Work on Robotizing Ultrasound Examina-

tions

Researchers have investigated how to apply robotics to ultrasound procedures, both of

the thyroid and other areas of the body, to improve the results of the examinations while

reducing the requirements for conducting them.

4.1 Previous Robotic Ultrasound Systems

In recent years, significant research has been conducted on robotic ultrasound systems

(RUSS) and has led to the development of many systems utilizing a variety of imaging

systems, hardware designs, and software implementations to reach various levels of autonomy.

Literature reviews of previous work on this topic reveal that research has shifted focus from

developing systems designed to be teleoperated towards semi- and fully autonomous RUSS

[22], [2], [23].

Teleoperated RUSS has become a mature research field as multiple studies have been con-

ducted in clinical settings over large distances. One study conducted with a tele-operated

RUSS, operated from fifty kilometers away, was conducted on 300 patients within one year

on various anatomical structures, including the thyroid. This study found that the infor-

mation gathered from the tele-sonographic exam provided equivalent information to that

of a traditional exam while reducing costs and reducing patient wait times [24]. A second

study, conducted on 22 COVID-19 patients, demonstrated that a tele-operated RUSS can

provide adequate diagnostic information with no statistical difference from data captured in

traditional ultrasound methods [25]. Both studies demonstrate that robotizing ultrasound

examinations could increase their availability by removing the need for trained personnel to

be in the same location as the patient while providing equivalent levels of care. Addition-

ally, these systems reduce the physical strain placed on the sonographer or physician during
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the examinations, thereby reducing their likelihood of developing long-term musculoskeletal

injuries.

As research moved towards developing more autonomous solutions, multiple systems

have been proposed that add levels of autonomy to tele-operated systems to increase their

accuracy and effectiveness. One such system proposed allowing the operator and robot to

co-control all degrees of freedom of the ultrasound scanner while automatically ensuring that

the organ of interest remains in the ultrasound image, regardless of the other scanner motions

[26]. Another proposed system used four laser sensors to compute the normal vector for the

skin surface around the scanner and automatically orient the scanner as the operator moved

it around the patient without human input [27]. Semi-autonomous systems like these help

physicians and sonographers capture consistent results and lower the skill threshold required

to conduct ultrasound examinations.

Research towards creating fully autonomous solutions has explored how to remove human

interaction from every step in the exam process. Hennersperger et al. proposed a system

that utilizes pre-operative MRI imaging to create trajectories for the robot to follow and then

a structured-light 3D scanner to register the location of the patient relative to the robot so

that the pre-planned trajectories could be followed autonomously [28]. However, requiring

the patient to undergo MRI imaging prior to completing an ultrasound examination nullified

the positive aspects of ultrasound imaging systems. A similar proposed system instead used

a depth camera to estimate the surface of the patient’s skin and then develop trajectories

from this data [29]. A similar proposed system used multiple structured-light scanners in

a large-scale multi-robot scanner to automatically conduct breast ultrasound examinations

[30]. While effective, the size, cost, and complexity of this system mean that it cannot be

used in many ultrasound examination scenarios.
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4.2 Common Components of Robotic Ultrasound Systems

From the wide field of research available on RUSS, a framework of common components

required for a semi- or fully autonomous RUSS can be determined. These components can

be split between hardware and software components. A further division can be made by

examining the necessary operations that must be completed during the pre-operative, intra-

operative, and post-operative steps.

From a hardware perspective, a semi-autonomous system includes at minimum a robotic

manipulator, a method of measuring the forces applied by the robot, such as a multi-axis

force sensor, an ultrasound scanner for recording data, and some form of user interface for the

operator to provide control input to the robot [22]. In some proposed systems, the method

of measuring force is replaced with a mechanical mechanism that can apply a constant force

[31][32]. For systems where full autonomy is desired, a camera system is added to provide

information on the location of the patient relative to the robot [22].

From a software perspective, a semi-autonomous system includes a framework for con-

trolling the forces the robot applies to the patient and can include a method of properly

orienting the ultrasound scanner. Force control is critical to ensure the safety of the patient.

Force control prevents the robot from hurting the patient as the robot moves around the

patient’s body or when the patient moves unexpectedly relative to the robot. However, the

force control framework may not be included if force control is completed through a purely

mechanical mechanism that can account for these motions. Schemes for controlling the scan-

ner orientation within the imaging plane have been previously proposed using ultrasound

images as the source of error for the orientation. Further scanner orientation has been pro-

posed for the out-of-plane direction as well as skin plane estimation to completely control the

scanner orientation. For fully autonomous systems, an additional control framework must

be included for position control. This includes both generating a trajectory for the robot to

traverse that properly moves across the patient as well as a control scheme that minimizes
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the error between the actual robot position and the desired trajectory. Notably, several con-

trol schemes have been proposed to address the conflicting requirements that force, scanner

orientation, and pose control create using impedance-based controllers [25].

The differences between tele-operative versus semi-autonomous versus fully autonomous

RUSS can be further characterized by reviewing the workflow of an examination throughout

the pre-operative, intra-operative, and post-operative stages. Figure 3 summarizes the work-

flow used by previously proposed systems of varying levels of autonomy. A fully autonomous

system must be able to complete the full workflow autonomously whereas semi-autonomous

or tele-operative systems can rely on human input to accomplish some number of these steps

[2].

Figure 3: The generalized workflow of RUSS [2].
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4.3 Ultrasound Image Segmentation Techniques

Every semi- or fully autonomous RUSS must have a method to identify the region of

interest, such as the thyroid gland or nodules within it, within the ultrasound image. Chen

et al. categorizes several algorithms implemented to identify the thyroid, and nodules within

it, into three broad categories: contour and shape-based methods, region-based methods, and

machine and deep learning methods [33].

Contour and shape-based segmentation methods, such as active contour without edges

(ACWE), localized region based active contour (LRAC), distance regularized level set evolu-

tion (DRLSE), and geodesic active contours (GAC), are categorized as using geometric infor-

mation and visually distinct edges to isolate areas of the image [33]. The ACWE model is an

evolution of the existing active contour model improved through the inclusion of Mumford-

Shah segmentation techniques and a level set formulation [34]. The GAC model, which was

also based on the active contour model, uses minimal distance curves, geodesics, in a Rie-

mannian space developed from the image data to find boundaries in the image [35]. The

LRAC model, derived from the active contour model, redefines the segmentation problem as

an issue of minimizing many local region energy models rather than a singular global image

models. This model can then be implemented in conjunction with other segmentation models

to improve their performance [36]. The DRLSE model proposes a level set formulation with

two additional terms, one that maintains the desired shape of the level set and a second that

pushes the contour towards the desired boundaries, improves the computational efficiency

and reduces the accuracy requirements for the initial level set over previous level set models

[37]. Notably, each of these models require some form of initialization to identify the region

of interest and are subject to errors caused by poor initialization to varying degrees.

Region based segmentation methods, such as GrabCut (GC) and similar reflective re-

gion (SRR), use statistical analysis of the image to differentiate between regions [33]. The

GC method expands upon the graph cut method, a graph-based method that maps pixels
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together based on similarity, to reduce the amount of user input required and improve the

behavior of the segmentation around the border of the area [38]. While the GC method was

created as a general method for segmenting a broad range of images, the SSR method was

made specifically for segmenting ultrasound images. The method relies on the differences in

echogenicity (the brightness of tissue in an ultrasound image due to sound waves) between

different tissue types found around the thyroid gland. A key limitation of this model is that

it assumes the ultrasound images were captured in one of two orientations and therefore

contain certain anatomical features in each image. With this assumption, the segmenta-

tion method then matches the number and approximate locations of these similar reflective

regions with patterns created from the two known orientations [39].

Machine learning segmentation methods rely on machine and deep learning algorithms to

train classifiers that can properly label each pixel in the ultrasound images. While generally

these machine learning approaches are proficient at segmenting the thyroid gland and nodules

found within, the large amount of labelled data and long periods of time required to train

these algorithms limit their usefulness [33]. One proposed system for identifying the thyroid

gland in ultrasound images used the 3D U-net architecture to classify each pixel in an

ultrasound image as a member of the thyroid gland. Their training data consisted of 10 data

sets comprising 1416 images and the generated segmentations had an average DICE score

of 0.876 [40]. Another proposed system framed the problem of identifying nodules within

the thyroid gland as a patch classification problem and then used a deep convolution neural

network to identify the nodules. The proposed system was trained on 22,123 images collected

from 6,242 patients and their model generated segmentations with an average DICE score

of 0.922 [41].

4.4 Further Explanation of the GrabCut Method

In the paper “GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts,

Rother et al. designed a graph-based image segmentation strategy for iteratively segmenting
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non-uniform shapes from complex multi-color images [38].

The foundation of the GrabCut algorithm is the graph cut algorithm proposed by Boylok

and Jolly which uses an initial trimap, denoting the locations of foreground, background,

and uncertain areas, to segment a monochrome image [42]. From the image which will be

segmented and the trimap provided, a graph is created where the nodes are pixels from the

image and the edges between the nodes are assigned a weight based on their similarity. The

trimap is used to define the set of nodes that must be separated and is created through

user input. The user is expected to draw several marks identifying the background and

foreground. To then separate the nodes that were marked as the foreground and background,

the graph is split between dissimilar nodes by cutting across low-cost edges with the objective

of finding the minimum possible cut cost. This algorithm was shown to be effective at

segmenting a variety of images, including CT images and slices from a 3D MRI exam [42].

However, the Graph Cut algorithm was limited by the amount of input that the user had

to give to the algorithm and attempted to create a perfect segmentation based only on the

input of the user in one attempt [38].

Rother et al. improved this algorithm further and developed the GrabCut algorithm

which sought to reduce the amount of user input and improve the behavior of the algo-

rithm around the border to reduce the number of leftover artifacts. Rather than building

a traditional graph, Gaussian Mixture Models (GMM) are used to represent all the pixels

in the image and their data. An energy function is then created that accounts for the pixel

value similarity and the relative location of each pixel in the image. To segment the image,

the parameters of the GMMs for the foreground and background are modified to minimize

the energy function. Once the minimization has occurred, the first major improvement to

the algorithm occurs where it iterates on the minimization process until a global minimum

of energy is reached. This iteration feature then allows the user to specify partial trimaps

because the GrabCut algorithm does not attempt to completely segment the image on the

first iteration. Rather uncertain areas are carried over until more information is known on
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future iterations. Finally, a border matting operation is added to the algorithm to improve

the border of the segmented area and reduce artifacts leftover. This operation smooths out

the border of the segmentation by taking the hard segmentation border, created from the

iterations, and applying a soft step function whose arguments is the given pixels distance

from the hard edge [38].
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5 Introduction to the RASTER System

In this thesis, a robot assistant for sonographic tissue examination and reconstruction

(RASTER) is proposed that augments the capabilities of physicians and sonographers in an

easy-to-use and strain-free package while reducing human-induced error and maintaining the

flexibility that ultrasound imaging offers. The key contribution of this system is the use of a

region-based segmentation method that can be used to identify any visually distinct region,

such as the thyroid gland, with no prior information about that region. RASTER then uses

this information to estimate the volume of the identified region and provide a visualization

of the volume to the operator, whether that be a physician, sonographer, or other trained

personnel, for further analysis.

With RASTER, the standard thyroid ultrasound examination procedure could be simpli-

fied without any significant changes to the spaces where these examinations are conducted.

Patients would continue to be positioned such that their neck is exposed, whether that be

sitting or lying down, in a standard exam room. Once ultrasound gel is applied to the neck,

the ultrasound scanner of the RASTER system would be placed on the patients neck such

that the thyroid gland is at least partially visible in the ultrasound image. The operator

would then initialize the control systems of RASTER and identify the thyroid gland within

the ultrasound image. Once fully initialized, the operator would command RASTER to scan

the patient and when complete, generate a 3D volume estimate and visualization. Through-

out the scans the operator can view the live ultrasound image and when finished scanning,

move RASTER to any location on the neck for further examination.

The remainder of this thesis is laid out as follows. Section 6 details how the RASTER

system was designed and built. Section 7 explains the experiments conducted to validate

the RASTER system. Section 8 discusses the results of the validation experiments and the

lessons learned from the design of this system. Section 9 offers directions in which this work

could be expanded.

14



6 Materials and Methods

The RASTER system uses a seven degree of freedom robotic arm to move a wireless

ultrasound scanner in a controlled motion on the patient’s neck while applying a constant

force and maintaining a proper orientation of the scanner relative to the patient’s skin.

Concurrently a region-based segmentation pipeline running in real-time, initialized by the

operator, is responsible for keeping the region of interest in the ultrasound image. A user

interface allows the operator to complete all steps of the examination seamlessly from one

device. A secondary non-real time region-based segmentation pipeline is used to generate a

3D representation of the region of interest and provide volumetric information back to the

physician to assist in a diagnosis. Figure 4 shows the system in full and Figure 5 breaks down

how each functional module is connected, including which information is shared between

them.

Figure 4: The complete RASTER system.

The RASTER system was designed using a ROS architecture to break up the different
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Figure 5: A system diagram of the RASTER system.

functions of the system into distinct modules that could run concurrently in real-time. To

ensure that the real-time image processing would not be slowed down by the requirements of

the robot control framework, two laptops were used in the RASTER system. Additionally,

a tablet computer was required to connect with the wireless ultrasound scanner and the

robot controller was needed to be hardwired to one of the laptops. Figure 6 shows how a

local wireless network was used to facilitate communication between the hardware devices

of RASTER .

Figure 6: A hardware diagram of the RASTER system.
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6.1 Integrating the Ultrasound Scanner

The core of the ultrasound image capturing module is the ultrasound scanner, a L7 Linear

Scanner made by Clarius , shown in Figure 7a. This scanner was chosen for its wide view

angle, smaller imaging depth, and wireless configuration. By selecting a wireless scanner, the

system does not rely on a full-size ultrasound machine, further reducing the footprint of the

final product. To use the Clarius scanner, the scanner must be connected to a mobile device,

for this project an iPad Pro made by Apple, running the Clarius mobile application, show

in Figure 7b. Because Clarius devices are designed to integrate into research applications,

the scanner and mobile device were connected over a local wireless network over which

the ultrasound images were then broadcast. Clarius releases a package for receiving these

images called cast which was used to read the ultrasound images into a Python script and

rebroadcast them on a ROS topic for the image segmentation pipeline to receive.

Figure 7: The Clarius L7 Linear scanner (a) and the Clarius app (b).

6.2 Mounting the Ultrasound Scanner

To mount the ultrasound scanner to the robot, a 3D printed four-piece design, shown

in Figure 8d, was developed that allowed the scanner to be easily taken off the robot while

remaining durable and stiff. To the end flange of the robot arm, a universal mount, show in
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Figure 8a, was mounted that could be used to repeatedly and accurately attach different end-

effectors quickly and without tools. While not strictly necessary for the RASTER system,

the flexible design allows room for future iterations of the RASTER system as well as the

possibility of using multiple styles of ultrasound scanners with RASTER. A scanner-specific

mount, shown in Figure 8b, was then attached to the universal mount. To ensure that

the scanner-specific mount was properly oriented, a matching hole for the dowel pin in the

universal mount was included. The scanner-specific mount was included in the design so

that the scanner could be removed to replace the battery or allow the operator to use the

scanner with minimal impact from the mounting system. The third and fourth piece of the

design, shown in Figure 8c, were two blocks that mounted to the scanner itself. They were

manufactured to match the shape of the handhold on the scanner and then screw together

creating a strong hold on the scanner without requiring any modifications to the scanner

itself. The scanner with mounting blocks attached was then mounted to the scanner-specific

mount using four screws, of which only one needed to be tightened to ensure a strong

connection, the remaining three acted purely as locational supports. A key criterion for

the mounting of the scanner was that it would not interfere in the use of the scanner in

tight spaces. Therefore, a complex convex shape was used to reduce the overall size of the

mounting blocks at the bottom near the scanner while providing strong structural support

at the top.
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Figure 8: The hardware for mounting the ultrasound scanner to the robot.

6.3 Selecting the Robotic Manipulator

The RASTER system uses a seven degree of freedom force-sensitive robotic manipulator

to safely move the scanner around the patient’s neck. The Franka Research 3 manipulator

by Franka Robotics, shown in Figure 9, was chosen because it is force compliant by design,

which prevents the robot from applying excessive force to the patient, providing an additional

layer of safety for the patient. Furthermore, the robot includes an emergency stop switch,

that when pressed, will stop all motion of the robot which provides another layer of safety

within the system. The robot can be moved into any pose by manually manipulating it at

any point along its body which simplifies the setup for the operator. The robot is directly

connected to a control box where the low-level control of the robot is done. The control box

is connected to a Dell G15 5520 laptop, running Ubuntu 20.04.6 LTS on a Linux 5.9.1-rt20

kernel, via an ethernet cable. A real-time kernel version of Linux was used because libfranka,

the control library for the Franka manipulator, requires real-time priority to maintain a 1

kHz communication rate between the control box and any external workstation. High-level

control of the manipulator is done in two ways, the first being through a browser-based

application built into the Franka control box and the second being a third-party software

package.
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Figure 9: The Franka robotic manipulator used by RASTER .

Franka Desk is a browser-based application, shown in Figure 10, required to prepare the

robot for use. Through Franka Desk the connection between the laptop and the robot is

verified, the joints of the robot are unlocked, the physical characteristics of the end-effector

are loaded, and the Franka Control Interface is activated. The Franka Control Interface

must be active before any commands can be sent to the robot from the third-party software

package. Crucially, Franka Desk allows the operator to switch between “execution” mode

and “programming” mode. In “programming” mode, the robot can be freely moved around

by the operator. With RASTER, the operator would use this operating mode to place the

ultrasound scanner in approximately the correct position using the ultrasound image as a

guide. Once placed, the operator would then switch the robot into “execution” mode to

complete the remainder of the examination.

The third-party package used for high-level control of the robot is called armer panda and

is released by the QUT Center for Robotics. This package internally handles all logic to move
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Figure 10: The landing page of the Franka Desk application.

the robot and provides several simplified topics to see data about and send commands to the

robot. Once the robot has been placed in the approximate position and put in “execution”

mode, the armer panda package is launched from the command line using a single roslaunch

command at which point the robot is ready to use.

When setting up RASTER for the first time, the armer panda package had to be given

information about the end-effector of the robot. This was in the form of a URDF file that

described the physical characteristics of the end-effector, including size, weight, and moment

of inertia.

6.4 Designing the User Interface

The user interface allows the operator to prepare for, supervise, and review the results

of an examination in a single, easy-to-use interface. The user interface contains two sections

that are always visible, one containing the manual robot controls and the second containing

the control scheme selection buttons. The operator can use the manual robot controls to
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adjust the robot’s pose without using the Franka Desk to move the robot directly. The

control scheme selection buttons allow the operator to enable and disable each form of

control at any time giving them final control over how the system operates.

The ’Exam Setup’ tab of the user interface, shown in Figure 11, is used by the operator to

prepare for the examination. The top section displays to the operator the force that the robot

is applying to the patient and provides a method for the operator to set a new desired force

for the robot to apply. Additionally, two adjustment buttons allow the operator to make

minor adjustments in the desired force quickly and easily. Below that, the operator can

select to crop the raw ultrasound image coming into the system. By default, the system uses

a saved image cropping defined previously but a new image cropping can be created if a new

ultrasound scanner is being used. To create a new image cropping, the operator interactively

selects two points on the raw ultrasound image where the image cropping will start and end.

Afterwards, because the current imaging depth cannot be retrieved directly from the scanner

through the cast package, the operator must input the imaging depth of the scanner which is

later used in the volume estimation. Finally, the operator must select the region of interest

that will be tracked in the ultrasound image, such as the thyroid gland, a specific nodule,

or some other visually distinct aspect of the anatomy. To select this region, the operator is

presented with a single frame of the current ultrasound image and asked to select the region

of interest by placing points around the perimeter of the region. The operator must select at

least three points to create an enclosed area and lines are drawn between each consecutive

point to display their progress. From the list of points, a convex polygon is generated which

is then transformed into a series of triangles. From these triangles, a set of bounding shapes

is generated that are then used to find all the pixels within the region selected by the user.

From this information, a mask is built that initializes the real-time segmentation process.

Once ready to start the examination, the ‘Thyroid Exam’ tab, shown in Figure 12, is used

to control the examination and select where the data saved from the examination should be

placed. To conduct an examination, the operator selects the linear distance for the system to
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Figure 11: The ’Exam Setup’ tab of RASTER’s user interface.

scan and selects which direction to scan. Notably, the user interface will not let the operator

conduct a scan until both force control and image balancing control have been activated.

Prior to starting the exam, the operator selects where the data gathered in the exam will be

stored if the default location is not appropriate. After completing an exam or if the operator

wants to review the results of a previous exam, they select the data they would like to view

and regenerate the results.
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Figure 12: The ’Thyroid Exam’ tab of RASTER’s user interface.

6.5 Developing a Real-time Image Segmentation Framework

RASTER uses a real-time image segmentation framework that tracks visually distinct

areas selected by the operator using the GrabCut algorithm. A non-machine learning seg-

mentation method was chosen because, as an assistive device, an operator is present that

can provide the initial information required to start a segmentation and this choice removed

the requirement that large data sets of labelled ultrasound images be available to be used as

training data for a learning-based segmentation. Additionally, by selecting a non-machine

learning method, less computing resources are required for the system to function and al-

lows RASTER the flexibility to work with different ultrasound scanners and new anatomical

regions without retraining the segmentation framework.

RASTER’s image segmentation framework functions based on an assumption of image

similarity between any pair of consecutive images. Specifically, the image segmented at time

i must be reasonably similar to the image segmented at time i− 1. If those two images are
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reasonably similar, then it is assumed that the result of the segmentation of the image at

time i− 1 is a reasonable guess for how the image at time i should be segmented. Because

this assumption is not guaranteed to be true, several design choices were made to ensure that

assumption held true for RASTER . Foremost, the real-time image segmentation framework

was designed to work in as close to real-time speed as possible. The parameters of the

GrabCut algorithm were tuned to prioritize speed over accuracy and the overall speed of the

robot was limited to prevent large, sudden movements. Additionally, through implementing

other control schemes, such as force control and image balancing that track the movement

of the patient in additional axes, the overall picture quality and similarity between pictures

was further improved. Despite these safeguards, it is known that RASTER cannot handle

large, fast motions that the patient may unexpectedly complete.

Before the images can be segmented automatically, the operator must provide input to

initialize the framework. First the operator selects how the image should be cropped, through

the user interface, to remove any artifacts at the top or bottom of the image that may cause

errors in the segmentation process. Once an image cropping has been developed it can be

saved and reused in future scans. Next, the operator must enter the scanning depth being

used by the ultrasound scanner. This information cannot currently be retrieved directly

from the scanner and must be entered through the user interface. Finally, the operator must

create the seed for the first segmentation through the user interface. Notably, this seed

segmentation does not have to be completely accurate as the segmentation will expand or

contract to fit the boundaries of the region it detects.

Real-time image segmentation is handled by the real-time image segmentation module.

New images are saved in a first-in last-out queue, to ensure the newest message is always

segmented first. Additionally, any stored data that is too old is removed to prevent any

errors. Once at least one image has been received by the module, the newest image is

removed from the queue and the module attempts to crop the image. If the image cannot

successfully be cropped, the original image is passed on to the next step in the process
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and any image cropping that had been applied is reset. Then the image is recolored from

grayscale to a three channel image as is required by the GrabCut algorithm. The cropped

and colorized images are then displayed to the operator so the progress of the segmentation

framework can be monitored.

Further segmentation of the received images is not completed until the operator has

seeded the segmentation framework and has commanded the framework to begin segmenting

images. To prevent the segmentation framework from giving false information, the module

cannot segment any images unless it has been notified that the patient is in contact with

the ultrasound scanner.

A custom ImageFilterGrabcut class is responsible for segmenting the images. To allow

for future development and improve the modularity of the module, this class extends a

custom ImageFilter class which defines common functions that any image filter would need

to implement to be used in this segmentation framework. Additionally, error catching is

built into every layer of this process, including into the custom classes, to ensure that the

image segmentation module will not crash at any point. If the image segmentation process

does fail, the module will not segment any more images until the filter has been properly

reinitialized.

The ImageFilter class defines the process for segmenting every ultrasound image received

by the module. After the image is cropped and recolored appropriately, the image is down-

sampled by a factor of 2.5 to improve the speed of the segmentation significantly. The image

is then segmented by applying the GrabCut algorithm. To further improve the performance

of the segmentation, the GrabCut algorithm only performs one iteration on each image.

Although this decreases the accuracy of the segmentation on any given image, the rate at

which new ultrasound images are received and the similarity between any two consecutive

ultrasound images artificially increase the number of iterations performed on any single

ultrasound image recovering some of the accuracy loss. Once a mask has been generated

by the segmentation algorithm, a list of the contours contained within the image, and the
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centroid of each contour, is extracted. After the successful segmentation of each image, the

full results of the segmentation, including images from each step of the image segmentation

process, are published for other modules to use and for the operator to view if desired. Figure

13 shows the segmentation process applied to a single ultrasound image.

Once the segmentation of the current image has been completed, the image segmentation

module must prepare to segment the next image. Since this image segmentation framework

assumes image similarity, the resulting image mask from the image just segmented is mod-

ified to build the seed segmentation of the next image. The objective of this process is

to define masks that contain the areas of the next image where the region of interest is

most likely not going to be (the sure-background), where the region of interest might be

(the probable-foreground), and where the region of interest most likely will be (the sure-

foreground). Because it is possible that the boundaries of the region of interest may shrink

in the next image or the region of interest may be in a slightly different location in the image,

the sure-foreground area should be smaller than the area identified as the region of interest

in the current image. Therefore, the sure-foreground mask is found by applying an erode

operation to the result mask. For this operation a kernel of size 3x3, anchored at the center,

was used and the operation was applied to the mask three times using the morphologyEx

function of the cv2 package. The sure-background mask is found by applying a dilate opera-

tion to the result mask and then taking the inverse. For this operation, a kernel of size 3x3,

anchored at the center, was used and the operation was applied eight times, to encourage

the segmentation to expand rapidly, using the morphologyEx function of the cv2 package.

The probable-foreground is then defined as the area not contained in the sure-foreground or

in the sure-background and was generated by inverting the sum of the two masks. A final

seed array is generated by applying the correct value to each mask and then adding them

together. This seed is saved within the image filter to be used on the next image unless the

operator generates a new seed through the user interface.
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Figure 13: A step-by-step illustration of the image segmentation process.
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6.6 Creating an Image Centering Algorithm

RASTER implements an image centering control algorithm that is responsible for deter-

mining the error of the location of the region of interest within the image. While the default

objective of the control algorithm is to keep the centroid of the region of interest on a line

down the center of the image, the operator can choose to shift this goal line to the left of

right side of the image when scanning a singular lobe. The centering error is calculated as the

horizontal distance, in pixels, between the centroid and the goal line. To prevent excessive

movement by the robot, a wide error band around the goal line was instituted. Figure 14

shows the three possible positions of the goal line as well as the error band for each goal line.

Figure 14: The possible locations of the image centering goal (white line) and error bands
(green area).

6.7 Creating an Image Balancing Algorithm

RASTER implements a pipeline to maintain consistent scanner contact with the patient

and a perpendicular scanner orientation relative to the local skin plane based on the ultra-

sound image. Figure 15 shows an example of a high-quality ultrasound image, which has an

evenly distributed intensity throughout the whole image, as well as a low-quality ultrasound

image, which contains significant dark areas. Dark areas of an ultrasound image occur when

the scanner is imaging air. While not all dark areas are an issue, such as when imaging near

air-filled anatomical features like the esophagus, they can be used as an indicator that a por-

tion of the scanner is not in contact with the patient. Therefore, the quality of the scanner
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contact is estimated by looking at the intensity of different areas of the image. In the case

where the ultrasound is sufficiently intense, the definition of a high-quality ultrasound image

is expanded to include an ultrasound image where the bright feature visible in the top of

the image is approximately horizontal, which correlates to the scanner being perpendicular

to the local skin surface in the image plane. On the ultrasound image, the bright feature is

approximated as the boundary between the dark area at the top of the image, excluding any

artifacts left by the scanner at the top of the image, and the first light area moving down

the image.

Figure 15: A comparison between a high-quality ultrasound image (a) and a low-quality
ultrasound image (b).

Before determining the intensity of individual sections of the ultrasound image, the area

of the ultrasound image needs to be separated from the areas filled in with zeros to create

a square image. Figure 16a shows an original image received from the scanner and Figure

16b shows the region of that image that contains the ultrasound image. The portion of the

image containing the ultrasound image is a wave-shaped area in the center of the full image.

This area is approximated as two intersecting lines closed by a horizontal line at the top

and closed at the bottom by an arc. The intersecting lines have an angle between them, in

this case approximately 30 degrees, and an intersection point that is some distance above

the top of the image. The horizontal line at the top is placed at the top of the ultrasound
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image and the closing arc at the bottom is placed tangent to the bottom of the image. Once

the ultrasound image has been mapped within the larger image, it is broken into individual

sectors to be analyzed independently, denoted as bright or dark sections in Figure 16c. Each

sector is defined by four bounding sets: a line representing the left edge of the sector, a line

representing the right edge of the sector, a line representing the top edge of the sector, and

an arc representing the bottom edge of the sector. To improve performance, these sectors

are generated when the module is started and then only regenerated if the ultrasound image

changes size or shape during operation. At startup two lists are generated, one containing

the sectors on the left-half of the image and one containing the sectors on the right-half of

the image.

Figure 16: A step-by-step illustration of the creation of sectors from a raw ultrasound image.

Once an image is received by the image balancing module, it is placed in a first-in last-out

queue so that the most recently received image is the first image to be analyzed. Similar to

the real-time image segmentation module, data that is too old is removed to prevent errors.

To analyze the image, the module must iterate through every pixel contained within the

ultrasound image and determine which image sector contains that pixel. To minimize the

amount of time required to complete this process, several algorithmic design choices were

made to prioritize efficiency. First, the image is down sampled to reduce the number of

pixels visited by a factor of ten which improved the performance of the node with no cost to

the accuracy of the algorithm. Then, rather than iterating through the entire width of the

full image, the algorithm benefited from the closed form solutions of the sector boundaries
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to iterate through only the ultrasound image area. Finally, since the sectors were generated

sequentially from left to right in the ultrasound image and the pixels of each image row are

iterated through from left to right, when the sector is found which contains a given point,

j, the first sector checked to find point j +1 is the sector that contained the previous point.

The search then checks each remaining sector moving to the right of the image which ensures

that, at most, the location of any pixel is found within two calculations.

Once a pixel has been matched with the sector that contains it, the number of pixels

found that are contained within the sector is incremented and the average intensity of every

pixel found is calculated. Once the iteration of all pixels is complete, the average pixel

intensity is used to determine if each sector is bright compared to a baseline intensity level.

The number of sectors considered dark in the left-half and right-half of the ultrasound image

are counted and the difference between these two numbers is calculated. If less than 25% of

the image is dark, then a suitable amount of the scanner is contacting the patient, and an

error value is calculated as the difference in the number of dark sectors in each half of the

image divided by ten.

However, if less than 10% of the image is dark, then the error will be calculated by

approximating the bright feature. To find the bright feature in the ultrasound image, a

ray-based search was conducted on each bright sector in the ultrasound image. Since each

image sector is defined by a linear set on both the left and right side, these bounding sets are

used to search along a line without iterating through every pixel in the image. Because each

bounding set has a closed-form solution in the form of y = ax+ b, the search calculates the

corresponding column of the image array, the x value in the above equation, given any row,

or y value, for the image array. Therefore, for each sector, a search is conducted from the

top of the image to the bottom of the image along the line defining the left edge of the set.

To prevent the artifact left by the scanner at the top of the image from causing errors, the

search starts at a distance away from the top of the image. For each row, the corresponding

column that falls on the sector boundary is calculated. If the pixel at that row and column
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position is twice the minimum intensity, a counter is incremented counting how many bright

points along the ray have been found. The bright feature is considered to have been found

along that ray once five points have been found. The last bright point found is added to a

list of points representing the boundary of the bright feature. The search then moves to the

next sector and repeats until all sectors have been searched. Figure 17 shows the boundary

points as orange dots for points found on the left-hand side of the image and yellow dots for

points found on the right-hand side of the image. By implementing a counter on the number

of bright pixels found along a ray, small bright artifacts that exist above the boundary of the

bright feature are ignored. While this creates an error in the depth of the bright feature, all

points found on the bright feature will contain the same level of depth error. If bright feature

boundary points are found on both the left-half and right-half of the image, a single straight

line is approximated from these points using the polyfit library, the green line in Figure 17.

The slope of this approximated line is then used as the balance error for the image. The

equation for the approximated line is also published so that the result can be visualized by

other modules.

Figure 17: An example of the image balancing approximation line generated from boundary
points.
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6.8 Implementing a Trajectory Generation Algorithm

RASTER uses a trajectory generation framework that ensures that each ultrasound imag-

ing is captured at an equal distance from one another and that the imaging plane for each

image is parallel to the initial imaging plane of the trajectory. As shown in Figure 18, the

imaging plane of the ultrasound scanner is the Y Z plane. Therefore, the trajectory is only

responsible for controlling the robot motion such that the scanner reaches each imaging plane

by travelling along the X axis while maintaining the same angular position about the scan-

ner’s Y and Z axes. Importantly, this requires the trajectory to allow free linear motion of

the scanner relative its own Y and Z axes as well as free angular motion about the scanner’s

X axis.

Figure 18: The definition of the axes of RASTER’s ultrasound scanner.

Once RASTER receives a command to complete a scan, which must include the direction

and distance in which to scan, from the user interface, the trajectory generation process is

started. The starting pose of the ultrasound scanner serves as the origin of a new coordinate

system in which the trajectory will be defined and is shown as the coordinate system on the

green plane in Figure 19. The end point of the trajectory is defined as a plane offset from

the Y Z plane of the of the origin by the distance and direction included in the command.

Waypoints for the trajectory are then generated at standard intervals, d millimeters apart
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as shown in Figure 19, between the start and end points. Once the endpoint and each

waypoint are defined, the trajectory is created as a series of planes stretching along the

X axis that the end effector must pass through as shown in Figure 19. Every time the

trajectory module receives an updated pose of the robot, the trajectory error is calculated as

the distance between the current position of the robot and the destination plane measured

along the X axis of the trajectory coordinate system. Additional error values are calculated

as the difference between the current and starting angular position of the scanner about the

Y and Z axes. To ensure that consistent data is being collected throughout the exam, the

trajectory module publishes when a waypoint has been reached so that an ultrasound image

can be captured before the robot moves to the next waypoint. Furthermore, the trajectory

will not update the goal waypoint until it has been confirmed that an ultrasound image has

been saved at the current waypoint. To ensure that the trajectory module cannot behave

unexpectedly, the module cannot calculate an error value unless the robot pose is known to

the module and the ultrasound scanner is in contact with the patient, as determined by the

image balancing module.

Figure 19: A theoretical plane-based trajectory with d millimeters between each image.
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6.9 Implementing a Force control Algorithm

RASTER implements a force control framework that regulates the amount of force the

robot applies to the patient to ensure patient safety, improve image quality and similarity,

and account for small patient movements caused by breathing or other similar motions. The

operator is given final control over the system’s behavior by specifying the exact force applied

by the robot to the patient for the force control module. This value is used as the setpoint for

the force control module and is compared with the force exerted on the robot’s end-effector

which is estimated at over 300 Hz by the armer panda package based on the torque applied

to each joint. Because this data is noisy, the last 100 data points are averaged to find the

current force value. To further ensure patient safety and prevent unexpected motion, the

force control module cannot command the robot to move unless the ultrasound scanner is

in contact with the patient, as determined by the image balancing module.

6.10 Registering Corresponding Image and Position Data

Because ultrasound images do not contain information about the pose of the ultrasound

scanner when the images were taken, a module was created to register ultrasound images

with the pose of the robot and the force applied to the scanner when the image was taken.

To accomplish this, each data point for each type of data, ultrasound image, robot pose,

and force, are stamped with the time at which that data was published by its source module.

The image and position registration module listens to each of these data sources and records

data for each one. When a new message containing data is received, the data point is

placed in its respective dictionary. The keys for these dictionaries are the time at which

the data was captured measured in seconds since the epoch. The value for each key is a

lower-level dictionary. In the lower-level dictionary, the keys are the time the data was

captured measured in nanoseconds since the capture time in seconds. To prevent a build-up

of data slowing down the system, any upper-level key which is more than ten seconds older
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than the newest key is removed whenever new data is added. Additionally, when adding a

new ultrasound image data point, new data is only be added when the trajectory following

module is active, the current waypoint has been reached, and an ultrasound image has not

already been registered for the current waypoint. This prevents the module from saving an

excessive amount of data while ensuring that one data point is captured at each waypoint.

While the recording of data points occurs as callbacks whenever a new message is received,

the main functionality of the module occurs constantly in the main loop of the module until

the module is shut down. To prevent data loss due to old data being deleted in a callback

while the main loop is using the same data, the dictionaries containing the data points

are deep copied at the start of every main loop. Furthermore, the main loop will not try to

register data unless there are data points in all three dictionaries. Once these conditions have

been met, the newest upper-level key is retrieved from the ultrasound image dictionary. This

key is checked against the remaining two dictionaries to ensure that potential data matches

exist for the ultrasound image data. Additionally, the lower-level dictionary is checked to

ensure that it is not empty. Then each nanosecond key for the ultrasound images is used

to find the corresponding robot pose and force data points by finding the data point with

closest nanosecond key. After the corresponding data has been found, it is saved to the

computer in a location set by the operator, published for other modules to see, and then the

individual data points are deleted from the dictionaries.

6.11 Developing a Non-real Time Image Segmentation Framework

While real-time image segmentation is required to sacrifice accuracy for performance,

the non-real time segmentation focuses on accurately segmenting the selected area of the

ultrasound image regardless of time required to accomplish this task. Regardless of the

different objectives, the process of segmenting images in non-real time is almost identical to

that of the real-time segmentation. Both processes use the GrabCut algorithm to segment

the images and even share many code structures. The key differences lie in the selection of
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the tuning parameters for the GrabCut algorithm. The first parameter choice was to remove

the down-sampling step from the process thereby retaining the full amount of information

from the image. The second choice was to increase the number of segmentation iterations

completed on each image, giving the segmentation more time to fully expand or contract

as needed. Finally, the size of the area defined as possibly containing the background was

expanded to allow the segmentation to find the true extent of the selected region. To improve

the usability of this module, the ultrasound images segmented by this module are not the

live-streamed images from the ultrasound scanner but rather the saved data captured by the

image registration module, thus allowing the operator to view data captured at any time

without having to actively be scanning the patient.

The non-real time segmentation process is started when the operator has requested to

view the volumetric data from a recorded examination. Once the operator has selected the

data to load through the user interface, the data is loaded from the save-location into an

array in chronological order based on the timestamp of the ultrasound images. Contained

in the saved data is the raw ultrasound image and the full set of information from how

the real-time image segmentation was completed. This information is then used to set the

cropping parameters of the non-real time image segmentation. Additionally, the resulting

mask of the real-time image segmentation is modified to seed the segmentation of every

image for the non-real-time image filter. Once initialized, the loaded data is fed sequentially

into the image segmentation until all the images have been processed. Throughout the

segmentation, updates on how many images have been segmented and how many total

images must be segmented are published by the module. These messages, while helpful for

debugging purposes, serve as the notification for the volume reconstruction module that the

image segmentation process has completed.
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6.12 Estimating the Volume of the Region of Interest

Once a full set of data has been collected, the volume reconstruction module estimates

the volume contained within the data set and builds a single 3D shape to visualize the result.

For each image, the non-real time image segmentation found the boundary of the region of

interest in terms of pixels within the image. From this boundary, the area contained within

it is found using the image resolution, as calculated from the imaging depth of the ultrasound

scanner and denoted as IR, to find the area of the region of interest in each slice in square

meters as shown in Equation 3.

Ai
mm2 = Ai

px2 ∗ IR2 (3)

Using the distance between any two slices, denoted as xi+1
i , and the area of two con-

secutive slices, denoted as Ai
mm2 and Ai+1

mm2 , Equation 4 is used to approximate the volume

between any two sequential ultrasound images.

V i+1
i =

(Ai
mm2 ∗∆xi+1

i ) + (Ai+1
mm2 ∗∆xi+1

i )

2
(4)

The total volume of the region of interest across all of the ultrasound images is then be

found using Equation 5 where n is the number of ultrasound images.

VT =
n∑

i=0

V i+1
i (5)

To visualize the volume, the resolution of the ultrasound image is used to convert the

location of each boundary pixel to a location relative to the to the end of the ultrasound

scanner measured in meters. Then by applying the corresponding robot pose as a homoge-

neous transformation matrix to each boundary point, the points from each ultrasound image

are mapped to the origin frame of the robot. Once all the points have been transformed,

they are plotted on a 3D plot and a 3D Mesh, from the plotly package, is plotted on top of
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them. This package uses an alpha parameter to fit a concave 3D shape to the data points and

therefore is not completely accurate. However, it provides enough information to complete

the visualization.

6.13 Controlling the Robotic Manipulator

To create a more robust system, one module in RASTER is exclusively responsible for

sending velocity commands to the robot, the robot control module. This module publishes

commands to move the end-effector of the robot at a given speed in each cartesian direction

relative to the end-effector’s coordinate system in meters per second. Additionally, this node

is responsible for denoising the estimated force signal since that signal also comes from the

robot.

Contained within this module are six PID controllers responsible for converting the error

values calculated by the other modules into control inputs for each degree of freedom in

space. Each time a new error message is received by the module, it is stored to be used for

calculating the control input in the main loop of the module. Within the main loop of the

module, a control input of zeros is generated by default to prevent the robot from moving

unless directly commanded. Each error value is then used to calculate the corresponding

control input using the appropriate PID controller. Then, based on which control schemes

the operator has activated, the control inputs generated from each control scheme, listed

in Table 1, are added to the control input sent to the robot. The manual controls are the

only exception to this control scheme where each button pressed by the operator causes a

constant control input to be sent to the robot in that axis. The architecture of this module

was chosen because the control inputs must be sent to the armer panda package at over

100 Hz. Additionally, all control inputs were calculated relative to the end-effector to allow

for the greatest flexibility for the user and to off-load computation on to the armer panda

package.
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Axis Movement Type Controller
X linear Trajectory
Y linear Image Centering
Z linear Force
X angular Image Balancing
Y angular Trajectory
Z angular Trajectory

Table 1: List of control schemes and the axes of motion which they control.

7 Testing and Validation

To validate RASTER, a series of tests were conducted that isolated each module and

tested the effect each module had on the success of the whole system. All the experiments

to validate RASTER were conducted on a model 074 thyroid ultrasound training phantom

manufactured by CIRS Inc. This phantom was placed near the base of the robot and mounted

to the table to prevent it from moving unexpectedly during the experiments. To ensure that

each experiment conducted was consistent, the Franka Desk interface was used to return the

robot to the same position at the start of each trial. To facilitate debugging and testing,

an additional interface was implemented to monitor the state of each controller in real-time

compared to their set-point. To facilitate testing and capture data for each experiment,

an additional tab, show in Figure 20, was added to the user interface that allowed the

safety logic, such as the requirement that the patient be visible in the ultrasound image,

built into the various nodes to be overridden which was required to complete several of the

experiments. On this tab, the data to be saved for each experiment was also be selected.

Data would automatically be recorded while a trajectory was being completed and would

stop once the trajectory was completed. The amount of data to save would also be displayed

since generally the time required to complete the test was less than that required to save all

the data from the test.
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Figure 20: The ’Experimentation’ tab of RASTER’s user interface.

7.1 Evaluation of the Force Control Framework

An experiment was conducted to verify the efficacy of the force control module at main-

taining a constant scanning force regardless of patient motion, scanner motion, or skin profile.

For this experiment, the robot was placed in a position such that the ultrasound scanner was

fully touching the phantom and applying a non-zero force on the phantom. Critically, the

scanner was oriented such that when it was moved in a straight-line trajectory along the X

axis of the scanner, the scanner would move out of contact with the patient in the Z axis of

the scanner. This starting pose was then saved within the Franka Desk application so that

the trajectory could be repeated multiple times.

The first set of three trials conducted served as the control and did not include any

corrections from the force control framework. Once the experimental setup procedure was

completed, the robot was commanded to follow a straight-line trajectory. Throughout the

trajectory, the force measured by the robot and the pose of the ultrasound scanner were mea-
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sured continuously. These data points were recorded in a CSV file to be analyzed afterwards.

The second set of three trials conducted measured the effect of the force control framework

on the end-effector force. The exact same procedure was followed with one exception, prior

to starting the trajectory, the robot was commanded to maintain a force of 2.0 newtons and

the force control framework was activated.

Figure 21: The measured force applied to the patient with and without active force control.

Figure 21 shows how the force applied by the ultrasound scanner on the phantom stayed

constant, with a mean of 2.05 newtons and a standard deviation of 0.06 newtons, during the

three trials where the force control framework was active. However, on the three trials where

the force control framework was not active, the force applied by the scanner dropped by an

average of 2.07 newtons with a standard deviation of 0.741 newtons. Figure 22 confirms that

a drop in measured force should be expected for the first three trials as the robot did not

follow the profile of the skin. However, for the second set of trials, the profile of the skin is

seen as the position of the robot moved in Z to compensate for the profile of the skin.
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Figure 22: The measured pose of the scanner with respect to the origin of the robot with
and without active force control.

7.2 Evaluation of Trajectory Generation Framework

An experiment was conducted to demonstrate the effectiveness of the trajectory module

at ensuring that each ultrasound imaging is captured at an equal distance from one another,

and the imaging planes are parallel to one another. The experimental setup mirrored that of

the force control experiment except that the location of the scanner was selected such that a

large displacement in the Z axis of the scanner would need to be compensated for. For each

trial, of which there were three total, once the experimental setup was completed, the force

control module was activated and a trajectory of six centimeters was generated. Throughout

the trajectory the robot pose was measured continuously and recorded in a CSV file and it

was noted whenever a waypoint was reached.

Figure 23 shows how the distance travelled along the X axis is linear despite the non-

linear nature of the motion along the Y and Z axes. More importantly, the desired distance

between each waypoint was two millimeters and the mean distance between each waypoint

44



Figure 23: The measured cartesian position of the ultrasound scanner relative to the robot
origin over the length of a trajectory where each black diamond represents when a waypoint
was reached.

was 2.05 millimeters with a standard deviation of 0.1 millimeters. The starting orientation

of the scanner about the Y axis was -0.822 degrees and the scanner maintained an average

orientation of -0.748 degrees with a standard deviation of 0.093 degrees. The starting orien-

tation of the scanner about the Z axis was -91.598 degrees and the scanner maintained an

average orientation of -91.568 degrees with a standard deviation of 0.023 degrees.

7.3 Evaluation of Image Balancing Framework

An experiment was conducted to demonstrate the image balancing module’s ability to

maintain an optimal pose relative to the bright feature. The experimental setup mirrored

that of the force control experiment. Notably, the exact starting position of the scanner was

chosen such that it was perpendicular to the skin at the start of the trajectory but would

not remain so over the trajectory. The force control module was also activated prior to

completing any trials to ensure patient contact was maintained throughout the trajectory
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regardless of any motion used to balance the image. For the first set of three trials, the image

balancing module was not activated and then a trajectory was generated. While following

the trajectory, the slope of the line approximating the bright feature was captured in a CSV

file continuously. The raw ultrasound images were also captured as individual PNG files. For

the second set of three trials, the image balancing module was activated prior to generating

the trajectory and data was recorded throughout the trajectory again.

Figure 24: The measured slope of the approximation line with and without image balancing.

Figure 25: The measured orientation of the ultrasound scanner about the scanner’s X axis
with and without image balancing.
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Figure 26: Ultrasound images captured at the start (a) and end (b) of the trajectory when
image balancing was not active and at the start (c) and end (d) of the trajectory when image
balancing was active.

Figure 24 compares the slope of the approximation line over the length of the trajectory

for the six trials conducted. For the three trials where the image balancing module was active,

the average slope of the line was -0.013 with a standard deviation of 0.013. Meanwhile for

the three tests where image balancing was not active, the slope of the line decreased by a

mean of -0.211 with a standard deviation of 0.005. Figure 25 shows how the image balancing

control caused the robot to change its roll angle over the length of the trajectory to remain

in contact with the phantom. Figure 26 shows qualitatively how the ultrasound images

captured while the image balancing module was active were more similar throughout the

trajectory than those captured while the image balancing module was inactive.

7.4 Evaluation of Image Centering Framework

An experiment was conducted to demonstrate that the image centering module keeps the

region of interest centered in the ultrasound image throughout a trajectory regardless of the
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patient profile. The experimental setup mirrored that of the image balancing experiment.

Besides activating the force control module prior to the start of the trials, the image balancing

module was also activated to ensure that the scanner was properly contacting the phantom

throughout the trajectory. For the first set of three trials, the image centering module was

not activated prior to following the trajectory. Throughout the trajectory, the location of

the centroid of the region of interest was recorded in a CSV file and the raw ultrasound

images were captured as PNG files. For the second set of three trials, the image centering

module was activated, and the data was again recorded throughout the trajectory.

Figure 27: The measured distance of the centroid of the region of interest from the center of
the image with and without image centering active.

Figure 27 shows how the image centering module kept the centroid of the region of interest

at an average of -11 pixels away from the center of the image with a standard deviation of

11.6 pixels. However, when the module was inactive during the first three trials, the centroid

of the region of interest moved away from the center of the image by an average of -70 pixels

with a standard deviation of 1.7 pixels. Figure 28 shows the same trend as the region of

interest remains centered throughout the entire path in the second three trials whereas it

progressively moves to the left throughout the first three trials.

As part of the experimentation, the rate at which the image segmentation ran was moni-
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Figure 28: Ultrasound images captured at the start (a) and end (b) of the trajectory when
image centering was not active and at the start (c) and end (d) of the trajectory when image
centering was active.

tored throughout these tests. While in testing where the real-time segmentation module was

the only module running, the segmentation ran speeds of up to 30 Hz. However, when the

full system was activated, the performance slowed down to approximately 18 Hz with new

ultrasound images being produced by the scanner at 25 Hz.

7.5 Accuracy of the Non-real Time Image Segmentation Frame-

work

To verify the accuracy of the image segmentation, five trajectories were accomplished

with the full RASTER system active and capturing images at each waypoint. Each waypoint

image was then segmented both by hand and then by using the non-real time segmentation

module. For each image, points were selected to create a polygon enclosing the thyroid in the

image and the resulting mask from the selected points was saved locally as a NumPy array

to be used as the ground truth. The result of the automatic segmentation of each image
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was saved as a NumPy array and then compared against the ground truth segmentation for

that image. The metric used to quantify the effectiveness of the image segmentation was the

DICE score, calculated using Equation 6 where NA is the number of pixels in mask A, NB

is the number of pixels in mask B, and NC is the number of pixels common to each image.

DICE =
2 ∗NC

NA +NB

(6)

Figure 29: The calculated accuracy of the non-real-time segmentation throughout five tra-
jectories.

Figure 30: Comparison between ground truth segmentation (left) and automatic segmenta-
tion (right) early in the trajectory.
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Figure 31: Comparison between ground truth segmentation (left) and automatic segmenta-
tion (right) in the middle of the trajectory.

Figure 32: Comparison between ground truth segmentation (left) and automatic segmenta-
tion (right) late in the trajectory.

The average DICE score of the automatically segmented images was 0.904 with a standard

deviation of 0.052. Figure 29 shows how the DICE score of the automatic segmentation

improved over the trajectory and then reached a consistent level of accuracy. Figures 30, 31,

32 are provided as examples of the small differences seen between the automatic segmentation

and the ground truth. These differences generally occur at the boundary of the thyroid or

where the boundary of the thyroid is unclear.

7.6 Repeatability of the Volume Reconstruction Framework

To verify the repeatability of the volume reconstruction, an experiment was conducted

that scanned the lower half of the right lobe of the thyroid in the phantom seven times.

For these tests the full RASTER system was active throughout each trial. The data col-
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lected from each trial was then sent through the non-real time segmentation and the volume

reconstruction modules for analysis. For each test, the imaging planes were set to be one

millimeter apart and the imaging depth was set to 5.2 centimeters.

Trial Number Volume (mm3)
1 4080
2 4240
3 4560
4 4360
5 4310
6 4550
7 4280

Table 2: The result of the volume estimation module over seven trials.

Figure 33: The visualization of a generated 3D volume.

Table 2 shows the results from these tests where the volume calculated by the module

was on average 4340 cubic millimeters with a standard deviation of 170 cubic millimeters.

Figure 33 shows an example of the visualization created from the data gathered in an exam.
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8 Discussion

The successful completion of the experiments conducted on the thyroid ultrasound phan-

tom demonstrate RASTER’s effectiveness. The force control algorithm applied a consistent

force on the patient as the scanner moved over inconsistent and unknown patient anatomy.

The trajectory generation procedure resulted in consistently spaced and parallel imaging

planes that were not affected by patient anatomy or other control motions. The image

balancing algorithm maintained proper contact with the patient throughout the trajectory

despite no prior knowledge of the patient anatomy. The image centering algorithm ensured

that the region of interest remained in the image despite unplanned movement in multiple

axes and a planned trajectory that would have moved the region of interest out of view.

RASTER’s non-machine learning image segmentation framework identified the region of in-

terest selected by the operator with high accuracy throughout the trajectory with no further

input from the operator. The volume generation module could repeatably estimate this re-

gion’s volume and display it to the operator for further diagnosis. Combined these modules

allowed RASTER to travel over unknown patient anatomy and create a smooth consistent

segmentation for volume reconstruction. Additionally, through these experiments, RASTER

was shown to perform in real-time with no prior knowledge of the anatomy or region of

interest that was to be segmented.

While RASTER showed promising results overall, two limitations were found through

the experimental process. First, while the use of a wireless scanner made the setup and

overall operation of the system easier, the wireless nature of the scanner proved problematic.

The scanner would overheat if used for extended periods of time and the battery of the

scanner would need to be recharged almost as frequently increasing the number of times

the scanner would have to be removed from the robot. Secondly, while the bright feature

image balancing technique performed well on the ultrasound phantom, the system would not

work directly on real patients as that bright feature that was approximated does not exist
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in humans. However, the a sensing system such as the one proposed by Ma et al. [27] could

be used to provide and even expand the capabilities of the system.
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9 Conclusion

In this thesis a robot assistant for sonographic tissue examination and reconstruction

(RASTER) was developed and validated. Experiments conducted with RASTER on a thy-

roid ultrasound phantom show that the system can, in real-time, accurately track regions of

interest in an ultrasound image and connect those images with positional data to recreate

3D volumes.

This system’s objective was to help physicians and sonographers conduct thyroid ultra-

sound examinations in an outpatient setting with little disruption to the current procedure.

The hardware requirements for RASTER are simple, requiring no permanent hardware in the

exam room, fitting entirely on a mobile cart, utilizing mid-range computers, and integrating

with existing ultrasound scanners already in use by physicians. The software is modular and

lightweight, requiring standard computer power and built around an easy-to-use interface.

The segmentation method is flexible and adaptable, requiring no foreknowledge of the region

to be imaged before the exam starts.

The experiments demonstrated that each module of the RASTER system is critical to

its overall performance. The force control, image balancing, and image centering modules

all contributed to maintaining consistent patient contact and good ultrasound image qual-

ity throughout the examination while the trajectory generation module ensures adequate

image spacing across unknown anatomy. The non-real time image segmentation framework

accurately segmented the recorded ultrasound images. The volume reconstruction module

repeatably estimated the volume of the thyroid and reconstructed a 3D shape using the

robot’s pose information to display for the operator.

Future work on this project should be directed towards resolving the limitations men-

tioned above, improving the system’s hardware, and introducing additional control methods.

This includes reducing the number of computing devices needed to operate the system to

improve the portability and reduce the overall cost. Plus, giving the patient a direct method
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of pausing the exam without fully emergency stopping the robot. Integrating a method of

controlling the pitch angle of the scanner, possibly by analyzing the surface of the patient’s

skin around the scanner, and the yaw angle of the scanner, possibly by looking at patient

features, should also be investigated to make a more complete control scheme.

An exploration of applications of RASTER beyond the thyroid should also be explored.

As the experiments showed, RASTER does not need prior knowledge of the patient anatomy

to maintain patient safety and conduct imaging trajectories. Furthermore, the non- machine

learning segmentation model allows RASTER to segment any visually distinct feature in the

ultrasound image without retraining. Combined with RASTER’s ability to work with any

type of scanner, RASTER has the potential to examine other anatomical features on the

body.
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[32] Juan Sandoval, Med Amine Laribi, Säıd Zeghloul, Marc Arsicault, and Jean-Michel

Guilhem. Cobot with Prismatic Compliant Joint Intended for Doppler Sonography.

Robotics, 9(1):14, March 2020. Number: 1 Publisher: Multidisciplinary Digital Pub-

lishing Institute.

[33] Junying Chen, Haijun You, and Kai Li. A review of thyroid gland segmentation and

thyroid nodule segmentation methods for medical ultrasound images. Computer Methods

and Programs in Biomedicine, 185:105329, March 2020.

[34] T.F. Chan and L.A. Vese. Active contours without edges. IEEE Transactions on Image

Processing, 10(2):266–277, February 2001.

61



[35] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. In Proceedings of

IEEE International Conference on Computer Vision, pages 694–699, Cambridge, MA,

USA, 1995. IEEE Comput. Soc. Press.

[36] S. Lankton and A. Tannenbaum. Localizing Region-Based Active Contours. IEEE

Transactions on Image Processing, 17(11):2029–2039, November 2008.

[37] Chunming Li, Chenyang Xu, Changfeng Gui, and Martin D Fox. Distance Regularized

Level Set Evolution and Its Application to Image Segmentation. IEEE Transactions on

Image Processing, 19(12):3243–3254, December 2010.

[38] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. ”GrabCut”: interactive fore-

ground extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3):309–

314, August 2004.

[39] Nikhil S. Narayan, Pina Marziliano, Jeevendra Kanagalingam, and Christopher G. L.

Hobbs. Speckle Patch Similarity for Echogenicity-Based Multiorgan Segmentation in

Ultrasound Images of the Thyroid Gland. IEEE Journal of Biomedical and Health

Informatics, 21(1):172–183, January 2017.

[40] Prabal Poudel, Alfredo Illanes, Debdoot Sheet, and Michael Friebe. Evaluation of Com-

monly Used Algorithms for Thyroid Ultrasound Images Segmentation and Improvement

Using Machine Learning Approaches. Journal of Healthcare Engineering, 2018:1–13,

September 2018.

[41] Jinlian Ma, Fa Wu, Tian’an Jiang, Qiyu Zhao, and Dexing Kong. Ultrasound image-

based thyroid nodule automatic segmentation using convolutional neural networks. In-

ternational Journal of Computer Assisted Radiology and Surgery, 12(11):1895–1910,

November 2017.

[42] Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region

segmentation of objects in N-D images. In Proceedings Eighth IEEE International Con-

62



ference on Computer Vision. ICCV 2001, volume 1, pages 105–112, Vancouver, BC,

Canada, 2001. IEEE Comput. Soc.

63


	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	The Thyroid Gland
	Nodules in the Thyroid
	Motivation for Completing Thyroid Ultrasound Examinations
	The Thyroid Examination Procedure and Calculating Thryoid Volumes
	Shortcomings of the Current Ultrasound Examination Procedure

	Previous Work on Robotizing Ultrasound Examinations
	Previous Robotic Ultrasound Systems
	Common Components of Robotic Ultrasound Systems
	Ultrasound Image Segmentation Techniques
	Further Explanation of the GrabCut Method

	Introduction to the RASTER System
	Materials and Methods
	Integrating the Ultrasound Scanner
	Mounting the Ultrasound Scanner
	Selecting the Robotic Manipulator
	Designing the User Interface
	Developing a Real-time Image Segmentation Framework
	Creating an Image Centering Algorithm
	Creating an Image Balancing Algorithm
	Implementing a Trajectory Generation Algorithm
	Implementing a Force control Algorithm
	Registering Corresponding Image and Position Data
	Developing a Non-real Time Image Segmentation Framework
	Estimating the Volume of the Region of Interest
	Controlling the Robotic Manipulator

	Testing and Validation
	Evaluation of the Force Control Framework
	Evaluation of Trajectory Generation Framework
	Evaluation of Image Balancing Framework
	Evaluation of Image Centering Framework
	Accuracy of the Non-real Time Image Segmentation Framework
	Repeatability of the Volume Reconstruction Framework

	Discussion
	Conclusion
	References

